1.1.3: Course Syllabus of Employability/ Entrepreneurship/ Skill development

Academic Year

2021-22

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Program: Bachelor of Engineering		
Course Title: Computer Organization and Architecture		Course Code:20ECSC201
L-T-P: 3-0-1	Credits: 4	Contact Hrs: 5hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50	Exam Duration: 3 hrs	

Unit –I			
		1	
1	Basic Concepts and Computer Evolution, Performance Issues, A Top-Level View of Computer		
	Function and Interconnection	05 hrs	
2	Memory, Input/Output, Computer Arithmetic, Digital Logic	08 hrs	
3	Instruction Sets: Characteristics and Functions, Addressing Modes and Formats	07 hrs	
Unit –I			
4	Processor Structure and Function, Reduced Instruction Set Computers	10 hrs	
5	Instruction-Level Parallelism and Superscalar Processors, Parallel Processing	10 hrs	
Unit –I	I		
6	Multicore Computers, General-Purpose Graphic Processing Units	05 hrs	
7	Control Unit Operation, Microprogrammed Control, Case studies and Projects	05 hrs	
Text Bo	oks:		
1.	William Stallings, Computer Organization and ArchitectureDesigning for Performance, 10 th Ec	Pearson	
	Education, 2016.		
Referen	ce Books:		
1.	John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative Approach 5t Elsevier publication, 2017.	h Edition,	
2.	Kai Hwang, Advanced Computer Architecture Parallelism Scalability Programmability, Tata Mc 2008	Graw Hill	

Program: Bachelor of Engineering			
Course Title: Computer Organization and Architecture Lab		Course Code:20ECSP202	
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hrs: 36	Exam Duration: 3 hrs		

List of experiments

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Week No	Lab Assignments	
1	Logisim Tool Demo	
2		
3	Combinational Circuits (Half Adder, Full Adder, Decoder, Multiplexer)	
4	Building ALU	
5	1-bit RAM Cell and building bigger RAM	
6	Cache Memory	
7	[Cache Simulator + Time Analysis]	
8	Instruction Format & Decoding,	
	Control Signal Generation	
9	Data Path Design for Given Set of Instructions	
10	Data Faul Design for Given Set of Instructions	
11	MIPS 5-Stage Pipeline: Simulates the pipeline.	
12	Loop unrolling: A software technique for exploiting instruction-level parallelism.	
13		
14	Technical Paper reading, summarizing /	
	Paper Presenting	

Scheme for Semester End Examination (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2,3	Solve Any 2
II	Q.No4, Q.No5	4,5	Solve Any 2
Ш	Q.No6	6	Solve Any 1
	Q.No7	7	Solver my 1

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Program: Bachelor of Engineering			
Course Title: Data Structures and Algorithms		Course Code: 20ECSC205	
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50hrs	Exam Duration: 3hrs		

Unit –I		
1	Fundamentals of Algorithms and Problem Solving	
	Space and Time Complexities, Order of an algorithm, Efficiency Analysis of Stacks and Queues	
	Revisited, Recursive Definitions, Recursive Functions, Towers of Hanoi, Backtracking,	
	Recursion Vs. Iteration	8 hrs
2	Hashing and Hash tables	
	Direct Address Table, Hash Table, Hash Functions, Collision Resolution Techniques.	4 hrs
3	Graphs and Trees	
	Graphs, Computer Representation of Graphs, Trees, Tree Traversals, AVL Trees, 2-3 Trees,	
	Application of Binary Trees, Tries, DFS, BFS	8 hrs
Unit –I	Ī	
4	Sorting Techniques	
	Sorting, Bubble sort, Selection Sort, Insertion Sort, Merge Sort, Quick Sort, Heap Sort.	8 hrs
5	Substring Search Algorithms	
	Brute-force method, Boyer-Moore Algorithm, Knuth-Morris-Pratt Algorithm, Rabin-Karp	
	Algorithm	4 hrs
6	Graph Algorithms	
	Union-Find Data Structure, Shortest Path algorithms, Minimum Spanning Tree Algorithms	8 hrs
Unit –I	П	
7	Problem Case Studies	
	Travelling Sales Person Problem, Knapsack Problem, Fake Coin Problem, Strassen's Matrix	
	Multiplication, Huffman Coding	5hrs
8	Limitation of Algorithm Power	
	Undecidability, P and NP Classes, P vs NP, NP-Hard, NP-Complete	5 hrs
Text Bo		
1.	Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to A	lgorithms
	Third Edition, The MIT Press, 2009.	
2.	Anany V. Levitin, Introduction to the Design and Analysis of Algorithms. Addison-Wesley Longm Publishing Co, 2012.	an
	ice Books:	
	Hemant Jain, Problem Solving Using Data and Algorithms Using C, Taran Technologies Private L	imited,
	016.	
2	HackerRank / CodeChef / SPOI	

2. HackerRank / CodeChef / SPOJ

Scheme for Semester End Examination (SEE)

UNIT	8 Questions to be set of 20	Chapter	Instructions
	Marks Each	Numbers	
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2
Ш	Q.No7	7	Solve Any 1
111	Q.No8	8	Solve Ally I

Program: Bachelor of Engineering			
Course Title: Database Management System Course Code: 15ECSC208			
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50	Exam Duration: 3 hrs		

Unit –I		
1	Introduction and ER Model Introduction to DBMS; Data Models, Schemas and Instances; Three-Schema Architecture; Database Languages; Using High-Level Conceptual Data Models for Database Design; An Example Database Application; Entity Types, Entity Sets, Attributes and Keys, Relationship Types, Relationship Sets. Roles and Structural Constraints; Weak Entity Types, Refining the ER Design; ER Diagrams, Naming Conventions and Design Issues.	06hrs
2	Relational Data Model and Relational Algebra Relational Model Concepts; Relational Model Constraints and Relational Database Schemas; Update Operations and dealing with constraint violations; Unary Relational Operations: SELECT and PROJECT; Binary Relational Operations: CARTESIAN PRODUCT, JOIN: Additional Relational Operations; Relational Database Design Using ER- to-Relational Mapping.	08hrs
3	SQL SQL Data Definition and Data Types; Specifying basic constraints in SQL; Schema change statements in SQL; Basic queries in SQL; JOIN operations, Complex SQL Queries.	06hrs
Unit –II		
4	Database DesignInformal Design Guidelines for Relation Schemas; Functional Dependencies; Normal FormsBased on Primary Keys; Boyce-Codd Normal Form.	07 hrs
5	Introduction to Transaction Processing Introduction to Transaction Processing; Transactions and System concepts; Desirable Properties of Transactions; Characterizing Schedules Based on- Recoverability, Serializibility.	07 hrs
6	Concurrency Control Techniques Introduction, Two-phase Locking Techniques for Concurrency Control, Dealing with Dead-lock and Starvation, Concurrency control based on Time stamp Ordering.	06 hrs
Unit –II	I	•
7	Database Security Introduction to DB Security Issues, Discretionary Access Control, Mandatory Access Control And Role-Based Access Control, SQL Injections, SQL Attacks;	05 hrs
8	Introduction to NOSQL and Columnar database: Introduction; Difference between SQL and NoSQL; Scaling of Databases; Applications; Columnar Database: Introduction; Row-oriented Systems; Column-oriented systems; Benefits; An Example of Columnar Database;	05 hrs
Text Bo 1. 2.	oks: Elmasri R. and Navathe S., Fundamentals Database Systems, 6th Ed, Pearson Education, 2011. ShashankTiwari, Professional NOSQL, 1 st Ed,Wrox, 2011.	
Referen		
1. 2.	Ramakrishnan S. and Gehrke J., Database Management Systems, 3 rd Ed, McGraw Hill, 2007. Silberschatz A., Korth H.F. and Sudharshan S., Database System Concepts, 5th Ed, Mc- GrawHill	, 2006.

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

UN	8 Questions to be set of 20	Chapter	Instructions]
IT	Marks Each	Numbers		
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2	
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2	
	Q.No7	7	Solve Any 1	
III	Q.No8	8		
Cours	se Title: Data Structure and Algor	rithms Lab	-	Course Code: 19ECSP201
L-T-P	P: 0-0-2	Credits: 2		Contact Hrs: 4 hrs/week
ISA Marks: 80		ESA Marks	s: 20	Total Marks: 100
Teach	ning Hrs:56 hrs	Exam Dura	tion: 3 hrs	

Scheme for Semester End Examination (ESA)

Tentative plan of lab Implementation

Week No	Lab Assignments	
1		
2	03 Programming Assignments on Stacks, Queues, Lists, Files	
3		
4	01 Assignment on Fundamentals of Algorithms	
5	01 Assignment on Trees	
6		
7	02 Assignments on Graphs	
8	01 Assignment on Sorting	
9	01 Assignment on Searching	
10	01 Assignment on Sorting and Searching Applications	
11		
12	03 Assignments on Graph algorithms	
13		
14	Open Ended Experiment	

Text Books:

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to Algorithms, Third Edition, The MIT Press, 2009.
- 2. Anany V. Levitin, Introduction to the Design and Analysis of Algorithms. Addison-Wesley Longman Publishing Co, 2012.

Reference Books:

- 1. Hemant Jain, Problem Solving Using Data and Algorithms Using C, Taran Technologies Private Limited, 2016.
- 2. HackerRank / CodeChef / SPOJ

Course Title: Computer Organization and Architecture Lab		Course Code: 20ECSP202
L-T-P: 0-0-1.5	Credits: 2	Contact Hrs: 4 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs:56 hrs	Exam Duration: 3 hrs	

Tentative plan of lab Implementation

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Week No	Lab Assignments	
1	Logisim Tool Demo	
2	Combinational Circuits (Half Adden Full Adden Dasadan Mukialawan)	
3	Combinational Circuits (Half Adder, Full Adder, Decoder, Multiplexer)	
4	Building ALU	
5	1-bit RAM Cell and building bigger RAM	
6	Cache Memory	
7	[Cache Simulator + Time Analysis]	
8	Instruction Format & Decoding,	
	Control Signal Generation	
9	Data Path Design for Given Set of Instructions	
10		
11	MIPS 5-Stage Pipeline: Simulates the pipeline.	
12	Lean unrelling: A coffuere technique for evaluiting instruction level nerollelism	
13	 Loop unrolling: A software technique for exploiting instruction-level parallelism. 	
14	Technical Paper reading, summarizing /	
	Paper Presenting	

Text Books:

1. William Stallings, Computer Organization and Architecture Designing for Performance, 10th Ed, Pearson Education, 2016.

Reference Books:

1. John L. Hennessy and David A. Patterson, Computer Architecture: A Quantitative Approach 5th Edition, Elsevier publication, 2017.

2. Kai Hwang, Advanced Computer Architecture Parallelism Scalability Programmability, Tata McGraw Hill 2008

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Program: Bachelor of Engineering		
Course Title: Database Applications Lab		Course Code: 15ECSP204
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3 hrs/week
ISA Marks: 80	ESA Marks:20	Total Marks: 100
Teaching Hrs: 36	Exam Duration: 3 hrs	

4- Demonstration	 Introduction to RDBMS/Case study/ basic SQL commands. Set theory, logical operators and aggregate functions. Group by, Having clause, Views and index Basics of PL/SQL.
5-Exercises	 SQL queries on set theory, logical operators and join operations. SQL queries queries on aggregate functions, group by and having clause. SQL queries on Views and nested query operations. PL/SQL queries using triggers and cursors. PL/SQL queries using procedures and functions.
3-Structured Enquiry	• Database Design
1-Open Ended Experiment	• Database design & implementation
ii) Steven Feuerstein, Bill Pr References:	S., Fundamentals Database Systems, 7 th edition, Pearson Education, 2012. riby <u>l</u> Oracle PL/SQL Programming, 6th Edition, O'Reilly Media,2014.

List of experiments/jobs planned to meet the requirements of the course.

1. Ramakrishnan S. and Gehrke J., Database Management Systems, 3rd edition, McGraw Hill, 2007.

PL/SQL User's Guide and Reference 10g Release 1 (10.1) December 2003.

Evaluation:

Students Assessment through ISA (80%) + ESA (20%)

Internal Semester Assessment (80%)	Assessment	Weightage in Marks
	Exercises	50
	Structured Enquiry	20
	Open Ended Experiment	10
End Semester Assessment (20%)	ESA	20
	Total	100

Course Title: Applied Statistics with R		Course Code: 20EMAB209
L-T-P: 3-1-0	Credits: 4	Contact Hrs: 4 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs:40 hrs	Exam Duration: 3 hrs	

Unit I
Chapter 1: Description of data 8 hours Introduction: Data, Type of Variables, mean, weighted mean, median, mode, Quartiles, Variance, Coefficient of variation,
skewness, Histogram, Box plots, Normal Quantitle Quantile plots.
Chapter 2:Probability 6 hours
Introduction: Definition, Interpretation of probability value, addition rule, multiplication rule, Baye's rule,
Applications: Data Classification Methods - Decision Tree Induction, Bayesian Classification.
R-tutorial: Introduction to Data handling ,Description of data graphically, Histogram, Skewness, Boxplot, QQ-norm, Decision tree 8 hours
Unit II
Chapter 3: Random variables and Probability Distribution8 hoursRandom variables, simple Examples, Discrete and continuous random variables; Introduction to bivariate distribution,
joint probability distribution, marginal distribution, covariance. Theoretical distributions: Binomial, Poisson, Normal.
Chapter 4: Statistical Inference I 8 hours
Introduction: Sampling, SRSWR, SRSWOR, Cluster Sampling, Stratified Sampling, Basic terminologies of testing
hypothesis, Confidence interval, Sample size determination, Hypothesis test for proportions, means(single and
differences), using P-value approach
R-tutorial : Probability distribution, Testing of Hypothesis for proportions, means(single and differences) 8 hours
Unit III
Chapter 5: Correlation and Regression5 hours
Meaning of correlation and regression, coefficient of correlation, Linear regression (ANOVA approach), Multiple linear
regression, Logistic Regression.
Chapter6: : Statistical Inference II5 hoursTest for independence of attributes (m x n contingency table) Inference based on choice of suitable test
procedure(Goodness of fit)
R-tutorial: Linear Regression with ANOVA approach, Multiple Regression with ANOVA approach4 hours
Text Books
1. J. Susan Milton, Jesse C. Arnold, Introduction to Probability and Statistics: Principles and Applications for
Engineering and the Computing Sciences, 4 th Ed, TATA McGraw-Hill Edition 2007.
2. Kishor S Trivedi, probability and statistics with reliability queuing and computer science applications, 1ed,
РНІ, 2000.
Reference Books:
1. Gupta S C and Kapoor V K, Fundamentals of Mathematical Statistics, 1ed, Sultan Chand & Sons, New Delhi, 2000.
2 Jiawai Han Michalina Kambar Data Mining: Concents and Techniques, Margan Kaufmann Publishers, 2005

- 2. Jiawei Han, Micheline Kamber, Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, 2005
- 3. Sheldon M.Ross ,Introduction to Probability and Statistics for Engineers and Scientists

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Scheme for Semester End Examination (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
Ι	Q.No1, Q.No2, Q.No 3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No 6	4, 5	Solve Any 2 out of 3
III	Q.No7 Q.No8	6 7	Solve Any 1 out of 2

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Scheme for Semester End Examination (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions	
Ι	Q.No1, Q.No2, Q.No3	1,2,3	Solve Any 2	
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2	
Ш	Q.No7	7	Solve Any 1	
	Q.No8	8	Solvering 1	

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

List of Experiments

Program: Bachelor of Engineering		
Course Title: Microcontroller Programming and Interfacing		Course Code: 21ECSC206
L-T-P:1-0-3	Credits: 4	Contact Hrs: 7hrs/week
ISA Marks: 100	ESA Marks: 0	Total Marks: 100
Teaching Hrs: 15 + 60	Exam Duration:	

	Module I	
Lecture	Introduction to Microcontroller and Embedded System	
/Reading	Microcontrollers and General Purpose Microprocessors, Embedded System Features, Choosing a microcontroller, Criteria for choosing a microcontroller, Harvard and Von Neumann Architecture, Introduction to AVR Microcontroller and Arduino Family.	01-hrs
Hands on	• Introduction to the hardware, setup, familiarizations with the working of the hardware	03-hrs
Lecture	AVR Architecture and Assembly Language Programming on AVR Microcontrollers	
/Reading	Simplified View of an AVR Microcontroller, Internal Architecture (Harvard) of AVR, Registers and Data Memory in AVR, Instruction format and size in AVR, Using Instructions with Registers and Data Memory, Watch Dog Timer, Flags and Special Function Registers, Data Formats and Assembler directive.	
	Introduction to AVR Assembly Programming, Instruction Types and Instruction Set of AVR (Data Transfer Instructions, Branch Instructions, Bit and Bit test Instructions, Arithmetic and Logic Instructions, MCU Control Instructions, Jump and RET Instruction), Structure of Assembly Program in AVR, asm, 1st, map and object files, Executing a program instruction by instruction, RISC Architecture features of AVR Microcontrollers, Viewing registers and memory with AVR Studio IDE.	02-hrs
Hand on	 Assembly programming on the hardware using appropriate SDK Set of programs to be given on various instruction types/ instruction set HLL Python programming on the hardware 	09-hrs
Review	Review I	03-hrs
	Module –II	
Lecture /Reading	AVR Time Delay and Instruction Pipeline Delay Calculation of AVR, AVR Multistage execution Pipeline, Timers/Counters, C Data Types.	01 hrs
Hands on	AVR Timer/Counter Programming	06 hrs
Lecture	AVR I/O Port Programming	
/Reading	I/O Port Pins and their functions, Role of DDR/DDRx Registers in Input and output operations, Programming for I/O Ports,I/O Bit Manipulations,	01 hrs
Hands on	I/O Port programming	06 hrs
Review	Review II	03 hrs
	Module –III	
Lecture	Interrupts in AVR and Interrupt Programming	
/Reading	AVR Interrupts, Interrupts vs Polling, Interrupt Service Routine, Steps in executing an interrupt, Sources of Interrupts, Interrupt Priority, Concept of Context Saving in task switching, Enabling and Disabling Interrupts, Programming Timer Interrupts, Programming external interrupts	01 hrs
Hands on	Interrupt Programming	06 hrs
Lecture /Reading	AVR Serial Port Programming	01 hrs

	Basics of Serial Communication, RS232 standards, RS232 Pins, RS232 Handshaking Signals, ATMEGA32 connections to RS232, Baud Rate and UBRR Register, UDR register and USART, UCSR Registers and USART Configuration, Programming AVR for Serial Communication.	
	Links:	
Hands on	Serial Communication programming	06 hrs
Review	Review III	03 hrs
	Module –IV	
Lecture /Reading	LCD and Keyboard Interfacing LCD Interfacing, Sending Commands and Data to LCD (4 Bits and/or 8 Bits at a time).	01 hrs
Hands on	Keyboard Interfacing, Matrix Keyboard connection to AVR Ports, Key Identification,	06 hrs
Lecture /Reading	Chapter No. 8. ADC, DAC and Sensor Interfacing Need for ADC and DAC in Interfacing, ADC Characteristics, ADC devices, and ATmega32 ADC features, Programming A/D Converter	01 hrs
Hands on	DAC Interfacing, Sensor Interfacing	06 hrs
Review	Review IV	
	Module –V	-
Hands on	Integration of the work done in various modules according to the problem statement	09 hrs
Final Evaluation	Presentation + Project exhibition	03 hrs
	zidi M. A, Naimi Sarmad, Naimi Sepehr, ""The AVR Microcontroller and Embedded Systembly and C", Prentice Hall.	tem using
Reference Bo	ooks: 1. Hughes, "Arduino A Technical Reference", O'Reilly	

Program:Bachelor of Engineering			
Course Title: Exploratory Data Analysis Course Code: 21ECSC210			
L-T-P: 2-0-2 Credits: 4		Contact Hrs: 6 hrs/week	
ISA Marks: 80 ESA Marks: 20		Total Marks: 100	
Teaching Hrs: 60	Exam Duration: 3 hrs	Lab slots:15	

	Unit –I		
1 Introduction and scientific python: Ecosystem for data science, basic python, numerical and vectorized computation, data manipulation, data visualization.		10 hrs	
2 Exploratory Data Analysis: Types of data: categorical, numerical, probability distributions, Descriptive statistics, univariate and multivariate statistics, advanced data visualization, Case study		10 hrs	
	Unit –II		
3	Data Pre-Preprocessing	10 hrs	

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

	Data cleaning, data integration, dimensionality reduction: feature selection and feature extraction, data transformation	
4	Supervised Learning Linear and logistic regression, naïve Bayes classifier, K-nearest neighbours	10 hrs
5	Clustering	
Partitioning-based, hierarchical clustering, density-based clustering		
	Unit –III	
6	Time-series analysis : Autocorrelation, time-series forecasting, auto regressive moving average models.	10 hrs
Refe	rence Books:	
	 Wes McKinney ,Python for Data Analysis, Published by O'Reilly Media, 2nd Edition ,October Jiawei Han, Micheline Kamber and Jian Pei, Data Mining: Concepts and Techniques, 3rd editio Kaufmann, 2012 	

3. Ian H. Witten, Eibe Frank, Mark A. Hall and Christopher J. Pal, Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann; 4th edition, 2016.

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι		1, 2	Demonstration of Course
Ш	Lab Exam on Course Project	3,4,5	Project
Ш		6	

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Program: Bachelor of Engineering				
Course Title: Object Oriented Programming CourseCode: 20ECSC204				
L-T-P: 3-0-0 Credits: 3		Contact Hrs: 3hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 3hrs			

Unit –I		
1	Introduction: Introduction to object oriented programming. Characteristics of object oriented languages, Programming Basics, arrays, Functions in C++ (parameter passing techniques.)	4 hrs
2	Classes and Objects: Introduction to Classes and Objects, encapsulation visibility modifiers, constructor and its types, nested classes, String class. UML diagrams to describe classes and	
	relationships.	6 hrs
3	Inheritance: Introduction, types of Inheritance, constructors, Abstract class, Aggregation: classes within classes	6 hrs
Unit –I		
4	Virtual Functions and Polymorphism: Virtual functions, Friend functions, static functions, The 'this' pointer	6 hrs
5	Templates and Exception Handling: Function and class templates. Introduction to exceptions,	
	Throwing an Exception, Try Block, Exception Handler (Catching an Exception), Multiple	
	exceptions. Exceptions with arguments	6hrs
6	Design Patterns: Creational, Structural and Behavioural design patterns.	4 hrs
Unit –I		
7	Streams and Files: Stream classes, File I/O with streams.	4 hrs
8	Standard Template Library: container classes: Sequence and Associative Containers	4 hrs
Textboo 1.	ks Robert Lafore, Object oriented programming in C++, 4 th Ed, Pearson education, 2001	
Referen	ce Books	
1. 2.	Lippman S B, Lajorie J, Moo B E, C++ Primer, 5Ed, Addison Wesley, 2013. Herbert Schildt: The Complete Reference C++, 4th Ed, Tata McGraw Hill, 2017	

UNI T	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2& 3	Solve Any 2 out of 3
Π	Q.No4, Q.No5, Q.No6	45&6	Solve Any 2 out of 3
Ш	Q.No7	7	Solve Any 1 out of 2
111	Q.No8	8	Solve Any 1 out of 2

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Program: Bachelor of Engineering			
Course Title: Principles of Compiler Design		Course Code:19ECSC203	
L-T-P: 3-1-0	Credits: 3	Contact Hrs: 03 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 03 hrs		

Unit –I		
1	Introduction to compilers: Brief History Of Compilers, Translation Process, Major Data Structures In Compilers, Chomsky Hierarchy, Lexical Analysis: Scanning Process, Regular Expressions For Tokens, Lexical Errors, Applications Of Regular Expressions.	06hrs
2	Finite Automata: Introduction: Language, Automata, From Regular Expressions To Deterministic Finite Automata (DFA): C-Nondeterministic Finite Automata (C-NFA), NFA, DFA, DFA Optimization, Finite Automata As Recognizer, Implementation Of Finite Automata	06hrs
3	Introduction to Syntax Analysis: Introduction To Grammars, Context-Free Grammars (Cfgs), Ambiguity In Grammars And Languages, Role Of Parsing.	04 hrs
Unit –I	1	1
4	Top Down Parsing: Introduction, Left Recursion, Left Factoring, LL (1) Parsing, FIRST And FOLLOW Sets, Error Recovery In Top Down Parsing.	08 hrs
5	Bottom up Parsing: Introduction, SLR (1) Parsing, General LR (1) And LALR (1) Parsing, Error Recovery In Bottom Up Parsing,	08 hrs
Unit –I	Π	
6	Semantic Analysis: Attributes And Attributes Grammars, Algorithm For Attribute Computation, Symbol Table, Data Types And Data Checking.	04 hrs
7	Intermediate Code Generation: Intermediate Code And Data Structure For Code Generation, Code Generation Of Data Structure References, Code Generation Of Control Statements.	04 hrs
Text Bo	. Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D Ullman, Compilers - Principles, Techniques 2nd Edition, Pearson, 2011.	and Tools,
Referen		
1. 2. 3. 4.	Andrew W Apple, Modern Compiler Implementation in C, Cambridge University Press, 1999. Charles N. Fischer, Richard J. leBlanc, Jr, Crafting a Compiler with C, Pearson, 2011. Peter Linz, An Introduction to formal languages and Automata, IV edition, Narosa, 2016. Basavaraj S Anami, Karibasappa K.G, Formal Languages and Automata Theory, First, Wiley Indi	ia, 2011.

Tutorial tentative plan

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Expt/Job No	Brief description of experiments	No of slots 1 slot = 2hrs
1	Regular expressions.	01
2	NFA, DFA and DFA optimization.	02
3	Regular and Context free grammars.	01
4	Top down parsing.	01
5	Bottom up parsing.	02
6	Implementation of lexical & syntax analyzer using LEX and YACC tools.	02
7	Design of CFG for validating Natural languages and implement the same.	02

UNIT	8 Questions to be set of 20 Marks	Chapter	Instructions
	Each	Numbers	
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4 ,5	Solve Any 2
Ш	Q.No7	6	Solve Any 1
	Q.No8	7	

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Program: Bachelor of Engineering			
Course Title: Operating Systems Principles and Programming Course Code: 18ECSC202			
L-T-P: 4-0-1	Credits: 5	Contact Hrs: 6	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50 + 26	Exam Duration: 3 Hrs		

	Unit –I	
1	Introduction Introduction to Operating System, Operations, System components, Overview of UNIX Operating System, UNIX utility commands, UNIX APIs and characteristics.	04 hrs + hrs (Tut
2	Process Management	<mark>10 hrs</mark>
	Process Concept, Process scheduling, Process Control, Process Accounting, Inter-process communication, Multithreading models and Thread API, Thread library, Process scheduling: Basic concepts; Scheduling criteria, Scheduling algorithms	+ 12 hrs (1
3	Process Synchronization	<mark>06 hrs +</mark>
	Synchronization, Producer Consumer problem, The critical section problem, Peterson's solution, Synchronization mechanism, Mutex, Semaphores, Classical problems of synchronization.	<mark>hrs (Tu</mark> t
	Unit –II	
4	Deadlocks Deadlock System Model and Deadlock Characterization, Methods for Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection, Recovery from Deadlock	<mark>06 hrs +</mark> hrs (Tut
5	File management	<mark>07 hrs</mark>
	UNIX File Types, File systems and File Attributes, I-nodes in UNIX, UNIX Kernel Support for Files, Directory Files, Hard and symbolic filenames, General File APIs. File and Record Locking.	<mark>+ 04 hr</mark> (Tut)
6	Memory Management	<mark>07 hrs</mark>
	Memory management strategies, Background, Swapping, Contiguous memory allocation, Paging, Structure of page table, Segmentation.	
	Unit –III	
7	Virtual Memory Management	5 hrs
	Virtual Memory Management, Background, Demand paging, Page replacement.	
8	Case study	5 hrs
	RT Linux: Features, architecture, components, application program interface, scheduling and threads.	

Fext Books:

- Abraham Silberschatz, Peter Baer Galvin, Greg Gagne: Operating System Principles, 9 ed., Wiley-India, 2019.
- W. Richard Stevens, Stephen A. Rago, "Advanced Programming in the UNIX Environment", 3 ed. Addison Wesley Professional, 2018

Reference Books:

- 1. William Stallings,"Operating System Internals and Design Principles", 1 ed., Pearson Education, Asia, 2015
- 2. Gary Nutt," Operating System", 3 ed., Pearson Education, 2009
- 3. Terrence Chan, "Unix System Programming Using C++", 1 ed., Prentice Hall India, 2014
- 4. Marc J. Rochkind, "Advanced Unix Programming", 2 ed., Pearson Education, 2005.

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

List of Experiments

Expt. No.	Experiments	No. of Slots
1	Process control (Using fork, wait, exec, exit API's)	2
2	Inter Process Communication using Pipes, FIFO's	2
3	Concurrent operations using Threads	2
4	File/ record locking and unlocking using <i>fcntl</i>	1
5	Simulation of CPU scheduling algorithms	1
6	Deadlock avoidance(Banker's algorithm), Deadlock detection	2

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2,3	Solve Any 2
Π	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2
Ш	Q.No7	7	Salva Any 1
	Q.No8	8	Solve Any 1

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Program: Bachelor of Engineering			
Course Title: Object Oriented Programm	ning Lab	Course Code: 20ECSP203	
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3 hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hrs: 39	Exam Duration: 3hrs		

Experiments Number	Lab assignments/experiment	Number of Slots
1	Demonstration: Introduction to Code Blocks IDE (Integrated Development Environment), C++ programming basics.	4
2	Exercise : Classes and objects, Inheritance, Polymorphism, Templates and Exceptions Handling	4
3	Structured Enquiry : Classes and objects, Inheritance, Polymorphism, Templates and Exceptions Handling	2
4	Open Ended : Data types, Classes and Objects, Inheritance polymorphism, Exception Handling. Design patterns	2

Text Book:

1. Robert Lafore, "Object oriented programming in C++", 4thEd, Pearson education, 2001

Reference Books:

- 1. Lippman S B, Lajorie J, Moo B E, C++ Primer, 5Ed, Addison Wesley, 2013.
- 2. Herbert Schildt: The Complete Reference C++, 4th Ed, Tata McGraw Hill, 2017

Evaluation:

Students Assessment through CIE (80%) + SEE (20%)

	Assessment	Weightage in Marks
Continuous Internal Evaluation	Exercises	40
(80%)	Structured Enquiry	20
	Open Ended Experiment	20
Semester End Examination (20%)	Structured Enquiry	20
	Total	100

Program: Bachelor of Engineering			
Course Title: Software Engineering Course C		Course Code: 15ECSC301	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3hrs		

Unit –I		
1	Software Engineering Process Professional software development Software engineering ethics, Case studies, Software processes: Software process models, Process activities, Coping with change, The rational unified process, Continuous Integration and Continuous Deployment and Tools.	6 hrs
2	Agile Software Development Agile methods, Plan-driven an	
	d agile development, Extreme programming, Agile project management.	4 hrs
3	Requirement Engineering Functional and Non-functional requirements; The software requirements Document, Requirement specification, Requirements Engineering Processes, Requirements elicitation and analysis; Requirements validation; Requirements management	6 hrs
Unit –I	I	
4	System Modeling Context models, Interaction Models, Structural models, Behavioral models.	6 hrs
5	Architectural Design Architectural Design Decision, Architectural Views, Architectural Patterns, Application Architectures	5 hrs
6	Object-Oriented Design And Implementation Object oriented design using UML, design patterns, Implementation Issues, Open Source Development.	5 hrs
Unit –I	П	
7	Software Testing Development Testing, Test Driven Development, Release Testing, User Testing	4 hrs
8	Configuration Management Change management, Version management, System building, Release management	4 hrs
Text Bo	ioks: Ian Somerville, Software Engineering, 10 th , Pearson Ed, 2015	
Referen 1. 2. 3.	Ice Books: Roger S. Pressman, Software Engineering: Practitioner's Approach, 7 th Ed, McGraw-, 2007 Shari Lawrence Pfleeger, Joanne M. Atlee, Software Engineering Theory and Practice, 3 rd Ed, Pear Jalote, P, An Integrated Approach to Software Engineering, 3rd, Narosa Pub, 2005	son, 2006

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2
III	Q.No7	7	Calca Arra 1
	Q.No8	8	Solve Any 1

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Program: Bachelor of Engineering			
Course Title: Computer Networks – I		Course Code: 19ECSC302	
L-T-P: 3-1-0	Credits: 4	Contact Hrs: 66	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3 hrs.		

Unit –I		
1	Introduction Internet, The Network Edge and Core, Protocol Layer and Service Models: OSI and TCP/IP, Networks Attacks, History of Computer Network and Internet.	8 hrs
2	Application Layer	8 hrs
	Principles of Network Applications , HTTP , SMTP, DNS, DHCP	
Unit –I		
3	Transport-Layer Services	8 hrs
	Introduction, Connectionless Transport, Principles of Reliable Data Transfer Protocol, Connection-Oriented and Connectionless Transport, Principle of Congestion Control, TCP Congestion Control.	
4	Network Layer: Data plane	8 hrs
	Introduction to Data and Control Plane, Virtual Circuit and Datagram Networks, Internet Protocol: Datagram Format, Fragmentation, IP Addressing	
Unit –I	П	
5	Network Layer: Data plane NAT, IPv6, Software Defined Network(SDN)	4 hrs
6	Network Laver: Control Plane and Network Management	4 hrs
0	SDN Control Plane, Network Management and SNMP	4 111 5
Text Bo		
1.	J. F. Kurose, K. W. Ross, Computer Networking: A Top-Down Approach, 7th Edition, Pearson Ed 2017.	lucation,
Referen	ce Books:	
1.	Peterson, Larry L, Computer networks : A Systems Approach, 5th Edition, The Morgan Kaufman in networking, 2012	n series

2. Behrouz A. Forouzan, TCP/IP protocol suite, 4th, McGraw Hill, 2010.

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Computer Networks-I Tutorial

Sl. No	Exercise	No of Slots (2 hrs)
1	Demonstration of n/w commands and tools.	2
2	Demonstration of socket programming- Connection oriented/Connectionless.	2
3	Application layer protocol implementation - FTP, Mail server, HTTP.	3
4	Demonstration of NS3 / Qualnet tools.	1
5	Performance analysis of TCP, UDP and SCTP.	1
6	Exercise on congestion control techniques.	1
7	Exercise on flow control techniques.	1
8	Design of network topology with IP addressing scheme.	2

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
III	Q.No7	5	Cala An 1
	Q.No8	6	Solve Any 1

Program: Bachelor of Engineering			
Course Title: System Software	Course Code: 17ECSC302		
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3hrs		

Unit –I		
1	Introduction to a Machine Architecture Introduction, System Software and Machine Architecture, Simplified Instructional Computer (SIC) - SIC Machine Architecture, SIC/XE Machine Architecture, SIC and SIC/XE Programming Examples.	6hrs
2	Assembler Basic Assembler Function - A Simple SIC Assembler, Assembler Algorithm and Data Structures, Machine Dependent Assembler Features - Instruction Formats & Addressing Modes, Program Relocation.	9hrs
Unit –II	I	
3	Assembler M/c Independent Features and Design options	
	Machine Independent Assembler Features: Literals, Symbol Defined Statements, Expression, Program Blocks, Control Sections and Programming Linking, Assembler Design Options: One Pass Assembler, Multi Pass Assembler, Implementation Examples: Assembler(8086): MASM	7 hrs
4	Loaders and Linkers	
	Basic Loader Functions: Design of an Absolute Loader, A Simple Bootstrap Loader, Machine Dependent Loader Features: Relocation, Program Linking, Algorithm and Data Structures for a Linking. Loader M/c Independent Features: Automatic Library Search, Loader Options, Loader Design Options - Linkage Editor, Dynamic Linkage, Bootstrap Loaders, Implementation Examples: 8086 Linker.	8 hrs
Unit –II	П	
5	Macro Processor Basic Macro Processor Functions: Macro Definitions and Expansion, Macro Processor Algorithm and Data Structures, Machine Independent Macro Processor Features: Concatenation of Macro Parameters, Generation of Unique Labels, Conditional Macro Expansion, Keyword Macro Parameters Implementation Examples: 8086 Macro Processor.	5 hrs
6	Back end of Compiler: Code generation and Machine dependent features.	
	Review of phases of compilers, code generation routines, machine dependent features.	5 hrs
Text Bo	oks:	
1. 2.	Leland.L.Beck and D. Manjula, System Software, 3 rd edition, Pearson Education, 2011. Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D Ullman, Compilers- Principles, Techniques a 2nd edition, Addison-Wesley, 2011.	and Tools
Referen	ce Books:	
1.	Muhammad Ali Mazidi et al, The 8051 Microcontroller and Embedded systems, 2 nd Edition education, 2009.	, Pearso

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
	Q.No7	5	Cala An 1
III	Q.No8	6	Solve Any 1

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Program: Bachelor of Engineering			
Course Title: Java Programming		Course Code: 19ECSP301	
L-T-P:1-0-1.5	Credits: 2.5	Contact Hrs: 4hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hrs: 52	Exam Duration: 3 hrs		

Unit –I		
1	JAVA Language Fundamentals: Java Features, Programming basics, Arrays and Strings, classes and objects	8hrs
2	Inheritance: Introduction, types of inheritance, static and dynamic polymorphism.	8hrs
3	Interfaces and Exception Handling: Introduction, Create and implement interfaces, Exception handling	
Unit –I	[
4	Collections Frame work: Introduction to generic programming, Collections: Interfaces: List, Set, Queue Classes: ArrayList, LinkedList and HashSet, Map	8 hrs
5	Lambda Expressions: Functional programming, Functional interface, Bulk operations on collections	8 hrs
6	Streams API: Basics of Streams, Reduction operations, Iterators and Streams	
Unit –I	I	
7	GUI Programming: Introduction toswings, User interface design and event handling.	4hrs
8	Java Database Connectivity (JDBC): Introduction, Drivers, Interfaces and classes to develop data base applications, case study	4 hrs
Text Bo	oks:	
3.	Herbert JAVA The Complete Reference, Herbert Schildt, 10th Ed, 2017, McGraw-Hill	
Referen	ce Books:	
i.	Kathy Sierra and Bert Bates, Head First Java: A Brain-Friendly Guide, 2nd Edition, O'Reilly Media	a
ii.	Introduction to Java Programming, Liang Y D, Pearson, 11th Edition	

Scheme for Semester End Examination (ESA)

*Note: This course is a lab course and the ESA is Course Project

Unit	Course Project for 20 Marks	Chapter Numbers	Instructions
I, II, III	Design and Implementation is evaluated	1,2,3,4,5, 6 and 7	Implement all the concepts
			studied in java Programming

Program: Bachelor of Engineering			
Course Title: Machine Learning		Course Code: 17ECSC306	
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 3 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50	Exam Duration: 3 hrs		

Uni	t-1	
1.	Introduction to machine learning Introduction to Machine Learning, Applications of Machine Learning, Types of Machine Learning: Supervised, Unsupervised and Reinforcement learning, Dataset formats, Features and observations.	5 hrs
<mark>2.</mark>	Supervised Learning: Linear Regression, Logistic Regression Linear Regression: Single and Multiple variables, Sum of squares error function, The Gradient descent algorithm, Application, Logistic Regression, The cost function, Classification using logistic regression, one-vsall classification using logistic regression, Regularization.	7 hrs
<mark>Uni</mark>	t – 2	
<mark>3.</mark>	Supervised Learning: Neural Network Introduction to perceptron learning, Model representation, Gradient checking, Back propagation algorithm, Multi-class classification, and Application- classifying digits. Support vector machines,	6 hrs
<mark>4.</mark>	Unsupervised Learning : Dimensionality reduction and Learning Theory Expectation Maximization (EM), Factor Analysis, The dimensionality reduction, PCA : PCA for compression, Incremental PCA, Randomized PCA, Kernel PCA, ICA (Independent Component Analysis). Bias/variance tradeoff, Union and Chernoff/Hoeffding bounds VC dimension.	6 hrs
<mark>Uni</mark>	t – 3	
<mark>5.</mark>	Reinforcement Learning Reinforcement Learning: Introduction, Applications, Model of the environment, Policy search, Learning to optimize rewards and value functions, Evaluating actions: The credit assignment problem, Policy gradients, Markov decision processes, Q-learning.	6 hrs
1. 1	a t Books: Fom Mitchell., Machine Learning, McGraw Hill, McGraw-Hill Science, 3 rd edition. Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006.	
R	 Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Technique Intelligent Systems, AurelianGerona, Publisher: O'Reilly Media , July 2016. Advanced Machine Learning with Python Paperback, 28 Jul 2016 by John Hearty. 	es to Build

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

List of experiments:

Experiment No.	Brief description about the experiment	Number of slots
1.	Introduction to Scikit and TensorFlow	1
	Simple programs with TensorFlow	
2.	Linear Regression	1
	Nonlinear Regression	
	Logistic Regression	
	Activation Functions	
3.	Training a multi-layer perceptron using API's	1
4.	Training a neural network – construction, execution and use of neural network.	1
5.	Training Neural Networks - a sequence classifier and to predict time series.	1
6.	Classification of Human Facial Expressions using Neural Networks	1
7.	Principal Component Analysis on	
	• simple matrix	
	• on iris dataset	1
8.	Course Project : Students in a group of four shall implement machine learning solution to a real world problem using Scikit	4
	 Ex: Sentiment Classification using LSTM , encoder-decoder, Natural Language Processing 	
	 Playing Solitaire using CNN and Deep Reinforcement Learning 	

Scheme for End Semester Examination (ESA)

UNIT	6 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
Ι	Q.No1, Q.No2	1, 2	Solve
II	Q.No4, Q.No5	3, 4	Solve
	Q.No7	5	0.1
III	Q.No8	5	Solve

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

List of Experiments

Expt. No.	Experiments	No. of Slots
1	Introduction to Data Science, Basics of Python libraries	2
2	Pre-processing: Assessing and analyzing data, cleaning, transforming and adding new features	2
3	Learning model: Constructing and testing learning model	1
4	Post-processing: Creating final predictions	1

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3, Q. No- 4	1, 2	Solve Any 3
II	Q.No5, Q.No6, Q.No7,Q.No-8	3, 4,5	Solve Any 3
III	Lab exam ,	1,2,3,4,5	Lab exam evaluation

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Program: Bachelor of Engineering			
Course Title: System Software Lab	Course Code: 19ECSP302		
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3 hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hrs: 36	Exam Duration: 3hrs		

SI No	Experiments	Slots/Hrs
1.	Practice programs on user defined functions, structures and programs on file handling	3 hrs
2.	Introduction to basics of given assembly language Programs	3 hrs
3.	Evaluation on given assembly language Program	3 hrs
4.	Implementation of Pass 1 Assembler	3 hrs
5.	Implementation of Pass 2 Assembler	6 hrs
6.	Implementation of Pass 1 Linking loader	3 hrs
7.	Implementation of Pass 2 linking loader	6 hrs
8.	Course Project on identifying machine to implement assembler , learning its architectural features and design Pass 1 Assembler or Pass2 Assembler	6 hrs

Reference Books:

- 1. Leland.L.Beck and D. Manjula, System Software, 3rd edition, Pearson Education, 2011.
- Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D Ullman, Compilers- Principles, Techniques and Tools, 2nd Edition, Addison-Wesley, 2011.

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Program: Bachelor of Engineering			
Course Title: Mini Project	Course Code: 15ECSW301		
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 3 hrs/week	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 39	Exam Duration: 3 Hrs		

Student Evaluation Matrix

Sl. No	Continuous Internal Evaluation	Assessment	Weightage in Marks
1	Review 1 :	Problem identification and Software Requirement Specification (SRS)	10
<mark>2.</mark>	Review 2 :	Software Design	10
3.	Review 3 :	Construction (testing and final demo)	15
4.		Individual contribution to team	10
5.		Project report	05
	1	Total	50

Progra	m: Bachelor of Engineering			
Course Title: Data Mining & Analysis Course Code: 18ECS			C301	
L-T-P: \$	-T-P: 3-0-1 Credits: 4 Contact Hrs: 5 hrs/v		week	
ISA Ma	A Marks: 80 ESA Marks: 20 Total Marks: 100			
Teaching Hrs: 40 Exam Duration: 3hrs				
Unit –I				
1	Data Pre-Preprocessing			
	Introduction to data mining, Data Warehouse and OLAP Technology for Data mining: Data Warehouse, Multidimensional Data Model, Data Warehouse Architecture, Major tasks in data preprocessing- data reduction, data transformation and data discretization, data cleaning and data integration.			08 hrs
2	Frequent Pattern Mining			
	Frequent item sets and association rules; Item set mining algorithms; Generating association rules; Summarizing item sets: maximal and closed frequent item sets; Interesting patterns: pattern evaluation methods;			08 hrs
Unit –I	I			
3	Classification Techniques			
	Probabilistic classification: naïve Bayes classifier, K-nearest neighbours; Decision tree classifier: decision tree induction, tree pruning; Model evaluation and selection: metrics, cross validation, random sampling, ROC curves; 081			08hrs
4	Cluster Analysis			
	Cluster Analysis- Partitioning methods, Hierarchical Methods, Density based methods, Outlier Detection.			08hrs
Unit –I	II			
5	Advanced Mining Techniqu	<mark>les</mark>		
	improve classification accura	g techniques: One hot encoding, st cy: ensemble methods, random fore essing: Visualization and Interpretation	sts, XGBoosting; Bias-	08 hrs
Text B	ooks:			
1.	Jiawei Han, MichelineKambo Morgan Kaufmann, 2012.	er and Jian Pei, Data Mining: Conce	pts and Techniques, 3r	d edition,
Refere	erence Books:			
1.	Ian H. Witten, Eibe Frank, Mark A. Hall and Christopher J. Pal, Data Mining: Practical Machine Learning Tools and Techniques, Morgan Kaufmann; 4th edition, 2016.		Machine	
2.	Pang-Ning, Michael Steinbach and Vipin Kumar, Introduction to Data Mining, Pearson, International edition, 2016.		Pearson,	
3. Mohammed J. Zaki and Wagner Meira, Jr., Data Mining and Analysis: Fundam		ysis: Fundamental Cond	cepts and	
	Algorithms, Cambridge Unive	ersity Press, 2014.		
4.	M. H. Dunham, Data Mining: Introductory and Advanced Topics, Pearson Education, 1st edition, 2006.			

Program: Bachelor of Engineering			
Course Title: Computer Networks-II	Course Code: 20ECSC303		
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 70	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 30	Exam Duration: 3 hrs		

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

	Unit –I	
1	Network Layer- Routing Algorithms The Link-State (LS) Routing Algorithm, The Distance-Vector (DV) Routing Algorithm, Hierarchical Routing, Routing in the Internet ,intra-AS Routing in the Internet: RIP, Intra-AS Routing in the Internet: OSPF, Inter-AS Routing: BGP.	08hrs
2	Network Layer Broadcast and Multicast Routing, Broadcast Routing Algorithms, Error Reporting, Multicasting: IGMP Group Management, IGMP Messages, Message Format, and IGMP Operation.	08hrs
	Unit –II	
3	Data Link Layer Introduction to the Link Layer, Error-Detection and -Correction Techniques : Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC),Hamming Code, Multiple Access Links and Protocols: Channel Partitioning Protocols, Random Access Protocols: Aloha, Slotted Aloha, CSMA, CSMA/CD, CSMA/CA, Taking-Turns Protocols, The Link-Layer Protocol for Cable Internet Access.	08hrs
4	Switched Local Area Networks Link-Layer Addressing and ARP, Ethernet and LAN standards, Link-Layer Switches, Virtual Local Area Networks (VLANs), Multiprotocol Label Switching (MPLS), Data Center Networking, Retrospective: A Day in the Life of a Web Page Request.	08hrs
	Unit –III	
5	Wireless and Mobile Networks Wireless Links and Network Characteristics, 802.11 Wireless LANs, Architecture, MAC Protocol, Frame, Mobility, Personal Area Networks: Bluetooth and Zigbee.Cellular Networks and Internet Access, Mobility, Mobile IP, Managing Mobility in Cellular Network.	04hrs
6	Multimedia Networking: Multimedia Networking Applications, Streaming Stored Video, Voice-over-IP, Protocols for Real-Time Conversational Applications.	04hrs
Text Bo	oks:	
1.	J. F. Kurose, K. W. Ross, Computer Networking, A Top-Down Approach, 7th Edition, Pearson Edu 2017	cation,
2.	Behrouz A. Forouzan, TCP/IP protocol suite, 4th, McGraw Hill, 2010.	
Referen	ce Books:	
4.	Peterson, Larry L, Computer networks : a systems approach, 5th Edition, The Morgan Kaufmann networking, 2012	n series in
5.	Dimitri P. Bertsekas and Robert G. Gallager, Data Networks (2nd Edition), PHI, 2009.	

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
	Q.No7	5	
III			Solve Any 1
111	Q.No8	6	

Program: Bachelor of Engineering			
Course Title: Computer Network Lab		Course Code: 20ECSP305	
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Teaching Hrs:42	Exam Duration: 3 hrs	

List of Experiments

S.No	Experiments	Number of lab Slots
		(3 hrs)
1.	Demonstration of Mininet.	1
2.	Traffic measurement and traffic volume control using the POX controller.	1
3.	Implementation of load balancing/routing technique.	2
4.	Error Detection and Correction using Socket programming.	1
5.	Demonstration of Junos.	1
6.	Configuration and analysis of VLAN.	1
7.	Configuration and analysis of STP/MPLS.	1
8.	Configuration and analysis of OSPF and BGP routing protocols.	2
9.	Experimental analysis of the Handover Procedure in a WiFi Network.	1
10.	Performance analysis of IEEE 802.11 MAC protocols.	1

Course Content

Course Code: 21ECSC307	Course Title: Blocko Ledgers	hainand Distributed
L-T-P : 2-0-1	Credits: 3	Contact Hrs:30
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 30		Exam Duration: 3 hrs

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Content	Hrs	
Unit – 1		
Introduction		
Overview of blockchain, Digital Money to Distributed Ledgers, Design Primitives: Protocols, Security, Consensus, Permissions, Privacy, Types of blockchain, blockchain platforms, Blockchain Architecture and use cases, Introduction to Bitcoin	06 hrs	
Introduction to cryptography, Symmetric key crypto, Public key crypto: Introduction, RSA, Diffie-Hellman, PKI, Hash Functions: Introduction, SHA, Digital signature Schemes: RSA,Digital Signature Standard, Merkle trees.	06 hrs	
Unit – 2	1	
Consensus Mechanisms and Mining		
Basic consensus mechanisms, Requirements for the consensus protocols, Proof of Work, Proof of State, Proof of Activity, Practical Byzantine Fault Tolerance (PBFT), Federated PBFT, RAFT, Consensus protocols in Blockchain platforms, Scalability issues of consensus protocols.	06 hrs	
Ethereum		
Ethereum transactions, accounts, smart contracts, smart contract development, Solidity basics, basic contracts, distributed storage and IPFS, Ethereum scaling	06 hrs	
Unit – 3		
Blockchain Applications		
Blockchain in Financial Software and Systems: Settlements, KYC, Insurance Government: Digital identity, land records, public distribution system, social welfare systems, Blockchain for cyber security: Cloud forensics, Identity management, Intrusion detection	06 hrs	

References Books

1. Melanie Swan, "Blockchain: Blueprint for New Economy", 1st Edition, O'Reilly Media, 2014.

2. ArshdeepBhaga, Vijay Madisetti, "Blockchain Applications: A Hands-On Approach", 1st Edition, VPT, January 31, 2017.

Program: Bachelor of Engineering			
Course Title: Web Technologies Lab		Course Code: 21ECSP304	
L-T-P: 0-0-2	Credits: 2	Contact Hrs: 4hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hrs: 30	Exam Duration: 3 hrs		

1	Introduction to HTML basics, JavaScript Introduction to World Wide Web, Web Application Architecture, HTML Basics, Cascading Style Sheets, JavaScript Basics	4 hrs
2	RESTful API using NodeJS and Express Introduction to Node.js .Building servers using the http and net modules, Node modules and events, Express, REST API client, Postman, Accessing Data, Data Security using Bcrypt. API security using JWT tokens.	12 hrs
3	Angular Building blocks of Angular Apps, Components, Templates, Directives. Services, Dependency injection, Bindings, observables, pipes, component communications, Forms, Interacting with servers using HTTP. RouteGuard, Interceptors, Bundling and deploying applications, Hosting	12 hrs
4	React JSX, React Components, Interaction of Components, Lifecycle methods, Form.	8 hrs
Refe	rence Books:	

- 1. Robert W. Sebesta." Programming the World Wide Web", Pearson Publications 8th Edition, 2014.
- 2. Nathan Murray, Felipe Coury, et al, "ng-book: The Complete Guide to Angular", FullStack.io Publications, 2019
- 3. AzatMardan, "Practical Node.js: Building Real-World Scalable Web Apps", 2nd Edition Apress, 2018.
- 4. Den Ward, "<u>React Native Cookbook: Recipes for solving common React Native development problems</u>", <u>2nd Edition</u>.2019

Program: Bachelor of Engineering			
Course Title: Distributed and Cloud Computing		Course Code:20ECSC305	
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 3hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 30	Exam Duration: 3 hrs		

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Unit –I		
1	Distributed System Models and Enabling Technologies	
	Scalable Computing over the Internet, Technologies for Network-Based Systems, System Models	
	for Distributed and Cloud Computing	4 hrs
2	Virtual Machines and Virtualization of Clusters	
	Implementation Levels of Virtualization, Virtualization Structures/Tools and Mechanisms,	
	Virtualization of CPU, Memory, and I/O Devices, Virtual Clusters and Resources Management.	4 hrs
3	Cloud Platform Architecture over Virtualized Data Centers	
	Cloud Computing and Service Models, Architectural Design of Compute and Storage Clouds,	
	Public Cloud Platforms.	4 hrs
Unit –I		
4	Cloud Programming and Software Environments	1
4	Features of Cloud and Grid Platforms, Parallel and Distributed Programming Paradigms,	
	Programming Support of Google App Engine.	4 hrs
5	Cloud Resource Management	
-	Policies and mechanisms for resource management, Applications of control theory to task	
	scheduling on a cloud, Scheduling algorithms for computing clouds. Fair queuing, Start-time fair	
	queuing, Borrowed virtual time.	4 hrs
6	Cloud Security	
	Cloud security risks, Privacy; privacy impact assessment, Trust, Security of virtualization.	
	Security risks posed by shared images, Security risks posed by a management OS, Xoar - breaking	4 hrs
Unit –I	the monolithic design of the TCB, A trusted virtual machine monitor.	4 IIIS
7	Docker Containers	1
/		
	Introduction, Docker swarm, Kubernetes.	3 hrs
8	Building containerized applications	
	Microservice architecture, building micro services and containerized applications.	3 hrs
Text Bo		
6.	Kai Hwang, Geoffrey C. Fox, Jack J. Dongarra, Distributed and Cloud Computing from Parallel P	rocessir
	to the Internet of Things, Elsevier, 2013.	
7.	Dan C. Marinescu, Cloud Computing Theory and Practice, Elsevier, 2013.	
<u>8.</u>	Nigel Poulton, The Kubernetes Book, Packt Publishing, 2019.	
Kefere	nce Books:	
9.	RajkumarBuyya, Christian Vecchiola, S. ThamaraiSelvi, Mastering Cloud Computing, McGraw Hi	1, 2013.
10	. Anthony T. Velte, Toby J. Velte, Robert Elsenpeter, Cloud Computing, A Practical Approach, Mc	Graw H
	2010	

List of Experiments:

2010.

Expt./Job No.	Brief description about the experiment/job
1.	Hypervisors (Type-I and Type-II). Virtual machines with Para/Full Virtualization
2.	Implementation of cloud service models(IaaS, PaaS, SaaS)
3.	OS-level virtualization
4.	Building containerized application
5.	Cloud resource scheduling and security mechanisms

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2, 3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
Ш	Q.No7	7	Salva Any Lout of 2
111	Q.No8	8	Solve Any 1 out of 2

Program: Bachelor of Engineering			
Course Title: Internet of Things		Course Code: 17ECSE303	
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 30 hrs	Exam Duration: 3 hrs		

Unit –I			
1	Introduction to Internet of Things (IoT)		
	Definition & Characteristics of IoT, Things in IoT, IoT protocols, IoT functional blocks, communication models and APIs.	4 hrs	
•	IoT Architecture	4 1115	
2	Enabling technologies: Sensors, Zigbee, Bluetooth/BLE, IoT ecosystem, Data Link protocols:		
	IEEE 802.15.4e, IEEE 802.11.ah, DASH7, Low Power Wide Area Network (LPWAN), NB-IoT,		
	LoRa	4 hrs	
3	Network protocols		
	Routing Protocol for Low-Power and Lossy Networks (RPL), cognitive RPL (CORPL),		
	Channel-Aware Routing Protocol (CARP), Low power Wireless Personal Area Networks		
	(LoWPAN), IPV6, 6LoWPAN, Route-Over & Mesh-Under techniques	4 hrs	
Unit –I	I		
4	Application and Security protocols		
	Message Queue Telemetry Transport (MQTT), MQTT for Sensor Networks, Secure MQTT,		
	Advanced Message Queuing Protocol (AMQP), Constrained Application Protocol (CoAP), OPC		
	UA, TLS/DTLS, LWM2M, oneM2M	4 hrs	
5	IoT Platforms Design Methodology		
	IoT Design Methodology, Case Study on IoT System for Weather Monitoring etc., Basic building		
	blocks of an IoT device, Raspberry Pi, interface (serial, SPI, I2C), IoT Operating Systems:		
	Contiki, RIOT; IETF Device Classes, Microcontrollers & RF; Power Management in IoT.	4 hrs	
6	Programming with Raspberry Pi &WiFi controllers (CC3220/ESP8266) & 6LoWPAN Controller (CC2650)		
	XML, JSON, SOAP and REST-based approach, WebSocket protocol.	4 hrs	
Unit –I	И		
7	IoT prototyping		
	Business models, example applications: Case studies on Home automation, Cities, Environment,		
	Energy, Agriculture, Health with emphasis on data analytics and security. Industrial IoT (IIoT),		
	Role of AI/ML in IoT.	6 hrs	
Text Bo		014	
1. 2.	ArshdeepBahga, Vijay Madiset, Internet of Things (A Hands-on-Approach) Universities Press-2 Olivier Hersent, David Boswarthick, Omer Elloumi, The Internet of Things: Key Applica		
۷.	. Olivier Hersent, David Boswarthick, Omar Elloumi, The Internet of Things: Key Applications and Protocols, John Wiley & Sons – 2012.		
Referer	ice Books:		
1.	Subhas Chandra Mukhopadhyay ,Internet of Things Challenges and Opportunities Springer- 201	4.	
2.	Zach Shelby, Carsten Bormann, "6LoWPAN: The Wireless Embedded Internet", Wiley - 2009.		

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Expt./Job No.	Brief description about the experiments	No. of Lab slots per batch (estimate)
1.	Programming with Raspberry Pi	3
2.	Cloud service interface for data storage and retrieval	2
3.	Performance analysis of Data link protocols, routing and application protocols	3
4.	Open Ended Experiment with focus on data analytics and security	2

Scheme for Semester End Examination (SEE)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
III	Q.No7	7	Solve Any 1 out of 2

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Program: Bachelor of Engineering			
Course Title: Algorithmic Problem Solving Course Code: 17ECSE309			
L-T-P: 0-0-6	Credits: 6	Contact Hrs: 74 hrs	
ISA Marks: 70	ESA Marks: 30	Total Marks: 100	
Teaching Hrs: 74 hrs	Exam Duration: 2-3 days		

Unit –I				
1	Building Blocks, Strategies and Performance			
	Understanding Coding Platforms and Tools, Data Structures and Algorithms Revisited, Warm up Problems, Parsing and Formatting Text, Code Performance Analysis and Tools			
2	Advanced Data Structures			
	Matrix, Grids, Trees and variants, Lists, Skip lists, Hash, Trie and variants	10 hrs		
3	Dynamic Programming			
	Memory Functions, Optimization Problems	8 hrs		
Unit –I	ſ			
4	Graph algorithms			
	Traversal Algorithms, Shortest Path Algorithms, Spanning Tree Algorithms and Variants	25 hrs		
5	Introduction to Computational Geometry			
	Points, Line Segments, Polygons and Basics of Geometric Problems	5 hrs		
Unit –I	П	_		
6	Chapter 6: Problem Solving			
	Assortment of Problems and Techniques	14 hrs		
Text Bo				
1. 2.				
Referen	ices:			
1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, Third Edition, MIT Press, 2010.				

2. HackerRank / CodeChef Platforms

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Program: Bachelor of Engineering				
Course Title: Computer Vision	Course Code:18ECSE301			
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 3hrs/week		
ISA Marks: 80	ESA Marks: 20	Total Marks: 100		
Teaching Hrs: 30	Lab Slots:10	Exam Duration: 3 hrs		

Unit – 1			
1	Introduction	4hrs	
	Computer Vision Overview, Pixels and image representation, Filters: Linear systems, Convolutions and cross-correlations; Lab: Basics, Filters		
2	Features and filtering		
	Edge detection: Gaussian, Sobel filters, Canny edge detector, Features and fitting: RANSAC Local features, Harris corner detection, Feature descriptors: Difference of gaussians, Scale invariant feature transform; Lab: Filters, Edges, Features		
Unit – 2			
3	Semantic segmentation	6 hrs	
	Perceptual grouping, Agglomerative clustering, Super pixels and over segmentation; Clustering: K-means, Mean shift; Visual Bag of Words: Texture features, Visual bag of words; Lab: Resizing, clustering, recognition		
4	Motion Optical Flow, Lucas-Kanade method, Horn-Schunk Method, Pyramids for large motion, Tracking: Feature Tracking, Lucas KanadeTomasi (KLT) tracker; Lab: Object detection, optical flow	6hrs	
Unit – 3			
5	Advanced Techniques Image stitching, Image pyramids, Object recognition, Dimensionality reduction, Face identification, Detecting objects by parts	6hrs	
Referen	ce Books:		
1.			
2.	D. Forsyth and J. Ponce, Computer Vision: A Modern Approach, Pearson Education India, 2 nd Ed, 2015.		
3.	R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, Cambridge University Press, 2nd Edition, 2004.		

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 3 out of 4
II	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 3 out of 4
Ш	Lab exam	5	Lab exam evaluation

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Prog	ram: Bachelor of Engineering			
Cou	rse Title: Embedded Intelligent Sys	tems	Coursecode: 18ECSE	302
L-T-P: 0-0-3 Credits: 3 Contact Hrs: 6hrs/we			eek	
ISA Marks: 80 ESA Marks: 20 Total Marks: 100				
Teaching Hrs: 60Exam Duration: 3 hrs				
1		, System V IPC, . Linux Kernel Intern iver Programming, Interrupts & Timers ce build and execute		10 hrs
 Heterogeneous computing Basics of heterogeneous computing with various hardware architectures designed for specific type of tasks, Advanced heterogeneous computing with a.Introduction to Parallel programming b.GPU programming (OpenCL)c. Open standards for heterogeneous computing (Openvx) ,Basic OpenCL examples - Coding, compilation and execution 			12hrs	
3	ML Frameworks lab with the target device Caffe, tensorflow, TF Lite machine learning frameworks & architecture ,Modelparsing, feature support and flexibility,Supported layers, advantages and disadvantages with each of these frameworks, Android NN architecture overview, Full stack compilation and execution on embedded device			16hrs
<mark>4</mark>	Model Development and Optimization Significance of on device AI,Quantization , pruning, weight sharing, Distillation,Various pre- trained networks and design considerations to choose a particular pre-trained model ,Federated Learning , Flexible Inferencing			8hrs
5	5 Android Anatomy Android Architecture, Linux Kernel, Binder, HAL Native Libraries, Android Runtime, Dalvik Application framework, Applications, IPC			8hrs
Text	Books 1. Linux System Programming , b	y Robert Love , Copyright © 2007 O'Rei 1 OpenCL, 2nd Edition by Dana Schaa, I		Kaeli, Le
	erence Books:	ok ,Goodfellow, Bengio, and Courville's		

UNIT	Experiments to be set of 10 Marks Each	Chapter Numbers	Instructions
Ι	Project Examination	1,2,3,4,5	Project implementation and demonstration
			20 marks

Program: Bachelor of Engineering				
Course Title: Parallel Computing Course Code: 17ECSE307				
L-T-P: 3-0-0	Contact Hrs: 03 hrs/week			
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 43	Exam Duration: 03hrs			

Unit –I		
1	Introduction to Parallel Computing & Parallel Programming Platforms	8 hrs
	Motivating Parallelism, Scope of Parallel Computing, Implicit Parallelism: Trends in	
	Microprocessor Architectures, Limitations of Memory System Performance, Dichotomy of	
	Parallel Computing Platforms, Physical Organization of Parallel Platforms, Communication Costs	
	in Parallel Machines.	
2	Principles of Parallel Algorithm Design	8 hrs
	Preliminaries, Decomposition Techniques, Characteristics of Tasks and Interactions, Mapping	
	Techniques for Load Balancing, Methods for Containing Interaction Overheads, Parallel	
	Algorithm Models.	
Unit –II		
3	Analytical Modeling of Parallel Programs	8 hrs
	Sources of Overhead in Parallel Programs, Performance metrics for parallel systems, The effect	
	of Granularity on performance, Scalability of Parallel Systems, Minimum execution time and	
	minimum cost optimal execution time, Asymptotic analysis of Parallel programs, Other Scalability	
	Metrics.	
4	Programming Using the Message Passing Paradigm	8 hrs
	Principles of Message - Passing Programming, The Building Blocks, and MPI: The Message	
	passing Interface, Overlapping Communication with Computation, Collective Communication	
	and Computation Operations, Groups & Communicators.	
Unit –II		
5	Pthreads and Synchronization	4 hrs
	Thread Basics, POSIX Thread API, Synchronization Primitives in Pthreads, Controlling Thread	
	and Synchronization Attributes, Thread Cancellation, Composite Synchronization Constructs.	
6	OpenMP	4 hrs
	Open MP programming model, Specifying tasks in openMP, Synchronization constructs in opn	
	MP, Data handling in OpenMP, Open MP library functions, Environment variables in OpenMP,	
	Explicit Thread versus OpenMP based programming.	
Text Bo		
1.	Ananth Grama, George Karypis, Vipin Kumar and Anshul Gupta, Introduction to Parallel Computir	ng,
	Second Edition, Pearson India, 2013	
Referen	ce Books:	
1.	Michael Quinn, Parallel Computing Theory and Practice, Tata McGraw Hill, 2003	
	· · · · · · · · · · · · · · · · · · ·	

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
111	Q.No7	5	Salva Anna 1
III	Q.No8	5	Solve Any 1

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Program: Bachelor of Engineering			
Course Title: Quantum Computing Course Code: 17ECSE306			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3hrs	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3hrs		

Unit –I		
1	Introduction and Background:	
1	Overview, Computers and the Strong Church-Turing Thesis, The Circuit Model of	
	Computation, A Linear Algebra Formulation of the Circuit Model, Reversible Computation,	6 hrs
	A Preview of Quantum Physics, Quantum Physics and Computation	0 11 3
2	Linear Algebra and the Dirac Notation:	
	The Dirac Notation and Hilbert Spaces, Dual Vectors, Operators, The Spectral Theorem,	
	Functions of Operators, Tensor Products, The Schmidt Decomposition Theorem, Some Comments on the Dirac Notation	6 hrs
		0 11 5
3	Introduction to Quantum Toolbox in Python: Installation, Basics and Quantum mechanics	
	instantation, Dasies and Quantum meenantes	4 hrs
Unit –I	I	
4	Qubits and the Framework of Quantum Mechanics:	
-	The State of a Quantum System, Time-Evolution of a Closed System, Composite Systems,	
	Measurement, Mixed States and General Quantum Operations, Mixed States, Partial Trace,	
	General Quantum Operations	6 hrs
5	A Quantum Model of Computation:	
	The Quantum Circuit Model, Quantum Gates, 1-Qubit Gates, Controlled-U Gates, Universal	
	Sets of Quantum Gates, Efficiency of Approximating Unitary Transformations, Implementing Measurements with Quantum Circuits	6 hrs
	Exploring Python for Solving Problems / Projects using Quantum Computing.	0 11 3
6	Exploring Lython for Solving Froblems / Frogers using Quantum Computing.	4 hrs
		4 111 8
Unit –I		
7	Introductory Quantum Algorithms:	
	Probabilistic Versus Quantum Algorithms, Phase Kick-back, The Deutsch Algorithm, The	4 hrs
	Deutsch–Jozsa Algorithm, Simon's Algorithm	4 nrs
8	Case Studies and Projects done during the course:	4 hrs
Terret D	Image processing, Data Sciences, Machine Learning, Networking	7 111 5
Text Bo	oks Ilip Kaye, Raymond Laflamme and Michele Mosca "An Introduction to Quantum Computing	" Oxford
	iversity, Press, 2007	, Oxiolu
	r Guide - Quantum Toolbox in Python, Release 4.2.0 – Qutip.org	
2. 05		

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2
	Q.No7	7	
III	Q.No8	8	Solve Any 1

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Program: Bachelor of Engineering			
Course Title: Web Technologies Lab Course Code: 18ECSP304			
L-T-P: 0-0-2	Credits: 2	Contact Hrs: 4hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hrs: 32	Exam Duration: 3 hrs		

1	Javascript Frameworks		
	Introduction to HTML, CSS, and JavaScript Basics		
	Angular 4: Introduction, Navigation: Angular router, Dependency injection, Bindings,		
	observables, and pipes, component communications, forms, Interacting with servers using HTTP		
	and Web Sockets, Bundling and deploying applications.		
	Node.js Introduction to Node.js Building servers using the http and net modules, Node modules and events, Express, Accessing Data	20hrs	
2	Python Frameworks		
	Introduction to Python Frameworks, components of frameworks, building RESTful web services.	6 hrs	
3	Using Python full stack frameworks		
	Django: Introduction to Django, Django's take on MVC: Model, View and Template, Django Forms: Form classes, Validation, Authentication, Advanced Forms processing techniques, working with databases, Integrate with RESTful web services.	6 hrs	
Refere	nce Books:		

- 1. Robert W. Sebesta."Programming the World Wide Web", Pearson Publications 8th Edition, 2014.
- 2. Felipe Coury, Ari Lerner et.al, "ng-book: The Complete Guide to Angular4", FullStack.io Publications, 2017.
- 3. AzatMardan, "Practical Node.js: Building Real-World Scalable Web Apps", 2nd Edition Apress, 2018.
- 4. Daniel Rubio,"BeginningDjango: Web Application Development and Deployment with Python" 1st edition, ApressPublication , 2017.

Tentative Lab Plan

Expt./ Job No.	Lab assignments/experiment	No. of Lab. Slots per batch (estimate)
1	Demonstration on HTML ,CSS, Javascript	02
2	Demonstration on Angular.js	02
2	Exercise on Angular.js	01
3	Demonstration on Node.js	02
4	Exercise on Node.js	01
5	Demonstration on Django	02
6	Exercise on Django	01
9	Structured enquiry 1 – JavaScript Framework	02
10	Structured enquiry 2 – Django	02

Course Code: 21ECSC307	Course Title: Blocko Ledgers	hainand Distributed
L-T-P : 2-0-1	Credits: 3	Contact Hrs:30
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 30		Exam Duration: 3 hrs

Content	Hrs
Unit – 1	
Introduction Overview of blockchain, Digital Money to Distributed Ledgers, Design Primitives: Protocols, Security, Consensus, Permissions, Privacy, Types of blockchain, blockchain platforms, Blockchain Architecture and use cases, Introduction to Bitcoin	06 hrs
Introduction to cryptography, Symmetric key crypto, Public key crypto: Introduction, RSA, Diffie-Hellman, PKI, Hash Functions: Introduction, SHA, Digital signature Schemes: RSA,Digital Signature Standard, Merkle trees.	06 hrs
Unit – 2	
Consensus Mechanisms and Mining Basic consensus mechanisms, Requirements for the consensus protocols, Proof of Work, Proof of State, Proof of Activity, Practical Byzantine Fault Tolerance (PBFT), Federated PBFT, RAFT, Consensus protocols in Blockchain platforms, Scalability issues of consensus protocols.	06 hrs
Ethereum Ethereum transactions, accounts, smart contracts, smart contract development, Solidity basics, basic contracts, distributed storage and IPFS, Ethereum scaling	06 hrs
Unit – 3	
Blockchain Applications Blockchain in Financial Software and Systems: Settlements, KYC, Insurance Government: Digital identity, land records, public distribution system, social welfare systems, Blockchain for cyber security: Cloud forensics, Identity management, Intrusion detection	06 hrs

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Program: Bachelor of Engineering			
Course Title: Semantic Web Course Code: 19ECSE303			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 03 hrs		

Unit –I		
1	Introduction to Semantics	
	History of the Web, Limitations, Vision of Semantic Web, Principles, Data Integration Across Web, Data Modeling Methods, Semantic Relationships, Metadata, Perpetual Data	4 hrs
2	Expressing Meaning	
	Triple Store, Merging Graphs, Querying: Case Study	4 hrs
3	Using Semantic Data	
	Query Language, Feed Forward Inference, Searching for Connections, Linked Data, Freebase	8 hrs
Unit –l	I	
4	Working with Semantics	
	RDF-The Basis of the Semantic Web, OWL, Metadata with RDF, Metadata Taxonomies, Ontology	8 hrs
5	Reasoning and Social Web	
	Reasoning types: Approximate Reasoning and Bounded Reasoning, Social Semantic Web, Semantic Crawlers	8 hrs
Unit –l	II	
6	Semantic Modeling	
	Semantic Modeling, Semantic Web Applications, Logic for Semantic Web, Case Studies: Dr. Watson, Yahoo! SearchMonkey	8 hrs
Text B	poks	
1.	Grigoris Antoniou, Paul Groth, Frank van Harmelen and Rinke Hoekstra, A Semantic Web Pri	imer, MIT
2.	Press; 3rd edition, 2012. Toby Segaran, Colin Evans, and Jamie Taylor, Programming the Semantic Web: Build Flexible Ap with Graph Data, O'Reilly Media; 2 edition, July 2009.	oplication
Refere	nce Books:	
1.	Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, Foundations of Semantic Web Technologies, and Hall; 1st edition, 2009.	Chapmar
2.	Dean Allemang, and James Hendler, Semantic Web for the Working Ontologist, Effective Modelin, and OWL, Morgan Kaufmann; 2nd edition, 2011.	g in RDFS
		a

3. John Hebeler, Matthew Fisher, Ryan Blace, Andrew Perez-Lopez, and Mike Dean (Foreword), Semantic Web Programming, Wiley Publishers, 1 edition 2009.

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2
ш	Q.No7	6	Salva Any 1
III	Q.No8	6	Solve Any 1

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Progr	am: Bachelor of Engineering				
Cours	se Title: Data Integration and Clo	ud Services (0-0-3)	Coursecode: 21ECSE3	32	
L-T-F	2: 0-0-3	Credits: 3	Contact Hrs: 6hrs/wee	ek	
ISA N	Marks: 80	ESA Marks: 20	Total Marks: 100		
Teach	ning Hrs: 60	Exam Duration: 3 hrs			
1	Data Integration for Developers: Introduction to PowerCenter, Folders, Sources, and Targets, Design Objects, File Lookups, Relational Lookups, Database Joins in PowerCenter,Workflow Logic, Merging, Routing, and Sorting Data, Command Tasks,Debugging,Parameterization,Updating Database Tables,Mapplets,Mapping Design Workshop, Addendum.		20 hrs		
2	PowerCenter Architecture and Transformations: PowerCenter 10 Architecture, Parameter Files, User-Defined and Advanced Functions, Pivoting Data, Dynamic Lookups, Stored Procedure and SQL Transformations, Troubleshooting Methodology and Error Handling, Transaction Processing, Transaction Control Transformation, Recovery, Command Line Programs, Performance Tuning Methodology, Performance Tuning Mapping Design, Memory Optimization, Performance Tuning: Pipeline Partitioning.		20 hrs		
3	Cloud Application Integration Services:Overview of Cloud Application Integration, Understand the Basics: Process Designer, Working with Assets,Adding Web Services to a Process, Fault Handling, Introduction to Guides Designer, API Management, CAI and CDI Integration, Troubleshooting, Tips & Tricks, Best Practices.		10 hrs		
4	Connections, Synchronization T Transformations, Mapping Para	es: Informatica Cloud Overview, Runti Cask, Cloud Mapping Designer, Cloud meters, Expression Macro and Dynami stion Task, Task flows, Hierarchical Co	Mapping Designer – c Linking,Replication	10 hrs	

Reference book:

Data Mining Concepts and Techniques, Third Edition, Jiawei Han, Micheline Kamber, Jian Pei, Publisher: Elsevier, 2012. 1.

Course Title: The ARM Architecture		Coursecode:19ECSE302
L-T-P: 2-1-0	Credits: 3	Contact Hrs: 4 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 30	Exam Duration: 3 hrs	

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Unit –I		
1	ARM Embedded Systems and Processor Fundamentals	06 hrs
	The RISC Design Philosophy, The ARM Design Philosophy, Embedded System Hardware, Embedded System Software, Registers, Current Program Status Register, Pipeline, Exceptions, Interrupts, and the Vector Table, Core Extensions, Architecture Revisions, ARM Processor Families	
2	Introduction to the ARM Instruction Set & Assembly Programming	06 hrs
	Data Processing Instructions, Branch Instructions, Load-Store Instructions, Software Interrupt Instruction, Program Status Register Instructions, Loading Constants, ARMv5E Extensions, Conditional Execution, Thumb instruction set.	
Unit –II		
3	Efficient C Programming	06 hrs
	Overview of C Compilers and Optimization, Basic C Data Types, C Looping Structures, Register Allocation, Function Calls, Pointer Aliasing, Structure Arrangement, Bit-fields,	
	Unaligned Data and Endianness, Division.	
4	Writing and Optimizing ARM Assembly Code	06 hrs
	Writing Assembly Code, Profiling and Cycle Counting, Instruction Scheduling, Register Allocation, Conditional Execution, Looping Constructs, Bit Manipulation, Efficient Switches, Handling Unaligned Data.	
Unit –II	1	
5	Introduction to LPC-2148 controller Input output Ports, Pin select registers, Input output select registers, direction control and control registers, Introduction to interfacing standards	03 hrs
6	ARM Interfacing	03 hrs
	ARM interfacing to peripherals like LED, LCD, Seven segments, Motors, Converters, Keypad.	
Text Bo	ooks Irew N.Sloss et al, ARM System Developer's Guide- Designing and Optimizing System Software	
Referen	ce Books:	

Marilyn Wolf, Computers as Components: Principles of embedded computing system design, Morgan Ka, 2012
 Steve Furber, ARM System-on-chip Architecture, 2, Pearson, 2000

Tutorial Plan

Expt./ Job No.	assignments/experiment	No. of Lab. Slots per batch (estimate)
1	ALP on arithmetic instructions set	01
2	ALP on logical instructions set	01
3	ALP on loop and branch instructions	01
4	Interface LED and Seven segments to ARM for displaying message.	01
5	Interface LCD to ARM for displaying message.	01
6	Interface Keypad to read the characters	01
7	Rotate DC and stepper motor for variable speed and direction	01
8	Interface DAC to ARM controller	01

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3
III	Q.No7, 8	5	Solve Any 1 out of 2

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Program: Bachelor of Engineering			
Course Title: Minor Project		Course Code: 15ECSW302	
L-T-P: 0-0-6	Credits: 6	Contact Hrs: 3 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 39	Exam Duration: 3hrs		

Sixth semester minor project themes:

Networking	Data Engineering	System Engineering
 Internet of Things Cloud Computing SDN(Software Defined Network) SNA(Social Network Analysis) 	 Data Analytics Data Processing: Image and video processing Computer Vision and Graphics NLP(Natural Language Processing) 	 Parallel Computing HPC(High Performance Computing) Parallel system design

Student Evaluation Matrix:

Project will have 3 internal reviews as follows:

Continuous internal Evaluation	Review Expectation
Review-1	Problem Definition and Synopsis
Review-2	Requirements, Algorithms, Design
Review-3	Implementation

Sl.No	Expectation	Marks
1	 Write up Problem Statement. Existing and Proposed system. System Model with brief description. Functional and Non Functional Requirements. 	05
2	Presentation: Prepare minimum of 15-18 slides of presentation with consultation of your respective guides.	08
3	Demo (Complete execution of the project with results) and Viva voce.	25
4.	Project Report.	12

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Program: Bachelor of Engineering			
Course Title: Big Data and Analytics	Course Code:17ECSC401		
L-T-P: 2-1-0	Credits: 3	Contact Hrs: 4 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs:54		Exam Duration: 3 hrs	

	Unit –I	
1	Introduction : What is Big Data?, Data Analytics, Data Analytics Life Cycle, Big Data Characteristics, Different Types of Data.	4 hrs
2	Big Data Storage : Clusters, File Systems and Distributed File Systems, NoSQL, Sharding, Replication, Combining Sharding and Replication.On Disk Storage Devices, In-memory Storage Devices. Sharding, Replication, Combining Sharding and Replication.	6 hrs
3	Big Data Processing : Parallel Data Processing, Distributed Data Processing, Hadoop, Map	3 hrs
	Reduce	5 1115
	Unit –II	
4	Big Data Modeling: Data Model Structures, Data Model Operations, Processing Workloads, Processing in Batch Mode, Processing in Real-time Mode.	6 hrs
5	Big Data Technologies : MongoDB - What is MongoDB? WhyMongoDB? Terms Used in RDBMS and MongoDB, Data Types in MongoDB, MongoDB Query Language. 6	
	Unit –III	
6	Big Data Visualization : Hive - What is Hive?, Hive Architecture, Hive Data Types, Hive File Format, Hive Query Language (HQL), RCFile Implementation, User-Defined Function (UDF).	5 hrs
Text Bo	oks:	
	Thomas Erl, WajidKhattak, and Paul Buhler, Big Data Fundamentals Concepts, Drivers & Techniqu	les,
2.	Prentice Hall, 2015.	

- 2. Frank J Ohlhorst, Big Data and Analytics: Turning Big Data into Big Money, Wiley and SAS Business Series, 2012.
- 3. Colleen Mccue, Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis, Elsevier, 2007.

UNI T	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2,3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2
III	Q.No7	6	Salva Any 1
111	Q.No8	6	Solve Any 1

Scheme for Semester End Examination (ESA)

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Program: Bachelor of Engineering			
Course Title: Information Security Course Code: 20ECSC402			
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 45	Exam Duration: 3 hrs		

Unit –I					
1	Cryptography Basics: Introduction, Classic Crypto: Modern Crypto, Taxonomy of Cryptography and Cryptanalysis. Symmetric Key Crypto: Stream Ciphers, Block Ciphers-AES, DES, IDEA, Block cipher modes, Message Integrity	06 hrs			
2	Public Key Crypto and Hash Functions: Introduction, Knapsack, RSA, Diffie-Hellman, Elliptic Curve Cryptography, Uses for Public Key Crypto, Public Key Infrastructure, X.509 Certificates.	06 hrs			
Unit –I					
3	Data Integrity Algorithms: Cryptographic Hash Functions: applications and requirements, Hash functions based on cipher block chaining, Secure Hash algorithm, Message authentication codes: requirements and functions, HMAC, Digital Signatures, and Digital Signature Standard.	06hrs			
4	Authentication and Authorization: Introduction, Authentication Methods: Passwords, Biometrics, Two-Factor Authentication, Single Sign-On, Protocols. Introduction to authorization, Access Control Matrix, Multilevel Security Models, Multilateral Security, Firewalls, Intrusion Detection	06hrs			
Unit –II	ſ				
5	Application and Transport Security Protocols: Introduction, Authentication protocols, Secure Socket Layer, IPsec, Kerberos, GSM, Pretty Good Privacy and S/MIME, Transport Layer Security, HTTPs, Kerberos	03 hrs			
6	Network and Wireless Security Protocols:IPSec overview, Encapsulating security payload, combining security associations, Internet key exchange, GSM Security, IEEE 802.11 Wireless LAN Security.	03 hrs			
Text Bo	oks (List of books as mentioned in the approved syllabus)				
1. 2.					
Referen	References				
1.	 Michael E. Whitman and Herbert J. Mattord, "Principles of Information Security", 2nd Edition, Thompson, 2005. 				
2. 3.	2. ChristofPaar Jan Pelzl, "Understanding Cryptography", Springer-Verlag Berlin Heidelberg 2010				

List of lab Experiments:

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Expt./Job No.	Brief description about the experiment/job	No. of Lab. Slot s
9.	Implementation of substitution cipher	1
10.	Demo and practice on Crypto Library	1
11.	Performance analysis of symmetric key algorithm algorithms	2
12.	Performance analysis of asymmetric key algorithm algorithms	2
13.	Performance analysis of Hash algorithms	2
14.	Course project	7

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2
III	Q.No7, Q.No8	5, 6	Solve Any 1

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Program: Bachelor of Engineering			
Course Title: Cyber Security		Course Code: 19ECSE401	
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 2hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 30	Exam Duration: 3 hrs		

Unit –I		
1	Introduction to Cybercrime : Cybercrime definition and origins of the world, Cybercrime and information security, Classifications of cybercrime, A global Perspective on cybercrimes. Cyber attack plans, Social Engineering, Cyber stalking, Cyber cafe and Cybercrimes, Botnets, Proliferation of Mobile and Wireless Devices, Credit Card Frauds in Mobile and Wireless Computing Era.	6 hrs
2	Methods used in Cybercrime: Phishing, password Cracking, Key loggers and Spyware, Virus	
	and Worms, Trojan and backdoors, Steganography, DOS and DDOS attack, SQL injection, Buffer Overflow, Identity theft.	6 hrs
Unit –I		
3	Cybercrimes and Cyber security : The Legal Perspectives Why do we need Cyber law: The Indian Context, The Indian IT Act, Digital Signature and the Indian IT Act, Amendments to the Indian IT Act, Cybercrime and Punishment.	6 hrs
4	Cybercrime- Real-Life Examples : Illustrations, Examples and Case studies Introduction, Real- Life Examples, Case Studies: Illustrations of Financial Frauds in Cyber Domain, Digital Signature-Related Crime Scenarios, Online Scams.	6 hrs
Unit –I	I	
5	Digital Forensics : Historical background of cyber forensic, Forensic analysis of email, Digital forensic life cycle, Network forensic, Setting up a computer forensic Laboratory, Forensic analysis of digital media	6 hrs
	oks: Iina Godbole & Sunit Belapure, Cyber Security, Wiley India, 2012 ert M Slade, Software Forensics, Tata McGraw - Hill, New Delhi, 2005	
Referen	ce Books:	
1.	Kevin Mandia, Chris Prosise, Matt Pepe, Incident Response and Computer Forensics, Tata McG New Delhi,, 2006	raw -Hill,

Scheme for Semester End Examination (ESA)

UNI T	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
III	Q.No7,8	5	Solve Any 1

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Program: Bachelor of Engineering			
Course Title: Software Testing Course Code:18E			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3 hrs		

Unit	-1			
1	Software Testing Principles: Need for testing ,The Psychology and Economics of Program Testing Program ,Inspections, Walkthroughs, and Reviews.	04hrs		
2	Test-Case Design: Overview, White box testing, Error Guessing, strategies, Module (Unit) Testing-Incremental Testing, Top-down versus Bottom-up Testing, Performing the Test.	06hrs		
3	Higher-Order Testing : Function testing, System testing, Acceptance testing, Installation testing, Test planning and Control, Test completion criteria, Extreme testing.	06hrs		
Unit	-2			
4	Testing Tools and Standards: Automated Tools for Testing - Static code analyzers - Test case generators - GUI Capture/Playback – Stress Testing - Testing Client – server applications – Testing compilers and language processors - Testing web-enabled applications.	10hrs		
5	CMM Model and its stages – Introduction to PCMM, CMMI and Six Sigma concept – ISO 9000.	06hrs		
Unit	-3			
6	Software Quality and Testing: Introduction to software quality and quality control – Benefits of quality control - Quality assurance - quality circles and quality improvement.	04hrs		
7	Introduction to quality cost – Measuring quality cost – Total Quality Management (TQM).Architecture, Process, memory and file management in Mobile OS, Network OS.	04hrs		
 Text Books: Glenford J. Myers, Tom Badgett, Corey Sandler, and Todd M. Thomas, "The Art ofSoftware Testing", John Wiley & Sons, Second edition, 2004. Roger S. Pressman, "Software Engineering. A Practitioners Approach", McGraw-HillInternational Edition, Seventh edition, 2009. References: William E. Perry, "Effective Methods for Software Testing", John Wiley & Sons, Secondedition, 2000. 				
	 Windan E. Perfy, "Effective Methods for Software resting, some whey & Sons, Secondedition, 2000. Boris Beizer, "Techniques for Functional Testing of Software and Systems", John Wiley & Sons, 1995. P.C. Jorgensen, "Software Testing - A Craftman's Approach", CRC Press, 1995. 			

- F.C. Jorgensen, Software resting A Cratiman's Approach, CKC Press, 1995.
 Boris Beizer, "Software Testing Techniques", Van Nostrand Reinhold, Second edition, 1990.

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2, 3	Solve Any 2
Π	Q.No4, Q.No5, Q.No6	4, 5	Solve Any 2
III	Q.No7, Q.No8	6, 7	Solve Any 1

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Program: Bachelor of Engineering			
Course Title: Social Network Analysis Course Code: 18ECSE402			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 03 hrs		

Unit –I					
1	Introduction Introduction : Motivation, different sources of network data, types of networks, tools for visualizing network data.	06 hrs			
2	Structural properties of networks				
	Structural properties of networks : Notions of centrality, cohesiveness of subgroups, roles and positions, structural equivalence, equitable partitions, stochastic block models.	10 hrs			
Unit –l	I				
3	Cascading properties of networks Cascading properties of networks : Information/influence diffusion on networks, maximizing influence spread, power law and heavy tail distributions, preferential attachment models.	10 hrs			
4	Small world phenomenon				
	Small world phenomenon : Six Degrees of Separation, Structure and Randomness, Decentralized Search, Empirical Analysis and Generalized Models, Core-Periphery Structures and Difficulties in Decentralized Search, Advanced Material: Analysis of Decentralized Search.	06 hrs			
Unit –l	II				
5	Mining Graphs- I				
	Mining Graphs- I : Community and cluster detection: random walks.	04 hrs			
6	Mining Graphs- II				
	Mining Graphs- II : Spectral methods; link analysis for web mining.	04 hrs			
1.	 University Press, 1994. David Easley and Jon Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly Connected 				
Roforo	World., Cambridge University Press, 2010. Reference Books:				
	 Peter R. Monge, Noshir S, Contractor, Theories of communication networks, Oxford University Press, 2003. 				
Ζ.	Duncan waits, Six degrees. the science of a connected age. Norton, 2004.				

Scheme for Semester End Examination (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
Ι	Q.No1, Q.No2, Q.No 3	1, 2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No 6	3,4	Solve Any 2 out of 3
	Q.No7	5	
III	Q.No8	6	Solve Any 1 out of 2

Program: Bachelor of Engineering				
Course Title: C# Programming and .NET			Code:	
L-T-P: 3-0-0	Credits: 3	Contact 3hrs/week	Hrs:	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 3 hrs			

	Unit –I	
2	The Philosophy of .NET Understand the motivation behind the .NET platform, Common Language Infrastructure (CLI). Know the role of the Common Type System (CTS), the Common Language Specification (CLS) and the Common Language Runtime (CLR), Understand the assembly, metadata, namespace, type distinction, Contrast single-file and multi-file assemblies, Know the role of the Common Intermediate Language (CIL), Platform independent .NET(Mono / Portable .NET distributions). C# Language Fundamentals	5hrs
	Language Fundamentals, Reference and value Types, primitive types the Nullable and enum types, Classes and objects, Defining classes Creating objects, Using static members, Overloading Methods, Various Constructors. Encapsulating data, access modifiers, properties, indexers arrays and readonly fields. Structures. String and DateTime classes, three pillars of OOPs	7 hrs
3	Exceptions and Object Life Time Ode to Errors, Bugs and Exceptions, The Role of .NET Exception handling, the System. Exception base class, Throwing a generic Exception, Catching Exceptions, CLR System-Level Exceptions (System.SystemException), Custom Application-Level Exceptions (System.ApplicationException). Handling Multiple Exception, The Finally Block, The Last Chance Exception, Understanding Object Life time. The CIL of	
	"new", The Basics of Garbage Collection	4 hrs
	Unit –II	•
4	Event handling paradigm Interfaces and Collections Understanding the .NET Delegate type, Multicast Delegate and events. Interfaces, overriding interface implementation. Explicit interface implementation, Collection, IEnumerable, IEnumerator, IList, IComparer and their Generic equivalent. Working with generic List, Stack, Dictionary and Queue	6 hrs
<mark>5</mark>	Programming Window Forms Applications	••
	Anatomy of a Form, Component Class, Control Class, Control Events, Responding to Keyboard Events, Form Class, Building Menus with Windows Forms, Building your Menu System, Creating Pop-Up Menu, Adding Controls to Forms (IDE-Free), Adding Controls to Forms (via VS.NET), Working with Basic Controls like Buttons, Configuring Tab Order.	5 hrs
6	Working with Database Introduction to ADO.NET, Connecting to a database, Understanding DataTables, Creating a DataAdapter, Referencing fields in a DataRow, Navigating records, Adding, editing, and deleting records, Building an ADO.NET example.	5 hrs
	Unit –III	
7	Understanding the .NET Assemblies Problems with Classic.COM Binaries, An overview of .NET Assembly, Building a single file test assembly, A C# Client Application, A Visual Basic .NET Client Application, Cross-Language Inheritance, Exploring the Car Library's Manifest, Exploring the Car Library's Types.	4 hrs
8	Using .NET Assemblies Building a multi file assembly, Using the Multifile Assembly , Understanding the private Assemblies, Probing for private Assemblies (The Basics), Private Assemblies and XML Configuration Files, Probing for Private Assemblies(The details), Understanding Shared Assemblies, Understanding Shared Names, Building a Shared	4 hrs

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Assembly, Understanding	Delay	Signing,	Installing/Removing	Shared	Assembly,
Using a Shared Assembly.					

Text Books:

- 1. Herbert Schildt, "The Complete Reference C# 4.0", Tata McGraw –Hill, 2010
- 2. Andrew Troelsen, "Pro C# with .NET 3.0", Special Edition, Dream tech Press, India, 2007.

Reference Books:

- Stephen C. Perry, AtulKahate, Stephen Walther, Joseph Mayo, "Essential of .net and Related Technologies with a focus on C#, XML, ASP.net and ADO.net", 2nd Edition, Pearson, 2009.
- 2. Paul J. Deitel, Harvey Deitel, "Visual C# 2010 for Programmers", 4th Edition, Pearson, 2010.
- 3. Joseph Albahari and Ben Albhari, "C# 3.0/4.0 in Nutshell", 3rd Edition, O'Rilley, 2007.

Course (Content
----------	---------

Course Code: 20ECSE405	Course Title: Software Defined Networks	
L-T-P : 3-0-0	Credits: 3	Contact Hrs: 40
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40		Exam Duration: 3 hrs

Content	Hrs
Unit – 1	
Chapter No. 1.Introduction	
Evolving network requirements, Types of Network and Internet Traffic, The SDN approach, Data Center Networking: Big Data over SDN, Cloud Networking over SDN.	08 hrs
Chapter No. 2. SDN Data Plane and OpenFlow	
Data plane functions and protocols, OpenFlow logical network device, OpenFlow protocol, OpenFlow messages, OpenFlow events: Responding to switches.	08 hrs
Unit – 2	
Chapter No. 3.Control Plane	
SDN Control plane architecture, POX architecture, OpenDaylight architecture, REST, Mininet based examples,	08 hrs
Chapter No. 4. Programming SDNs	
Components in POX, POX APIs, Registering Components, The Event System: Handling Events, Creating Your Own Event Types, Raising Events, Binding to Components' Events, Working with packets, Working with sockets: ioworker, OpenFlow in POX.	08 hrs
Unit – 3	00 1113
Chapter No. 5.Software Application plane	
SDN Application Plane Architecture , Traffic Engineering, Measurement and Monitoring. Security Requirements, SDN Security.	
Requirements, SDN Security.	04hrs
Chapter No. 6.Network Functions Virtualization (NFV)	
OpenFlow VLAN Support, Virtual Private Networks, Network Virtualization: A Simplified Example, Network	
Virtualization Architecture, Benefits of Network Virtualization.	04 hrs

Text Books (List of books as mentioned in the approved syllabus)

- 1. William Stallings, "Foundations of modern networking: SDN, NFV, QoE, IoT and Cloud", Addison Wesley; 1 edition, 2015.
- 2. Thomas D. Nadeau & Ken Gray, "SDN Software Defined Networks", O'Reilly, 2013.

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

References

- 3. Sreenivas Voruganti, Sriram Subramanian,"Software-Defined Networking (SDN) with OpenStack", Packt Publishing, 2016.
- 4. 2. POX manual current documentation, https://openflow.stanford.edu/display/ONL/POX+Wiki.html

Program: Bachelor of Engineering			
Course Title: Software Architecture and Design Thinking		Course Code:18ECSE410	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3hrs/week	
ISA Marks: 50 ESA Marks: 50		Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3 hrs		

	Unit –I		
1	What Is Software Architecture?		
	What Software Architecture Is and What It Isn't, Architectural Structures and Views, Architectural Patterns, What Makes a "Good" Architecture?	5 Hrs	
2	Why Is Software Architecture Important?		
	Inhibiting or Enabling a System's Quality Attributes, Reasoning About and Managing Change, Predicting System Qualities, Enhancing Communication among Stakeholders, Carrying Early Design Decisions, Defining Constraints on an Implementation, Influencing the Organizational Structure, Enabling Evolutionary Prototyping, Improving Cost and Schedule Estimates, Supplying a Transferable, Reusable Model, Allowing Incorporation of Independently Developed Components, Restricting the Vocabulary of Design Alternatives, Providing a Basis for Training	6 Hrs	
3	The Many Contexts of Software Architecture		
	Architecture in a Technical Context, Architecture in a Project Life-Cycle Context, Architecture in a Business Context, Architecture in a Professional Context, Stakeholders, How Is Architecture Influenced? What Do Architectures Influence?	5 Hrs	
	Unit –II		
4	Understanding Quality Attributes		
	Architecture and Requirements, Functionality, Quality Attribute Considerations, Specifying Quality Attribute Requirements, Achieving Quality Attributes through Tactics, Guiding Quality Design Decisions	5 Hrs	
5	Quality Attributes		
	Tactics for Availability, Tactics for Interoperability, Tactics for Modifiability, Tactics for Performance, Tactics for Security, Tactics for Testability, Tactics for Usability,	6 Hrs	
6	Architectural Tactics and Patterns Architectural Patterns, Overview of the Patterns Catalog, Relationships between Tactics and Patterns, Using Tactics Targeter	5 Hrs	
	Patterns, Using Tactics Together Unit –III	5 Hrs	
7	Architecture and Requirements		
7	Gathering ASRs from Requirements Gathering ASRs by Understanding the Business Goals, Capturing ASRs in a Utility Tree, Tying the Methods Together	4 hrs	
8	Designing an Architecture, Implementation, Testing and Evaluation		
	Designing: Design Strategy, The Attribute-Driven Design Method, The Steps of ADD		
	Implementation, and Testing: Architecture and Implementation, Architecture and Testing Evaluation: Evaluation Factors, The Architecture Tradeoff Analysis Method, Lightweight		
	Architecture Evaluation	4 hrs	
Textbooks:			
1.			
2.	2. Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal: Pattern- Oriented Software Architecture, A System of Patterns, Volume 1, John Wiley and Sons, 2012 (chapter 2)		
Referen	ce Books:		
1.	Richard N. Taylor, Nenad Medvidovic and Eric M. Dashofy: Software Architecture: Foundations, Tl Practice, Wiley- India 2012	-	
2.	Mary Shawand David Garlan: Software Architecture-Perspectives on an Emerging Discipline, Pre of India 2007	ntice Hall	

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Scheme for Semester End Examination (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
	Q.No7	5	
III	Q.No8	6	Solve Any 1

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Course Content

Program: Bachelor of Engineering			
Course Title: Senior Design Project Course Code: 20ECSW40			
L-T-P: 0-0-6	Credits: 6	Contact Hrs: 3 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 39	Exam Duration: 3hrs		

Seventh semester senior design project theme: Usage of Design Principles in building the solution.

SDP aims to design and develop a solution using software design principles:- design patterns (creational, behavioral & structural), User experience (UX) design and API (application programming interface) that are generally followed in industries.

Project domains:

Networking	Data Engineering	System Engineering
 Internet of Things Cloud Computing SDN(Software Defined Network) SNA(Social Network Analysis) 	 Data Analytics Data Processing: Image and video processing Computer Vision and Graphics NLP(Natural Language Processing) 	 Parallel Computing HPC(High Performance Computing) Parallel system design

Student Evaluation Matrix:

Project will have 3 internal reviews as follows:

Continuous internal Evaluation	Review Expectation
Review-1	Literature Survey, Problem Analysis and Problem formulation
Review-2	Requirements, Design, design principles adopted in modules/components and Algorithms.
Review-3	Implementation and Testing.

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Sl.No	Expectation	Marks
1	Write up5. Problem Statement and Objectives.6. System design with brief description.7. Concluding remarks.	05
2	Presentation: Prepare minimum of 15-18 slides of presentation with consultation of your respective guides.	05
3	Demo (Complete execution of the project with results) and Viva voce.	30
4.	Project Report.	10

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

8thSem Elective List

Program: Bachelor of Engineering					
Course Title: Natural Language Processing		Course Code: 18ECSE403			
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 04 hrs/week			
ISA Marks: 50	ESA Marks: 50	Total Marks: 100			
Teaching Hrs: 30	Exam Duration: 3 hrs				

Unit –I				
1	Introduction to NLP and Deep Learning			
	Introduction to Natural Language Processing, Applications of Natural Language Processing, Word2vec introduction, Word2vec objective function gradients	5 hrs		
2	Dependency Parsing, Recurrent Neural Networks			
	Dependency Grammar, Neural dependency parsing, Recurrent Neural Networks and Language Models, Vanishing Gradients, Fancy RNNs	7 hrs		
Unit –II				
3	Machine Translation, Seq2Seq and Attention Machine Translation, Seq2Seq and Attention, Advanced Attention	6 hrs		
4	Transformer Networks , Coreference Resolution, Memory Networks			
	Transformer Networks and CNNs, Tree Recursive Neural Networks and Constituency Parsing, Advanced Architectures and Memory Networks	6 hrs		
Unit –II	I			
5	Reinforcement Learning Reinforcement Learning for NLP, Semi-supervised Learning for NLP, Future of NLP Models, Multi-task Learning and QA Systems	6 hrs		
Text Bo				
1.	Yoav Goldberg. A Primer on Neural Network Models for Natural Language Processing , 2016.			
Referen	ce Books:			
Dan Jurafsky and James H. Martin. Speech and Language Processing 3Ed. Draft.				
Ian	Goodfellow, YoshuaBengio, and Aaron Courville. Deep Learning. MIT Press.			

List of experiments

Expt./Job No.	Brief description about the experiments	No. of Lab slots per batch (2 hrs)
1.	Installation of nltk tool kit in python and practicing of word tokenization, spellchecker programs.	1
2.	Compute softmax points (probabilities) for numerical stability.	1
3.	Implement the word2vec model for word vector representation.	1
4.	Implement the dependency parsing for the following sentence "I parsed this sentence correctly" and show at least three steps for parsing with stack and buffer status.	2
5.	Write a program to build seq2seq sentence from word corpora(Tensorflow).	1
6.	Implement the neural image caption generator.	2
7.	Implement question answering (QA) system, to answer the questions posed in natural language.	1

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2
	Q.No7	6	Salara Arra 1
III	Q.No8		Solve Any 1

Program: Bachelor of Engineering			
Course Title: Big Data Analytics	Course Code: 18ECSO401		
L-T-P: 3-0-0 Credits: 3		Contact Hrs: 3hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40 Exam Duration: 3 hrs			

	Unit –I	
1	Introduction: Data Analytics, Data Analytics Life Cycle, Big Data Characteristics, Different Types of Data.	4hrs
2	Big Data Technologies: Parallel Data Processing, Distributed Data Processing, Hadoop , Spark	8hrs
3	Nosql: NoSQL Databases, Document databases, Key-value databases, Wide-column stores, Graph databases	4 hrs
	Unit –II	
4	Big Data Modeling: Data Model Structures, Data Model Operations, Processing Workloads, Processing in Batch Mode, Processing in Real-time Mode.	8 hrs
5	MongoDB – Introduction to MongoDB, RDBMS and MongoDB, Data Types in MongoDB, MongoDB Query Language.	8 hrs
	Unit –III	
6	Big Data Visualization: Hive - Hive Architecture, Hive Data Types, Hive File Format, Hive Query Language (HQL).	4 hrs
7	Big data applications and case study : Stock market analysis, weather data analysis	4 hrs

- 4. Frank J Ohlhorst, Big Data and Analytics: Turning Big Data into Big Money, Wiley and SAS Business Series, 2012.
- 5. Colleen Mccue, Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis, Elsevier, 2007.

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
Ш	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2 out of 3
	Q.No7	6	Solve Any 1 out of 2
	Q.No8	7	

Program: Bachelor of Engineering				
Course Title: Advanced Parallel Computing Course Code: 18ECSE408				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 3 hrs			

Unit –I	Unit –I				
1	Introduction and History GPUs as Parallel Computers; Architecture of a Modem GPU; Parallel Programming Languages and Models; Overarching Goals; Evolution of Graphics Pipelines; The Era of Fixed- Function ; Graphics Pipelines; Evolution of Programmable Real-Time Graphics; Unified Graphics and Computing Processors; GPGPU; An Intermediate Step; GPU Computing; Scalable GPUs Recent Developments; Future Trends.	07 hrs			
2	Introduction to CUDA				
	Data Parallelism; CUDA Program Structure; A Matrix-Matrix Multiplication Example; Device Memories and Data Transfer; Kernel Functions and Threading; Function declarations; Kernel launch; Predefined variables; Runtime API.CUDA Thread Organization; Using block Id x and thread Id x ; Synchronization and Transparent Scalability; Thread Assignment ; Thread Scheduling and Latency Tolerance.	09 hrs			
Unit –I	ſ				
3	CUDA Memories				
	Importance of Memory Access Efficiency; CUDA Device Memory Types; A Strategy for Reducing Global Memory Traffic; Memory as a Limiting Factor to Parallelism; Global Memory Bandwidth; Dynamic Partitioning of SM Resources;				
	Data Perfetching; Instruction Mix; Thread Granularity; Measured Performance.	07 hrs			
4	Introduction to OPENCL Introduction to OPENCL; Background; Data Parallelism Model; Device Architecture; Kernel Functions; Device Management and Kernel Launch; Electrostatic Potential Map in OpenCL.	09 hrs			
Unit –I					
5.	Case Study Concepts of Game Design, Applications like Matrix multiplication, MRI reconstruction Molecular Visualization and Gaming.	04 hrs			
6.	Parallel Programming and Computational Thinking				
	Goals of Parallel Programming, Problem Decomposition, Algorithm Selection, Computational Thinking.	04 hrs			
Text Bo	 Text Books: 1. David B. Kirk, Wen-mei W. Hwu, "Programming Massively Parallel Processors: A Hands on Approach" Morgan Kaufmann/Elsevier India reprint, 2010. 				
Referer 1.	Benedict R Gaster, Lee Howes, David Kaeli, Perhaad Mistry and Dana Schaa, "Heter Computing with OpenCl", Morgan Kaufmann/Elsevier reprint, 2012.	ogeneous			

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
	Q.No7	5	
III	Q.No8	6	Solve Any 1

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Program: Bachelor of Engineering				
Course Title: Model Thinking Course Code: 18ECSE411				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40 hrs		
ISA Marks: 50	ESA Marks:50	Total Marks: 100		
Teaching Hrs: 40 hrs	Exam Duration: 03 hrs			

Unit –I		
1	Why Model Model Thinking - The Need, Advantages and Disadvantages, Segregation/Peer Effects, Case Study	4 hrs
2	Modeling People, Tipping Points & Economic Growth	
	Rational Models, Behavioral Models, Rule Based Models, Percolation Models, Growth and its Kinds	6 hrs
3	Special Topics	
	Standing Ovation Model, Game of Life, Lyapunov Functions: Equilibrium, A cycle, Randomness or Complexity, Coordination and Culture, Urn Models, Polya Process, Paths and Networks, Prisoners' Dilemma, Collective Action & Mechanism Design	6 hrs
Unit –I	I	
4	Randomness and Learning Models	
	Luck as Randomness, Random Walks & Colonel Blotto, Replicator Dynamics, Fisher's Fundamental Theorem, Prediction and the Many Model Thinker, Social Models	8 hrs
5	Model Checking and Modelling Concurrent Systems	
	Model Checking, Characteristics of Model Checking, Transition Systems, Parallelism and Communication, The State Space Explosion	8 hrs
Unit –I	П	
6	Linear-Time Properties	
	Linear-Time Behavior, Safety Properties and Invariants, Liveness Properties, Fairness	4 hrs
7	Regular Properties	
	Automata on Finite Words, Model-Checking Regular Safety Properties, Automata on Infinite Words, Model Checking with Omega-Regular Properties	4 hrs
Text Bo		
1. 2.	Scott E Page, The Model Thinker, Basic Books Publication, 2018. ChristelBaier and Joost-Pieter Katoen, Principles of Model Checking (Representation and Min The MIT Press, 2008.	d Series)
Referen	ice Books:	
1.	Model Thinking Coursera online course from Michigan University.	

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2
III	Q.No7	6	Salva Any 1
111	Q.No8	7	Solve Any 1

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

ystem: introduction, memory	le, computer networks, software and management, process management, I for object oriented approach, object	06 hrs
ESA Marks:50 Exam Duration: 03 hrs rstems: tems, program execution cycl ystem: introduction, memory ng, SDLC overview and need	Total Marks: 100	
Exam Duration: 03 hrs extems: tems, program execution cycl ystem: introduction, memory ng, SDLC overview and need	le, computer networks, software and management, process management,	
rstems: tems, program execution cycl ystem: introduction, memory ng, SDLC overview and need	le, computer networks, software and management, process management, I for object oriented approach, object	
tems, program execution cycl ystem: introduction, memory ng, SDLC overview and need	le, computer networks, software and management, process management, I for object oriented approach, object	
tems, program execution cycl ystem: introduction, memory ng, SDLC overview and need	le, computer networks, software and management, process management, I for object oriented approach, object	
	· · · · · · · · · · · · · · · · · · ·	
		06 hr:
		04 hrs
pecifiers, constructors and it	ts types, method overloading, static	
Data structures: Introduction, Linear data structures: stack, queue, linked lists, Non-Linear data structures: trees, binary search tree, illustration using java collection framework.		
Inheritance and Polymorphism:		
nheritance, method overloadi	ing and overriding, dynamic method	
ceptions:		06 hr:
ess protection, interfaces, exce	eption handling mechanism, and user	
		04 hrs
	o relational schema, normalization.	
2:		04 hrs
nguages, operators, aggregate	e functions, order by and group by	
tion Program Volume:1-3, Ec	ducation and Research Department, Info	sys
lete Reference", 8th Edition,	McGraw-Hill, 2012.	
	nplete Reference", 8th Edition,	dation Program Volume:1–3, Education and Research Department, Info nplete Reference", 8th Edition, McGraw-Hill, 2012.

2. Silberschatz, Galvin, and Gagne, "Operating System Concepts", 8th Edition, Wiley, 2009.

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2
III	Q.No7	6	Solve Any 1
111	Q.No8	7	Solve Ally I

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Program: Bachelor of Engineering			
Course Title: Software Engineering	Course Code: 15ECSO403		
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3 hrs		

	Unit –I	
1	Software Engineering process Professional software development, Software engineering ethics, Case studies, Software processes: Software process models, Process activities, Coping with change, The rational unified process, Continuous Integration and Continuous Deployment and Tools.	6hrs
2	Agile Software Development Agile methods, Plan-driven and agile development, Extreme programming, Agile project management.	4 hrs
3	Requirement Engineering Functional and Non-functional requirements; The software requirements Document, Requirement specification, Requirements Engineering Processes, Requirement's elicitation and analysis; Requirements validation; Requirements management.	6 hrs
	Unit –II	
4	System Modeling Context models, Interaction Models, Structural models, Behavioral models.	6 hrs
5	Architectural Design Architectural Design Decision, Architectural views, Architectural patterns, Application Architectures.	5 hrs
6	Object-Oriented design and implementation Object oriented design using UML, design patterns, Implementation Issues, Open source development.	5 hrs
	Unit –III	
7	Software Testing Development Testing, Test Driven Development, Release Testing, User Testing.	4 hrs
8	Configuration management Change management, Version management, System building, Release management.	4 hrs
	Books: 1. Ian Somerville, Software Engineering, 9th, Pearson Ed, 2015	
Refer	 Roger S. Pressman, Software Engineering: A Practitioners Approach, 7th, McGraw,2007 Shari Lawrence Pfleeger and Joanne M. Atlee, Software Engineering Theory and Practice, 7 Ed, 2006 	3rd, Pearso

3. Jalote, P, An Integrated Approach to Software Engineering, 3rd, Narosa Pub, 2005

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
Ш	Q.No7	7	Salva Any 1 out of 2
111	Q.No8	8	Solve Any 1 out of 2

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Program: Bachelor of Engineering			
Course Title: Industry Project Course Code: 20ECSW494			
Credits: 11	ISA Marks: 50	ESA Marks: 50	
Total Marks: 100	Exam Duration: 3 hrs	L-T-P: 0-0-11	

Overview of the Course

Γ

The purpose of providing the Industry Project is to give you the opportunity for students, to apply the knowledge, skills and competencies they have acquired, in real life practice. An Industry Project involves a stay in a relevant company or organization.

The students who got placed in campus interviews may be offered Industry Project depending upon the need of the company. Other students who wish to do Industry Project are responsible to find a company on their own.

Scheme for In Semester Assessment (ISA) and End Semester Assessment (ESA)

Course	Course Code	Max ISA marks	Max ESA marks	Minimum Passing Marks
Industry Project	18ECSW494	50	50	Students must secure minimum of 40% marks in both ISA and ESA.

Parameter	Marks
Write Up	10
Presentation	10
Project demo	25
Report	05
Total Marks	50

ESA Evaluation Parameters

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

KLE TECH.	FORM ISO 9001: 2008 Department of Computer Science& Engineering			cument #: CD2005	Rev: 1.0
Curriculum C	Curriculum Content- Course wise				
					Year: 2017-21
Program: Bachelor of Engineering					
Course Title: Industry Training			Course	Code: 18ECSI493	
Credits: 6 ISA Marks: 50 ESA M			urks: 50		
Total Marks:	Total Marks: 100Exam Duration: 3 hrsL-T-P:		L-T-P: 0)-0-6	

Overview of the Course:	
Industry Training is a supervised, practical training periods for which Un final year students earn academic credits. Industry Training provid opportunities for students to put into practice much of the knowledge and sk during their studies and to gain firsthand knowledge of the software industry opportunity for employers to observe the student in the work environment a their potential for possible future employment.	le excellent ills acquired . It is also an
The companies selected for the Industry Training can range from start-ups to industries. The students who got placed in campus interviews may be offer Training depending upon the need of the company. Other students who internship are responsible to find a company on their own for the Training.	red Industry

Scheme for In Semester Assessment(ISA) and End Semester Assessment (ESA)

Course	Course Code	Max ISA marks	Max ESA marks	Minimum Passing Marks
Industry Training	18ECSI493	50	50	Students must secure minimum of 40% marks in both ISA and ESA.

ESA Evaluation Parameters

Parameter	Marks
Write Up	10
Presentation	10
Skills learned (Development, Testing)	25
Report	05

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

Course Content

Program: Bachelor of Engineering			
Course Title: Capstone Project Course Code: 20ECSW40			
L-T-P: 0-0-11	Credits: 11	Contact Hrs: 3 hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hrs: 45	Exam Duration: 3hrs		

Eight semester Capstone project theme: Usage of Design Principles in building the solution.

CP aims to design and develop a solution using software design principles:- design patterns (creational, behavioral & structural) , User experience (UX) design and API (application programming interface) that are generally followed in industries.

Project domains:

Networking	Data Engineering	System Engineering
 Internet of Things Cloud Computing SDN(Software Defined Network) SNA(Social Network Analysis) 	 Data Analytics Data Processing: Image and video processing Computer Vision and Graphics NLP(Natural Language Processing) 	 Parallel Computing HPC(High Performance Computing) Parallel system design

Student Evaluation Matrix:

Project will have 3 internal reviews as follows:

Continuous internal Evaluation	Review Expectation	
Review-1	Literature Survey, Problem Analysis and Problem formulation	
Review-2	Requirements, Design, design principles adopted in modules/components and Algorithms.	
Review-3	Implementation and Testing.	

Sl.No	Expectation	Marks
1	Project demonstration	10
2	Results and Discussions	<mark>05</mark>

3	Relevance of project to ethical/ social/ legal/ economic concerns	05

Program: Bachelor of Engineering	5	
Course Title: Blockchain and Dist	ributed Ledgers	Course Code:21ECSC307
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 30	Exam Duration: 3 hrs	

	Unit –I	
1	IntroductionOverview of blockchain, Digital Money to Distributed Ledgers, Design Primitives: Protocols, Security, Consensus, Permissions, Privacy, Types of blockchain, blockchain platforms, Blockchain Architecture and use cases, Introduction to Bitcoin, Bitcoin transactions and scripts	6 hrs
2	Cryptography Basics Introduction to cryptography, Public key crypto: Introduction, RSA, Digital certificate, PKI, Hash Functions: Introduction, SHA, Digital signature Schemes: RSA, Digital Signature Standard, Merkle trees.	6 hrs
	Unit –II	
3	Consensus Mechanisms Basic consensus mechanisms, Requirements for the consensus protocols, Proof of Work, Proof of State, Proof of Activity, Practical Byzantine Fault Tolerance (PBFT), Federated PBFT, Consensus protocols in Blockchain platforms, Scalability issues of consensus protocols. Blockchain Platforms Ethereum transactions, accounts, smart contracts, smart contract development, Solidity basics, basic contracts, distributed storage and IPFS, Ethereum scaling, architecture and components of Hyperledger, Fabric membership and identity management, chaincode as a smart contract	6 hrs 6 hrs
	Unit –III	
5	Blockchain Applications Blockchain in Financial Software and Systems: Settlements, KYC, Insurance Government: Digital identity, land records, public distribution system, social welfare systems, Blockchain for cyber security: Cloud forensics, Identity management, Intrusion detection.	6 hrs
Refe	rence Books:	
	 Narayanan, Bonneau, Felten, Miller and Goldfeder, "Bitcoin and Cryptocurrency Techno Comprehensive Introduction", Princeton University Press, 2016. Rogen Wattenhofer, "Blockchain Science : Distributed Ledger Technologies", 1st Edition, Inve Publishing, 2019 	-

Syllabus copies of the courses highlighting the focus on employability/ entrepreneurship/ skill development

- Andreas A, Gavin Wood, "Mastering Etherium: Building smart contracts and DApp", 1st Edition, O'Reilly Media, 2018.
- 4. Matt Zand, Xun Wu, Mark Anthony Morris, "Hands-On Smart Contract Development with Hyperledger Fabric V2", 1st Edition, O'Reilly Media, 2018.

Program: Bachelor of Engineering	g	
Course Title: Web Technologies L	ab	Course Code: 21ECSP304
L-T-P: 0-0-2	Credits: 2	Contact Hrs: 4hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs: 30	Exam Duration: 3 hrs	

1	Introduction to HTML basics, JavaScript	
	Introduction to World Wide Web, Web Application Architecture, HTML Basics, Cascading Style Sheets, JavaScript Basics	4 hrs
2	RESTful API using NodeJS and Express	
	Introduction to Node.js .Building servers using the http and net modules, Node modules and events, Express, REST API client, Postman, Accessing Data, Data Security using Bcrypt. API security using JWT tokens.	12 hrs
3	Angular	
	Building blocks of Angular Apps, Components, Templates, Directives. Services, Dependency injection, Bindings, observables, pipes, component communications, Forms, Interacting with servers using HTTP. RouteGuard, Interceptors, Bundling and deploying applications, Hosting	12 hrs
4	React	
	JSX, React Components, Interaction of Components, Lifecycle methods, Form.	
		8 hrs

- 5. Robert W. Sebesta." Programming the World Wide Web", Pearson Publications 8th Edition, 2014.
- 6. Nathan Murray, Felipe Coury, et al, "ng-book: The Complete Guide to Angular", FullStack.io Publications, 2019
- 7. AzatMardan, "Practical Node.js: Building Real-World Scalable Web Apps", 2nd Edition Apress, 2018.
- 8. Den Ward, "<u>React Native Cookbook: Recipes for solving common React Native development problems</u>", <u>2nd Edition</u>.2019

Lab Plan

Expt./ Job No.	Lab assignments/experiment	Slots
1	Demonstration on HTML, JavaScript	02
2	Exercise on JavaScript	01

3	Demonstration on Node	03
4	Exercise on Node	01
5	Demonstration on Angular	02
6	Exercise on Angular	01
7	Demonstration on React	02
8	Exercise on React	01
9	Structured enquiry 1 – MEAN	02
10	Structured enquiry 2 – React	02