

Program: Bachelor of Engineering		
Course Title: Data Structures and Algorithms Course Code: 17ECSC204		
L-T-P: 4-1-0	Credits: 5	Contact Hrs: 5 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 62 hrs	Exam Duration: 3 hrs	

Unit –	I	
1	Introduction to Data Structures and Algorithm Analysis	
	Primitive Data structures in C, Custom Data Types, Arrays, Recursive	
	Definitions, Recursive Functions, Towers of Hanoi, Backtracking, Recursion Vs.	
	Iteration, Model, Running Time Calculations, Space and Time Complexities,	
	Order of an Algorithm	10 hrs
2	Lists, Stacks, Queues	
	Abstract Data Types, Lists, Stacks, Queues, Applications	10 hrs
3	Hashing	
	General Idea, Hash Function, Collision Resolution Techniques, Applications in	
	Number Theory	05 hrs
Unit –	П	
4	Trees	
	Introduction to graphs, Trees, Binary Search trees, AVL Trees, Tree Traversals,	
	Applications	08 hrs
5	Sorting	
	Sorting, Bubble sort, Selection Sort, Insertion Sort, Merge Sort, Quick Sort,	
	Heap Sort.	08 hrs
6	Graphs and Graph Algorithms	
	Graphs, Topological sort, Shortest Path Algorithms, Minimum Spanning Tree	09 hrs
Unit –	Ш	
7	Graph Algorithms Continued	
	Greedy algorithms, DFS, BFS, Application of Graph algorithms	06 hrs
8	File Structures and Storage Management	
	Files, Random and Direct access, Storage Management with Fixed and Variable	
	Blocks	06 hrs
Text B	ooks:	
1.	Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", Second	Edition,
	Pearson Education, 2010	
Refere	nce Books:	
1.	Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, "Data Structures and Algo	rithms",
	1 st Edition, Addison Wesley Publication, 1983.	
1.	Aron M. Tenenbaum, et. al, "Data Structures using C", PHI, 2006.	
2.	Levitin A., "Introduction to the Design and Analysis of Algorithms", 2 nd Edition,	Pearson

Education, 2008.

Scheme for Semester End Examination (SEE)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
Π	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
Ш	Q.No7	7	Solve Any 1 out of 2
m	Q.No8	8	Solve Any 1 Out of 2

Program: Bachelor of Engineering			
Course Title: Engineering Design Practice [Part B] Course Code: 17ECSP202			
[Part A – Central Level]		Course Code. 17ECSI 202	
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3 hrs/week	
ISA Marks: 40 ESA Marks: 0		Total Marks: 40	
Teaching Hrs: 39 hrs	Exam Duration: 3 hrs		

Experiments	Lab assignments/experiment	
Phase 1 (Plannig)	Introduction to Eclipse –IDE	
	Requirement modeling :	
	Identifying use cases and actors	
	• Apply UML notations to draw use case diagram	
Phase 2 (Conceptual	Behaviour Modeling using DFD	
Design)	List behavior of system/sub-system	
	• List states, tasks and their dependencies	
	Illustrate DFD :	
	 Identify data flow and processes of a system 	
	• Draw data flow diagrams for system/sub-system	
	Draw system diagram to show interaction of all domain	
	components	
	(Draw state and sequence diagram for identified tasks)	
Phase 3(System Design)	Software Architectures:	
	 List components of architecture 	
	List type of architectures	
	Choose appropriate architecture for given system	
Phase 4 (Detail Design)	UI Design using GUI wireframe:	
	• Design function prototyping for event diagrams(DFD)	
	Identify user interface components	
	Choose appropriate property of component	
	• Use wireframe to design a user interface	

Text books:

1. Ian Somerville, Software Engineering, 9th, Pearson Ed, 2015

2. Clive L Dym and Patrick Little, "Engineering Design: A Project Based Introduction", John

Wiley & Sons Reference books:

- 1. Roger S. Pressman, Software Engineering: A Practitioners Approach, 7th, McGraw, 2007
- 2. Shari Lawrence Pfleeger and Joanne M. Atlee, Software Engineering Theory and Practice, 3rd, Pearson Ed, 2006
- 3. Jalote, P, An Integrated Approach to Software Engineering, 3rd, Narosa Pub, 2005

Program: Bachelor of Engineering		
Course Title: Data Structure and Algorithms LabCourse Code: 17ECSP201		
L-T-P: 0-0-2	Credits: 2	Contact Hrs: 4 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs:56 hrs	Exam Duration: 3 Hrs	

Tentative plan of lab implementation

Week No	Lab Assignments
1	
2	03 Programming Assignments on C language Features
3	
4	01 Assignment on List and Stack
5	01 Assignment on List and Queue
6	
7	02 Assignments on Applications of List
8	01 Assignment on Trees
9	01 Assignment on Introduction to Algorithms
10	01 Assignment on Sorting technique and efficiency analysis
11	
12	03 Assignments on Search or Graph algorithms
13	
14	Open Ended Experiment

Program: Bachelor of Engineering		
Course Title: Data Structure and Algorithms LabCourse Code: 17ECSP201		
L-T-P: 0-0-2	Credits: 2	Contact Hrs: 4 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs:56 hrs	Exam Duration: 3 Hrs	

Tentative plan of lab implementation

Week No	Lab Assignments
1	
2	03 Programming Assignments on C language Features
3	
4	01 Assignment on List and Stack
5	01 Assignment on List and Queue
6	
7	02 Assignments on Applications of List
8	01 Assignment on Trees
9	01 Assignment on Introduction to Algorithms
10	01 Assignment on Sorting technique and efficiency analysis
11	
12	03 Assignments on Search or Graph algorithms
13	
14	Open Ended Experiment

Program: Bachelor of Engineering		
Course Title: Engineering Design Practice [Part B]		Course Code: 17ECSP202
[Part A – Central Level]		Course Code. 17ECSI 202
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3 hrs/week
ISA Marks: 40	ESA Marks: 0	Total Marks: 40
Teaching Hrs: 39 hrs	Exam Duration: 3 hrs	

Experiments	Lab assignments/experiment
Phase 1 (Plannig)	Introduction to Eclipse –IDE
	Requirement modeling :
	Identifying use cases and actors
	• Apply UML notations to draw use case diagram
Phase 2 (Conceptual	Behaviour Modeling using DFD
Design)	List behavior of system/sub-system
	List states, tasks and their dependencies
	Illustrate DFD :
	• Identify data flow and processes of a system
	• Draw data flow diagrams for system/sub-system
	 Draw system diagram to show interaction of all domain components
	(Draw state and sequence diagram for identified tasks)
Phase 3(System Design)	Software Architectures:
	List components of architecture
	List type of architectures
	Choose appropriate architecture for given system
Phase 4 (Detail Design)	UI Design using GUI wireframe:
	• Design function prototyping for event diagrams(DFD)
	Identify user interface components
	Choose appropriate property of component
	• Use wireframe to design a user interface
Text books:	

Text books:

3. Ian Somerville, Software Engineering, 9th, Pearson Ed, 2015

4. Clive L Dym and Patrick Little, "Engineering Design: A Project Based Introduction", John Wiley & Sons

Reference books:

- 4. Roger S. Pressman, Software Engineering: A Practitioners Approach, 7th, McGraw, 2007
- 5. Shari Lawrence Pfleeger and Joanne M. Atlee, Software Engineering Theory and Practice, 3rd, Pearson Ed, 2006

6. Jalote, P, An Integrated Approach to Software Engineering, 3rd, Narosa Pub, 2005

ſ

٦

Program: Bachelor of Engineering			
Course Title: Data Mining & Analysis Course Code: 18ECSC301			
L-T-P: 3-0-1	Credits: 4	Contact Hrs: 5 hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3hrs		

Unit –	Ι		
1	Data Pre-Preprocessing		
	Introduction to data mining, Data Warehouse and OLAP Technology for		
	Data mining: Data Warehouse, Multidimensional Data Model, Data		
	Warehouse Architecture, Major tasks in data preprocessing- data		
	reduction, data transformation and data Discretization, data cleaning and		
	data integration.	08 hrs	
2	Frequent Pattern Mining		
	Frequent item sets and association rules; Item set mining algorithms;		
	Generating association rules; Summarizing item sets: maximal and		
	closed frequent item sets; Interesting patterns: pattern evaluation		
	methods;	08 hrs	
Unit –	II		
3	Classification Techniques		
	Probabilistic classification: naïve Bayes classifier, K-nearest neighbours;		
	Decision tree classifier: decision tree induction, tree pruning; Model evaluation		
	and selection: metrics, cross validation, random sampling, ROC curves;	08 hrs	
4	Cluster Analysis		
	Cluster Analysis- Partitioning methods, Hierarchical Methods, Density based	00.1	
Unit –	methods, Outlier Detection.	08 hrs	
5	Advanced Mining Techniques		
	Popular data pre-processing techniques: One hot encoding, stacking; Techniques		
	to improve classification accuracy: ensemble methods, random forests,		
	XGBoosting; Bias-variance trade-off; Post processing: Visualization and		
	Interpretation;	08 hrs	
Text H			
1		pts and	
	Techniques, 3rd edition, Morgan Kaufmann, 2012.		
	ence Books:		
1	Ian H. Witten, Eibe Frank, Mark A. Hall and Christopher J. Pal, Data	Mining:	

Practical Machine Learning Tools and Techniques, Morgan Kaufmann; 4th edition, 2016.

- 2. Pang-Ning, Michael Steinbach and Vipin Kumar, Introduction to Data Mining, Pearson, International edition, 2013.
- 3. Mohammed J. Zaki and Wagner Meira, Jr., Data Mining and Analysis: Fundamental Concepts and Algorithms, Cambridge University Press, 2014.
- 4. M. H. Dunham, Data Mining: Introductory and Advanced Topics, Pearson Education, 1st edition, 2006.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 3 out of 4
Π	Q.No4, Q.No5, Q.No6	3, 4,5	Solve Any 3 out of 4
ш	Lab exam	6	Lab exam evaluation

Program: Bachelor of Engineering				
Course Title: Embedded Intelligent Systems Course Code: 18ECSE30				
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 6hrs/week		
ISA Marks: 80	ESA Marks: 20	Total Marks: 100		
Teaching Hrs: 60	Exam Duration: 3 hrs			

1	Basics of embedded systems Linux Application Programming, System V IPC, . Linux Kernel Internals and Architecture, Kernel Core, Linux Device Driver Programming, Interrupts & Timers, Sample shell script, application program, driver source build and execute	10 hrs
2	Heterogeneous computing Basics of heterogeneous computing with various hardware architectures designed for specific type of tasks, Advanced heterogeneous computing with a. Introduction to Parallel programming b.GPU programming (OpenCL) c. Open standards for heterogeneous computing (Openvx), Basic OpenCL examples - Coding, compilation and execution	12 hrs
3	ML Frameworks lab with the target device Caffe, tensorflow, TF Lite machine learning frameworks & architecture ,Model parsing, feature support and flexibility ,Supported layers , advantages and disadvantages with each of these frameworks, Android NN architecture overview , Full stack compilation and execution on embedded device	16 hrs
4	Model Development and Optimization Significance of on device AI ,Quantization , pruning, weight sharing, Distillation ,Various pre-trained networks and design considerations to choose a particular pre-trained model ,Federated Learning , Flexible Inferencing	8 hrs
6	Android Anatomy Android Architecture ,Linux Kernel , Binder , HAL Native Libraries , Android Runtime, Dalvik Application framework , Applications, IPC	8 hrs

Program: Bachelor of Engineering				
Course Title: Algorithmic Problem Solving Course Code: 17ECSE309				
L-T-P: 0-0-6	Credits: 6	Contact Hrs: 74		
ISA Marks: 70	ESA Marks: 30	Total Marks: 100		
Teaching Hrs: 74	Exam Duration: 2 to 3 days			

Course Content

Unit – 1	
Chapter 0: Building Blocks	06 hrs
Understanding coding platforms and tools, Data Structures and Algorithms	
revisited	
Chapter 1: Strategies and Performance	06 hrs
Warm up problems, Parsing and Formatting text, Code performance analysis and	
tools	
Chapter 2: Advanced Data Structures	10 hrs
Matrix, Grids, Trees and variants, Lists, Skip lists, Hash, Trie and variants	
Chapter 3: Dynamic Programming	08 hrs
Memory functions, Optimization problems	
Unit – 2	
Chapter 4: Graph algorithms	25 hrs
Traversal Algorithms, Shortest Path Algorithms, Spanning Tree Algorithms and	
variants	
Chapter 5: Introduction to Computational Geometry	05 hrs
Points, Line Segments, Polygons and Basics of Geometric Problems	
Unit – 3	
Chapter 6: Problem Solving	14 hrs
Assortment of problems and techniques.	

Text Book

1. Levitin A., "Introduction to the Design and Analysis of Algorithms", Third Edition, Pearson Education, 2017.

2. Levitin A, Levitin M, "Algorithmic Puzzles", First Edition, Oxford University Press, 2011.

3. Online Coding Platforms

References

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, "Introduction to Algorithms", Third Edition, MIT Press, 2010.

Program: Bachelor of Engineering			
Course Title: Natural Language ProcessingCourse Code: 18ECSE403			
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 04 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 30	Exam Duration: 3 hrs		

	Unit –I	
1	Introduction to NLP and Deep Learning Introduction to Natural Language Processing, Applications of Natural Language Processing, Word2vec introduction, Word2vec objective function gradients	05 hrs
2	Dependency Parsing, Recurrent Neural Networks Dependency Grammar, Neural dependency parsing, Recurrent Neural Networks and Language Models, Vanishing Gradients, Fancy RNNs	07 hrs
	Unit –II	
3	Machine Translation, Seq2Seq and AttentionMachine Translation, Seq2Seq and Attention, Advanced Attention	06 hrs
4	Transformer Networks , Coreference Resolution, Memory Networks Transformer Networks and CNNs, Tree Recursive Neural Networks and Constituency Parsing , Advanced Architectures and Memory Networks	06 hrs
	Unit –III	
5	Reinforcement LearningReinforcement Learning for NLP, Semi-supervised Learning for NLP, Future ofNLP Models, Multi-task Learning and QA Systems	06 hrs
	 Books: Yoav Goldberg. A Primer on Neural Network Models for Natural Language Proc 2016. 	cessing,
Refer	rence Books:	
	Dan Jurafsky and James H. Martin. Speech and Language Processing (3rd ed. draft).	

Ian Goodfellow, YoshuaBengio, and Aaron Courville. Deep Learning. MIT Press.

Scheme for End Semester Assessment(ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2 out of 3
III	Q.No7	6	Solve Any 1 out of 2
111	Q.No8		Solve Any 1 out of 2

Program: Bachelor of Engineering			
Course Title: Fuzzy Set Theory		Course Code: 19ECSE402	
L-T-P: 3-0-0 Credits: 3		Contact Hrs: 3hrs/week	
ISA Marks: 50 ESA Marks: 50		Total Marks:100	
Teaching Hrs: 40Exam Duration: 3hrs			

Unit	-I				
1	Introduction : Introduction to Fuzzy Logic, Fuzzy Membership Functions, Operations on Fuzzy Sets	8hrs			
2	FuzzyMeasures:FuzzyRelations, FuzzyProposition, FuzzyImplications, FuzzyInferences	8hrs			
Unit	-II				
3	Fuzzy Relations and Fuzzy Graphs : Fuzzy Relations, Compositions of Fuzzy Relations, Properties of the Min-Max Composition, DefuzzificatinTechniques,Lambda-cut method, Weighted average method, Maxima methods, Centroid methods, Output of a Fuzzy System	8 hrs			
4					
Unit					
5	Fuzzy Data Bases and Queries: Introduction, Fuzzy Relational Databases, Fuzzy Queries in Crisp Databases	4 hrs			
6	6 Fuzzy Sets and Expert Systems: Introduction to Expert Systems, Uncertainty Modeling in Expert Systems, Applications				
Text	Books:	•			
	 H. J. Zimmermann ., Fuzzy Set Theory-and Its Applications, Fourth Ed Springer Science Business Media, LLC , 2001 	ition, 4th Ed.,			
	 Chander Mohan, An Introduction to Fuzzy Set Theory and Fuzzy Logic,2nd ed. Vivo Books pvt ltd, 2015 				
Refe	rence Books:				
1.	1. Timothy J. Ross, Fuzzy Logic With Engineering Applications, 3ed., 2010, A John Wile and Sons, Ltd., Publication				
2.	Kumar S. Ray,Soft Computing and Its Applications: Fuzzy Reasoning and 1st Edition, Apple Academic Press 2014	Fuzzy Control,			
3.	 Ahmed M. Ibrahim, Fuzzy Logic for Embedded Systems Applications, Elesvier Pres 2004. 				

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2

Department of Computer Science & Engineering

III	Q.No7	5	Solve Any 1
111	Q.No8	6	Solve Ally I

Program: Bachelor of Engineering				
Course Title: Wireless Ad Hoc and Sensor Networks Course Code: 18ECSE406				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3hrs/week		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hrs: 40 hrs	Exam Duration: 3 hrs			

Unit –	I	
1	Introduction: Fundamentals of wireless communication technology, Characteristics of wireless channel, Multiple Access Techniques, IEEE802.11 Standards, Bluetooth, Cellular Concept, Cellular Architecture.	07 hrs
2	Ad hoc Networks: Introduction, Issues in Ad hoc wireless networks, Ad hoc	
	wireless internet.	04 hrs
3	MAC Protocols: Introduction, Issues in Designing MAC protocol, Design goals,	
	Classification, Contention Based Protocols with Reservation Mechanisms.	
	Contention-Based MAC Protocols with Scheduling Mechanism.	05 hrs
Unit –		
4	Routing Protocols: Introduction, Issues in designing a routing protocol,	
	classification, Table drive routing protocol, On-demand routing protocol, Hybrid	
	routing protocol, Hierarchical routing protocols, Power aware routing protocols.	06 hrs
5	Energy Management: Introduction, Need for Energy Management,	
	Classification, Battery Management Scheme, Transmission Power Management	
	Schemes, System Management Scheme.	05 hrs
6	Sensor Networks: Introduction, Architecture, Data Dissemination, Data	
	Gathering, MAC Protocols (schedule based protocols).	05 hrs
Unit –	III	
7	Routing Protocols for Sensor Networks: Routing Characteristics,	
	Routing Strategies, LEACH, SPIN.	04 hrs
8	Sensor Network Applications: Case Study: Traffic Control, Health Care, Green	
	House Monitoring.	04 hrs
Text E	Books:	04 11 5
1.		Pearson
2.	 KazemSohraby, Daniel Minoli, TaiebZnati, "Wireless Sensor Networks: Tech Protocols, and Applications", John Wiley and Sons, 2007. 	nnology,
1.		
2.	 C.K. Toh, "Adhoc Mobile Wireless Networks", Protocols and Systems, Prent PTR, 2002. 	ice-Hall

Department of Computer Science & Engineering

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
ш	Q.No7	7	Solve Any 1 out of 2
111	Q.No8	8	Solve Ally I out of Z

Program: Bachelor of Engineering				
Course Title: Advanced Parallel Computing Course Code:18ECSE408				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 3 hrs			

Unit –	I	
1	Introduction and History	
	GPUs as Parallel Computers; Architecture of a Modem GPU; Parallel	
	Programming Languages and Models; Overarching Goals; Evolution of Graphics	
	Pipelines; The Era of Fixed- Function ; Graphics Pipelines; Evolution of	
	Programmable Real-Time Graphics; Unified Graphics and Computing	
	Processors; GPGPU; An Intermediate Step; GPU Computing; Scalable GPUs	
	Recent Developments; Future Trends.	07 hrs
2	Introduction to CUDA	
	Data Parallelism; CUDA Program Structure; A Matrix-Matrix Multiplication	
	Example; Device Memories and Data Transfer; Kernel Functions and Threading;	
	Function declarations; Kernel launch; Predefined variables; Runtime API.CUDA	
	Thread Organization; Using block Id x and thread Id x ; Synchronization and	
	Transparent Scalability; Thread Assignment ; Thread Scheduling and Latency	
	Tolerance.	09 hrs
Unit –	Π	
3	CUDA Memories	
	Importance of Memory Access Efficiency; CUDA Device Memory Types; A	
	Strategy for Reducing Global Memory Traffic; Memory as a Limiting Factor to	
	Parallelism; Global Memory Bandwidth; Dynamic Partitioning of SM Resources;	
	Data Perfetching; Instruction Mix; Thread Granularity; Measured Performance.	07 hrs
4	Introduction to OPENCL	
	Introduction to OPENCL; Background; Data Parallelism Model; Device	
	Architecture; Kernel Functions; Device Management and Kernel Launch;	
	Electrostatic Potential Map in OpenCL.	09 hrs
Unit –	Ш	
5.	Case Study	
	Concepts of Game Design, Applications like Matrix multiplication, MRI	
	reconstruction Molecular Visualization and Gaming.	04 hrs
6.	Parallel Programming and Computational Thinking	
	Goals of Parallel Programming, Problem Decomposition, Algorithm Selection,	
	Computational Thinking.	04 hrs

Text Books:

2. David B. Kirk, Wen-mei W. Hwu, "Programming Massively Parallel Processors: A Hands on Approach", Morgan Kaufmann/Elsevier India reprint, 2010.

Reference Books:

1. Benedict R Gaster, Lee Howes, David Kaeli, Perhaad Mistry and Dana Schaa, "Heterogeneous Computing with OpenCl", Morgan Kaufmann/Elsevier reprint, 2012.

Scheme for End Semester Assessment(ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3
ш	Q.No7	5	Solve Any 1 out of 2
111	Q.No8	6	Solve Ally 1 Out of 2

Program: Bachelor of Engineering			
Course Title: Software Architecture and Design Thinking Course Code: 18ECSE410			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3hrs/week	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3 hrs		

Unit –	Ι	
1	Chapter No. 1 What Is Software Architecture?	
	What Software Architecture Is and What It Isn't ,Architectural Structures and	
	Views, Architectural Patterns, What Makes a "Good" Architecture?	
		5 hrs
2	Chapter No. 2 Why Is Software Architecture Important?	6hrs
	Inhibiting or Enabling a System's Quality Attributes, Reasoning About and	
	Managing Change, Predicting System Qualities, Enhancing Communication	
	among Stakeholders, Carrying Early Design Decisions, Defining Constraints on	
	an Implementation, Influencing the Organizational Structure, Enabling	
	Evolutionary Prototyping, Improving Cost and Schedule Estimates, Supplying a	
	Transferable, Reusable Model, Allowing Incorporation of Independently	
	Developed Components, Restricting the Vocabulary of Design Alternatives,	
	Providing a Basis for Training	
3	Chapter No. 3 The Many Contexts of Software Architecture	5 hrs
	Architecture in a Technical Context, Architecture in a Project Life-Cycle	
	Context, Architecture in a Business Context, Architecture in a Professional	
	Context, Stakeholders, How Is Architecture Influenced?, What Do Architectures	
	Influence?	
Unit –	П	
4	Chapter No. 4. Understanding Quality Attributes	
	Architecture and Requirements, Functionality, Quality Attribute Considerations,	
	Specifying Quality Attribute Requirements, Achieving Quality Attributes	5 hrs
-	through Tactics, Guiding Quality Design Decisions	
5	Chapter No. 5. Quality Attributes Tactics for Availability, Tactics for Interoperability, Tactics for Modifiability,	6hrs
	Tactics for Performance, Tactics for Security, Tactics for Testability, Tactics for	
	Usability,	
6	Chapter No. 6. Architectural Tactics and Patterns	5 hrs
	Architectural Patterns, Overview of the Patterns Catalog, Relationships between	
	Tactics and Patterns, Using Tactics Together	
Unit –		
5.	Chapter No. 7 Architecture and Requirements	
	Gathering ASRs from Requirements Documents, Gathering ASRs by	
	Interviewing Stakeholders, Gathering ASRs by Understanding the Business Goals, Capturing ASRs in a Utility Tree, Tying the Methods Together	4 hrs
6.	Chapter No. 8 Designing an Architecture, Implementation, Testing and	
	EvaluationDesigning:	1 hra
	······································	4 hrs

Design Strategy, The Attribute-Driven Design Method, The Steps of ADD, Implementation, and Testing:Architecture and Implementation, Architecture and Testing, Evaluation:Evaluation Factors, The Architecture Tradeoff Analysis Method, Lightweight Architecture Evaluation

Text Books:

1. Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice (3rd Edition), Addison-Wesley Professional; 3 edition

Reference Books:

Scheme for End Semester Assessment(ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3
ш	Q.No7	5	Solve Any 1 out of 2
111	Q.No8	6	Solve Ally I out of 2

Course Title: Model Thinking	e Title: Model Thinking Course Code: 18ECSE411	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 30
CIA Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hrs: 40		Exam Duration: 3 hrs

Content	40 Hrs
Unit – 1	
1. Why Model Model Thinking - The need, Advantages and disadvantages, Segregation/Peer Effects, Case study	4 hrs
2. Modeling People, Tipping Points & Economic Growth Rational models, Behavioral models, Rule based models, Percolation Models, Growth and its kinds	6 hrs
3. Special Topics Standing ovation model, Game of Life, Lyapunov Functions: Equilibrium, A cycle, Randomness or complexity, Coordination and culture. Urn models, Polya process, paths and networks, Prisoners' Dilemma, Collective Action & Mechanism Design	6 hrs
Unit – 2	
4. Randomness and Learning Models Luck as randomness, Random Walks & Colonel Blotto, Replicator Dynamics, Fisher's fundamental theorem, Prediction and the Many Model Thinker	8 hrs
5. Model Checking and Modelling Concurrent Systems Model Checking, Characteristics of Model Checking, Transition Systems, Parallelism and Communication, The State Space Explosion	8 hrs
Unit – 3	
6. Linear-Time Properties Linear-Time behavior, Safety Properties and Invariants, Liveness Properties, Fairness	4 hrs
7. Regular Properties Automata on Finite Words, Model-Checking Regular Safety Properties, Automata on Infinite Words, Model Checking with omega-regular properties	4 hrs

Text Books

- 1. Scott E Page, The Model Thinker, Basic Books Publication, 2018
- 2. ChristelBaier and Joost-Pieter Katoen, Principles of Model Checking (Representation and Mind Series), The MIT Press, 2008

References

1. Model Thinking Coursera online course from Michigan University.

Program: Bachelor of Engineering				
Course Title Scripting Languages Lab Course Code: 18ECSP201				
L-T-P: 0-0-2	Credits: 2	Contact Hrs: 4hrs/week		
ISA Marks: 80	ESA Marks: 20	Total Marks: 100		
Teaching Hrs: 30	Exam Duration: 3 hrs			

1	Introduction to UNIX Utilities	
	Architecture, Commands, File Attributes, vi Editor, Process, Simple Filter, File	
	System, Handling Files and Basic File Attributes.	06hrs
2	UNIX shell Scripting	
	Shell Basics, Shell Environment, Shell Script Programming Concepts,	
	Decision Structures, Looping Structures, and Command line arguments, Functions	
	and Arrays, Regular Expression & Filters, Processes.	06hrs
3	Python Scripting	
	Python: Types, Variables, and Simple I/O, Branching and Looping, String	
	Manipulation, Numbers, Lists and Dictionaries, Regular Expressions, Functions,	
	Files and Exceptions, Programming using numpy and scipy libraries.	12hrs
4	System Administration	
	Common administrative tasks, creating and mounting file system, File system	
	management, managing users and group accounts, monitoring system	
	performance, accessing system information, backup and restore files,	
	reconfiguration hardware with kudzu, installing and removing packages.	06 hrs

Tentative plan of lab implementation

Expt./ Job No.	Lab assignments/experiment	No. of Lab. Slots per batch (estimate)
1-2	Introduction to UNIX Utilities	02
3-4	Shell Script	03
5-10	Python programming	05
11-12	System Administration	02

Text Books

- 1. Sumitabha Das, UNIX Concepts and Applications", 4th Edition, McGraw-Hill, 2017.
- 2. Mark Lutz, "Programming Python", 4th Edition, O'Reilly, 2010.

Reference Books

- 1. Noah Gift, Jeremy Jones, Python for Unix and Linux System Administration, 2008.
- 2. <u>RytisSileika</u>m, Pro Python System Administration, 2nd Edition, 2014
- Michael Dawson, Python Programing for the Absolute Beginner, Premier Press, 3rd Edition 2010.

Program: Bachelor of Engineering			
Course Title: Computer Organization and ArchitectureCourse Code: 18ECSC201			
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 04 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50	Exam Duration: 3hrs		

	Unit –I	
1	Fundamentals of Digital Logic Combinational Circuits: Adders, Mux, De-Mux, Sequential Circuits : Flip-Flops (SR, JK & D), Counters : Synchronous and Asynchronous Counter, Addition and Subtraction of Signed Numbers. Design of Fast Adders. Multiplication of Signed and Unsigned Numbers. Fast Multiplication. Integer Division. Floating-Point Numbers and Operations	12hrs
2	Computer System Basic operational concepts. Bus structures. Fundamental concepts: Instruction Execution, Hardware Components Control Signals. Hardwired Control CISC- Style Processors. Accessing i/o devices. Interrupts. Bus Structure/Operation, Arbitration.	08hrs
	Unit –II	
4	The Memory System Basic Concepts. Semiconductor RAM Memories. Read-only Memories. Direct Memory Access. Memory Hierarchy. Cache Memories. Virtual Memory.	08 hrs
5	Architecture The State of Computing, Elements of Modern Computers, Evolution of computing Architecture, System Attributes to Performance. Multiprocessors and Multi computer: Shared-Memory Multiprocessor, Distributed-Memory Multicomputer. Multi vector and SIMD computers: Vector Supercomputers, SIMD Supercomputers, CISC Scalar Processor, RISC Scalar Processor, SPARC processor, Superscalar and Vector Processor, VLIW Architecture.	12 hrs
	Unit –III	
7	Introduction to Pipelining Basic Concepts. Pipeline Organization. Pipelining Issues: Data Dependencies, Memory Delays, And Branch Delays: Unconditional branches and Resource Limitations.	05 hrs
8	Advanced features in Pipelining Performance Evaluation: Effects of stalls and penalties, Number of pipeline stages. Superscalar Operation: Branch and data dependency, out-of- order execution, execution completion, dispatch operation,	05 hrs
Text H	Books:	
1 2 3 Refere	Hamacher C., Vranesic Z., and Zaky S., Computer Organization, 5ed., McGraw Hill,2002)3.

- 1. John P. Hayes. Computer Architecture and Organization, 3rd Edition, McGraw Hill
- 2. V Rajaraman, C Murthy. Parallel Computers Architecture and programming, PHI 2000.
- 3. M. Morris Mano and C. R. Kime "Logic and Computer Design Fundamentals" 2nd Edition, Updated Publishers Pearson Education 2005.
- Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss, "Digital Systems Principles and Applications" 10th Edition, PHI/Pearson Education, 2007.

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
Π	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2 out of 3
ш	Q.No7	5	Solve Any 1 out of 2
	Q.No8	6	~~~~

Scheme for End Semester Assessment (ESA)

Program: Bachelor of Engineering			
Course Title: Object Oriented Programming with C++ Course Code: 18ECSC207			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3hrs		

Unit –	Ι	
1	Chapter No. 1: Introduction: Introduction to object oriented programming.	
	Characteristics of object oriented languages, Programming Basics, arrays,	
	Functions in C++ (parameter passing techniques.)	4 hrs
2	Chapter No. 2: Classes and Objects: Introduction to Classes and Objects,	
	encapsulation visibility modifiers, constructor and its types, nested classes, String	
	class. UML diagrams to describe classes and relationships.	6 hrs
3	Chapter No. 3:Inheritance: Introduction, types of Inheritance, constructors,	
	Abstract class, Aggregation: classes within classes	6 hrs
	Unit –II	1
4	Chapter No. 4:Virtual Functions and Polymorphism: Virtual functions, Friend functions, static functions, The 'this' pointer	6 hrs
5	Chapter No. 5:Templates and Exception Handling: Function and class	
	templates.Introduction to exceptions, Throwing an Exception, Try Block,	
	Exception Handler (Catching an Exception), Multiple exceptions. Exceptions	
	with arguments	6hrs
6	Chapter No. 6:Design Patterns: Creational, Structural and Behavioural design	
	patterns.	4 hrs
Unit –	III	1
7	Chapter No. 7:Streams and Files: Stream classes, File I/O with streams.	
8	Charten No. 9-64an dand Tanalata I through a stainer shares Commercial	4 hrs
0	Chapter No. 8:Standard Template Library: container classes: Sequence and	
	Associative Containers	4 hrs
Textbo 1.		ation,
Refere	ence Books	
1.	Lippman S B, Lajorie J, Moo B E, C++ Primer, 5ed, Addison Wesley, 2013.	
2.	Herbert Schildt: The Complete Reference C++, 4th Edition, Tata McGraw Hill	

Program: Bachelor of Engineering			
Course Title: Operating System Principles and Course Code:			
Programming	18ECSC202		
L-T-P: 4-0-1	Credits: 5	Contact Hrs:	
		4+2hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 74	Exam Duration: 3 hrs		

Unit	-I	
1	Chapter No. 1. Introduction and Systems structures	04
	Operating system definition; Operating System operations; Modules of OS ,Overview of UNIX Operating System,UNIX APIs	hrs + 02 hrs (lab)
2	Chapter No. 2. Process Management Process concept; Process scheduling; Operations on processes; Inter-process communication (Pipes and FIFOs). Threads, Process Scheduling: Basic concepts; Scheduling criteria; Scheduling algorithms. Process management using UNIX APIs: Process Management Functions, User IDs and Group IDs, Creating process, parent child relationship.	10 hrs + 08 hrs (lab)
3 Unit	Chapter No. 3. Process Synchronization Synchronization: The Critical section problem; Peterson's solution; Semaphores, Classical problems of synchronization, Process synchronization UNIX APIs.	06 hrs + 02 hrs (lab)
4	Chapter No. 4. Deadlocks	06
7	Deadlocks: System model; Deadlock characterization; Methods	00 hrs + 02

Department of Computer Science & Engineering

	for handling deadlocks; Deadlock prevention; Deadlock	hrs
	avoidance; Deadlock detection and recovery from deadlock.	(lab)
5	Chapter 5 : File management	07
		hrs
	File concepts, Directory structure, File Types, File systems, File	+ 04
	Attributes, Inodes in UNIX, UNIX Kernel Support for Files, Directory Files, Hard and symbolic names. General File APIs: File	+ 04 hrs
	and record lock API, Symbolic file API	(lab)
		(100)
6	Chapter No. 6. Memory Management	07
	Memory Management Strategies: Background; Swapping;	hrs
	Contiguous memory allocation; Paging; Segmentation. Virtual	+ 02
	Memory Management: Background; Demand paging; Page	hrs (Iab)
	replacement.	(lab)
Unit		I
7	Chapter No. 7. Secondary Storage Management	5hrs
	Mass storage structures; Disk structure; Disk attachment; Disk	
	scheduling; Disk management.	
8	Chapter No. 8. Case study	5hrs
	Architecture of Mobile OS - IntroductionOverall Architecture,	
	Linux Kernel, various components, Network OS, Applications.	
Text	Books	
	1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne: Operating	
	System Principles, 9th edition, Wiley-India, 2006.	
	2. W. Richard Stevens, Stephen A. Rago, "Advanced Programming in	n the
	UNIX Environment", 3rd Edition, Addison Wesley Professional, 20	13
Refe	erences	

- William Stallings,"Operating System Internals and Design Principles", 5th edition, Pearson Education, Asia, 2005
- 2. Gary Nutt," Operating System"3rd edition, Pearson Education, 2004
- Terrence Chan, "Unix System Programming Using C++", 1 ed., Prentice Hall India, 2007
- 4. Marc J. Rochkind, "Advanced Unix Programming", 2nd Edition, Pearson Education, 2005.

urse Code: 18ECSC206	Course Title: Micro Interfacing	Course Title: Microcontroller Programming& Interfacing		
T-P-SS: 3-0-1	Credits: 4	Contact Hrs: 3+2 hrs		
A Marks: 50	ESA Marks: 50	Total Marks: 100		
aching Hrs: 40		Exam Duration: 3	3 hrs	
	Content		Hrs	
	Unit – I		1	
Chapter No. 1.The 8051 Architect Introduction, 8051 Microcontroller External memory,		ports & circuits,	04 hrs	
Chapter No. 2. Assembly Program Introduction, addressing modes, Ext Moves / Indexed Addressing mode, assembler directives, example progr Logical Operations, Rotate and Swa Operations: Flags, Incrementing and Multiplication and Division, Decime CALL Program range, Jumps, Call	ernal Data Moves, Code Me PUSH and POP opcodes, D rams. Byte level logical Ope op Operations, Example Prog d Decrementing, Addition, S al Arithmetic, Example Prog	ata exchanges, rations, Bit level grams. Arithmetic ubtraction, grams. The JUMP and	12hrs +08 hrs (Lab)	
	Unit – II		I	
Chapter No. 3. Timer/Counter & C Data Types and Time delay comp 8051 Timers/counters in different m standards, 8051 connection to RS23	utation in 8051 Counters an odes, Basics of Serial Com	d Timers, Programming nunication, RS232	12 hrs	
Chapter No. 4. Interrupts Program 8051 Interrupts, Programming Time interrupts, Programming the Serial 0 8051, Interrupt programming.	er Interrupts, Programming e		04 hrs	
			4 hrs	
	Unit – III			
Chapter No. 5. Interfacing to Peri Interfacing 8051 to LEDs, DIP switt LCD, Keypad, DAC, ADC, Stepper	ches, BCD Decoder display,	, 7 Segment Display,	08hrs +12 Hr (Lab)	

Text Books (List of books as mentioned in the approved syllabus)

- 3. Ayala.K.J, "The 8051 Microcontroller", 3rd., CENGAGELearning, 2007.
- 4. Mazidi.M.A, Mazidi.J.G and McKinlay.R.D, "The 8051 Microcontroller and Embedded Systemsusing Assembly and C", 2ed, PHI 2006/Pearson, 2006.

References

- Ayala.K.J., Gadre D.V., "The 8051 Microcontroller & Embedded Systems using Assembly and C", 1ed., CENGAGE Learning, 2010
- 2. V. Udayashankara, M.S. Mallikarajunaswamy, "8051 Microcontroller Hardware, Software and Applications", 1ed., Tata McGraw Hill, 2009.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter	Instructions
		Numbers	
Ι	Q.No1, Q.No2, Q.No3	1 & 2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	3 &4	Solve Any 2 out of 3
ш	Q.No7	5	Solve Any 1 out of 2
111	Q.No8	5	Solve Any 1 out of 2

	Q.No8	5	
--	-------	---	--

Program: Bachelor of Engineering					
Course Title: Object Orient	Course Title: Object Oriented Programming with Course Code:				
C++ Lab		18ECSP203			
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3			
L-1-1. 0-0-1. 3	Cicuits. 1.5	hrs/week			
ISA Marks: 80	ESA Marks: 20	Total Marks: 100			
Teaching Hrs: 39	Exam Duration: 3hrs				

UNIT	8 Questions to be set of	f 20 Marks Each	Chapter Number		Instructions
Ι	Q.No1, Q.No2, Q.No	03	1 &	2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No	06	3 &4	4	Solve Any 2 out of 3
ш	Q.No7		5		Solve Any 1 out of 2
111	Q.No8		5		Solve Ally 1 Out of 2
Program: Bachelor of Engineering					
Course Title: Object Oriented Programming with Course Code:					Course Code:
C++ La	ıb				18ECSP203
I T D.	0.0.1.5	On liter 1 5		Contact Hrs: 3	
L-T-P: 0-0-1.5		Credits: 1.5		hrs	/week
ISA Marks: 80		ESA Marks: 20		Tot	al Marks: 100
Teaching Hrs: 39		Exam Duration:	3hrs		

Experiments	Lab assignments/experiment		
2-Demonstration	Introduction to Code Blocks IDE (Integrated Development		
	Environment), C++ programming basics.		
4-Exercise	Classes and objects, Inheritance, Polymorphism, Templates and		
	Exceptions Handling		
2-Structured	Classes and objects, Inheritance, Polymorphism, Templates and		
Enquiry Exceptions Handling			
1-Open Ended	ed Data types, Classes and Objects, Inheritance polymorphism,		
	Exception Handling. Design patterns		

Text Book:

1. Robert Lafore, "Object oriented programming in C++", 4thEdition, Pearson education.

Reference Books:

- 1. Lippman S B, Lajorie J, Moo B E, C++ Primer, 5ed, Addison Wesley, 2013.
- 2. Herbert Schildt: The Complete Reference C++, 4th Edition, Tata McGraw Hill
 - 1.

<u>Evaluation</u> :

Students Assessment Through CIE (80%) + SEE (20%)

	Assessment	Weightage in Marks
Continuous Internal	Exercises	40
Evaluation (80%)	Structured Enquiry	20
	Open Ended Experiment	20
Semester End Examination	Structured Enquiry	20
(20%)	Total	100

Program: Bachelor of Engineering				
Course Title: Computer Net	works - I	Course Code: 19ECSC302		
L-T-P: 3-1-0	Credits: 4	Contact Hrs: 5hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 3			
	hrs.			

	Unit –I	
1	Introduction Internet, The Network Edge and Core, Protocol Layer and Service Models: OSI and TCP/IP, Networks Attacks, History of Computer Network and Internet.	8 hrs
2	Application Layer Principles of Network Applications , HTTP , SMTP, DNS,DHCP	8 hrs
	Unit –II	
3	Transport-Layer ServicesIntroduction, Connectionless Transport, Principles of Reliable Data TransferProtocol, Connection-Oriented and Connectionless Transport, Principle ofCongestion Control, TCP Congestion Control.	8 hrs
4	Network Layer: Data plane Introduction to Data and Control Plane, Virtual Circuit and Datagram Networks, Internet Protocol: Datagram Format, Fragmentation, IP Addressing Unit –III	8 hrs
5	Network Layer: Data plane NAT, IPv6, Software Defined Network(SDN)	4 hrs
6	Network Layer: Control Plane and Network Management SDN Control Plane, Network Management and SNMP	4 hrs
	 Books J. F. Kurose, K. W. Ross, Computer Networking: A Top-Down Approach, 7th E Pearson Education, 2017. 	dition,

Reference Books:

1. Peterson, Larry L, Computer networks : A Systems Approach, 5th Edition, The Morgan Kaufmann series in networking, 2012

2. Behrouz A. Forouzan , TCP/IP protocol suite, 4th , McGraw Hill, 2010.

_	Computer Networks-I Tutorial				
Sl. No	Exercise	No of Slots (2 hrs)			
1	Demonstration of n/w commands and tools.	2			
2	Demonstration of socket programming- Connection oriented/Connectionless.	2			
3	Application layer protocol implementation - FTP, Mail server, HTTP.	3			
4	Demonstration of NS3 / Qualnet tools.	1			
5	Performance analysis of TCP, UDP and SCTP.	1			
6	Exercise on congestion control techniques.	1			

Department of Computer Science & Engineering

7	Exercise on flow control techniques.			1
8	Design of network topology with IP addressing scheme.			2
Scheme f	Scheme for End Semester Assessment (ESA)			
UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instruction	ıs
Ι	Q.No1, Q.No2, Q.No3	1,2	Solve Any	2
Π	0.No4, 0.No5, 0.No6	3.4	Solve Any	2

II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
III	Q.No7	5	Solve Any 1
	Q.No8	6	~ • · · · · · · · · · · · · · · · · · ·

Prog	ram: Bachelor of Enginee	ering	·	
Cours	Course Title: JAVA Programming Course Code: 19ECSP301			
L-T-F	L-T-P:1-0-1.5 Credits: 2.5 Contact Hrs: 4 Hrs/week			
ISA N	ISA Marks: 80 ESA Marks: 20 Total Marks: 100			
Teach	Teaching Hrs: 52 Exam Duration: 3hrs			
Unit	-I			
1	JAVA Language Fund Strings, classes and obje	lamentals: Java Features, Prog ects	gramming basics, Arrays and	4 Hrs
2	Inheritance: Introducti	on, types of inheritance, static	and dynamic polymorphism.	2 Hrs
Unit	–II			
3	Interfaces and Exception Handling: Introduction, Create and implement interfaces, Exception handling,			2 Hrs
4	Generics and Collections Frame work: Introduction to generic programming, Collections: Interfaces: List, Set, Queue Classes: ArrayList, LinkedList and HashSet, Map			2 Hrs
Unit	-III			•
5	Lambda Expressions: operations on collection	Functional programming, Functi	ctional interface, Bulk	2hrs
6	6 Java Database Connectivity (JDBC): Introduction, Drivers, Interfaces and classes to develop data base applications, case study			2 Hrs
Text	Books:			
	1. JAVA The Complete	Reference, Herbert Schildt, 10	th Ed, 2017, McGraw-Hill	
	Reference Book			
1. Kathy Sierra and Bert Bates, Head First Java: A Brain-Friendly Guide, 2nd Edition, O'Reilly Media				
2	2. Introduction to Java Programming, Liang Y D, Pearson, 11th Edition			

Program: Bachelor of Engineering			
Course Title: Computer Networks-II		Course Code: 19ECSC303	
L-T-P: 2-0-1.5	Credits: 3.5	Contact Hrs: 5hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 30	Exam Duration: 3 hrs		

Unit –I				
1	Network Layer Address Mapping, Error Reporting, Multicasting: IGMP Group Management, IGMP Messages, Message Format, and IGMP Operation.	06hrs		
2	Network Layer- Routing Delivery, Forwarding Techniques and Process, Routing Table, Unicast Routing Protocols, Intra and Inter-domain Routing, Distance Vector Routing, Link State Routing, Path Vector Routing, Routing protocols: Unicast, Multicast, and Broadcast Applications.	06hrs		
Unit –II				
3	Data Link Layer Error Detection and Correction, Forward Error Correction Versus Retransmission, Coding, Modular Arithmetic, Block coding: Error Detection, Error Correction, Hamming Distance, Minimum Hamming Distance, Cyclic Redundancy Check,Checksum, Framing.	06hrs		
4	Switched Local Area Networks Ethernet, Link-Layer Switches, Virtual Local Area Networks (VLANs),Multiprotocol Label Switching (MPLS), Data Center Networking, Multiple Access: Aloha , Slotted Aloha, CSMA, CSMA/CD, CSMA/CA.	06hrs		
Unit –III				
5	Wireless Networks Wireless Links and Network Characteristics, 802.11 Wireless LANs, Architecture, MAC Protocol, Frame, Mobility, Personal Area Networks: Bluetooth and Zigbee.	03hrs		
6	Cellular Networks and Mobility Management Cellular Networks and Internet Access, Mobility, Mobile IP, Managing Mobility in Cellular Network.	03hrs		
Text Books				
 J. F. Kurose, K. W. Ross, Computer Networking: A Top-Down Approach, 7th Edition, Pearson Education, 2017. Behrouz A. Forouzan, TCP/IP protocol suite, 4th, McGraw Hill, 2010. 				
Reference Books:				
 Peterson, Larry L, Computer Networks: A Systems Approach, 5th Edition, The Morgan Kaufmann series in networking, 2012. 				
	2. Dimitri P. Bertsekas and Robert G. Gallager, Data Networks (2nd Edition), PHI, 2009.			

List of Experiments

S.No	Experiments	Number of lab Slots (3 hrs)
1.	Demonstration of SDN testbed.	1
2.	Traffic measurement and traffic volume control using the POX controller.	1
3.	Implementation of load balancing/routing technique.	1
4.	Demonstration of Junos.	1
5.	Configuration and analysis of VLAN.	1
6	Configuration and analysis of STP, MPLS and VPN.	1
7.	Configuration and analysis of OSPF and BGP routing protocols.	2
8	Performance analysis of routing metrics.	1
9.	Experimental analysis of the Handover Procedure in a WiFi Network.	1
1	Performance analysis of IEEE 802.11 MAC protocols.	1
1	Network application development using Mojo access points.	2

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
Π	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
Ш	Q.No7	5	Solve Any 1
	Q.No8	6	Solve my 1

Program: Bachelor of Engineering				
Course Title: Semantic Web Course Code: 19ECSE303				
L-T-P: 3-0-0 Credits: 3		Contact Hrs: 3hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 03 hrs			

Unit	t-I		
1	Introduction to Semantics History of the Web, Limitations, Vision of Semantic Web, Principles, Data Integration Across Web, Data Modeling Methods, Semantic Relationships, Metadata, Perpetual Data	4 hrs	
2	Expressing Meaning Triple Store, Merging Graphs, Querying: Case Study	4 hrs	
3	Using Semantic Data Query Language, Feed Forward Inference, Searching for Connections, Linked Data, Freebase	8 hrs	
Unit	-II		
4	Working with Semantics RDF—The Basis of the Semantic Web, OWL, Metadata with RDF, Metadata Taxonomies, Ontology	8 hrs	
5	Reasoning and Social Web Reasoning types: Approximate Reasoning and Bounded Reasoning, Social Semantic Web, Semantic Crawlers	8 hrs	
Unit	t –III		
6	Semantic Modeling Semantic Modeling, Semantic Web Applications, Logic for Semantic Web, Case Studies: Dr. Watson, Yahoo! SearchMonkey	8 hrs	
Tex	t Books		
 Grigoris Antoniou, Paul Groth, Frank van Harmelen and Rinke Hoekstra, A Semantic Web Primer, MIT Press; 3rd edition, 2012. Toby Segaran, Colin Evans, and Jamie Taylor, Programming the Semantic Web: Build Flexible Applications with Graph Data, O'Reilly Media; 2 edition, July 2009. Reference Books:			
 Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, Foundations of Semantic Web Technologies, Chapman and Hall; 1st edition, 2009. 			
	 Dean Allemang, and James Hendler, Semantic Web for the Working Ontologist, Effective Modeling in RDFS and OWL, Morgan Kaufmann; 2nd edition, 2011. 		
	3. John Hebeler, Matthew Fisher, Ryan Blace, Andrew Perez-Lopez, and Mike Dean (Foreword), Semantic Web Programming, Wiley Publishers, 1 edition 2009.		
	eme for End Semester Assessment (ESA)		
TIN	UT 9 Occastions to be set of 20 Months Food Chanton Instructions		

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
------	--	--------------------	--------------

Department of Computer Science & Engineering

Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2
III	Q.No7	6	Solve Any 1
	Q.No8	6	

Course Title: Block Chain Technology		Course ode:19ECSE301
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 3hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40	Exam Duration: 3 hrs	

	Unit –I	
1	Introduction	
	Overview of Blockchain, History: Digital Money to Distributed Ledgers, Design	
	Primitives: Protocols, Security, Consensus, Permissions, Privacy	08 hrs
2	Blockchain Architecture and Design	
	Crypto primitives- Hash, Signature, Hashchain to Blockchain, basic consensus	
	mechanisms, Requirements for the consensus protocols, Proof of Work, Proof of	
	State, Scalability issues of consensus protocols	08 hrs
	Unit –II	
3	Blockchain Contracts	
	Financial Services, Crowdfunding, Bitcoin Prediction Markets, Smart Property,	
	Smart Contracts, Blockchain Development Platforms and APIs, Blockchain	
	Ecosystem: Decentralized Storage, Communication, and Computation	08 hrs
4	Etherium	
	Etherium transactions, accounts, smart contracts, smart contract development,	
	Solidity basics, basic contracts, distributed storage, Etherium scaling	08 hrs
	Unit –III	
5	Blockchain Applications	
	Blockchain in Financial Software and Systems: Settlements, KYC,	
	InsuranceBlockchain for Government: Digital identity, land records and other kinds	
	of record keeping between government entities, public distribution system social	
	welfare systems	08hrs
Text	Books:	
	1. Melanie Swan, "Blockchain: Blueprint for New Economy", 1st Edition, O'Reill	v Media.
	2014.	<i>j</i> ,
Refe	rence Books:	
1. Aı	shdeepBhaga, Vijay Madisetti, "Blockchain Applications: A Hands-On Approach",	

 ArshdeepBhaga, Vijay Madisetti, "Blockchain Applications: A Hands-On Approach", Paperback– January 31, 2017

Scheme for End Semester Assessment (ESA) UNIT 8 Questions to be set of 20 Marks Chapter Numbers Instructions Each Ι Q.No.-1, Q.No.-2, Q.No.-3 1,2 Solve Any 2 Q.No.-4, Q.No.-5, Q.No.-6 Solve Any 2 Π 3,4 5 Q.No.-7, 8 III Solve Any 1

Course Title: The ARM Architecture		Coursecode:19ECSE302
L-T-P: 2-1-0	Credits: 3	Contact Hrs: 3hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 30	Exam Duration: 3 hrs	

	Unit –I	
1	ARM Embedded Systems and Processor FundamentalsThe RISC Design Philosophy , The ARM Design Philosophy, Embedded SystemHardware, Embedded System Software, Registers, Current Program Status Register,Pipeline, Exceptions, Interrupts, and the Vector Table, Core Extensions,Architecture Revisions, ARM Processor Families	06 hrs
2	Introduction to the ARM Instruction Set & Assembly Programming Data Processing Instructions, Branch Instructions, Load-Store Instructions, Software Interrupt Instruction, Program Status Register Instructions, Loading Constants, ARMv5E Extensions, Conditional Execution, Thumb instruction set.	06 hrs
	Unit –II	
3	Efficient C Programming Overview of C Compilers and Optimization, Basic C Data Types, C Looping Structures, Register Allocation, Function Calls, Pointer Aliasing, Structure Arrangement, Bit-fields, Unaligned Data and Endianness, Division.	06 hrs
4	Writing and Optimizing ARM Assembly Code Writing Assembly Code, Profiling and Cycle Counting, Instruction Scheduling, Register Allocation, Conditional Execution, Looping Constructs, Bit Manipulation, Efficient Switches, Handling Unaligned Data.	06 hrs
	Unit –III	T
5	Introduction to LPC-2148 controller Input output Ports, Pin select registers, Input output select registers, direction control and control registers, Introduction to interfacing standards	03 hrs
6	ARM Interfacing ARM interfacing to peripherals like LED, LCD, Seven segments, Motors, Converters, Keypad.	03 hrs

Text Books

1. Andrew N.Sloss et al, ARM System Developer's Guide- Designing and Optimizing System Software

Reference Books:

1.Marilyn Wolf, Computers as Components: Principles of embedded computing system design, Morgan Ka, 2012

2.Steve Furber, ARM System-on-chip Architecture, 2, Pearson, 2000

Tutorial Plan

Department of Computer Science & Engineering

Expt./	assignments/experiment	No. of Lab.
Job No.		Slots per batch
		(estimate)
1	ALP on arithmetic instructions set	01
2	ALP on logical instructions set	01
3	ALP on loop and branch instructions	01
4	Interface LED and Seven segments to ARM for displaying message.	01
5	Interface LCD to ARM for displaying message.	01
6	Interface Keypad to read the characters	01
7	Rotate DC and stepper motor for variable speed and direction	01
8	Interface DAC to ARM controller	01

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2 out of 3
Π	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3
III	Q.No7, 8	5	Solve Any 1 out of 2

Program: Bachelor of Engineering		
Course Title: Discrete Mathematical Structures		Course Code: 19ECSC202
L-T-P: 3-1-0	Credits: 3	Contact Hrs: 3hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40 Exam Duration: 3 hrs		

Unit –	Ι	
1	Logic and Proofs: Propositional Logic, Propositional Equivalences, Predicates and	
	Quantifiers, Rules of Inference. Introduction to Proofs, Mathematical Induction and	
	Well-Ordering	8hrs
2	Functions and Relations: Types of sets, Functions, Relations, Equivalence	
	relations partial ordering (Poset), HasseDiagram, Counting	8hrs
Unit –	II	
3	Recurrence Relations: Introduction, Applications of Recurrence Relations,	
	Solving Recurrence Relations, Formulating Recurrence relations, Generating Functions, Inclusion–Exclusion, Applications of Inclusion–Exclusion	8 hrs
4	Groups: Binary Operations, Semi groups, Products and Quotients of Semi Groups,	
	Groups, Product and Quotients of Groups	8 hrs
Unit –	Ш	
5	Cryptography: Cryptography and Modular Arithmetic, Introduction to	
	Cryptography, Private Key Cryptography, Public-key Cryptosystems. Arithmetic	
	modulo n, Cryptography using multiplication mod n	4hrs
6	RSA Cryptosystem: The RSA Cryptosystem; RSA Encryption, RSA Decryption,	
	RSA as a Public Key System, Cryptographic Protocols	4 hrs
Text B	looks:	
1.	Rosen K.H., Discrete Mathematics and its Applications with Combinatorics and gra theory, 7th Ed, Tata Mc-GrawHill Publications, 2012	iph
Refere	ence Books:	

- 1. Kolman, Busby and Ross, Discrete Mathematical Structures, 5Ed., PHI, 2004
- 2. Grimaldi R.P. and Ramana B.V, Discrete and Combinatorial Mathematics- An Applied Introduction, 5Ed., Pearson Education, 2007

Sl.No	Topic	Number of slots
1	Logic and Proofs	3
2	Functions and Relations	2
3	Recurrence Relations	3
4	Group	2
5	Cryptography	2

Tentative tutorial Plan

Department of Computer Science & Engineering

6	RSA Cryptosystem	1	

Scheme for Semester End Examination (ESA)

UNI T	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
ш	Q.No7	5	Solve Any 1
	Q.No8	6	20110 I III J I

Program: Bachelor of Engineering		
Course Title: Principles of Compiler Design		Course Code:19ECSC203
L-T-P: 3-1-0	Credits: 3	Contact Hrs: 03 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40	Exam Duration: 03 hrs	

Unit	-I	
1	Introduction to compilers:	
	Brief History Of Compilers, Translation Process, Major Data Structures In	
	Compilers, Chomsky Hierarchy, Lexical Analysis: Scanning Process, Regular	
	Expressions For Tokens, Lexical Errors, ApplicationsOf Regular Expressions.	06hrs
2	Finite Automata:	
	Introduction: Language, Automata, From Regular Expressions To Deterministic	
	Finite Automata (DFA): C-Nondeterministic Finite Automata (C-NFA), NFA,	
	DFA, DFA Optimization, Finite Automata As Recognizer, Implementation Of	
	Finite Automata	06hrs
3	Introduction to Syntax Analysis:	
	Introduction To Grammars, Context-Free Grammars (Cfgs), Ambiguity In	
	Grammars And Languages, Role Of Parsing.	04 hrs
Unit	-II	
4	Top Down Parsing:	
	Introduction, Left Recursion, Left Factoring, LL (1) Parsing, FIRST And	
	FOLLOW Sets, Error Recovery In Top Down Parsing.	08 hrs
5	Bottom up Parsing:	
	Introduction, SLR (1) Parsing, General LR (1) And LALR (1) Parsing, Error	
	Recovery In Bottom Up Parsing.	08 hrs
Unit	-III	
6	Semantic Analysis:	
	Attributes And Attributes Grammars, Algorithm For Attribute Computation,	
	Symbol Table, Data Types And Data Checking.	04 hrs
7	Intermediate Code Generation:	
	Intermediate Code And Data Structure For Code Generation, Code Generation Of	
	Data Structure References, Code Generation Of Control Statements.	04 hrs

Text Book:

- 1. Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D Ullman, Compilers Principles, Techniques and Tools, 2nd Edition, Pearson, 2011.
- Kenneth C Louden: Compiler Construction Principles & Practice, Cengage Learning, 1997.

References:

- 1. Andrew W Apple, Modern Compiler Implementation in C, Cambridge University Press, 1999.
- 2. Charles N. Fischer, Richard J. leBlanc, Jr, Crafting a Compiler with C, Pearson, 2011.
- 3. Peter Linz, An Introduction to formal languages and Automata, IV edition, Narosa, 2016.
- 4. Basavaraj S Anami, Karibasappa K.G, Formal Languages and Automata Theory, First, Wiley India, 2011.

Tutorial tentative plan

Expt/Job	Brief description of experiments	No of slots
No		1 slot = 2 hrs
1	Regular expressions.	01
2	NFA, DFA and DFA optimization.	02
3	Regular and Context free grammars.	01
4	Top down parsing.	01
5	Bottom up parsing.	02
6	Implementation of lexical & syntax analyzer using LEX	02
	and YACC tools.	
7	Design of CFG for validating Natural languages and	02
	implement the same.	

	8 Questions to be set of 20 Marks	Chapter	Instructions
	Each	Numbers	
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4 ,5	Solve Any 2
Ш	Q.No7	6	Solve Any 1
	Q.No8	7	501/01/mj 1

Course Content

Program: Bachelor of Engineering		
Course Title: Senior Design Project Course Code: 20ECSW401		
L-T-P: 0-0-6	Credits: 6	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 39	Exam Duration: 3hrs	

Seventh semester senior design project theme: Usage of Design Principles in building the solution.

SDP aims to design and develop a solution using software design principles:- design patterns (creational, behavioral & structural), User experience (UX) design and API (application programming interface) that are generally followed in industries.

Project domains:

Networking	Data Engineering	System Engineering
 Internet of Things Cloud Computing SDN(Software Defined Network) SNA(Social Network Analysis) 	 Data Analytics Data Processing: Image and video processing Computer Vision and Graphics NLP(Natural Language Processing) 	 Parallel Computing HPC(High Performance Computing) Parallel system design

Student Evaluation Matrix:

Project will have 3 internal reviews as follows:

Continuous internal Evaluation	Review Expectation
Review-1	Literature Survey, Problem Analysis and Problem formulation
Review-2	Requirements, Design, design principles adopted in modules/components and Algorithms.
Review-3	Implementation and Testing.

Sl.No	Expectation	Marks

1	 Write up Problem Statement and Objectives. System design with brief description. Concluding remarks. 	05
2	Presentation: Prepare minimum of 15-18 slides of presentation with consultation of your respective guides.	05
3	Demo (Complete execution of the project with results) and Viva voce.	30
4.	Project Report.	10