

FIRST SEMESTER B E PROGRAM 2016-17 Electrical Science Stream Syllabi Content

Program: UG						
Course Code: 16EEEF101 Course Title: Basic Electrical Engineering						
L-T-P-SS: 3-0-0 Credits:4 Contact Hrs: 50						
CIE Marks: 50	SEE Marks: 50 Total Marks: 100					
Feaching Hrs: 3		Exam Duration: 3 hour	rs			
	Unit I					
Chapter No. 1: Overview of Specialization, scope & rol economy, environment, Sou opportunities for electrical challenges.	Electrical Engineering e, impact of Electrical rces of generation, sust engineers, electrical en	Engineering on national ainability, challenges and gineering marvels, future	02 hrs			
Chapter No. 2 : D.C. and Ma Ohm's law, Kirchhoff's laws, constant current and voltage s reluctance and inductance, sim	gnetic Circuits network analysis by Max ource, nodal analysis, ser ple problems and analogy	xwell's circulating currents, ries magnetic circuits, mmf,	08 hrs			
Chapter No. 3. Actuators			05 hrs			
Electromagnetic principles, classification of Electric motors, DC motors-shunt, series, PMDC motors – Speed Control, Stepper Motors, BLDC motors, Characteristics and applications, selection of motors for various applications						
	Unit II					
Chapter No. 4 : Single phase Introduction to AC circuits and concept of average and effe sinusoidally varying voltage quantities, analysis with phase in AC circuits, parallel RLC ((no-load phasor diagram).	AC Circuits theory of generation of si ective (rms) values, for and current, phasor re r diagrams of RLC circu Circuits and numerical. In	nusoidal alternating voltage, rm factor, peak factor of presentation of alternating its, power and power factor ntroduction to Transformers	10 hrs			
Chapter No. 5: Three Phase	Systems		5 hrs			
Necessity and advantages of the relationship between line and	ree phase systems, gener phase values of balanced	ration of three phase e.m.f.s, star and delta connections,				

power in balanced three phase circuits and power measurement using two watt meters, three phase induction motor, numericals					
Unit III					
Chapter No. 6. Batteries: Basics of lead acid batteries, Lithium Ion Battery, Battery storage capacity, Coulomb efficiency, Numerical of high and low charging rates, Battery sizing.	05 hrs				
Chapter No. 7: Electrical Wiring, Safety and protection Types of wires and cables for internal wiring, Types of switches and Circuits, Types of wiring, Safety precautions and rules in handling electrical appliances, Electric shock, first aid for electrical shocks, Importance of grounding and earthing, Methods for earthing, Fuses, MCB, ELCB and Relays	05 hrs				

Text Books

- 1. Hughes, Electrical & Electronic Technology, 8th edition, Pearson Education
- 2. David G Alciatore and Michel B Histand, Introduciton to Mechatronics and Measurement Systems, 3rd edition 2005, Tata McGraw Hill Education Private Limited, New Delhi.
- 3. Gilbert M Masters, Renewable and efficient Electrical Power systems, Published by John Wiley & Sons 2004 edition

Reference Books

- 1. D C Kulshreshtha, Basic Electrical Engineering, Mc Graw Hill Publications
- 2. Vincent Del Toro, Electrical Engineering Fundamentals, 2nd edition Prentice Hall India

Course Content (Electrical Sciences)L-T-P: 3-0-0Course Code: 15EEEF101L-T-P: 3-0-0Course Title: Basic Electrical EngineeringCIE : 50Teaching Hours: 40SEE : 50

Unit I					
Chapter No. 1: Overview of Electrical Engineering	02 1				
Specialization, scope & role, impact of Electrical Engineering on national economy,					
environment, Sources of generation, sustainability, challenges and opportunities for					
electrical engineers, electrical engineering marvels, future challenges.					
Chapter No. 2 : D.C. Circuits	05 h.m.				
Ohm's law, Kirchhoff's laws, Analysis of series, parallel and series- parallel circuits excited	05 nrs				
by independent voltage sources, network analysis by Maxwell's circulating currents,					
constant current and voltage source, nodal analysis.					
Chapter No. 3 : Single phase AC Circuits	00 hm				
Introduction to AC circuits and theory of generation of sinusoidal alternating voltage,	08 hrs				
concept of average and effective (rms) values, form factor, peak factor of sinusoidally					
varying voltage and current, phasor representation of alternating quantities, analysis with					
phasor diagrams of R, L, C, RL, RC and RLC circuits, power in an AC circuits, and simple					
numerical problems					
Unit II					
Chapter No. 4: Three Phase Systems	7 hm				
Necessity and advantages of three phase systems, generation of three phase e.m.f.s,	/ 1115				
relationship between line and phase values of balanced star and delta connections, power in					
balanced three phase circuits, numerical problems					
Chapter No. 5: Electrical Wiring, Safety and protection	8 hrs				
Service mains, Meter board and distribution board, types of wires and cables, Types of	0 111 5				
wiring, Types of connectors and switches, two and three way control of lamp, control circuit					
in domestic installation.					
Safety precautions and rules in handling electrical appliances, Electric shock, first aid for					
electrical shocks, importance of grounding and earthing, methods for earthing, Fuses, MCB					
and Relays.					
Unit III					
Chapter No. 6 : Introduction to Electrical Machines	05 hrs				
Principles of DC Motors: PMDC Motor, stepper motor, single phase transformer, Three	05 1118				
phase induction Motors, applications, Simple Numericals on transformers and three phase					
induction motors.					
Chapter No. 7: Illumination	05 hrs				
Types of lamps, fixtures and reflectors, Illumination schemes for domestic, industrial and	0.5 1115				
commercial premises, lumen requirement for different categories					

Text Books

- 1. Hughes, Electrical & Electronic Technology, 8th edition, Pearson Education
- 2. P C Sen, Principals of Electrical Machines and Power Electronics, 2nd edition, Wiley Publications
- 3. Vincent Del Toro, Electrical Engineering Fundamentals, 2nd edition Prentice Hall India
- 4. Robert Helm, Illumination Engg for energy efficient luminous environments

Earlier known as B. V. B. College of Engineering & Technology

Reference Books

- 1. D C Kulshreshtha, Basic Electrical Engineering, Mc Graw Hill Publications
- 2. David G Alciatore and Michel B Histand, Introduciton to Mechatronics and Measurement Systems, 3rd edition 2005, Tata McGraw Hill Education Private Limited, New Delhi.

FIRST SEMESTER B E PROGRAM 2016-17 Electrical Science Stream Syllabi Content

Course	Code:	Course Title: Engineering Physics lab					
16EPH	P101						
L-T-P:	L-T-P: 0-0-1 Credits : 1 Contact Hrs.: 02 Hrs.						
CIE Ma	arks: 80	SEE Ma	rks: 20	Total Marks: 100			
Teaching Hrs.: 24 Examination Duratio				Examination Duration: 3 Hrs.			
		Experi	nents				
1.	Four probe method						
2.	V-I characteristics of p-n junction diode						
3.	Zener diode characteristics						
4.	Hysteresis loss						
5.	Transistor characteristics						
6.	Measurement of dielectric constant						
7.	Resonance frequency of LCR circuits						
8.	Study of frequency response of passive components						
9.	Calibration of the	rmocouple					
10.	Calibration of electrical meters						

Cours 15EP	se Code: PHP101	Course Title: Engineering Physics lab (Electrical Sciences)						
L-T-F	P-SS: 0-0-1-0	Credits : 1 Contact Hrs: 02 Hrs/Week						
CIEN	Marks: 80	SEE Marks: 20 Total Marks: 100						
Teac	hing Hrs: 24 Hrs			Examination Duration: 3 Hrs				
		Experim	ents					
1.	Study of Lissajou	is figuires using C	athode ray	y Oscilloscope				
2.	Self inductance a	and resistance of a	coil					
3.	Hysteresis Loop	for a ferromagneti	c material	(M-B curve)				
4.	Electromagnetic induction							
5.	Magnetic field along the axis of a coil (Biot-Savart Law) Study of Hall effect (Lorentz Force)							
6.	Charging and dis	charging of a capa	citor					
7.	Four probe methorized given semicondu	od to determine the ctor material.	e energy g	ap and electrical restivity of				
8.	V-I characteristics of p-n junction diode							
9.	V-I characteristic	es of zener diode						
10.	Rectifier circuits with and without filter (Half wave, Full wave &Bridge)							
11.	Zener diode as ve	oltage regulator						
12.	V-I characteristic	es of BJT.						
13.	Resonance in LC	sonance in LCR circuit						

FIRST SEMESTER B E PROGRAM 2016-17 Mechanical Science Stream Syllabi Content

Course Content					
Course Code: 15ECRP101 Course Title: Engineering Exploration					
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 78			
CIE Marks: 80	SEE Marks: 20	Total Marks: 100			
Teaching Hrs: 78		SEE Exam Duration: 3 hrs			

No	Content			
1	Introduction to Engineering and Engineering Study	1		
2	Role of Analysis in Engineering, Analysis Methodology	2		
3	Data Analysis Graphing	2		
4	Basics of Engineering Design, Multidisciplinary Nature of Engineering Design	5		
5	Project Management	1		
6	Sustainability in Engineering			
7	Ethics	1		
8	Modeling, Simulation and Data Acquisition using Software Tool	1		
9	Platform based development : Arduino	3		
9	Course Project	3		
		•		

Reference Books:

- Engineering Fundamentals & Problem Solving by Arvid Eide, Roland Jenison, Larry Northup, Steven, Mc GrawHill Higher Education, 6th Edition (2011)
- 2. Engineering Exploration (Edited Book, 2008) by Pearson Publication

Evaluation Scheme

Chapter No	Name	Weightage in percentage
1	Introduction to Engineering and Engineering Study	-
2	Role of Analysis in Engineering	
3	Analysis Methodology	10
4	Data Analysis Graphing	10

Earlier known as B. V. B. College of Engineering & Technology

5	Basics of Engineering Design	
5	Multidisciplinary Nature of Engineering Design	20
6	Project Management	5
7	Sustainability in Engineering	10
8	Ethics	5
9	Modelling, Simulation and Data Acquisition using Software Tool	-
10	Platform Based Development: Arduino	-
10	Course Project	40

FIRST SEMESTER B E PROGRAM 2016-17 Electrical Science Stream Syllabi Content

Program: UG								
Co	ourse Code: 15EHSP	101	Course T	Course Title: Social Innovation				
L-T-P-SS: 0-1-1		Credits:2	Credits:2 Co		Contact Hrs: 40			
CIE Marks: 50		SEE Marks: 50		Total Marks: 100				
Т	eaching Hrs: 3				Exam D	uration: 1.5 ho	ours	
L	Module	Тор	pics	Assignm	ents	Tools	S	
	KNOWLEDGE & TOOLS	 Induction Innovation Awaker conscion Enginee Social ir 	 Induction to Social Innovation: Awakening social consciousness Engineering& Social innovation Site Visits Course Overview Read the handout on "The Process of Social Innovation" by Geoff Mulgan Submit report on field visit 		 Read the handout on "The Process of Social Innovation" by Geoff Mulgan Submit report on field visit 		ctures urse and rough	
		Site VisiCourse					aire	
2. Social Innovation and Leadership		Report on two social innovations created by engineers/social innovators		 Video sess discussion applications engineering field 	ion & on s of g in social			
		3. Idea Ge	eneration	One page write up on idea generated about social issues through literatures and observation		 Literature s Field visits 	survey	
		4.Identifying Issues & wo formation	g Local ırk team	 One page literature r Justification Campus activition 	report on review on ty	 Focused G Discussion challenges & Idea pitchir Experienc by senior 	roup s on local observed ng e sharing students	

Earlier known as B. V. B. College of Engineering & Technology

KNOWLEDGE & TOOLS	5.Issues Based Problem Solving Tree	•	Designing Issue Based Problem Solving Tree for issue identified	•	Case study
	6. Project Proposals	•	Present the project proposal	•	Case study Report template
	7.Team Analysis	•	Carryout & present SWOT analysis for individual & the team	•	Case study/ Videos
	8.Stakeholder Analysis	•	Prepare & present stakeholder analysis for group project	•	Stakeholder engagement activity
	9. Innovative Budgeting and Fundraising	•	Preparing budget and fundraising report for group project	•	Presentation on fundraising techniques applied for the project
	10. Experiential Sessions	•	Brief write up	•	Special lecture
	11.Experiential Sessions	•	Brief write up	•	Special lecture
DEVELOPMENT	12. Innovative Resource Management	•	Classroom Activity	•	Structure building games
	13. Calculative Risk Management	•	Classroom Activity	•	Risk Management games
IT SESSIONS	14.Exposure to IT Skills- session 1 and session 2	•	IT assignments	• • •	PPT Movie Maker Web Designing & Hosting Internet Basics

4

CULTUR Statements

いいたなななななないでものできたとうと

K. L. E. TECH

Technological K. L. E. Technological University, Hubli. University DEPARTMENT OF FRESHMAN ENGINEERING PROGRAM

ISECRP101

Experiment wise Plan

Engineering Exploration

List of experiments/jobs planned to meet the requirements of the course.

2、热动/2		Total Weightage:	80	No. of lab sessions. In			
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory			
1	Introduction to Engineering and Engineering Study	2					
	Learning Outcomes: The students should be able 1. Explain the importance of a world 2. List the roles of an enginee 3. Describe common enginee Specialisations 4. Differentiate between learn college	e to: engineering profess er in the engineerin ering disciplines and ning at school and l					
2 a	Role of Analysis in Engineering	1					
2	Learning Outcomes: The students should be able to: 1. Explain the importance of analysis in engineering 2. Characterize an engineering problem by defining the inputs, output, stating assumptions and uncertainties 2. Prioritize the identified attributes for analysis						
2 b	Analysis Methodology	1	10				
	Learning Outcomes: The students should be able 1. Write a mathematical mod applicability and required acc 2. Interpret the model of the engineering principles						
3	Data Analysis and Graphing	2	10	-			
	Learning Outcomes: The students should be abl 1. Explain the significance o 2. Choose appropriate proce represent a dataset 3. Interpret and analyse data 4. Establish the relationship parameters of raw data to re						
4 a	Basics of Engineering Design	2	10				

6

K. L. E. TECH K. L. E. TECH K. L. E. Technological University, Hubli. DEPARTMENT OF FRESHMAN ENGINEERING PROGRAM

		Learning Outcomes: The students should be 1. Explain engineering of 2. Formulate problem de 3. Generate possible de	e able to: lesign proces efinition for th sign alternati	ss he need sta ives/ soluti	atement ions	
4 b		Multidisciplinary Nature of Engineering Design	of 3		10	
		Learning Outcomes: The students should be 1. Identify multi-disciplina 2. Construct proposed sin systems	able to: ary facet of de mple mechar	esign nical / mec	hatronic	
5		Project Management	1		5	
:	3	Learning Outcomes: The students should be a 1. Illustrate the importance 2. Plan project using relev checklist, timeline and Gar 3. Prepare project report for ition standards	able to: e of team wo ant project n att chart or the chose	rk in mana nanageme n project fo	aging project ant tools like ollowing the	
6	g S	ustainability in Engineerin	g 2		10	
	1. Er 2. pill Ec 3. ass 4.	The students should be all Explain that role of engin ngineering Design Analyse an engineering s lars of sustainable develop onomy Discriminate engineered sessment Draw inferences out of ca	ole to: leers is vital situation base products base rbon footprir	in sustaina ed on the ety, Enviro sed on the nt calculat	able three main onment and ir life cycle ions in day	
,	Ethi	ics	1	5		
	Le Th 1. D 2. E 3. E 4. A	arning Outcomes: e students should be able befine the terms: etiquette xplain the need for ethics xplain moral theories nalyse the situation for et	e to: Law, morals In engineer hical dilemm	s and ethi ing profes na and ma	cs sion ike	
	Mode Acqui	Iling, Simulation, Data sition & Analysis using are Tool	4	20)	
	Lear The	ning Outcomes: students should be able scribe the significance of	to: Modelling, \$	Simulation	n, Data	

K. L. E. TECH

Technological K. L. E. Technological University, Hubli. University DEPARTMENT OF FRESHMAN ENGINEERING PROGRAM

KLE TECH.

Creating Value Leveraging Knowledge

Acquisition & Analysis

2. Build Virtual Instrument for an application 3. Use looping, timing and formula node concepts

appropriately for an application

Build a system by interfacing a sensor/transducer

References:

- 1. Engineering Fundamentals & Problem Solving by Arvid Eide, Roland Jenison, Larry Northup, Steven, Mc GrawHill Higher Education, 6th Edition (2011)
- 2. Engineering Exploration (Edited Book, 2008) by Pearson custom Publishing

	Evaluation Scheme					
Chapter	Name	Sessions	percentage			
No			percentage			
1	Introduction to Engineering and Engineering Study	3 hrs	10			
. 2	Role of Analysis in Engineering	3 hrs	10			
3	Analysis Methodology	3 hrs				
1	Data Analysis Graphing	6 hrs	10			
	Basics of Engineering Design	6 hrs	20			
	Multidisciplinary Nature of Engineering Design	6 hrs				
	Review	3hrs				
6	Project Management	3 hrs	5			
0	Sustainability in Engineering	3 hrs	10			
1		6 hrs	5			
8	Ethics	12 hrs	20			
9	Modelling, Simulation, Data Acquisition & Analysis using	12 115	20			
	Software Tool					
10	Course Project	24 hrs	20			

Date: 7 - 1 - 15

CEER Director

4

Earlier known as B. V. B. College of Engineering & Technology

FIRST SEMESTER B E PROGRAM 2016-17 Electrical Science Stream Syllabi Content

					Common (
Program: UG					
Course Code: 15EHS	SP101	Course 7	Title: Social In	novation	
L-T-P-SS: 0-1-1		Credits:2	2	Contact	Hrs: 40
CIE Marks: 50		SEE Ma	rks: 50	Total M	arks: 100
Teaching Hrs: 3				Exam D	uration: 1.5 hours
Module	Торі	cs	Assignm	ents	Tools
KNOWLEDGE & TOOLS	 Induction Innovation Awakenin conscious Engineeri innovatio Site Visits Course Ov 2. Social Inno 	to Social es social ness ng& Social n verview vation	 Read the h on "The Pro Social Inno by Geoff M Submit rep field visit Report on t 	andout ocess of vation" ulgan ort on wo social	 Special Lectures Field visit Review course objectives and syllabus through PPT Behavioral Blocks to Innovation Questionnaire Case review Video session &
	and Leade	rship	innovations by enginee innovators	created rs/social	alscussion on applications of engineering in social field
	3. Idea Gen	eration	 One page v on idea ger about socia through lite and observ 	vrite up nerated I issues ratures ation	Literature surveyField visits
	4.Identifying L Issues & work formation	ocal team	 One page r literature re Justification Campus activity 	eport on view	 Focused Group Discussions on local challenges observed & Idea pitching Experience sharing by senior students
	5.Issues Basec Solving Tree	l Problem	 Designing I Based Prob Solving Tre issue identi 	ssue Ilem e for fied	Case study

. . .

۰,

Γ	KNOWI EDGE .					
	TOOLS	6. Project Proposals	•	Present the project proposal	•	Case study Report template
		7.Team Analysis	•	Carryout & present SWOT analysis for individual & the team	•	Case study/ Videos
		8.Stakeholder Analysis	•	Prepare & present stakeholder analysis for group project	•	Stakeholder engagement activity
		9. Innovative Budgeting and Fundraising	•	Preparing budget and fundraising report for group project	•	Presentation on fundraising techniques applied for the project
		10. Experiential Sessions	•	Brief write up	•	Special lecture
		11.Experiential Sessions	•	Brief write up	•	Special lecture
	DEVELOPMENT	12. Innovative Resource Management	•	Classroom Activity	•	Structure building games
		13. Calculative Risk Management	•	Classroom Activity	•	Risk Management games
	IT SESSIONS	14.Exposure to IT Skills- session 1 and session 2	•	IT assignments	•	PPT Movie Maker Web Designing & Hosting Internet Basics

Course Code: 15EHSP101

L-T-P: 0-1-1

Credits: 2

Course Title: Social Innovation Contact Hrs: 3 hrs/week

Modul	e Topics	Assignments	Tools
	 Induction to Social Innovation: Awakening social consciousness Engineering& Social innovation 	 Read the handout on "The Process of Social Innovation" by Geoff Mulgan Submit report on field visit 	 Special Lectures Field visit Review course objectives and syllabus through PPT
	 Site Visits Course Overview 	-	Behavioral Blocks to Innovation Questionnaire
			Case review
	2. Social Innovation and Leadership	Report on two social innovations created by engineers/social innovators	 Video session & discussion on applications of engineering in social field
& TOOL	3. Idea Generation	One page write up on idea generated about social issues through literatures and observation	 Literature survey Field visits
OWLEDGE	4.Identifying Local Issues & work team formation	 One page report on literature review Justification Campus activity 	Focused Group Discussions on local challenges observed & Idea pitching Everience shering by
ХХ			senior students
	5.Issues Based Problem Solving Tree	Designing Issue Based Problem Solving Tree for issue identified	Case study
	6. Project Proposals	Present the project proposal	Case studyReport template
-	7.Team Analysis	• Carryout & present SWOT analysis for individual & the team	Case study/ Videos
	8.Stakeholder Analysis	Prepare & present stakeholder analysis for group project	Stakeholder engagement activity
	9. Innovative Budgeting and Fundraising	 Preparing budget and fundraising report for group project 	 Presentation on fundraising techniques applied for the project
	10. Experiential Sessions	Brief write up	Special lecture
	11.Experiential Sessions	Brief write up	Special lecture
	12. Innovative Resource Management	Classroom Activity	• Structure building games
	13. Calculative Risk Management	Classroom Activity	Risk Management games

:

	KLE TECH. KLE TECH. Creating Value Leveraging Knowledge							
IT SESSIONS	14.Exposure to IT Skills- session 1 and session 2	IT assignments	 Presentation Skills Movie Maker Web Designing & Hosting Internet Basics 					

• 81 ···· . - ...

Cand no.

14

Monitoring: Faculty will maintain individual student dairy and assess the performance on weekly basis.

١

÷

æ

and the second of the second s

.

FIRST SEMESTER B E PROGRAM 2018-19

Syllabi Content (New Title) (Common course)							
Program: UG							
Course Title: Single Variabl	e Calculus	Course Code: 18EMAB101					
L-T-P: 4-1-0	Credits: 05	Contact Hours: 72					
CIE Marks: 50	SEE Marks: 50	Total Marks: 100					
Teaching Hours: 06	Examination Duration: 3hrs						
	Unit I						
1. Functions, Graphs and Mod	els	07					
hours							
Functions, types of functions, tran	sformations and models (Linear, ex	ponential, trigonometric).					
MATLAB: Graphing functions, Do	main-Range and Interpreting the m	odels					
2. Calculus of functions and mo	odels	13					
hours							
Limit of a function, Infinite limit	s- graph, Continuity and discontinusing Bisection Method and Newton	uity, Intermediate value theorem					
Interpretation of derivative as a ra	ate of change, All the rules of deriv	atives (List only), Maxima, Minima					
Examples	iture and Radius of Curvature, inde	terminate forms, L- Hospital's rule-					
MATLAB: optimization problems.	Curvature problems						
Unit II							
3. Infinite Series		06					
hours							
Definition, Convergence of series radius of convergence, Taylor's a	s, Tests of convergence – p-series nd Maclaurin's series, Applications o	, Alternating series. Power series, of Taylor's and Maclaurin's series					

MATLAB: Convergence of series

4. Integral calculus

hours

Tracing of standard curves in Cartesian form ,Parametric form and Polar form; Beta and gamma function, relation between them, evaluation of integrals using Beta and gamma functions; Applications to find arc length, Area, Volume and surface area (Cartesian, parametric and polar curves). Approximate integration-Trapezoidal rule, Simpson's 1/3 rule

MATLAB: problems on arc length, area, volume and surface area

Unit III

5. Ordinary differential equations of first order

hours

(a) Introduction to Initial Value problems. Linear and Bernoulli's equations, Exact equations and reducible to exact form, Numerical solution to Initial Value problems-Euler's method, Modified Euler's method and Runge-Kutta method

(b) Applications of first order differential equations-Orthogonal trajectories growth and decay problems, mixture problems, Electrical circuits, falling bodies.

MATLAB: Solve differential equations

Text Books

1. Early Transcendentals Calculus- James Stewart, Thomson Books, 7ed 2010.

Reference Books:

- 1. Calculus Single and Multivariable, Hughues-Hallett Gleason, Wiley India Ed, 4ed, 2009.
- 2. Thomas Calculus, George B Thomas, Pearson India, 12ed, 2010

10

FIRST SEMESTER B E PROGRAM 2017-18

Syllabi Content

(Old Title) (Common course)

Progr	am: UG						
Cours	Course Title:Analytical Geometry and CalculusCourse Code: 15EMAB101						
L-T-P	: 5-0-0	Credits: 05	Contact Hours: 60				
CIE N	/larks: 50	SEE Marks: 50	Total Marks: 100				
Teach	ing Hours: 05	Examination Duration: 3hrs					
		Unit I					
2.	Functions and Graph	S	05				
	hours						
	Trigonometric Function	ns, Exponential Functions and I	Logarithmic Functions				
3.	Limits and continuity	-					
	10 hours Limit of a fur	nction, Infinite limits- graph, Cor	tinuity and discontinuity,				
	Intermediate value theo	prem statement, Roots of the equa	ation using Bisection Method				
	and Newton- Raphson	Method					
4.	Derivatives and appli	ications	10				
	hours						
	Definition and Interpre-	tation of derivates as a rate of cha	inge, All the rules of derivatives				
	(List only), Maxima,	Minima, What does f' and f''	say about f , Curvature and				
	Radius of Curvature, Ir	ndeterminate forms – L'Hospital'	s rule				
		Unit II					
5.	Infinite Series		10				
	hours Definition, Conv	vergence of series, Tests of conv	ergence – p-series, comparison				
	test, ratio test Represe	ntation of a function as a power	series, radius of convergence,				
	Taylor's and Maclaurin's series, Applications of Taylor's and Maclaurin's series						
6.	. Integral calculus 15						
	hours Tracing	g of standard curves in Cartesian f	Form ,Parametric form and Polar				
	form; Beta and gamma	a function, relation between ther	n, evaluation of integrals using				
	Beta and gamma funct	ions; Applications to find arc ler	igth, Area, Volume and surface				
	area (Cartesian, param	etric and polar curves). Approx	timate integration- Trapezoidal				
	rule, Simpson's 1/3 rul	e.					

Unit III

7. Vectors and Geometry of space

(5+5)

hours (a) Three dimensional Coordinate system, Vectors in space, position vector, Direction cosines, Direction angles and planes, angle between planes.

(b) Equations of line, coplanar lines, skew lines, surfaces. Cylindrical and spherical coordinates, curves in 3-d spaces

Text Books

1. Early Transcendental Calculus- James Stewart, Thomson Books, 5e 2007

Reference Books:

- Calculus Single and Multivariable, Hughues- Hallett Gleason, Wiley India Ed, 4ed, 2009.
- 4. Calculus I, Jerrold Marsden and Alan Weinstein, Springer-Verlag, 2e, 1986.
- 5. Calculus II, Jerrold Marsden and Alan Weinstein, Springer-Verlag, 2e,1986.
- 6. Calculus III, Jerrold Marsden and Alan Weinstein, Springer-Verlag, 2e,1986.

SECOND SEMESTER B E PROGRAM 2018-19

Syllabi Content

(New Title) (Common course)

Program: UG							
Cours	se Title: <mark>Multivariable ca</mark>	alculus	Course Code: 18EMAB102				
L-T-P:	: 4-1-0	Credits: 05	Contact Hours: 72				
ISA M	arks: 50	ESA Marks: 50	Total Marks: 100				
Teach	ing Hours: 06	Examination Duration: 3hrs.					
	Unit I						
1.	Partial differentiation		12 hour s				
	Function of several varia	bles, Partial derivatives, Level curv	res, Chain rule, Errors and				
	Approximations. Extreme	value problems. Lagrange's multipl	iers.				
2.	Double integrals		08 hours				
	Double integrals- Rectang	gular and polar coordinates, Change	e the order of integration. Change				
	of variables, Jacobian. Ap	plication of double integrals					
	MATLAB: optimization pr	oblems, application of double integr	als				
		Unit II					
3.	Triple integrals		07				
	hours						
	Triple integrals, Cartesian	, change to Cylindrical and Spherica	al coordinates Application of Triple				
	integrals						
4.	Calculus of Vector Field	s	13 hours				
	Vector fields, Gradient an	d directional derivatives. Line and S	Surface integrals. Independence of				
	path and potential functio	ns. Green's theorem, Divergence of	vector field, Divergence theorem,				
	Curl of vector field. Stoke	s theorem.					
	MATLAB: application of	Triple integrals, Vector calculus prob	lems				
		Unit III					
5.	Differential equations of	higher orders	(5+5)				
	hours (a) Linear dif	ferential equations of second and hi	gher order with constant				
	coeffilSAnts The method	of Variation of parameters. Initial an	d boundary value problems.				
	(b) Applications of second	l order differential equations-Newtor	n's 2 nd law, electrical circuits,				
	Simple Harmonic motion.	Series solution of differential equati	ons. Validity of Series solution of				
	Differential equations.						

MATLAB: application of differential equations

Text Books :

1. Early Transcendental Calculus- James Stewart, Thomson Books, 7ed 2010

Reference Books:

- 1. Calculus Single and Multivariable, Hughues-Hallett Gleason, Wiley India Ed, 4ed, 2009.
- 2. Thomas Calculus, George B Thomas, Pearson India, 12ed, 2010

<u>SECOND SEMESTER B E PROGRAM 2017-18</u> <u>Syllabi Content</u> (Common course)

Program: UG		
Course Title: Multivariate c	alculus and differential	Course Code: 15EMAB102
equations	.	
L-T-P: 5-0-0	Credits: 05	Contact Hours: 60
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hours: 05	Examination Duration: 3hrs	
	Unit I	
6. Partial differentiation	1	12
hours Function of seve	eral variables, Partial derivatives,	Level curves, Chain rule, Errors
and Approxima	ations. Extreme value problems. I	Lagrange's multipliers.
7. Multiple integrals		13
hours Double integral	s- Rectangular and polar coordin	ates, Change the order of
integration. Change of	variables, Jacobian. Triple integ	rals- Cartesian, Cylindrical and
Spherical coordinates	Application of multiple integrals	
	Unit II	
8. Calculus of Vector Fi	elds	13
hours Vector fields, C	Gradient and directional derivative	ves. Line and Surface integrals.
Independence of path	and potential functions. Green's	theorem, Divergence of vector
field, Divergence theor	rem, Curl of vector field. Stokes t	heorem.
9. Differential equation	s of first order	12
hours Introduction to	Initial Value problems. Linear a	nd Bernoulli's equations, Exact
equations and reducibl	e to exact form, Applications of f	irst order differential equations-
Orthogonal trajectorie	es, growth and decay problems	, mixture problems, Electrical
circuits, falling bodies.	Approximate solution to Initial	Value problems-Euler's method,
Modified Euler's meth	od and Runge-Kutta method.	
	Unit III	
10. Differential equation	s of higher orders	(5+5)
hours (a) Linear differ	ential equations of second and hi	gher order with constant
coefficients The metho	od of Variation of parameters. Ini	tial and boundary value
problems.	(b) .	Applications of second order
differential equations-	Newton's 2 nd law, electrical circu	its, Simple Harmonic motion.

Series solution of differential equations. Validity of Series solution of Differential equations.

Text Books :

1. Early Transcendental Calculus- James Stewart, Thomson Books, 5e 2007

Reference Books:

- **3.** Calculus Single and Multivariable, Hughues-Hallett Gleason, Wiley India Ed, 4ed, 2009.
- 4. Calculus I, Jerrold Marsden and Alan Weinstein, Springer-Verlag, 2e, 1986.
- 5. Calculus II, Jerrold Marsden and Alan Weinstein, Springer-Verlag, 2e,1986.
- 6. Calculus III, Jerrold Marsden and Alan Weinstein, Springer-Verlag, 2e,1986.

FIRST SEMESTER B E PROGRAM 2018-19 Electrical Science Stream Syllabi Content

Program: UG		
Course Code: 18EEEF101	Course Title: Basi	c Electrical Engineering
L-T-P: 3-0-0	Credits: 3	Contact: 40 Hrs.
CIA Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching : 40 Hrs.		Exam Duration: 3 Hrs.

Chapte r No.	Unit-I	Hour
1	Overview of Electrical Engineering Specialization, scope & role, impact of Electrical Engineering on national economy, environment, Sources of generation, sustainability, challenges and opportunities for electrical engineers, electrical engineering marvels, future challenges.	02
2	DC Circuits Voltage and current sources, Kirchoff's current and voltage laws, loop and nodal analysis of simple circuits with dc excitation. Time-domain analysis of first-order RL and RC circuits.	05
3	AC Circuits Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase series and parallel R-L-C ac circuits. Three-phase balanced circuits, voltage and current relations in star and delta connections. power measurement using two watt meters	08
	Unit-II	
4	Electrical Actuators Electromagnetic principles, Solenoid, Relays, classification of Electric motors, DC motors-shunt, series, compound, separately excited, PMDC motors –Speed Control, Stepper Motors, BLDC motors, three phase induction motor, Characteristics and applications, selection of motors for various applications.	9
5	Power Electronics (Text1, chapter 45) Introductory, Thyristor, Some thyristor circuits, Limitations to thyristor operation, The thyristor in practice, The fully controlled AC/DC converter,	6

	AC/DC inversion, Switching devices in inverters, Three-phase rectifier networks, The three-phase fully controlled converter, Inverter-fed induction motors, Soft-starting induction motors, DC to DC conversion switched-mode power	
	Unit-III	1
6	Electrical Wiring, Safety and protection(Ref :Text3-page 1 to 10)	05
-	Types of wires and cables for internal wiring, Types of switches and Circuits,	
	Types of wiring, Safety precautions and rules in handling electrical appliances,	
	Electric shock, first aid for electrical shocks, Importance of grounding and	
	earthing, Methods for earthing, Fuses, MCB, ELCB and Relays, Lockout and	
	Tagout, Electrical Codes and Standards.	
7	Batteries:	05
	Basics of lead acid batteries, Lithium Ion Battery, Battery storage capacity,	
	Coulomb efficiency, Numerical of high and low charging rates, Battery sizing.	
	Numericals.	

Text	Text Books			
1	Hughes, Electrical & Electronic Technology, 8th , Pearson Education, 2001			
2	P C Sen, Principals of Electrical Machines and Power Electronics, 2nd, Wiley Publications			
3	Gilbert M Masters, Renewable and efficient Electrical Power systems, Published by John Wiley & Sons 2004 edition			
4	Frank D. Petruzella, Electric Motors and Control Systems, McGraw Hill Education Private Limited 2009 Edition			
Refer	rence Books:			
1	D C Kulshreshtha, Basic Electrical Engineering, Mc Graw Hill Publications			
2	David G Alciatore and Michel B Histand, Introduction to Mechatronics and Measurement Systems, 3rd, Tata McGraw Hill Education Private Limited, New Delhi., 2005			
3	Vincent Del Toro, Electrical Engineering Fundamentals, 2 nd edition Prentice Hall India			

FIRST SEMESTER B E PROGRAM 2017-18 Electrical Science Stream Syllabi Content

CONTENT

Program: UG				
Course Code: 16EEEF101	Course Title: Basic	Electrical Engineering		
L-T-P-SS: 3-0-0	Credits:4	Contact Hrs: 50		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hrs: 3		Exam Duration: 3 hours		
	Unit I			

Chit I	
Chapter No. 1: Overview of Electrical Engineering Specialization, scope & role, impact of Electrical Engineering on national economy, environment, Sources of generation, sustainability, challenges and opportunities for electrical engineers, electrical engineering marvels, future challenges.	02 hrs
Chapter No. 2 : D.C. and Magnetic Circuits Ohm's law, Kirchhoff's laws, network analysis by Maxwell's circulating currents, constant current and voltage source, nodal analysis, series magnetic circuits, mmf, reluctance and inductance, simple problems and analogy	08 hrs
Chapter No. 3. Actuators Electromagnetic principles, classification of Electric motors, DC motors-shunt, series, PMDC motors – Speed Control, Stepper Motors, BLDC motors, Characteristics and applications, selection of motors for various applications	05 hrs
Unit II	
Chapter No. 4 : Single phase AC Circuits Introduction to AC circuits and theory of generation of sinusoidal alternating voltage, concept of average and effective (rms) values, form factor, peak factor of sinusoidally varying voltage and current, phasor representation of alternating quantities, analysis with phasor diagrams of RLC circuits, power and power factor in AC circuits, parallel RLC Circuits and numerical. Introduction to Transformers (no-load phasor diagram).	10 hrs
Chapter No. 5: Three Phase Systems	5 hrs
Necessity and advantages of three phase systems, generation of three phase e.m.f.s, relationship between line and phase values of balanced star and delta connections,	

power in balanced three phase circuits and power measurement using two watt meters, three phase induction motor, numericals	
Unit III	
Chapter No. 6. Batteries: Basics of lead acid batteries, Lithium Ion Battery, Battery storage capacity, Coulomb efficiency, Numerical of high and low charging rates, Battery sizing.	05 hrs
Chapter No. 7: Electrical Wiring, Safety and protection Types of wires and cables for internal wiring, Types of switches and Circuits, Types of wiring, Safety precautions and rules in handling electrical appliances, Electric shock, first aid for electrical shocks, Importance of grounding and earthing, Methods for earthing, Fuses, MCB, ELCB and Relays	05 hrs

Text Books

- 1. Hughes, Electrical & Electronic Technology, 8th edition, Pearson Education
- 2. David G Alciatore and Michel B Histand, Introduciton to Mechatronics and Measurement Systems, 3rd edition 2005, Tata McGraw Hill Education Private Limited, New Delhi.
- 3. Gilbert M Masters, Renewable and efficient Electrical Power systems, Published by John Wiley & Sons 2004 edition

Reference Books

- 1. D C Kulshreshtha, Basic Electrical Engineering, Mc Graw Hill Publications
- 2. Vincent Del Toro, Electrical Engineering Fundamentals, 2nd edition Prentice Hall India

SECOND SEMESTER B E PROGRAM 2018-19 Mechanical Science Stream Syllabi Content

Program: UG				
Course Code: 18EEEF102	Course Title: Basic E	lectrical Engineering		
L-T-P: 3-0-0	Credits: 3	Contact Hrs.: 40		
CIA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching:40 Hrs	Exam Duration: 3 Hrs			

Chapter	Unit-I	Hrs	
No.			
1	Overview of Electrical Engineering	02	
	Specialization, scope & role, impact of Electrical Engineering on national economy,		
	environment, Sources of generation, sustainability, challenges and opportunities for electrical		
	engineers, electrical engineering marvels, future challenges.		
2	DC Circuits	05	
	Voltage and current sources, Kirchoff's current and voltage laws, loop and nodal analysis of		
	simple circuits with dc excitation. Time-domain analysis of first-order RL and RC circuits.		
3	AC Circuits	08	
	Representation of sinusoidal waveforms, peak and rms values, phasor representation, real		
	power, reactive power, apparent power, power factor. Analysis of single-phase series and		
	parallel R-L-C ac circuits. Three-phase balanced circuits, voltage and current relations in star		
	and delta connections. power measurement using two watt meters		
	Unit-II		
4	Electrical Actuators	9	
	Electromagnetic principles, Solenoid, Relays, classification of Electric motors, DC motors-		
	shunt, series, compound, separately excited, PMDC motors - Speed Control, Stepper Motors,		
	BLDC motors, three phase induction motor, Characteristics and applications, selection of		
	motors for various applications.		
5	Power Electronics (Text1, chapter 45)	6	
	Introductory, Thyristor, Some thyristor circuits, Limitations to thyristor operation, The		
	thyristor in practice, The fully controlled AC/DC converter, AC/DC inversion, Switching		
	devices in inverters, Three-phase rectifier networks, The three-phase fully controlled		
	converter, Inverter-fed induction motors, Soft-starting induction motors, DC to DC conversion		
	switched-mode power		
	Unit-III		

6	Electrical Wiring, Safety and protection(ref :Text3-page 1 to 10)	05
	Types of wires and cables for internal wiring, Types of switches and Circuits, Types of wiring,	
	Safety precautions and rules in handling electrical appliances, Electric shock, first aid for	
	electrical shocks, Importance of grounding and earthing, Methods for earthing, Fuses, MCB,	
	ELCB and Relays, Lockout and Tagout, Electrical Codes and Standards.	
7	Batteries:	05
	Basics of lead acid batteries, Lithium Ion Battery, Battery storage capacity, Coulomb	
	effiISAncy, Numerical of high and low charging rates, Battery sizing. Numericals	

Te	Text Books			
1	Hughes, Electrical & Electronic Technology, 8th , Pearson Education, 2001			
2	P C Sen, Principals of Electrical Machines and Power Electronics, 2nd, Wiley Publications			
3	Gilbert M Masters, Renewable and effiISAnt Electrical Power systems, Published by John Wiley & Sons 2004 edition			
4	Frank D. Petruzella, Electric Motors and Control Systems, McGraw Hill Education Private Limited 2009 Edition			
Re	ference Books:			
1	D C Kulshreshtha, Basic Electrical Engineering, Mc Graw Hill Publications			
2	David G Alciatore and Michel B Histand, Introduction to Mechatronics and Measurement Systems, 3rd, Tata McGraw Hill Education Private Limited, New Delhi., 2005			
3	Vincent Del Toro, Electrical Engineering Fundamentals, 2 nd edition Prentice Hall India			

Earlier known as B. V. B. College of Engineering & Technology

SECOND SEMESTER B E PROGRAM 2017-18

Mechanical Science Stream Syllabi Content

Course Code: 16EEEF102	Course Title: Basic B	lectrical Engineerin	Ig
L-T-P-SS: 3-0-0	Credits: 3	Contact Hrs/We	ek: 3
CIE Marks: 50	SEE Marks: 50	Total Marks: 10	0
Teaching Hrs: 50	Exam Duration: 3 ho	ours	
	Unit I		<u>+</u>
Chapter No. 1: Overview of Electrical Engineering Specialization, scope & role, impact of Electrical Engineering on national economy, environment, Sources of generation, sustainability, challenges and opportunities for electrical engineers, electrical engineering marvels, future challenges			02 hrs.
Chapter No. 2 : D.C. and Network Theorems Ohm's law, Kirchhoff's laws, Analysis of series, parallel and series- parallel circuits excited by independent voltage sources, network analysis by Maxwell's circulating currents, constant current and voltage source, nodal analysis, Thevenin's Theorem, Norton's Theorem.			8 hrs.
Chapter No. 3. Actuators Electromagnetic principles, classification of Electric motors, DC motors- shunt, series, PMDC motors – Speed Control, Stepper Motors, BLDC motors, Characteristics and applications, selection of motors for various applications		5 hrs.	
Unit II			
Chapter No. 5 : Single phase AC Circuits Introduction to AC circuits and theory of generation of sinusoidal alternating voltage, concept of average and effective (rms) values, phasor representation of alternating quantities, analysis with phasor diagrams of RLC circuits, power and power factor in AC circuits, parallel RLC Circuits and numericals, transformers.		10 hrs.	
Chapter No. 6. Three Phase SystemsNecessity and advantages of three phase systems, generation of three phasee.m.f.s, relationship between line and phase values of balanced star and deltaconnections, power in balanced three phase circuits, three phase inductionmotor, numerical			05 hrs.
	Unit III		

Chapter No. 6: Batteries Basics of lead acid batteries, Lithium Ion Battery, Battery storage capacity, Coulomb efficiency, high and low charging rates, Battery sizing, numericals.	05 hrs.
Chapter No. 7: Electrical Wiring, Safety and protection Types of wires and cables for internal wiring, Types of switches and Circuits, Types of wiring, Safety precautions and rules in handling electrical appliances, Electric shock, first aid for electrical shocks, Importance of grounding and earthing, Methods for earthing, Fuses, MCB, ELCB, and Relay	05 hrs.

Text Books

- 1. Hughes, Electrical & Electronic Technology, 8th edition, Pearson Education
- 2. David G Alciatore and Michel B Histand, Introduciton to Mechatronics and Measurement Systems, 3rd edition 2005, Tata McGraw Hill Education Private Limited, New Delhi.
- 3. Gilbert M Masters, Renewable and efficient Electrical Power systems, Published by John Wiley & Sons 2004 edition

Reference Books

- 1. D C Kulshreshtha, Basic Electrical Engineering, Mc Graw Hill Publications
- 2. Vincent Del Toro, Electrical Engineering Fundamentals, 2nd edition Prentice Hall India

FIRST SEMESTER B E PROGRAM 2018-19 Mechanical Science Stream Syllabi Content

Program: UG			
Course Title: Basic Electr	onics	Course Code: 18EECF102	Teaching
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4Hrs/week	Hours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 50 Hrs.	Examination		
	Duration: 3 Hrs.		
Unit I Chapter 1: Overview of Electronics in Mechanical Engineering Definition & overview of Mechatronics, Mechatronics and Design Innovation, Mechatronics and Manufacturing, Mechatronics and Education; Typical Mechatronics Components: Sensors and Transducers.			03
Chapter 2: Semiconductor	r Devices and Applications	:	
PN junction diode, characteristics and parameters, diode approximations, half wave rectifier, full wave bridge rectifier, full wave bridge rectifier capacitor filter, Zener diode, Voltage regulator design, BJT, Darlington Pair, JFET, MOSFET, UJT, SCR.			10
Chapter 3: Operational A	mplifiers:		
Ideal op-amp characteristics, op-amp applications: Comparator, Inverting amplifier, Non- inverting amplifier, Voltage follower, Integration, Differentiation, Adder, Subtractor and numerical as applicable.			08
Unit II			
Chapter 4: Digital Logic:			
Digital Number system: Binary & Hexadecimal number systems, Conversion, BCD Number system, Gray code, Data word representation, Binary Arithmetic, Boolean Algebra, Logic gates, Combinational & Sequential circuits, Adders, Flip-Flops, Registers, Counters, Multiplexer.			
Introduction to Digital Electronics (Text-2):			13
Introduction to Digital Detectiones (Tene 2), Introduction, Switching and Logic Levels using circuits, Digital Waveform (Sections 9.1to 9.3).Number system: Binary, Octal Decimal and Hexadecimal, Inter Conversion, BCD Number system, Gray code, Data word representation, Binary Arithmetic, Boolean Algebra: Laws, rules & theorems of Boolean algebra, Sum of products form (SOP), products of sum form (POS) of Boolean functions. Study of Karnaugh Maps (K-maps) for 2, 3 & 4 variables only. Logic gates, Adders, Encoder, Decoder, Multiplexer and Demultiplexer. Combinational & Sequential circuits, Latches and Flip-Flops(SR, JK, D, T),			

Chapter 5: Sensors and Transducers : Introduction, Classification of sensors and transducers, Contact type – Mechanica switches, Non-contact type - proximity sensors & Hall sensors, principle of workin light sensors, Future Challenges	1 06 ng of	
Unit – III		
Chapter 6: Signal Conditioning:	06	
Analog & Digital signals, Digital to Analog Conversion, R-2R DAC, Analog to I Conversion, SAR ADC, Data Acquisition.	Digital	
Chapter 7: Case Studies of Mechatronic Systems:		
Automatic Camera, Drilling Machine, Bar code reader.	04	
 Text Book David A Bell, "Electronic devices and Circuits", PHI New Delhi, 2004. Morris Mano, "Digital logic and Computer design" 21st Indian print Prent 2000. W.Bolton, "Mechatronics - Electronic Control Systems in Mechanical and Engineering", 3rd edition Pearson Education, 2005. David Bradley and David W., "Mechatronics in Action", 2nd edition, Springer 2005. 	tice Hall India, d Electrical inger, 2010	
References		
 David G Alciatore, Michael B Histand, "Introduction to Mechatronics and Measurement Systems", TMH 3rd edition, 2007. 		
2. K.A Krishnamurthy and M.R.Ragnuveer, "Electrical, Electronics and Computer Engineering for Scientist and Engineers", Second Edition New Age International Publishers, Wiley Eastern, 2001.		
3. P. Malvino, "Electronic Principles" Sixth edition Tata McGraw Hill, 1999.		
4. Floyd, "Digital fundamentals" Third Edition Prentice Hall India, 2001	D	
 BoylesteadNashelsky, "Electronic devices & Circuit theory" Sixth Edition India, 2000. Device the set of th	Prentice Hall	
o. KamakantGayekawad Operational Amplifiers & applications" 3 rd Edition	a, PHI, 2000.	

06 Hrs

FIRST SEMESTER B E PROGRAM 2017-18 Mechanical Science Stream Svllabi Content

Course	code: 15EECF101	Course Title: Basic Electronics		
L-T-P:	P: 4-0-0 Credits: 4 Contact Hrs.: 4			
CIE M	CIE Marks: 50 SEE Marks: 50 Total Marks: 100		Total Marks: 100	
Teachi	Teaching Hrs: 50Exam Duration: 3 hrs			
	1. Introduction to Mech	natronics:		•
	Definition & overview of Mechatronics, Introduction to microprocessor based control. Mechatronics approach, examples of Mechatronics systems.			03 Hrs
2. Semiconductor Devices and Applications: PN junction diode, characteristics and parameters, diode approximations, Half wave rectifier, full wave bridge rectifier, full wave bridge rectifier capacitor filter, Zener diode, Voltage regulator design. BJT, Darlington Pair, JFET, MOSFET, UJT, SCR, Triac, IGBT.		10 Hrs		
3. Operational Amplifiers: Ideal op-amp characteristics, op-amp applications: Comparator, Inverting amplifier, Non inverting amplifier, Voltage follower, Integration, Differentiation, Adder, Subtractor and numerical as applicable.		08 Hrs		
		Unit – II		

4. Digital Logic:

5. Sensors and Transducers :	
Number system, Gray code, Data word representation, Binary Arithmetic, Boolean Algebra, Logic gates, Combinational & Sequential circuits, Adders, Flip-Flops, Registers, Counters, Multiplexer.	
Digital Number system Binary & Hexadecimal number systems, Conversion, BCD	

Introduction, Classification of sensors and transducers, Contact type – Mechanical switches, Non-contact type - proximity sensors & Hall sensors, principle of working of light sensors.

Unit – III

6. Signal Conditioning:	
Analog & Digital signals, Digital to Analog Conversion, R-2R DAC, Anal	log to Digital 06 Hrs
Conversion, SAR ADC, Data Acquisition.	
7. Case Studies of Mechatronics Systems:	0/ Hrs
Automatic Camera, Drilling Machine, Bar code reader.	041113

Text Book

- 1. David G Alciatore, Michael B Histand, "Introduction to Mechatronics and Measurement Systems", TMH 3rd edition, 2007.
- 2. David A Bell, "Electronic devices and Circuits", PHI New Delhi, 2004.

3. W.Bolton, "Mechatronics - Electronic Control Systems in Mechanical and Electrical Engineering", 3rd edition Pearson Education, 2005.

References

- 1. N.P.Mahalik, "Mechatronics Principles, Concepts and Applications", Tata McGraw-Hill, 2011.
- 2. K.A Krishnamurthy and M.R.Raghuveer, "Electrical, Electronics and Computer Engineering for Scientist and Engineers", Second Edition New Age International Publishers, Wiley Eastern, 2001.
- 3. P. Malvino, "Electronic Principles" Sixth edition Tata McGraw Hill, 1999.
- 4. George Kennedy, "Electronic Communication Systems" Fourth Edition Tata McGraw Hill, 2000.
- 5. Morris Mano, "Digital logic and Computer design" 21st Indian print Prentice Hall India, 2000.
- 6. Floyd, "Digital fundamentals" Third Edition Prentice Hall India, 2001.
- 7. Boylestead Nashelsky, "Electronic devices & Circuit theory" Sixth Edition Prentice Hall India, 2000.
- 8. Ramakant Gayekawad "Operational Amplifiers & applications" 3rd Edition, PHI, 2000.

SECOND SEMESTER B E PROGRAM 2018-19 Electrical Science Stream Syllabi Content

Program: UG			
Course Title: Basic Electronics Course Code: 18EECF101			Course Code: 18EECF101
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4 Hrs./week	
ISA Marks: 50		ESA Marks: 50 Total Marks: 100	
Teaching Hours: 50	Hrs.	Examination Duration: 3 Hrs	

Unit 1	Hours
Chapter 1: Trends in Electronic Industries: Introduction, Roadmap of electronic sector, scope and opportunities in various segments of electronics (i.e., Consumer, Telecom, IT, Defense, Industrial, Medical and Automobiles), Government and private sectors, Growth profile of Electronic industries, Standards and PoliISAs, Electronic System Components.	03
Chapter 2: Basic Components, Devices and Applications: Diode: PN junction characteristics; modeling as a circuit element, ideal and practical diode. AC to DC converter: Half wave and full wave rectifier (centre tap and bridge), capacitor filter and its analysis, numerical examples. Zener diode and its applications (Voltage reference and voltage regulator). Realization of simple logic gates like AND and OR gates.	10
Chapter 3: Transistor: BJT, transistor voltages and currents, Signal amplifier (Fixed bias, Collector base bias, Voltage divider bias, CE configuration). DC load line. Voltage, current and power gains. Transistor as a switch: NOT Gate, Basic (DTL) NAND gate. Transistor as a Small Signal Amplifier (Single Stage and Two Stage RC-coupled Amplifier).	07
Unit 2	
Chapter 4: Digital Logic: Number systems: Decimal, Binary, Octal and Hexadecimal number systems, Conversions, Binary Operations-Addition and subtraction in binary number systems. Logic gates: Realization of simple logic functions using basic gates (AND, OR, NOT), Realization using universal gates (NAND, NOR). Boolean algebra: Theorems and postulates, DeMorgan's Theorems , simplification of logical expressions, Karnaugh Maps, Use of Karnaugh Maps to Minimize Boolean Expressions (2 Variables, 3 Variables and 4 Variables), Design of Half Adder and Full Adder, Parallel Adder using full adders.	14
Chapter 5: Operational Amplifier: OPAMP characteristics (ideal and practical), Linear and non-linear applications: Inverting amplifier, Non inverting amplifier, Voltage follower, Integration, Differentiation, Adder, Subtractor, ZCD and Comparator.	06

Earlier known as B. V. B. College of Engineering & Technology

Unit 3	
Chapter 6: Communication Systems: Basic block diagram of communication system, types of modulation. Amplitude modulation: Time-Domain description, Frequency-Domain description. Generation of AM wave: square law modulator. Detection of AM waves: envelope detector. Double side band suppressed carrier modulation (DSBSC), Generation of DSBSC wave : balanced modulator, Super heterodyne principle.	07
Chapter 7: Linear Power Supply, UPS & CRO: Working principle of linear power supply, UPS and CRO. Measurement of amplitude, frequency and phase of a given signal.	03

Text Book

- 1. David A Bell, Electronic devices and Circuits, PHI New Delhi, 2004
- 2. K.A Krishnamurthy and M.R.Raghuveer, Electrical, Electronics and Computer Engineering for SISAntist and Engineers, 2, New Age International Publishers, 2001
- 3. A.P. Malvino, Electronic Principles, Tata McGraw Hill, 1999

References

- 1. George Kennedy, Electronic Communication Systems, Tata McGraw Hill, 2000
- 2. Morris Mano, Digital logic and Computer design, 21st Indian print Prentice Hall India, 2000
- 3. Floyd, Digital fundamentals, 3, Prentice Hall India, 2001
- 4. BoylesteadNashelsky, Electronic devices & Circuit theory, Prentice Hall India, 2000
- 5. RamakantGaikawad, Operational Amplifiers & applications, PHI, 2000

SECOND SEMESTER B E PROGRAM 2017-18 Electrical Science Stream Syllabi Content

Course Code: 15EECF102	Course Title: Basic Electronics	
L-T-P: 0-0-3	Credits: 3	Contact Hrs.: 6
CIE Marks: 80	SEE Marks: 20	Total Marks: 100
Teaching Hrs: 78	Exam Duration: 3 hrs	

<u>Unit - I</u>	
1. Trends in Electronic Industries:Introduction, Roadmap of electronic sector, scope and opportunities in various segments of electronics (i.e., Consumer, Telecom, IT, Defense, Industrial, Medical and Automobiles), Government and private sectors, Growth profile of Electronic industries, Standards and Policies, Electronic System Components.	3 hours
2. Basic components, devices and Applications: Diode: PN junction characteristics; forward conduction, reverse breakdown, temperature dependence, modeling as a circuit element, approximations. AC to DC converter: Half wave and full wave rectifier (centre tap and bridge), capacitor filter and its approximate analysis, numerical examples as applicable. Zener diode and its applications (Voltage reference and voltage regulator). Common anode and common cathode connections, Simple logic gates : AND , OR	11 hours
3. Transistor: BJT, transistor voltages and currents, Signal amplifier (Fixed bias, CE configuration). DC load line. Voltage, current and power gains. Transistor asa switch: NOT Gate, Basic (DTL) NAND gate	6 hours
<u>Unit-II</u>	
4. Digital Logic: Number systems: Decimal, Binary, Octal and Hexadecimal number systems, Conversions, Addition and subtraction in binary number systems. Logic gates: Realization of simple logic functions using basic gates (AND, OR, NOT), Realization using universal gates (NAND, NOR). Boolean algebra: Theorems and postulates, DeMorgan's Theorems, simplification of logical expressions, Design of Half Adder and Full Adder,Parallel Adder using full adders.	10 Hrs
5. Operational Amplifier: OPAMP characteristics (ideal and practical). Concept of positive and negative feedback (At zero frequency). Linear and non-linear	8 hours

applications: Inverting amplifier, Non inverting amplifier, Voltage follower, Integration, Differentiation, Adder, Subtractor, ZCD and Comparator.	
<u>Unit-III</u>	
 Communication Systems: Basic block diagram of communication system, concept of multiplexing, modulation. Different modulation techniques: AM, FM, their comparison 	6 hours
 Receivers & CRO: Super heterodyne receivers (block schematic) Block diagramof CRO, Block diagram of CRT, measurement of amplitude, frequency and phase of a given signal. 	6 hours

Text Books:

- David A Bell, "Electronic devices and Circuits", PHI New Delhi, 2004.
- K.A Krishnamurthy and M.R.Raghuveer, "Electrical, Electronics and Computer Engineering for Scientist and Engineers", Second Edition New Age International Publishers, Wiley Eastern, 2001.
- A. P. Malvino, "Electronic Principles" Sixth edition Tata McGraw Hill, 1999.

Reference Books:

- George Kennedy, "Electronic Communication Systems" Fourth Edition Tata McGraw Hill, 2000.
- Morris Mano, "Digital logic and Computer design" 21st Indian print Prentice HallIndia, 2000.
- Floyd, "Digital fundamentals" Third Edition Prentice HallIndia, 2001.
- BoylesteadNashelsky, "Electronic devices & Circuit theory" Sixth Edition Prentice HallIndia, 2000.
- RamakantGaikawad "Operational Amplifiers & applications" 3rd Edition, PHI, 2000.

SECOND SEMESTER B E PROGRAM 2018-19 Electrical Science Stream Syllabi Content (New Course)

Program: UG		
Course Title: Problem Solving with Da	ata Structures	Course Code: 18ECSP102
L-T-P: 0-0-3	Credits: 3	Contact: 6 Hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching : 78 Hrs	Exam Duration: 3 Hrs	

1	Pointers, Structures and Files	
	Recap of basics: Pointers ,Structures; Self-referential structures, dynamic	
	memory management Files – File manipulation programs	12 hrs.
2	Stacks and Recursion	
	Stack: Definition, Operations, Stack ADT Implementation of stack	
	operations. Applications of stack.	
	Recursion- Need for Recursion and problems on Recursion.	16 hrs.
3	Queues	
	Queue: Definitions of Linear, Circular queues, Queue ADT Linear and	
	circular queue operations Definition and working of Priority queue, Double	
	ended queue; Applications of queues.	16 hrs.
4	Lists	
	Concept of lists and dynamic memory management lists, definitions and	
	representations: singly, doubly, circular lists. Dynamic Implementation of	
	lists and its operations, Applications of linked lists	18 hrs.
5	Binary trees	16 hrs.

Binary Tree: Definition, Terminology and representation, Tree Traversals both recursive and iterative. Binary Search Tree and its applications.

Text Books

- 1. Data Structures with C -- Seymour Lipschutz, Schaum's Outline Series
- 2. Data Structures Using C and C++ -- Langsam and Tanenbaum, PHI Publication
- 3. Data Structures Through C -- Yashavant P Kanetkar, BPB Publication

Reference Books:

- 1. Data Structures, Algorithms and Applications In C++ -- Satraj Sahani
- 2. Data Structures and Algorithms Made Easy Narshiman Karumunchi, Career Monk