

Farmercoin Smart Robotic Solutions (OPC) Pvt Ltd. Start-up street, 1st Floor, R H Kulkarni Building KLE technological University. Vidyanagar, Hubli. 580031

CERTIFICATE

This is to certify that **Mr Junaid Ahmed USN: 01FE15BAR020** student of **Bachelor of Engineering, KLE Technological University, Hubballi** has successfully completed his Internship training on **Data Analysis** in our organization from 1st February 2022 to 31st May 2022.

He took keen interest in the work assigned to him. His conduct and behavior was found good.

We wish him all success in his future endeavors.

Date: 31st May 2022

Name:

Signature:

(Mentor)

Name:

Signature:

(Head of Organization)

NEX-G AUTOMATION LLP

CERTIFICATE OF INTERNSHIP

This is to certify that Mr. NAKUL SINGH HAJERI, student of 8th Semester, department of Automation and Robotics, KLE Technological University Hubballi, bearing Reg No 01FE17BAR033, has successfully completed Internship project on "WAREHOUSE MANAGEMENT USING RFID TAGS", from 10th January 2022 - 31st may 2022, as part of the internship training, he has been placed in the Design and Development team and involved in relative activity of the project During the internship with us he was found punctual, hardworking and inquisitive.

FOR NEX- G AUTOMATION LLA Authorised Signature

Creintors Automation Solutions Pvt.Ltd. An Integrated Management System Certified Company (Aligned with ISO 9001, 14001, 27001 and 45001) Ref No: CASPL/IL/06/06/2022

TO WHOMSOEVER IT MAY CONCERN

This is to certify that Mr. Amogh Sutar, USN : 01FE18BAR005, Studying in IVth Year BE in Automation & Robotics from KLE Technological University, Hubli-580031. He has Successfully completed his Internship Training under the guidance of Mrs. Disha Chougule, Assistant Manager Software, on "Programming, Control & Communication in Industrial Automation Systems" and also completed the project on Automation of Vertical Storage System, at Creintors Automation Solutions Pvt Ltd, Waghawade Road, Waghawade- Belgaum-590018 from 17th January 2022 to 03rd June 2022.

During the period of his internship with us, we found him sincere, hardworking and a quick learner.

We wish him all the best in his future endeavor.

With Regards

For Creintors Automation Solutions Pvt. Ltd.

Authorised Signatory

Plot No-2, Survey No. 22/3, Waghawade Road, Waghawade, Belgaum 590018 Karnataka, India. Mob: +91 77950 00801 | E-mail: sales@cautomate.com | Website: www.cautomate.com CIN No. U29266KA2017PTC101599

Nymble

CIN: U29304KA2017PTC106542

GSTIN: 29AAFCN7862H1ZY

Date: June 3, 2022

To Name: Haripriya Jagadeesh Designation: Robotics Intern Nymble Labs Private Limited, Bangalore

Subject: Experience and Relieving Letter

Dear Haripriya,

This is to hereby confirm that you were an employee of Nymble Labs Private Limited from January 17, 2022, to May 31, 2022. This is also to confirm that your designation at the time of being relieved from the services of Nymble Labs Private Limited was 'Robotics Intern' and you were involved in designing and developing electromechanical systems, including PCBs & mechanical testing jigs and other associated duties.

We would like to place on record the high levels of professionalism, sincerity, and dedication displayed by you over the duration of your association with Nymble Labs Private Limited and believe that you shall be a value addition to whichever organization you decide to join in the future.

Further to this, we would also like to remind you about the terms of the Internship Agreement signed by you. You shall continue to be bound by all terms of the agreement for the specified period post termination of your employment, including the conditions of confidentiality and other relevant terms.

We would also hereby like to put on record that your termination from employment has been processed subject to your resignation request. As per your request, you have been relieved from your duties effective immediately. We also confirm that all your dues and final settlement has been cleared.

We wish you the very best for all your future endeavors and projects!

For and on behalf of Nymble Labs Private Limited

For Nymble Labs Pyt, Ltd.

Raghav Gupta Chief Executive Officer Nymble Labs Private Limited

18 May 2022

Mr.Malhar Kulkarni

INTERNSHIP CERTIFICATE

This has reference to your Completion of Internship under Genesis Programme in L&T Technology Services Limited (LTTS).

Relevant details of internship during the tenure with LTTS are as under.

INTERNSHIP ID	:	99007682
INTERNSHIP START DATE	:	1 February 2022
INTERNSHIP END DATE	:	13 May 2022
LOCATION	:	Mysore

We wish you success in your future endeavours.

Yours Sincerely, For L&T Technology Services Limited,

26 May 2022

CERTIFICATE

This is to certify that Miss Phalguni Puranik (USN No. 01FEI8BAR050) a student of VIII Semester, BE Automation and Robotics from KLE Technological University, Hubbali has successfully completed her in-plant training/project in our organization during 07.02.2022 to 26.05.2022 on the topic of the project is "Auto grinding and finishing".

We wish all the best for her future endeavors.

For Kirloskar Ferrous Industries Limited

Santibhusan Das Senior Manager-Training & Development

Kirloskar Ferrous Industries Limited A Kirloskar Group Company

Works: Bevinahalli Village & Post - 583234, Taluk & Dist. Koppal, Karnataka (India) Phone: +91 (8539) 286711, 286715 Email : kfil.info@kirloskar.com | Website : www.kirloskarferrous.com CIN: L27101PN1991PLC063223 Creintors Automation Solutions Pvt.Ltd. An Integrated Management System Certified Company (Aligned with ISO 9001, 14001, 27001 and 45001) Ref No: CASPL/IL/09/06/2022

TO WHOMSOEVER IT MAY CONCERN

This is to certify that Mr. Siddhant Havalad, USN : 01FE18BAR053, Studying In IVth Year BE In Automation & Robotics from KLE Technological University, Hubil-580031. He has Successfully completed his Internship Training under the guidance of Mrs. Disha Chougule, Assistant Manager Software, on "Programming, Control & Communication in Industrial Automation Systems" and also completed the project on Automation of Vertical Storage System, at Creintors Automation Solutions Pvt Ltd, Waghawade Road, Waghawade- Belgaum-590018 from 17th January 2022 to 03rd June 2022.

During the period of his internship with us, we found him sincere, hardworking and a quick learner.

We wish him all the best in his future endeavor.

With Regards

For Creintors Automation Solutions Pvt. Ltd.

pr

Authorised Signatory

Plot No-2, Survey No. 22/3, Waghawade Road, Waghawade, Belgaum 590018 Karnataka, India. Mob: +91 77950 00801 | E-mail: sales@cautomate.com | Website: www.cautomate.com CIN No. U29266KA2017PTC101599

Date: 26.05-2022

INTERNSHIP CERTIFICATE

From 10-01-2022 to 10:05:2022 under the guidance of VINAYAK.H. TALWAR

During the period of her/ his internship program with us, she/he had been exposed to different processes and was found diligent, hardworking and inquisitive.

We wish her/ him every success in her/his life and career.

For Tantra Automations

18 May 2022

Mr.Abdul Haq Indikar

INTERNSHIP CERTIFICATE

This has reference to your Completion of Internship under Genesis Programme in L&T Technology Services Limited (LTTS).

Relevant details of internship during the tenure with LTTS are as under.

INTERNSHIP ID	:	99007612
INTERNSHIP START DATE	:	1 February 2022
INTERNSHIP END DATE	:	13 May 2022
LOCATION	:	Mysore

We wish you success in your future endeavours.

Yours Sincerely, For L&T Technology Services Limited,

18 May 2022

Mr.K A AMIRA SOHAIL

INTERNSHIP CERTIFICATE

This has reference to your Completion of Internship under Genesis Programme in L&T Technology Services Limited (LTTS).

Relevant details of internship during the tenure with LTTS are as under.

INTERNSHIP ID	:	99007621
INTERNSHIP START DATE	:	1 February 2022
INTERNSHIP END DATE	:	13 May 2022
LOCATION	:	Mysore

We wish you success in your future endeavours.

Yours Sincerely, For L&T Technology Services Limited,

18 May 2022

Mr.ASHWIN CHANDAPUR

INTERNSHIP CERTIFICATE

This has reference to your Completion of Internship under Genesis Programme in L&T Technology Services Limited (LTTS).

Relevant details of internship during the tenure with LTTS are as under.

INTERNSHIP ID	:	99007622
INTERNSHIP START DATE	:	1 February 2022
INTERNSHIP END DATE	:	13 May 2022
LOCATION	:	Mysore

We wish you success in your future endeavours.

Yours Sincerely, For L&T Technology Services Limited,

KLE Society's KLE Technological University DEPARTMENT OF AUTOMATION & ROBOTICS

Department of Automation & Robotics Structure of Board of Studies 2021-22, 05th June 2021

S. No.	Category	Nomination of the Committee		Name of the Person	Signature
1	Concerned Head of the Department/ School/ Center	Chairperson	1	Arunkumar C Giriyapur	Present
2	ONE Professor, ONE Associate Professor and ONE Assistant	Members	1	Dr. Jyoti Bali	Present
	Professor from the Department/		2	Dr. Vinod Kumar V Meti	Present
	School/ Center, nominated by the Dean Academic Affairs		3	Dr. Sachin Karadgi	Present
			4	Mr. Nagaraj.M.B	Present
3	ONE PG Coordinator for each of the PG programmes offered	Member(s)	1	NILL	
	by the Department/ School/ Center		2	NILL	
3	TWO Subject experts from outside the college nominated	Members	1	Dr. Dhanesh Manik, IIT Bombay.	Present
	by the Vice-Chancellor				
4	TWO representative from		1	Mr. Jitendra Kataria,	Present
	industry corporate sector/ allied area relating to placement	Members		Beckhoff Automation India Ltd.Pune	
	nominated by the Vice-		2	Dr. Abhijit Lele,	Present
а а <u>-</u>	Chancellor			Robert Bosch India	
5	ONE Post-graduate meritorious alumnus nominated by the Vice-Chancellor	Member	1	Mr. Supreet Kamatagi	Present
6	ONE Student Member	Invited	1	UG Student (Not	
	representing each of the	Member		Applicable at present)	
	program offered by the		2	PG Student (Not	
	Department/ School/ Center			Applicable at present)	
			3	PhD Student (Not	
			-	Applicable at present)	

The concerned Chairman of Board of Studies may invite additional experts to the Departmental Board of Studies as deemed fit.

A Departmental Board of Studies shall:

Meet at least once a year, sufficiently before the commencement;

Prepare detailed curricula and syllabi of concerned Programmes and submit to the Academic Council for approval and publication; and

Revise the curricula and syllabi from time to time and submit to the Academic Council for approval and publication

DEPARTMENT OF AUTOMATION AND ROBOTICS

SI. No	Members, BOS	Signature
1	Prof. A. C. Giriyapur, Chairperson, HOD, A & R Dept.	PRESENT
2	Dr. Dhanesh Manik, IIT Bombay.	PRESENT
3	Mr. Abhijit Lele, Robert Bosch India.	ABSENT
4	Mr. Jitendra Kataria, Beckhoff Automation India . Ltd. Pune	PRESENT
5	Mr. Supreet Kamatagi, Griffyn Robotech Pvt. Ltd.	PRESENT
6	Dr. Jyoti Bali, A & R Dept.	PRESENT
7	Dr. Vinod Kumar V Meti, A & R Dept.	PRESENT
8	Dr. Sachin Karadgi, A & R Dept.	PRESENT
9	Mr. Nagaraj M B, A & R Dept.	PRESENT

Structure of Board of Studies 2021-22, 05th June 2021

KLE Techno Ocimpian Design Stando		FORM ISO 9001: 2008 – BVB0 Department of Automation &		Doc	ument #: FMCD2003		Rev: 1.0
e: Curric gram: B	culum Structure-Overall		Total Program	Credit:178(134+44)			ge 1 of 1 ar: 2020-24
	III	IV	V	VI	VII		VIII
	Statistics And Integral Transforms 15EMAB201 (4-0-0) CALCULUS AND INTEGRAL TRANSFORMS (4-0-0)	Numerical methods and partial differential equations 15EMAB206 Vector calculus and differential equations 15EMAB241 (4-0-0)	Machine Learning & ROS 18EARC301 (3-0-0)	Hydraulics & Pneumatics 18EARC308 (4-0-0)	Industrial Data Networks 16EARC401 (4-0-0)	Professional Electiv XXEAREXXX (3-0-0)	
	Analog & Digital Electronic circuits 18EARC201 (4-0-0)	Machine Design 18EARC206 (3-0-0)	Programming Industrial Automation Systems 18EARC302 (4-0-0)	Professional Elective -1 XXEAREXXX (3-0-0)	Professional Elective -3 XXEAREXXX (3-0-0)	Open Elective (3-0-0)	(0-0-6)
	Kinematics Of Machinery 19EARC202 (4-0-0)	Control Systems 19EARC207 (4-0-0)	Real time Embedded Systems 18EARC304 (4-0-0)	Professional Elective -2 XXEAREXXX (3-0-0)	Professional Elective -4 XXEAREXXX (3-0-0)	198 Industry Internsh	one Project EARW402 ip –Project 17EARW49 0-0-11)
Semester wise	Data Structure Algorithm Design and Analysis 18EARC203 (4-1-0)	Microcontrollers Programming & Interfacing 18EARC208 (4-0-0)	Mechatronics System Design 18EARC304 (4-0-0)	Hydraulics And Pneumatics Lab 16EARP302 (0-0-1)	Professional Elective -5 XXEAREXXX (3-0-0)		
Courses Sem	Mechanics Of Materials 18EARC204 (3-0-0)	Object Oriented Programming & DBMS 19EARC209 (4-0-0)	Measurement Systems 18EARC305 (3-0-0)	Mechatronics & Measurements Lab 18EARP304 (0-0-1)	Senior Design Project 19EARW401 (0-0-6)		
S	Manufacturing Technology 18EARC205 (3-0-0)	Robot Analysis & Design 18EARC210 (4-0-0)	Machine Learning & ROS Lab 18EARP301 (0-0-1)	Real Time Embedded Systems Lab 16EARP307 (0-0-1)	CIPE 15EHSN401 (0-0-0)		
	Analog & Digital electronics lab 18EARP201 (0-0-1)	Manufacturing & Metrology lab 16EARP205 (0-0-1)	Programming Industrial Automation Systems Lab 18EARP302 (0-0-1)	PA & LR 16EHSC301 (3-0-0)	l,		
	Kinematics Of Machinery lab 18EARP202 (0-0-1)	Microcontrollers Programming & Interfacing Lab 18EARP208 (0-0-1)	Industrial Robotics Lab 18EARP303 (0-0-1)	Minor Project 17EARW302 (0-0-6)			
	Machine Drawing Lab 19EARP203 (0-0-1)	Object Oriented Programming & DBMS Lab 19EARP209 (0-0-1)	Mini Project 18EARW301 (0-0-3)				
Credits	26	26	24	22	19		17

in.

Program Head

KLE Technological University Congrue Deep:	FORM ISO 9001: 2008 – BVBCET artment of Automation & Robotics	Document #: FMCD2003	Rev: 1.0 Page 1 of 1
Title: Curriculum Structure-Overall	Total Program Cro	edit:178(134+44)	Year: 2020-24

	Professional Elective – 3,4-,5, and 6	Robotics
Automation	Informatics & Control	
Design of automatic machinery 17EARE402	AI for Autonomous Robots 17EARE301	Mobile robotics & Perception 17EARE401
Power electronics, motors and drives 16EARE301	Advanced Microcontroller 17EARE403	
Digital System Design & FPGA Programming 17EARE304	Computer Vision & Digital Image Processing 15EARE302	
	Smart Manufacturing 17EARE404	

/ nLr	Ytechnological JUniversity wy ^{tura}	FORM ISO 9001: 2008 – BVBC Department of Automation &		Docu	ment #: FMCD2003	F	Rev: 1.0
itle: Cu rogram	urriculum Structure-Overall			Credit:178(134+44)		Page 1 Year: 20	
	Ш	IV	V	VI	VII	VII	
	Statistics And Integral Transforms 15EMAB201 (4-0-0) CALCULUS AND INTEGRAL TRANSFORMS (4-0-0)	Numerical methods and partial differential equations 15EMAB206 Vector calculus and differential equations 15EMAB241 (4-0-0)	Machine Learning & ROS 18EARC301 (3-0-0)	Hydraulics & Pneumatics 18EARC308 (4-0-0)	Industrial Data Networks 16EARC401 (4-0-0)	Professional Elective -6 XXEAREXXX (3-0-0)	Internshi Training 17EARI49
	Analog & Digital Electronic circuits 18EARC201 (4-0-0)	Machine Design 18EARC206 (3-0-0)	Programming Industrial Automation Systems 18EARC302 (4-0-0)	Professional Elective -1 XXEAREXXX (3-0-0)	Professional Elective -3 XXEAREXXX (3-0-0)	Open Elective (3-0-0)	- (0-0-6)
	Kinematics Of Machinery 19EARC202 (4-0-0)	Control Systems 19EARC207 (4-0-0)	Real time Embedded Systems 18EARC304 (4-0-0)	Professional Elective -2 XXEAREXXX (3-0-0)	Professional Elective -4 XXEAREXXX (3-0-0)	Capstone I 19EARW Industry Internship –P (0-0-1	/402 roject 17EARW4
	Data Structure Algorithm Design and Analysis 18EARC203 (4-1-0)	Microcontrollers Programming & Interfacing 18EARC208 (4-0-0)	Mechatronics System Design 18EARC304 (4-0-0)	Hydraulics And Pneumatics Lab 16EARP302 (0-0-1)	Professional Elective -5 XXEAREXXX (3-0-0)		
	Mechanics Of Materials 18EARC204 (3-0-0)	Object Oriented Programming & DBMS 19EARC209 (4-0-0)	Measurement Systems 18EARC305 (3-0-0)	Mechatronics & Measurements Lab 18EARP304 (0-0-1)	Senior Design Project 19EARW401 (0-0-6)		
5	Manufacturing Technology 18EARC205 (3-0-0)	Robot Analysis & Design 18EARC210 (4-0-0)	Machine Learning & ROS Lab 18EARP301 (0-0-1)	Real Time Embedded Systems Lab 16EARP307 (0-0-1)	CIPE 15EHSN401 (0-0-0)		
	Analog & Digital electronics lab 18EARP201 (0-0-1)	Manufacturing & Metrology lab 16EARP205 (0-0-1)	Programming Industrial Automation Systems Lab 18EARP302 (0-0-1)	PA & LR 16EHSC301 (3-0-0)		194000-5782.34	
	Kinematics Of Machinery lab 18EARP202 (0-0-1)	Microcontrollers Programming & Interfacing Lab 18EARP208 (0-0-1)	Industrial Robotics Lab 18EARP303 (0-0-1)	Minor Project 17EARW302 (0-0-6)			
	Machine Drawing Lab 18EARP203 (0-0-1)	Object Oriented Programming & DBMS Lab 19EARP209 (0-0-1)	Mini Project 17EARW301 (0-0-3)				
edits	26	26	24	22	19	17	

Program Head

÷.

RETERN KLE Technological RETERN		FORM ISO 9001: 2008 – BVBCET Department of Automation & Robotics		Document #: FMCD2003	Rev: 1.0
Title: Curriculun Program: B.E	n Structure-Overall		Total Program Cred	dit:178(134+44)	Page 1 of 1 Year: 2019-23

Professional Elective – 3,4-,5, and 6				
Automation	Informatics & Control	Robotics		
Design of automatic machinery 17EARE402	AI for Autonomous Robots 17EARE301	Mobile robotics & Perception 17EARE401		
Power electronics, motors and drives 16EARE301	Advanced Microcontroller 17EARE403			
Digital System Design & FPGA Programming 17EARE304	Computer Vision & Digital Image Processing 15EARE302			
	Smart Manufacturing 17EARE404			

10

in.

	Technological L'University energiane Ser Generation	FORM ISO 9001: 2008 – BVBC Department of Automation &		Docu	ment #: FMCD2003		Rev: 1.0	
	urriculum Structure-Overall			Credit:178(134+44)			e 1 of 1 r: 2019-23	
	III	IV	V	VI	VII		VIII	
	Statistics And Integral Transforms 15EMAB201 (4-0-0) CALCULUS AND INTEGRAL TRANSFORMS (4-0-0)	Numerical methods and partial differential equations 15EMAB206 Vector calculus and differential equations 15EMAB241 (4-0-0)	Machine Learning & ROS 18EARC301 (3-0-0)	Hydraulics & Pneumatics 18EARC308 (4-0-0)	Industrial Data Networks 16EARC401 (4-0-0)	Professional Electi XXEAREXXX (3-0-0)		
	Analog & Digital Electronic circuits 18EARC201 (4-0-0)	Machine Design 18EARC206 (3-0-0)	Programming Industrial Automation Systems 18EARC302 (4-0-0)	Professional Elective -1 XXEAREXXX (3-0-0)	Professional Elective -3 XXEAREXXX (3-0-0)	Open Elective (3-0-0)		
	Kinematics Of Machinery 19EARC202 (4-0-0)	Control Systems 19EARC207 (4-0-0)	Real time Embedded Systems 18EARC304 (4-0-0)	Professional Elective -2 XXEAREXXX (3-0-0)	Professional Elective -4 XXEAREXXX (3-0-0)	4 Capstone Proj 19EARW40 Industry InternshipProje (0-0-11)		
	Data Structure Algorithm Design and Analysis 18EARC203 (4-1-0)	Microcontrollers Programming & Interfacing 18EARC208 (4-0-0)	Mechatronics System Design 18EARC304 (4-0-0)	Hydraulics And Pneumatics Lab 16EARP302 (0-0-1)	Professional Elective -5 XXEAREXXX (3-0-0)			
	Mechanics Of Materials 18EARC204 (3-0-0)	Object Oriented Programming & DBMS 19EARC209 (4-0-0)	Measurement Systems 18EARC305 (3-0-0)	Mechatronics & Measurements Lab 18EARP304 (0-0-1)	Senior Design Project 19EARW401 (0-0-6)			
	Manufacturing Technology 18EARC205 (3-0-0)	Robot Analysis & Design 18EARC210 (4-0-0)	Machine Learning & ROS Lab 18EARP301 (0-0-1)	Real Time Embedded Systems Lab 16EARP307 (0-0-1)	CIPE 15EHSN401 (0-0-0)			
	Analog & Digital electronics lab 18EARP201 (0-0-1)	Manufacturing & Metrology lab 16EARP205 (0-0-1)	Programming Industrial Automation Systems Lab 18EARP302 (0-0-1)	PA & LR 16EHSC301 (3-0-0)		16.000 sila	Marianos	
	Kinematics Of Machinery lab 18EARP202 (0-0-1)	Microcontrollers Programming & Interfacing Lab 18EARP208 (0-0-1)	Industrial Robotics Lab 18EARP303 (0-0-1)	Minor Project 17EARW302 (0-0-6)				
	Machine Drawing Lab 18EARP203 (0-0-1)	Object Oriented Programming & DBMS Lab 19EARP209 (0-0-1)	Mini Project 17EARW301 (0-0-3)					
dits	26	26	24	22	19		17	

the -

Program Head

Q. KLE TECH.	FORM ISO 9001: 2015- KLE TECH Department of Automation & Robotics	Document #: FMCD2006	Rev: 1.0
Review-Curriculum Design and Development			Page 1 of 1
			Year: 2021-22

Semester: III & IV (2020-24 batch)

Date of Review: 05-06-2021

Inputs for review: PEO- Mapping of CLO with PO - Academic Guidelines-Previous review outcomes

Sr.No	Features reviewed	Status of Review				
		Accepted	Accepted with minor changes	Not accepted		
01	Overall schemes of the program					
а	Credits					
b	Flow					
С	Contact hours					
1	Semester wise curriculum structure					
а	Credits					
b	Flow					
С	Contact hours	~				
d	Evaluation scheme					
03	Course contents					
а	Subject contents					
b	Unitization		· · ·			
С	Reference books					
d	Evaluation method					

onange	s Suggested (Serial number wise)				
	Reviewed syllas	is of all	courses	d TH f	IV sences
	and appeared	with no	changes	suggisted	hey
	pos mense		(01	

Reviewed by (Use initials)	DR. Dnanesn	Mr.Abhijit Lele	Mr. Jitendra Kataria	Supreet Kamatagi	A.C.Giriyapur	Dr.Jyoti Bali	Dr Vinod Meti	Nagaraj MB	Dr Sachin Karadgi
Signature	Virtually	Virtually	Virtually	Virtually	Virtually	Virtually	Virtually	Virtually	Virtually
	present	present	present	present	present	present	present	present	present X
					X	fibili	Que	NERS	Bachan

Q. KLE TECH.	FORM ISO 9001: 2015- KLE TECH Department of Automation & Robotics	Document #: FMCD2006	Rev: 1.0	
Review-Cu	rriculum Design and Development		Page 1 of 1	
			Year: 2021-22	

Semester: V & VI (2019-23 batch)

Date of Review: 05-06-2021

Inputs for review: PEO- Mapping of CLO with PO - Academic Guidelines-Previous review outcomes

Sr.No	Features reviewed	Status of Review				
		Accepted	Accepted with minor changes	Not accepted		
01	Overall schemes of the program					
а	Credits	V				
b	Flow					
C	Contact hours					
52	Semester wise curriculum structure					
а	Credits					
b	Flow					
с	Contact hours	/				
d	Evaluation scheme					
03	Course contents					
а	Subject contents	~				
b	Unitization	V				
с	Reference books	. /				
d	Evaluation method					

Change	es Suggested (Serial number wise)
	Reviewed Syllabus of all courses of T + VI servester and appoved with no changes. Ingested by bos
	menheut.
1	

Reviewed by (Use initials)	DR. Dhanesh	Mr.Abhijit Lele	Mr. Jitendra Kataria	Supreet Kamatagi	A.C.Giriyapur	Dr.Jyoti Bali	Dr Vinod Meti	Nagaraj MB	Dr Sachin Karadgi
Signature	Virtually present	Virtually present	Virtually present	Virtually present	Virtually present 1	Virtually present	Virtually present	Virtually present	Virtually present
					De	Shel	9. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	ND9 - C	Andras

Q KLE TECH.	FORM ISO 9001: 2015- KLE TECH Department of Automation & Robotics	Document #: FMCD2006	Rev: 1.0
Review-Curriculum Design and Development			Page 1 of 1
			Year: 2021-22

Semester: VII & VIII (2018-22 batch)

Date of Review: 05-06-2021

Inputs for review: PEO- Mapping of CLO with PO – Academic Guidelines-Previous review outcomes

Sr.No	Features reviewed	Status of Review				
		Accepted	Accepted with minor changes	Not accepted		
01	Overall schemes of the program					
а	Credits					
b	Flow	V				
C	Contact hours	~				
52	Semester wise curriculum structure					
а	Credits					
b	Flow					
С	Contact hours					
d	Evaluation scheme					
03	Course contents					
а	Subject contents					
b	Unitization					
С	Reference books					
d	Evaluation method					

Change	es Suggested (Serial number wise)
P	Reviewed Sylleibus of all courses of VII of VIII serves.
	BOS meanhers approved with no cleanges suggested.

Reviewed by (Use initials)	DR. Dhanesh	Mr.Abhijit Lele	Mr. Jitendra Kataria	Supreet Kamatagi	A.C.Giriyapur	Dr.Jyoti Bali	Dr Vinod Meti	Nagaraj MB	Dr Sachin Karadgi
Signature	Virtually present	Virtually present	Virtually present	Virtually present	Virtually present	Virtually present	Virtually present	Virtually present	Virtually present
						Jokeli	Quived .	NOON	Section

5th June 2021

Agenda

SI.No	Points to discuss	Documents
1.	Introduction & Review of Actions initiated from previous BOS meeting	· · · · · · · · · · · · · · · · · · ·
2.	Review of modifications recommended by the Academic Council after BOS 2020.	
3.	Review and approval of Syllabi for VII & VIII Semester of the batch 2018-22, KLE Tech.	Curriculum structure
4.	Review and approval of Syllabi for V & VI Semester of the batch 2019-23, KLE Tech.	& Syllabus
5.	Review and approval of Syllabi for III & IV Semester of the batch 2020-24, KLE Tech.	
6.	Any other points	

Minutes Prepared by

Dr Jyoti Bali

C

Prof A. C. Giriyapur

Chairperson, HOD, A&R

C.

MINUTES OF THE MEETING, 5 TH JUNE 2021					
SI.No	Points raised	Changes made	Raised By		
1.0	HOD introduced the way online teaching was carried out from the last academic year. HOD briefed about the arrangements for recording videos for asynchronous sessions and the online sessions, i.e. synchronous sessions. HOD discussed final year project/internship/industry internship activities.		Dr. Dhanesh Manik, IIT Bombay. Dr. Abhijit Lele, Robert Bosch Inc ia.		
2.0	Review of recommendations by the Academic Council or the Principal after BOS 2021.		Mr. Jitendra		
3.0 Curriculum & Syllabus for batch 2018-22	Review of Syllabi for VII & VIII Semester of the batch 2018-22, KLETU No changes proposed in the syllabus, BOS members approved the curriculum structure and the syllabus in the present form.	Review done and Approved	Mr. Jitendra Kataria, Beckhoff, Automation Ind Ltd.Pune Mr. Supreet		
3.0 Curriculum & Syllabus for batch 2019-23	Review of Syllabi for V & VI Semester of the batch 2019-23, KLETU. V Sem : No changes were proposed in the syllabus. BOS members approved the curriculum structure and the syllabus in the present form. VI Sem : New Elective introduced titled Robot Dynamics & Control, 17EARE302 for which the course objectives, syllabus content, In semester and end semester assessment was carried out. The elective course was approved.	Review done and Approved.	Kamatagi, Griffyn Robotec Pvt. Ltd.		
4.0 Curriculum & Syllabus for batch 2020-24	Review and approval of Syllabi for III & IV Semester of the batch 2020-24, KLETU. No changes were proposed in the syllabus. BOS members approved the curriculum structure and the syllabus in the present form.	Review done and Approved.	Dr. Dhanesh Manik, IIT Bombay. Dr. Abhijit Lele,		
5.0 Experience sharing by Faculty	 Faculty members shared their experience in recording the asynchronous videos for the allotted subjects in studios and the online interaction with students during synchronous sessions. HOD played some of the recorded videos before the BOS members for their comments. BOS members appreciated the online training of students for the practical exercises on simulation in the laboratories, namely, the use of NPTEL resources in the PIAS lab, Control Systems tutorial and other Programming labs. BOS members welcomed the steps initiated and activities implemented to foster remote learning by students during the Covid pandemic. Mr Jitendra Kataria, MD Beckhoff Automation India, advised 	Review done and Appreciate d.	Robert Bosch Ind ia. Mr. Jitendra Kataria, Beckhoff, Automation India Ltd.Pune Mr. Supreet Kamatagi, Griffyn Robotech Pvt. Ltd.		

0

The second

Creating Value Leveraging Knowledge __

Contraction of the local division of the loc

1

Technological University

	practising the TwinCAT software-based automation exercises in PIAS Lab		
	 Data Structures Algorithm Design and Analysis: The pedagogy practices and the hand on exercises explained by Mrs Ashwini G K were reviewed and appreciated by BOS members. Measurement Systems Theory and Lab: Practices followed in the theory and lab sessions explained by Dr Vinod M were reviewed and appreciated by BOS members. 		
	Achievements by Final year students of 2018-22 Batch, A&R as a part of their Project work Humanoid Robot for Banking Sector "MAYA", the Humanoid Robot, is a sponsored project specifically developed to address all "Grahak Mitra" (customer care) needs in a		
	banking system such as guidance for account opening, transactions and also guiding the customers towards the respective counters. This Robot can provide solutions for better customer service, besides marketing, process automation and many others. It houses the additional features, namely, Chatbot, face recognition, automatic docking after discharge and Al-based intelligent decision making in the form of multi-lingual conversations like a human. The cost incurred for the project is five lakhs. Maya robot weighs 15kg with a		Dr. Dhanesh Manik, IIT Bombay. Dr. Abhijit Lele, Robert Bosch India.
6.0 Achievements by students	battery backup of 8-10 hours. Smart India Hackathon (SIH)2020 A team of 6 members from Automation and Robotics and Mechanical	Appreciated	Mr. Jitendra Kataria, Beckhoff, Automation India Ltd.Pune
	engineering students were part of the project, which emerged as Joint Winners of the Challenge SIH 2020. The team has selected the problem statement as Fire Safe Infrastructure for Construction Industry given by the Department of Scientific and Industrial Research. The solution proposed by the team was a robot that was designed to operate remotely. The primary mechanism is a spring-		Mr. Supreet Kamatagi, Griffyn Robotech Pvt. Ltd.
	based launcher mechanism that launches fire extinguisher balls. These balls are excellent at clearing out rooms in short amounts of time and can significantly assist rescue operations where speed and efficiency are of paramount importance. The secondary mechanism is a traditional spray based fire extinguisher, which is actuated by a cam mechanism.		
	The research group presentation was done by ERG members, namely, Dr Sachin Karadgi, Dr Vinod Meti and Dr Jyoti Bali, briefing about the research activities taken up at the department for grooming research culture in the department. The research focus areas and the themes		Dr. Dhanesh Manik, IIT Bombay. Dr. Abhijit Lele,
Research @A&R dept	taken up by faculty teams under the Research domain: Industry 4.0 was presented. The research plan and the path set by different faculty teams were appreciated.	Review done and Appreciated.	Robert Bosch India. Mr. Jitendra Kataria, Beckhoff,
	Dr Abhijit Lele appreciated the initiatives taken up by faculty members with regards to research activities. He explained the need and the scope of working with Traceability, Accountability factors in digital twin-based applications, namely, Tracking parcels in the		Automation India Ltd.Pune Mr. Supreet
	Warehouse, Use of Drones for warehouse management, Constant		Kamatagi,

	Temperature tracking in the Supply chain to avoid the spoilage and wastage of vaccines.	Griffyn Robotech Pvt. Ltd.
	The external BOS members appreciated the plan of research methodology models introduced for young faculty members. They advised faculty members to apply for research funding from various Govt. schemes.	
5.0 Final Comments	Approved the initiatives and activities taken up at the department to build the proficiency of faculty members at the academic and research level. VI, BOS Meeting ended with Vote of Thanks proposed by HOD, Dept. A&R, KLETU	

The Curriculum Contents for III and IV Semester of batch 2020-24, IV & V Semester of the batch 2019-23 and VII & VIII Semester of the batch 2018-22 are approved in VI BOS held as Virtual Google Meet 5th June 2021.

Approved by:

SI. No	Members, Board of Studies	Signature
1	Prof. A. C. Giriyapur, Chairperson, HOD, A & R Dept. KLETU	Present
2	Dr. Dhanesh Manik, IIT Bombay.	Present
3	Dr. Abhijit Lele, Robert Bosch India.	Present
4	Mr. Jitendra Kataria, Beckhoff Automation India . Ltd. Pune	Present
5	Mr. Supreet Kamatagi, Griffyn Robotech Pvt. Ltd.	Present
6	Dr Jyoti Bali, A & R Dept. KLETU	Present fibility
7	Dr Vinod Kumar V Meti, A & R Dept. KLETU	Present W.
8	Dr Sachin Karadgi, A & R Dept. KLETU	Present Jacks
9	Mr Nagaraj M B, A & R Dept. KLETU	Present NK

Resolutions made during the 6th Board of Studies Meeting held on 5th June 2021 as

- It was resolved to approve Syllabi for the III and IV Semester of batch 2020-24, KLETU.
- It was resolved to approve Syllabi for the V & VI Semester of the batch 2019-23, KLETU.
- It was resolved to approve Syllabi for the VII & VIII Semester of the batch 2018-22, KLETU.
- Curriculum Content for III and IV Semester of the batch 2020-24, V & VI Semester of the batch 2019-23, VII & VIII Semester of the batch 2018-22, in 6th BOS held in Virtual Meeting held through Google Meet 5th June 2021 from 10 am to 12 pm.
- Approved contents of all the courses and laboratories discussed in the BOS meeting are attached to this document.

Approved by:

SI No	Members, BOS	Signature
1	Prof. A. C. Giriyapur, Chairperson, HOD, A & R Dept.	Jul
2	Dr. Dhanesh Manik, IIT Bombay.	Present
3	Dr. Abhijit Lele, Robert Bosch India.	Present
4	Mr. Jitendra Kataria, Beckhoff Automation India . Ltd. Pune	Present
5	Mr. Supreet Kamatagi, Griffyn Robotech Pvt. Ltd.	Present
6	Dr Jyoti Bali, A & R Dept.	ISE
7	Dr Vinod Kumar V Meti, A & R Dept.	Lug-rad
8	Dr Sachin Karadgi, A & R Dept. KLETU	Jackson h
9	Mr Nagaraj M B, A & R Dept. KLETU	INTERIO

 KLE TECH.
 Leveraging Knowledge

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India)

 Department of Automation & Robotics

B.E. (Automation & Robotics) Curriculum Structure & Syllabus 2018 – 22 Batch

Technological University

 KLE TECH.
 Creating Value

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India)

 Department of Automation & Robotics

								Marks	
Course Code	Course Title	Category	L	Т	Р	Hrs	Credits	ISA	ESA
16EARC401	Industrial Data Networks	PSC	4	0	0	4	4	50	50
17EARE401	Mobile robotics & Perception	PSE	3	0	0	3	3	50	50
17EARE402	Design of automatic machinery	PSE	3	0	0	3	3	50	50
17EARE403	Advanced Microcontroller	PSE	3	0	0	3	3	50	50
19EARW401	Senior Design Project	PSC	0	0	6	12	6	80	20
15EHSA401	CIPE	HSC	0	0	0	3	0	50	50
	Total		13	0	6	28	19		

Semester: VII

ISA: Internal Semester Assessment, ESA: End Semester Assessment, L: Lecture T: Tutorials,

P: Practical, PSC: Program Scheme Core, HSC: Humanities Scheme Core, BS: Basic Science

 KLE TECH.
 KLE TECH.

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

						Marks			
Course Code	Course Title	Category	L	Т	Р	Hrs	Credits		
						IIII	Cicuits	ISA	ESA
17EARE404	Smart Manufacturing	PSE	3	0	0	3	3	50	50
XXXXX	Open Elective	OE	3	0	0	3	3	50	50
ARW402	Capstone Project	PRJ	0	0	11	22	11	80	20
	Total		0	0	17	28	17	1.1.1.1.1.1.1	
		OR					14 P		
17EARI493	Internship-Training	IE	0	0	6	6	6	50	50
17EARW494	Industry Internship -Project Work	IEPRJ	0	0	11	11	11	50	50
	Total		0	0	17	17	17		

Semester: VIII

ISA: Internal Semester Assessment, ESA: End Semester Assessment, L: Lecture T: Tutorials,

P: Practical, PSC: Program Scheme Core, HSC: Humanities Scheme Core, BS: Basic Science

	Course Content			
Course Code: 16EARC401	Course Title: Indust	rial Data Networks		
L-T-P : 4-0-0	Credits: 4	4 Contact Hrs: 50		
ISA Marks: 50	ESA Marks: 50	A Marks: 50 Total Marks: 100		
Teaching Hrs: 50 Exam Duration			: 3 hrs	
Co	ontent		Hrs	
L. L	Jnit I			
Chapter No. 1. DATA NETWORK FUNDAMI Modern Instrumentation and Control Sy Model, Concepts of Parallelization, Sequ Control, Error Correction, Time Division, Bi Optics Overview, Circuit Switching and Par Ethernet Topology, 10 Mbps Ethernet, 1 Devices (Repeaters, Bridges, Hubs, Switche	vstems, Open Systems Intential, Framing, Bit Encod it Rate, and Baud Rate, EIA cket Switching, Network To Gigabit Ethernet, Interne	terconnection (OSI) ding, Media Access -232, EIA-485, Fiber opologies, Ethernet,	8	
Chapter No. 2. TCP/IP IP Version 4 (IPv4), IP Version 6 (IPv6), Add Control Message Protocol (ICMP), IP Routir Datagram Protocol (UDP)			7	
Chapter No. 3. MODBUS MODBUS: Protocol Structure, Function Cod	les	-	5	
U	Init II	1		
Chapter No. 4. FIELDBUS, PROFIBUS AND A FIELDBUS: Physical Layer, Data Link Layer a PROFIBUS: PROFIBUS DP (Decentralized Pe Protocol, Application Profiles, PROFIBUS PA AS-Interface: AS-Interface, Physical Layer, D Interface	nd Application Layer of FO riphery), PROFIBUS DP Con A (Process Automation)	nmunication	7	
Chapter No. 5. ETHERCAT, ETHERNET POW ETHERCAT: Architecture Model, Protocol, T EtherCAT Master, EtherCAT Slave Ethernet POWERLINK: Slot Communication Link Layer, Transport and Application Layer POWERLINK Addressing, Frame Structures SERCOS III:OSI Layers of SERCOS III, Commu Communication Network Infrastructure	opology, Distributed Clock Network Management, Ph of Ethernet POWERLINK, E	ysical Layer, Data Thernet	8	
Chapter No. 6. HART, BLUETOOTH AND OF HART: HART Protocol, Physical Layer, Data BLUETOOTH: Protocol Stack, Topologies, Ge	Link Layer and Application		5	

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

Creating Value

Technological University

Rate/Enhanced Data Rate (BR/EDR) Radio Operation, Low Energy (LE) Operation,	
Operational Procedures and Modes, Profiles	
OPC: Enterprise Integration, Manufacturing Execution Systems (MES), Process Analysis,	· · ·
Process Modeling, Data Modeling, Data Flow Diagrams (DFDs), Communication Patterns,	
Data Collection Technologies, OPC (OLE for Process Control)	
Unit III	1
Chapter No. 7. CAN, CAN FD AND DEVICENET	5
CAN: Physical Layer, Data Link Layer and Application Layer of CAN, Protocol, Bus	
Arbitration, Frames, Bit Stuffing, Bit Synchronization, Bit Timing	
CAN FD: Physical Layer, Data Link Layer and Application Layer of CAN FD, Protocol,	
Frames	
DEVICENET: Physical Layer, Data Link Layer, Network and Transport Layers, and	
Application Layer of DeviceNet	
Chapter No. 8. FLEXRAY AND MOST	5
FLEXRAY: Topologies, Protocol, Media Access Control (Communication Cycle), Frame	
Format, Clock Synchronization	
MOST: OSI Layers for MOST, Data Frame, Timing Master, Timing Slave, MOST Devices	

Text Books (List of books as mentioned in the approved syllabus)

- 1. Steve Mackay, Edwin Wright, Deon Reynders, John Park, "Practical Industrial Data Networks: Design, Installation and Troubleshooting," First edition, Newnes publication, Elsevier, 2004.
- 2. John Park, Steve Mackay, Edwin Wright, "Practical Data Communications for Instrumentation and Control," First edition, Newnes publication, Elsevier, 2003.
- ?

References

- 1. Modbus, http://www.Modbus.org.
- 2. FOUNDATION Fieldbus, http://www.fieldbus.org.
- 3. FOUNDATION Fieldbus, https://www.fieldcommgroup.org/technologies/foundation-fieldbus/foundation-technology-overview.
- 4. ProfiBus, https://www.profibus.com.
- 5. AS-Interface, http://www.as-interface.net.
- 6. HART, https://www.fieldcommgroup.org/technologies/hart/hart-technology.
- 7. EtherCAT, https://www.ethercat.org.
- 8. Ethernet POWERLINK, https://www.ethernet-powerlink.org.
- 9. SERCOS, https://www.sercos.org.
- 10. OPC Foundation, https://opcfoundation.org.
- 11. Bluetooth, https://www.bluetooth.com.
- 12. CAN, https://www.can-cia.org/can-knowledge.
- 13. CAN FD, https://www.can-cia.org/can-knowledge/can/can-fd.

Technological University

- 14. DeviceNet, https://www.odva.org.
- 15. FlexRay, http://www.ni.com/white-paper/3352/en.
- 16. Media Oriented Systems Transport (MOST), https://www.mostcooperation.com/cooperation/introduction.

Course Content

Course Code: 17EARE401	Course Title: Mobile Robo	Course Title: Mobile Robots and Perception			
L-T-P-: 3-0-0	Credits: 3	Contact Hrs: 40			
ISA Marks: 50	ESA Marks: 50	Total Marks: 100			
Teaching Hrs: 40		Exam Duration: 3 hrs			

Content	Hrs
Unit - 1	1
Chapter No. 01. Introduction to Mobile robots Intelligence and embodiment, A roboticist's problem, challenges of mobile autonomous robots, Locomotion, static and dynamic stability, degrees of freedom. Coordinate systems and frames of reference, forward kinematics, inverse kinematics, inverse kinematics using feedback control.	4 hrs
Chapter No. 02. Path Planning Map representations, path planning algorithms, sampling based path planning, path smoothing, planning at different length scales. Uncertainty and error propagation in robotics, probabilistic robotics, basic concepts in probability.	6 hrs
Chapter No. 03. Recursive State Estimation Robot environment interaction, Bayes filter, representation and computation. Gaussian filters, Kalman filter, extended kalman filter, information filter, histogram filter, particle filter.	5 hrs
Unit - 2	
Chapter No. 04. Robot Motion Kinematic configuration, probabilistic kinematics, velocity motion model, odometry motion model.	7 hrs
Chapter No. 05. Robot Perception Maps, Beam models of range finders, likelihood fields for range finders, correlation-based sensor models, feature-based sensor models.	8 hrs
Unit - 3	
Chapter No. 06. Mobile Robot Localization: Markov and Gaussian Mobile robot localization, Markov localization, EKF localization, Estimating correspondences, multi- hypothesis tracking, grid localization, Monte Carlo localization.	5 hrs
Chapter No. 07. Occupancy Grid Mapping Occupancy grid mapping, Simultaneous localization and mapping, RGB-D SLAM.	5 hrs

Text Book

• Sebastian Thrun, Wolfram Burgard & Dieter Fox, " Probabilistic Robotics", The MIT Press

Reference Book

- Eugene Kagan, Nir Shvalb & Irad Ben-Gal, "Autonomous Mobile Robots and Multi-Robot Systems", First Edition, John Wiley & Sons Ltd, 2020.
- Nikolaus Correll, Introduction to Autonomous Robots, 1st edition

Course Content

Coui	rse Code: 17EARE402	Code: 17EARE402 Course Title: Design of Automatic Machinery		
L-T-F	P: 3-0-0 Credits: 3 Contact Hrs: 40		Contact Hrs: 40	
ISA I	arks: 50 ESA Marks: 50 Total Marks: 100		Total Marks: 100	
Teac	hing Hrs: 40		Exam Duration: 3 Hrs	
		UNIT – I		
No		Content	and president states in the	Hrs
1	Chapter 1: Introduction and Steps to Automat What is Automation, An Automati project assignments? Justifying Automation Traditional Project Cost Justification and Selling Automation, Win–Win Building and Selling Automation, Intellectual Property, Patents, Trade	on design process, examples of n for a Purchase, Traditional Cos Purchasing Philosophy, Maximur Justifying Flexible Automation	ting Estimating for Building m Profit Cost Estimating for n over Hard Automation,	6
2	Chapter 2: The Automation Design Process System Specifications, Brainstormin by Transfer Method, Machine Confi Project and Conclusions, Case Study Insertion and Printing, Case Study N	iguration Trade-offs Mechanisms dy Number 1: Case Opening, Ca	Toolbox, TBBL Automation ase Study Number 2: Label	4
3	Chapter 3: Workstations Workstation Basics, Drive Mechanis Study Number 2: Automated Screwo Feeders Feeders Feeders, Automatic Feeding and Ori Bowl Feeder, Centripetal Feeder, Fi Escapements, Parts-Placing Mechan	driver Workstation Design, Machi enting — Vibratory Feeders, Esca lexible Feeders, Gravity Feed Tra	ine Design and Safety. apement Feeders, Vibratory acks, Powered Feed Tracks,	5

	Cookies, Case Study Number 2: Feeding of TBBL Cases.	
	UNIT – II	
4	Chapter 4: Conveyors Flat Belt Conveyors, Tabletop Chain Conveyor, Belt Conveyors, Static (Gravity) Conveyors, Powered Conveyors, Heavy Unit Load Handling Conveyors, Case Study Number 3: Donut Loader Machine.	3
5	Chapter 5: Single Station Manufacturing Cells Single station manned cells, single station automated cells, applications of single station cells, analysis of single station systems. Manual Assembly Lines Fundamentals of manual assembly lines, Analysis of single model assembly lines, Line balancing algorithms, Mixed model assembly lines, Workstation considerations, Other considerations in assembly line design, Alternative assembly systems. Automated Product Lines Fundamentals of automated product lines, applications of automated product lines, Analysis of transfer lines.	6
6	Chapter 6: Automated Assembly Systems Fundamentals of automated assembly systems, Quantitative analysis of assembly systems. Cellular Manufacturing Part families, part classification and coding, product flow analysis, cellular manufacturing, applications of group technology, quantitative analysis in cellular manufacturing. Flexible Manufacturing Systems Introduction to flexible manufacturing system, flexible manufacturing systems components, flexible manufacturing systems applications and benefits, flexible manufacturing system planning and implementation issues, quantitative analysis of flexible manufacturing systems.	6
7	UNIT - III *	
/	Expectations, Other Problems Beyond Specifications, Example 1: Bulk Mail Carrier (BMC)	5

 KLE TECH.
 Creating Value

 Leveraging Knowledge

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India)

 Department of Automation & Robotics

	Unloader, Specifications, Design Specifications, Comments, Request for Quote, Example 2: BMC Unloader Bid Award Package.	
	Chapter 8: Packaging Machines	
8	Liquid Filling Machines, Cartoning and Boxes, Labeling, Cases, Palletizing, Forming Pouche, Blister Packs and Bags.	5
TEXT	BOOKS:	
1.	Stephen J. Derby., "Design of Automatic Machinery", 2005	
2.	Patrick M. McGuire, P.E., "Conveyors", CRC Press, 2010.	

REFERENCE:

3. Geoffrey Boothroyd, "Assembly Automation and Product Design", Taylor & Francis Group, CRC Press, 2005.

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

Course Content Course Code: 17EARE403 Course Title: Advanced Microcontrollers L-T-P: 3-0-0 Credits: 3 Contact Hrs: 3 ISA Marks: 50 ESA Marks: 50 Total Marks: 100 Teaching Hrs: 40 Exam Duration: 3h Content Hrs Unit - 1 1.0 Microcontroller Architectures for Low-power behaviour and High-performance capabilities: Requirements of Low-power and High-Performance in autonomous systems built using advanced microcontrollers, Power management, Power-down modes, Case-7 studies and Examples, Performance of autonomous system, Technologies to enhance the performance of the system, namely, Direct Memory Access, Memory Mapped I/O, Watch og Timer, Interrupt mechanisms. 2.0 MSP430 series Microcontroller devices: Unique architectural features, Addressing modes, Instruction set, Power-down modes, MSP430 Interrupts, Digital Input-Output, Onchip peripherals, Timers, Timer Interrupts, Watchdog Timer, Analog to Digital Converters 8 (ADC), Digital to Analog Converters, Hardware Multiplier, Direct Memory Access Controller (DMA). Unit - 2 3.0 Advanced Microcontroller for Real-Time control: Key Architectural features of Real-Time Controller, TI C2000 family MCUs, Floating Point Unit, Control Law accelerator, 7 Trigonometric Math Unit,(TMU), Fast Integer Division Unit (FINTDIV), Complex Math, and CRC Unit (VCU), Example case study on TI C2000 family of MCUs 4.0 DisPIC Controller , PIC 30F series: Introduction to 16 bit microcontrollers , dsPIC 30F -CPU, Data memory, Program Memory, Instruction set, Programming in Assembly and C Interrupt Structure. Peripherals of dsPIC 30F: I/O Ports, Timers, Input Capture, Output 8 Compare, Motor Control PWM, Quadrature Encoder Interface(QEI), A/D Converter, UART, CAN Unit, Application Development. Unit - 3 5.0 Power/ Energy profiling: Profiling of ARM Cortex & MSP430 family devices, Lowpower operation, Dynamic Voltage and Frequency Scaling, Optimizing for low power in embedded MCU designs, compiler optimization, parallel programming, run-time 5 optimization, performance analysis & tuning, fault tolerance, and power-aware computing techniques.

6.0 Case studies: ARM cortexM3/M4 & MSP430 microcontroller based real-time solutions for application like biomedical system design, machine health monitoring, Energy metering applications etc.

 E Technological University

Text Books:

- 1. Peckol, "Embedded system Design", John Wiley & Sons, 2010
- 2. John Davies "MSP430 Microcontroller Basics" Second Edition (2008)

References:

- 1. Shibu.K.V, "Introduction to Embedded Systems", Tata Mcgraw Hill, 2009
- 2. Steve Furber, ARM System- on-Chip Architecture, 2nd, LPE, 2002
- 3. Rajkamal, 'Embedded system-Architecture, Programming, Design', TMH, 2011.

 KLE TECH.
 KLE TECH.

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

Laboratory Plan

FMTH0303-3.1

Semester: VII

Year: 2020-21

Laboratory Title: Senior Design Project	Lab Code: 19EARW401
Total Hours: 30	Duration of Exam: 3 Hrs
Total ESA Marks: 50	Total ISA. Marks: 50
Lab. Plan Author: Sachin Karadgi	Date: 10-Jan-2020
Checked By: Arunkumar C Giriyapur	Date: 10-Jan-2020

Prerequisites:

Subjects learnt up to VI semester.

Course Outcomes-CO

At the end of the course student will be able to:

- 1. Carry out market survey, do need analysis and identify suitable problems.
- 2. Write a project proposal, which will involve developing a complete solution for the identified problem from the real world.
- 3. Apply the principles of engineering design to plan and manage the project.
- 4. Apply suitable design processes and develop the best possible solution.
- 5. Develop proof of concepts and models for verification.
- 6. Prepare production drawings, bill of materials and process plans.

 Creating Value

 Leveraging Knowledge

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India)

 Department of Automation & Robotics

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Program outcomes (PO)

Laboratory (Course) Title: Project Laboratory (Course) code: 17EARW401 Semester: VIII

Year: 2019-20

(Course Outcomes (CO) / Program Outcomes (PO)	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1.	Carry out market survey, do need analysis and identify suitable problems.	н	н												
2.	Write a project proposal, which will involve developing a complete solution for the identified problem from the real world.		н	н		м					н				
3.	Apply the principles of engineering design to plan and manage the project.			н											
4.	Apply suitable design processes and develop the best possible solution.			н		м		м							
5.	Develop proof of concepts and models for verification.	- 10		н											
6.	Prepare production drawings, bill of materials and process plans.			н							н			-	

Degree of compliance L: Low M: Medium H: High

 KLE TECH.
 Leveraging Knowledge

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India)

 Department of Automation & Robotics

Competency addressed in the Course and corresponding Performance Indicators

Competency	Performance Indicators
1.3 Demonstrate competence in engineering fundamentals	1.3.1 Apply elements of mechanical engineering principles and laws to solve problems
1.3 Demonstrate competence in engineering fundamentals	1.3.2 Apply basic electrical and electronics engineering principles and laws to solve problems
1.3 Demonstrate competence in engineering fundamentals	1.3.3 Apply computer programming skills to solve problems by building algorithms ,flow charts and debugging
1.4 Demonstrate the competence in engineering knowledge appropriate to automation and robotics program	1.4.1 Apply discipline specific laws and principles to solve an interdisciplinary engineering problem
2.1 Demonstrate an ability to identify and characterize an engineering problem	2.1.1 Identifies known and unknown information, uncertainties, and biases when presented with a complex ill-structured problem
2.1 Demonstrate an ability to identify and characterize an engineering problem	2.1.3 Identifies all relevant constraints and requirements and formulate an accurate description of the problem
2.2 Demonstrate an ability to formulate a solution plan and methodology for an engineering problem	2.2.2 Partitions problems, processes or systems into manageable elements for the purposes of analysis, modelling or design.
2.2 Demonstrate an ability to formulate a solution plan and methodology for an engineering problem	2.2.3 Selects appropriate analysis tools and applies those proficiently to implement the model/solution
3.2 Demonstrate an ability to generate a diverse set of alternative design solutions	3.2.1 Apply formal idea generation tools to develop multiple engineering design solutions
3.2 Demonstrate an ability to generate a diverse set of alternative design solutions	3.2.2 Build models, prototypes, etc., to develop diverse set of design solutions
3.2 Demonstrate an ability to generate a diverse set of alternative design solutions	3.2.3 Identify the suitable criteria for evaluation of alternate design solutions
5.1 Demonstrate an ability to identify/ create modern engineering tools, techniques and resources	5.1.1 Identify modern engineering tools, techniques and resources for engineering activities
7.1 Demonstrate an understanding of the impact of engineering and industrial practice on social, environmental and economic contexts	7.1 1 Identify risks/impacts in the life-cycle of an engineering product or activity
10.3 Demonstrate the ability to integrate	10.3.1 Create engineering-standard figures,

different modes of communication	reports and drawings to complement writing
	and presentations

E.g.: 1.2.3: Represents program outcome '1', competency '2' and performance indicator '3'.

Evaluation Scheme

Students Assessment through ISA (50%) + ESA (50%)

Assessment	Weightage in Marks
ISA	50
ESA	50
Total	100

Course Content

Course Code: 17EARE404	Course Title: Smar	t Manufacturing		
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100)	
Teaching Hrs: 40	· · · · · · · · · · · · · · · · · · ·	Exam Duration: 3	3 Hrs	
Cont	tent		Hrs	
Unit	t – I			
Chapter No. 1. Introduction to Smart Manufa Introduction to Smart Manufacturing, Smart M Development Lifecycle, Production Systems Li Pyramid, Integration, Production Planning and	Manufacturing Ecosyst fecycle, Business Cycle	e, Manufacturing	3	
Chapter No. 2. Supply Chain Management (SCM) Introduction to Supply Chain, SCOR model, Virtual/Extended Enterprise, Delivery Channel, Decision Phases in a Supply Chain, Production Approaches, Supply Chain Process, Push & Pull Production Systems, Push-Pull Boundary, Lack of Coordination and Bullwhip Effect, Order-to-Cash Process, Procure-to-Pay Process, Call-off, Replenishment, Sourcing, Uncertainties, Responsiveness vs Cost, Supply Chain Performance Drivers – Facilities, Inventory, Transportation, Information, Sourcing, and Pricing				
Chapter No. 3. Enterprise Resource Planning Business Processes, Process Modeling and Dar Event Process Chains (EPC), ERP Functionalitie Managerial Accounting, Cost Assignment Tech Inventory Management, Warehouse Manager Material Requirement Planning (MRP), Manuf	ta Modeling, Business es, Financial Accountin nniques, Cost Drivers, I ment, Shipping and Tra	g, Cost Accounting and Purchasing, Receiving, ansportation, Billing,	5	
Unit	t — 11			
Chapter No. 4. Product Development Lifecycle Product Development Lifecycle, Digital Thread, PLM Overview, Background for PLM, Scope, PLM Grid, PLM Paradigm - Concepts, Business Process in the PLM Environment, Product Data in the PLM Environment, Information Systems in the PLM Environment, Organization Change Management in the PLM Environment, CAD, CAE, CAM, CAPP, Simulations, NC Programming, CMM Programming, Introduction to Digital Twin, Standards				
Chapter No. 5. Production System Lifecycle Production System Lifecycle, Revisit Production Pyramid, Manufacturing Execution Systems (M Functional Control Model, MES in Discrete Ind Collection, Traceability, Performance Measure Enterprise, Revisit Digital Twin, Standards	MES), MES Functionalit dustry, MES in Process	ties, MES Models, Industry, Data	8	
	t – III		1	

 KLE TECH.
 Leveraging Knowledge

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India)

 Department of Automation & Robotics

Chapter No. 6. Cloud Computing	5
Introduction to Cloud Computing, Virtualization Concepts, Main Players, Types of Cloud –	
Public, Private and Hybrid, Cloud Services – CaaS, SaaS, PaaS, and IaaS, Service Level	
Agreement, Cloud Security, Leveraging Cloud Services for Smart Manufacturing, Cloud	
Computing at Enterprise Systems Level, Hybrid Cloud Options	15
Chapter No. 7. Key Focus Areas	5
Knowledge Management, Case-Based Reasoning (CBR), Big Data Analytics, Smart	
Maintenance, Smart Product, Smart Supply Chain, Intelligent Machines, Smart Services,	See.
Blockchain	

Text Books (List of books as mentioned in the approved syllabus)

- Sunil Chopra, and Peter Meindl, "Supply Chain Management Strategy, Planning, and Operation," Pearson Education, Sixth Edition, 2016.
- 2. Ellen Monk, and Bret Wagner, "Concepts in Enterprise Resource Planning," Fourth Edition, Course Technology CENGAGE Learning, 2009.
- Stark John, "Product Lifecycle Management: 21st Century Paradigm for Product Realization," Springer, Third Edition, 2015.
- 4. Sachin Karadgi, "A Reference Architecture for Real-Time Performance Measurement," Springer, 2014.
- Anthony T. Velte, Toby J. Velte, and Robert Elsenpeter, "Cloud Computing A Practical Approach," McGraw Hill Education, 2010.

References

- 1. Y. Lu, K.C. Morris, S. Frechette, "Current Standards Landscape for Smart Manufacturing Systems," National Institute of Standards and Technology (NIST), (2016).
- MESA International, "Three Functional Dimensions Converge on Smart Manufacturing," Whitepaper #59, 2018.
- 3. MESA International, "Smart Manufacturing and Cloud Computing," Whitepaper #60, 2018.

Creating Value KLE TECH. Leveraging Knowledge B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

Flechnological

University

Laboratory Plan

FMTH0303-3.3 Year: 2021-22

Laboratory Title: Capstone Project	Lab Code: 19EARW402
Total Hours: 30	Duration of Exam: 3 Hrs
Total ESA Marks: 20	Total ISA. Marks: 80
Lab. Plan Author: Sachin Karadgi	Date:
Checked By: Arunkumar C Giriyapur	Date:

Prerequisites:

Semester:

Subjects learnt up to VII semester.

VIII

Course Outcomes-CO

At the end of the course student will be able to:

- 7. Carry out market survey, do need analysis and identify suitable problems.
- 8. Write a project proposal, which will involve developing a complete solution for the identified problem from the real world.
- 9. Apply the principles of engineering design to plan and manage the project.
- 10. Apply suitable design processes and develop the best possible solution.
- 11. Develop proof of concepts and models for verification.
- 12. Prepare production drawings, bill of materials and process plans.

 KLE TECH.
 Leveraging Knowledge

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India)

 Department of Automation & Robotics

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Program outcomes (PO)

Laboratory (Course) Title: Project Laboratory (Course) code: 18EARW402 Semester: VIII

Year: 2020-21

(Course Outcomes (CO) / Program Outcomes (PO)	1	2	3	4	5	6	7	8	9	10	11	12	13	14
7.	Carry out market survey, do need analysis and identify suitable problems.	н	н												
8.	Write a project proposal, which will involve developing a complete solution for the identified problem from the real world.		н	н		м					н				
9.	Apply the principles of engineering design to plan and manage the project.			н											
10.	Apply suitable design processes and develop the best possible solution.			н		М		м				16			
11.	Develop proof of concepts and models for verification.			н											
12.	Prepare production drawings, bill of materials and process plans.			н							н				

Degree of compliance L: Low M: Medium H: High

Competency addressed in the Course and corresponding Performance Indicators

Competency	Performance Indicators
1.3 Demonstrate competence in engineering fundamentals	1.3.1 Apply elements of mechanical engineering principles and laws to solve problems
1.3 Demonstrate competence in engineering fundamentals	1.3.2 Apply basic electrical and electronics engineering principles and laws to solve problems
1.3 Demonstrate competence in engineering fundamentals	1.3.3 Apply computer programming skills to solve problems by building algorithms ,flow charts and debugging
1.4 Demonstrate the competence in engineering knowledge appropriate to automation and robotics program	1.4.1 Apply discipline specific laws and principles to solve an interdisciplinary engineering problem
2.1 Demonstrate an ability to identify and characterize an engineering problem	2.1.1 Identifies known and unknown information, uncertainties, and biases when presented with a complex ill-structured problem
2.1 Demonstrate an ability to identify and characterize an engineering problem	2.1.3 Identifies all relevant constraints and requirements and formulate an accurate description of the problem
2.2 Demonstrate an ability to formulate a solution plan and methodology for an engineering problem	2.2.2 Partitions problems, processes or systems into manageable elements for the purposes of analysis, modelling or design.
2.2 Demonstrate an ability to formulate a solution plan and methodology for an engineering problem	2.2.3 Selects appropriate analysis tools and applies those proficiently to implement the model/solution
3.2 Demonstrate an ability to generate a diverse set of alternative design solutions	3.2.1 Apply formal idea generation tools to develop multiple engineering design solutions
3.2 Demonstrate an ability to generate a diverse set of alternative design solutions	3.2.2 Build models, prototypes, etc., to develop diverse set of design solutions
3.2 Demonstrate an ability to generate a diverse set of alternative design solutions	3.2.3 Identify the suitable criteria for evaluation of alternate design solutions
5.1 Demonstrate an ability to identify/ create modern engineering tools, techniques and resources	5.1.1 Identify modern engineering tools, techniques and resources for engineering activities
7.1 Demonstrate an understanding of the impact of engineering and industrial practice on social, environmental and economic contexts	7.1 1 Identify risks/impacts in the life-cycle of an engineering product or activity
10.3 Demonstrate the ability to integrate	10.3.1 Create engineering-standard figures,

Q	KLEUniversity
KLE TECH.	Creating Value Leveraging Knowledge
0	Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) rtment of Automation & Robotics

different modes of communication	reports and drawings to complement writing
	and presentations

E.g.: 1.2.3: Represents program outcome '1', competency '2' and performance indicator '3'.

Evaluation Scheme

Students Assessment through ISA (50%) + ESA (50%)

Assessment	Weightage in Marks
ISA	80
ESA	20
Total	100

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

B.E. (Automation & Robotics) Curriculum Structure & Syllabus 2019 – 23 Batch

Course Code	Course Title	Catanan						Marks	
course coue		Category	L	т	Р	Hrs	Credits	ISA	ESA
18EARC301	Machine Learning & ROS	PSC	3	0	0	3	3	50	50
18EARC302	Programming Industrial Automation Systems	PSC	4	0	0	4	4	50	50
18EARC303	Real time Embedded Systems	PSC	4	0	0	4	4	50	50
18EARC304	Mechatronics System Design	PSC	4	0	0	4	4	50	50
18EARC305	Measurement Systems	PSC	3	0	0	3	3	50	50
18EARP301	Machine Learning & ROS Lab	PSC	0	0	1	2	1	80	20
18EARP302	Programming Industrial Automation Systems Lab	PSC	0	0	1	2	1	80	20
18EARP303	Industrial Robotics Lab	PSC	0	0	1	2	1	80	20
18EARW301	Mini project – (Engineering Design Project)	PRJ	0	0	3	6	3	80	20
	Total		18	0	6	30	24		

Semester: V

ISA: Internal Semester Assessment, ESA: End Semester Assessment, L: Lecture T: Tutorials,

P: Practical, PSC: Program Scheme Core, HSC: Humanities Scheme Core, BS: Basic Science

Department of Automation & Robotics

								Ma	arks
Course Code	Course Title	Category	L	Т	Р	Hrs	Credits	ISA	ESA
18EARC308	Hydraulics & Pneumatics	PSC	4	0	0	4	4	50	50
17EARE301	Department Elective 1 (AI for Autonomous Robots)	PSE	2	0	0	2	3	50	50
15EARE302	Department Elective 2(Computer Vision & Digital image processing)	PSE	3	3 0 0		3	3	50	50
6EARE301	Department Elective 3 (Power electronics, motors & Drives)	PSE	3	0	0	3	3	50	50
17EARE304	Department Elective 4 (Digital System Design & FPGA programming)	PSE	3	0	0	5	5	50	50
16EARP302	Hydraulics And Pneumatics Lab	PSC	0	0	1	2	1	80	20
18EARP304	Mechatronics & Measurements Lab	PSC	0	0	1	2	1	80	20
16EARP307	Real time Embedded Systems Lab	PSC	0	0	1	2	1	80	20
17EARW302	Minor project	PRJ	0	0	6	12	6	80	20
16EHSC301	PALR	HSC	3	0	0	3	3		
	Total		13	0	9	31	22		

Semester: VI

ISA: Internal Semester Assessment, ESA: End Semester Assessment, L: Lecture T: Tutorials,

P: Practical, PSC: Program Scheme Core, HSC: Humanities Scheme Core, BS: Basic Science

 KLE TECH.
 Creating Value Leveraging Knowledge

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

I

Course Content

Course Code: 18EARC301	Course Title: Machine learning and ROS				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40			
ISA Marks: 50	ESA Marks: 50	Total Marks: 100			
Teaching Hrs: 40		Exam Duration : 3 hours			
	Content		Hours		
	UNIT – 1				
Chapter 1:Introduction to Robot ope ROS concepts, creating ROS package running ROS nodes, examining runnin a minimal ROS subscriber compiling publisher node summary writing RO simplifying cmakelists.txt with catkin in a ROS console recording and playin	s writing a minimal RC ag minimal publisher no and running minimal OS nodes more ROS simple automating sta	ode, scheduling node timing, writing subscriber, minimal subscriber and tools: catkin simple, ROS launch, rting multiple nodes viewing output	5 hrs		
Chapter 2:Messages, Classes and Se Defining custom messages, ROS se interaction with ROS services, examp using C++ classes in ROS creating li action clients- creating an action s designing an action client running the example code, introduction	ervices- service mess le ROS service client, ibrary modules in ROS erver package, definin	running, example service and client, S, introduction to action servers and	5 hrs		
Chapter 3: Introduction to machine Introduction Machine Learning ,Well learning ,unsupervised learning and re- learning system, perspectives & issu- learning search, Find-S: Finding a m elimination algorithm, Remarks - ver- bias.	l posed learning prob einforcement learning, ues in machine learnin aximally specific hypo	Learning Associations, Designing of ng, Concept learning task, concept otheses, version spaces & candidate			
	UNIT – 2		1		
Chapter 4: Computational learning Motivation, Estimating hypotheses as deriving confidence intervals, compar correct hypothesis, sample complexity hypothesis spaces, instance based regression, Representation, decision algorithm inductive bias in decision	ccuracy, Basics of san ing learning algorithm. y for finite hypnosis sp learning-K nearest ne tree algorithm, hypoth	npling theory, general approach for Probably learning an approximately baces, sample complexity for infinite eighbor learning, locally weighted neses space search in decision tree			

classification.

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

7 hrs

5 hrs

5 hrs

Chapter 5:Kernel methods and Graphical models

Embedding's into feature spaces, the kernel trick, Multiple kernel learning, Kernel dimensionality reduction Canonical Cases for Conditional Independence, Example Graphical Models, Naive Bayes' Classifier, Hidden Markov Model, Linear Regression, d-Separation Belief Propagation, Linkage–Based clustering algorithms-means and other cost minimization clustering.

UNIT-3

Chapter 6: Reinforcement Learning

The learning task,Q-learning,Nondeterministic rewards & actions, temporal difference learning, generalizing from examples, relationship to dynamic programming.

Chapter 7: Artificial neural network

Biological motivation, neural network representations, and appropriate problems for neural network learning, perceptron's, multilayer networks and the back propagation, algorithm, an illustrative example: face recognition

Text Book (List of books as mentioned in the approved syllabus)

- 1. Wyatt S. Newman "A Systematic Approach to Learning Robot Programming with ROS" CRC Press Taylor & Francis Group, 2018
- 2. Tom Mitchell "Machine Learning" McGraw-Hill Science/Engineering/Math (March 1, 1997).

References

- 1. Shai shalev-scwartz and Shai Ben David "Understanding Machine Learning" First Edition, Cambridge Press, USA, 2014.
- 2. Anis Koubaa "Robot Operating System" The Complete Reference (Volume 1), Springer publications,2016

 KLE TECH.
 KLE Technological

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India)

 Department of Automation & Robotics

Course Content

Course Code: 18EARC302	Durse Code: 18EARC302 Course Title: Programming Industrial Automation Systems				
L-T-P-: 4-0-0	Credits: 4	Contact Hrs: 50			
ISA Marks: 50	ESA Marks: 50	Total Marks: 100			
Teaching Hrs: 50		Exam Duration: 3 hrs			
	Content		Hrs		
	Unit - 1		1		
Chapter No. 01. Programmab Internal architecture of Progra Memory Organization, I/O pro Networks, Processor Scan cycl	mmable Logic Controllers cessing, Signal conditionin	systems, Input/ Output devices, g, Remote connections,	6 hrs		
Ladder diagrams, Analogy with Instruction lists, Sequential fur	Goals , benefits, , Program n Boolean Algebra and Bina nction charts, State chart n rograms for each, IEC 6149	ming Languages of IEC 61131-3, ary Logic , Function blocks, nodelling, Structured text 9 models: models ,concepts and	9 hrs		
	Program / Flow Control In tructions like FIFO, FAL, Of letwork Communication In cesses.	structions, Arithmetic NS, Data Transfer Instructions PLC structions, Analog PLC operation,	5 hrs		
	Unit - 2				
and Voltage Considerations,, I,	nent, Development Cycle, S ut , Power Requirements a /O Installation, System wiri NEC, Electrical wiring diag	Safe systems, Commissioning, and Safety Circuitry , Noise, Heat, ang strategies, and Precautions grams PLC Start-Up and Checking	10 hrs		
	of PC based Automation, P ndustrial control , Compar sition (SCADA) system & D	ison of PLC with PAC Supervisory istributed Control Systems(DCS):	10 hrs		
	Unit - 3		1		
Chapter No. 06. DCS & Field E	Bus		5 hrs		

 KLE TECH.
 Leveraging Knowledge

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India)

 Department of Automation & Robotics

Overview of DCS, Network Standards: Device net, CAN bus, Control Net, Profibus, Sercos, EtherCAT, Ethernet Powerlink, Comparison of each of them with other network standard.	
Chapter No. 07. System Selection Guidelines & Commissioning PLC Selection process ,estimation of program memory and time requirements, PLC Sizes and Scope of applications, Special I/O modules, Electrical relay diagram symbols, Fail Safe Design, IEC 61508/61511 safety standards, Process modeling, Programming for large systems ,Control system documentation & Commissioning	5 hrs

Text Book (List of books as mentioned in the approved syllabus)

- John W. Webb & Ronald A Reis, "Programmable Logic Controllers: Principles and Applications", Fifth Edition, PHI, 2012
- W. Bolton , Programmable Logic Controllers , Fourth Edition, ELSEVIER, 2009

References

- Frank D. Petruzella , Programmable Logic Controllers , McGraw- Hi, 1989
- Siemens , PLC Handbook,

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

Course Code: 18EARC303 Course Title: Real Time Embedded Systems L-T-P: 4-0-0 Credits: 4 Contact Hrs: 50 ISA Marks: 50 ESA Marks: 50 Total Marks: 100 Teaching Hrs: 50 Exam Duration: 3 hrs Unit - 1

Course Content

1.0 Introduction to System Structures and Real-time Embedded System

System Structures types, Real-time systems & basics, Classification, Example case studies, namely, Process control system, Avionics system, Multimedia systems, Intensive Care Computing, Modern car, Digital Flight control system, Embedded system purpose, Quality attributes, Challenges and characteristics of Embedded Computing System Design, Embedded System Design Process, Core and Supporting components of the embedded system, Embedded firmware, discussion on real-time case studies and block diagram representation of systems, Embedded design cycle-case study- Engine Control Unit , GPS Moving Map, Automatic Chocolate Vending Machine (ACVM) using Finite State machine(FSM), Unified Modeling Language(UML), state charts etc.

2.0 Target Architectures : ARM Cortex M3 processors & its Programming

Introduction to embedded computing with examples and arm processors, The architecture of ARM Cortex M3, Nested Vector Interrupt Controller. Interrupt behavior of ARM Cortex M3. Exceptions Programming. Advanced Programming Features. Memory Protection. Debug Architecture. Digital Signal Processor (DSP), Field Programmable Generic Array (FPGA).Examples to demonstrate each of its architectural and programmable features. A case study on the Antilock Brake System(ABS) and stability control system

3.0 Real-Time Kernels and Operating Systems

Introduction to Real-Time Kernels, Tasks, process and threads, Introduction to RTOS, key characteristics of RTOS, its kernel, components in RTOS kernel, objects, scheduler, services, context switch, Task scheduling, Task communication and synchronization, Multiprocessing and multitasking, Multi-Threading, Hyper-threading, State diagrams, timing diagrams, examples for each, Scheduling types: Preemptive priority-based scheduling, Round-robin and preemptive scheduling. First come first served scheduling, shortest job first scheduling, Device drivers and selection of an RTOS. Examples for each of the scheduling technique, objects, context switching, synchronization, and device drivers, Case study on Mars Pathfinder mission

Unit - 2

4.0 Inter-task Communication in RTOS

Tasks, Semaphores and Message Queues: A task, its structure, A typical finite state machine, Steps showing the how FSM works. A semaphore, its structure, binary semaphore, mutual exclusion (MUTEX) semaphore, Synchronization between two tasks and multiple tasks, Single shared-resource-access synchronization, Recursive sharedresource-access synchronization. A message queue, its structure, Message copying and memory use for sending and receiving messages, Sending messages in FIFO or LIFO

7

6

O KLE Technological Creating Value

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

order, broadcasting messages., Demonstration of each of the objects of Inter-process communication, namely, semaphore, Message Queue, MUTEX, Mailbox, etc. Case-study on Magnetic Resonance Imaging (MRI)

5.0 Tasks and Task Management

RTOS - task creation and Management, task scheduling, kernel services, inter-task-communication, Micro C/OS-II- task creation and Management, task scheduling, kernel
revices, inter-task-communication, Demo on Task creation and management functions.
Case studies on Industrial Robot, Weapons Defence System, Adaptive Cruise control

6.0 Handling Deadlocks

Sharing Resources, Deadlock Model- Necessary Conditions, A Graph-Theoretic Tool—
The Resource Allocation Graph, Handling Deadlocks, Deadlock Prevention, Deadlock
Avoidance, Deadlock Detection, Demonstration on Handling of deadlocks, identification
through a case study, The Dynamic Dining Philosopher problem.

Unit - 3

7.0 Performance Analysis and Optimization

Performance or Efficiency Measures, Complexity Analysis—A High-Level Measure, The Methodology, Analyzing Code, algorithms, Response Time, Time Loading, Memory Loading, Evaluating Performance, Performance Optimization, optimizing for Power Consumption. Demonstration of concepts of Performance Analysis and Optimization through a case-study.

8.0 Wired and Wireless Protocols used in Real-Time Embedded System:

Bus communication protocol (USB, I2C, SPI), Wireless and mobile system protocol (Bluetooth, 802.11 and its variants, ZigBee), Examples of block diagrams to explain the working of each protocol for a specified application.

Text Books:

James K. Peckol, "Embedded Systems A Contemporary Design Tool," Wiley student edition Joseph Yiu "The Definitive Guide to the ARM Cortex–M3"

Silberschatz, Galvin, and Gagne, "Operating system concepts," 8th edition, WILEY Publication.

References:

1. Shibu K V, "Introduction to Embedded Systems Tata McGraw Hill, New Delhi, 6th reprint 2012.

2. Raj Kamal," Embedded Systems," McGraw-Hill Education

3. Steve Furber, "ARM System-on-Chip Architecture" LPE, Second Edition.

 KLE TECH.
 Creating Value Leveraging Knowledge

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

Course Content

Course Code: 18EARC304	Course Title: Mechatron	ics System Design			
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 50 hours			
ISA Marks: 50	ESA Marks: 50	Total Marks: 100			
Teaching Hrs: 50 hours		Exam Duration: 3 Hrs			
Conten	t		Hrs		
Unit -	I				
1. Introduction to Mechatronics Systems and elements Introduction to Mechatronic Systems and Design, Mechatro and Process Engineering, Confinement of Mechatronic S Electronic Functions, Integration Forms of Processes and E level Control Systems, Special Signal Preprocessing, Design	ystems, Functions, Districter dectronics, Ways of Info	ribution of Mechanical and rmation Processing, Multi-	8		
2. Modeling of Processes Theoretical and Experimental Modeling, Classification of Pr Distributed Parameters, Mechanical System model, Mechan Systems with Friction, Backlash, Electrical System model Systems, Dynamics of Mechanical Systems, Newton's Laws Principles of Mechanics, d'Alembert's Principle, Lagrange's D	nical Elements : Bars ,Spr odel, Analogies between s of Kinetics , Translation	ings, Dampers , Mechanical Mechanical and Electrical	12		
Unit - I	I		1		
3. Electrical Drives Types of Electrical Drives, Electromagnets, Direct Current M Types of DC Motors, Alternating Current Motors (AC), In Motors, Commutator Motors (Universal Motors), Squirrel-c Externally Commutated Electro-motors, Electrical Motor Operational Conditions, Motion Profile, Load Torque Calcula Speed Profile, DC Motor Parameter Estimation, Process Dy	nduction Motors, Synchro age Motors, Power Electr r Sizing and Selection I ation, Motor Shaft Torque	nous Motors, Single-phase ronics Circuits, Internally or Procedure, Electric Motor Calculation, Load Torque-	10		
4. Model based Design of Systems & Identification Introduction to model based design ,Basic block diagrams, Model-based Methods of Control, Supervision and Fault Diagnosis, Intelligent Systems, Non-linear Control and Fault Detection, Model-based Compensation of Non-linearities, Modeling and Fault Diagnosis, Examples for the Design of Mechatronic Systems using UML and SysML, Identification Methods, classification of Identification Methods, Test Signals, Closed-loop Identification, Type of Application, Parameter Estimation for Discrete Time-varying Systems, Non-linear Processes, Problems.					
Unit - I			1		
5. Recent trends in Mechatronics System Design process Mechatronics systems contributing to economic growth, Cha and methods in mechatronics system design and developmen Models, Fields of application, Future Mechatronics systems.	nt, Use of Artificial Neura		5		
6. Case studies Dynamic Models of a Electromagnetic actuator, Control Pro Control Prototyping for Engine Control, Hardware-in-the-lo system, etc. UML/SysML and State chart modeling for each	oop Simulation for Indust	-	5		

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

Text Books

- 1. Rolf Isermann, "Mechatronic Systems: Fundamentals", Springer, 1st edition, 2005.
- 2. Alexandru Forrai, "Embedded Control System Design: A Model Based Approach", Springer,

1st edition, 2013.

3. Patrick O.J. Kaltjob, "Mechatronic Systems and Process Automation: Model-Driven Approach

and Practical Design Guidelines", CRC Press, 1st edition, 2018.

4. Norman S. Nise, "Control Systems Engineering", John Wiley & Cons Inc, Sixth Edition, 2011.

Reference Books

 Devdas Shetty, Richard A. Kolk, "Mechatronics System Design", Cengage Learning, Second

edition, 2010.

 "Mechatronics Handbook" Edited by Robert Bishop.CRC Press, 2002.
 Ioan D. Landau and Gianluca Zito, "Digital Control Systems: Design, Identification and

Implementation", Springer, 2006.

- 3. George Pelz, "Mechatronic Systems: Modeling and Simulation with HDL", Wiley, 2003
- Wei Wu, "Model-Based Design for Effective Control System Development", IGI Global, 1
 adition 2017

edition, 2017.

Course	e Content				
Course Code: 18EARC305	Course Title: Measureme	nt Systems			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40 hours			
ISA Marks: 50	ESA Marks: 50	Total Marks: 100			
Teaching Hrs: 40		Duration of ESA: 3 Hr	S		
Conten	t	X	Hrs		
Unit – I					
Chapter No. 1. Introduction to Measurement Sys Need for study of Measurement Systems, Classification of T Machines and Processes, Functional Elements of an Instrum Digital Modes of Operation, Null and Deflection Method Measurement Systems, Static Characteristics and Static Calibra	Types of Measurement Appli nent, Active and Passive Tr ds, Input-Output Configura	ansducers, Analog And tion of Instruments and	5 hrs		
Chapter No. 2. Sensors and Signal conditioning Sensor characterization, Relations between physical quantities, Sensor Classification, Specifications, Error reduction techniques, Loading errors, Signal conditioning processes, The operational amplifier, Filtering, Wheatstone bridge, Pulse modulation.					
Chapter No. 3. Motion Measurement Fundamental Standards, Relative Displacement: Translation Rotational, Relative-Acceleration Measurements, Displacement Calibration and Vibration Pickups, Jerk Pickups.			5 hrs		
Unit – I	I				
Chapter No. 4. Force, Torque, and Shaft Power M Standards and Calibration, Basic Methods of Force Measur Torque measurement on Rotating shaft, Shaft Power Me Transducers.	ement, Characteristics of El		5 hrs		
Chapter No. 5. Pressure & Sound Measurement Standards and Calibration, Basic Methods of Pressure Measurement, Deadweight Gages and Manometers, Elastic Transducers, Vibrating-Cylinder and Other Resonant Transducers, Dynamic Testing of Pressure-Measuring Systems, High-Pressure Measurement, Low-Pressure Measurement, Sound Measurement.					
Chapter No. 6. Flow and Temperature Measurement Local Flow Velocity, Magnitude and Direction, Gross Volume Flow Rate, Standards and Calibration of Temperature Measurement, Thermal-Expansion methods, Thermoelectric Sensors, Electrical-Resistance Sensors, Junction Semiconductor Sensors, Digital Thermometers, Radiation Methods.					
Unit – I	II				
Chapter No.7. Data Acquisition Systems Data conversion devices, Signal sampling and aliasing, Samplic conversion methods, Analog to digital conversion method approximation ADC, Dual slope ADC, Sigma Delta ADC, Mu	s, Sample & Hold circuit,		5 hrs		

Chapter No. 8. Transmission and Recording of Data

Cable Transmission of Analog Voltage and Current Signals, Cable Transmission of Digital Data, Fiber-Optic Data

 KLE TECH.
 Leveraging Knowledge

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India)

 Department of Automation & Robotics

Transmission, Analog Voltmeters and Potentiometers, Electrical Instruments, Digital Voltmeters and Multimeters, Signal Generation, Electromechanical XT and XY Recorders, Fiber Optic Sensors.

Text Books:

1. Ernest O. Doebelin and Dhanesh N. Manik, "Measurement Systems", Sixth Edition, McGraw Hill Education Pvt Ltd, 2011.

5 hrs

2. W. Bolton, "Mechatronics – Electronic Control Systems in Mechanical and Electrical Engineering", Fourth Edition, PEARSON, 2010.

References:

- 1. Sabri Cetinkunt "Mechatronics with Experiments", WILEY, Second Edition, 2015.
- 2. J. P. Holman, "Experimental Methods for Engineers", Eighth Edition, McGraw Hill Education Pvt Ltd, 2012.

 $\mathrm{E}^{\mathrm{Technological}}$

Department of Automation & Robotics

List of Experiments

Laboratory Title: Industrial Robotics Lab	Lab. Code: 18EARP303
Total Hours: 28	Duration of Exam: 3 hrs.
ISA Marks: 80	ESA. Marks: 20

Experiment wise Plan

List of experiments/jobs planned to meet the requirements of the course.

Category	: Exercise	Total Weightage: 7	No. of lab sessions: 8.00		
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory	
1	Matlab Introduction	1.00	10		
	Millions of engineers and scientists worldwide use MATLAB [®] to analyze and design the systems and products transforming our world. The matrix- based MATLAB language is the world's most natural way to express computational mathematics. Built-in graphics make it easy to visualize and gain insights from data. The desktop environment invites experimentation, exploration, and discovery. These MATLAB tools and capabilities are all rigorously tested and designed to work together. MATLAB helps you take your ideas beyond the desktop. You can run your analyses on larger data sets, and scale up to clusters and clouds. MATLAB code can be integrated with other languages, enabling you to deploy algorithms and applications within web, enterprise, and production systems.				
	Topics: 1. Basic commands				
	2. Vectors and Matrices				
	 Importing Data Plotting Data 			UNIT – I	
	Technically speaking, MATLAB is not tool with which you can find engineeri Robotic developers need to learn MA produce advanced graphs or impleme				
	MATLAB, and its open source relativ with some robotic engineers for ana systems.				
	Programming for a robot requires designing the controller that governs robot behavior. Modeling and simulation became vital to understand how the controller interacts with the robot's environment perception, mobility, and interaction.			-#	
	Why MATLAB is the Most Used Progr MATLAB is highly useful in de It is widely used in the robotics in foundation and deve	esigning the entire	robotic system.		

	 It is a simulation tool whereby you can provide your algorithm or design and it simulates the result. On the other hand, simulation helps engineers to refine the system design and eliminate errors before developing hardware prototypes. 						
2	Robo	tics Toolbox 1.0	00	N	10		
	study things The f pose quate also types quate	Toolbox has always provided many and simulation of classical arm-t s as kinematics, dynamics, and trajec toolbox contains functions and class in 2D and 3D (SO (2), SE (2), ernions, twists, triple angles, and n provides functions for manipulating s such as vectors, homogeneo ernions which are necessary to repre- tation.	ype ro ctory go ses to , SO o natrix e g and ous tra	botics, for eneration. represent (3), SE (3 exponentials converting ansformatio	example such orientation and)) as matrices, s. The Toolbox between data ns and unit-	UNIT – I	
3	Robo	Analyzer	2.00		20		
	or a v the e so fa Robo	el of a serial-robot/manipulator, eithe virtual robot in software environment experience of handling Robotics cou ar, we have come up with a lis oAnalyzer. of Virtual Experiments using Robo Practical Assignments RoboAnalyzer	, for a l irses a t of V	better unde nd the fee /irtual Expo	erstanding. With dback received eriments using		
	1	Introduction to RoboAnalyzer		Usage of F	RoboAnalyzer		
	2	2 Virtual Models of Industrial Robots		Industrial F	Robots		
	3	Understanding coordinate frames transformations		DH Parar Geometry	neters, Robot	UNIT-I & II	
	4	Forward kinematics of robots		Robot Analysis	Kinematic		
	5 Inverse kinematics of robots Robot Kinematic Analysis						
	6 Case Study: Kinematics of MTAB Mini Robot Kinematic Robot Analysis						
	7	Case Study: Workspace Analysis axis robot	of a 6	Workspace	e Analysis		
	8	Inverse and Forward dynamics of re	obots	Robot Dyn	amics		
	9	Creating robot joint trajectories		Trajectory	Planning		

O KLE Technological Creating Value

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

1.00 5.00 Introduction to ABB Robotstudio 4 Offline programming is the best way to maximize return on investment for robot systems. ABB's simulation and offline programming software, RobotStudio, allows robot programming to be done on a PC in the office production. without shutting down RobotStudio provides the tools to increase the profitability of your robot system by letting you perform tasks such as training, programming, and production. optimization without disturbing This provides numerous benefits including: UNIT-I & II 1. Risk reduction 2. Quicker start-up 3. Shorter change-over 4. Increased productivity RobotStudio is built on the ABB VirtualController, an exact copy of the real software that runs your robots in production. This allows very realistic simulations to be performed, using real robot programs and configuration files identical to those used on the shop floor. 15.00 5 Simulation/Offline Programming 2.00 (Robotstudio) Topics to be covered: 1. Create mechanism 2. AutoPath UNIT-I & II 3. Set Task Frame 4. Collision control 5. Reachability 6. Create MultiMove System from Layout 10 1.00 6 Online Programming To perform a particular action, robots are programmed either by guiding or by off-line programming. Most of the industrial robots are programmed by guiding a robot from point to point through the phases of an operation, with each point stored in the robotic control system. Robots receive instructions through computer commands and this is referred to as manipulator level off-line programming. Usage of off-line UNIT-I & II programming involves higher-level languages, in which robotic actions are defined by tasks or objectives. Robotic programmers must have knowledge on different types of programming languages as switching from computers to robots is not the smooth transition that many developers/programmers may think. No. of lab Total Weightage: 20.00 **Category: Structured Enguiry** sessions: 1.00

 KLE TECH.
 KLE Technological

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India)

 Department of Automation & Robotics

Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
7	Project Students should form a team of 4 in numbers and select a problem or need statement in industrial robotics area. The project should consists of following requirements: Minimum 3 to 6 DOF robot arm DH Parameters Students are free to choose the software to complete the project	1	20.00	UNIT-I & II

 KLE TECH.
 Creating Value Leveraging Knowledge

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

Laboratory Title: Programming Industrial Automation Systems Lab	Lab Code: 18EARP302
Total Hours: 28	Duration of ESA Hours: 2
ESA Marks: 20	ISA Marks: 80

Experiment wise Plan

List of experiments/jobs planned to meet the requirements of the course.

Category: Demonstration		Total Weightage: 20.00	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment
1	Introduction to Safety guidelines & PLC and system wiring: Demo programs on Logic gates, switches and Pushbuttons.	1.00	5.00
2	Programming the PLC Via Ladder logic and structured text in TwinCAT Demo Programs on ALU ,Counter and timing functions	1.00	5.00
3	Demo on Electro Pneumatics : A. Time-dependent control of a double-acting cylinder with switch-on delay B. Sequential control of 2 double-acting cylinders with impulse valves in Automation studio.	1.00	5.00
4	Burglar Alarm : Consider the design of a burglar alarm for a house. When activated an alarm and lights will be activated to encourage the unwanted guest to leave. This alarm be activated if an unauthorized intruder is detected by window sensor and a motion detector. The window sensor is effectively a loop of wire that is a piece of thin metal foil that encircles the window. If the window is broken, the foil breaks breaking the conductor. This behaves like a normally closed switch. The motion sensor is designed so that when a person is detected the output will go on. As with any alarm an activate/deactivate switch is also needed.	1.00	5.00
5	Motor Control : A PLC motor controller has two START buttons and two STOP buttons. The motor is to run if two RUN buttons depressed simultaneously. The motor should run when the buttons are released. Motor stops by depressing any STOP button stops. Construct a LAD/structured text for this motor control task.	1.00	4.00
6	Sequential Logic Control using SCADA	1.00	4.00

7	Develop a PLC program that will control a miniature set of traffic lights. These lights will go through a normal sequence, but will have pedestrian cross walk buttons that will activate a cross walk signal when pressed. When done the student should understand the design and implementation of time dependent control circuits.	1.00		4.00
8	To explore PID control: Write simple programs to read and output analog voltages from the PLC and perform PID control of a motor speed. Demonstrate it on TwinCAT.	1.00		4.00
9	Process controlled system in TwinCAT: A PLC-controlled system operates as follows. If the Start button is pressed, MV1 will be opened and dye starts to fill the tank. At the same time mixing-motor begins to run. As the level of the dye passes TBL2 and reaches to TBL1, MV1 will be closed and mixing-motor will stop. Then MV2 will be opened and dye begins to run out of the container. After the level of the dye reaches to the below of TBL2, MV2 will be closed. This process is repeated for two (2) times, then the system will stop. We can observe the stopping of the system with the lamp and the buzzer. After the system stops, buzzer will continue to run for 2 sec and then it stops. But the lamp continues to light until the reset button is pressed. When the reset button is pressed, the system will be ready to begin the same process again. Construct a LAD for this system.	1.00		4.00
10	To study Distributed Control System(DCS) programming using Function Block Diagram method	2.00	10.00	
11	Exploring PLC Serial communication using Ethernet	2.00	10.00	-
	Learning Outcomes:			

 KLE TECH.
 Creating Value Leveraging Knowledge

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

Semester: V

Year: 2019-20

Laboratory Title: Machine learning & ROS lab	Lab. Code: 18EARP301
Total Hours: 24	Duration of Exam: 2 hrs
Total Exam Marks: 100	Total ISA. Marks: 80

SL NO	List of Experiments		
1	Implement & demonstrate the creation of package in ROS, creation of ROS nodes & Execution of Publisher & Subscriber nodes for printing message.		
2	Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file.		
3	For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.		
4	Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.		
5	Write a program to implement the naïve Bayesian classifier for a sample training data s stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.		
6	Assuming a set of documents that need to be classified, use the naïve Bayesian Classimodel to perform this task. Built-in Java classes/API can be used to write the program Calculate the accuracy, precision, and recall for your data set.		
7	Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.		
8	Write a program to implement k-Nearest Neighbor algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.		
9	Implement project for solving real word problem statements using various tools such as WEKA, Matlab and perform the classification & regression analysis		
10	Implement a Machine learning project using predictive, analysis, regression analysis, action analysis & statistical modeling, for automation and robotics applications.		

 KLE TECH.
 Creating Value

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India)

 Department of Automation & Robotics

Technological University

Laboratory Plan

FMTH0303-3.1

Semester: V

Year: 2021-2022

Laboratory Title: Mini project (Engineering Design Project)	Lab. Code: 18EARW301
Total Hours: 30	Duration of Exam: 2 hrs
Total Exam Marks: 50	Total ISA Marks: 50
Lab. Plan Author: Arunkumar C.Giriyapur	Date: 05-08-2021
Checked By: Mrs Shilpa Tanvashi	Date: 05-08-2021

Theme: Product development through Engineering Design and Rapid Prototyping

Course Objective: To apply engineering design process to develop a simple product and build it using rapid prototyping.

Task Details:

The project should include usage of engineering design principles, agile methodology and rapid prototyping. The product should be used to automate a process or perform a set of useful tasks.

Course Outcomes - CO

At the end of the course student will be able to:

- 1. Carry out need analysis and identify suitable problems.
- 2. Apply the principles of engineering design to scope, plan and implement the project, continuously evaluate progress, navigate uncertainty and adversity, and iterate as needed.
- 3. Think critically while analyzing, evaluating, synthesizing, and applying diverse information and experiences to support decision-making during the design process.
- Develop and apply creativity to generate novel ideas taking into account real constraints that lead to innovative outcomes.
- 5. Develop schematics and select appropriate components.
- 6. Prototype the product using rapid prototyping and test it.
- 7. Collaborate successfully with other team members to achieve the desired outcome.
- Consider the individual, social and environmental impacts of their decisions to produce positive transformations while minimizing unintended consequences.
- Communicate effectively through oral, written, and visual media and listen actively to comprehend the meaning of others.

Experiment wise plan

ISA Marks Week No Activities **Deliverables** out of 50 10 Need analysis, Identification of problem Problem statement, Project 1&2 statement, Engineering Design process plan, Process plan Component designs & 10 3&4 Product development Integration, Modeling and simulation 20 Prototype (hardware and Rapid prototyping, Testing and 5,6,7&8 software) validation

List of activities planned to meet the requirements of the syllabus

Attributes for Final Evaluation of Mini project:

Reporting

9&10

Sl. No	Activity	ESA Marks out of 50
1	Project Report	10
2	Poster & Paper Presentation	20
3	Demo of Project	10
4	Viva Voce(individual)	10
	Total Marks	50

Date:05-08-2021

Head of Department

10

Test reports and Conclusion

Course Content

Course Code: 18EARC308	Course Title: Hydraulics and Pneumatics		
L-T-P : : 4-0-0	Credits: 4	Contact Hrs: 50) hours
ISA Marks: 50	ESA Marks: 50	Total Marks: 10	00
Teaching Hrs: 50 hours		Exam Duration	: 3 Hrs
Con	itent		Hrs
Uni	it - 1		i
Chapter No. 1. Introduction to Hydraulic Pascal's law, Structure of Hydraulic Co Power: Pumps Pumping theory, pump piston pumps, Variable displacement pur Problems on determining the pump flow ra	ontrol System. The S classification,gear pu mps, pump performar	Source of Hydraulic imps, vane pumps, ice, pump selection.	7hrs
Chapter No. 2. Hydraulic Actuators: Cyl Linear Hydraulic Actuators (cylinders), M Hydraulic Rotary Actuators, Gear motors Motor Performance. Problems on determ efficiency	Mechanics of Hydraul s, vane motors, pisto	n motors, Hydraulic	6hrs
Chapter No. 3. Hydraulic Valves Hydraulic Valves: Directional Control Valves- classification of directional control valves, direction control valves actuating devices, Symbolic representation as per ISO 1219 and ISO 5599, pressure control valves, flow control valves- classification of flow control valves, proportional control valves, and servo valves.			7hrs
Uni	t - 2		i
Chapter No. 4. Hydraulic Circuit Design Control of single acting and double acting pump unloading circuit, Double pump H application, Hydraulic cylinder sequencing valve, cylinder synchronizing circuits, Spe circuit, Meter-out circuit and Bleed-off ci Ancillary Hydraulic Devices: Reservoir Sealing Devices.	g Hydraulic Cylinder, lydraulic system, Cou circuits. Locked cylin eed control of hydrau ircuit, speed control	inter Balance Valve der using pilot check lic cylinder: Meter-in of hydraulic motors.	6hrs
Chapter No. 5. Pneumatic Systems Structure of Pneumatic control system, C of compressed air, Pneumatic Actuators: cylinders, Cylinder mountings, Cylinder cylinders. Pneumatic Control Valves: Di control valves, ISO designation of direct methods of actuation of pneumatic direct and Pressure control valves.	Types of Linear Actor r seals, End cushic irection control valve ction control valves,	uators or Pneumatic oning in pneumatic - types of direction Non return valves,	5hrs

 KLE TECH.
 Creating Value Leveraging Knowledge

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

Technological University

Pneumatic Circuit Design: Direct and indirect control of single acting cylinder, control of single acting cylinder using "or", "and", "not" valve. Direct control of a double acting cylinder, Indirect control of double acting cylinder using memory valve, Supply air throttling and exhaust air throttling, Various methods of checking end position of a cylinder, Pressure dependent controls and Time dependent controls.

Hydraulic Control Systems: Servo Control, Valve servo systems: Valve lap, mechanical feedback, systems response, electro hydraulic servo valves, Proportional valves: Force control, force position control, spool position control, proportional pressure control, proportional flow control, electrical control of proportional valve, Applications of proportional control valves.

Unit - 3	
Chapter No. 7. Electro Pneumatics Basic electrical devices- Manually actuated push button switches, Limit switches, Pressure switches, Solenoids, Relays, Timers, Temperature switches, Direct and indirect control of single acting cylinders using electro pneumatics, Direct and indirect control of double acting cylinders using electro- pneumatics, Control of double acting cylinder OR logic (Parallel circuit), Control of double acting cylinder AND logic.	5 hrs
Chapter No. 8. Hydraulic System Maintenance Common faults in a hydraulic systems, contamination, Filter and filter maintenance, pump maintenance, Hydraulic system maintenance, fault diagnosis of Hydraulic	5 hrs

system.

Text Books (List of books as mentioned in the approved syllabus)

- 1. Anthony Esposito, Fluid Power with Applications, 6th Edition, Pearson, 2003.
- 2. Michael J. Pinches and John G. Ashby, Power Hydraulics, Prentice-Hall, 1989.

References

- 1. Herbert E. Merritt, Hydraulic Control Systems, John Wiley & Sons, 1967.
- Peter J Chapple, Principles of Hydraulic System Design, 1st Edition ,Coxmoor Publishing Company, 2003.
- 3. S. R. Majumdar, Oil Hydraulic Systems, Tata McGraw Hill publishing Company Ltd, 2001.

Course Content

Course Code: 17EARE301	Course Title: AI for A	utonomous Robots	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40		Exam Duration : 3 hours	
Content			Hours
UNIT – 1		19일 : 19일 - 19일 : 1 - 19일 : 19g : 19g : 1	
Chapter 1: Introduction to Artific artificial intelligence, robotics and the AI, The Concept of Rationality The The Structure of Agents, Prob Uninformed Search Strategies, Infor knowledge based agents, proposition	the AI approach, Semi-au e Nature of Environments, lem-Solving Agents, Se ormed Search Strategies, k	tonomous control, Seven areas of earching for Solutions, Knowledge representation in AI,	5hrs
Chapter 2: Robotic software arch Subsumption architecture, Three-la Paradigm- Attributes of the Hierard Paradigm , Hybrid Deliberative/Rea Architectural Aspects, Managerial Sensor Fusion Effects (SFX), State Architectures, Model-Oriented Arc	yer architecture, Pipeline chical Paradigm, Reactive active Paradigm-Attribute Architectures-Autonomou -Hierarchy	Paradigm- Attributes of Reactive es of Hybrid Paradigm, us Robot Architecture (AuRA),	5 hrs.
Chapter 3: Biological Foundation Agency and computational theory, Control of Behaviors, Innate releas Behaviors, Action-perception cycle, Neisser: Two perceptual systems, and Issues in Transferring Insights to Robots	Animal Behaviors, Refle ing mechanisms ,Concurr e ,Two functions of perce	xive behaviors, Coordination and ent behaviors, Perception in ption Gibson: Ecological approach	5 hrs
UNIT – 2	MARK SPACE AND D	and a start start of the	
Chapter 4: Capturing intelligence sensing techniques for robotics per Behaviors as Objects in OOP, Step Unmanned Ground Robotics Comp Behavioral Sensor Fusion, Designin Sensors, Computer Vision, Range for d'Oeuvres, Anyone?	erception s in Designing a Reactive petition, Assemblages of E ng a Sensor Suite, Proprio	Behavioral System, Case Study: Behaviors, Logical sensors, oceptive Sensors, Proximity	8 hrs
Chapter 5: Multi-agents and nav Heterogeneity, Control, Cooperation	on, Emergent Social Behav	vior, Topological Path Planning, pological Navigation with a Hybrid	7 hrs
	UNIT – 3		

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

6hrs

4 hrs

Chapter 6:Localization and Map Making

Sonar Sensor Model, Bayesian, Conditional probabilities , Conditional probabilities , Updating with Bayes' rule , Dempster-Shafer Theory , Shafer belief functions Belief function for sonar Dempster's rule of combination Weight of conflict metric, HIMM sonar model and Comparison of Methods , Example computations , Performance Errors due to observations from stationary robot , Tuning , Localization , Continuous localization and mapping , Feature-based localization Exploration , Frontier-based exploration , Generalized Voronoi graph methods .

Chapter 7: Deep learning and natural language processing

Deep Learning Improvement of the Deep Neural Network Vanishing Gradient Over fitting Computational Load. Language models, text classification, information

retrieval

Text Book (List of books as mentioned in the approved syllabus)

- 1. Stuart J. Russell and Peter Norvig"Artificial Intelligence ,A Modern Approach" Third Edition, Pearson Education, Inc.2010
- 2. Robin R. Murphy "Introduction to Al Robotics", Second edition, The MIT Press Cambridge, Massachusetts, 2000

References

- 1. Elaine Rich, Kevin Knight: "Artificial Intelligence", 3rd Edition, Tata McGraw Hill, 2009, ISBN-10: 0070087709
- Sebastian Thrun, Wolfram Burgard, Dieter Fox, "Probabilistic Robotics" MIT Press; Intelligent Robotics and Autonomous Agents series edition,2005

 KLE TECH.
 Creating Value Leveraging Knowledge

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

Course Content

Course Code: 15EARE302	e Code: 15EARE302 Course Title: Computer vision and digital image processing		
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40	
ISA Marks: 50	ISA Marks: 50 ESA Marks: 50 Total Marks: 100		
Teaching Hrs: 40	Teaching Hrs: 40 Exam Duration : 3 hours		
	Content		Hours
	UNIT – 1		
CHAPTER 1: FUNDAME PROCESSING	NTALS OF COMPUTER	VISION AND DIGITAL IMAGE	6 hrs
Cameras with Lenses, the Hu	uman Eye, Intrinsic and Ext ocessing system, application	amera Models- Pinhole Perspective, rinsic Parameters, Geometric Camera of computer vision and digital image	
CHAPTER 2: LIGHT AND) SHADING, COLOR		6 hrs
Lambertian+SpecularModel, Dynamic Range Images, the S Human Color Perception, T	Inference from Shading, Shape of specularities, Inferri- the Physics of color, repres	Sources and Their Effects, the Radiometric Calibration and High ing Lightness and Illumination, Color- senting Color, Inference from Color Color Constancy: Surface Color from	
CHAPTER 3: IMAGE FOR	RMATION AND PROCESS	SING	5 hrs
Spatial Domain Gray leve	el Transformations Histogr	l Relationships, image enhancement am Processing Spatial Filtering – ransform and the Frequency Domain,	
	UNIT – 2		
CHAPTER 4: IMAGE SEG	MENTATION AND FEAT	TURE ANALYSI	6hrs
Thresholding - Region Base	d Segmentation, A Model of oration in the Presence of N	Linking and Boundary Detection – of the Image Degradation/Restoration Noise Only–Spatial Filtering, Periodic	
CHAPTER 5: COLOR IMA	AGE PROCESSING AND I	MAGE COMPRESSION	6hrs
		Processing, Basics of Full-Color Image pening, Color Segmentation, Noise in	

Color Images Color Image Compression, Image Compression-Fundamentals, Image Compression Models, Elements of Information Theory, Error-Free Compression, Lossy Compression

UNIT-3

6hrs

5 hrs

CHAPTER 6: MORPHOLOGICAL PROCESSING

Dilation and Erosion, Opening and Closing, The Hit-or-Miss Transformation, Some Basic Morphological Algorithms.

CHAPTER 7: RECOGNITION AND BAYESIAN MODELING

Object detection, Face recognition. Instance recognition, Category recognition, Context and scene understanding, Recognition databases and test sets, Prior models and Bayesian inference. Gradient descent and simulated annealing, Graph cuts, Markov random fields

Text Book (List of books as mentioned in the approved syllabus)

- 1. David A. Forsyth and Jean Ponce- Computer vision A modern approach, 2nd Edition, Pearson publication, 2003.
- 2. Rafael C. Gonzalez and Richard E. Woods- Digital Image Processing-2nd Edition, Prentice Hall publication,2002

Reference book

1. Richard Szeliski , Computer Vision: Algorithms and Applications, Springer publication, 2010

Course Content

Course Code: 16EARE301	Course Code: 16EARE301 Course Title: Power Electronics, Motors & Drives		
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40	
ISA Marks: 50	ESA Marks: 50 Total Marks: 100		
Teaching Hrs: 50		Exam Duration: 3 hrs	
Co	ntent		Hrs
UI UI	nit - 1	4	1
CHAPTER NO. 1. INTRODUCTION TO PE ANI Applications of Power Electronics, Types of Power E Specifications of Switches. Basic components of an I power sources, converters and controllers.	lectronic Circuits, Peripheral	Effects, Characteristics and	7
CHAPTER NO. 2. POWER DIODES, BJT, Characteristics, Reverse Recovery Characteristics, Pow Load. Power BJT, structure of BJT, MOSFET and IGB' of power devices. Introduction, Single-Phase Full-Wa Load, Single-Phase Full-Wave Rectifier with a Highly In	rer Diode Types, Freewheelin Γ, characteristics of BJT, MOS ve Rectifiers, Single-Phase F	g Diodes with Switched RL SFET and IGBT, comparison	7
CHAPTER NO. 3. THYRISTORS AND COMMUTATION THEORY Introduction, Principle of Operation of SCR, Static Anode-Cathode Characteristics of SCR, two transistor model of SCR, Gate Characteristics of SCR, Firing circuits for SCRs, Turn-On Methods, Turn-Off Mechanism, Turn-Off. Natural and Forced Commutation – Class A and Class B types, Gate Trigger Circuit: Resistance Firing Circuit, Resistance capacitance firing circuit.		6	
Unit - 2			1
CHAPTER NO. 4. STATIC SWITCHES AND POW Single phase ac static switches, three phase ac static sw Design of static switches, DC power supplies, DC S supplies, Switched Mode AC power supplies.	vitches, three phase reversing		7
CHAPTER NO. 5. DC-DC CONVERTERS - Introd with RL load, principle of step-up operation, Step-up Converter classification, Switching mode regulators: Bu	converter with a resistive loa	ad, Performance parameters,	7
CHAPTER NO. 6. POWER ELECTRONICS FOR MOTOR AND DRIVE APPLICATIONS DC and AC motor control, Single phase SCR drive, Three phase SCR drive, Reversible SCR drive, Speed control of DC motor, chopper-controlled DC drives, Microprocessor-Controlled DC drives, AC motor characteristics, speed control methods of induction motor, commutator less DC motor and Electronic commutation.		6	
Unit - 3			
	Principle of Stepper motor, Classification of Stepper motor, Principle of variable reluctant stepper motor, Principle of Permanent magnet stepper motor, Principle of hybrid stepper motor, driver for stepper motor, Applications of		5
CHAPTER NO. 8. DRIVES FOR INDUSTRIAL AP Rolling mill drives, cement mill drives, electric traction		nachine tool drives.	5

01

 KLE TECH.
 Creating Value Leveraging Knowledge

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

Technological University

Text Book: (List of books as mentioned in the approved syllabus)

- 1. Gopal K Dubey, Fundamental of electric drives, Second, Narosa publication, 2005
- 2. P.S Bhimbhra, Power Electronics, Fourth, Khanna, 2007
- 3. Mohammed A Sharkawi, Fundamental of electric drives, Fourth, Brooks/Cole, 2000
- 4. Robert Boylestead and Louis Nashelsky "Electronic Devices and Circuit Theory, Eleventh edition, Pearson Publications
- 5. Rashid M H, Power Electronics Circuits, devices and applications, Second, PHI, 2000
- 6. P.C Sen, Power Electronics, Tata McGraw Hill, Ninth Edition.

References

- 1. P.S Bhimbhra, Power Electronics, Fourth, Khanna, 2007
- 2. Mohammed A Sharkawi, Fundamental of electric drives, Fourth, Brooks/Cole, 2000

 KLE TECH.
 KLE Technological

 Creating Value
 Creating Value

 Leveraging Knowledge
 Department of Automation & Robotics

Course Content

Course Code: 17EARE304	Course Title: Digital Sys	Course Title: Digital System Design and FPGA programming	
L-T-P: 3-0-0	Credits: 3	Credits: 3 Contact Hrs: 50	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50		Exam Duration: 3 hrs	

Content	Hrs
Unit – 1	
Chapter No. 1. Review of Logic Design Fundamentals: Combinational logic, Boolean algebra and algebraic Simplification Karnaugh maps, designing with NAND and NOR gates, hazards in combinational circuits, flip-flops and latches, Mealy sequential circuit design, design of a Moore sequential circuit, equivalent states and reduction of state tables, sequential circuit timing, tristate logic and busses. Advanced Design Issues: Meta-stability, Noise Margins, Power, Fanout, Timing Considerations, Brief overview of programmable logic devices, simple programmable logic devices (SPLDs), complex programmable logic devices (CPLDs), field-programmable gate arrays (FPGAs),	9 hrs
Chapter No. 2. Introduction to State Machine Charts and Microprogramming: State machine(SM) charts, derivation of SM charts, realization of SM charts, implementation of the dice game, microprogramming,: Design Examples	6 hrs
Unit – 2	
Chapter No. 3. Designing with Field Programmable Gate Arrays: Implementing functions in FPGAs, implementing functions using Shannon's decomposition, carry chains in FPGAs, cascade chains in FPGAs, examples of logic blocks in commercial FPGAs, dedicated memory in FPGAs, dedicated multipliers in FPGAs, cost of programmability, FPGAs and One-Hot state assignment	7 hrs
Chapter No. 4. Modeling and design with HDL Basic Concepts, Dataflow Descriptions, Behavioral Descriptions, Structural Descriptions, Design examples, Timing and Delays, BCD to 7-Segment Display Decoder, BCD Adder, 32-Bit Adders, Traffic Light Controller, Shift-and-Add Multiplier, Array Multiplier. Introduction to Verilog and VHDL: Data Types, Modeling Concepts, Task and Functions, Specify Block and Timing Checks, Architecture study of popular FPGA families	8 hrs
Unit – 3	
Chapter No. 5. Testing and Verification What is Verification, what is a Test bench, The Importance of Verification, Convergence Model, What Is Being Verified, Functional Verification Approaches, Testing Versus Verification, Design and Verification Reuse, Cost of Verification	5 hrs
 Chapter No. 6 Case studies on FPGA technologies in Automation and Robotics applications Robotic Car from Georgia Institute of Technology Robotic Controller: ASIC versus FPGA Expanding a robot's life: Low power object recognition via FPGA-based DCNN deployment FPGA-powered parallel, pipelined vision algorithms 	5 hrs

Text Books (List of books as mentioned in the approved syllabus)

- 1. Charles Roth, Digital Systems Design using VHDL, 2/e, Cengage Learning, 2012.
- 2. Samir Palnitkar, Verilog HDL, 2/e, Pearson Education, 2013.
- 3. Charles Roth, Digital Systems Design using Verilog, Cengage Learning, 2014

References

- 1. John F. Wakerly, Digital Design Principles and Practices, 4/e, Pearson Education, 2013.
- 2. Michael Ciletti, Advanced Digital Design using Verilog HDL, 2/e, Prentice Hall Publications, 2012.
- 3. J. Bhasker, System Verilog HDL Primer, B.S. Publications, 2012.
- 4. J. Bhasker, Verilog Synthesis Primer, B. S. Publications, 2011.

ľ

KLE Technological University

Laboratory Title: Hydraulics And Pneumatics Laboratory	Lab Code: 16EARP302
Total Contact Hours: 36	Duration of ESA Exam: 2 hrs
Total ISA Marks: 80	Total ESA Marks :20

List of Experiments

Sr No	Experiment Details	No. of Lab Session(s) per batch (estimate)
1	To study hydraulic pump, its characteristics and calculate the hydraulic power.	1
2	 A. To study concepts of Meter-in and Meter-out circuits using Single-rod cylinder and 4/2 DCV B. Automation Studio Exercises- Create the given circuits and simulate them to investigate their operation in Automation Studio 	1
3	To study pressure intensification of a single rod cylinder	
4	Study of Hydraulic Motor with 4/3 DCV	1
5	 A. Study of indirect control of a double-acting cylinder with a pneumatically operated 5/2 directional control valve. B. Experiments on AND, OR, Latch and Electric limit Switch. 	1
6	A. To study position dependent control of a double acting cylinder using mechanical limit switches.B. Verify the ladder diagram for AND, OR latch logic using 5/2 DCV and PLC kit	1
7	To study the application of different center configuration of 4/3 DCV. (Tandem and closed centre)	1
8	Study of Speed Control of Single Acting Cylinder - Slow Speed Extension and Rapid Retraction.	1
9	Stop control, double-acting cylinder with 5/3 directional control valve, tensile load.	
10	To study the application of Regenerative Circuit	1
11	To familiarize the student with the use of a 2-way flow control valve	1
12	 A. By using a 3/2 directional control valve with adjustable minimum pressure of response, a pressure-dependent (and in addition displacement) control of a double acting cylinder is put into effect. B. Clamping Camera Housings 	1
13	The sequential control with two pneumatic drives. The signal overlapping occurring during this exercise is constructively solved by use of rollers with idle return. Practice is obtained in developing sequential diagrams and pneumatic circuit diagrams.	1
14	A double-acting cylinder is used to press together glued components. Upon pressing a push-button, the clamping cylinder is to extend and trip the roller valve. Once the fully extended position of the cylinder has been reached and sufficient clamping force has been developed, the cylinder is to retract to the initial position. Develop a control circuit using a pressure sequence valve.	1

KLE Technological University

 KLE TECH.
 Creating Value Leveraging Knowledge

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

Lab. Code: 16EARP307	Laboratory Title: Real Time Embedded Systems Lab
Total Hours: 28	Duration of ESA Exam: 3hrs
Total ESA Marks: 20	Total ISA. Marks: 80

LIST OF EXERCISES & ISA COMPUTATION

SI. No	EXPERIMENTS	MAX MARKS
1	Demo on Energia IDE and TM4C1294NCPDT, TIVA C series microcontroller board & Solving problems on Data Acquisition for Bio Medical / Process control/Industrial control application	05
2	Demo on Code Composer Studio(CCS) and TIVA C series TM4C1294NCPDT microcontroller board and problem solving on ADC,TIMERS,INTERRUPTS	05
3	Demo on LABVIEW on multitasking to implement Semaphores, Queue Demo on Introduction to Keil uvision 4 problem solving	05
4	Demo on Raspberry Pi Programming and peripheral programming	05
5	Exercises on basic RTOS program, RTX Kernel using peripherals like RTC, TIMERS, UART, SEMAPHORES	10
6	Exercises on implementing scheduling algorithms like Preemptive /Round Robin / Interrupts/ and Multitasking operations in RTX Kernel of Keil uvision 4.	10
7	Structured Query : Implementing Communication Protocols like I2C / SPI / UART /CAN / ETHERNET with Energia /CCS & TM4C1294 TIVA board	10
8	Study of real-time sensor data visualization in computational tool and triggering of power electronics devices.	05
9	Synopsis for ESA Project, Attendance & Timely Submission of document	05
	TOTAL ISA MARKS	80
ESA	Design using state machine architecture or Unified Modeling Language and implement solution for a real world problem using IOT technology for applications related Smart Home, Energy Management, Smart Grid, Smart Agriculture, Wearable Device, Smart Health Care, Connected Car, Smart Machine involving Inter-process communication, Resource sharing and an effective scheduling technique satisfying real time constraints.	20
	TOTAL MARKS	100

 KLE TECH.
 Creating Value Leveraging Knowledge

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

Lab. Code: 18EARP304	Laboratory Title: Mechatronics and Measurements Laboratory
Total Contact Hours: 22	Duration of ESA: 2 hrs
ISA Marks: 80	ESA Marks: 20

List of Experiments

Expt. No	List of Experiments	In Lab /Assignment
1	Demo of Quanser Mechatronics Sensor kit, DAQ card, DC Motor Control Trainer module, Inverted Pendulum Trainer module with NI ELVIS Platform.	In Lab
2	 Investigation of time-response and frequency-response. i. Time-Response Identification of Resistor Capacitor (RC) Circuit. ii. Frequency-Response Identification of Resistor Capacitor (RC) Circuit iii. Control of a Resistor Capacitor (RC) Circuit 	In Lab
	iv. Investigation of time response of LRC Circuit Investigation of loading in circuits in series.	
3	Sensor characterization using sensor modules, namely, Accelerometer, Ultrasonic sensor, Temperature sensor, Strain gauge	In Lab
4	Sensor fusion of IMU and compass	In Lab
5	Model Based Design Experiments: i. Modeling Systems using Simulink. (Hydroplane) ii. System Identification of Disk Head Assembly. iii. Estimating Simulink model parameters from measured data. iv. System Analysis of Hydroplane.	In Lab
6	System identification of DC motor	In Lab
7	Control of an Inverted Pendulum on a Cart.	In Lab
8	Control of a Linear Electric Actuator	In Lab

 KLE TECH.
 Creating Value

 Leveraging Knowledge
 Leveraging Knowledge

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India)
 Department of Automation & Robotics

Laboratory Plan

FMTH0303-2.0

Technological University

Semester: VI

Year: 2021

Laboratory Title: Minor project	Lab. Code: 17EARW302
Total Hours: 30	Duration of Exam: 3
Total SEE Marks: 50	Total CIE. Marks: 50
Lab. Plan Author: Prof. Arun C Giriyapur	Date: 06/04/2021
Checked By: Dr Jyoti Bali	Date: 06/04/2021

Prerequisites:

Subjects learnt up to IV semester.

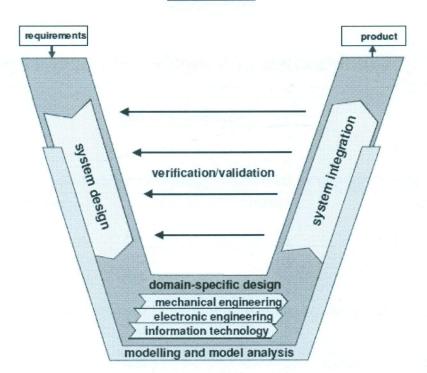
Theme: Mechatronics System Design

Objectives: i. To develop competency in mechatronics system design methodology. ii. Design, develop, fabricate, implement & test - mechatronic systems using controllers, sensors and actuators.

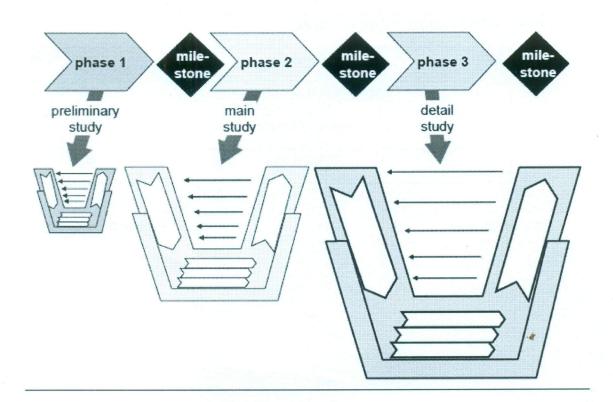
Task Details:

The project should include mechatronics system design (hardware and software co-design), modeling and co-simulation using Matlab tools, Machine components design, Logic development, selection of controller, interfacing devices like robots, CNC machine tools with sensors and actuators.

Course Learning Objectives-CLO


At the end of the course student will be able to:

- 1. Apply the principles of engineering design to plan and manage the project.
- 2. Gather the requirements, do functional analysis and develop specifications for a machine controller from the identified problem statement.
- 3. Develop alternative designs and choose the most suitable design for implementation.
- 4. Apply principles of mechatronics system design for hardware and software co-design as per standards (VDI 2206 & VDI 2221).
- 5. Develop elaborate validation and verification plans for each phase of the process.
- 6. Design control and signal conditioning circuits including schematics and wiring diagrams as per standards (IEC standards).
- 7. Build the Virtual prototype and validate using hardware-in-loop simulation and software-in-loop simulation.
- 8. Prototype the controller, deploy the software & Interface the controller to the machine.
- 9. Test, evaluate and improve the system.
- 10. Prepare technical report.


 KLE TECH.
 KLE TECH.

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

Design Process

Figure 2. V-shaped model on the macro-level

Combination of V-model and project plan

Experiment wise plan

Week No	Activities	Deliverables	CIE Marks out of 50
1&2	Engineering Design	Problem statement, Project plan	10
3&4	Mechatronics System Design	Component designs & Integration	10
5,6,7&8	Fabrication	Prototype	20
9&10	Testing, Validation an Improvements	Test reports and Recommendations	10

1. List of activities planned to meet the requirements of the syllabus

Attributes for Final Evaluation of Minor project:

SI.No	Activity	SEE Marks out of 20
1	Project Report & Presentation	10
3	Demo of Project	10
	Total Marks	20

Date: 06/04/2021

Head of Department

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

B.E. (Automation & Robotics) Curriculum Structure & Syllabus 2020 – 24 Batch

Semester: III

Course Code	Course Title	Category					Ma	rks				
			L	T	P	Hrs	Credits					
								ISA	ESA			
15EMAB201	Statistics And Integral Transforms											
15EMAB231	Calculus And Integral Transforms	— BS	BS		- BS	4	0	0	4	4	50	50
18EARC201	Analog & Digital Electronic Circuits	ES	4	0	0	4	4	50	50			
19EARC202	Kinematics of Machinery	PSC	4	0	0	4	4	50	50			
18EARC203	Data Structure Algorithm Design and Analysis	PSC	4	1	0	6	5	50	50			
18EARC204	Mechanics Of Materials	ES	3	0	0	3	3	50	50			
18EARC205	Manufacturing Technology	PSC	3	0	0	3	3	50	50			
18EARP201	Analog & Digital Electronic Circuits Lab	PSC	0	0	1	2	1	80	20			
18EARP202	Kinematics Of Machinery lab	PSC	0	0	1	2	1	80	20			
19EARP203	Machine Drawing Lab	PSC	0	0	1	2	1	80	20			
	Total		22	1	3	30	26					

ISA: Internal Semester Assessment, ESA: End Semester Assessment, L: Lecture T: Tutorials,

P: Practical, PSC: Program Scheme Core, HSC: Humanities Scheme Core, BS: Basic Science

Course Code	Course Title	Category				Ma	rks		
			L	Т	Р	Hrs	Credits		
							ISA	ESA	
15EMAB206	Numerical Methods and Partial differential equations	BS	4	0	0	4	4	50	50
15EMAB241	Vector calculus and differential	DS	4	0	0	4	4	50	50
18EARC206	Machine Design	PSC	3	0	0	3	3	50	50
19EARC207	Control Systems	PSC	4	0	0	4	4	50	50
18EARC208	Microcontrollers Programming & Interfacing	PSC	4	0	0	4	4	50	50
19EARC209	Object Oriented Programming & DBMS	PSC	4	0	0	4	4	50	50
18EARC210	Robot Analysis & Design	PSC	4	0	0	4	4	50	50
16EARP205	Manufacturing & Metrology lab	PSC	0	0	1	2	1	80	20
18EARP208	Microcontrollers Programming & Interfacing Lab	PSC	0	0	1	2	1	80	20
19EARP209	Object Oriented Programming & DBMS Lab	PSC	0	0	1	2	1	80	20
	Total		23	0	3	29	26		

Semester: IV

ISA: Internal Semester Assessment, ESA: End Semester Assessment, L: Lecture T: Tutorials,

P: Practical, PSC: Program Scheme Core, HSC: Humanities Scheme Core, BS: Basic Science

Semester: III

Course Content

Course Code: 18EARC201	Course Title: Analog and Digit	Course Title: Analog and Digital Electronic Circuits			
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 50			
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	18		
Teaching Hrs: 50		Duration of ESA: 3 hrs			
	Content		Hrs		
	Unit - 1				
1.0 Modeling and Analysis of electrical ci The Lumped Circuit Abstraction, Modeling Representation, Dependent Sources and th Loop Method, Superposition, Thévenin's Th	Physical Elements using lumpe e Control Concept, Network the	eorems: The Node Method,	7		
MOSFET, Active Pull-ups, Voltage Levels using K-map, Combinational circuits: enc	2.0 Basics of Digital Electronics Number Representation, MOSFET Switch Implementation of Logic Gates, The SR Model of the MOSFET, Active Pull-ups, Voltage Levels and the Static Discipline, Simplifying Logic Expressions using K-map, Combinational circuits: encoder/decoder, multiplexers/de-multiplexers, Binary adder/ subtractor, Binary comparator, Sequential Circuits: Gated D Latch, JK Flip-Flop, Registers, Counters,				
3.0 Transistors Operating point, Fixed bias circuits, Emitter stabilized biased circuits, Voltage divider biased, Bias stabilization, BJT transistor modeling, , Emitter follower, CB configuration, Collector feedback configuration, analysis of CE configuration using h- parameter model; Relationship between h-parameter model of CE,CC and CB configuration.					
	Unit - 2				
4.0 Operational Amplifiers Device properties of the Operational Amplifier, Simple Op Amp Circuits: The Non-Inverting Op Amp, The Inverting Connection, A Special Case: The Voltage Follower, Op Amp RC Circuits: Op Amp Integrator, Op Amp Differentiator, An RC Active Filter, The RC Active Filter Impedance Analysis, Sallen-Key Filter, Op Amp in Saturation: Op Amp Integrator in Saturation, Positive Feedback : RC Oscillator.					
5.0 Printed Circuit Board (PCB) Design I Partitioning, Resistance Of Conductors, "Ko Isolation Techniques, Static PCB Effects Noise And Faraday Shields, Buffering AD Basic Linear Design, Decoupling Mixed Considerations, Mixed Signal Groundi Decoupling, Ringing, Thermal Managemen	elvin Feedback", Ground Noise , Inductance, Parasitic Effect OCs against Logic Noise, Skin E Signals ICs With Low Digita ng, Grounding DSPs with Inte	s In Inductors ,Capacitative ffect , Transmission Lines , 1 Content, Sampling Clock ernal Phase-Locked Loops,	7		
6.0 First Order Transients in Linear Elect Analysis of RC & RL circuits, Propagation		Problems	6		
	Unit - 3				
7.0 Energy and Power in Digital Circuits Energy Storage Elements; capacitors and Circuit, Average Power in an RC Circuit, I Total Power Dissipation, CMOS Logic Gate	Power Dissipation in Logic Gate		5		
8.0 Transients in Second Order Circuits Undriven Series RLC circuit, Stored Energy circuit, Driven Parallel RLC circuit, State Sp		cuit, Undriven Parallel RLC	5		

 KLE TECH.
 Creating Value Leveraging Knowledge

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

Text Books:

- 1. Anant Agarwal, Foundations of Analog and Digital Electronic Circuits, 1, Morgan Kau, 2005
- 2. Thomas L. Floyd, Digital fundamentals, 9, Pearson Ed, 2006

3. Robert L. Boylestad, Electronic Devices and Circuit Theory, 10, Pearson Ed, 2008

 KLE TECH.
 KLE Technological

 Creating Value
 Creating Value

 Leveraging Knowledge
 Department of Automation & Robotics

Course Content

Course Code: 19EARC202 Course Title: Kinematics of Machinery								
L-T-P	: 4-0-0	Credits: 4	Contact Hrs.: 50)				
ISA N	/larks: 50	ESA Marks: 50	Total Marks: 10	0				
Теас	hing Hrs.: 50		Exam Duration:	3 Hrs.				
	U	NIT – I						
No	Cor	ntent		Hrs				
	INTRODUCTION TO KINEMATICS							
	The subject of Kinematics and Dynamics of Machines, Kinematics and Dynamics as Part of							
1	the Design Process, Is It a Machine, a	Mechanism, or a Structure	? Examples of	5				
	Mechanisms; Terminology, Mobility of Mec	chanisms, Kinematic Inversion,	, Grashof's Law					
	for a Four-Bar Linkage.							
	POSITION ANALYSIS							
	Kinematic Requirements in Design, The Process of Kinematic Analysis, Kinematic Analysis							
2	2 of the Slider-Crank Mechanism, Solutions of Loop-Closure Equations, Applications to Simple Mechanisms, Applications to Compound Mechanisms, Trajectory of a Point on a							
	Mechanism.							
	VELOCITY & ACCELERATION ANALYSIS							
3	Velocity Vector, Equations for Velociti			8				
	Applications to Compound Mechanisms. Acc							
	Applications to Simple Mechanisms, Applica		115.					
	L	JNIT - II						
	STATIC FORCE ANALYSIS							
4	Forces, Moments and Torques, Laws of M			6				
	Body Diagram, Characterizing Contact Force	es, Static Equilibrium, Analysis	of a Two-Force					
	Member, Sliding Friction Force.							
	CAMS: DESIGN AND KINEMATIC ANALYSIS							
5	Types of Cam, Types of Followers, Prescribe			7				
	Graphical disk cam profile design, Pressure	angle, Design Limitations, Ana	alytical disk cam					
	profile design.							
6	GEARS: KINEMATIC ANALYSIS AND SELECTI			7				
	Types of gears, spur gear terminology, invo		kinematics, rack	7				
	and pinion kinematics, gear trains, idler gea	rs, planetary gear trains.						
	L	JNIT - III						

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

7	BELTS AND CHAIN DRIVES Types of Belt, Belt drive geometry, Belt drive kinematics, Types of Chains, Chain drive geometry, Chain drive kinematics.	5
8	SCREW MECHANISMS Thread features, Thread forms, Ball screws, Lead Screw kinematics, Screw forces and torques, Differential screws, Auger screws.	5

TEXT BOOKS:

1. Fundamentals of Kinematics and Dynamics of Machines and Mechanism, Oleg Vinogradov, CRC Press-2000.

2. Machines and Mechanisms-Applied Kinematic Analysis, David H. Myszka, Fourth Edition, Pearson Education.

REFERENCE:

1. Kinematics, Dynamics and Design of Machinery, Kenneth J. Waldron, Wiley India Pvt Ltd; Second edition.

 KLE TECH.
 Creating Value

 Leveraging Knowledge
 Leveraging Knowledge

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India)

 Department of Automation & Robotics

Course Content

Course Code: 18EARC203	Course Title: Data structures, Algorithm design and analysis		
L-T-P: 4-1-0	Credits: 4	Contact Hrs: 50	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50		Exam Duration: 03 hours	

Content	Hrs
Unit - 1	
Chapter 1: GENERAL PROBLEM SOLVING CONCEPTS- Problem Solving in Everyday Life, Types of Problems, Problem Solving with Computers - Problem Definition, Solution Design & Refinement, Testing Strategy Development, Program Coding and Testing, Using the Problem Solving Method, Break-Out Diagrams, Difficulties with Problem Solving. How the Computer Stores Data, Functions-function prototypes, Operators, Expressions and Equations.	6 hrs
Chapter 2: DESIGN AND ANALYSIS OF ALGORITHMS -Algorithms and Their Representations, Modifying Algorithms, Review of Asymptotic Notations, Mathematical Analysis of Non-Recursive and Recursive Algorithms, Brute Force Approaches: Introduction, Selection Sort and Bubble Sort, Sequential Search and Brute Force String Matching, Divide and Conquer: General Method, Defective Chess Board, Binary Search, Merge Sort, Quick Sort and its performance.	7 hrs
Chapter 3: ARRAYS, STACKS & QUEUES: Arrays, Dynamically Allocated Arrays, , Polynomials, Sparse Matrices, Representation of Multidimensional Arrays, Structures and Unions, Stacks, Stacks Using Dynamic Arrays, Queues, Circular Queues, Evaluation of Expressions, Queues, Single- and Double-Ended Priority Queues.	7 hrs
Unit - 2	1
Chapter 4: LINKED LISTS, TREES & GRAPHS: Singly Linked lists and Chains, Representing Chains in C, Linked Stacks and Queues, Polynomials, Additional List operations, Sparse Matrices, Doubly Linked Lists. Introduction, Binary Trees, Binary Tree Traversals, Graph representation, Adjacency matrix, Adjancey list, Application of graphs.	8 hrs
Chapter 5:DYNAMIC PROGRAMMING & GREEDY METHOD: Depth First Search and Breadth First Search, The General Method, Warshall's Algorithm, Floyd's Algorithm for the All-Pairs Shortest Paths Problem, Single-Source Shortest Paths, The Traveling Salesperson problem, Kruskal's algorithm, Huffman trees.	7 hrs
Unit - 3	1
Chapter 6: INTRODUCTION TO C++: Overview of C++, Sample C++ program, Different data types, operators, expressions, and statements, arrays and strings, pointers & user defined types. Class Specification, Class Objects, Scope resolution operator, Access members, Defining member functions, Data hiding, Constructors, Destructors, Parameterized constructors,	8 hrs
Chapter 7:BASIC OOP CONCEPTS: Base Class, Inheritance and protected members, Protected base class inheritance, Inheriting multiple base classes, Virtual function, Calling a Virtual function through a base class reference, Virtual attribute is inherited, and Virtual functions are hierarchical, Pure virtual functions, Abstract	7 hr

classes, Using virtual functions.

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

Text Books (List of books as mentioned in the approved syllabus)

1. Maureen Sprankle, Jim Hubbard: "PROBLEM SOLVING & PROGRAMMING CONCEPTS", Pearson Publications, 9th edition, 2012.

 AnanyLevitin: Introduction to The Design & Analysis of Algorithms, 2nd Edition, Pearson Education, 2007.

3. Horowitz, Sahni, Anderson-Freed: Fundamentals of Data Structures in C, 2nd Edition, Universities Press, 2007.

4. Herbert Schildt: The Complete Reference C++, 4th Edition, Tata McGraw Hill, 2003.

References

2. Thomas H. Cormen, Charles E. Leiserson, Ronal L. Rivest, Cliffor Stein: Introduction to Algorithms, 3rd Edition, PHI, 2010.

 KLE TECH.
 Creating Value

 Leveraging Knowledge
 Leveraging Knowledge

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India)

 Department of Automation & Robotics

Course Content

Course Code: 18EARC204	Course Title: Mecha	nics of Materials	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50		Exam Duration: 3 hrs	
	Content		Hrs
	Unit - 1		
Chapter No. 1.Stress & Strain Introduction, Normal Stress Under Axial Loa Inclined Sections, Equality of Shear Stress Deformation, and the Concept of Strain, Norma	sses on Perpendicular Pla		5
Chapter No. 2.Mechanical Properties of Mat The Tension Test, The Stress–Strain Diagram, H Loads, Safety, Allowable Stress Design, Load a	Hooke's Law, Poisson's Ratio		5
Chapter No. 3.Axial Deformation Introduction, Saint-Venant's Principle ,Deform of Axially Loaded Bars, Statically Indeterminat		rs ,Deformations in a System	5
	Unit - 2		
Chapter No. 4.Torsion Introduction, Torsional Shear Strain, Torsional Deformations, Torsion Sign Conventions, H Members.			5
Chapter No. 5. Equilibrium of Beams Introduction, Shear and Moment in Beams, O Diagrams, Discontinuity Functions to Represent		tructing Shear and Moment	5
Chapter No. 6.Bending Introduction, Flexural Strains, Normal Stresse Introductory Beam Design for Strength, Flexur Eccentric Axial Load, Un symmetric Bending			5
	Unit - 3		
Chapter No. 7. Shear Stress in Beams Introduction, Resultant Forces Produced by H Moment of Area Q, Shear Stresses in Beams of Circular Cross Section.			5
Chapter No. 8. Beam Deflections Introduction, Moment-Curvature Relationship Deflections by Integration of a Moment Equa Equations, Deflections Using Discontinuity Fun	tion, Deflections by Integrat		5

Department of Automation & Robotics

Text Books (List of books as mentioned in the approved syllabus)

Timothy .A. Philpot, Mechanics of Materials , An Integrated Learning System, Third edition, Wiley.

References

Roy R., Craig, JR. Mechanics of Materials, Third edition, JOHN WILEY & SONS

LE Technological University r

 KLE TECH.
 Creating Value

 Leveraging Knowledge
 Leveraging Knowledge

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India)

 Department of Automation & Robotics

Course Content

Course Code: 18EARC205	Course Title: Manufa	acturing Technology	
L-T-P: 3-0-0	Credits: 4	Contact Hrs: 50	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50		Exam Duration: 3 hrs	
	Content		Hrs
	Unit - 1		
Chapter No. 1. Turning , Shaping and Planin Classification, constructional features of Lathe, S of Lathe, Shaping and Planing machines. Diffe Machine. Cutting tools. Simple problems on mac	Shaping Machine, Planing Merent operations on Lathe, States		7
Chapter No. 2. Milling Machines Classification, constructional features of millin nomenclature. Milling processes, up milling an Indexing: Simple, compound, differential and compound indexing	nd down milling concepts.	Various milling operations.	7
Chapter No. 3. Drilling & Grinding Machines Classification, constructional features of drilling nomenclature, drill materials. Types of abrasiv grinding wheels, grinding wheel types. Classi (Center less, cylindrical and surface grinding) grinding wheels. Analysis of the grinding process	machine & related operations, machine & related operations, es, Grain size, bonding pro- ification, constructional feators. Selection of grinding where the selection of grinding where selection of grinding where the select	ocess, grade and structure of atures of grinding machines	6
	Unit - 2		
Chapter No. 4. CNC Machine Tools Introduction to CNC machines- Principles of Elements of CNC machines, Basics of Manual p		nachine-Coordinate systems.	7
Chapter No. 5. Nontraditional Machining Need for nontraditional machining, principle, ec Jet Machining, Electro-Chemical Machining, Beam Machining, Laser Beam Machining & Plas	Electrical Discharge Mach		7
Chapter No. 6. Metrology and Inspection Definition, need of inspection, terminologies, m standards, end standards & wavelength standards size, fit and tolerances, Limit gauges classification	s. Limits, fits & gauges-intro		6
	Unit - 3	8	
Chapter No. 7. Comparators and Angular Me Characteristics of comparators, classification comparators. Introduction to angular measurem centre, angle gauges.	of comparators- Mechanic		5
Chapter No. 8. Advanced Metrology Introduction & applications of: Co-ordinate Me causes of errors in CMM, Performance, appl Machine- comparison of CMM & UMM, inspe	ications & advantages of	CMM. Universal Measuring	5

 KLE TECH.
 Leveraging Knowledge

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India)

 Department of Automation & Robotics

principle- laser interferometer- application in linear, angular measurements

Text Books (List of books as mentioned in the approved syllabus)

Mikell P. Groover, Fundamentals of Modern Manufacturing: Materials, Processes and Systems, 4th
 Edition, John Wiley & Sons Inc, 2010.

2. R.K.Jain, Engineering Metrology, Khanna Publishers, 2009.

References

1. R.K.Jain, Production Technology, Khanna Publications, 2003.

3. S .K. Hajra & Choudhury, Elements of workshop technology, volume -II Machine Tools, 13th Edition,

Media Promoters & Publishers Pvt Ltd.

 KLE TECH.
 KLE Technological

 Creating Value
 Creating Value

 Leveraging Knowledge
 Department of Automation & Robotics

Lab. Code: 18EARP201	Laboratory Title: Analog and Digital Electronic Circuits Laboratory
Total Contact Hours: 22	Duration of ESA: 3 hrs
ISA Marks: 80	ESA Marks: 20

List of Experiments

Sr No	Exercise Details
	a) Study and demonstrate of Components and measuring equipment's during course of ADC
1	Laboratory.
	b) Study and Demonstration of Diode Characteristics
	c) Demonstration and Construction of Rectifiers
	a) Demonstration and Construction of Clipping Circuits
2	b) Demonstration and Construction of Clamping Circuits
2	c) Zener diode as voltage regulator
	d) Linear Voltage regulators – Positive and Negative
	e) Characteristics of resonant circuits
3	a) Verification of Network Theorems
	b) Analyze the operation of MOSFET during switching Theorems
4	a) Construction of operational amplifier
	b) Construction of simple DAC circuit with 0-10V output voltage
	c) Construction of an 8-bit ADC circuit that utilizes LEDs to indicate its binary output value.
5	a) Construction of Logic Gates
	b) Construction of Adders and Subtractors
6	Construction of Conversions
7	Construction of Multivibrators
8	Construction of Flip-Flops

 KLE TECH.
 KLE Technological

 Creating Value
 Creating Value

 Leveraging Knowledge
 Cereating Value

 Department of Automation & Robotics
 Department of Automation & Robotics

List of Experiments			
Laboratory Title: Kinematics of Machinery lab	Lab. Code: 18EARP202		
Total Hours: 28	Duration of Exam: 3 hrs.		
ISA Marks: 80	ESA. Marks: 20		

Sr	List of Exercise Details
No	
1	Introduction to Mat lab
2	Introduction to Multibody Simulation
3	Visualizing Co-ordinate frames
4	Simple Pendulum
5	Double Pendulum
6	Pendulum on cart
7	Crane Base
8	Pendulum waves
9	Four bar linkage
10	Inline – Three Engine
11	Crank & Flywheel
12	Importing CAD model in Mat lab
13	Project

 KLE TECH.
 KLE Creating Value

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

Laboratory Title: Machine Drawing Laboratory	Lab Code: 19EARP203
Total Contact Hours: 36	Duration of ESA Exam: 2 hrs
Total ISA Marks: 80	Total ESA Marks :20

List of Exercises

Exercise Details	No. of Lab Session(s) per batch (estimate)
Free Hand Sketching	1
Geometric Dimensioning and Tolerancing and Isometric Drawing	1
Introduction to Solidworks Software	1
Part Modeling & Drafting	2
Assembly	1
Kinematic Analysis	1
Finite Element Analysis	1
Solidworks Routing	1
Solidworks Sustainability	1
Project Work	2
	Free Hand Sketching Geometric Dimensioning and Tolerancing and Isometric Drawing Introduction to Solidworks Software Part Modeling & Drafting Assembly Kinematic Analysis Finite Element Analysis Solidworks Routing Solidworks Sustainability

 KLE TECH.
 KLE TECH.

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

Semester: IV

Course Content

Course Code: 18EARC206	Course Title: Machine	Course Title: Machine Design		
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40		Duration of ESA: 3 hrs		
	Content		Hrs	
	Unit - 1			
Chapter No. 1. THE DESIGN PROCESS			5	
Introduction, Materials in Design, The Evol Products, the Design Process, Types of De Shape, and Process.				
Chapter No. 2. MATERIAL PROPERTY Exploring Material Properties, Modulus-du Maximum service temperature chart, Cost b relative cost chart. ENGINEERING MATERIALS, THEIR I The Families of Engineering Materials, M	ensity chart Strength–density ch par charts, The modulus–relative PROPERTIES AND MATERIA	cost chart, and The strength-	5	
Chapter No. 3. KINEMATICS OF GEAI Spur Gear Geometry: Involute-Tooth Form, Trains, Forces, Torque And Power In G Numbers, Stresses In Gear Teeth, Selection Gears, Power-Transmitting Capacity, Prac Elements. Forces and stresses on helical carrying bevel gears, bending moments on resistance, forces, friction, and efficiency ir of worm gear drives.	Interference Between Mating Sp earing, Gear Manufacture, Gea Of Gear Material Based On Ber trical Considerations For Gears gear teeth, design of helical gea shafts carrying bevel gears, desi	r Quality, Allowable Stress nding Stress, Design Of Spur And Interfaces With Other ars, bearing forces on shafts ign of bevel gears for pitting	5	
	Unit - 2			
Chapter No. 4. KEYS, COUPLINGS, SE	ALS AND SHAFT DESIGNS		5	
Materials for keys, stress analysis to determ couplings, universal joints, retaining rings a shaft design procedure, forces exerted on	nine key length, other methods of nd other means of axial location,	types of seals, seal materials,		

couplings, universal joints, retaining rings and other means of axial location, types of seals, seal materials, shaft design procedure, forces exerted on shafts by machine elements, stress concentrations in shafts, design stresses for shafts, shafts in bending and torsion only, shaft design example, recommended basic sizes for shafts, shaft rigidity and dynamic considerations, flexible shafts

Chapter No. 5. LINEAR MOTION ELEMENTS, SPRINGS, FASTNERS

Power screws, ball screws, application considerations for power screws and ball screws, bolt materials and strength, externally applied force on a bolted joint, thread stripping strength, other means of fastening and joining. Kinds of springs, helical compression springs, stresses and deflection for helical compression springs, analysis of spring characteristics, design of helical compression springs, helical torsion springs,

5

KLE TECH. ______Leveraging Knowledge ______ B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India)

Department of Automation & Robotics

5

improving spring performance by shot peening, spring manufacturing.

Chapter No. 6. CLUTCHES AND BRAKES

method of treating weld as a line, welded joints.

Descriptions of clutches and brakes, types of friction clutches and brakes, performance parameters, time required accelerating a load, inertia of a system referred to the clutch shaft speed, effective inertia for bodies moving linearly, energy absorption: heat-dissipation requirements, response time, friction materials and coefficient of friction, plate-type clutch or brake.

Unit - 3

0111-5	
Chapter No. 7. BEARINGS: ROLLING CONTACT & SURFACE CONTACT	
Types of rolling contact bearings, thrust bearings, mounted bearings, bearing materials, load/life relationship, design life, bearing selection: radial loads only, bearing selection: radial and thrust loads combined, mourning of bearings, tapered roller bearings, practical considerations in the application of bearings, importance of oil film thickness in bearings, life prediction under varying loads.	
Chapter No. 8. MACHINE FRAMES, BOLTED CONNECTIONS AND WELDED JOINTS	5
Machine frames and structures, recommended deflection limits, design to resist bending, design of members to resist torsion eccentrically loaded bolted joints types of joints types of welds size of weld	

Text Book (List of books as mentioned in the approved syllabus)

1. Robert L. Norton, Machine Design, Pearson Education edition, Prentice Hall, 2005

Robert L. Mott, Machine Elements in Mechanical Design, Fourth edition, PEARSON Prentice Hall,
 2004

References

- 1. Shigley J.E. and Mischke C.R, Mechanical Engineering Design, McGraw Hill Publication Co. Ltd
- 2. Michael F. Ashby, Materials Selection in Mechanical Design, Fourth Edition, 2014, 2014
- 3. Michael F. Ashby, Materials Selection in Mechanical Design, Fourth Edition, 2014, 2014

 KLE TECH.
 Creating Value

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India)

 Department of Automation & Robotics

Course Content

Course Code: 19EARC207	Course Title: Control Systems		
L-T-P : 4-0-0	Credits: 4	Contact Hrs: 50	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50	ching Hrs: 50 Exam Duration: 3 I		Hrs
Conte	ent		Hrs
Unit	- 1	i in stal pair Pair	
Chapter No. 1. Introduction to Control Sys Frequency domain System Configurations (open-loop & close Objectives, The Design Process. Mather Transfer function, Electrical networks, Med Systems with Gears, Electromechanical systems, Block diagram representation representation and reduction using Mason's	ed loop systems), Ana matical modeling of p chanical systems, Trans System Transfer Func and reduction, Sig	lysis and Design hysical Systems: afer Functions for tions, Analogous	8
Chapter No. 2. Time Response Introduction, Poles, Zeros, and System Respon response to step, ramp and impulse inputs, Sec damped, Under damped, Critical damped ar specifications of first and second order systems Steady state errors and error constants.	se, Standard test signals, ond-order system respons nd Over damped system	e to step input; Un- ns. Time response	8
Chapter No. 3. Controllers Introduction, Proportional control, Integral Control, Proportional Plus Integral (P-I) Control, Proportional Plus Derivative (P-D) Control, Proportional-Integral-Derivative (PID) control, Guideline for selection of controller mode.			4
Unit - 2			
Chapter No. 4. Stability Analysis Concepts of stability, Necessary condition Routh-Hurwitz Criterion: Special Cases.	ns for Stability, Routh-	Hurwitz Criterion,	5
Chapter No. 5: Root Locus Techniques Defining the Root locus, General rules for o locus, Effect of gain adjustment, addition response and system stability.	-		5
Chapter No. 6 : Frequency Domain Analyse Introduction, Stability analysis, Bode plot an gain margin of a given system.		phase margin and	10
Unit - 3			
Chapter No. 7 : Design Via Frequency Response			

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

5

Transient Response via Gain Adjustment, Lag Compensation, Lead Compensation, Lag-Lead Compensation.

Chapter No. 8: Modeling in the Time Domain (State Space) General State-Space Representation, Applying the State-Space Representation, Converting a Transfer Function to State Space, Converting from State Space to a Transfer Function.

Text Books (List of books as mentioned in the approved syllabus)

1. Norman S. Nise, "Control Systems Engineering", John Wiley & Sons, Inc, Sixth edition, 2011.

References

- 1. Benjamin C. Kuo, Automatic Control Systems, PHI, 7th edition.
- 2. K. Ogata "Modern Control Engineering", Pearson Education Asia/ PHI, 4th Edition, 2002.

Leveraging Knowledge

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

Course Content Course Title: Microcontrollers Programming & Interfacing Course Code: 18EARC208 Contact Hrs: 4 Credits:4 L-T-P: 4-0-0 Total Marks: 100 ESA Marks: 50 ISA Marks: 50 Exam Duration: 100 Teaching Hrs: 50 Unit I Hrs Content No 5 **Chapter 1: Introduction to Microcontroller** Introduction To Microprocessor and Microcontroller: History and Evolution, types of microprocessors, Difference between Microprocessors and Microcontrollers. CPU architectures: RISC/CISC and 1 Harvard/Von-Neumann, Overview of PIC Microcontroller family, Introduction to different microcontroller families (8051, ATMEL/AVR, and ARM). Chapter 2: PIC Microcontroller Architecture and assembly language programming 7 Architecture and pin functions, Registers and Instructions, Data formats and directives, Introduction to assembly language programming, Program counter and program ROM space. Branch, Call and Time 2 delay loop: Branch instructions and looping, Call instruction and stack, Time delay instructions and pipeline. Timing diagrams. 8 Chapter 3: I/O Port programming I/O port programming, I/O bit manipulation programming, Arithmetic, logic instructions and programs: 3 Arithmetic instructions, Signed number concepts and arithmetic operations, logic and compare instructions, rotate instructions and data serialization, BCD and ASCII conversion. Unit II 5 Chapter 4: PIC and AVR programming in C Data types and time delays in C, I/O programming, logic operations, data serialization, program ROM 4 allocation, Program ROM allocation inC18, State diagrams, Timing diagrams in-depth. 8 **Chapter 5: Timer and Serial port programming** Programming TIMERS 0 and 1, counter programming, Programming TIMER0 and 1 in C, Basics of 5 serial communications, PIC18 connection to RS232, PIC18 serial port programming in assembly and C 7 Chapter 6: Interrupt programming in Assembly and C Polling Vs interrupts, PIC18 Interrupts, Programming timer interrupts, programming external hardware interrupts, programming the serial communication interrupt, PortB change interrupts. ADC, DAC and 6 sensor interfacing: ADC characteristics, ADC programming in the PIC18, DAC interfacing, sensor interfacing and signal interfacing. Unit - III 5 **Chapter 7: Introduction to the STMicroelectronics Line of Microcontrollers** STM Nucleo Boards, STM32CubeMX Application: Pinout Tab, MCU Alternative Functions, Integrated Peripheral (IP) Tree Pane, Creating a Project using CubeMX, ARM Cortex Microcontroller 7 Software Interface Standard, Memory-Mapped Peripherals, Core Memory Addresses, Peripheral Memory Addresses, HAL_GPIO Module 5 **Chapter 8: Interrupts and Timers:** Interrupts, NVIC Specifications, Interrupt Process, External Interrupts, Interrupt Demonstration, STM Timer Peripherals STM Timer Configuration, Update Event Calculation, Polled or Non-interrupt Blink 8 LED Timer Demonstration, Test Run: Interrupt-Driven Blink LED Timer Demonstration, Test Run: Multi-rate Interrupt-Driven Blink LED Timer Demonstration

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

Text Book

Mazidi & Mazidi, "PIC Microontroller and Embedded systems", Pearson Edition Mazidi & Mazidi, "Introduction to AVR Microontroller and Embedded systems", Pearson Edition Donald Norris, "Programming with STM32 getting started with Nucleo board and C/C++", McGraw-Hill Education

Reference Books

Ramesh Gaonkar, Fundamentals of microcontrollers and Applications in Embedded Systems. Penram International Publishing(India) Pvt. Ltd. Ajay V Deshmukh, "Microcontroller: Theory and Applications"

M Krishnakumar, "Microprocessors and Microcontrollers".

Department of Automation & Robotics

Course Content

Course Code: 19EARC209	Course Title: Object Oriented Management Systems	Programming and Database	
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 50	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50		Exam Duration: 3 h	irs
	Content		Hrs
	UNITI		
Chapter 1. Fundamental conc principles of object-oriented inheritance, polymorphism, exc Specifiers, Member Functions, In: Data Fields, Constructors with Pa Functions	programming ,classes, object ception handling, and object stance of a Class, Default Const	s, messages, encapsulation, -oriented containers, Access ructors, Destructors, Accessing	8
Chapter 2. Object-Oriented Progr Inheritance, Derived Class, Callin Polymorphism, Class Inheritance Time Information, Early vs. Late Scope Resolution Operator, Neste Objects, Object Assignment, Frien Constructors.	ng the Base Class Constructor, C Hierarchies, Revisiting Class Dia Binding, Virtual Base Classes, M ed Classes, Local Classes, Passing	agrams, Abstract Classes, Run- Iultiple Inheritance, Interfaces, g Objects to Functions, Return	8
Chapter 3 : Object-Oriented Progr Data types, program control, Func NumPy arrays, SciPy for numerical Python -Pandas for DataFrame, S Processing in Python scikit-image,	ctions, Numerical Computations in I methods, Data plotting with Ma SciPy and statsmodels for basic	tplotlib, Statistical modelling in	6
	UNIT II	the terms	
Chapter 4:SDLC models, Object or SDLC Models-waterfall model,v-m System Modelling, UML and SysN Diagram, Activity Diagram, Sequer	nodel,spiral model and agile mod /IL Walkthrough, Class Diagram,	del, Requirement Engineering,	8
Chapter 5 Introduction to database Introduction to DBMS and an ex Behind the Scene; Advantages a instances; Three-schema archite interfaces; The database system e	xample, Characteristics of Datab and Disadvantages of using DBN ecture and data independence	MS; Data models, schema and	8
Chapter 6: Data Models Using High-Level Conceptual Data Entity Types, Entity Sets, Attribut Structural Constraints; Weak Enti higher than two; ER Diagrams, Nat	tes and Keys; Relationship types ty Types; Refining the ER Design	s, Relationship Sets. Roles and n; Relationship types of degree	6

Leveraging Knowledge

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India)

Department of Automation & Robotics

UNIT IIIChapter No 7:Relational Database design and structured query language5Relational Model Concepts; Relational Model Constraints and Relational Database Schemas;5Update Operations, SQL Data Definition and Data Types; Specifying basic constraints in
SQL,Insert, Delete and Update statements in SQL; Specifying constraints as Assertion and Trigger;
Views in SQL; Basic queries in SQL5Chapter No 8 Normalization5Informal Design Guidelines for Relation Schemas; Functional Dependencies; Normal Forms Based
on Primary Keys; General Definitions of Second and Third Normal Forms; Boyce-Codd Normal
Form.5

Text Books (List of books as mentioned in the approved syllabus)

KIF TECH

1. Herbert Schildt, "C++: The Complete Reference", Tata McGraw-Hill, 2003.

2. Allen B. Downey "Think Python" First Edition, Green Tea Press, 2011

3. Ian Sommerville, "Software Engineering," Pearson Publication, 9th edition, 2010.

4. Grady Booch, James Rumbaugh and Ivar Jacobson, "Unified Modeling Language User Guide," Addison-Wesley, 1999.

5. Ramez Elmasri and Shamkant B. Navathe, "Fundamentals of Database Systems," Pearson Education, 5th edition, 2008.

Reference Books:

 Ramakrishnan S. and Gehrke J: "Database Management Systems", 3rd edition, McGraw Hill, 2007

R. S. Pressman, "Software Engineering – A practitioner's approach", 3rd ed., McGraw Hill Int.
 Ed

3. Mark Lutz Programming Python, 4th Edition, O'Reilly Media, Inc., December 2010

 KLE TECH.
 KLE Technological

 Creating Value
 Creating Value

 Leveraging Knowledge
 Creating Value

 Department of Automation & Robotics
 Department of Automation & Robotics

Course Content

	e Code: 18EARC210	Course Title: Robot A Credits: 4		
	: 4-0-0 /arks: 50	ESA Marks: 50	Contact Hrs: 50 Total Marks: 100	
			Duration of ESA: 3 Hrs	
euen	115110.00	UNIT – I	N N N N N N N N N N N N N N N N N N N	
No		Content		Hrs
1	Introduction to Robotics and Appli Introduction, Classifications of Robot Joints, Robot Coordinates, Robo Characteristics, Robot Workspace, Ro Representing Position and Orie Dimensions, representing Pose in 3 orthonormal Rotation Matrix , thr Orientation.	ts, Robot Components, Ro ot Reference Frames, obot Languages, and Robo ntation Coordinate fran- Dimensions, representin	Programming Modes, Robot ot Applications. mes, representing Pose in 2- g Orientation in 3-Dimensions,	6
2	Position Analysis of Serial Manipul Describing a Robot Arm, Link Pa transformation Matrices, Denavit-Ha Link Robot, A 6-Axis Robot.	rameters and Link Coo		8
3	Jacobian Analysis of Serial Manipu Different Kinematics of rigid body coordinates and screw systems, Man Based Jacobian, and Transformatic Methods, condition number, singular	y, Different Kinematics ipulator Jacobian Matrix ons of screw coordinate	, conventional Jacobian, Screw-	6
	1	UNIT - II	I	
4	Statics and Dynamics of Serial Man Types of gears/ motor/ drives/ encode of Serial Manipulators, Transformation transformation of inertia matrix, kine Formulation	lers, Motion controller (ons of Forces and Momer	nts, mass properties, momentum,	6
5	Trajectory planning Path versus Trajectory, Joint-Space versus Cartesian-Space Descriptions, Basics of Trajectory Planning, Joint-Space Trajectory Planning, Third-Order Polynomial Trajectory Planning, Fifth-Order Polynomial Trajectory Planning, Linear Segments with Parabolic Blends, Linear Segments with Parabolic Blends and Via Points, Higher-Order Trajectories, Other Trajectories, Cartesian-Space Trajectories, Continuous Trajectory Recording.		7	
6		Bevel-Gear Wrist Mechanisms, structure representation of mechanisms, structure s of epicyclic Gear Drives, Kinematics of Robotic Wrist Mechanisms, and static		7
	T	UNIT - III		
7	Tendon-Driven Manipulators Introduction, classification of Tendor Kinematics of Tendon-Driven Ma Matrices, Redundant forces resolution	anipulators, Static Force		5

Leveraging Knowledge

5

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India) Department of Automation & Robotics

Robot End-Effectors

8 Classification of End-Effectors, Drive system for Grippers, Mechanical Grippers, Magnetic Grippers, Vacuum Grippers, Adhesive Grippers, Hooks, Scoops and Special gripper, Advanced grippers, Gripper Force Analysis & gripper design.

TEXT BOOKS:

- Saeed B. Niku, "Introduction to Robotics, Analysis, Systems, Applications, PHI Learning private limited. 2009.
- S K Saha, "Introduction to Robotics", McGraw Hill Education, 2008.

KI F TFCH

- Peter Corke, "Robotics, Vision and Control: Fundamental Algorithms In MATLAB® Second, Completely Revised, Extended And Updated Edition, Springer, 2017
- Lung-Wen Tsai, "Robot Analysis", A Wiley-Interscience Publications, John Wiley & Sons, Inc., 1999.

REFERENCE:

- Fu K.S., Gonzalez R.C., and Lee C.S.G., "Robotics control, Sensing, Vision and Intelligence", McGraw-Hill Book Co.,
- Groover M.P., "Industrial Robotics, programming and applications ", McGraw-Hill
- Book Co., 1995.
- Ashitavia Ghoshal, "Robotics Fundamental Concepts & Analysis", Oxford University Press.
- John J. Craig, "Introduction to Robotics-Mechanics & Control", Pearson Education, Inc., 2005.
- T. Bajd, M. Mihelj, J. Lenarcic, A. Stanovnik, M. Munih., "Robotics", Springer, Vol 43.

 KLE TECH.
 Creating Value

 Leveraging Knowledge
 Leveraging Knowledge

 B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi - 580031. Karnataka (India)

 Department of Automation & Robotics

ETechnological

Semester: IVYear: 2020Laboratory Title: Manufacturing & Metrology LaboratoryLab Code: 16EARP205Total Contact Hours: 36Duration of ESA Exam: 2 hrsTotal ISA Marks: 80Total ESA Marks :20

List of Exercises

Sr No	Exercise Details	No. of Lab Session(s) per batch (estimate)
1	Demonstration of machining operations like facing, turning, taper turning, knurling & thread cutting on a work piece using Lathe Machine.	2
2	Demonstration and performing of side and face milling operations on a given work piece using a Milling Machine	1
3	Demonstration and performing of operations like drilling of holes on a given work piece using a Drilling Machine.	1
4	Calibration of Vernier caliper & Micrometer screw gauge.	1
5	Measurement of angle using Sine Bar.	1
6	Demonstration of working principle of Co-ordinate Measuring Machine (CMM).	1
7	Demonstration of 3D printer.	1
8	Machining parts of the XY positioning table on the milling machine.	2
9	Drilling & tapping on required parts of the XY positioning table.	1
10	Assembly of the XY positioning table.	1

1

Lab. Code: 18EARP208	Laboratory Title: Microcontrollers Programming & Interfacing Lab
Total Contact Hours: 22	Duration of ESA: 2 hrs
ISA Marks: 80	ESA Marks: 20

List of Experiments

Experiment	Experiment/Exercise Title		
No.	Experiment/Exercise Title		
1	Write a program to demonstrate the blinking of LED in PIC16F877A and Arduino board.		
2	Write a program to demonstrate a counting machine which count from 0000 to 9999 and display on 7 segment LED display using PIC16F877A and Arduino board.		
3	Write a program to read the values from the temperature sensor (LM35) and display the		
	temperature in degree Celsius on LCD display using PIC16F877A and Arduino board		
4	In bank lockers there is requiremen of password protection to open the locker. Develop an		
	application Using a 4*3 keypad and LCD to secure the lockers by providing password protection		
5	Write a program to measure the distance of an object using ultrasonic Sensors and display the		
	distance in terms of centimeters and inches. Make the connections as per the schematic and		
	develop the flowchart and the code to perform the required operation		
6	Write a program to control the speed and direction of DC, stepper and servo motors.		
7	Design a development board using Atmega328 or PIC 18 using eagle/ Dip-trace		
8	Develop a printed circuit board (PCB) for your designed Atmega328 or PIC18 development board.		
9	Design a programmer for your PIC18 development board to burn the program using PICkit2 or any similar software's		
10	Develop a printed circuit board (PCB) for your designed and validated programmer which can burn programs on the PIC16 or PIC18 ICs.		
11	Write a program on Pyboard microcontroller using python programming and image processing t detect the tennis ball.		

-

KLE TECH. KLE Technological Creating Value Creating Value Leveraging Knowledge Department of Automation & Robotics

Lab. Code: 19EARP209	Laboratory Title: Object Oriented System Design Laboratory
Total Contact Hours: 22	Duration of ESA: 2 hrs
ISA Marks: 80	ESA Marks: 20

List of Experiments

Sr NO	Exercise Details	
1	Write a C++ program to find the sum of individual digits of a positive integer.	
	b)Write a C++ program to generate the first n terms of the sequence	
2	a)Write a C++ program to sort a list of numbers in ascending order.	
	b)Write a Program to illustrate New and Delete Keywords for dynamic memory allocation	
3	Write a C++ program using class to process shopping list for a departmental store. The list	
	include details such as the code number and price of each item and perform the operations	
	like adding, deleting items to the list and printing the total value of a order	
4	Write a python program to create a list and perform the following methods 1) insert() 2)	
	remove() 3) append() 4) len() 5) pop() 6) clear()	
5	write a python program to create a menu with the following options	
	1. to perform addition	
	2. to perform subtraction	
	3.to perform multiplication	
	4. to perform division	
	accepts users input and perform the operation accordingly	
6	Write a python program to concatenate the data frames with two different objects	
7 Execute SQL queries on - group by, having clauses and aggregate functions		
	database to retrieve the required data	
8	Design a database for the given specifications & implement the database and write and	
	execute the queries for the given statements.	
9	Design a database for the given schema using normalization concept and write and execute	
	the SQL statements for given queries	
10	Implement a project using object oriented language, for automation and robotics applications. (FOR SEE)	

Jayanagar, Bangalore Mail: shreedhar@desapex.com Phone: +91-8217658157 www.desapex.com

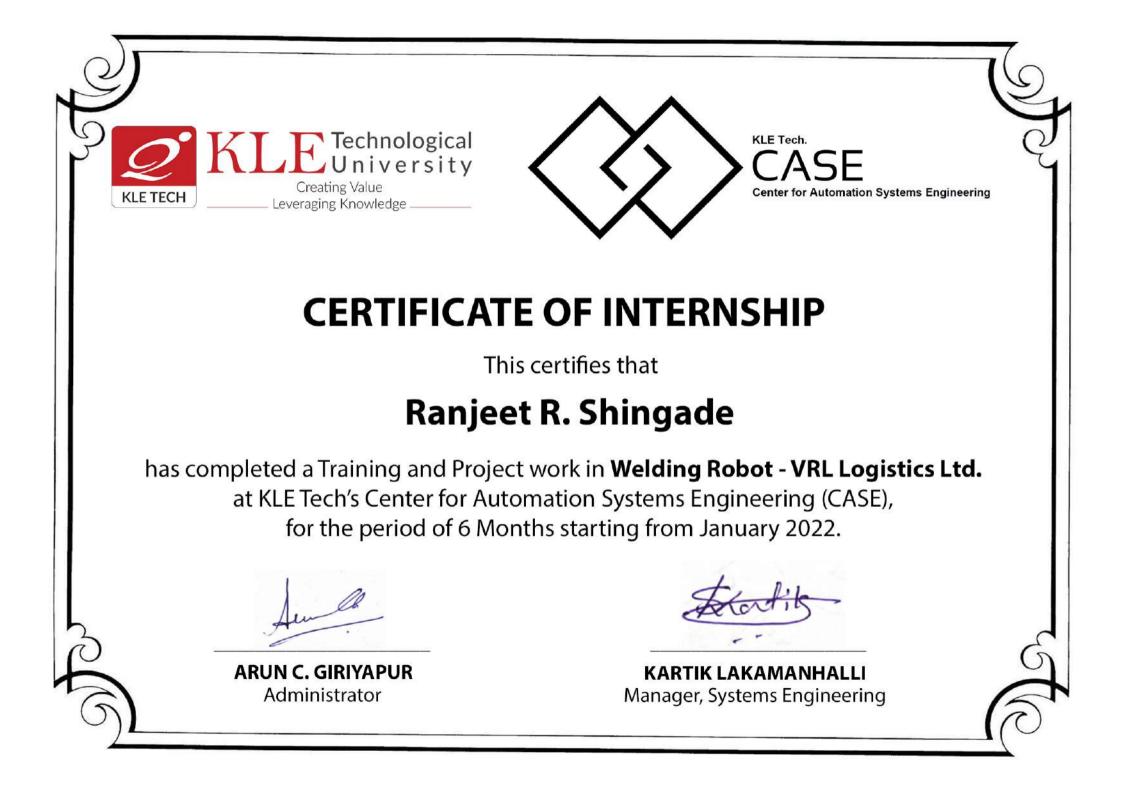
May 28, 2022

To whomsoever it may concern

This is to certify that **Ms. Ayesha Nagnoor (USN 01FE18BAR012)** was a **Digital Engineering intern** at our organisation from **January 2022 to May 2022**.

During this period at the organization, we found her to be hard working and a quick learner. We wish her all the success in her future endeavours.

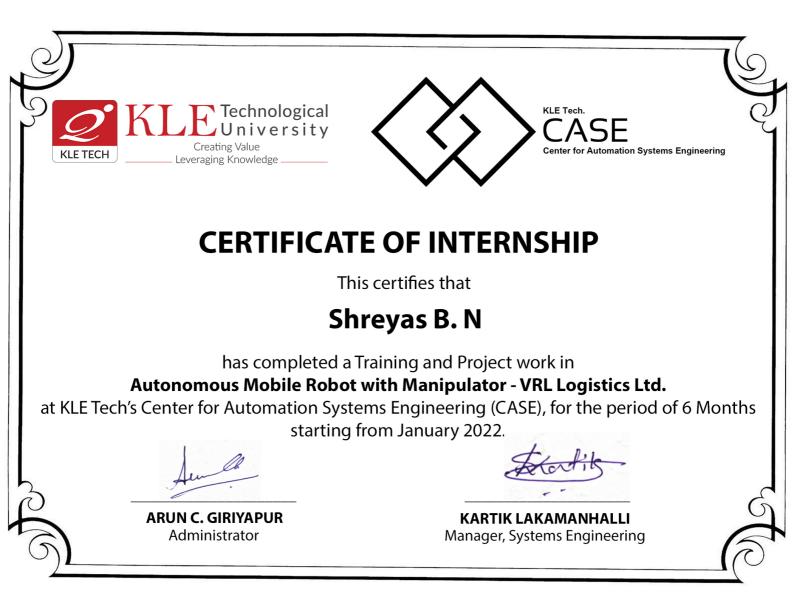
This letter has been issued on her request on completion of the internship.


. .

Yours Sincerely,

Shreedhar Hungund

17th June 2022


TO WHOM SO EVER IT MAY CONCERN

This is to certify that **Ms. Samatha V** from KLE Technological University has completed "Internship" on "Geared Motor Test Jig with Rated Load" from 10.01.2022 to 17.06.2022 She was guided by Mr. Sriram H.S, Manager - Process Engineering. We wish her success in all her future endeavors.

Skanray Technologies Ltd

Chief Operating Officer

Skanray Technologies Limited, Regd. Office: Plot # 15-17, Hebbal Industrial Area, Mysuru - 570016, INDIA. P +91 821 2415559 CIN U72200KA2007PLC041774 Healthcare Division: #360, KIADB Industrial Area, Hebbal, Mysuru - 570018, INDIA. P +91 821 2407000 E office@skanray.com W www.skanray.com

CERTIFICATE OF INTERNSHIP

This certifies that

Ganesh Reddy

has completed a Training and Project work in

Autonomous Mobile Robot with Manipulator - VRL Logistics Ltd.

at KLE Tech's Center for Automation Systems Engineering (CASE), for the period of 6 Months starting from January 2022.

ARUN C. GIRIYAPUR Administrator

KARTIK LAKAMANHALLI Manager, Systems Engineering

08th July 2022

CERTIFICATE

This is to certify the project work on "Synthetic eCal generation framework – based on physical camera modelling and aligned vehicle dynamics" which was carried out by Ms. Amogha T S (Student ID: 01FE18BAR006), a bona fide student of KLE Technological University, Hubballi, Karnataka from 10th January 2022 to 8^h July 2022.

The work was carried under the supervision of **Mr. Soumen Bhowmick, Manager - AM CE ENG**. This project was completed in line with the defined requirement. During the above training period with us, we found Ms. Amogha T S to be sincere, hardworking and result oriented.

We wish her all the success in his future endeavors and career ahead.

Noshi

Mamta Joshi Head HR - Technical Center India

Continental Automotive Components (India) Pvt. Ltd. Sattva South Gate Tech Park, Plot No.1, Veerasandra Industrial Area, Hosur Main Road, Bangalore 560 100 Phone +91 80 6679 1300 Corporate Identity No. U72900KA2007PTC043146 GSTIN: 29AAKCS9578C1ZP www.continental.com

Regd. Office: Plot No.53B, Bommasandra Industrial Area, Hosur Road, Attibele Hobli, Anekal Taluk, Bangalore -560099, India

31st May 2022

To Whomsoever It May Concern

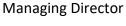
This is to certify that Miss. Anjali Chavan was associated with HDASquare Industries private Limited from 10th January 2022 to 31st May 2022 as a Student Trainee Intern.

In the course of the internship Anjali Chavan had worked with SQUAROTIX - business vertical of HDASquare Industries private Limited on the following topic:

• Study and Development of Smart Basket

During the internship period Anjali Chavan had shown sincere and dedicated attitude in carrying out tasks.

We wish you all the best for your future endeavours.


Thanking You,

From HDASquare Industries Private Limited.

Aniket Zende Project Manager

Ashish Patil HR Manager

Durvankur Sankpal

31st May 2022

To Whomsoever It May Concern

This is to certify that Miss. Dakshaja Inamdar was associated with HDASquare Industries private Limited from 10th January 2022 to 31st May 2022 as a Student Trainee Intern.

In the course of the internship Dakshaja Inamdar had worked with SQUAROTIX - business vertical of HDASquare Industries private Limited on the following topic:

Study and Development of Smart Basket •

During the internship period Dakshaja Inamdar had shown sincere and dedicated attitude in carrying out tasks.

We wish you all the best for your future endeavours. Thanking You, From HDASquare Industries Private Limited.

Aniket Zende **Project Manager**

Ashish Patil

HR Manager

Durvankur Sankpal **Managing Director**

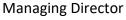
31st May 2022

To Whomsoever It May Concern

This is to certify that Mr. Shubham Mahajan was associated with HDASquare Industries private Limited from 10th January 2022 to 31st May 2022 as a Student Trainee Intern.

In the course of the internship Shubham Mahajan had worked with SQUAROTIX - business vertical of HDASquare Industries private Limited on the following topic:

• Study and Development of Smart Basket


During the internship period Shubham Mahajan had shown sincere and dedicated attitude in carrying out tasks.

We wish you all the best for your future endeavours.

Aniket Zende Project Manager

Ashish Patil HR Manager

Durvankur Sankpal

L&T-TS HR/99007753

18 May 2022

Mr.Shubham Mugali

INTERNSHIP CERTIFICATE

This has reference to your Completion of Internship under Genesis Programme in L&T Technology Services Limited (LTTS).

Relevant details of internship during the tenure with LTTS are as under.

INTERNSHIP ID	: 9	99007753
INTERNSHIP START DATE	: 1	L February 2022
INTERNSHIP END DATE	: 1	.3 May 2022
LOCATION	: N	Aysore

We wish you success in your future endeavours.

Yours Sincerely, For L&T Technology Services Limited,

Ashwin J Senior Manager – HR Employee Relations & Compliance

15th June 2022

CERTIFICATE

This is to certify that Ms. Laxmi Shashikant Kole - student of automation robotics, KLE Institute of technology has successfully completed six month long internship at Technicious Technology Services Pvt Ltd. During her internship she was part of the Team which was responsible for developing HIMS system.

✓ Project: Healthcare Information Management System

Technologies Used: Django(Python Framework, React Js)

The candidate was found to be enthusiastic, hardworking and a quick learner during her short stint at Technicious Technology Services. Her performance has been assessed as excellent.

We wish her every success in her life and career.

For Technicious Technology Services private Ltd.

Sabareesan Sankaran

Director

Technicious Technology Services

Nymble

Nymble Labs Pvt Ltd No.39, Suite No.338, Second Floor, +91-9999498795 NGEF Lane, Indiranagar First Stage, hello@nymble.in Bengaluru, Karnataka - 560038

> CIN: U29304KA2017PTC106542 GSTIN: 29AAFCN7862H1ZY

To whom it may concern

This is to certify that Mr. Poornaditya Mishra has completed his internship training and project with us at Nymble Labs from 10 January 2022 to 3 June 2022.

During the course of his internship, he was found to be diligent and hard-working and demonstrated sheer focus and dedication to his work. He understood the assignments quickly and was sincere and attentive during the training as well as during his project.

His project area revolved mainly around the domain of robotics and systems engineering. His project and training allowed him to gain an in-depth knowledge followed by hand-on learning in the following domains, and many more:

- System design and optimisation
- System validation and verification
- Industry standards for system tests
- Understanding the structure of PCBs and circuits
- Creating schematics and PCBs from the schematics
- Time management and teamwork
- Implementation of Agile methodology and OKRs

His association with us was very fruitful and we wish him the best for his future endeavors.

Thank you

For and on behalf of Nymble Labs Private Limited

For Nymble Labs Pvt. Ltd. Authoriz

Raghav Gupta Chief Executive Officer Nymble Labs Private Limited

CERTIFICATE OF INTERNSHIP

This is to certify that Mr. Kolli Venkata Siva Sai Prathyush has undergone Internship with Difacto Robotics and Automation Pvt Ltd from the 17th January 2022 to 25th May 2022.

As part of the In-Plant Training, he underwent the following:

- 1. Basic about PLC Hardware and its component
 - Introduction to Mitsubishi PLC
 - Study and selection of Electrical components
 - Hands-on experience PLC programming in Q & FX series
 - Configuring Mitsubishi Servo drive parameters
 - Configuring Area Scanner & Magnetic Sensor
- 2. Understanding the
 - Basics of PLC programming (GXWORKS2) & (GX WORKS3)
 - Basics of Servo Drives
 - HMI Screen Design (J MOBILE Studio 4.0)
 - Electrical Drawing (ARES STANDARD)
- 3. Understanding the basics of Mobile Robot Solution addressing the various industrial Processes.
- 4. Participate for Programming of AGV Error band logic and PID trials

Sincerely,

For DiFACTO Robotics and Automation Pvt. Ltd.,

Air Cmde Sudhakar KS (Retd) General Manager – Corporate Functions

DiFACTO Robotics and Automation Pvt. Ltd.

Registered Office - Unit 1 - # A151, A152, 3rd Cross, 1st Stage Peenya Industrial Area, Bengaluru - 560 058 Unit 2 - M10, 7th Cross, 1st Stage Peenya Industrial Estate, Bengaluru - 560 058. Unit 3 - Plot No. 103, 113, 114, 3rd Cross, 7th Main, 3rd Stage Peenya Industrial Area, Bengaluru - 560 058.

Tel: +91 80 43722985 / 080 42120041 / 080 28372040 | info@difacto.com | www.difacto.com | CIN : U74210KA2007PTC041555

Reliable solutions

25.05.2022

Ref No: HR/TRG/SI-DWD/21-22/007

To Whom So Ever It May Concern

This is to certify that Mr. Punit Mahajan (**USN: 01FE18BAR029**) a student of final year B.E Automation & Robotics at KLE Technological University, Hubli, has successfully completed his internship at our Plant from 10.01.2022 to 10.05.2022 under the guidance of Mr. Sachin Hunashikatti & submitted a project report on "Migration from Manual Tightening to Automation".

His overall performance and conduct during the internship was Very Good.

We wish him all success for the future.

HRD

Tata Hitachi Construction Machinery Company Private Limited

(Formerly Known as Tata Hitachi Construction Machinery Company Limited) Block No.2, KIADB, Belur Industrial Estate, Garag Road, Mummigatti, Dharwad - 580011 INDIA Telephone : +91 836 2432777 2432555 Registered Office: Jubilee Building | 45 Museum Road | Bengaluru 560 025 India | Telephone +91 80 66953301 02 03 04 05 CIN: U85110KA1998PTC024588 | Email: info@tatahitachi.co.in Website: www.tatahitachi.co.in | () () () ()

Jayanagar, Bangalore Mail: shreedhar@desapex.com Phone: +91-8217658157 www.desapex.com

May 28, 2022

To whomsoever it may concern

This is to certify that **Ms. Rohini Jangalagi (USN 01FE18BAR059)** was a **Digital Engineering intern** at our organisation from **January 2022 to May 2022**.

During this period at the organization, we found her to be hard working and a quick learner. We wish her all the success in her future endeavours.

This letter has been issued on her request on completion of the internship.

. .

Yours Sincerely,

Shreedhar Hungund

Jayanagar, Bangalore Mail: shreedhar@desapex.com Phone: +91-8217658157 www.desapex.com

May 28, 2022

To whomsoever it may concern

This is to certify that **Ms. Rohini Jangalagi (USN 01FE18BAR059)** was a **Digital Engineering intern** at our organisation from **January 2022 to May 2022**.

During this period at the organization, we found her to be hard working and a quick learner. We wish her all the success in her future endeavours.

This letter has been issued on her request on completion of the internship.

. .

Yours Sincerely,

Shreedhar Hungund

Jayanagar, Bangalore Mail: shreedhar@desapex.com Phone: +91-8217658157 www.desapex.com

May 28, 2022

To whomsoever it may concern

This is to certify that **Ms. Sahana C Phatarpekar (USN 01FE18BAR034)** was a **Digital Engineering intern** at our organisation from **January 2022 to May 2022**.

During this period at the organization, we found her to be hard working and a quick learner. We wish her all the success in her future endeavours.

This letter has been issued on her request on completion of the internship.

. .

Yours Sincerely,

Shreedhar Hungund

26 May 2022

CERTIFICATE

This is to certify that Miss Ulfath Jahan (USN No. 01FEI8BAR056) a student of VIII Semester, BE Automation and Robotics from KLE Technological University, Hubbali has successfully completed her in-plant training/project in our organization during 07.02.2022 to 26.05.2022 on the topic of the project is **"Auto grinding and finishing**".

We wish all the best for her future endeavors.

For Kirloskar Ferrous Industries Limited

Santibhusan Das Senior Manager-Training & Development

Kirloskar Ferrous Industries Limited A Kirloskar Group Company

Works: Bevinahalli Village & Post - 583234, Taluk & Dist. Koppal, Karnataka (India) Phone: +91 (8539) 286711, 286715 Email : kfil.info@kirloskar.com | Website : www.kirloskarferrous.com CIN: L27101PN1991PLC063223

E2WAY PRIVATE LIMITED

10-3/45, Satya Sai Krupa Garden, Vithal Nagar, Gulberga, Karnataka, India Pin: -585102 Email: - e2waypvtltd@gmail.com

Date: 10/06/2022

TO WHOMSOEVER IT MAY CONCERN

This is to certify that Bhagya patil has completed her internship and training in Electric two wheeler at E2way Private Limited, Kalaburgi, from 10/01/2022 to 10/06/2022.

She has worked on a project title Electrification of an ICE two wheeler. This project was aimed at converting existing ICE two wheeler into electric two wheelers.

During his/her internship/training she has demonstrated her skills with self-motivation to learn new skills. Her performance exceeded our expectations and she was able to complete the project on time.

We wish her all the best for his/her upcoming career.

E2way Private Limited

Director

Prajwal Kulkarni

E2WAY PRIVATE LIMITED

10-3/45, Satya Sai Krupa Garden, Vithal Nagar, Gulbarga, Karnataka, India Pin: -585102 Email: - e2waypvtltd@gmail.com

Date: 10/06/2022

TO WHOMSOEVER IT MAY CONCERN

This is to certify that Prasanna Reddy has completed his internship and training in Electric two wheeler at E2way Private Limited, Kalaburgi, from 10/01/2022 to 10/06/2022.

He has worked on a project title Electrification of an ICE two wheeler. This project was aimed at converting existing ICE two wheeler into electric two wheelers.

During his internship/training he has demonstrated his skills with self-motivation to learn new skills. His performance exceeded our expectations and he was able to complete the project on time.

We wish him all the best for his/her upcoming career.

E2way Private Limited

Director

Prajwal Kulkarni

E2WAY PRIVATE LIMITEDTM

10-3/45, Satya Sai Krupa Garden, Vithal Nagar, Gulbarga, Karnataka, India Pin: -585102 Email: - e2waypvtltd@gmail.com

Date: 10/06/2022

TO WHOMSOEVER IT MAY CONCERN

This is to certify that Shreedhar Reddy has completed his internship and training in Electric two wheeler at E2way Private Limited, Kalaburgi, from 10/01/2022 to 10/06/2022.

He has worked on a project title Electrification of an ICE two wheeler. This project was aimed at converting existing ICE two wheeler into electric two wheelers.

During his internship/training he has demonstrated his skills with self-motivation to learn new skills. His performance exceeded our expectations and he was able to complete the project on time.

We wish him all the best for his/her upcoming career.

E2way Private Limited

Director

Prajwal Kulkarni

NEX-G AUTOMATION LLP

CERTIFICATE OF INTERNSHIP

This is to certify that Mr. KISHAN UDAY BIJJUR, student of 8th Semester, department of Automation and Robotics, KLE Technological University Hubballi, bearing Reg No 01FE17BAR020, has successfully completed Internship project on "WAREHOUSE MANAGEMENT USING RFID TAGS", from 10th January 2022 - 31st may 2022, as part of the internship training, he has been placed in the Design and Development team and involved in relative activity of the project During the internship with us he was found Punctual, hardworking and inquisitive.

For NEX-G AUTOMATIONILLP.

www.nexgautomation.com

31-05-2022

NEX-G AUTOMATION LLP

CERTIFICATE OF INTERNSHIP

This is to certify that Mr NAGRAJ ANGADI, student of 8th Semester, department of Automation and Robotics, KLE Technological University Hubballi, bearing Reg No 01FE17BAR031, has successfully completed Internship project on "WAREHOUSE MANAGEMENT USING RFID TAGS", from 10th January 2022 - 31st may 2022, as part of the internship training, he has been placed in the Design and Development team and involved in relative activity of the project During the internship with us he was found punctual, hardworking and inquisitive.

FOR NEX- G AUFOMATIAN LLP.

Authorised Signature

www.nexgautomation.com

NEX-G AUTOMATION LLP

CERTIFICATE OF INTERNSHIP

This is to certify that Mr. NAKUL SINGH HAJERI, student of 8th Semester, department of Automation and Robotics, KLE Technological University Hubballi, bearing Reg No 01FE17BAR033, has successfully completed Internship project on "WAREHOUSE MANAGEMENT USING RFID TAGS", from 10th January 2022 - 31st may 2022, as part of the internship training, he has been placed in the Design and Development team and involved in relative activity of the project During the internship with us he was found punctual, hardworking and inquisitive.

FOR NEX- G AUTOMATION LLA Authorised Signature

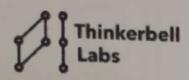
www.nexgautomation.com

N-26, Industrial Estate, Gokul Road, HUBLI - 580 030. (India) Tel.: ++91-836- 2333759, 2330299 Fax: ++91-836- 2330442 E- mail: kcspl@karnatakaconveyors.com e accounts@karnatakaconveyors.com Web: http://karnatakaconveyors.com

CERTIFICATE

This is to certify that Mr. Rohit Chougale (01FE17BAR049) student of KLE Technological University, Vidyanagar- 580 032 was permitted to carry out his Internship in our Company during the period from 10-01-2022 to 31-05-2022 as part of his curriculum. He has shown keen interest in learning and has completed his internship for the said period.

We hope this training course has enabled him to correlate his Class Room Learning with Field exposure.


We wish him all the best in his future career.

For KARNATAKA CONVEYORS & SYSTEMS PVT LTD.,

(M.G. NAIK)

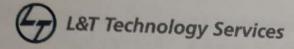
Manager Finance & Admn.

Place : Hubli. Date : 31.05.2022

Thinkerbell Labs Private Limited CIN: U72900KA2016PTC094046 262, 6th Main Road, Stage 2, BTM Layout, Bengaturu - 560076 491 95389043281 contactus@thinkerbelllabs.com

TO WHOMSOEVER IT MAY CONCERN

This is to certify that Ankit Shirurmat has been a part of Thinkerbell Labs Pvt. Ltd. as a Supply Chain and Manufacturing from 17th Jan -2022 to 31st May 31 -2022. During this time, he worked on Quality Assurance, Testing and Procurement for manufacturing of our product Annie. He successfully completed the project allotted to him along with complete documentation.


During his internship, Ankit Shirurmat displayed great enthusiasm, skill, willingness to learn and his conduct has been exemplary.

Yours sincerely,

ter discourse sales por Lin

Saif Shaikh Director, CPO Thinkerbell Labs Pvt. Ltd.

INTERNSHIP COMPLETION CERTIFICATE

L&T-TS HR/99007640

18 May 2022

Mr.Omkar Chitragar

INTERNSHIP CERTIFICATE

This has reference to your Completion of Internship under Genesis Programme in L&T Technology Services Limited (LTTS).

Relevant details of internship during the tenure with LTTS are as under.

INTERNSHIP ID:99007640INTERNSHIP START DATE:1 February 2022INTERNSHIP END DATE:13 May 2022LOCATION:Mysore

We wish you success in your future endeavours.

Yours Sincerely, For L&T Technology Services Limited,

lin

Ashwin J Senior Manager – HR Employee Relations & Compliance

Registered Office: L&T House, N. M. Marg, Ballard Estate, Mumbal - 400 001. INDIA L&T Technology Services Limited is a subsidiary of Larsen & Toubro Limited

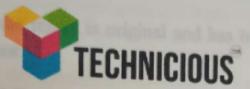
CIN: L72900MH2012PLC232169

Bamboo Rose (India) Pvt Ltd Brigade Software Park, No.42 Block B, 1st Floor, 27^{sh} Cross, Banashankari 2rd Stage, Bangalore – 560070 Tel: +011.91.80.26715199 CIN: U72200KA2006PTC041335

8th June 2022

To Whomsoever it May Concern

This is to certify that Mr.Prathik A pursuing his Bachelor of Automation and Robotics Engineering, 8th semester at KLE Technological University, Hubli, India has completed the internship on Machine Learning from 10th January 2022 to 31st May 2022 at Bamboo Rose (India) Pvt.Ltd., Bangalore.


We found him sincere, hardworking, and technically sound and result oriented. He worked well as part of a team during his tenure.

We wish him success for all his future endeavors.

Sincerely,

Manja Naika L, MD, India Operations, Bamboo Rose (India) Pvt Ltd.

www.bamboorose.com info@bamboorose.com

15th June 2022

CERTIFICATE

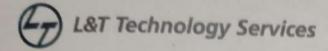
This is to certify that Mr. Titas Dewan- student of Automation And Robotics, KLE Technological University has successfully completed five month long internship at Technicious Technology Services Pvt Ltd. During hisinternship he was part of the Team which was responsible for developing HIMS system.

✓ Project: Healthcare Information Management System Technologies

Used: Django(Python Framework, React Js)

The candidate was found to be enthusiastic, hardworking and a quick learner during his short stint at Technicious Technology Services. His performance has been assessed as excellent.

We wish him every success in his life and career.


For Technicious Technology Services private Ltd.

Sabareesan Sankaran, Director

Technicious Technology Services

R.S No 182/5 A-7, Evergreen homes, Nagala Park, Kolhapur, Maharashtra - 416003

CERTIFICATE OF INTERNSHIP

L&T-TS HR/99007611

18 May 2022

Ms.Vandana Devatkal

INTERNSHIP CERTIFICATE

This has reference to your Completion of Internship under Genesis Programme in L&T Technology Services Limited (LTTS).

Relevant details of internship during the tenure with LTTS are as under.

: 99007611 INTERNSHIP ID INTERNSHIP START DATE : 1 February 2022 INTERNSHIP END DATE : 13 May 2022 : Mysore LOCATION

We wish you success in your future endeavours.

Yours Sincerely, For L&T Technology Services Limited,

Ashwin J Senior Manager – HR Employee Relations & Compliance

Toubro Limited

Creintors Automation Solutions Pvt.Ltd. An Integrated Management System Certified Company (Aligned with ISO 9001, 14001, 27001 and 45001) Ref No: CASPL/IL/08/06/2022

TO WHOMSOEVER IT MAY CONCERN

This is to certify that Mr. Vishal Hatti, USN : 01FE18BAR045, Studying in IVth Year BE in Automation & Robotics from KLE Technological University, Hubli-580031. He has Successfully completed his Internship Training under the guidance of Mrs. Disha Chougule, Assistant Manager Software, on "Programming, Control & Communication in Industrial Automation Systems" and also completed the project on Automation of Vertical Storage System, at Creintors Automation Solutions Pvt Ltd, Waghawade Road, Waghawade- Belgaum-590018 from 17th January 2022 to 03rd June 2022.

During the period of his internship with us, we found him sincere, hardworking and a guick learner.

We wish him all the best in his future endeavor.

With Regards

For Creintors Automation Solutions Pvt. Ltd.

Authorised Signatory

Plot No-2, Survey No. 22/3, Waghawade Road, Waghawade, Belgaum 590018 Karnataka, India. Mob: +91 77950 00801 | E-mail: sales@cautomate.com | Website: www.cautomate.com CIN No. U29266KA2017PTC101599

Farmercoin Smart Robotic Solutions (OPC) Pvt Ltd. Start-up street, 1st Floor, R H Kulkarni Building KLE technological University. Vidyanagar, Hubli. 580031

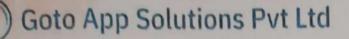
CERTIFICATE

This is to certify that Mr Vishnudath AP USN: 01FE18BAR046 student of Bachelor of Engineering, KLE Technological University, Hubballi has successfully completed his Internship training on Product design development and PCB design in our organization from 10th Jan 2022 to 31st May 2022.

He took keen interest in the work assigned to him. His conduct and behaviour was found good.

We wish him all success in his future endeavours.

Date: 31st May 2022


Name: Mr. Ishwar

Signature:

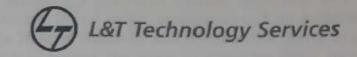
(Mentor)

Name: Dr. Arun shetter

CERTIFICATE OF TRAINING & INTERNSHIP

We hereby proudly present this certificate of internship for outstanding, honourable effort of **Mr. Vivek M** bearing **USN 01FE18BAR047**, bonafide student of **Automation and Robotics** department, KLE Technological university for his/her successful completion of internship program conducted from **Jan 10th 2022 to May 31st 2022**.

The Outcome Of Internship Achieved:


- Technology trained on HTML, CSS, Javascript and React JS
- Understand to implement Software development cycle using Agile Model
- Requirement gathering & Analysing
- Building various use case
- Coding, Debugging & Testing
- Hosting & Deploying the Software
- Team Meeting, Overcoming challenges & providing Quick Solutions.

During the course of "Internship" he/she has shown keen interest in learning & a very sincere worker.

Ve wish all the best for future Endeavours.

thorised Signatory

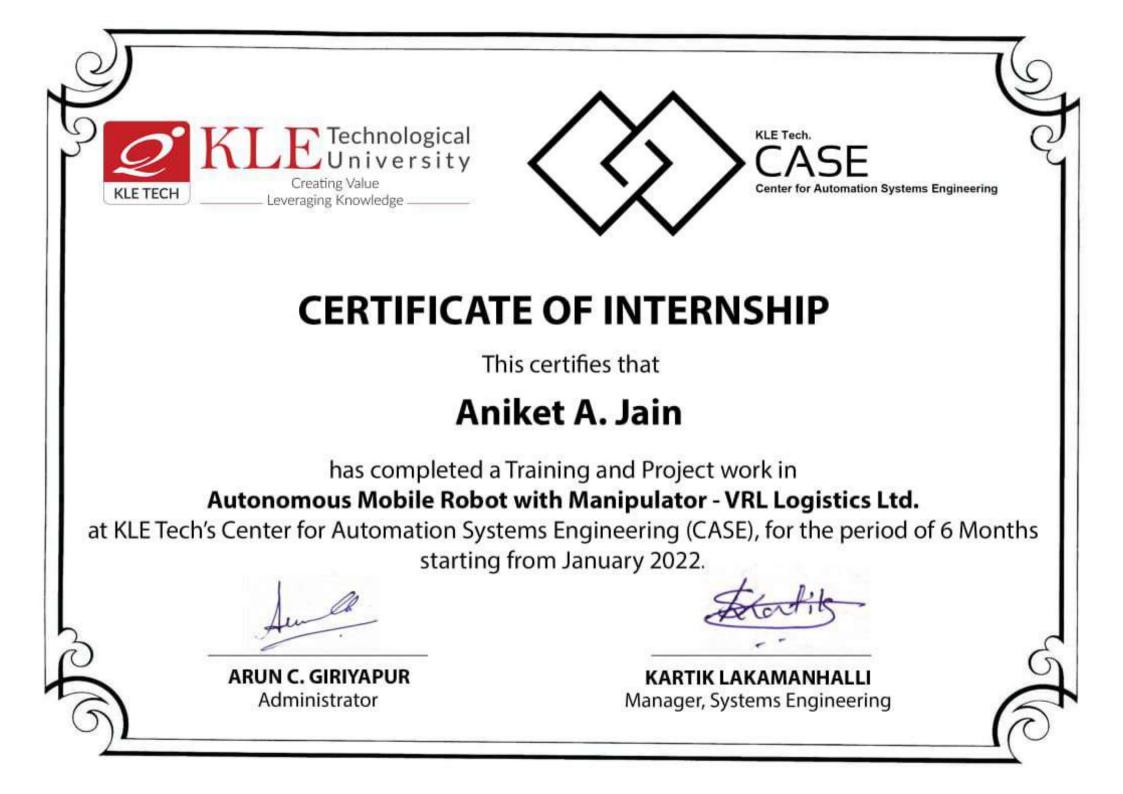
L&T-TS HR/99007472

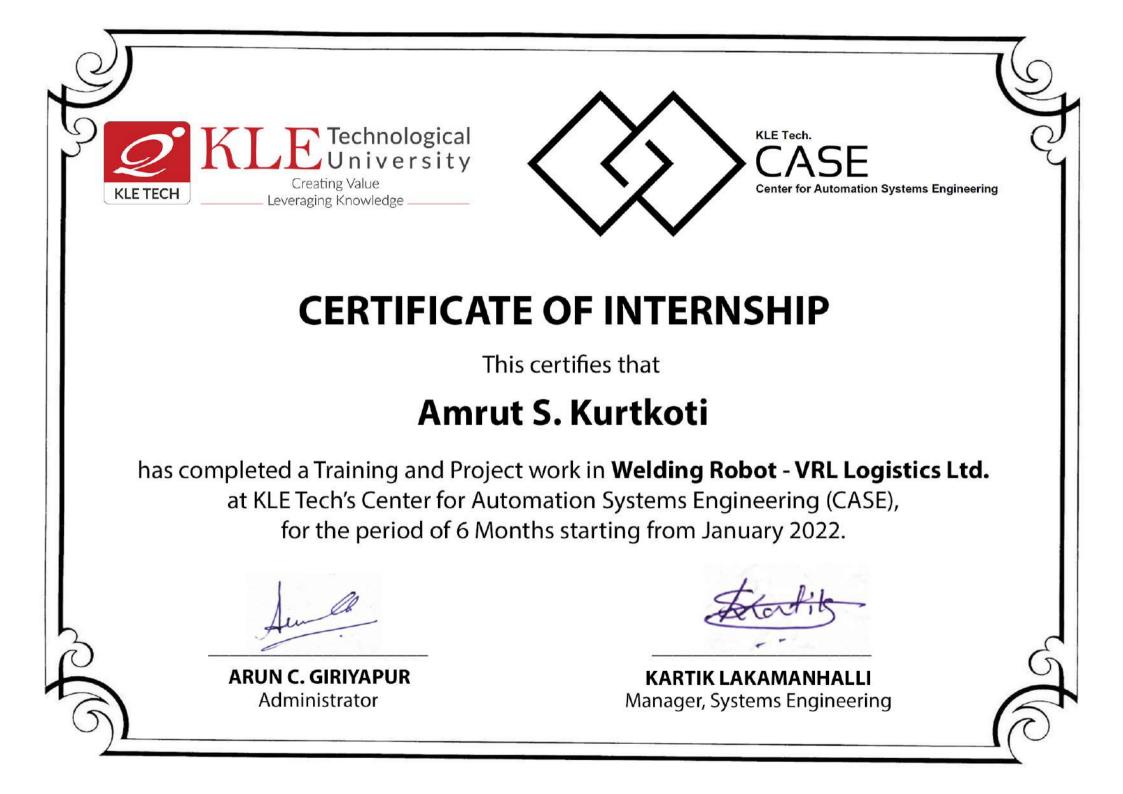
18 May 2022

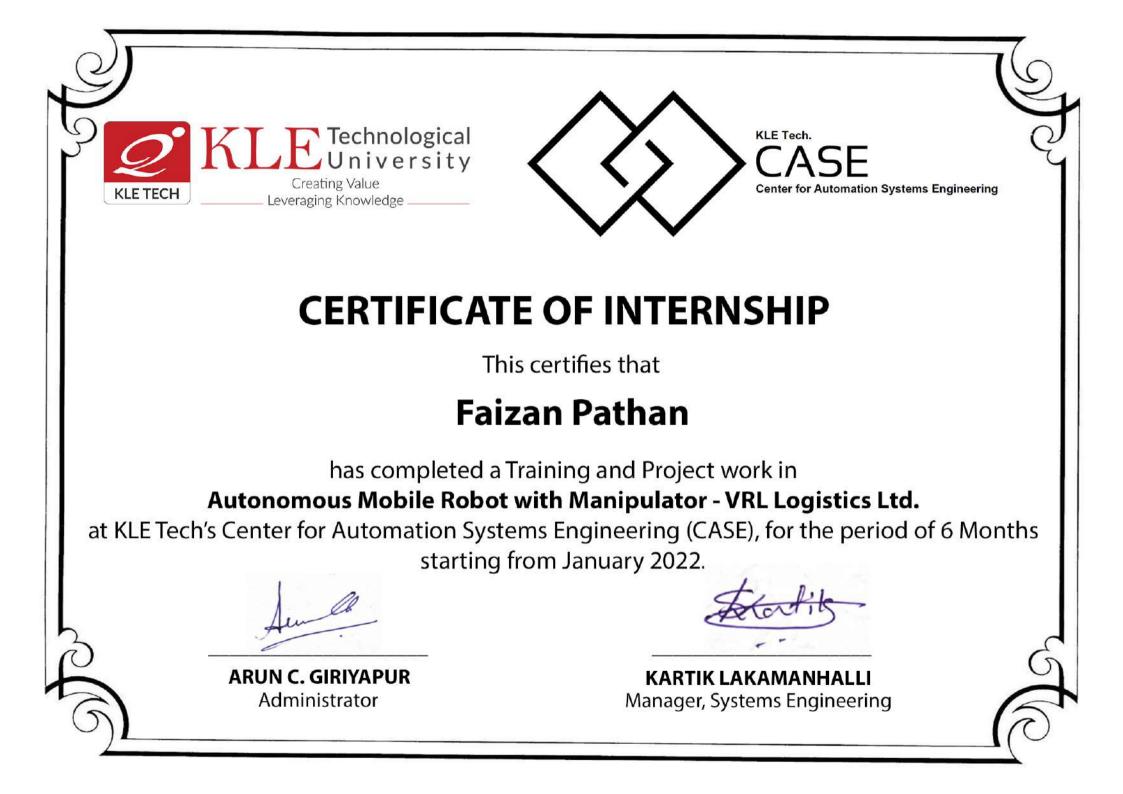
Ms. Chaitall Rokhade

INTERNSHIP CERTIFICATE

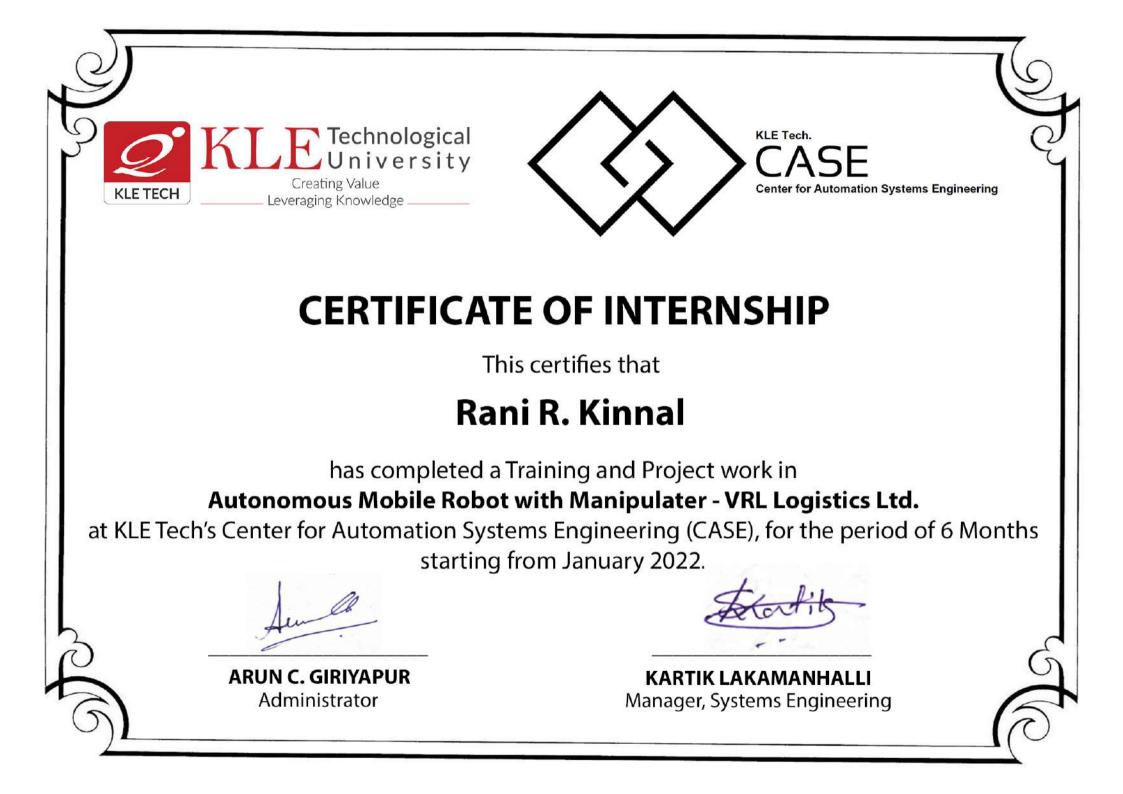
This has reference to your Completion of Internship under Genesis Programme in L&T Technology Services Limited (LTTS).


Relevant details of internship during the tenure with LTTS are as under.


INTERNSHIP ID		99007472
INTERNSHIP START DATE	1	1 February 2022
INTERNSHIP END DATE		13 May 2022
LOCATION		Mysore


We wish you success in your future endeavours.


Yours Sincerely, For L&T Technology Services Limited,


Ashwin J Senior Manager – HR Employee Relations & Compliance

