Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise	Page 1 of 89		
Electronics and Communication Engineering			Year:

Batch 2021-25 Course Content

Course Code: 18EECF101	Course Title: Basic Electronics (Electrical Stream)		
L-T-P-Self Study: 4-0-0-0	Credits: 4 Contact Hrs: 50		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50		Exam Duration: 3 hrs	

Content	Hrs
Unit – 1	
Chapter 1: Trends in Electronic Industries Introduction, Roadmap of electronic sector, scope and opportunities in various segments of electronics (i.e. Consumer, Telecom, IT, Defense, Industrial, Medical and Automobiles), Government and private sectors, Growth profile of Electronic industries, Standards and Policies, Electronic System Components.	03 hrs
Chapter 2:Basic components, devices and Applications Diode: PN junction characteristics; modeling as a circuit element, ideal and practical diode. AC to DC converter: Half wave and full wave rectifier (centre tap and bridge), capacitor filter and its analysis, numerical examples. Zener diode and its applications (Voltage reference and voltage regulator). Realization of simple logic gates like AND and OR gates.	08 hrs
Chapter 3:Transistor BJT, transistor voltages and currents, Signal amplifier (Fixed bias, Collector base bias, Voltage divider bias, CE configuration). DC load line. Voltage, current and power gains. Transistor as a switch: NOT Gate, Basic (DTL) NAND gate.	09 hrs
/Unit – 2	
Chapter 4:Digital Logic Number systems: Decimal, Binary, Octal and Hexadecimal number systems, Conversions, Binary Operations-Addition and subtraction in binary number systems. Logic gates: Realization of simple logic functions using basic gates (AND, OR, NOT), Realization using universal gates (NAND, NOR). Boolean algebra: Theorems and postulates, DeMorgan's Theorems, simplification of logical expressions, Karnaugh Maps, Use of Karnaugh Maps to Minimize Boolean Expressions(2 Variables, 3 Variables and 4 Variables), Design of HalfAdder and Full Adder, Parallel Adder using full adders	13 hrs
Chapter 5:Operational Amplifier OPAMP characteristics (ideal and practical). Concept of positive and negative feedback (At zero frequency). Linear and non-linear applications: Inverting amplifier, Non inverting amplifier, Voltage follower, Integration, Differentiation, Adder, Subtractor, ZCD and Comparator.	06 hrs
Unit – 3	

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise	Page 2 of 89		
Electronics and Communication Engineering	Year:		

Chapter 6: Communication Systems	
Basic block diagram of communication system, types of modulation. Amplitude modulation: Time-Domain description, Frequency-Domain description. Generation of AM wave: square law modulator. Detection of AM waves: envelope detector. Double side band suppressed carrier modulation (DSBSC), Generation of DSBSC wave: balanced modulator, Super heterodyne principle.	
Chapter 7:Linear Power Supply, UPS & CRO Working principle of linear power supply, UPS and CRO. Measurement of amplitude, frequency and phase of a given signal.	04 hrs

Text Books (List of books as mentioned in the approved syllabus)

- 1) David A Bell, Electronic devices and Circuits, PHI New Delhi,2004
- 2) K.A Krishnamurthy and M.R.Raghuveer, Electrical, Electronics and Computer Engineering for Scientist and Engineers, 2, New Age International Publishers, 2001
- 3) A.P. Malvino, Electronic Principles, 6, Tata McGraw Hill, 1999

- 1) George Kennedy, Electronic Communication Systems, 4, TataMcGraw Hill, 2000
- 2) Morris Mano, Digital logic and Computer design, 21st Indian print Prentice Hall India, 2000
- 3) Floyd, Digital fundamentals, 3, Prentice Hall India, 2001
- 4) Ramakant Gaikawad , Operational Amplifiers & applications, 3, PHI,2000

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise	Page 3 of 89		
Electronics and Communication Engineering			Year:

Course Code: 21EEXF101	Course Title: Basic Electrical and Electronics Engineering (Mechanical Science)		
L-T-P-Self Study: 4-0-0-0	Credits: 4 Contact Hrs: 47		
ISA Marks: 50	ESA Marks: 50 Total Marks: 100		
Teaching Hrs: 47		Exam Duration: 3 hrs	

Content	Hrs		
Unit – 1			
Chapter 1: Introduction to Electrical & Electronics Technology Electrical Power Generation (convention and renewable energy sources, with PV elaborated), transmission, distribution, utilization (Electric Vehicle as a case study), Electrical and Electronic Systems, concept and power of abstraction, lumped circuit abstraction, and its limitation.	02 hrs		
Chapter 2: The Circuit Abstraction Energy storage and dissipating elements (RLC), Ideal and practical sources, series and parallel circuits, concept of order of the system, voltage dividers, RC, RL, RLC with KCL and KVL, Mesh and Nodal analysis with an example.	10 hrs		
Chapter 3: Introduction to Transformer and Electric Drive Electromagnetic principles, classification of electric machines – static and rotary, transformers, motors, PMDC, stepper, BLDC, single and three-phase induction motors, selection of motors for various applications. Safety measures.	10 hrs		
Unit – 2			
Chapter No. 4: Semiconductor Devices and its Applications Fundamentals of semiconductors, PN junction diode, BJT, FET, Thyristors, Integrated circuits, Linear application – Transistors and Operational amplifiers, oscillators (Op-Amp based), Nonlinear application – Power electronics converters.	10 hrs		
Chapter No. 5: Digital Abstraction Concept of digital abstraction, Number systems, base conversion – binary, decimal, hexadecimal, BCD, Gray code, Boolean algebra, logic gates, combinational circuits, - half adders, full adders, half subtractor and full subtractor using k-maps for 2 or 3 variables, sequential circuits – registers, counters.	10 hrs		
Chapter No. 6: Mechatronic Subsystem Power supply, Introduction to sensors and actuators, signal conditioning and interfacing, Control logic design for mechatronic applications.	5		

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise	Page 4 of 89		

Text Books (List of books as mentioned in the approved syllabus)

- 1. Anant Agarwal and Jefferey H. Lang, Foundations of Analog and Digital Electronic Circuits, Morgan Kaufmann -Elsevier, 2005
- 2. Hughes, Electrical and Electronic Technology, 12th Edition, Pearson, 2016.

- N.P.Mahalik, Mechatronics Principles, Concepts and Applications, Tata McGraw-Hill, 2011
- 2. K.A Krishnamurthy and M.R.Raghuveer, Electrical, Electronics and Computer Engineering for Scientist and Engineers, 2, New Age International Publishers, Wiley Eastern, 2001
- 3. George Kennedy, Electronic Communication Systems, 4, Tata McGraw Hill, 2000
- 4. Morris Mano, Digital Logic and Computer Design, 21st Indian print Prentice Hall India, 2000
- 5. Boylestead Nashelsky, Electronic devices & Circuit theory, 6, Prentice Hall India, 2000
- 6. David A Bell, Electronic Devices and Circuits, PHI New Delhi, 2004
- 7. Ramakant Gayakwad, Operational Amplifiers & applications, 3, PHI, 2000
- 8. W.Bolton, Mechatronics Electronic Control Systems in Mechanical and Electrical Engineering, 3, Pearson Education, 2005
- 9. Ernest O Doeblin, Dhanesh N Manik, Measurement Systems, 6th Edition, McGraw Hill Education; 2017

KLE Technological University Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise	Page 5 of 89		
Electronics and Communication Engineering			Year:

Batch 2020-24 Semester: III

No	Code	Course	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	15EMAB203	BS: Integral Transforms and Statistics	4-0-0	4	4	50	50	100	3 hours
2	15EECC201	PC1: Circuit Analysis	4-0-0	4	4	50	50	100	3 hours
3	15EECC202	PC2: Analog Electronic Circuits	4-0-0	4	4	50	50	100	3 hours
4	19EECC201	PC3: Digital Circuits	4-0-0	4	4	50	50	100	3 hours
5	19EECC202	PC4: Signals & Systems	4-0-0	4	4	50	50	100	2 hours
6	15EECP201	PCL1: Digital Circuits Lab	0-0-1	1	2	80//	20	100	2 hours
7	15EECP202	PCL2: Analog Electronic Circuits Lab	0-0-1	1	2	80	20	100	2 hours
8	21EECF202	ES2: Microcontroller	0-0-3	3	6	80	20	100	2 hours
0	18EECF204	Architecture & Programming C Programming (Dip)	0-0-2	2	4	_			
TO	TAL		20-0-5	25	32	490	310	800	

Note: Regular 25 Credit Diploma: 24 Credits

ISA: In Semester Assessment **ESA**: End Semester Assessment **L**: Lecture **T**: Tutorials **P**: Practical HS (Humanities) = H; B(Basic Science) = B; ES(Engineering Science) = F; PC (Program Core) = C; EC(Any Elective) = E; PW(Project Work) = W; Research = R; Internship= I; Seminar = S; Colloquium = V; Self-study = Y; Special topic= T; Apprenticeship = A; Laboratory / Practical = Field Work = D; and Non-credit course = N.

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise	Page 6 of 89		
Electronics and Communication Engineering			Year:

Semester: IV

No	Code	Course	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1.	17EMAB208	BS: Linear Algebra &Partial Differential Equations	4-0-0	4	4	50	50	100	3 hours
2.	21EECC209	ES4: Electromagnetic Fields and Waves	3-0-0	3	3	50	50	100	3 hours
3.	19EECC203	PC5: Linear Integrated Circuits	4-0-0	4	4	50	50	100	3 hours
4.	15EECC206	PC6: Control Systems	4-0-0	4	4	50	50	100	3 hours
5.	15EECC207	PC7: ARM Processor & Applications	3-0-0	3	3	50	50	100	3 hours
6.	15EECC208	PC8: Digital System Design using Verilog	0-0-2	2	4	80	20	100	2 hours
7.	15EECP203	PCL3: Data acquisition and controls Lab	0-0-1	1	/2	80	20	100	2 hours
8.	15EECP204	PCL4: ARM Microcontroller Lab	0-0-1	1/	2	80	20	100	2 hours
9.	21EECF201 21EECF203	PCL3: Data Structure Applications Lab	0-0-2	2	4	80	20	100	2 hours
		PCL3: Data Structure Using C Lab(Diploma)	0-0-3	3	6				
TO	TAL		18-0-6	24	30	570	330	900	

Note : Regular 24 Credit Diploma : 25 Credits

Technological University Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise Electronics and Communication Engineering			Page 7 of 89 Year:

Program: III Semester B	achelor of Engineering (Electronics & C	ommunication Engineering)	
Course Title: Integral tra	nnsforms and Statistics	Course Code: 15EMAB203	
L-T-P: 4-0-0	Credits: 04	Contact Hours: 4Hrs/week	Teaching Hours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	Hours
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		,
	Unit I	,	
	_		
		vatives and integrals- Properties. Periodic	10
Inverse Transforms- pro	-	and Final value theorems, examples;	
Chapter 2: Probability		/	
	conditional probability, Baye's rule, Cheby tions: Binomial, Poisson, Exponential, Uni		10
	Unit II		
Chapter 3: Regression: Introduction to method of Engineering problems.	least squares, fitting of curvesy=a+bx,	$y = ab^x$, correlation and regression.	05
Chapter 4: Fourier Serie	s		
Complex Sinusoids, Fouri representations, Derivation Convergence of Four Properties of Fourier Serie	er series representations of four classes of on of Complex Co-efficients of Expo- tier Series. Amplitude and phase s(with proof): Linearity, Symmetry Proper iation coefficients, Time domain Convol-	e spectra of a periodic signal.	08
Linearity, Symmetry Pro	non-periodic signals, Magnitude and phase perties, Time shift, Frequency Shift,	e spectra. Properties of Fourier Transform: Scaling, Time differential differentiation Parseval's theorem and Examples on these	
/	Unit III		
Chapter 6: Random Proc			10
1. Introduction to Joint covariance, correlatio	Probability Distributions, marginal distrib	oution, joint pdf and cdf, mean, variance,	
2. Introduction to Ran autocorrelation function	dom process, stationary process, mear	n, correlation and covariance function, ensity: properties of the spectral density;	

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise Electronics and Communication Engineering			Page 8 of 89

- 1. Kreyszig E., Advanced Engineering Mathematics, , 10th edition, Wiley, 2015
- 2. Gupta S C and Kapoor V K, Fundamentals of Mathematical Statistics, 11th edition, Sultan Chand & Sons, 2018
- 3. Walpole and Myers, Probability and Statistics for Engineers and Scientists, ; 9thedition, Pearson Education India,2013.

References

- 1. Simon Haykin, Barry Van Veen, Signals and SystemsWiley; Second edition ,2007
- 2. J. Susan Milton, Jesse C. Arnold, Introduction to Probability and Statistics: Principles and

Applications for Engineering and the Computing Sciences, 4th edition, TATA McGraw-Hill Edition, 2017

Program: III Semester Bachelor of Engineering (Electronics & Communication Engineering)			
Course Title: Circuit Ana	alysis	Course Code: 15EECC201	
L-T-P-SS: 4-0-0	Credits: 4	Contact Hours: 4Hrs/week	
ISA: Marks: 50	ESA: Marks: 50	Total Marks: 100	
Teaching Hours: 50Hrs	Examination Duration:3 Hrs		
Chapter 1: Basics			
Active and passive circuit elements, Voltage & current sources, Resistive networks, Nodal Analysis, Super node, Mesh Analysis, Super mesh, Star – Delta Transformation.			
[Text 1: Chapter 4,5, 7]			
Chapter 2: Network The Homogeneity, Superposit Transfer Theorem, Miller	08		
[Text 1 : Chapter 5]			
Chapter 3: Network topo Graph of a network, Conce Formulation of Equilibrium]	04		

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise Electronics and Communication Engineering			Page 9 of 89 Year:

Unit II Chapter 4: Two Port Networks Two port variables, Z,Y, H,G, A- Parameter representations, Input and output impedance calculation, Series, Parallel and Cascade network connections, and their (suitable) models. [Text 2 : Chapter 11]	06
Chapter 5: Time and Frequency domain Representation of Circuits Order of a system, Concept of Time constant, System Governing equation, System Characteristic equation, Initial conditions, Transfer Functions (Fourier and Laplace domain representation) [Text 2: Chapter 4]	06
Chapter 6: First order circuits Transient response of R-C and R-L networks (with Initial conditions) Concept of phasor, Phasor diagrams, Frequency response characteristics, Polar plots R-C, R-L circuits as differentiator and integrator models, time and frequency domain responses R-C, R-L circuits as Low pass and high pass filters [Text 2: Chapter 5, Text 1: Chapter 8,9,10]	08
Unit III Chapter 7: Higher order circuits HigherorderR-C,R-L,andR-L-Cnetworks,timedomainandfrequencydomainrepresentation, Phasor diagrams, Polar and logarithmic plots, Series R-L-C circuit, Transient response, Damping factor,Quality factor, Frequency responsecurve, Peaking of frequency curve and its relation to damping factor, Resonance Parallel, R-L-C circuit, Tank circuit, Resonance, Quality factor and Bandwidth [Text 2: Chapter 7,8]	12

- 1. W H Hayt, J E Kemmerly, S M Durban, "Engineering Circuit Analysis" McGraw Hill Education; Eighth edition, 2013
- 2. M E. Van Valkenburg, Network Analysis, Third edition Pearson Education, 2019

- 1. Joseph Edminister, Mahmood Nahavi, Electric Circuits, 5th edition, McGraw Hill Education, 2017
- 2. V. K. Aatre, —Network Theory and Filter Design, 3rd edition, New Age International Private Limited, 2014

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 10 of 89

Program: III Semester Bachelor of Engineering (Electronics & Communication Engineering)	
---	--

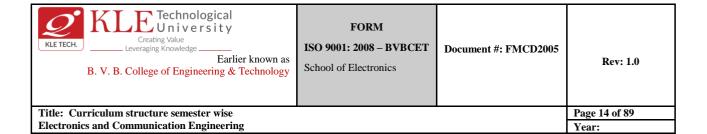
Course Title: Analog Elect	ronic Circuits	Course Code: 15EECC202	
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4Hrs/week	Teachig
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	Hours
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		
	Unit I		
Chapter 1: Applications of	a Junction diode:		0.6
Recap of diode models: piece signal model.	ee-wise linear model, constant vol	tage drop model, ideal diode model, small	06
Applications of diodes as a	Clipping circuit and clamping circ	cuits Voltage	
doubler. (T1 : 2.2,2.3.1 to 2	2.3.8,2.6.1to 2.6.3.)	/	
collector voltage-the early e operation as a switch. DC lo comparison of bias circuit, s analysis of BJT circuits-cou bypassed emitter resistor. (T 3.3.4) Chapter 3: MOSFETs st voltage, creating a channel of the id-vds relationship, the transistor in the sub three characteristics, finite output	ffect large signal operation-the trade line and bias point, base-bias, mall signal models of bipolar trarpling and bypass capacitor, Commit: 3.1.1, 3.2.1,3.2.2, 3.2.3, 3.2.4, ructure and physical operation for current flow, applying small very P-channel MOSFET, complementation of the production of	emitter characteristics, Dependence of Ic on the ansfer characteristics, the amplifier gain, collector to base bias, voltage divider, existors, two port modeling of amplifiers, ac mon emitter circuit analysis, CE circuit with un-3.3.1, 3.3.2, The Device structure, operation with no gate rds, operation as vds is increased, derivation of mentary MOS or CMOS, operating the most haracteristics: circuit symbol, the id vsvds eristics of the p-channel MOSFET, the role of vn and input protection. MOSFET circuits at	07
	Unit II		08
Chapter 4:Biasing of MOSFETs MOSFET circuits at DC. Biasing in mos amplifier circuits,:By fixing VGS;By fixing VG;With drain to gate feedback resistor;Constant current source biasing and Numericals (T1:4.3)			
Chapter 5: MOSFET amp	lifiers		12
Biasing in mos amplifier circuits, small signal operation and models, single stage MOS amplifiers, the MOSFET internal capacitance and high frequency model, frequency response of CS amplifier.(CD and CG),Cascode Connection: Implications on gain and Bandwidth			
(T1:4.4,4.5, 4.6.1 to 4	.6.7; 4.7.1, 4.7.2, 4.7.3, 4.7.5, 4.7	7.6, 4.7.7;4.8.1,4.8.2, 4.8.3,4.8.4, 4.9.1 to 4.9.3)	

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise Electronics and Communication Engineering			Page 11 of 89

Unit III	0.5
Chapter 6: Feedback Amplifiers :	05
General feedback structure (Block schematic), Feedback desensitivity factor, positive and negative feedback Nyquist stability Criterion, RC phase shift oscillator, wein bridge Oscr, merits of negative feedback, feedback topologies: series-shunt feedback amplifier, series-series feedback amplifier, and shunt-shunt and shunt-series feedback amplifier with examples (T1:7.1 to 7.6)	
Chapter 7: Large Signal Amplifiers :	05
Classification of amplifiers: (A, B, AB and C); Transformer coupled amplifier, push-pull amplifier Transistor case and heat sink. (T1:12.1 to 12.6;12.8.4)	

1. A.S. Sedra& K.C. Smith, "Microelectronic Circuits", 7th edition, Oxford University Press, 2017

- 1. JacobMillman and Christos Halkias,-Integrated Electronics "McGraw Hill Education, 2nd edition 2017
- 2. DavidA.Bell,-Electronic Devices and Circuits, Oxford Fifth edition 2008
- 3. Grey, Hurst, Lewis and Meyer, -Analysis and design of analog integrated circuits, Wiley, 5th edition 2009
- 4. Thomas L.Floyd,-Electronic devices ,Pearson, 10th edition, 2018
- 5. Richard R. Spencer & Mohammed S. Ghousi, Introduction to Electronic Circuit Designl, Pearson Education, 2003
- 6. J. Millman& A. Grabel, "Microelectronics"-2nd edition, McGraw Hill,2017
- 7. BehzadRazavi,-Fundamentals of Microelectronics, 2nd edition Wiley;2013


Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
l			Page 12 of 89 Year:

Program: III Semester Ba	chelor of Engineering (Electronics &	Communication Engineering)	
Course Title: Digital Circu	nits	Course Code: 19EECC201	
L-T-P: 4-0-0	-T-P: 4-0-0 Credits: 4 Contact Hours: 4Hrs/week		Teaching
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	Hours
Teaching Hours: 50 Hrs	Examination Duration: 3 Hrs		/
Unit-I Chapter No. 1. Logic Fami Logic levels, output switching	ilies ng times, fan-in and fan-out, comparison	n of logic families	03
Karnaugh maps-3,4 variable	l logic, canonical forms, Generation of es, Incompletely specified functions(E	f switching equations from truth tables, Don't care terms), Simplifying Maxterm luskey using don't care terms, Reduced	10
General approach, Decode		multiplexers- Using multiplexers as full adders, Look ahead carry adders,	08
Latch, The gated SR Latch, The Master-Slave SR Flip-I	tches, A SR Latch, Application of SR The gated D Latch, The Master-Slave l	Latch, A Switch De bouncer, The SR Flip-Flops (Pulse-Triggered Flip-Flops): Edge Triggered Flip- Flop: The Positive; Characteristic Equations	10
Counters, Design of a Sync	Binary Ripple Counters, Synchronous	Binary counters, Ring and Johnson onous Mod-n Counter using clocked JK D, T or SR Flip-Flops.	10
Unit-III Chapter No. 6. Sequential Circuit Design Introduction to Sequential Circuit Design, Mealy and Moore Models, State Machine notations, Synchronous Sequential Circuit Analysis, Construction of state Diagrams and counter design.		05	
Chapter No. 7. Introduction to memories Introduction and role of memory in a computer system, memory types and terminology, Read Only memory, MROM, PROM, EPROM, EEPROM, Random access memory, SRAM, DRAM, NVRAM.		04	

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 13 of 89

- 1. Donald D Givone, Digital Principles and Design, McGraw Hill Education ,2017
- 2. John M Yarbrough, Digital Logic Applications and Design, 1st editionCengage Learning, 2006
- 3. A AnandKumar, Fundamentals of digital circuits 4th Revised edition, PHI, 2016

- Charles H Roth, Fundamentals of Logic Design,7th edition ,Cengage Learning, 2015
- 2. ZviKohavi, Switching and Finite Automata Theory Cambridge University Press; 3 edition October 2009
- 3. R.D. Sudhaker Samuel, Logic Design, Pearson Education ,2010
- 4. R P Jain, Modern Digital Electronics, 4th edition, McGraw Hill Education, 2009

Program: III Semester Ba	achelor of Engineering (Electronics	& Communication Engineering)	
Course Title: Signals and	Systems	Course Code: 19EECC202	
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4Hrs/week	Teaching Hours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	Hours
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		/
	Unit I		
aperiodic, deterministic and on signals(independent va- elementary signals (In Interconnections(series, pa	d systems, classification of signals,(and random signals, even and odd signal ariable, dependent variable, time sompulse, step, ramp, sinusoidal, rallel and cascade), properties of linear	, , ,	10
	d time invariance, stability, memory, c	ausality)	
Chapter No. 02 : LTI Sy	_		
	tation and properties, Convolution, con ifference equation Representation, Blo		10
	Unit II		
Introduction, Discrete time	representation for signals Fourier series(derivation of series excon of transform excluded) and properti		10
Chapter No. 04:Applications of Fourier transform Introduction, frequency response of LTI systems, Fourier transform representation of periodic signals, Fourier transform representation of discrete time signals. Sampling of continuous time signals.		10	
	Unit III		
		ansforms: Inverse z-transforms (Partial Transform of LTI.	10

Text Book (List of books as mentioned in the approved syllabus)

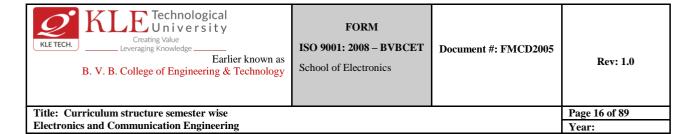
- 1. Simon Haykin and Barry Van Veen, Signals and Systems, 2nd edition Wiley,2007
- 2. Alan V Oppenheim ,Alan S Willsky and S. Hamid Nawab , Signals and Systems, Second, PHI public,1997

- 1. H. P Hsu, R. Ranjan, Signals and Systems ,; 2nd edition, McGraw Hill ,2017
- 2. GaneshRaoandSatishTunga,,SignalsandSystems1st edition, Cengage India, 2017
- 3. M.J.Roberts, Fundamentals of Signals and Systems 2nd edition, McGraw Hill Education, 2017

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise Electronics and Communication Engineering			Page 15 of 89 Year:

III Semester Bachelor of Engineering (Electronics & Communication Engineering)			
Digital Circuits Laboratory Experiments(15EECP201)			
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hours: 24Hrs	Contact Hours: 2Hrs/week	,	/

List of Experiments:


- 1. Characterization of TTL Gates- Propagation delay, Fan-in, Fan-out and NoiseMargin.
- 2. To verify of Flipflops (a) JK Master Slave (b) T-type and (c)D-Type
- 3. Design and implement binary to gray, gray to binary, BCD to Ex-3 and Ex-3 to BCD codeconverters.
- 4. Design and implement BCD adder and Subtractor using 4 bit paralleladder.
- 5. Design and implement n bit magnitude comparator using 4- bitcomparators.
- 6. Design and implement Ring and Johnson counter using shiftregister.
- 7. Design and implement mod-6 synchronous and asynchronous counters using flip flops.
- 8. Design and implement given functionality using decodersandmultiplexers.
- 9. Design and implement a digital system to display a 3 bit counter on a 7 segment display. Demonstrate the results ona general purposePCB.

**Note-All above experiments are to be conducted along with simulation.

*Digital Circuits Lab: Simulation of combinational and sequential circuits using netlist based Spice Simulators (Avoid using drag n drop), before implementing the circuits on breadboard.

Reference Books

- 1. K.A.Krishnamurthy-Digital labprimer, Pearson Education Asia Publications, 2003.
- 2. A.P. Malvino, -Electronic Principles 7th edition, McGraw Hill Education, 2017

III Semester Bachelor of Engineering (Electronics & Communication Engineering)		
Analog Electronics Laboratory Experiments(15EECP202)		
ISA Marks: 80	ESA Marks: 20 Total Marks: 100	
Teaching Hours: 24Hrs	Contact Hours: 2Hrs/week	

List of Experiments:

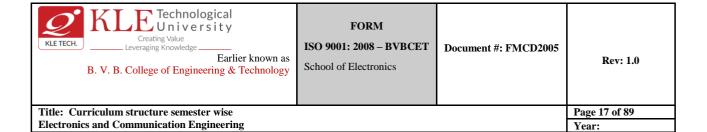
Exercise

- 1. Design &Testing of Diode Clipping (single/double ended)circuits
- 2. Design &Testing of Clamping circuits for Positive and NegativeClamping.
- 3. Design & Testing of BJT as aswitch
- 4. MOSFETcharacteristics
- 5. Design &Testing of MOSFET as aswitch
- 6. Design and testing Current mirror circuit with MOSFET
- 7. Design and testing of Transformer-less push-pull class B poweramplifier

Structured Enquiry

- 1. Design and study of single stage Common Emitter BJTamplifier.
- A) Design and study of CS Amplifier using MOSFET.
- B) Voltage series feedback

Open Ended


1. Design a regulated power supply for the givenspecifications.

**Note-All above experiments are to be conducted along with simulation.

*Analog Electronic Circuits Lab: Simulation of MOSFET based circuits using netlist based Spice Simulators (Avoid using drag n drop), with the spice models of MOSFETs in the same netlist file before using hardware using breadboard.

Reference Books

- 1. "Electronic Devices & circuit Theory by Nashelsky& Boylstead,11th Edition, Pearson, 2015
- 2. "Integrated Electronics"—By JacobMillmanand Christos Halkias ,McGraw Hill Education; 2nd edition 2017
- 3. "Electronic Principles" by A.P. Malvino,7th edition, McGraw Hill Education,2017

Laboratory Experiments			
Laboratory Title: Microco	ontroller Architecture &	Lab. Code: 21EECF202	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hours: 72 Hrs	Contact Hours: 6 Hrs/week	Credits: 0-0-3	
	Unit -I		
Chapter 1: Microprocessors a	and microcontroller		
	rs and Microcontrollers, A Microcon-Neumann CPU architecture.	ontroller Survey, RISC & CISC CPU	
Chapter 2: The 8051 Archite	cture		
8051 Microcontroller Hardw Interfacing external RAM &		nd Circuits, semiconductor Memories,	
Chapter 3: Addressing Mode	es and Arithmetic Operations	/	
		Only Data Moyes / Indexed Addressing	
		example programs. Logical Operations:	
		perations, Rotate and Swap Operations, gs, Incrementing and Decrementing,	
	iplication and Division, Decimal Ar		
	Unit – II	/	
Chapter 4 Branch operations			
Jump Operations: Introduction, Interrupts and Returns, Exam		am range, Jump calls and Subroutines	
Chapter 5: 8051 Programmin	ng in 'C'		
Data Types and Time deprograms, Accessing code RO		g,Logic operations,Data Conversion	
Chapter 6: Counter/Timer Pr	ogramming in 8051		
Programming 8051 Timers, P	Programming Timer0 and Timer1 in	8051C	
	Unit – III		
Chapter 7: Serial Communic	ation		
		2,8051 Serial Communication modes,	
Programming, Serial port pro	<u> </u>		
Chapter 8: 8051 interfacing a	**		4 hours
Interfacing 8051 to LCD, Key Chapter 9: Interrupts	yboard, ADC, DAC, Stepper Motor,	DC Motor.	
Introduction to interrupts, in vector table, inerruptt service		of inerrupts, inerrupt priority, inerrupt	2 hours

Technological University Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 18 of 89
Electronics and Communication Engineering			Year:

- 1. "The 8051 Microcontroller Architecture, Programming & Applications" by 'Kenneth J. Ayala', Penram International, 1996
- 2. " The 8051 Microcontroller and Embedded systems", by 'Muhammad Ali Mazidi and Janice Gillispie Mazidi', Pearson Education, 2003

References

1. " Programming and Customizing the 8051 Microcontroller", by 'Predko', TMH.

Program: III Semester Bachelor of Engineering (Electronics & Communication Engineering)			
Laboratory Experiments			
Laboratory Title: C Prog	gramming (for Diploma)	Lab. Code: 18EECF204	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hours: 52 Hrs	Contact Hours: 4 Hrs/week	Credits: 0-0-2	

1. List of experiments/jobs planned to meet the requirements of the course.

Expt./Job	Experiment/job Details	No. of Lab.
No.		Session/s per batch (estimate)
1.	Write a C program to perform addition, subtraction,	01
	multiplication and division of two numbers.	
2.	Write a C program to	01
	i) Identify greater number between two numbers using C program.	
	ii) To check a given number is Even or Odd.	
3.	Write a C program to	01
	i) To find the roots of a quadratic equation.	
	ii) Find the factorial of given number.	
4.	Write a C program to	01
	i) To find the sum of n natural numbers.	
/	ii) Print the sum of $1 + 3 + 5 + 7 + \cdots + n$	
5.	Write a C program to	01
	i) Print the pattern.	
	*	
	* *	
	* * *	
	* * * *	

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise Electronics and Communication Engineering			Page 19 of 89 Year:

	* * * *	
	ii) Print the pattern	
	1	
	1 2	
	123	
	1234	
	1 2 3 4 5	
6.	Write a C program to	01
	To test whether the given character is Vowel or not. (using switch	
	case)	/
7.	Write a C program to	01
	To accept 10 numbers and make the average of the numbers	
	using one dimensional array.	
8.	Write a C program to	01
	Find out square of a number using function.	
	a the state of the	
9	Write a C program to	01
	To find the summation of three numbers using function.	
10	Write a C program to	01
	Find out addition of two matrices.	

1. Materials and Resources Required:

Text Book

1. Programming in ANSI C, E Balagurusamy

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise Electronics and Communication Engineering			Page 20 of 89

Program: IV Semester	Bachelor of Engineering (Elec	etronics & Communication Engineering)	
Course Title: Linear Al Differential Equations	gebra and Partial	Course Code: 17EMAB208	
L-T-P-SS: 4-0-0-0	Credits: 4	Contact Hours: 4Hrs/week	Teaching Hours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	Hours
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		
	Unit I		
Chapter1:Partial differ	ential equations		
Solution of partial dif	ferential equation by direct in pration of string-wave equation	Solution of equation of the type $Pp + Qq = R$, ntegration methods, method of separation of , heat equation. Laplace equation. Solution by	10
Chapter2:Finite differe	nce method		
* *		fference solution of parabolic PDE, explicit and ptic PDE-initial-boundary Value problems	10
	Unit II		
Chapter3:Fourier Serie	es		10
Series representations, Examples. Convergence of Fourier Series(with p Time differential differential	Derivation of Complex Co-e of Fourier Series. Amplitude a roof): Linearity, Symmetry Pro	our classes of signals, Periodic Signals: Fourier officients of Exponential Fourier Series and and phase spectra of a periodic signal. Properties operties, Time shift, Frequency Shift, Scaling, omain Convolution, Multiplication Theorem,	
Chapter 4: Fourier Tra	nsform		
Transform: Linearity, Sy	ymmetry Properties, Time shift ats, Time domain Convolution	tude and phase spectra. Properties of Fourier it, Frequency Shift, Scaling, Time differential, Multiplication Theorem, Parseval's theorem	10
	Unit		
	III .	P	
	s, continuity and differentiabilit	Function of ty. Analytic functions, C-R equations in tions (Cartesian and polar forms).	05
Chapter 7: Complex In Line integral, Cauchy's t		ntegral formula. Taylor's and	05

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 21 of 89
Electronics and Communication Engineering			Year:

- 1. Simon Haykin, Barry Van Veen, Signals and Systems, 2ndedition, Wiley, 2007
- 2. Peter V. O'neil, Advanced Engineering MathematicsCengage Learning Custom Publishing; 7th Revised edition2011
- 3. DennisGZillandMichaelRCullin,"AdvancedEngineeringMathematics",4th edition, NarosaPublishingHouse,NewDelhi,2012

- 1. Kreyszig E., Advanced Engineering Mathematics, 10th edition, Wiley, 2015
- 2. Stanley J Farlow, Partial differential equations for Scientists and Engineers, Dover publications, INC, New York, 1993

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 22 of 89
Electronics and Communication Engineering			Year: 2017-21

Program: IV Sem	nester Bachelor of Engineering (Electro	onics & Communication Engineering)	
Course Title: Elec	ctromagnetic Fields and Waves	Course Code: 21EECC209	
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/week	Teaching
ISA Marks: 40	ESA Marks: 50	Total Marks: 100	Hours
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		
	Content		Hrs
	Unit – 1		
Introduction, Cou Distribution, Elect Electric Potential,	ric Flux Density, Gauss's Law - Maxwe	ectric Fields Due to Continuous Charge ell's Equation, Application of Gauss's Law, ell's Equation, An Electric Dipole and Flux	5 hrs
Introduction, Prop in Dielectrics, Die Conditions.	lectric Constant and strength, Continuity	duction Currents, Conductors, Polarization Equation and Relaxation Time, Boundary	5 hrs
Introduction, Poiss	ectrostatic Boundary-Value Problems son's and Laplace's Equations, Uniquene ce's Equation, Resistance and Capacitanc	ss Theorem, General Procedure for Solving e, Method of Images.	5 hrs
	Unit - 2		
Introduction, Bio Ampere's Law, M		w—Maxwell's Equation, Applications of ation, Maxwell's Equations for Static EM f Biot-Savart's Law and Ampere's Law.	6 hrs
Introduction, Force Magnetization in		Forque and Moment, A Magnetic Dipole, Materials, Magnetic Boundary Conditions, cuits, Force on Magnetic Materials	6 hrs
Chapter No. 6. Maxwell's Equations Introduction, Faraday's Law, Transformer and Motional Electromotive Forces, Displacement Current, Maxwell's Equations in Final Forms, Time-Varying Potentials, Time-Harmonic Fields.			3 hrs
	Unit - 3		
Introduction, Wav Waves in Free Spa a Plane Wave at N	ice, Plane Waves in Good Conductors, Poormal Incidence, Reflection of a Plane W	ane Waves in Lossless Dielectrics, Plane ower and the Poynting Vector, Reflection of Vave at Oblique Incidence.	5 hrs
	smission Line Parameters, Transmission mith Chart, Transients on Transmission I	n Line Equations, Input Impedance, SWR, Lines, Microstrip Transmission Lines, Some	5 hrs

Text Book(List of books as mentioned in the approved syllabus)

- 1. William Hayt. Jr. John A. Buck, Engineering Electromagnetics ,9thedition,McGraw Hill Education,2018.
- 2. R. K. Shevgaonkar, Electromagnetic Waves McGraw Hill Education; 1st edition, 2017
- 3. Mathew N. O. Sadiku, Elements of Electromagenics; Sixth edition, Oxford University, 2015

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 23 of 89
Electronics and Communication Engineering			Year: 2017-21

Program: IV Semester Ba	achelor of Engineering (Electronic	s & Communication Engineering)	
Course Title: Linear Inte	grated circuits	Course Code:19EECC203	Teaching
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4Hrs/week	Hours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		
	UnitI	,	
Chapter No 1. Current			
		figures of merit (output impedance,	
voltage swing), Widlar, C	Cascode and Wilson current Mirr	ors.	4
Chapter No 2 Basic O	PAMP architecture		
	er, Common mode and difference		6
		lifier, Slew rate limitation, Bandwidth	
and frequency response c	curve.		
Chapter No 3. OPAMP		t and output immedance output Offcat	8
	Large signal bandwidth.	t and output impedance, output Offset	
voltage, Sman signar and	Unit II		
Chapter No 4. OPAMP			
		egative feedback on Bandwidth, Input	10
		dback, Follower property & Inversion	
Property under linear mo	de operation		
Chapter No 5. Linear	applications of OPAMP		
		amplifiers (Inverting, Non-inverting	12
and Differential configur	ation), Instrumentation amplifier	Integrator, Differentiator, Active	
Filters –First and second	order Low pass & High pass filte	ers. V to I and I to V converters.	
	UnitIII		
Chapter No 6. Nonlinea	r applications of OPAMP		
	. Comparator), Inverting Schmitt		10
		ator, Voltage controlled Oscillator,	
		ridge Oscillator, Data Converters:	
		AC, Current steering DAC, Pipeline	
DAC, Analog to Digital (Converters: Flash, Pipeline ADC	, SAR	

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 24 of 89
Electronics and Communication Engineering			Year: 2017-21

- 1. BehzadRazavi, Fundamentals of Microelectronics 2nd edition, Wiley, 2013
- 2. Phillip E. Allen, Douglas R. Holberg, CMOS Analog Circuit Design 3rd edition, OUP USA ,2012
- 3. Ramakant A. Gayakwad, Op Amps and Linear Integrated Circuits,. Pearson Education, 4thedition, 2015

References

- 1. A.S. Sedra& K.C. Smith, MicroelectronicCircuits, 7th edition, Oxford University Press 2017
- 2. Sergio Franco, Design with Operational Amplifiers and Analog Integrated Circuits, , 3rd

edition, MHE, 2012

- 3. David A. Bell, Operational Amplifiers and LinearIC's.; Third edition, Oxford University Press, 2011
- 4. B. Razavi, Design of Analog CMOS Integrated Circuits, Second edition, McGraw Hill Education; 2017

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 25 of 89

Program: IV Semester Ba	achelor of Engineering (Electronics &	& Communication Engineering)	
Course Title: Control Sys	stems	Course Code: 15EECC206	
L-T-P: 4-0-0 Credits: 4 Contact Hours: 4Hrs/week		Contact Hours: 4Hrs/week	Teaching Hours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	Hours
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		
	Unit I		
	System Representation		
	ems- Open Loop And Closed Loop		6
	s, System representation: Differentia		
	n Modeling: Electrical Mechanical,	Electro mechanical, Rotational	
Mechanical Systems.			
	iagram And Signal Flow Graphs	Control Character Control	0
	k Diagram Algebra and Representa	tion by Signal Flow Graph -	8
Reduction Using Mason' Chapter No. 3.Time Res			
	apulse, step, ramp, parabola)-Order	and Type of System Concept of	
	sponse of First Order Systems – Ch		6
	ent Response of Second Order Systems		U
	- Steady State Errors and Error Con		
Derivative, Proportional			
, 1	Unit II		
Chapter No. 4.Stability	Analysis In S-Domain		
	(BIBO, all system poles on LHS, I	mpulse response is convergent,	10
Marginal stability- necess	sary conditions) - Routh's Stability	Criterion – Limitations of Routh's	
Stability Criterion (Appli	cations only).Root Locus Techniqu	e: The Root Locus Concept -	
Construction Of Root Lo			
Chapter No. 5.Frequen			
		omain Specifications And Transfer	10
	Diagram-Phase Margin And Gain	Margin-Stability Analysis From	
Bode Plots, All Pass And	Minimum Phase Systems		
	Unit III		
	Analysis In Frequency Domain		
1 2 2	s Stability Analysis, Assessment Of	Relative Stability Using Nyquist	6
Criterion.			
	ction to Controller Design		
	liminary Consideration Of Classica		6
Compensators (Lag, Lead	d and dominant pole compensation)	, P, I, PI, PD & PID Controllers.	

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise Electronics and Communication Engineering			Page 26 of 89

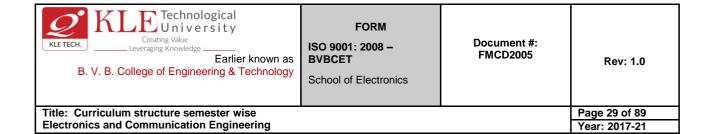
- 1. J. Nagrath and M. Gopal, Control Systems Engineering; Sixth edition, New Age International Pvt Ltd 2018
- 2. B. C. Kuo, Automatic Control Systems, 9th edition, John wiley and Sons,2014

- 1. Katsuhiko Ogata, Modern Control Engineering, 5th edition, Pearson education India Pvt. Ltd, 2015,
- 2. Richord C Dorf and Robert H. Bishop, Modern Control Systems, 13th edition, Pearson; 2016

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 27 of 89
Electronics and Communication Engineering			Year: 2017-21

Program: IV Semester Bachelor of Engineering (Electronics & Communication Engineering)				
Course Title: ARM Processor & Applications Course Code: 15EECC207				
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3Hrs/week	Hours	
ISA Marks: 50 ESA Marks: - 50		Total Marks: 100		
Teaching Hours: 40Hrs Examination Duration: 3 Hrs				

Microcontroller Microprocessor, Microcontroller, Comparing Microprocessor and Microcontroller, RISC vs. CISC, Von-Neumann vs. Harvard Architecture, Microcontroller Survey, Development systems for microcontroller, Case study: Architecture of 8085/8086 and 8051 Microprocessor and Microcontroller respectively Chapter 2: ARM Architecture Architectural inheritance, Architecture of ARM7TDMI, ARM programmers model, ARM development tools, 3 stage pipeline ARM organization, ARM instruction execution. O6 Chapter 3: Instruction set 1 Introduction, ARM instruction set-Data processing and branch instructions, Arithmetic and example programs Data processing instruction, Branch instruction, Load store instruction, Software interrupt instruction, Program status register instruction, Conditional execution, Example programs Unit II Chapter 4: Instruction set 2 The Thumb programmer model, Thumb breakpoint instruction, Thumb implementation, and Thumb applications. Example programs: The Thumb programmer model, ARM-Thumb interworking, other branch instructions, Data processing instructions, Single/Multiple register load store instruction, Stack operation, Software interrupt instructions, Thumb breakpoint instruction, Thumb implementation, and Thumb applications example programs: Chapter 5: Assembler rules and Directives Introduction, structure of assembly language modules, Predefined register names, frequently used directives, Macros, Miscellaneous assembler features. O5 Chapter 6: Exception handling Introduction, Interrupts, error conditions, processor exception sequence, the vector table, Exception handlers, Exception priorities, Procedures for handling exceptions. Chapter 7: Architectural support for high level languages Abstraction in software design, data types, floating point data types, The ARM floating point	Content	
Microcontroller Microprocessor, Microcontroller, Comparing Microprocessor and Microcontroller, RISC vs. CISC, Von-Neumann vs. Harvard Architecture, Microcontroller Survey, Development systems for microcontroller, Case study: Architecture of 8085/8086 and 8051 Microprocessor and Microcontroller respectively Chapter 2: ARM Architecture Architectural inheritance, Architecture of ARM7TDMI, ARM programmers model, ARM development tools, 3 stage pipeline ARM organization, ARM instruction execution. Chapter 3: Instruction set 1 Introduction, ARM instruction set-Data processing and branch instructions, Arithmetic and example programs Data processing instruction, Branch instruction, Load store instruction, Software interrupt instruction, Program status register instruction, Conditional execution, Example programs Unit II Chapter 4: Instruction set 2 The Thumb programmer model, Thumb breakpoint instruction, Thumb implementation, and Thumb applications. Example programs: The Thumb programmer model, ARM-Thumb interworking, other branch instructions, Data processing instructions, Single/Multiple register load store instruction, Stack operation, Software interrupt instructions, Thumb breakpoint instruction, Thumb implementation, and Thumb applications example programs. Chapter 5: Assembler rules and Directives Introduction, structure of assembly language modules, Predefined register names, frequently used directives, Macros, Miscellaneous assembler features. Chapter 6: Exception handling Introduction, Interrupts, error conditions, processor exception sequence, the vector table, Exception handlers, Exception handlers, Exception production, stockerities, Procedures for handling exceptions. Chapter 7: Architectural support for high level languages Abstraction in software design, data types, floating point data types, The ARM floating point	Unit I	
Microprocessor, Microcontroller, Comparing Microprocessor and Microcontroller, RISC vs. CISC, Von-Neumann vs. Harvard Architecture, Microcontroller Survey, Development systems for microcontroller, Case study: Architecture of 8085/8086 and 8051 Microprocessor and Microcontroller respectively Chapter 2: ARM Architecture Architectural inheritance, Architecture of ARM7TDMI, ARM programmers model, ARM development tools, 3 stage pipeline ARM organization, ARM instruction execution. O6 Chapter 3: Instruction set 1 Introduction, ARM instruction set-Data processing and branch instructions, Arithmetic and example programs Data processing instruction, Branch instruction, Load store instruction, Software interrupt instruction, Program status register instruction, Conditional execution, Example programs Unit II Chapter 4: Instruction set 2 The Thumb programmer model, Thumb branch instruction, Thumb software interrupt instructions, Thumb data processing instructions, Thumb breakpoint instruction, Thumb implementation, and Thumb applications. Example programs: The Thumb programmer model, ARM-Thumb interworking, other branch instructions, Data processing instructions, Single/Multiple register load store instruction, Stack operation, Software interrupt instructions, Thumb breakpoint instruction, Thumb implementation, and Thumb applications exampleprograms. Chapter 5: Assembler rules and Directives Introduction, structure of assembly language modules, Predefined register names, frequently used directives, Macros, Miscellaneous assembler features. Chapter 6: Exception handling Introduction, Interrupts, error conditions, processor exception sequence, the vector table, Exception handlers, Exception priorities, Procedures for handling exceptions. Chapter 7: Architectural support for high level languages Abstraction in software design, data types, floating point data types, The ARM floating point	Chapter 1: Introduction to Microprocessor and	
Neumann vs. Harvard Architecture, Microcontroller Survey, Development systems for microcontroller, Case study: Architecture of 8085/8086 and 8051 Microprocessor and Microcontroller respectively Chapter 2: ARM Architecture Architectural inheritance, Architecture of ARM7TDMI, ARM programmers model, ARM development tools, 3 stage pipeline ARM organization, ARM instruction execution. Chapter 3: Instruction set 1 Introduction, ARM instruction set-Data processing and branch instructions, Arithmetic and example programs Data processing instruction, Branch instruction, Load store instruction, Software interrupt instruction, Program status register instruction, Conditional execution, Example programs Unit II Chapter 4: Instruction set 2 The Thumb programmer model, Thumb branch instructions, Thumb software interrupt instructions, Thumb data processing instructions, Thumb breakpoint instruction, Thumb implementation, and Thumb applications. Example programs: The Thumb programmer model, ARM-Thumb interworking, other branch instructions, Data processing instructions, Single/Multiple register load store instruction, Stack operation, Software interrupt instructions, Thumb breakpoint instruction, Thumb implementation, and Thumb applications exampleprograms. Chapter 5: Assembler rules and Directives Introduction, structure of assembly language modules, Predefined register names, frequently used directives, Macros, Miscellaneous assembler features. Chapter 6: Exception handling Introduction, Interrupts, error conditions, processor exception sequence, the vector table, Exception handlers, Exception priorities, Procedures for handling exceptions. Chapter 7: Architectural support for high level languages Abstraction in software design, data types, floating point data types, The ARM floating point	Microcontroller	
Chapter 2: ARM Architecture Architectural inheritance, Architecture of ARM7TDMI, ARM programmers model, ARM development tools, 3 stage pipeline ARM organization, ARM instruction execution. O6 Chapter 3: Instruction set 1 Introduction, ARM instruction set-Data processing and branch instructions, Arithmetic and example programs Data processing instruction, Branch instruction, Load store instruction, Software interrupt instruction, Program status register instruction, Conditional execution, Example programs Unit II Chapter 4: Instruction set 2 The Thumb programmer model, Thumb branch instructions, Thumb software interrupt instructions, Thumb data processing instructions, Thumb breakpoint instruction, Thumb implementation, and Thumb applications. Example programs: The Thumb programmer model, ARM-Thumb interworking, other branch instructions, Data processing instructions, Single/Multiple register load store instruction, Stack operation, Software interrupt instructions, Thumb breakpoint instruction, Thumb implementation, and Thumb applications exampleprograms. O5 Chapter 5: Assembler rules and Directives Introduction, structure of assembly language modules, Predefined register names, frequently used directives, Macros, Miscellaneous assembler features. O3 Chapter 6: Exception handling Introduction, Interrupts, error conditions, processor exception sequence, the vector table, Exception handlers, Exception priorities, Procedures for handling exceptions. Chapter 7: Architectural support for high level languages Abstraction in software design, data types, floating point data types, The ARM floating point	Microprocessor, Microcontroller, Comparing Microprocessor and Microcontroller, RISC vs. CISC, Von-Neumann vs. Harvard Architecture, Microcontroller Survey, Development systems for microcontroller, Case study: Architecture of 8085/8086 and 8051 Microprocessor and Microcontroller respectively.	10
Architectural inheritance, Architecture of ARM7TDMI, ARM programmers model, ARM development tools, 3 stage pipeline ARM organization, ARM instruction execution. Chapter 3: Instruction set 1 Introduction, ARM instruction set-Data processing and branch instructions, Arithmetic and example programs Data processing instruction, Branch instruction, Load store instruction, Software interrupt instruction, Program status register instruction, Conditional execution, Example programs Unit II Chapter 4: Instruction set 2 The Thumb programmer model, Thumb branch instructions, Thumb software interrupt instructions, Thumb data processing instructions, Thumb programmer model, ARM-Thumb interworking, other branch instructions, Data processing instructions, Single/Multiple register load store instruction, Stack operation, Software interrupt instructions, Thumb breakpoint instruction, Thumb implementation, and Thumb applications exampleprograms. Chapter 5: Assembler rules and Directives Introduction, structure of assembly language modules, Predefined register names, frequently used directives, Macros, Miscellaneous assembler features. Chapter 6: Exception handling Introduction, Interrupts, error conditions, processor exception sequence, the vector table, Exception handlers, Exception priorities, Procedures for handling exceptions. Chapter 7: Architectural support for high level languages Abstraction in software design, data types, floating point data types, The ARM floating point		
Introduction, ARM instruction set-Data processing and branch instructions, Arithmetic and example programs Data processing instruction, Branch instruction, Load store instruction, Software interrupt instruction, Program status register instruction, Conditional execution, Example programs Unit II Chapter 4: Instruction set 2 The Thumb programmer model, Thumb branch instructions, Thumb software interrupt instructions, Thumb data processing instructions, Thumb breakpoint instruction, Thumb implementation, and Thumb applications. Example programs: The Thumb programmer model, ARM-Thumb interworking, other branch instructions, Data processing instructions, Single/Multiple register load store instruction, Stack operation, Software interrupt instructions, Thumb breakpoint instruction, Thumb implementation, and Thumb applications exampleprograms. O5 Chapter 5: Assembler rules and Directives Introduction, structure of assembly language modules, Predefined register names, frequently used directives, Macros, Miscellaneous assembler features. O3 Chapter 6: Exception handling Introduction, Interrupts, error conditions, processor exception sequence, the vector table, Exception handlers, Exception priorities, Procedures for handling exceptions. Chapter 7: Architectural support for high level languages Abstraction in software design, data types, floating point data types, The ARM floating point	Architectural inheritance, Architecture of ARM7TDMI, ARM programmers model, ARM development tools, 3 stage pipeline ARM organization, ARM instruction execution.	06
Data processing instruction, Branch instruction, Load store instruction, Software interrupt instruction, Program status register instruction, Conditional execution, Example programs Unit II Chapter 4: Instruction set 2 The Thumb programmer model, Thumb branch instructions, Thumb software interrupt instructions, Thumb data processing instructions, Thumb breakpoint instruction, Thumb implementation, and Thumb applications. Example programs: The Thumb programmer model, ARM-Thumb interworking, other branch instructions, Data processing instructions, Single/Multiple register load store instruction, Stack operation, Software interrupt instructions, Thumb breakpoint instruction, Thumb implementation, and Thumb applications exampleprograms. Chapter 5: Assembler rules and Directives Introduction, structure of assembly language modules, Predefined register names, frequently used directives, Macros, Miscellaneous assembler features. Chapter 6: Exception handling Introduction, Interrupts, error conditions, processor exception sequence, the vector table, Exception handlers, Exception priorities, Procedures for handling exceptions. Chapter 7: Architectural support for high level languages Abstraction in software design, data types, floating point data types, The ARM floating point	Chapter 3: Instruction set 1	
Unit II Chapter 4: Instruction set 2 The Thumb programmer model, Thumb branch instructions, Thumb software interrupt instructions, Thumb data processing instructions, Thumb breakpoint instruction, Thumb implementation, and Thumb applications. Example programs: The Thumb programmer model, ARM-Thumb interworking, other branch instructions, Data processing instructions, Single/Multiple register load store instruction, Stack operation, Software interrupt instructions, Thumb breakpoint instruction, Thumb implementation, and Thumb applications exampleprograms. Chapter 5: Assembler rules and Directives Introduction, structure of assembly language modules, Predefined register names, frequently used directives, Macros, Miscellaneous assembler features. Chapter 6: Exception handling Introduction, Interrupts, error conditions, processor exception sequence, the vector table, Exception handlers, Exception priorities, Procedures for handling exceptions. Chapter 7: Architectural support for high level languages Abstraction in software design, data types, floating point data types, The ARM floating point	Introduction, ARM instruction set-Data processing and branch instructions, Arithmetic and example programs	
Chapter 4: Instruction set 2 The Thumb programmer model, Thumb branch instructions, Thumb software interrupt instructions, Thumb data processing instructions, Thumb breakpoint instruction, Thumb implementation, and Thumb applications. Example programs: The Thumb programmer model, ARM-Thumb interworking, other branch instructions, Data processing instructions, Single/Multiple register load store instruction, Stack operation, Software interrupt instructions, Thumb breakpoint instruction, Thumb implementation, and Thumb applications exampleprograms. Chapter 5: Assembler rules and Directives Introduction, structure of assembly language modules, Predefined register names, frequently used directives, Macros, Miscellaneous assembler features. Chapter 6: Exception handling Introduction, Interrupts, error conditions, processor exception sequence, the vector table, Exception handlers, Exception priorities, Procedures for handling exceptions. Chapter 7: Architectural support for high level languages Abstraction in software design, data types, floating point data types, The ARM floating point	Data processing instruction, Branch instruction, Load store instruction, Software interrupt instruction, Program status register instruction, Conditional execution, Example programs	06
The Thumb programmer model, Thumb branch instructions, Thumb software interrupt instructions, Thumb data processing instructions, Thumb breakpoint instruction, Thumb implementation, and Thumb applications. Example programs: The Thumb programmer model, ARM-Thumb interworking, other branch instructions, Data processing instructions, Single/Multiple register load store instruction, Stack operation, Software interrupt instructions, Thumb breakpoint instruction, Thumb implementation, and Thumb applications exampleprograms. Chapter 5: Assembler rules and Directives Introduction, structure of assembly language modules, Predefined register names, frequently used directives, Macros, Miscellaneous assembler features. Chapter 6: Exception handling Introduction, Interrupts, error conditions, processor exception sequence, the vector table, Exception handlers, Exception priorities, Procedures for handling exceptions. Chapter 7: Architectural support for high level languages Abstraction in software design, data types, floating point data types, The ARM floating point	Unit II	
Thumb data processing instructions, Thumb breakpoint instruction, Thumb implementation, and Thumb applications. Example programs: The Thumb programmer model, ARM-Thumb interworking, other branch instructions, Data processing instructions, Single/Multiple register load store instruction, Stack operation, Software interrupt instructions, Thumb breakpoint instruction, Thumb implementation, and Thumb applications exampleprograms. Chapter 5: Assembler rules and Directives Introduction, structure of assembly language modules, Predefined register names, frequently used directives, Macros, Miscellaneous assembler features. Chapter 6: Exception handling Introduction, Interrupts, error conditions, processor exception sequence, the vector table, Exception handlers, Exception priorities, Procedures for handling exceptions. Chapter 7: Architectural support for high level languages Abstractions are of macroscopic and the types, floating point data types, The ARM floating point	Chapter 4: Instruction set 2	
Chapter 5: Assembler rules and Directives Introduction, structure of assembly language modules, Predefined register names, frequently used directives, Macros, Miscellaneous assembler features. Chapter 6: Exception handling Introduction, Interrupts, error conditions, processor exception sequence, the vector table, Exception handlers, Exception priorities, Procedures for handling exceptions. Chapter 7: Architectural support for high level languages Abstraction in software design, data types, floating point data types, The ARM floating point	The Thumb programmer model, Thumb branch instructions, Thumb software interrupt instructions, Thumb data processing instructions, Thumb breakpoint instruction, Thumb implementation, and Thumb applications. Example programs: The Thumb programmer model, ARM-Thumb interworking, other branch instructions, Data processing instructions, Single/Multiple register load store instruction, Stack operation, Software interrupt instructions, Thumb breakpoint instruction, Thumb implementation, and Thumb applications exampleprograms.	
Introduction, structure of assembly language modules, Predefined register names, frequently used directives, Macros, Miscellaneous assembler features. Chapter 6: Exception handling Introduction, Interrupts, error conditions, processor exception sequence, the vector table, Exception handlers, Exception priorities, Procedures for handling exceptions. Chapter 7: Architectural support for high level languages Abstraction in software design, data types, floating point data types, The ARM floating point	1 1 0	05
Chapter 6: Exception handling Introduction, Interrupts, error conditions, processor exception sequence, the vector table, Exception handlers, Exception priorities, Procedures for handling exceptions. Chapter 7: Architectural support for high level languages Abstraction in software design, data types, floating point data types, The ARM floating point	Chapter 5: Assembler rules and Directives	
Introduction, Interrupts, error conditions, processor exception sequence, the vector table, Exception handlers, Exception priorities, Procedures for handling exceptions. Chapter 7: Architectural support for high level languages Abstraction in software design, data types, floating point data types, The ARM floating point	Introduction, structure of assembly language modules, Predefined register names, frequently used directives, Macros, Miscellaneous assembler features.	03
Abstraction in software design, data types, floating point data types, The ARM floating point	Chapter 6: Exception handling Introduction, Interrupts, error conditions, processor exception sequence, the vector table, Exception handlers, Exception priorities, Procedures for handling exceptions.	05
and like atoms are of management and time invitations and	Chapter 7: Architectural support for high level languages	
	Abstraction in software design, data types, floating point data types, The ARM floating point architecture, use of memory, run time environment.	05


Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 28 of 89
Electronics and Communication Engineering			Year: 2017-21

Chapter 8	Ur 3: LPC 2129/2148 Controller Architec	nit – III tural					
On-chip	memory, GPIOs, Timers, UART,	ADC,	I2C,	SPI	,	RTC	10
ARM inte	rfacing techniques and programming: Ll	ED, LCD, Ste	pper Moto	or, Buzze	r, Keyp	ad,ADC	

Text Book:

- The 8051 Microcontroller Architecture, Programming & Applications " By Kenneth J. Ayala, Cenage Learning; 3rd edition 2007
- 2. ARMSystem- on-ChipArchitecture||by'SteveFurber', SecondEdition,Pearson,2015
- 3. ARM Assembly Language fundamentals and Techniques by William Hohl, CRC press CRC Press; 2nd edition.2014

- $1. \quad -ARM system Developer ``sGuide \verb||- Hardbound, Publication date: 2004 Imprint: MORGANKAUFFMAN$
- 2. User manual onLPC21XX.

Cours	se Title: Digital System l	Design using Verilog	Course Code: 15EECC208	Lab+
L-T-P	P: 0-0-2	Credits: 2	Contact Hours: 4Hrs/week	Teaching
ISA N	Marks: 80	ESA Marks:20	Total Marks: 100	Hours
Teach Hrs	ning + Lab. Hours: 48	Examination Duration:3 Hrs		
1.	Introduction to verilog	; :		02+02
	Verilog as hdl, levels of	design description, simulation and	synthesis, digital design flow.	
2.	Programming on Data	flow description:		02+02
	Structure of data-flow d decoder, multiplexers, c		ple combinational circuit design like	
3.	3. Programming on Behavioral Descriptions:			04+04
		highlights, sequential statements. Ir oth multiplier. Introduction to FPG.	ntroduction to Testbench. Design of As, Synthesis	
4.	Programming on Strue	ctural Descriptions:		02+02
		Description, Organization of the streneric, statements. Design of 16 bit		
5.	Programming on Task	s and Functions:		04+04
	Highlights of Tasks, and Sequence Detector.	l Functions, FSM, design like count	ter, Mealy and Moore machine,	
6.	Programming on Inter	facing:		04+04
	Interfacing with 7-segm display.	ent display and push buttons. Interf	acing with PS/2 Keyboard and VGA	
7.	Programming on Advanced HDL Descriptions:			02+04
	Block RAMs on an FPC Verilog, File processing	GA and understand memory interfact examples.	ring, File operations in	
8.	Open ended Experime			06
	Bowling Score Keeper / controller	Floating Point Unit Arithmetic Un	its/pipelined processor/traffic light	

- 1. Nazeih M. Botros, HDL Programming -Verilog, Dreamtech Press, 2006.
- 2. J.Bhaskar,-AVerilog Primer",; 3rd edition, Pearson Education India ,2015

- 1. SamirPalnitkar,-Verilog HDL||,PearsonEducation,2ndEdition,2003.
- 2. Thomas and Moorby, -The Verilog Hardware Description Language ||, kluwer academic publishers, 5th edition, 2002.

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 30 of 89
Electronics and Communication Engineering			Year: 2017-21

- 3. StephenBrownandZvonkoVranesic,-Fundamentals ofLogicDesign with Verilog; 2nd edition, McGraw Hill Education 2017.
- 4. Charles.H.Roth,Jr.,LizyKurianJohn-Digital System DesignusingVHDL\|,Thomson, 2ndEdition,2008.

Program: IV Semester Bachelor of Engineering (Electronics & Communication Engineering)				
Course Title: Data Acquisition and Control Lab Course Code: 15EECP203				
L-T-P: 0-0-1	Credits: 1	Contact Hours: 2Hrs/week		
ISA Marks: 80 ESA Marks: - 20 Total Marks: 100				
Teaching Hours: 28 Hrs	Teaching Hours: 28 Hrs Examination Duration: 2 Hrs			

List of Experiments:

1.Basic Signal Conditioning Techniques

- a) Inverting and Non Inverting Amplifier using OPAMP.
- **b)** Comparator. (ZCD &Schmitttrigger)
- c) Precision rectifier
- 2. Realize and verify the performance of Instrumentation Amplifier using op-amp
- 3. Feedback Concepts: Realize and verify the performance of WeinBridge Oscillator using op-amp
- 4. To design and implement the filters for a givenspecification

Obtain the phase and frequency responses of 2nd order, Low pass and High pass filter.

5. To implement and characterize the functional block of ADC and DAC.

Realize the following data converters to determine their respective performance parameters.

- 4-bit R-2R D-AConverter.
- 2-Bit flash ADC/4-Bit ADC (Using0804IC

6. SystemModeling

• Realize the system modeling for DC Motor using QuanserQube

7. To determine System Response of RLCcircuits

Time domain response of an RLC network and the response parameters of interest (Rise time, Peak overshoot, Overshoot and Settling time) for critical, over and under damped conditions using Labview.

Time response using QuanserQube

8. StabilityAnalysis

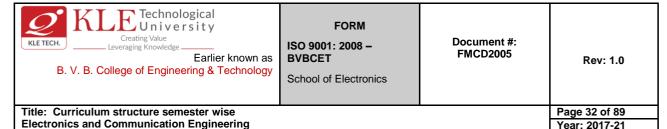
To determine the stability of the system depending upon Pole - Zero location.

To determine the stability of the system using Bode Plots.

9. CompensationTechniques

To determine suitable compensator for the given system (PD, PI, PID Controller using QuanserQube).

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 31 of 89
Title: Curriculum structure semester wise Electronics and Communication Engineering			Page 31 of 89 Year: 2017-21


10. Structured Enquiry (16+16=32marks)

- MOS Amplifier Design and implementation
- Design and implement a PD control system using Co-simulation.

Text Books:

- 1. Ramakant Gayakwad, Operational Amplifiers and Linear Integrated Circuits; Fourth edition Pearson Education, 2015
- 2. Sergio Franco Design with Op-amps and Analog Integrated circuits, MHE; third edition, 2012

- 1. Dan Sheingold Analog to Digital Conversion Hand Book, 3rd Revised edition PH,1986. Prentice Hall,1985
- 2. David A. Bell, Operational Amplifiers and LinearIC's.; Third edition, Oxford University Press, 2011
- 3. Sedra and Smith Microelectronics Circuits, Sixth edition, Oxford University, 2013

Program: IV Semester Bachelor of Engineering (Electronics & Communication Engineering)				
ARM Microcontroller Laboratory Experiments(15EECP204)				
ISA Marks: 80 ESA Marks: - 20 Total Marks: 100				
Teaching Hours: 28Hrs	Examination Duration: 2 Hrs	Contact Hours: 2Hrs/week		

List of Experiments:

- 1. Writeaprogramthatdisplaysavalueof_Y'atport0and_N'atport2andalsogeneratesasquarewaveof 10Khz with Timer 0 in mode 2 at port pin p1.2 XTAL=22MHz
- 2. Write a C program that continuously gets a single bit of data from P1.7 and sends it to P1.0 in main, while simultaneously creating a square wave of 200us period on pin P2.5. ii. Sending letter _A' to serial port. Use Timer 0to create squarewave..
- 3. Write an ALP to achieve the following arithmetic operations: i. 32 bit addition ii. 64 bit addition iii. Subtraction iv. Multiplication v. 32 bit binarydivide
- 4. Write an ALP for the following using loops: i. Find the sum of _N' 16 bit numbers ii. Find the maximum/minimum of N numbers iii. Find the factorial of a given number with and without look uptable.
- 5. Write an ALP to i. Find the length of the carriage r1eturn terminated string. ii. Compare two strings for equality
- 6. Write an ALP to pass parameters to a subroutine to find the factorial of a number or prime number generation
- 7. Write a _C' program to test working of LED's usingLPC2148.
- 8. Write a _C' program& demonstrate an interfacing of Alphanumeric LCD 2X16 panel to LPC2148 Microcontroller.
- 9. WriteanALPtogeneratethefollowingwaveformsofdifferentfrequenciesi.Squarewaveii.Triangular a. iii. Sine wave
- 10. Write a _C' program & demonstrate interfacing of buzzer to LPC2148(using external interrupt)
- 11. Write a program to set up communication between 2 microcontrollers using I2C.
- 12. Write a _C' program & demonstrate an interfacing of ADC
- 13. Develop an ARM based application using i. sensors ii. actuators iii.Displays

Text Books

- 1. Steve Furber, ARM System- on-Chip Architecture, 2nd, LPE,2002
- 2. The 8051 Microcontroller Architecture, Programming & Applications "By Kenneth J. Ayala, Cenage Learning; 3rd edition 2007
- 3. William HohlARM Assembly Language fundamentals and Techniques by, CRC press CRC Press; 2nd edition ,2014

Reference Books

- 1. -ARM systemDeveloper'sGuide||- Hardbound,Publicationdate: 2004Imprint: MORGANKAUFFMAN
- 2. User manual onLPC21XX.

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 33 of 89
Electronics and Communication Engineering			Year: 2017-21

Program: IV Semester Barening)	achelor of Engineering (Electronic	s & Communication	Lab+ Teaching	
Course Title: Data Structures Application Lab Course Code: 21EECF201				
L-T-P: 0-0-2	Credits: 2	Contact Hours: 4Hrs/week		
ISA Marks: 80	ESA Marks:20	Total Marks: 100		
Teaching + Lab. Hours: 48 Hrs	Examination Duration:2 Hrs			

Content	Hrs
Unit - 1	
Chapter No 1. Analysis of algorithms: Introduction, Asymptotic notations and analysis, Analysis of recursive and non-recursive algorithms, master's theorem, complexity analysis of algorithms.	10 hrs
Chapter No 2. Analysis of linear data-structures and its applications: Complexity analysis of basic data structures (Stacks, Queues, Linked lists)	10 hrs
Unit - 2	
Chapter No 3. Analysis of non-linear data-structures and its applications Trees and applications: Computer representation, Tree properties, Binary Tree properties, Binary search trees properties and implementation, Tree traversals, AVL tree. Graphs and applications: Computer representation, Adjacency List, Adjacency Matrix, Graph properties, Graph traversals. Hashing and applications: Hashing, Hash function, Hash Table, Collision resolution techniques, Hashing Applications	28 hrs
 Text Books (List of books as mentioned in the approved syllabus) Richard F. Gilberg & Behrouz A. Forouzan, Data Structures A Pseudocode Approach with C, Second Edition. Aaron M. Tenenbaum, Data Structures Using C. 	

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 34 of 89
Electronics and Communication Engineering			Year: 2017-21

Program: IV Semester Bachelor of Engineering (Electronics & Communication			
Engineering)			Teaching
Course Title: Data Struct	tures using C (Diploma)	Course Code:	Hours
21EECF203			
L-T-P: 0-0-3	Credits: 3	Contact Hours:	
		6Hrs/week	
ISA Marks: 80	ESA Marks:20	Total Marks: 100	
Teaching + Lab. Hours:	Examination Duration:2 Hrs		
72 Hrs			

List of experiments/jobs planned to meet the requirements of the course.

Categor	Category: Demonstration Total Weigh		Total Weightage: 0.00	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	Programs on Pointer concepts.	2.00	0.00	
	Learning Objectives: The students should be able Perform basic programming 1. Pointers concepts. 2. 1D and 2Darrays. 3. Pointers to functions. 4. Memory management functions.	g structures on		1
2	Programs on string handling functions, structures union And bit-files.	2.00	0.00	
	Learning Outcomes: The students should be able to write programs to: a)Perform string handling functions like 1. String length. 2. String concatenate. 3. Strings compare. 4. String copy. 5. Strings reverse. b) Implement Structures, union and bit-field			1
3	Programming on files.	2.00	0.00	
	Learning Outcomes: The students should be abl to:	e to write a modul	ar program	1

Technological University Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 35 of 89
Electronics and Communication Engineering			Year: 2017-21

	 Open and Close the file. Read and Write the file. Append the file. 			
Category: Exercise		Total Weightage: 20.00		No. of lab sessions: 12.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
4	Programs on implementation of stacks and its applications.	2.00	3.00	
	Learning Outcomes: The students should be abl			3
	 Write a program to Insert elements for an application. Write a program using standard postfix & Infix to Prefix Write a program using standard conversion. 	ack to convert fror	m Infix to	
5	Programs on implementation of different queue data structures.	2.00	4.00	
	Learning Outcomes: The students should be able to: Write a program using queue data structure for an application.			3
6	Programs on implementation of different types of Linked lists	2.00	4.00	
	Learning Outcomes: The students should be abluse the linked lists for an ap		ar program to	4
	 Insert , delete and display Insert , delete and display Insert delete and display 	y a node in DLL. a node in CLL.		
7	Programs on Implementation of trees.	2.00	3.00	
	Learning Outcomes: The students should be abl	e to write modular	programs to	5

KLETECH. Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 36 of 89
Electronics and Communication Engineering			Year: 2017-21

	1. Perform various operation 2. To find max, min value in				
	3. To find the height of a tre				
	4. To count nodes in a tree.				
	5. To delete a node in a tree				
8	Programs to implement	2.00	3.00		
	different sorting techniques.				
	Learning Outcomes:			5	
	The students should be ab	le to:			
	Write modular program on	perform the follow	ving sorting		
	techniques				
	1. Selection				
	2. Insertion				
	3. Bubble				
	4. Merge 5. Quick				
	6. Heap				
9	Programming on hash	2.00	3.00		
	tables				
	Learning Outcomes: The students should be abl	lo to		6	
	Write modular program on				
	Direct-address tables	OV			
	2. Hash tables	4			
	Books/References				
	 Aaron M. Tenen 			•	
	2. Cormen, Leiserson, Rivest "Introduction to Algorithms", PHI, 2001				
	3. E Balaguruswamy, "The ANSI C programming Language", 2ed., PHI, 2010.				
	4. Yashavant Kanetkar, "Data Structures through C", BPB publications 2010				
	5. Horowitz, Sahani, Anderson-Feed, "Fundamentals of Data Structures in C", 2ed,Universities Press, 2008				
	6. Richard F. Gilberg, Behrouz A. Forouzan "Data Structures: A Pseudocode				
	Approach With C", 2 nd Edition, Course Technology, Oct 2009.				
	7. Kernighan and Ritchie, The ANSI C programming Language, 2 ed., PHI.				
	8. Robert Kruse, D	ata Structures and	d Program Des	sign in C, 2 ed., Pearson	

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise	Page 37 of 89		
Electronics and Communication Engineering	Year: 2017-21		

Batch 2019-23 Semester: V

No	Code	Course	L-T-P	Credits		ISA	ESA	Total	Exam
					Hours				Duration
1	19EECC301	PC10:CMOS VLSI Circuits	4-0-0	4	4	50	50	100	3 hours
2	21EECC302	PC11: Communication System I	4-0-0	4	4	50	50	100	3 hours
3	17EECC303	PC12: Digital Signal Processing	4-0-0	4	4	50	50	100	3 hours
4	17EECC304	PC13: Operating System & Embedded Systems Design	3-0-0	3	3	50	50	100	3 hours
5	17EECP301	PCL5: Communication and signal processing Lab	0-0-1	1	2	80	20	100	2 hours
6	17EECP302	PCL6: RTOS Lab	0-0-1	1	2	80	20	100	2 hours
7	19EECP301	PCLx: CMOS VLSI Circuits Lab	0-0-1	1	2	80	20	100	2 hours
8	17EECC307	PC15: Machine Learning	2-0-1	3	4	50	50	100	3 hours
9	17EECW301	P1: Mini Project	0-0-3	3	6	50	50	100	2 hours
TOT	AL		17-0-7	24	31	540	360	900	

ISA: In Semester Assessment ESA: End Semester Assessment L: Lecture T: Tutorials P: Practical HS (Humanities) = H; B(Basic Science) = B; ES(Engineering Science) = F; PC (Program Core) = C; EC(Any Elective) = E; PW(Project Work) = W; Research = R; Internship= I; Seminar = S; Colloquium = V; Self-study = Y; Specialtopic= T; Apprenticeship = A; Laboratory / Practical = P; Field Work = D; and Non-credit course = N.

Semester: VI

No	Code	Course	L-T-P	Credits	Contact	ISA	ESA	Total	Exam
					Hours				Duration
1	16EHSC301	H3: Professional Aptitude and Logical reasoning.	3-0-0	3	3	50	50	100	3 hours
2	17EECC305	PC13:Automotive Electronics	3-0-0	3	3	50	50	100	3 hours
3	17EECC306	PC14:Computer Communication Networks	4-0-0	4	4	50	50	100	3 hours
4	21EECC307	PC11: Communication System II	3-0-0	3	3	50	50	100	3 hours
5	17EECEXXX	PSE Elective 1	3-0-0	3	3	50	50	100	3 hours
6	17EECP303	PCL7: Computer Communication Networks Lab	0-0-1	1	2	80	20	100	2 hours
7	17EECP304	PCL8: Automotive Electronics Lab	0-0-1	1	2	80	20	100	2 hours
8	17EECW302	P2: Minor Project	0-0-6	6	12	50	50	100	2 hours
TOT	'AL		16-0-8	24	32	460	340	800	

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise Electronics and Communication Engineering			Page 38 of 89 Year: 2017-21

ISA: In Semester Assessment ESA: End Semester Assessment L: Lecture T: Tutorials P: Practical HS (Humanities) = H; B(Basic Science) = B; ES(Engineering Science) = F; PC (Program Core) = C; EC(Any Elective) = E; PW(Project Work) = W; Research = R; Internship= I; Seminar = S; Colloquium = V; Self-study = Y; Specialtopic= T; Apprenticeship = A; Laboratory / Practical = P; Field Work = D; and Non-credit course = N.

Elective VI (Batch 2019-23)

			Semes	ster: VI					>	
No	Code	Course: PSE1: Elective	Category	L-T-P	Credit	Contact Hours	ISA	ESA	Total	Exam Duration
	17EECE301	Analog Circuits Design		0-0-3		6	100			
	19EECE322	Introduction to Deep Learning		2-0-1		4	50	50		
	17EECE302	Advanced Digital Logic Design		0-0-3		3	100			
PSE	17EECE307	Internet of Things	ware.	2-0-1		4	50	50		
Elective 1	21EECE308	Information Theory and Coding	PSE	3-0-0	3	3	50	50	100	3Hours
	17EECE310	Embedded Intelligence Systems		0-0-3		9	80	20		
	20EECE340	Multi core Architecture & Programming		2-0-1		4	50	50		
	18EECE421	OOPS using C++		2-0-1		4	50	50		

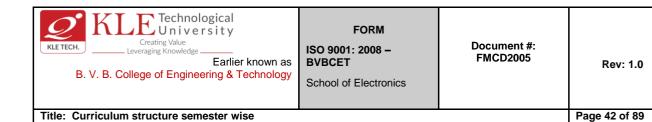
KLETECH. Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 39 of 89
Electronics and Communication Engineering			Year: 2017-21

Program: V Semester Engineering)	Bachelor of Engineering(Ele	ctronics & Communication	Teaching —Hours
Course Title: CMOS	VLSI Circuits	Course Code: 19EECC301	Tiouis
L-T-P: 4-0-0	Credits: 04	Contact Hours: 6 Hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 72 H	Irs Examination Duration: 3	Hrs	
	Content		
Unit I Chapter No. 1. Introd	uction to VLSI and IC fabric	ation technology	
growing Silicon, Introd implantation), Basic Cl Twin-tub Process, Oxid twenty-first century Mo	luction to Unit Processes (Oxid MOS technology - Silicon gate le isolation. FinFET device, Th OSFETS, The thin body MOSF	Overview, Czochralski method of ation, Diffusion, Deposition, Ion-process, n-Well process, p-Well process is root cause of short channel effects in ET concept, The FinFET and a new ent trends in fabrication technology.	08
DC transfer characteris capacitance models. Tr Gates, Gate Design for	ansient Analysis of CMOS Involution Transient Performance, Switch lay Model, Power Dissipation of State Inverter.	gates atio Effects, Noise Margin, MOS erter, NAND, NOR and Complex Logic a-level RC Delay Models, Delay of CMOS Inverter, Transmission Gates	14
	Unit II		0.6
0		C, Circuit extraction, Latch up –	06
Gate Delays, Driving L	nMOS, Clocked CMOS, Dynar L, CPL.	tworks Minimization in an Inverter Cascade, mic CMOS Logic Circuits, Dual-rail	14
	Unit – III		
Chapter No. 5. Seque	ntial CMOS Circuit Design		08
Sequencing static	circuits, Circuit design of latch generation, clock distr	nes and flip-flops, Clocking- clock ribution.	

Document #: FMCD2005

Rev: 1.0

Title: Curriculum structure semester wise Electronics and Communication Engineering Page 40 of 89 Year: 2017-21


Text Books (List of books as mentioned in the approved syllabus)

- 1. John P.Uyemura, Introduction to VLSI Circuits and Systems, 1, Wiley, 2007
- 2. Neil Weste, David Harris & Ayan Banerjee, CMOS VLSI Design, 4, Pearson Ed 2011
- 3. Sung-Mo Kang & Yusuf Leblebici, CMOS Digital Integrated Circuits: Analysis and Design, 3, Tata McGra, 2007

- FinFET Modeling for IC Simulation and Design: Using the BSIM-CMG Standard By Yogesh Singh Chauhan, Darsen Duane Lu, VanugopalanSriramkumar, SourabhKhandelwal, Juan Pablo Duarte, NavidPayvadosi, Ai Niknejad, Chenming Hu, Elsevier Publication, 2015
- 2. Wayne, Wolf, Modern VLSI design: System on Silicon, 3, Pearson Ed,2005
- 3. Douglas A Pucknell and Kamran Eshraghian, Basic VLSI Design, 3rd edition, PHI,2005
- 4. Phillip. E. Allen, Douglas R. Holberg, CMOS Analog circuit Design, 3rd edition, Oxford University,2011

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 41 of 89
Electronics and Communication Engineering			Year: 2017-21

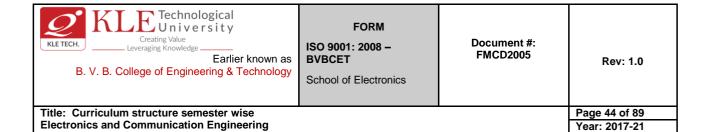
Program: V Semester Engineering)	Bachelor of Engineering (Electr	conics & Communication	Teaching Hours
Course Title: Commu	ınication Systems I	Course Code: 21EECC302	
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4 Hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		
	Content		
	Unit – 1		Hours
Introduction, need for Domain description. Casquare law and envelop Generation of DSBSC waves: Costas loop. Quadrature carrier muldomain description of	Generation of AM wave- square law pe detector. Double side band supp waves: balanced modulator. Coher		14 Hours
Chapter 02. Receiver Radio receivers: Tuned selectivity, selection of	and its characteristics: I radio frequency receiver, Superhef IF. Block diagram and features of	eterodyne receiver Sensitivity and Communication Receiver.	06 Hours
	Unit – 2		
frequency Deviation, N diagram of FM Transn	Narrow and Wide band frequency naission band width of FM waves, E	e and frequency modulation, Phase and nodulation. Spectrum and phase Effect of Modulation index on t FM, Demodulation of FM Waves,	08 Hours
PDF, Joint CDF and Pl functions., autocorrelation	Variables and processes: Rando DF, Random Process- Stationary, Nation function, Cross-correlation fur ral density, Gaussian Process: Cent	nctions. Power spectral density:	06 Hours
thermal noise, White n noise, Mixing and supe components of noise, N	oise. Frequency domain representa erposition of Noises, Noise equival Narrowband noise, Noise figure., E Receivers, Noise in FM receivers	stems: Sources of noise: Shot noise, ution, Effect of filtering on Gaussian ent bandwidth, Quadrature quivalent noise temperature. Receiver	06 Hours
4 U	Unit - 3		<u> </u>
	n of a message from its samples. Ti	em, Quadrature sampling of Band pass me Division Multiplexing (TDM)	10 Hours

Year: 2017-21

Text book:

- 1. "Communication Systems" by 'Simon Haykin' John Wiley 2003. 5th edition, 2009
- 2. "Principles of communication Systems", by Taub & Schilling, 2nd edition, TMH.
- 3. "Digital communications", Simon Haykin, John Wiley, 2006

References


4. Communication Systems, by B.P.Lathi,

Electronics and Communication Engineering

- 5. Ganesh Rao, K N Haribhat, Analog Communication, Sanguine, 2009
- 6. Communication Systems by Harold. P.E, Stern Samy. A. Mahmond, Pearson Education, 2004.
- 7. Electronic communication systems, Kennedy and Davis, TMH, Edn. 6, 2012

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0		
Title: Curriculum structure semester wise					
Electronics and Communication Engineering			Year: 2017-21		

Program: V Semester Ba Engineering)	chelor of Engineering (Electr	onics & Communication	Teachin g Hours
Course Title: Digital Signal Processing Course Code: 17EECC303			
L-T-P: 4-0-0	Contact Hours: 4Hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		
Con	tent		
Uni	t - 1		
Chapter No. 1. Discrete I	Fourier Transforms	, 10	
Fourier Transforms (DFT) signals. DFT as a linear tra DFT, multiplication of two	r: Frequency domain sampling a ansformation, its relationship wi	operties and applications. Discrete and reconstruction of discrete time ith other transforms. Properties of n, additional DFT properties, use of hod.	12
Chapter No. 2. Fast-Four	rier-Transform (FFT) algorith	nms	
Fast-Fourier-Transform (F computation of the DFT (i DFT and IDFT: Decimation	FT) algorithms: Direct computate.e. FFT algorithms), Radix-2 FI	ation of DFT, Need for efficient FT algorithm for the computation of requency algorithms, Composite FFT.	08
Chapter No. 3. Design of	Digital FIR Filters		
Design of digital filters: Codigital filters: symmetric a windowing method- Recta	onsiderations and characteristic nd anti-symmetric FIR filters, d	s of practical digital filters. design of lesign of linear phase FIR filters using artlet and Kaiser windows. Design of ue.	10
Chapter No. 4. Design of	IIR filters from analog filters		
method, bilinear transform and Chebyshev filters, free	quency transformation in the dig	only used analog filters: Butterworth	10
	t-3		
Chapter No. 5. Realization of Digital FIR Systems Implementation of Digital systems: structures for FIR systems: direct form I, direct form II, cascade, frequency sampling and lattice structure, Comparison of the realization techniques.			
Chapter No. 6. Realization	•	•	
-	- direct form I, direct form II, c	ascade, parallel and lattice structure,	05

Text Books

- 1. Proakis & Manolakis, Digital signal processing Principles Algorithms & Applications, 4th edition, PHI, New Delhi,2007
- 2. S.K. Mitra, Digital Signal Processing, 2nd edition, Tata Mc-Graw Hill, 2004

References

1. Oppenheim& Schaffer, Discrete Time Signal Processing, 5th edition, PHI, New Delhi, 2000

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 45 of 89
Electronics and Communication Engineering			Year: 2017-21

Program: V Semester Bac Engineering)	chelor of Engineering (Electron	nics & Communication	
Course Title: Operating S Design	System and Embedded System	Course Code: 17EECC304	Teaching
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3Hrs/week	Hours
ISA Marks: 50	SA Marks: 50 ESA Marks: 50 Total Marks: 100		
Teaching Hours: 40 Hrs	Examination Duration: 3 Hrs		
U	nit I		
allocation and related funct	1? Goals of an operating system. ions. Classes of an operating sys perating system Structure – Simp	tem. Operating System Services.	03
scheduler- preemptive sche	on process, inter process commuduling, scheduling criteria, sche	unication, process scheduling- CPU duling algorithms- first come first neduling, round robinscheduling.	05
	tegies: process address space stat	ic vs dynamic loading. ture of page table; Segmentation,	06
Uı	nit II		
Introduction To Real-Time embedded system- real time embedded systems. Introdu components in RTOS kerne	e systems, characteristics of real ction to RTOS, key characteristi	n to OS, Introduction to real time time systems and the future of cs of RTOS, its kernel, ontext switch, Scheduling types:	08
Chapter 5: Tasks, Semapl	hores and Message Queues:		
Tasks, Semaphores and Me Steps showing the how FSN exclusion (mutex) semapho shared-resource-access synd message queue, its structure	ssage Queues: A task, its structud works. A semaphore, its structure, Synchronization between two	o tasks and multiple tasks, Single resource-access synchronization. A use for sending and receiving	08
	nit III		_
	of embedded system, Character	s and Quality attributes of bedded system, Embedded firmware	05

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 46 of 89
Electronics and Communication Engineering			Year: 2017-21

Chapter 7: Wired and Wireless Protocols: Bus communication protocol (USB,I2C,SPI),
Wireless and mobile system protocol (Bluetooth, 802.11 and its variants, ZigBee), Embedded
design cycle-case study-ACVM

Text Books

- 1. Silberschatz ,Galvin and Gagne ,IIOperating system conceptsII,9th edition, WILEYPublication,2018.
- 2. Qing Li with Caroline Yao, Real-Time Concepts for Embedded Systems, 1E, Published, 2011
- 3. Shibu K V,llIntroductionto Embedded systemsll,2nd edition, McGraw Hill Education India Private Limited,2017
- 4. Raj Kamal, II Embedded Systems II, Paperback, 3rd edition, McGraw-Hill Education, 2017

References

1.DhananjayDhamdhere,llOperating Systems a Concept Based Approachll,3rd edition, McGraw-HillEducation,2017

Program: V Semeste Engineering)	er Bachelor of Engineering (El	ectronics & Communication	
Course Title: Machi	ne Learning	Course Code: 17EECC307	
L-T-P: 2-0-1 Credits: 3 Contact Hours: 4 Hrs/week		Teaching	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	Hours
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		
Contont			
Content	TT 11		**
	Unit – 1		Hrs
		of machine learning, types of machine learning, dataset formats, basic	05
Chapter No. 2. Supe	rvised Learning		
Linear regression, log of squares error function, the gradient	descent algorithm, application,	n: single and multiple variables, sum logistic regression, the cost function, assification using logistic regression,	10
regularization.	8		
	Unit – 2		

Technological University Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 47 of 89
Electronics and Communication Engineering			Year: 2017-21

Chapter No. 3. Supervised Learning: Neural Network Introduction to perception learning, implementing simple gates XOR, AND, OR using neural network. Model representation, gradient checking, back propagation algorithm, multi-class classification, application-classifying digits, SVM.	10
Chapter No. 4. Unsupervised Learning: Clustering Introduction, K means clustering, algorithm, cost function, application.	05
Unit – 3	
Chapter No. 5. Unsupervised Learning: Dimensionality reduction Dimensionality reduction, PCA- principal component analysis, applications, clustering data and PCA.	04

Text Book

- 1. Tom Mitchell, Machine Learning, 1st edition, McGraw-Hill., 2017
- 2. Christopher Bishop, Pattern Recognition and Machine Learning, 1, Springer, 2nd printing 2011 edition

- 1. Video lectures by : Andrew Ng, Co-founder, Coursera; Adjunct Professor, Stanford University; formerly head of Baidu AI Group/Google Brain
 - https://www.coursera.org/learn/machine-learning#
- 2. Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd edition, Springer, 9th printing 2017 edition

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 48 of 89
Electronics and Communication Engineering			Year: 2017-21

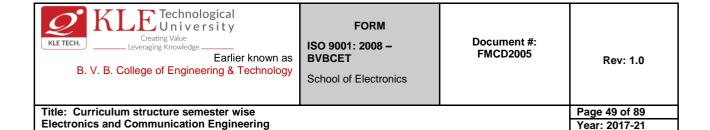
Program: V Semester Bachelor of Engineering (Electronics & Communication Engineering)			Teaching — Hours
Course Title: Comm Processing Lab	unication and Signal	Course Code: 17EECP301	
L-T-P: 0-0-1	Credits: 1	Contact Hours:2 Hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hours: 24	Hrs Examination Duration: -		

List of Experiments

Proof of concept on Discrete ICs

- 1. DSBSC modulator and demodulator.
- 2. Frequency modulator and demodulator
- 3. Frequency Shift Keying (FSK) modulator and demodulator.
- 4. Time Division Multiplexing with minimum fourchannels

Mathematical Modeling and Simulation


- 1. Design Square Law Modulator and detect the signal using square law and envelopschemes.
- 2. Design Frequency Modulator and Demodulator and analyze the performance without and withnoise.
- 3. Design, analyze and compare the BER for different digital modulation techniques.
- 4. Develop a model and simulate BPSK using Costasloop.

Implementation on Real Time Hardware

- 1. Design and Implement a complete real-time RF transceiver on Advanced Omni Software Radio Transceiver (AOSRT) for Narrow Band Frequency Modulation and Wide band Frequency Modulation and performanalysis.
- 2. Design and Implement a real-time RF transceiver for audio input using M-array PSK modulation schemeand analyze performance in terms of SNR and BER.

Open Ended Experiment

1. Explore the features of SDR to design an appropriate and robust frequency selective system to eliminate noise present in an audiosignal.

Program: V Semester Bachelor of Engineering (Electronics & Communication Engineering) CMOS VLSI Circuits Laboratory Experiments Course Code: 19EECP301 ISA Marks: 80 ESA Marks: 20 Total Marks: 100 Teaching Hours: 25Hrs Examination Duration: 2 Hrs Contact Hours: 2Hrs/week **List of Experiments:** Introduction to Cadence EDAtool. Static and Dynamic Characteristic of CMOSinverter. Layout of CMOS Inverter(DRC,LVS) Static and Dynamic Characteristic of CMOS NAND2 and NOR2. Layout of NAND2, NOR2, XOR2 gates (DRC,LVS). Structured Enquiry Design a Phase Detector using D-FF Open Ended

Design complex combinational circuits and analyze the performance using Cadencetool.

Books/References:

- 1. JohnP.Uyemura,-IntroductiontoVLSICircuits andSystemsII,Wiley, 2006.
- 2. Neil Weste and K. Eshragian, || Principles of CMOS VLSI Design: A System Perspective, || 2nd edition, Pearson Education (Asia) Ptv. Ltd., 2000.

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 50 of 89
Electronics and Communication Engineering			Year: 2017-21

Program: V Semester Bachelor of Engineering (Electronics & Communication Engineering)			
RTOS Laboratory Experiments Course Code: 17EECP302			
ISA Marks: 80	ESA Marks: - 20	Total Marks: 100	
Teaching Hours: 24Hrs Examination Duration: - Contact Hours: 2 Hrs/week			
		,	

List of Experiments:

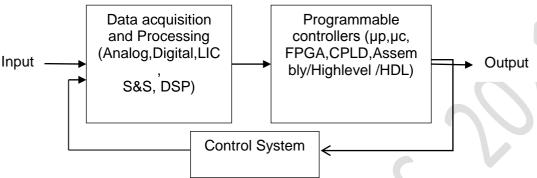
- 1. Analyze and Demonstrate debugging skills for programsgiven.
- 2. Program & demonstrate interfaces I2C-memory to LPC2148Microcontroller.
- 3. Program & demonstrate interfaces SPI-RTC to LPC2148Microcontroller.
- 4. Program & demonstrate concept of H/W Interrupts interface to LPC2148Microcontroller.
- 5. Program & demonstrate concept of TaskScheduling.
- 6. Program & demonstrate concept of Semaphore.
- 7. Program & demonstrate concept of Mailbox.
- 8. Program & demonstrate concept of S/WInterrupts.
- 9. Program & demonstrate concept ofinterrupts.
- 10. Program & demonstrate concept of Inter TaskCommunication.

Reference Books

- 1. -ARMSystem- on-ChipArchitecture||by'SteveFurber||,LPE,SecondEdition, Addison Wesley; 2000.
- 2. -EmbeddedSystems-Architecture, Programming and Design | byRajKamal, 3rd edition, TMH, 2017
- 3. Dr.K.V.K.K.Prasad,-Embedded/Realtimesystems:concepts,Design&Programming || ,publishedbydreamtechp ress, 2003.

Manual

- 1. LPC2148 datasheet by NXP.
- 2. LPC2148 board manual by ALS, Bangalore.


Laboratory Title: Mini Project	Lab. Code: 17EECW301
Total Hours: 60	Duration of ESA Hours: 3 Hours
ISA Marks: 50	ESA Marks: 50

Guide lines for selection of a project:

- 1. The project needs to encompass the concepts leant in a subject/s studied in the previous four semesters, so that the student will learn to integrate, the knowledge base acquired to provide a solution to the identified need.
- 2. Project should be able to exhibit sensing, controlling and actuation sections.
- 3. The mini project essentially will comprise of two components:

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 51 of 89
Electronics and Communication Engineering			Year: 2017-21

- The hardware design
- The graphical user interface (GUI) for application and data analysis with report generation.

- 4. Student can select a project which leads to a product or model or prototype related to following areas (not limited to these areas).
 - Pulse and digital circuits: simulate the working of one or more circuits
 - Signals and systems: simulate the behavior of a system by considering different signals
 - Analog Electronic: simulate working of different devices
 - Control systems: simulate the behavior of a control system
 - Linear Integrated Circuits: simulate working of one or more circuits
 - Micro-controllers: simulate the ALU/control unit of microcontroller
- 5. Time plan: Effort to do the project should be between 120-150 Hrs per team, which includes self study of an individual member (80-100 Hrs) and team work (40-50hrs).
- 6. Learning overhead should be 20-25% of total project development time.

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise		_	Page 52 of 89
Electronics and Communication Engineering			Year: 2017-21

Program: VI Semester Engineering)	Bachelor of Engineering (Electr	onics & Communication	
Course Title: Automoti	ve Electronics	Course Code: 17EECC305	Teaching
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3Hrs/week	Hours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	Hours
Teaching Hours: 40	Examination Duration: 3 Hrs		
Hrs			
overview : Overview of Automotive	industry, Vehicle functional dom		
interdisciplinary design in automobiles and application to power transfering Control, "Overvidevelopment	Introduction to modern automotive cation areas of electronic systems	re systems and need for electronics in modern automobiles, em ,Vehicle braking fundamentals, ign Cycle : Types of model	07
Automotive grade microcapplications, Automotive control functions, Fuel coalgorithm for EMS, Look Fuel maps/tables, Ignition	controllers: Architectural attribute grade processors ex: Renesas, Quantrol, Electronic systems in Engine- cup tables and maps, Need of map maps/tables, Engine calibration, nobiles: Active and Passive safety	norivva, Infineon. EMS: Engine nes, Development of control os, Procedure to generate maps, Torque table, Dynamometer testing	08
Un	nit II		
Avoiding redundancy, Sr sensors), wheel speed sen sensor, Temperature sens concentration sensor, Thi sensor, Manifold Absolut	ensor response, Sensor error, Redunant Nodes, Examples of sensors sors, Engine speed sensor, Vehiclesor, Mass air flow (MAF) rate sensor.	: Accelerometer (knock e speed sensor, Throttle position sor, Exhaust gas oxygen c, Crankshaft angular position/RPM ors: ENGINE CONTROL	08
Chapter 4: Automotive protocols : CAN, LIN , F		view of Automotive communication	07
Unit III			
Chapter 5:Advanced Da	river Assistance Systems (ADAS	and Functional safety standards	
Departure Warning, Coll	nce Systems (ADAS):Examples of ision Warning, Automatic Cruise nected Cars technology and trends	Control, Pedestrian Protection,	05

Page 53 of 89

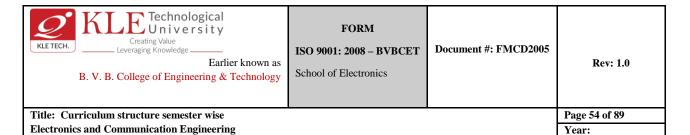
Rev: 1.0

Year: 2017-21

Functional Safety: Need for safety standard-ISO 26262, safety concept, safety process for product life cycle, safety by design, validation.

Chapter 6: Diagnostics :

Title: Curriculum structure semester wise

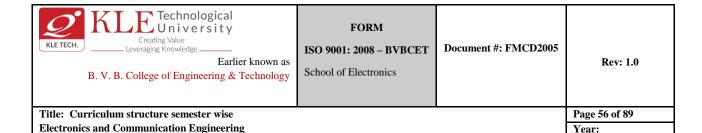

Electronics and Communication Engineering

Fundamentals of Diagnostics, Basic wiring system and Multiplex wiring system, Preliminary checks and adjustments, Self-diagnostic system. Fault finding and corrective measures, Electronic transmission checks and Diagnosis, Diagnostic procedures and sequence, On board and off board diagnostics in Automobiles, OBDII,

Concept of DTCs, DLC, MIL, Freeze Frames, History memory, Diagnostic tools, Diagnostic protocols KWP2000 and UDS

- 1. Ribbens, Understanding of Automotive electronics, 8th edition, Elsevier,2017
- 2. Denton.T, Automobile Electrical and Electronic Systems, 5th edition, Routledge, 2017
- 3. Denton.T, Advanced automotive fault diagnosis, 4th edition Routledge, 2016

- 1. Ronald K Jurgen, Automotive Electronics Handbook, 2nd Edition, McGraw-Hill, 1999
- 2. James D Halderman, Automotive electricity and Electronics, 5th edition, Pearson, 2016
- 3. Allan Bonnick, Automotive Computer Controlled Systems Diagnostic Tools and Techniques, Elsevier Science, 2001
- 4. Nicholas Navet, Automotive Embedded System Handbook, 2009


Program: VI Semest Engineering)	er Bachelor of Engineering (Ele	ctronics & Communication	Teaching Hours
Course Title: Compu	iter Communication Networks	Course Code: 17EECC306	
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4 Hrs/week	
ISA Marks:50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 501	Hrs Examination Duration: 3 Hrs		
0	Content		Hrs
Ţ	J nit - 1		
Chapter No. 1. Com	outer Networks and the Internet	t	08 hrs
What is Internet?The switched networks. Prattack.	Network Edge, the network Core, otocol layers (OSI layers) and the	delay -loss—throughput in packet ir service models,networks under	
Chapter No. 2. Appli	cation Layer		12 hrs
	applications, the web and HTTP, DNS, peer-to-peer applications, socke	PHCP, file transfer-FTP,electronic et programming-creating network	
τ	Jnit - 2		
Chapter No. 3. Tran	sport Layer		10 hrs
- overview of the trans connectionless transpo	port-layer services-relationship be sport layer in the internet, multiple ort: UDP, principles of connection oriented transport TCF		
Chapter No. 4. Netw	ork layer		10 hrs
protocol (IP):	ircuit and datagram networks, what ssing in the internet, routing algoriast routing.		
Ţ	Jnit - 3		
Chapter No. 5. The l	ink layer: Links, Access networl	ks, and LANs	10 hrs
links and protocols, sy	k layer, error-detection and correct vitched local area networks, link vorking, retrospective: A day in the	rirtualization: A network as a link	

Kurose&Ross,ComputerNetworkingATop-DownApproach,6theditionPEARSON,2013.

- 1. LarryL. Peterson&BruceS.Davie,ComputerNetworks:ASystemsApproach,5thedition, Elsevier, 2011
- 2. Behrouz A. Forouzan, Data Communication and Networking, Paperback, 5th edition, TMG,2017

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 55 of 89
Electronics and Communication Engineering			Year:

Program: VI Semes Engineering)	eter Bachelor of Engineering (Elect	tronics & Communication	Teaching Hours
Course Title: Comm	nunication Systems II	Course Code: 21EECC307	
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 42Hrs	Examination Duration: 3 Hrs		
	Content		
	Unit – I		Hours
and SNR, robust qua Binary data formats		g speech at low bit rates, applications,	06 Hrs
modulation technique modulation technique	es, Coherent quadrature modulation es, Comparison of Binary and Quate ues, effect of ISI, Bit versus Symbol	Modulation formats, Coherent binary techniques. Non-coherent binary rnary Modulation techniques. M-ary error probability, Synchronization and	10 Hrs
	Unit – II		
Transmission, Discreciterion for distortion	and shaping for data transmissions te PAM signals, power spectra of di on less base-band binary transmission stems, and adaptive equalization for	screte PAM signals. ISI, Nyquist's a, correlative coding, eye pattern, base-	06 Hrs
geometric interpretat known signals in noi	se, probability of error, correlation re with unknown phase in noise, estima	orrelators to noisy input, Detection of	08 Hrs
Chapter 05. Introd communication chan	uction to Information Theory: Bas nels.	sics of Information, Discrete	02 Hrs
	Unit - III		
information, Average	nation Theory: Information Theore information content of symbols in long dependent sequences	long independent sequences, Average	08 Hrs

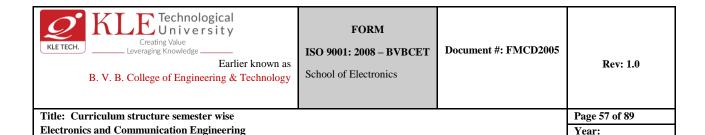
Text Book:

- 1. Simon Haykin, Digital communications, John Wiley, 2006
- 2. K. Sam Shanmugam, Digital and analog communication systems, John Wiley, 2006

Reference Book:

1. Simon Haykin, An introduction to Analog and Digital Communication, John Wiley, 2003

Program: VI Semester Bachelor of Engineering (Electronics & Communication Engineering)					
Computer Communication Networks Laboratory Experiments(17EECP303)					
ISA Marks: 80 ESA Marks: - 20 Total Marks: 100					
Teaching Hours: Examination Duration:-		Contact Hours: 2 Hrs/week			
24Hrs					


List of Experiments

- 1. Introduction to Hardware components and Ethernet LAN setup.
- 2. Introduction to socketprogramming
- 3. Implementation of FTP
- 4. Implementation of error controltechniques.
- 5. Implementation of flow controlARQs
- 6. Introduction to Network operating system.
- 7. Subnetdesign
- 8. VLANsetup
- 9. OSPF and RIP configuration and performanceanalysis
- 10. eBGP and iBGP configuration and performance analysis

Text Book

1. Kurose&Ross, ComputerNetworkingATop-DownApproach, 6theditionPEARSON, 2013.

- 1. Cisco networking academy,https://www.netacad.com/
- 2. Juniper networking academy,https://learningportal.juniper.net/

Program: VI Semester Bachelor of Engineering (Electronics & Communication Engineering)			
Automotive Electronics Laboratory Experiments(17EECP304)			
ISA Marks: 80	ESA Marks: - 20	Total Marks: 100	
Teaching Hours:	Examination Duration:-	Contact Hours: 2 Hrs/week	
24Hrs			

List of Experiments

- 1. Demonstration of cut section modules: Engine, Transmission, Steering, Braking, Suspension Automobile dept.
- 2. Electronic engine control system: Injection and Ignition control system Transmission trainer modules
- 3. Modeling a vehicle motion on a flat surface during hard acceleration, deceleration and steady acceleration.
- 4. Simulation and modeling of a system and realization on the hardware platform.
- 5. Modeling Seat belt warning system, and Vehicle speed control based on the gear input.
- 6. EGAS modeling and simulation using Simulink and realization on the hardware platform.
- 7. Interior lighting control modeling with state flow.
- 8. Gear input transmission over CAN bus using ARM Cortex m3 and signal analysis using CANalyzer/BusMaster software.
- 9. Realize Steer by wire system using model based design.
- 10. Realize cruise application using model based design

Text Books

- 1. Ribbens, Understanding of Automotive electronics, 6th, Elsevier, 2003
- 2. Denton.T, Automobile Electrical and Electronic Systems, 5th edition, Routledge, 2017

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 58 of 89
Electronics and Communication Engineering			Year:

Laboratory Title: Minor Project	Lab. Code: 17EECW302	
Total Hours: 70	Duration of Exam: Hours: 2	
Total Exam Marks: 50	Total ISA. Marks: 50	

Application Areas are,

- Smart City
- Connected Cars
- Home Automation
- Health care
- Smart energy
- Agriculture

Guide lines for selection of a project:

- The project needs to encompass the concepts leant in a subject/s studied in the previous five semesters, so that the student will learn to integrate, the knowledge base acquired to provide a solution to the defined problem statement of the minorprojects.
- Student can select a project which leads to a product or model or prototype.
- 3. Time plan: Effort to do the project should be between 120-150 Hrs per team, which includes self study of an individual member (80-100 Hrs) and team work (40-50hrs).
- 4. Learning overhead should be 20-25% of total project development time.

Criteria for group formation:

- 1. 3-4 students in a team.
- 2. Role of teammates: Team lead and members.

Allocation of Guides and Mentors for the projects:

Every Project batch will be allocated with one faculty.

Details of the project batches:

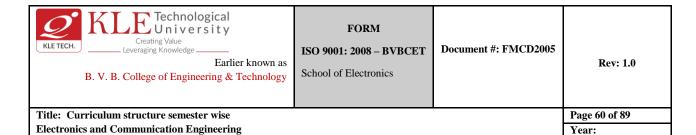
1. Number of faculty members: 64

2. Number of students: 278

Role of a Guide

The primary responsibility of the guide is to help students to understand the meaning and need of various stages in the implementation of the project. At every stage of the project development, guide should help towards its successful completion as per the predefined standards.

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 59 of 89
Electronics and Communication Engineering			Year:


How student should carry out a project:

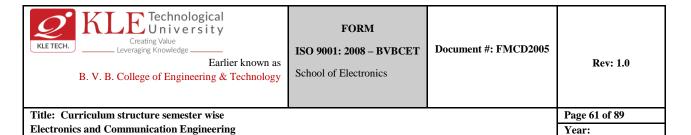
- 1. Define the problem
- 2. Specify the requirements
- 3. Specify the design in the understandable form (Block Diagram, Flowchart, Algorithm, etc)
- 4. Analyze the design
- 5. Select appropriate simulation tool and development board for the design.
- 6. Implement the design
- 7. Optimize the design and generate the results with optimized design.
- 8. Result representation and analysis
- 9. Prepare a document and presentation.

Report Writing

- 1. The format for report writing should be downloaded from ftp://10.3.0.3/minorprojects
- 2. The report needs to be shown to guide and committee for each review.

Co	Course Title: Analog Circuit Design Course Code: 17EECE301			
L-T	L-T-P-SS: 3-0-0-0 Credits: 3 Contact Hours: 3			
CIE	CIE Marks: 50 SEE Marks: 50 Self-Study :			
Tea	aching Hours: 40	Examination Duration: 3	Total Marks: 100	
		hours		
		UNIT I		
	effects and MOS device models. 2. Current Mirrors: Basic current Mirror, Widlar, Cascode and Wilson Current Mirrors.			04 04 08
	UNIT II			05
4.	4. Differential Amplifiers: Differential Amplifier, 5 pack differential Amplifier, CMRR, PSRR			05
5.	5. Op-Amp: Performance parameters, Two stage (7-pack) Op-amp, Slew rate, PSRR , Noise in			

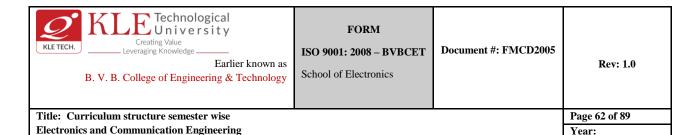
	Op-amps	06
6.	Compensation Technique: Nyquist stability Criterion, Gain and Phase margins, Compensation of Two stage op-amp and Dominant pole compensation technique.	
		04
	UNIT III	
7.	Reference Circuits : Current reference, startup circuits, Bandgap reference circuit, Current mode Bandgap reference.	04
8.	Comparators : Basic Comparator architecture, non-idealities-offset error, bandwidth consideration, Dynamic comparator,	


Text Books

- 1. B Razavi 'Design of Analog CMOS Integrated Circuits' First Edition McGraw Hill 2001
- 2. Phillip. E. Allen, Douglas R. Holberg, "CMOS Analog circuit Design" Oxford University Press, 2002.
- 3. Baker, Li, Boyce, "CMOS: Circuit Design, Layout and Simulation", Prentice Hall of India, 2000

Reference Books

- 1. N. Weste and K. Eshranghian, Principles of CMOS VLSI Design, Addison Wesley. 1985.
- 2. J. Rabaey, Digital Integrated Circuits: A Design Perspective, Prentice Hall India, 1997


Course Title: Advanced Digital Logic Design	Course code: 17EECE302		
L-T- P: 0-0-3	Credits: 03	S: 03 Contact Hrs: 04hrs/week	
CIE Marks: 100	SEE Marks: 00 Total Marks: 100		
Teaching Hrs: 16hrs Lab Hrs: 24 hrs			
Chapter No. 1. Digital Integrated Circuits Challenges in digital design, Design metrics, Cost of Integrated circuits, ASIC, Evolution of SoC ASIC Flow Vs SoC Flow, SoC Design Challenges. Introduction to CMOS Technology, PMOS & NMOS Operation, CMOS Operation principles, Characteristic curves of CMOS, CMOS Inverter and characteristic curves, Delays in inverters, Buffer Design, Power dissipation in CMOS, CMOS Logic, Stick diagrams and Layout diagrams. Setup time, Hold Time, Timing Concepts.			8 hrs
Chapter No. 2. Digital Building Blocks Decoder, encoder, code converters, Priority encoder, multiplexer, demultiplexer, Comparators, Parity check schemes, Multiplexer, De-multiplexer, Pass Transistor Logic, application of multiplexer as a multi-purpose logical element. Asynchronous and synchronous		6 hrs	

up-down counters, Shift registers. FSM Design, Mealy and Moore Modelling, Adder & Multiplier concepts, Memory Concept	
Chapter No. 3. Logic Design Using Verilog Evolution & importance of HDL, Introduction to Verilog, Levels of Abstraction, Typical Design Flow, Lexical Conventions, Data Types Modules, Nets, Values, Data Types, Comments, arrays in Verilog, Expressions, Operators, Operands, Arrays, memories, Strings, Delays, parameterized designs Procedural blocks, Blocking and Non-Blocking Assignment, looping, flow Control, Task, Function, Synchronization, Event Simulation. Need for Verification, Basic test bench generation and Simulation	10 hrs
Chapter No. 4. Principles of RTL Design Verilog Coding Concepts, Verilog coding guide lines: Combinational, Sequential, FSM. General Guidelines, Synthesizable Verilog Constructs, Sensitivity List, Verilog Events, RTL Design Challenges, Clock Domain Crossing. Verilog modeling of combinational logic and sequential logic	8 hrs
Chapter No. 5. Design and simulation of Architectural building blocks Basic Building blocks design using Verilog HDL: Arithmetic Components – Adder, Subtractor, and Multiplier design, Data Integrity – Parity Generation circuits, Control logic – Arbitration, FSM Design – overlapping and non-overlapping Mealy and Moore state machine design	8 hrs
Reference Books: 1. Digital Design by Morris Mano M, 4th Edition. 2. Verilog HDL: A Guide to Digital Design and Synthesis by Samir Palnitkar, 2nd Edition. 3. Principles of VLSI RTL Design: A Practical Guide by Sapan Garg, 2011. Tools: Questa Sim, NC Verilog, NC Sim, CVER + GTKWave, VCSMX, Modelsim for Verilog	

Course Title: Internet of Things	Course Code: 17EECE307
Total Contact Hours: 3	Duration of ESA: 3 Hours
ISA Marks: 50	ESA Marks: 50

Content	Hrs
Unit - 1	
Chapter No. 1. Introduction to IoT	6 hrs
Defining IoT, Characteristics of IoT,	
What is the IoT and why is it important?	
Elements of an IoT ecosystem.	

Technology and business drivers. IoT applications, trends and implications. Physical design of IoT, Logical design of IoT, Functional blocks of IoT, Communication models & APIs	
Chapter No. 2. IoT Architecture: State of the Art History of IoT, M2M – Machine to Machine, Web of Things, IoT protocols Applications: Remote Monitoring & Sensing, Remote Controlling, Performance Analysis.	4 hrs
Unit - 2	
Chapter No. 3. IoT Communication : The Layering concepts , IoT Communication Pattern, IoT protocol Architecture, The 6LoWPAN, Security aspects in IoT	4 hrs
Chapter No. 4. IoT Application Development: Application Protocols MQTT, REST/HTTP, CoAP, MySQL	6 hrs
Unit - 3	
Chapter No. 5. Case Study & advanced IoT Applications: IoT applications in home, infrastructures, buildings, security, Industries, Home appliances, other IoT electronic equipment's. Use of Big Data and Visualization in IoT, Industry 4.0 concepts.	6 hrs

Hands-on Lab

Arduino, Android and AWS based Experiments

- 1. AWS Setup and instance creation.
- 2. Controlling LEDs blinking pattern through UART/WiFi
- 3. Simple photocell to measure the ambient light level
- 4. Controlling LEDs blinking pattern through PHP web server.
- 5. Temperature measurement through ADC and WiFi
- 6. Controlling and interacting with basic actuators (relay).
- 7. Android Application development.
- 8. Controlling of Arduino embedded system using Android App.
- 9. Motor Speed control using Embedded board and NodeMCU

Lua Programming Based Experiments

- 1. Introduction to Lua programming
- 2. Controlling inbuilt LED of ESP8266
- 3. Controlling Motion Sensor using NodeMCU module.

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 63 of 89
Electronics and Communication Engineering			Year:

- 4. Using ESP8266 as Webserver
 - a. Understanding HTML Tags.
 - b. Understanding Request.
 - c. Reading Parameter Values.
 - d. Controlling LED.
- 5. ThingSpeak Cloud Data Visualization
 - a. Working with Temperature & Humidity Sensor
 - b. Working with ThingSpeak Cloud
 - c. Posting & Analyzing Sensor Data on ThingSpeak Cloud
 - d. ThingSpeak Cloud Mobile App

Working with MQTT/HTTP

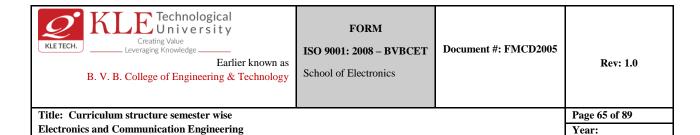
- 1. Introduction to Cloud MQTT
- 2. MQTT Wireless Communication between two ESP boards
- 3. Controlling LED using voice commands HTTP to MQTT Bridge

Course Title: Information Theory and Coding	Course Code: 21EECE308
Total Contact Hours: 40	Duration of ESA Hours: 3 hours
ESA Marks: 50	ISA Marks: 50

Content	Hrs
Unit - 1	
Chapter 01. Review of information theory: Basics of Information, Measure of information, Entropy.	02 Hrs
Chapter 02. Discrete Channels: Discrete memory less Channels, Mutual information, Channel Capacity, Differential entropy and mutual information for continuous ensembles, Channel capacity Theorem.	08 Hrs
Chapter 03. Source Coding: Encoding of the source output, Shannon's encoding algorithm. Source coding theorem, Binary, ternary and quaternary Huffman coding, Construction of instantaneous codes.	08 Hrs
Unit - 2	
Chapter 04. Introduction to Error Control Coding: Introduction, Types of errors, examples, Types of codes Linear Block Codes: Matrix description, Error detection and correction, Standard arrays and table look up for decoding, Generation of Hamming Codes.	06 Hrs

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 64 of 89
Electronics and Communication Engineering			Year:

Chapter 05. Binary Cycle Codes: Algebraic structures of cyclic codes, Encoding using an (n-k) bit shift register, Systematic codes, non systematic codes, Error detection and error correction (Syndrome calculation) circuits.	05 Hrs
Chapter 06. Convolutional codes: Convolution Codes, Time domain approach. Transform domain approach. Systematic Convolution codes, Maximum Likelihood Decoding of Convolutional codes.	05 Hrs
Unit - 3	
Chapter 07. Coding for burst error correction and other types of codes: Burst and random error correcting codes, cyclic codes and convolutional codes for bursts error correction, Reed soloman codes, Cyclic redundancy codes, Golay codes,	08 Hrs


Text Book (List of books as mentioned in the approved syllabus)

- 1. K. Sam Shanmugam, Digital and analog communication systems, John Wiley, 1996
- 2. Simon Haykin, Digital communication, John Wiley, 2003

- 1. Ranjan Bose, ITC and Cryptography, TMH(reprint 2007), 2002
- 2. Glover and Grant, Digital Communications , 2, Pearson, 2008
- 3. D Ganesh Rao, K N Haribhat, Digital Communications, Sanguine, 2009

Course Title: Embedded Intelligent Systems		Course Code: 17EECE310
L-T-P: 0-0-3 Credits: 3		Contact Hrs: 6hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs: 60	Exam Duration: 3 hrs	

	Unit - I	
1	Basics of embedded systems Linux Application Programming, System V IPC, . Linux Kernel Internals and Architecture , Kernel Core , Linux Device Driver Programming, Interrupts & Timers , Sample shell script, application program, driver source build and execute	10 hrs
2	application program, unversource build and execute	

3	ML Frameworks with the target device		
	Caffe, tensorflow, TF Lite machine learning frameworks & architecture		
	,Model parsing, feature support and flexibility ,Supported layers , advantages and		
	disadvantages with each of these frameworks, Android NN architecture overview , Full stack		
	compilation and execution on embedded device		
4	Model Development and Optimization		
Significance of on device AI ,Quantization , pruning, weight sharing, Distillation ,Various pretrained networks and design considerations to choose a particular pre-trained model ,Federated Learning , Flexible Inferencing			
	Unit - III		
5	Android Anatomy	8 hrs	
	Android Architecture ,Linux Kernel , Binder , HAL Native Libraries , Android Runtime, Dalvik		
	Application framework , Applications, IPC		

Text Books

- 1. Linux System Programming , by Robert Love , Copyright © 2007 O'Reilly Media
- 2. Heterogeneous Computing with OpenCL, 2nd Edition by Dana Schaa, Perhaad Mistry, David R. Kaeli, Lee Howes, Benedict Gaster , Publisher: Morgan Kaufmann

Reference Books:

- 1. Deep Learning, MIT Press book, Goodfellow, Bengio, and Courville's
- 2. Beginning Android, by Wei-Meng Lee, Publisher: Wrox, O'Reilly Media

Scheme for End Semester Assessment (ESA)

UNIT	Experiments to be set of 10 Marks Each	Chapter	Instructions
		Numbers	
1	Project Examination	1,2,3,4,5	Project implementation
			and demonstration
			20 marks

Course Code: 20EECE340	Course Title: Multicore Architecture and Programming				
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4Hr/week			
ISA Marks:50	ESA Marks: 50	Total Marks: 100			
Teaching Hrs: 52		Exam Duration: 3			

Earlier known as B. V. B. College of Engineering & Technology

ISO 9001: 2008 - BVBCET

School of Electronics

FORM

Document #: FMCD2005

Rev: 1.0

Title: Curriculum structure semester wise Electronics and Communication Engineering

Page 66 of 89 Year:

Content	Hrs
Unit - 1	
Chapter No. 1: Introduction to Multicore Drivers for Multicore Architectures: Low power, Performance/Throughput and need for memory bandwidth – Limits of single core computing – Moore's law - Limits to Instruction Level Parallelism (ILP) – Power and heat dissipation issue – Increased amount of data to process – Evolution from traditional System-On-Chip (SoC) to MPSoCs (Multi processor System-On-Chips) - Need for Multicore controllers in Automotive domain	4hrs
Chapter No. 2: Multicore Architecture Dependent Multicore software and hardware architectures –Multicore hardware architecture overview: Heterogeneous and Homogenous Multicore hardware – Communication between hardware processing elements: Point-to-point connections, Shared buses, On-chip cross bar, Network-On-Chip (NoC) - Memory access in Multicore architectures: Symmetric Multi-Processing (SMP), Asymmetric Multi processing aka NUMA (Add pros and cons)— Multicore architecture specific to applications - Example Multicore hardware used in Automotive – Infineon Tricore series, ST devices	12hrs
Unit - 2	
Chapter No. 3: Scheduling concepts and OS aspects What is Scheduling? – Static and Dynamic Scheduling - Scheduling algorithms: Rate Monotonic Scheduling (RMS), Fixed priority preemptive scheduling, Round robin scheduling, Earliest deadline first, First come First serve – Process and threads - What is pre-emption? Why is it needed?- Types of Multicore Scheduling: Global, Semi-partitioned and Partitioned –OS for General purpose and Real time systems - Scheduling in Single core vs Scheduling in Multicore – Timing Jitter	10 hrs
Chapter No. 4:Concurrency and Parallelism Amdahl's law – Need for Parallelism – Concurrency Fundamentals – Data parallelism, Functional Parallelism, loop Parallelism – Dependencies – Producer consumer`— Need for Synchronization, Loop dependencies–Shared resources – Caching aspects - Problems with no synchronization - Synchronization primitives – Semaphore, Mutex, spinlocks, Test and Set, Compare and swap–Synchronization related issues and how to avoid them: Data races, Livelocks, Deadlock, Non-atomic operations –	10hrs
Unit - 3	
Chapter 5: Advanced Multicore topics – Introduction/Overview Multicore timing analysis - Timing simulation: Why it is needed? – WCET (Worst Case Execution Time) analysis – Schedulability analysis – Additional challenges in Multicore - Tools used in automotive: Timing architect, ChronSIM, Sym TA/S- Deterministic behavior – Logical Execution Time (LET)	4hrs

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise	Page 67 of 89		
Electronics and Communication Engineering	Year:		

References:

Highly Recommended: Real world Multicore embedded systems – Bryon Moyer Highly Recommended for Embedded system and Real Time basics -Programming *Embedded* Systems with C and GNU Development Tools – Michael Barr

References in the internet for Multicore timing analysis:

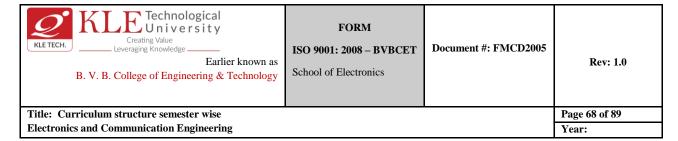
Why is timing analysis important: http://embedded.cs.uni-saarland.de/publications/EnablingCompositionalityRTNS2016.pdf

Multicore timing simulation solutions:

https://www.vector.com/int/en/events/global-de-en/webinars/2020/timing-analysis-for-multicoreecus/

https://www.rapitasystems.com/multicore-timing https://www.inchron.com/tool-suite/chronsim/

https://www.absint.com/ait/symtas.htm


 $\frac{https://www.danlawinc.com/wp-content/uploads/MC-BR-006-Multicore-Timing-Analysis-Solution-For-Aerospace-v3.pdf}{Aerospace-v3.pdf}$

Logical Execution Time (LET)

https://ieeexplore.ieee.org/document/5577967

Course Code: 18EECE421	8EECE421 Course Title: OOPS using C++			
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 42		
ISA: Marks: 80	ESA Marks: 20	Total Marks: 100		
Teaching Hrs: 42		Exam Duration:		

Content	Hrs
Unit - 1	
Chapter 1: Fundamental concepts of object oriented programming: Introduction to object oriented programming, Programming Basics (keywords, identifiers, variables, operators, classes, objects), Arrays and Strings Functions/ methods (parameter passing techniques),	04 hrs
Chapter 2: OOPs Concepts: Overview of OOPs Principles, Introduction to classes & objects ,Creation & destruction of objects, Data Members, Member Functions , Constructor & Destructor , Static class member, Friend class and functions, Namespace	08hrs

Unit - 2	
Chapter 3: Inheritance: Introduction and benefits, Abstract class, Aggregation: classes within classes Access Specifier, Base and Derived class Constructors, Types of Inheritance. Function overriding	8 hrs
Chapter 4: Polymorphism:	6 hrs
Virtual functions, Friend functions, static functions, this pointer	
Unit - 3	
Chapter 5: Exception Handling: Introduction to Exception, Benefits of Exception handling, Try and catch block, Throw statement, Pre-defined exceptions in C++, Writing custom Exception class	8 hrs
Chapter 6: I/O Streams: C++ Class Hierarchy, File Stream, Text File Handling, Binary File Handling Error handling during file operations, Overloading << and >> operators	6 hrs

Books/References:

Text Book

1. Robert Lafore, "Object oriented programming in C++", 4th Edition, Pearson education, 2009.

- 1. Lippman S B, Lajorie J, Moo B E, C++ Primer, 5ed, Addison Wesley, 2013.
- 2. Herbert Schildt: The Complete Reference C++, 4th Edition, Tata McGraw Hill

Batch 2018-22 Semester: VII

No	Code	Course	Category	L-T-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	18EECC401	PC16: Wireless & Mobile Communication	PSC	3-0-0	3	3	50	50	100	3 hours
2	18EECE	PSE Elective 1	PSE	3-0-0	3	3	50	50	100	3 hours
3	18EECE	PSE Elective 2	PSE	3-0-0	3	3	50	50	100	3 hours
4	18EECE	PSE Elective 3	PSE	3-0-0	3	3	50	50	100	3 hours
6	18EECE	PSE Elective 4	PSE	3-0-0	3	3	50	50	100	3 hours
	20EECW401	P3: Senior Design Project	PW	0-0-6	6	12	50	50	100	3 hours
7	15EHSC402	CIPE	М	2-0-0		2	50	50	100	3 hours
TOTA	TOTAL				21	29	350	350	700	

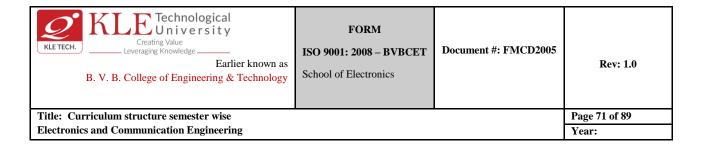
ISA: In Semester Assessment **ESA**: End Semester Assessment **L**: Lecture **T**: Tutorials **P**: Practical

HS (Humanities) = H; B(Basic Science) = B; ES(Engineering Science) = F; PC (Program Core) = C; EC(Any Elective) = E; PW(Project Work) = W; Research = R; Internship= I; Seminar = S; Colloquium = V; Self-study = Y; Special topic= T; Apprenticeship = A; Laboratory / Practical = P; Field Work = D; and Non-credit course = N.

Semester: VII (2018-22 Batch)

No	Code	Course: PSE: Elective	Category	L-T-P	Credits	Contact Hours	ESA	ISA	Tota	Exam Duration
1.	19EECE416	Biosensor		0-0-3		3	-	100		
2.	18EECE418	Advanced Digital Logic Verification		0-0-3		6	-	100		
3.	18EECE410	Multimedia Communication		3-0-0		3	50	50		
4.	18EECE419	Physical Design- Analog		0-0-3		6	-	100	100	
5.	18EECE409	Design and Analysis of Algorithm	PSE	0-0-3	3	3	50	50	100	3Hours
6.	18EECE420	CMOS ASIC Design		0-0-3		6	-	100		
7.	18EECE405	Embedded Linux		0-0-3		3	50	50		
8.	18EECE411	Microwave &		3-0-0		3	50	50		

		Antennas						
9.	20EECE406	AUTOSAR	3-0-0	3	50	50		
10.	18EECE415	Cryptography & Network Security	3-0-0	3	50	50		
11.	19EECE403	Testing & Characterization	0-0-3	3	-	100		
12.	21EECE421	RF VLSI (New)	3-0-0	3	50	50		
13.	21EECE422	Speech Processing(New)	3-0-0	3	50	50		
14.	21EECE423	CAD for VLSI(New)	3-0-0	3	50	50		
15.	21EECE424	System on Chip Design(New)	3-0-0	3	50	50		
16.	21EECE425	Computer Graphics	0-0-3	3	-	100		

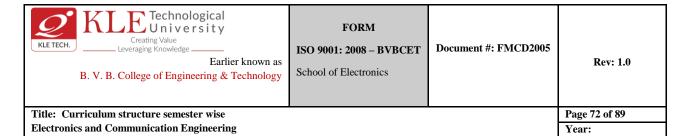

Semester: VIII

No	Code	Course	Category	L-T-P	Intern- ship	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	18EECE	PSE Elective 5	PSE	3-0-0		3	3	50	50	100	3 hours
2	18EECE	Open Elective 1	OE	3-0-0	6-0-0	3	3	50	50	100	3 hours
3	20EECW402	Project Work	PRJ	0-0-11		11	22	50	50	100	3 hours
TOTAL			6-0-11		17	28	150	150	300		

Internship- Training: 18EECI493 – 0-0-6, ISA: 80 ESA: 20 Internship- Project: 20EECW494-- 0-0-11, ISA: 50 ESA: 50

ISA: In Semester Assessment **ESA**: End Semester Assessment **L**: Lecture **T**: Tutorials **P**: Practical

HS (Humanities) = H; B(Basic Science) = B; ES(Engineering Science) = F; PC (Program Core) = C; EC(Any Elective) = E; PW(Project Work) = W; Research = R; Internship= I; Seminar = S; Colloquium = V; Self-study = Y; Special topic= T; Apprenticeship = A; Laboratory / Practical = P; Field Work = D; and Non-credit course = N.

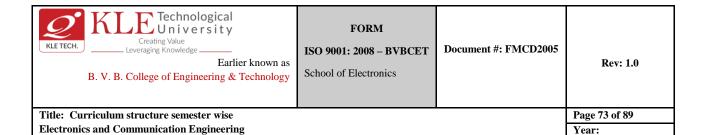

Program: VII Semester Bachelor of Engineering (Electronics & Communication Engineering)								
Course Code: 18EECC401 Course Title: Wireless & Mobile Communication								
L-T-P-SS: 3-0-0-0	Credits: 3	Contact Hrs: 40						
CIE Marks: 50	SEE Marks: 50	Total Marks: 100						
Teaching Hrs: 40		Exam Duration: 3 hrs						

Content	Hrs	
Unit - 1		
Chapter 01 Radio Propagation Free space propagation model, Relating power to electric field., Relation, ground reflection, scattering, Practical link budget design using path loss model, Outdoor propagation models, Signal penetration into buildings, Ray tracking and site specific modeling, Small scale Multipath measurements, Parameters of mobile Multipath channels, Types of small scale fading.	16	
Unit - 2		
Chapter 02 Diversity techniques Concept of Diversity branch and signal paths, Combining and switching methods, C/N, C/I performance improvements, RAKE receiver.	4	
Chapter 03 Cellular concept Frequency reuse, Channel assignment strategies, Handoff strategies, Interference and system capacity, Trucking and grade of service, Improving coverage, Capacity in cellular systems, FDMA, TDMA, Pseudo noise sequences, notion of spread spectrum, processing gain and Jamming margin, direct sequence spread spectrum, frequency hop spread spectrum ,Spread spectrum multiple access, SDMA packet radio. Capacity of cellular systems.		
Unit - 3		
Chapter 04 Personal Mobile satellite Communications Integration of GEO, LEO satellite, MEO satellite, Terrestrial mobile systems and Personal satellite communication programs.		
Chapter 05 CDMA system implementation IS-95 system architecture, Soft handoff, Power control in IS-95 CDMA, CDMA 2000 system.		

Text Book (List of books as mentioned in the approved syllabus)

1. T.S. Rapport, Wireless Communication, 2, Pearson Education, 2002

- 1. Kamil O Feher, Wireless digital communications: Modulation and spread spectrum Techniques, Prentice Hall of India, 2004
- 2. Vijay K Garg, IS_95 CDMA and cdma 2000, Pearson publication pvt. Ltd, 2004
- 3. Xiaodong Wang and Vincent Poor, wireless Communicating system: Advanced Techniques for signal Reception, Pearson publication pvt. Ltd, 2004

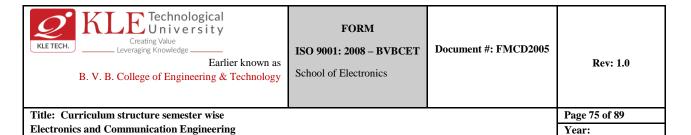


		G	Teaching Hours
T T T GG		Course Code: 18EECE410	Hours
	Credits: 3	Contact Hours: 3 Hrs/week	I
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hours: 42Hrs	Examination Duration: 3 Hrs		
Unit I			
Chapter 1 : Introduction to Multimedia: Multimedia and Hyper media, WWW, overview of multimedia software tools.			02Hrs
Chapter 2: Graphics and Image representation: Graphics / Image data types, Popular file formats.			02Hrs
Chapter 3: Fundamental concepts in video: Types of video signals, analog video, digital video.			06Hrs
Chapter 4 : Basics of digital audio: Digitization of sound, MIDI, Quantization and transmission of audio.			05Hrs
	Unit II		
Chapter 4: Lossless compression algorithms: Introduction, run-length coding, variable length coding, dictionary based coding, arithmetic coding, lossless image compression.			05Hrs
Chapter 5: Lossy compression algorithms: Introduction, distortion measures, quantization, transform coding, wavelet based coding, wavelet packets, embedded zero tree of wavelet			06Hrs
coefficients.			06Hrs
Chapter 6: Image compression standards: The JPEG standard, The JPEG2000 standard, The JPEG-LS standard, Bi level image compression standard.			305
	Unit III		
Chapter 7: Basics video compression techniques: Overview, video compression based on motion			08Hrs
compensation, H.261			02Hrs
Chapter 8: Overview of MPEG-1, 2 4 and 7.			UZHIS
Chapter 6. Overview or	1711 DO 1, 2 7 and 7.		
Tree4 Declar			

Text Books

1. Ze-Nian Li & Mark S Drew, "Fundamentals of multimedia", Pearson Education, 2004.

- 1. Ralf Steinmetz & Kalra Nahrstedt , "Multimedia: Computing, Communication & Applications", Pearson Education, 2004
- 2. K R Rao, Zoran S Bojkovic, Dragord A Milovanvic, Pearson education, "Multimedia communication systems: Techniques, Standards, & Networks", Second Indian reprint, 2004.

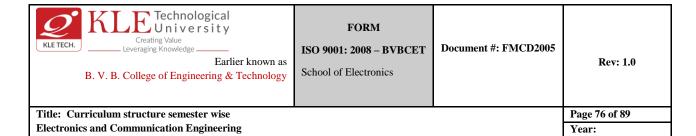

Cours	e Code: 18EECE403	Course Title:_MEMS		
L-T-P 5	Sylicaus ystems Fabrication Proces Chemical Vapor Deposition (CVD),			
CIE N	Tarks: 50	SEE Marks: 50	Total Marks: 100	05
6 Teach	Micro-manufacturing: Bulk Micro-ing Hrs: 40	nanufacturing, Surface Microm	chining, The LIGA Process. Exam Duration: 3 hrs	05
	Sook: s and Microsystems – Design and Ma Inces:	nufacture", Tairi Ran Hsu, TMH	Edition 2002.	Hrs
"₁Found	s zwervierion'in Emb ranc um Grotsy ia da <u>ti</u> oorua6M5M&"crosyanghsi, in Nabira EMSaTheObio-Dagiusiyan doterhadegi	ኬ ጁ የዕር ነው ያለው ነው። የሚያስ ነው።	stems in Automotive, Aerospace,	05
2	Working principles of Microsyste Micro-sensors: Acoustic wave sens Optical Sensors, Pressure Sensors, Micro-actuation: Actuation Using Th Crystals and Electrostatic Forces. Applications of Micro-actuations: Mi Micro-accelerometers, Micro-fluidics	sor, Biomedical Sensors and Bio , Thermal Sensors. ermal Forces, Shape Memory A cro-grippers, Micro-motors, Mic	Alloys (SMA), Piezoelectric	
				10
		Unit II		
3	Scaling laws in miniaturization: Ir Dynamics, Electrostatic Forces, Ele Numerical problems.			10
4	Materials for MEMS and Microsys as Substrate Material, Silicon Comp Piezoelectric Crystals, Polymers, Pa	ounds, Silicon Piezo resistors,		05

Course Title: Physical Design-Analog	Course code: 18E	ECE419	
L-T- P: 0-0-3	Credits: 03	Contact Hrs: 06hrs/we	ek
CIE Marks: 100	SEE Marks: 00	Total Marks: 100	
Teaching Hrs: 16hrs Lab Hrs: 24 hrs			
Chapter No 1. Standard cell Layout creation Layout Practice Sessions (DRC/LVS Dirty layout), Understand skills, Hands on experience of using layout editor, Quality of creation.			8 hrs
Chapter No 2. Analog layout Importance of performance in Analog layout, Importance of fl need to be taken care during routing stage, Introduction to DR	1 0 1	*	8 hrs

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 74 of 89
Electronics and Communication Engineering			Year:

Chapter No 3. Matching and Guard rings, Matching: Introduction to mismatch concepts, Causes for mismatch, Types of mismatch, Rules for matching, Activities. Guard ring: What is guard ring, Usage of guard ring	6 hrs
Chapter No 4. Reliability issues Introduction to failure mechanism, Causes of reliability issues, Process enhancement techniques and Layout considerations to reduce reliability issues	8 hrs
Chapter No 5. Physical design of amplifier and buffer Applying the studied concepts and doing layout, Prioritising the constraints given, Quality checks, Buddy reviews and implementations, Documentation	10 hrs
Reference: The Art of Analog Layout – Alan Hastings CMOS IC layout – Dan Clien IC Layout Basics – Chris saint and Judy saint	

			Teaching
Course Title: Digital Ima	ge Processing	Course Code: 18EECE414	Hours
L-T-P-SS: 2-0-1-0	Credits: 3	Contact Hours: 3 Hrs/week	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hours: 42Hrs	Examination Duration: 3 Hrs		


Unit I	
Chapter 1: Introduction 2D systems, mathematical preliminaries- FT, Z-transform, Optical and Modulation transfer functions (OTF and MTF).	04Hrs
Chapter 2: Image perception Light, luminance, brightness, contrast, MTF of the visual system, visibility function, monochrome vision models, Image fidelity criteria, colour representation, colour models.	04Hrs
Chapter 3: Image sampling and quantization	07Hrs
2D sampling theory, limitations in sampling and reconstruction, quantization, optimal quantizer, compandor and visual quantization.	
Unit II	
Chapter 4: Image transforms 2D orthogonal and unitary transforms, DFT, DCT, DST, Hadamard, Harr, Slant, KLT transforms.	10Hrs
Chapter 5: Image enhancement Histograms modeling, spatial operations, transform operations, multispectral image enhancement, color image enhancement.	07Hrs
Unit III Chapter 6: Image filtering and restoration Image observation models, Inverse and wiener filtering, fourier domain filters. Smoothing splines and interpolation. SVD and iterative methods. Maximum entropy restoration, Bayesian methods, co-ordinate transformation and geometric corrections. Blind deconvolution.	10Hrs

1. A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd

References

- 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education (Asia) Pvt. Ltd
- 2. Rafael C. Gonzalez, Richard E. Woods and Steven L Edidins. "Digital Image Processing Using Matlab", Pearson Education (Asia) Pvt. Ltd

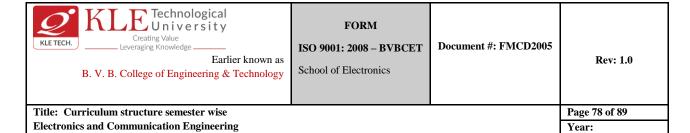
Course Code: 18EECE415	Course Title: Cryptography and Network Security	
L-T-P-SS: 3-0-0-0	Credits: 3	Contact Hrs: 42
CIE Marks: 50	SEE Marks: 50	Total Marks: 100

Teaching Hrs: 42		Exam Duration: 3 hrs
------------------	--	----------------------

Content	Hrs
Unit - 1	1
Chapter No. 1. Overview Introduction, Services, Mechanisms and attacks of OSI architecture, Model	2 hrs
Chapter No. 2: Introduction to Finite Fields Groups, Rings and fields. Modular Arithmetic, Euclid's Algorithm, Extended Euclid's algorithm, Finite fields of the form GF (p), Finite fields of the form GF(2n), Polynomial arithmetic, Euler's and format's theorem, Chinese remainder theorem	4 hrs
Chapter No. 3: Classical Encryption techniques Symmetric cipher model, substitution technique, Transposition Techniques	5 hrs
Chapter No. 4: Block Ciphers and DES Design and principles of Block Ciphers, DES, Strength of DES, Block Cipher Modes of Operation	5 hrs
Unit - 2	1
Chapter No. 5: Advanced Encryption Standards Evaluation Criterion of AES, AES Encryption and AES Decryption	4 hrs
Chapter No. 6: Public Key Cryptography and RSA: Design and principles, Concept of confidentiality and Authentication, RSA algorithm, Other Public Key Crypto Systems, Key Management, Diffie Hellman Key Exchange, Elliptic curve Cryptography	6 hrs
Chapter No. 7: Message Authentication and Hash Functions: Message Authentication codes, Hash functions, Security of Hash and MAC functions	3 hrs
Chapter No. 8: Digital Signature, Authentication and Hash Functions Authentication Protocols, Digital signature Standard, DSS Algorithm	3 hrs
Unit - 3	T
Chapter No. 9. Electronic Mail Security: Pretty good privacy, Data Compression, PGP random number generator	3 hrs
Chapter No. 10. IP Security & Web Security IP security Architecture, Security Associations, Key management, Web security Considerations, Secure Socket layer, Transport layer security, secure electronic transactions	7 hrs

Text Book (List of books as mentioned in the approved syllabus)

- 1. William Stallings, Cryptography and Network Security-Principles and practices, 3rd, PHI, 2003
- 2. Atul Kahate, Cryptography and Network Security, TMH, 2003
- 3. Behrouz A. Forouzan, Cryptography and Network Security, TMH, 2007


References

1. Koeblitz, Introduction to Number theory and Cryptography, Springler, 0000

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 77 of 89
Electronics and Communication Engineering			Year:

- 2. Bruce Schneider, Applied Cryptography, 2nd , John Wiley, 2001 3. Eric Maiwad, Fundamentals of Network security, 2nd , TMH, 2002

			Teaching
Course Title: Embedo		Course Code: 18EECE405	Hours
L-T-P-SS: 3-0-0-0	Credits: 3	Contact Hours: 3 Hrs/week	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hours:	Examination Duration: 3 Hrs		
42Hrs			
	Unit I		0.4.77
A Brief History of L		g and Using Linux -Examining Linux nts: Kernel, Distribution, Sawfish, and	04 Hrs 06 Hrs
Gnome.			
			06 Hrs
	ent-Kernel architectures and device Embedded Linux-GNU Tool Ch	driver model- Embedded development nain (GCC,GDB, MAKE, GPROF &	
Boot sequence-System	l static Libraries overview-Writi	file system-Binaries required for systeming applications in user space-GUI	
	Unit II		
Chapter 4: File system			06 Hrs
		ne File system –Extended file systems-	
	•	Performing File system Maintenance -	
0		l Un-mounting –Buffer cache-/proc file	04 Hrs
systems-Device special	files		
Chantan F. Carefferen	Hom.		
Configuration Compil		x-Examining Shells -Using Variables -	
		System Start-up Files -Creating a Shell	08 Hrs
Chamban (D	and and Internet		
	anagement and Inter process comm	Process Table to Manage Processes -	
		and Managing Services -Starting and	
		ces -Configuring Basic Client Services -	
	rnet Services –Working with Module		
		pipes-creating a FIFO-FIFO operations-	
IPC identifiers-IPC key	/s-IPCS commands- Message queues	-Message buffer-Kernel Ring Buffer	

08 Hrs
08 Hrs

- Embedded Linux –Hardware, Software and Interfacing Craig Hollabaugh, Addison-Wesley Professional, 2002
- 3. Embedded / Real-Time Systems: Concepts, Design and Programming Black Book, New ed (MISL-DT) Paperback 12 Nov 2003.

References

- 3. Building Embedded Linux Systems, Karim Yaghmour, First edition, April 2003.
- 4. Embedded Linux- John Lombardo, Newriders.com

Course Code: 18EECE409	Course Title: Design and Analysis of Algorithms	
L-T-P: 2-1-2 (3-0-2)	Credits: 3 Contact Hrs: 50	
ISA Marks: 50	ESA Marks: 50 Total Marks: 100	
	Semester: III	Exam Duration: 3 hrs

Content	
Unit - 1	Hrs
Chapter No. 1: Framework for Analysis of Algorithm Efficiency Analysis Framework, Asymptotic Notations and Basic Efficiency Classes, Mathematical Analysis of Non-Recursive Algorithms, Mathematical Analysis of Recursive Algorithms.	4
Chapter No 2: Trees and Graphs Overview of Trees. AVL Trees. Red – Black Trees. Graphs, DFS and its applications, BFS and its applications. Topological Sorting. Shortest path algorithms. Minimum Spanning Tree.	8
Chapter No 3: Hashing Direct Address Table, Hash Table, Hash Function, Collision Resolution Techniques.	3
Unit - 2	
Chapter No 4: Substring Matching and Sorting Techniques. Brute-force method, Boyer-Moore – Hoorspool Algorithm, Knuth-Morris-Pratt Algorithm, Bubble sort, selection sort. Divide and Conquer: insertion sort, merge sort, quick sort and heap sort	8

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 79 of 89
Electronics and Communication Engineering			Year:

Chapter No 5: Greedy Technique Introduction, Interval Scheduling, Proof Strategies, Huffmann Coding, 0/1 knapsack	2
Chapter No 6: Dynamic Programming Introduction and Definition. Memorization, Fibonacci Series, Edit Distance, Longest Increasing Subsequence, Longest Common Subsequence, Matrix multiplication, Coin Change problem, Subset Sum problem.	5
Unit - 3	
Chapter No 7: Backtracking Introduction. N-Queens Problem, Generating string permutation, Hamiltonian Cycle.	5
Chapter No 8: Branch and Bound Introduction. Travelling Salesman problem, Job Assignment Problem.	5

- 1. Data Structures with C -- Seymour Lipschutz, Schaum's Outline Series
- 2. Introduction to Design and Analysis of Algorithms Anany Levitin 3rd Edition

Reference Books:

- 1. Introduction to Algorithms Thomas H. Cormen 3^{rd} edition 2. Data Structures, Algorithms and Applications In C++ -- Satraj Sahani
- 3. Data Structures and Algorithms Made Easy Narshiman Karumunchi, Career Monk

Course Title: Advanced Digital Logic Verification	Course code: 18EECE418		
L-T- P: 0-0-3	Credits: 03	Contact Hrs: 06hrs/week	
CIE Marks: 100	SEE Marks: 00	ks: 00 Total Marks: 100	
Teaching Hrs: 16hrs Lab Hrs: 24 hrs			
Chapter No. 1. Verification Concepts: Concepts of verification, importance of verification, Stimulus vs Verification, functional verification, test bench generation, functional verification approaches, typical verification flow, stimulus generation, direct testing, Coverage: Code and Functional coverage, coverage plan.			8 hrs
Chapter No. 2. Language Constructs System Verilog constructs: Data types: two-state data, strings, arrays: queues, dynamic and associative arrays, Structs, enumerated types. Program blocks, module, interfaces, clocking blocks, modports.			6 hrs
Chapter No. 3. Classes & Randomization SV Classes : Language evolution, Classes and objects, Class Variables and Methods, Class instantiation, Inheritance, and encapsulation, Polymorphism. Randomization: Directed Vs Random Testing. Randomization: Constraint Driven Randomization.			10 hrs
Chapter No. 4. Assertions & Coverage Assertions: Introduction to Assertion based verification, Immediate and concurrent assertions. Coverage driven verification: Motivation, Types of coverage,			8 hrs

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 80 of 89
Electronics and Communication Engineering			Year:

Cover Group, Cover Point, Cross Coverage, Concepts of Binning and event sampling.	
Chapter No. 5. Building Testbench: Layered testbench architecture. Introduction to Universal Verification Methodology, Overview of UVM Base Classes and simulation phases in UVM and UVM	8 hrs
macros. Unified messaging in UVM, UVM environment structure, Connecting DUT- Virtual Interface	

References:

- System Verilog LRM
- 2. Chris Spear, Gregory J Tumbush SystemVerilog for verification a guide to learning the testbench language features Springer, 2012
- 3. Step-by-Step Functional Verification with SystemVerilog and OVM by Sasan Iman SiMantis Inc. Santa Clara, CA Spring 2008

Tools: Questa Sim, NC Verilog, NC Sim, CVER + GTKWave, VCSMX, Modelsim for Verilog

Course Title: CMOS ASIC Design (PD-Digital)	Course code: 18EECE420		
L-T- P: 0-0-3	Credits: 03	Contact Hrs: 06hrs/week	ζ.
CIE Marks: 100	SEE Marks: 00 Total Marks: 100		
Teaching Hrs: 16hrs Lab Hrs: 24 hrs			
Chapter No. 1. Introduction: Design of combinational and sequent characterization of standard cells. Verilog for representing gate lever the combination of standard cells.		CMOS. Layout and	8 hrs
Chapter No. 2. Timing Analysis: Sequential circuit timing and static timing analysis. Cell and net delays and cross-talk. Rationale and implementation of scan chains for testing standard-cell based logic circuits. Timing Verification: Setup Timing Check, Hold Timing Check, Timing across Clock Domains			10hrs
Chapter No. 3: Physical design Physical design of standard-cell based CMOS ASICs: scan insertion routing. Netlist transformations at each step of the physical design Net parasitic and parasitic extraction. Use of PLLs for clock gener	process.	ock tree synthesis and	12 hrs
Chapter No. 4. Standard Data formats: Standard data formats for representing technology and design: LEF, Liberty, SDC, DEF and SPEF. Clock gating and power gating for reduction of device power consumption. Design for reliability: electro- migration, wire self heat and ESD checks and fixes.			6 hrs
Chapter No. 5. Packaging An overview of package design and implementation and system le	evel timing.		4 hrs

Reference Books:

1. The Design & Analysis of VLSI Circuits, L. A. Glassey & D. W. Dobbepahl, Addison Wesley Pub Co. 1985.

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 81 of 89
Electronics and Communication Engineering			Year:

- 2. H. Bhatnagar, Advanced ASIC Chip Synthesis Using Synopsys Design Compiler Physical Compiler and PrimeTime, 2nd edition, 2001.
- 3. Static Timing Analysis for Nanometer Designs A Practical Approach, J. Bhasker Rakesh Chadha, ☐ Springer Science+Business Media, LLC 2009

Tools: Cadence Innovous, Encounter

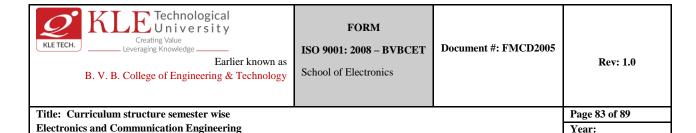
Course Code: 18EECE411	Course Title: Microwave & Antenna		
L-T-P: 3-0-0	Credits: 03 Contact Hrs: 40		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 50		Exam Duration: 03 hrs	

Content	Hrs
Unit - 1	
Chapter No. 1. Microwave Vacuum Tube Devices Introduction, Reflex Klystron, Problems	04
Chapter No. 2. Microwave components Directional couplers, Circulators, Magic T, Isolator, s-Matrix and Attenuators	08
Unit - 2	
Chapter No. 3. Antenna Parameters Introduction, Basic antenna parameters ,Pattern, Beam width, Radiation intensity, Beam efficiency, Directivity, Gain, Aperture, Effective height, Polarization, Antenna field zone, The radio communication link. Radiation resistance of Short electric dipole and half wave length antenna.	10
Chapter No. 4. Sources and Arrays Introduction, Point sources, Power patterns, Power theorem, Examples on power theorem, Directivity and beam width of point sources, Arrays of two isotropic point sources, Pattern multiplication, Linear array of n isotropic point sources of equal amplitude and spacing, Broad side array, End fire array.	08
Unit - 3	
Chapter No. 5. Antenna practice Yagi-Uda Antenna, Loop antenna, Horn antenna, Parabolic reflector, Helical antenna, Log periodic antenna, Mobile Station Antennas, Antennas for GPR: Pulse Bandwidth, Embedded Antennas, UWB Antennas for Digital Applications, The Plasma Antenna	10

Text Book (List of books as mentioned in the approved syllabus)

- 1. J.D.Kraus & Khan,MGH publication, "Antennas", 2006, third edition.
- 2. Samuel Y Liao, "Microwave Devices and Circuits", PHI Pearson Education, Third Edition.
 1.

References

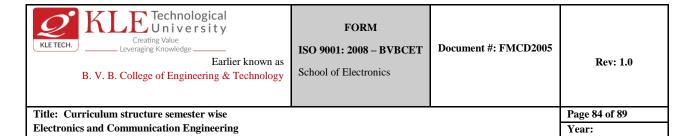

- 2. F.E.Terman, "Electromagnetic and radio engineering" by, TMcH publication, second Edition.
- 3. E.C.Jordan', "Electromagnetic waves & radiating systems", PHI publication, second edition

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 82 of 89
Electronics and Communication Engineering			Year:

- 4. C.A.Balnis, "Antenna theory and analysis and design" ,1999,third edition.
- 5. K.D.Prasad ,"Antenna and wave propagation" by '1990, first edition.
- 6. Annapurna Das, Sisir K Das, "Microwave engineering", TMH Publications 2001.

Course Code: 19EECE416	Course Title: Biosensor		
L-T-P: 0-0-3	Credits: 3 Contact Hrs: 72		
ISA Marks: 100	ESA Marks:	Total Marks: 100	
Teaching Hrs: 72		Exam Duration: 3 hrs	

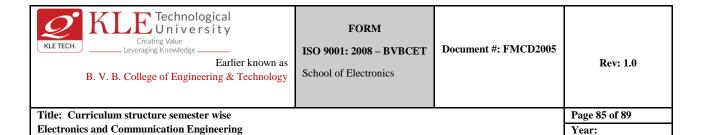
Content	Hrs
Unit - 1	
Chapter No. 1. Basic Introduction to sensors Introduction to sensors: fundamental characteristics such as Sensitivity, linearity, repeatability, hysteresis, drift. Sensing Principles: optical sensors, electrochemical sensors, micromechanical sensors, surface Plasmon sensors, colorimetric Sensors, acoustic sensors	5 hrs
Chapter No. 2. Active Electrical Transducers Thermoelectric transducers, thermoelectric phenomenon, common thermocouple systems, piezoelectric transducers, piezoelectric phenomenon piezoelectric materials, piezoelectric force transducers, piezoelectric strain, piezoelectric torque transducers, piezoelectric pressure transducers, piezoelectric acceleration transducers. Magnetostrictive transducers Magnetostrictive force transducers, Magnetostrictive acceleration transducers, Magnetostrictive torsion transducers, Hall Effect transducers, and application of Hall transducer. Electromechanical transducers-Tachometers, variable reluctance tachometers Electrodynamic vibration transducers, Electromagnetic pressure electromagnetic flowmeter. Photoelectric transducers-photoelectric phenomenon, photoelectric transducers, Photo volatile transducers, Photo emissive transducers. Electrochemical transducers- basics of electrode potentials, reference electrodes, indicator electrodes, measurement of PH, measurement of bioelectric signals.	10 hrs
Unit - 2	1
Chapter No. 3. Passive electrical transducer Introduction, Resistive transducers- resistance thermometers, hot wire resistance transducers, Resistive displacement transducer, Resistive strain transducer, resistive pressure transducer, resistive optical radiation transducers. Inductive transducers-Inductive thickness transducers, Inductive displacement transducers, Movable core-type Inductive transducers, eddy current type Inductive transducers. Capacitive transducers-Capacitive thickness transducers, capacitive displacement transducers, capacitive moisture transducers Substrate and Wafers, Active Substrate Materials, Silicon as Substrate Material, Silicon Compounds, Silicon Piezo resistors, Gallium Arsenide, Quartz, Piezoelectric Crystals, Polymers, Packaging Materials.	5 hrs
Chapter No. 4. Microfabrication Technology Design of process flow for device fabrication for application in biology and medicine: Introduction to the Clean room and contaminants, Wafer cleaning processes (DI water, RCA, metallic impurities, etc.), Substrate materials: Silicon, polymer and PCB, Thermal oxidation: Wet and dry oxidation, thin film	10 hrs


deposition techniques: PVD- DC and RF Magnetron Sputtering, thermal evaporation, e-beam evaporation, LPCVD, PLD. Types of masks: Hard and soft Lithography, Lithography – UV Photolithography, Soft lithography, additive manufacturing. Mask design and fabrication – Photo resists and mechanical mask such as stencils. Types of etching- Wet etching- anisotropic and Isotropic and dry etching RIE and DRIE. Device fabrication and inspection in the clean room.	
Unit - 3	
Chapter No. 5. Biosensors Introduction: Biosensors and its applications in health care, agriculture, drug discovery and environmental monitoring. Devices for biology and medicine: Microfluidic channels, flow cytometry/sorting, microchip using electrophoresis, force measurement with cantilevers, micro engineered devices for medical therapeutics, blood pressure sensors, devices for drug delivery, and devices for minimally invasive surgery.	5 hrs
Chapter No. 6. Biological components for detection Enzymes, antigen-antibody reaction, biochemical detection of analysts, organelles, whole cell, receptors, DNA probe, pesticide detection, sensors for pollutant gases. Surface chemistry: Immobilization of biorecognition element, Antigen-Antibody functionalization, and assay labels including radioisotopes, fluorophores, dyes.	5 hrs

Text Books (List of books as mentioned in the approved syllabus):

- 1. Fundamentals of Microfabrication and Nanotechnology by Marc J. Madou, 3rd edition. Taylor and Francis group.
- 2. Transducers and Instrumentation D.V.S. Murthy, 2nd Edn, PHI Ltd, 2010.
- 3. A.P.F. Turner, I. Karube & G.S. Wilson: Biosensors: Fundamentals & Applications, Oxford University Press, Oxford, 1987.

References:


- 1. Ernest O. Doeblin: Measurement Systems, Application and Design, McGraw-Hill, 1985.
- Richard S.C. Cobbold: Transducers for Biomedical Measurements: Principles and Applications, John Wiley & Sons, 1974
- 3. John G. Webster (ed.): Medical Instrumentation Application and Design; Houghton Mifflin Co., Boston, 1992.
- 4. Stephen D. Senturia: "Micro system Design", Kluwer Academic Publishers, 2001

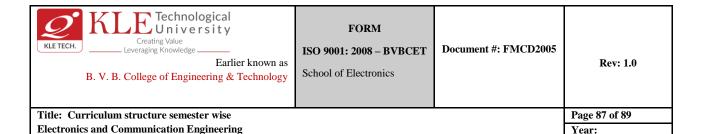
Course Code: 20EECE406	Course Title: AUTOSAR		
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 Hours	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40		Exam Duration: 3	

Content	Hrs
Unit - 1	
Chapter No. 1: AUTOSAR Fundamentals Evolution of AUTOSAR – Motivations and Objectives AUTOSAR consortium – Stake holders – work Packages, AUTOSAR Partnership, Goals of the partnership, Organization of the partnership, AUTOSAR specification, AUTOSAR Current development status, BSW Conformance classes: ICC1, ICC2, ICC3, and Drawbacks of AUTOSAR.	8 hrs
Chapter No. 2: AUTOSAR layered Architecture AUTOSAR Basic software, Details on the various layers, Details on the stacks Virtual Function Bus (VFB) Concept Overview of AUTOSAR Methodology, Tools and Technologies for AUTOSAR AUTOSAR Application Software Component (SW-C), Types of SW-components AUTOSAR Run Time Environment (RTE): RTE Generation Process: Contract Phase, Generation Phase, MCAL, IO HW Abstraction Layer, Partial Networking, Multicore, J1939 Overview, AUTOSAR Ethernet, AUTOSAR E2E Overview, AUTOSAR XCP, Metamodel, From the model to the process, Software development process.	7 hrs
Unit - 2	
Chapter No. 3: Methodology of AUTOSAR and Communication in AUTOSAR CAN Communication, CAN FD, CANape, Application Layer and RTE, intra and inter ECU communication, Client-Server Communication, Sender-Receiver, Communication, CAN Driver, Communication Manager (ComM), Overview of Diagnostics Event and Communication Manager	10 hrs
Chapter No. 4: Overview about BSW constituents BSW Constituents: Memory layer, COM and Services layer, ECU abstraction, AUTOSAR, Operating system, Interfaces: Standard interface, AUTOSAR standardized interface, BSW-RTE interface,(AUTOSAR interface), BSW-ECU hardware interface, Complex device drivers and BSW module configuration, AUTOSAR Integration.	5 hrs
Unit - 3	
Chapter 5: MCAL and ECU abstraction Layer Microcontroller Drivers, Memory drivers: on-chip and off chip drivers, IO drivers(ADC, PWM, DIO), Communication drivers: CAN driver, LIN drivers, Flexrfay	5 hrs
Chapter 6: Service Layer Diagnostic Event Manager, Function inhibits Manager, Diagnostic communication manager, Network management, Protocol data unit router, Diagnostic log and trace unit, COMM manager.	5 hrs

1. Ronald K. Jurgen, Infotainment systems, 2007, SAE International, 2007

Course Code: 21EECE421	Course Title: RF VL	SI	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 Ho	ours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40		Exam Duration: 3	
Con	tent		Hrs
Uni	t - 1		I
Chapter No. 1: Basic concepts in RF Design			8 hrs
Basic concepts in RF Design – harmonics, gair modulation, intermodulation, inter symbol inter and dynamic range.			
Chapter No. 2: Receiver architectures			7 hrs
Receiver architectures – heterodyne receivers digital-IF receivers and subsampling receivers.	s, homodyne receivers, i	mage-reject receivers,	
Uni	t - 2		1
Chapter No. 3: Transmitter architectures			10 hrs
Transmitter architectures – direct-conversion t amplifier (LNA) – general considerations, input n		ansmitters; Low noise	
Chapter No. 4: Mixers			5 hrs
Down conversion mixers – general consideration	ns, spur-chart, CMOS mi	xers	
Unit			
Chapter 5: Oscillators			10 hrs
Oscillators – Basic topologies, VCO, phase concepts, phase noise in PLLs, different architecture.		cillators; PLLs – Basic	

Behzad Razavi, RF Microelectronics, Prentice Hall PTR, 1997


Thomas H. Lee, The design of CMOS radio-frequency integrated circuit, Cambridge University Press, 2006

Chris Bowick, RF Circuit Design, Newnes, 2007

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 86 of 89
Electronics and Communication Engineering			Year:

Course Code: 21EECE423	Course Title: CAD fo	r VLSI	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 Hours	
ISA Marks: 50	ESA Marks: 50	ESA Marks: 50 Total Marks: 100	
Teaching Hrs: 40		Exam Duration: 3	
Co	ontent		Hrs
U	nit - 1		
Chapter No. 1: Introduction Introduction to VLSI design methodologies Schematic editors: Parsing: Reading files, Layout. Layout Editor: Turning plotter into cells, PLA generators.	describing data formats	, Graphics & Plotting	8 hrs
Chapter No. 2: Silicon Compiler Introduction to Silicon compiler, Data path planning.	, Compiler, Placement &	routing, Floor	7 hrs
U	nit - 2		•
Chapter No. 3: Layout Analysis and Simulations Layout Analysis: Design rules, Object bas Module generators. Simulation: Types of simulator, functional simulator & Circuit sir code and Event-driven. Optimization Algorannealing, genetic algorithm and neural management.	ed DRC, Edge based lay simulation, Behavioral sir mulator. Simulation Algo rithms: Greedy methods,	mulator, logic rithms: Compiled	10 hrs
Chapter No. 4: Testing ICs Testing ICs: Fault simulation, Aids for test complexity issues: Big Oh and big omega	generation and testing.	Computational	5 hrs
U	nit - 3		1
Chapter 5: Recent Topics in CAD-VLSI Recent topics in CAD-VLSI: Array compile synthesis tools and VHDL modeling.	ers, hardware software co	o-design, high-level	10 hrs

1. Stephen Trimberger," Introduction to CAD for VLSI", Kluwer Academic publisher, 2002

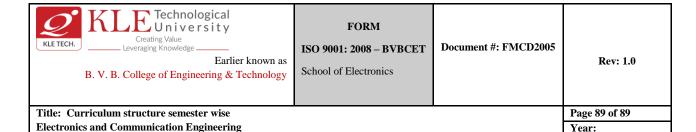
2. Naveed Shervani, "Algorithms for VLSI physical design Automation", Kluwer Academic Publisher, Second edition.

Reference Books

1. Gaynor E. Taylor, G. Russell, "Algorithmic and Knowledge Based CAD for VLSI", Peter peregrinus ltd. London. 2. Gerez, "Algorithms VLSI Design Automation", John Wiley & Sons.

Course Code: 21EECE424	Course Title: System	Course Title: System on Chip Design	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 Ho	ours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40		Exam Duration: 3	
	Content		Hrs
	Unit - 1		I
Chapter No. 1: Introduction Introduction: Driving Forces for SoC - Hardware/Software nature of SoC - Desi			5 hrs
Chapter No. 2: System Level Design System-level Design: Processor selection-Concepts in Processor Architecture: Instruction set architecture (ISA), elements in Instruction Handing-Robust processors: Vector processor, VLIW, Superscalar, CISC, RISC—Processor evolution: Soft and Firm processors, Custom Designed processors- on-chip memory.			10 hrs
	Unit - 2		
Chapter No. 3: On-chip bus and IP based designate Interconnection: On-chip Buses: based protocols, Bus standards: AMBA, Core of Architecture topologies-switching strategof-Service- Reconfigurability in communal Introduction to IP Based design, Types of Creating and using IP - Technical concern FPGA prototypes.	sic architecture, topolog Connect, Wishbone, Avalogies - routing algorithms ication architectures. IP b of IP, IP across design his	on - Network-on chip: flow control, Quality- ased system design: erarchy, IP life cycle,	10 hrs
Chapter No. 4: SoC Implementation			5 hrs

Creating Value Leveraging Knowledge Earlier known as B. V. B. College of Engineering & Technology	FORM ISO 9001: 2008 – BVBCET School of Electronics	Document #: FMCD2005	Rev: 1.0
Title: Curriculum structure semester wise			Page 88 of 89
Electronics and Communication Engineering			Year:


SOC implementation: Study of processor IP, Memory IP, wrapper Design - Real-time operating system (RTOS), Peripheral interface and components, High-density FPGAs - EDA tools used for SOC design.	
Unit - 3	
Chapter 5: SoC Testing SOC testing: Manufacturing test of SoC: Core layer, system layer, application layer-P1500 Wrapper Standardization-SoC Test Automation (STAT).	10 hrs

- 1. Michael J.Flynn, Wayne Luk, "Computer system Design: Systemon-Chip", Wiley-India, 2012.
- 2. Sudeep Pasricha, Nikil Dutt, "On Chip Communication Architectures: System on Chip Interconnect", Morgan Kaufmann Publishers, 2008.
- 3. W.H.Wolf, "Computers as Components: Principles of Embedded Computing System Design", Elsevier, 2008.

Reference Books

- 1. Patrick Schaumont "A Practical Introduction to Hardware/Software Co-design", 2nd Edition, Springer, 2012. 2. Lin, Y-L.S. (ed.), "Essential issues in SOC design: designing complex systems-on-chip. Springer, 2006.
- 3. Wayne Wolf, "Modern VLSI Design: IP Based Design", Prentice-Hall India, Fourth edition, 2009.

Course Code: 21EECE422 Course Title: Speech Processing			
L-T-P: 3-0-0	Credits: 3	ts: 3 Contact Hrs: 3 Hours	
ISA Marks: 50	ESA Marks: 50	SA Marks: 50 Total Marks: 100	
Teaching Hrs: 40		Exam Duration: 3	
	Content		Hrs
	Unit - 1		1
Chapter No. 1: Introduction Basic Concepts: Speech Fundamenta Classification of Speech Sounds; A production; Review of Digital Signa Transform, Filter-Bank and LPC Method	coustic Phonetics – ac I Processing concepts;	coustics of speech	
Chapter No. 2: Speech Analysis Features, Feature Extraction and Patte measures – mathematical and pero Distances, Weighted Cepstral Distances Distortion using a Warped Frequency S Alignment and Normalization – Dynam	eptual – Log Spectral s and Filtering, Likelihood cale, LPC, PLP and MFC	Distance, Cepstral Distortions, Spectral C Coefficients, Time	

Paths.	
Unit - 2	
Chapter No. 3: Speech Modeling Hidden Markov Models: Markov Processes, HMMs – Evaluation, Optimal State Sequence – Viterbi Search, Baum-Welch Parameter Re-estimation, Implementation issues	10 hrs
Chapter No. 4: Speech Recognition Large Vocabulary Continuous Speech Recognition: Architecture of a large vocabulary continuous speech recognition system – acoustics and language models – n-grams, context dependent sub-word units; Applications and present status.	5 hrs
Unit - 3	
Chapter 5: Speech Synthesis Text-to-Speech Synthesis: Concatenative and waveform synthesis methods, subword units for TTS, intelligibility and naturalness – role of prosody, Applications and present status.	10 hrs

1.Lawrence Rabinerand Biing-Hwang Juang, "Fundamentals of Speech Recognition", Pearson Education, 2003. 2.Daniel Jurafsky and James H Martin, "Speech and Language Processing – An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition", Pearson Education.

Reference Books

- 1.Steven W. Smith, "The Scientist and Engineer's Guide to Digital Signal Processing", California Technical Publishing.
- 2.Thomas F Quatieri, "Discrete-Time Speech Signal Processing Principles and Practice", Pearson Education. 3.Claudio Becchetti and Lucio Prina Ricotti, "Speech Recognition", John Wiley and Sons, 1999.
- 4.Ben gold and Nelson Morgan, "Speech and audio signal processing", processing and perception of speech and music, Wiley- India Edition, 2006 Edition.
- 5. Frederick Jelinek, "Statistical Methods of Speech Recognition", MIT Press.