

Course Code: 16ECSE705		Course Title: Compil	er Design		
L-T-P: 3-1-0		Credits:4	Contact Hrs: 5hrs/week		
ISA N	Iarks: 50	ESA Marks: 100	Total Marks: 100		
Teach	ing Hrs: 42		Exam Duration: 03		
No	Content				
1	Introduction Why compilers, Programs	Related to compilers, Transl	ation process, Major Data structure in		
	compiler, Bootstrapping an	nd porting.		06	
2		process, Regular Expression fications of Tokens, Recogni	s, Finite Automata, From regular tion of Tokens	06	
	Syntax Analysis:				
3	Parsing process, context free grammars, parse tree ,ambiguity.				
	Top-down Parsing: Recursive descent parsing, LL(1) parsing				
4	Bottom-up Parsing Overview of Bottom-up Pa	ursing, Simple LR Parser(SL	R(1),	06	
5	More powerful parsers: I	LR(1),LALR(1) parsing		06	
6	Semantic Analysis Attributes and Attributes g types and Data checking	rammars, Algorithm for attri	bute computation, Symbol table, data	06	
	Code Generation				
7		ata structure for code gene tion of control statements an	ration, Code generation of data structure	05	

1. Kenneth C Louden: Compiler Construction Principles & Practice, Cengage Learning, 1997

2. Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D Ullman: Compilers - Principles, Techniques and Tools, 2nd Edition, Pearson, 2007.

- 1. Andrew W Apple: Modern Compiler Implementation in C, Cambridge University Press, 1997
- 2. Charles N. Fischer, Richard J. leBlanc, Jr.: Crafting a Compiler with C, Pearson, 1991.
- 3. Peter Linz: An Introduction to formal languages and Automata, IV edn, Narosa, 2009.

Cour	se Code: 16ECSE707	Course Title: Cryptog	raphy and Network Security		
L-T-]	P: 3-0-0	Credits: 3	Contact Hrs: 42		
ISA I	Marks: 50	ESA Marks: 50	Total Marks: 100		
Teac	hing Hrs: 3		Exam Duration: 3 hrs		
Ch. No		Content		Hrs	
	Network Security Overview				
	Common Attacks and Defense	Mechanisms: Eavesdroppin	ng, Cryptanalysis Password		
	Pilfering, Identity Spoofing, But	fer-Overflow Exploitations,	Repudiation, Intrusion, Traffic		
1	Analysis, Denial of Service Atta	cks, Marvelous Software. A	ttacker Profiles: Hackers, Script	05	
	Kiddies, Cyber Spies, VICIOUS	Employees, Cyber Terrorist	s, Hypothetical Attackers. Basic		
	Security Model.				
	Data Encryption Algorithms				
	Data Encryption Algorithm D	esign Criteria: ASCII Code,	XOR Encryption, Criteria of Data		
	Encryptions, implementation Cr	iteria. Data Encryption Star	ndard : Feistel's Cipher Scheme,		
	DES Subkeys, DES Substitution Boxes, DES Encryption, DES Decryption and Correctness				
	Proof., DES Security Strength. Multiple DES. Advanced Encryption Standard: AES Basic				
2	Structures., AES S-Boxes 60, AES-128 Round Keys , Add Round Keys Substitute-Byt, Shift-				
	Ro, Mix-Colum, AES-128 Encryption, AES-128 Decryption and Correctness Proof, Galois				
	Fields, Construction of the AES S-Box and Its Inverse, AES Security Strength. Standard				
	Block-Cipher Modes of Operations: Electronic-Codebook Mode, Cipher-Block-Chaining				
	Mode, Cipher-Feedback Mode Output-Feedback Mode, Counter Mode. Stream Ciphers: RC4				
	Stream Cipher, RC4 Security Weaknesses. Key Generations.				
	Public-Key Cryptography and	Key Management			
	Concepts of Public-Key Crypt	ography, Elementary Conc	epts and Theorems In Number		
	Theory: Modular Arithmetic and Congruence Relattons, Modular Inverse. Diffie-Hellman Key				
3	Exchange, Key Exchange Protocol, Man-in-the-Middle Attacks, Elgamal PKC. RSA				
	Cryptosystem : RSA Key Pairs, Encryptions, and Decryptions, RSA Parameter Attacks RSA				
	Challenge Numbers. Key Distributions and Management: Master Keys and Session Keys,				
	Public-Key Certificates CA Networks, Key Rings.				
	Data Authentication				
	Cryptographic Hash Function	s: Design Criteria of Cryptog	graphic Hash F Unctions, Quest for		
4	Cryptographic Hash Functions,	Basic Structure of Standard I	Hash Functions, SHA-512,	07	
	WHIRLPOOL, Cryptographic Checksums: Exclusive-OR Cryptographic Checksums,				
	Design Criteria of MAC Algorit	hms, Data Authentication A	lgorithm. HMAC : Design Criteria		

	of HMAC, HMAC Algorithm, Offset Codebook Mode of Operations: Basic Operations,			
	OCB Encryption and Tag Generation, OCB Decryption and Tag Verification. Birthday			
	Attacks: Complexity Upper Bound of Breaking Strong Collision, Resistance, Set Intersection			
	Attack. Digital Signature Standard, Dual Signatures and Electronic Transactions: Dual			
	Signature Applications, Dual Signatures and Electronic Transactions, Blind Signatures and			
	Electronic Cash: RSA Blind Signatures, Electronic Cash.			
	Network Security Protocols in Practice			
	Crypto Placements in Networks: Crypto Placement at the Application Layer, Crypto			
	Placement at the Transport Layer, Crypto Placement at the Network Layer, Crypto Placement			
_	at the Data-Link Layer, Hardware versus Software Implementations of, Cryptographic			
5	Algorithms. Public-Key Infrastructure: X.509 Public-Key Infrastructure, X.509 Certificate	06		
	Formats, IPsec: A Security Protocol at the Network Layer: Security Association,			
	Application Modes and Security Associations, AH Format, ESP Format Secret Key			
	Determination and Distribution.			
	Security Protocols at Transport and Application Layers			
	SSL Handshake Protocol , SSL Record Protocol. PGP and SIMIME: Email Security			
6	Protocols: Basic Email Security Mechanisms. PGP, S/MIME. Kerberos' An Authentication	04		
	Protocol: Basic Ideas , Smgle-Realm Kerberos , Multiple-Realm Kerberos , SSH: Security			
	Protocols for Remote Logins .			
	Wireless Network Security -1:			
	Wireless Communications and 802 11 WLAN Standards: WLAN Architecture, 802.11			
	Essentials Wireless Security Vulnerabilities. WEP: Device Authentication and Access Control,			
7	Data Integrity Check LLC Frame Encryption, Security Flaws of WEP. WPA: Device	04		
-	Authentication and Access Controls, TKIP Key Generations, TKIP Message Integrity Code,			
	TKIP Key Mixing, WPA Encryption and Decryption, WPA Security Strength and			
	Weaknesses.			
	Wireless Network Security -2 :			
	IEEE 802.11i/WPA2: Key Generations 230, CCMP Encryptions and MIC 802.11i Security			
8	Strength and Weaknesses, Bluetooth Security: Piconets, Secure Pairings SAFER+ Block	04		
Ū	Ciphers, Bluetooth Algorithms E_1 , E_{2l} , and E_{22} , Bluetooth Authentication, A PIN Cracking	•••		
	Attack, Bluetooth Secure Simple Pairing. Wireless Mesh Network Security.			
Text	Book:			
	L'annual (NL transler Theorem 1 Describer 2) Carine and Utahan Utahan Education 2000			
1	. Jiewang, "Network Security Theory and Practices", Springer Higher Higher Education, 2009			
1 Refe	<i>rences:</i> . William Stallings, Cryptography and Network Security Principles And Practices, 5 th Edition,			
1 Refe 1	rences:			

Course	Code: 16ECSC711	Course Title: Distributed and Cloud Computing			
L-T-P:	4-0-0	Credits: 4	Contact Hrs: 4		
ISA Ma	arks: 50	ESA Marks: 50	Total Marl	ks: 100	
Teachin	ng Hrs: 55		Exam Dur	ation: 3 hrs	
	Content			Hrs	
Scalabl	er No. 1: Distributed System Models and Ena e Computing over the Internet, Technologies for Distributed and Cloud Computing, Softwar buds.	for Network-Based System		6 hrs	
Implem Virtual	er No. 2: Virtual Machines and Virtualization nentation Levels of Virtualization, Virtualizati ization of CPU, Memory, and I/O Devic ement, Virtualization for Data-center Automatio	ion Structures/Tools and M ces, Virtual Clusters and	echanisms,	8 hrs	
Cloud	er No. 3: Cloud Platform Architecture over V Computing and Service Models, Architectural I Cloud Platforms.		ege Clouds,	8 hrs	
Feature	er No. 4: Cloud Programming and Software I as of Cloud and Grid Platforms, Parallel and mming Support of Google App Engine, Emergin	Distributed Programming	0	10 hrs	
PoliISA schedul control manage combin queuing Schedu	er No. 5: Cloud Resource Management and S As and mechanisms for resource management, ling on a cloud, Stability of a two-level reso based on dynamic thresholds, Coordination ers, A utility-based model for cloud-based aatorial auctions for cloud resources, Scheduling g, Start-time fair queuing, Borrowed virtual time ling MapReduce applications subject to deadlin tion scaling.	Applications of control the purce allocation architecture, of specialized autonomic p l web services. Resource g algorithms for computing c e, Cloud scheduling subject to	, Feedback erformance bundling; louds. Fair deadlines,	12 hrs	
Chapte Cloud assessn shared	er No. 6: Cloud Security security risks, Security; the top concern for nent, Trust, Operating system security, Security images, Security risks posed by a management of the TCB, A trusted virtual machine monitor.	of virtualization. Security risk	ks posed by	11 hrs	
2. Refere	Kai Hwang, Geoffrey C. Fox, Jack J. Dong Processing to the Internet of Things", Morgan I Dan C. Marinescu "Cloud Computing Theory a nce Books: Rajkumar Buyya, Christian Vecchiola, S.Thar	Kaufman, Elsevier- 2012. and Practice", Morgan Kaufm	an, Elsevier	-2013.	
2.	Education (India) Pvt. Limited, 2013. Anthony T. Velte, Toby J. Velte, Robert Elser Hill, 2010.	peter: Cloud Computing, A	Practical Ap	proach, McGraw	

Course Code: 16ECSC713	Course Title: Software Testing		
L-T-P :3-0-0	Credits: 4	Contact	Hrs: 4 hrs/week
ISA Marks: 50	ESA Marks: 50	Total M	arks: 100
Teaching Hrs: 42		Exam D	uration: 3 hrs
Cont	ent		Hrs
Chapter No. 1. Principles of Testing Context of testing in producing software: Abou Doctrine, A test time, The cat and the saint, T convoy and the rags, The police man on the bu Automation syndrome, Putting it all together.	est the test first, The pesticide	e paradox, The	3 hrs
Chapter No. 2. Software Development Life O Phases of Software Project: Requirements Development or coding, Testing, Developm assurance, and Quality Control, Testing, Ver represent different phases: Life cycle Models Application Development models, Spiral or Ite various life cycle models, References.	gathering and analysis, Plan ment and Maintenance, Qu ification and validation, Pro- s, Waterfall model, Prototypi	ality, Quality cess model to ng and Rapid	5 hrs
Chapter No. 3. Defect Testing White Box Testing: What is white box testing, S analysis tools: Structural testing, Unit /code f Code complexity testing, Black Box Testing: testing?, When to do black box testing?, How testing, Positive and negative testing, Boundary participating , State based or graphic ba documentation testing, Domain testing.	Yundamental testing, Code co What is black box testing?, V to do black box testing?, Requ value analysis, Decision table	verage testing, Why black box irement based s, Equivalence	5 hrs
Chapter No. 4. Regression Testing What is regression testing?, Types of regressi How to do regression testing?, Performir Understanding the criteria for selecting th Methodology for selecting test cases, Reset Concludes the results of regression testing, Best	ng an initial "smoke" or e test cases, Classifying th ting the test cases for regre	"sanity" test, ne test cases, ession testing,	4 hrs
Chapter No. 5. Unit Testing & Integration T What is integration testing?, Types of integration integration, Bi-directional integration, System Integration testing as a phase of testing, Sc scenarios, Defect bash, Choosing the frequency product build, Communicating the object of de action and Fixing issues, Optimizing the effort i	n testing, Top-down integration integration, Choosing integration enario testing, System scenar and duration of defect bash, fect bash, Setting up monitori	ation method, ios, Use case Selecting right	5 hrs
Chapter No. 6. System and Acceptance Testi System Testing overview: Why is System testi testing, Functional system testing, Design/A testing, Development testing, Beta testing, Cer Non – Function testing, Setting up the config Balancing key resources, Scalability test Interoperability testing, Acceptance testing, A acceptance testing, Executing acceptance test testing model.	ng done?, Functional versus N Architecture verification, Bus tification, Standards and testin uration, Coming up with entr ing, Reliability testing, S Acceptance criteria, Selecting	siness vertical ag compliance, y/exit criteria, tress testing, test cases for	5 hrs
Chapter No. 7. Performance Testing Introduction, Factors governing performance te Collecting requirements, Writing test cases, Au performance test cases, Analyzing the perfo	atomating performance test ca	ses, Executing	5 hrs

Performance bench marking, Capacity planning, Tools for performance testing, Processes for performance testing, Challenges, Problems and Exercises.	
Chapter No. 8. Test Planning, Management and Execution Introduction, Test planning, Preparing a test plan, Scope management – deciding features to be tested / not tested, Deciding test approach/strategy, Setting up criteria for testing, Identifying responsibilities, Staffing, and Training needs, Identifying resource requirements, Identifying test deliverables, Testing tasks – Size and effort estimation, Activity breakdown and scheduling, Communication management, Risk management: Test management, Choice of standards, Test infrastructure management, Test people management, Integration with product release, Test process, Putting together and base lining a test plan, Test case specifications, Update of traceability matrix, Identifying possible candidates for automation, Developing and base lining test cases. Executing test cases and keeping traceability matrix current, Collecting and analyzing matrix	5 hrs
Chapter No. 9. Reporting and Software Test Automation Preparing test summary report, Recommending product release criteria: Test reporting, Recommending product release, Best practices, Process related best practices, People related best practices, Technology related best practices, What is Test automation?, Terms used in automation, Skills needed for automation, What to automate?, Scope of automation- Identifying the types of testing amenable to automation, Automating areas less prone to change, Automate tests that pertain to standards, Management aspects in automation, Design and architecture for automation.	5 hrs
Text Book:	
1. Desikan Srinivasan and Gopalswamy, Ramesh, Software Testing- Principles and	
Practices, Published by Person Education, 2 nd edition, Pearson Education, 2007.	
References:	
1. Edward Kit, Software Testing in the Real World Improving the Process, Published	
by Person Education, 1995.	
2. Ron, Patton, Software Testing, 2 nd edition Person Education, 2004.	
3. Marnie, Hutcheson L., Software Testing Fundamentals, Wiley India, 2003.	
4. Roger S. Pressman, Software Engineering A Practitioners Approach, 5 th edition	
McGraw Hill.	

Cours	e Code: 16ECSE715	Course Title: Applied Par	allel Computing	
L-T-F	P: 3-1-0	Credits: 4	Contact Hrs:5 hrs/week	
ISA N	/larks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ing Hrs: 42 hrs		Exam Duration: 3 hrs	
1	Introduction and Histo	ry		
	GPUs as Parallel Comp	outers; Architecture of a Moo	dem GPU; Parallel Programming Languages	
	and Models; Overarchin	ng Goals; Evolution of Grap	phics Pipelines; The Era of Fixed- Function;	
	Graphics Pipelines; Ev	olution of Programmable H	Real-Time Graphics; Unified Graphics and	
	Computing Processors;	GPGPU; An Intermediate St	ep; GPU Computing; Scalable GPUs Recent	
	Developments; Future T	rends		05 Hrs
2	Introduction to CUDA			
	Data Parallelism; CUD	A Program Structure; A Ma	atrix-Matrix Multiplication Example; Device	
	Memories and Data Tr	ansfer; Kernel Functions an	d Threading; Function declarations; Kernel	
	launch; Predefined varia	ables; Runtime API.CUDA	Thread Organization; Using block Id x and	
	thread Id x ; Synchro	onization and Transparent	Scalability; Thread Assignment ; Thread	
	Scheduling and Latency	Tolerance		07 Hrs
3	CUDA Memories, Performance Considerations and Floating Point Considerations			
	Importance of Memory	Access EffiISAncy; CUD	A Device Memory Types; A Strategy for	
	Reducing Global Memo	ry Traffic; Memory as a Lir	niting Factor to Parallelism; Global Memory	
	Bandwidth; Dynamic P	artitioning of SM Resources	; Data Prefetching; Instruction Mix; Thread	
	Granularity; Measured	Performance; More on thr	ead execution, Global memory bandwidth,	
	dynamic partitioning of	SM resources, Floating point	format, Arithmetic Accuracy and rounding	07 Hrs
4	Floating Point Considerations			
	Floating-Point Format,	Normalized Representation	of M, Excess Encoding of E, Representable	
	Numbers, Special Bit I	Patterns and Precision, Arit	hmetic Accuracy and Rounding, Algorithm	
	Considerations			05 Hrs
5	Introduction to OPEN	CL		
l	Introduction to OPENC	CL; Background; Data Paral	llelism Model; Device Architecture; Kernel	
	Functions; Device Mana	gement and Kernel Launch;	Electrostatic Potential Map in OpenCL;	05 Hrs
6	Parallel Programming	and Computational Thinki	ng	
	Goals of Parallel Progr	amming, Problem Decompo	osition, Algorithm Selection, Computational	
	Thinking			03 Hrs
7	Introduction to Embed	ded GPU Computing		
	Architecture, Programm	ing Model, Programs, Config	guration etc.	05 Hrs
8	Case Study /Projects			
	Concepts of Game Desig	gn, Applications like Matrix	multiplication, MRI reconstruction Molecular	
l	Visualization and Gamin	ng		05 Hrs

Text book:

 Programming Massively Parallel Processors: A Hands on Approach; David B. Kirk, Wen-mei W. Hwu; Morgan Kaufmann /Elsevier India reprint 2010

Reference Books:

1. Heterogeneous Computing with OpenCL, by Benedict R. Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry & Dana Schaa; Morgan Kaufmann 2011

Course Code: 16ECSE716	ode: 16ECSE716 Course Title: Internet of Things		
L-T-P-SS: 3-1-0	Credits: 3	Contac	et Hrs: 40
ISA Marks: 50	ESA Marks: 50	Total N	Marks: 100
Teaching Hrs: 42		Exam 1	Duration: 3 h
(Content		Hrs
Chapter No 1. Introduction to Internet of T Definition & Characteristics of IoT, Physic of IoT: IoT functional blocks, communicat	al Design of IoT: IoT protocols, Lo	gical Design	4 hrs
Chapter No 2. IoT Enabling Technologies Wireless Sensor Networks, Cloud Computi Protocols, Embedded Systems, IoT Levels		ation	6 hrs
Chapter No 3. Domain specific IoTs Home Automation ,Cities, Environment ,E ,Health and Lifestyle	nergy, Retail, Logistics, Agriculture	e, Industry	6 hrs
Chapter No 4. IoT Platforms Design Meth IoT Design Methodology, Case Study on I			4 hrs
Chapter No 5. IoT systems – Logical desig Introduction to Python, Data types, data str packages, file handling, data/time operation HTTPLib, URLLib, SMTPLib.	ructures, Control of flow, functions a		6 hrs
Image, Accessing the Webcam	emplary device: Rasyberry Pi, interl Python.	lifying an	6 hrs
Chapter No 7. IoT Physical Servers & Clo Introduction to Cloud Storage models and for IoT, Cloud for IoT, Python web applica	communication APIs ,Webserver -		5 hrs

Text Book (List of books as mentioned in the approved syllabus)

1. Internet of Things - A Hands-on Approach, Arshdeep Bahga and Vijay Madisetti, Universities Press, 2015, ISBN: 9788173719547

References

1. Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD), 2014, ISBN: 9789350239759

Course Code: 16ECSC801		Course Title: Data M	ining and Business Analytics		
L-T-	P: 4-0-0	Credits: 4	Contact Hrs:4 hrs/week		
ISA	Marks: 50	ESA Marks: 50 Total Marks: 100			
Teac	ching Hrs: 50 hrs		Exam Duration: 3 hrs		
1	Introduction to Data Mining				
	Fundamentals of data mining,	Data mining Function	nalities, Classification of Data Mining		
	Systems, Major issues in Data M	lining, Data Warehouse	and OLAP Technology for Data mining:		
	Data Warehouse, Multidimensio	nal Data Model, Data W	arehouse Architecture.	06 hrs	
2	Association Rule Mining				
		sociations: Basic Conc	epts, EffiISAnt and Scalable Frequent		
			effiISAncy of Apriori, Mining frequent		
		0 1 0	data formats). Mining various kinds of		
	- C	C		0(1	
	association rules, from association analysis to Correlation analysis.		-	06hrs	
3 Analytical Characterization &			Analytical Characterization: Analysis of		
	Attribute Relevance, Mining Descriptive Statistical Measures in Large Databases		sures in Large Databases	04 hrs	
4.	Classification and Prediction				
	Classification, Prediction, Classification by Decision tree Induction, Bayesian classification,				
	Associative classification, Prediction: Linear Regression, non-linear regression.				
5	Cluster Analysis				
	Types of data in cluster analysis, Categorization of major clustering methods, Classical				
	Partitioning methods : k-Means and k-Medoids.				
6	Graph Mining & Social Network Analysis				
	Graph mining: Methods for Mining Frequent Subgraphs, Mining Variant and Constrained				
	substructure patterns,				
	Social Network Analysis: Social Mining on Social networks	networks, Characteristic	cs of Social Networks,Link Mining,	08 hrs	
7	Business Analytical Modeling				
-	Analytical Modeling by Factor and Cluster Analysis,			05 hrs	
	Analytical Modeling by Logistic	0	minant Analysis.	05 111 5	
8	Segmentation of Target Marke		aling such as PEM (Passnay		
	Segmentation of primary target r Frequency Monetary) analysis	-			
	Frequency, Monetary) analysis, Segmentation of target market based on large databases using Decision Tree approaches such as CHAID (Chi-square Automatic Interaction Detection) and				
	other Classification and Regressi	· .	·	05hrs	

Text Book

- 1. Jiawei Han and MichelineKamber, Data Mining: Concepts and Techniques, Second Edition, Elsevier.
- 2. <u>Purba Halady Ra</u>o, Business Analytics: An Application Focus, PHI, New Delhi, 2013.

- 1. Michael Berry and Gordon Linoff, Data Mining Techniques, Wiley Publishing, 2004.
- 2. Kimball and Ross, The Data Warehouse Toolkit, Second Edition, John Wiley & Sons, 2002.
- 3. T. Davenport, "Competing on Analytics," Harvard Business Review (Decision Making), January 2006.

Course Code: 16ECSE803		Course Title: Image as	nd Video Processing		
L-	Г-Р: 3-1-0	Credits: 4	Contact Hrs: 3 hrs/week		
ISA	A Marks: 50	ESA Marks: 50	Total Marks: 100		
Te	Feaching Hrs: 42 hrs Exam Duration: 3 hrs				
1	Introductions 2D systems Mathem	otical maliminarias Fou	rier Transform, Z Transform, Optical		
I	•	*	als, Discrete Random fields, Spectral		
	density function.	auta meory, Random signa	us, Discrete Kandoni fields, Spectral	05 hrs	
2	-	and Prightness Contrast	MTF of the visual system, Visibility	05 11 8	
2		e e	epresentation, Chromaticity diagram,		
		•	vision model, Temporal properties of		
	vision.	verence measures, color v	ision model, remporar properties of	05 hrs	
3		n : Introduction 2D same	ling theory, Limitations in sampling		
2	&reconstruction, Quantization, Optin			05 hrs	
	carronica articli, Quanazanich, opin	and Annually companion,			
4	Image Transforms: Introduction, 2	•			
	transforms, DFT, DCT, DST, Hadan			05 hrs	
5	Image Enhancement: Point operation		* *		
	operations, Multi-spectral image enh	ancement, false color and	Pseudo-color, Color Image		
	enhancement.				
	Image Filtering & Restoration: Im	-	-		
		•	ares filters, generalized inverse, SVD		
			methods, Coordinate transformation		
	& geometric correction, Blind de-con			07 hrs	
6	Image Analysis & Computer Visio	•	C C		
	detection, Boundary Extraction, Bou	•	•		
	representation, Structure, Shape feat		ing & detection, Image	051	
	segmentation, Classification Technic	ques.		05 hrs	
7	Video Processing: Fundamental Co	oncepts in Video – Types o	f video signals, Analog video, Digital		
	video Color models in video Video				
	video, Color models in video, Video Compression Techniques – H.261, H.263, MPEG I, MPEG 2, MPEG 4, MPEG 7 and beyond, .				

8	Video Segmentation and Tracking : Scene change detection, Spatiotemporal change detection,	
	Motion segmentation, Motion tracking , Motion tracking in video : Rigid object tracking and	
	articulated object tracking	05 hrs

Text Book

- A. K. Jain, "Fundamentals of Digital Image Processing," Pearson Education (Asia) Pte. Ltd./Prentice Hall of India, 2004.
- 2. Alan C Bovik "Essential Guide to Video Processing", AP Elsevier publication, 2009

- 1. Z. Li and M.S. Drew, "Fundamentals of Multimedia," Pearson Education (Asia) Pte. Ltd., 2004.
- R. C. Gonzalez and R. E. Woods, "Digital Image Processing," 2nd edition, Pearson Education(Asia) Pte. Ltd/Prentice Hall of India, 2004.
- 3. M. Tekalp, "Digital Video Processing," Prentice Hall, USA, 1995.

Course Code: 16ECSE804	Course Title: Wireles	Course Title: Wireless Networks			
L-T-P: 3-1-0	Credits: 4	Contact	Hrs: 3		
ISA Marks: 50	ESA Marks: 50	ESA Marks: 50 Total M			
Teaching Hrs: 42		Exam I	Duration: 3 hrs		
С	ontent		Hrs		
Chapter No.1 Introduction.			6 hrs		
Fundamentals of Wireless Communication 7 Channel. Modulation Techniques. Multiple 2 Control. Fundamentals of WLANs. IEEE 80 Bluetooth. HomeRF.	Access Techniques. Voice Coding.	Error			
Chapter No. 2: Wireless WANS AND MA	ANS.		8 hrs		
Introduction. The Cellular Concept. Cellular Wireless in Local Loop. Wireless ATM. IEE Internet, Mobile IP. TCP in Wireless Domai Hoc Wireless Networks. Issues in Ad Hoc W	EE 802.16 Standard. HIPERACCES n. WAP. Optimizing Web Over W	SS. Wireless			
Chapter No. 3: MAC Protocols for Ad He	oc Wireless Networks.		8 hrs		
Introduction. Issues in Designing a MAC Pro Goals of a MAC Protocol for Ad Hoc Wirele Protocols. Contention-Based Protocols. Con Mechanisms. Contention-Based MAC Proto	ess Networks. Classifications of M tention-Based Protocols with Rese	AC rvation			
Chapter No. 4: Routing Protocols for Ad	Hoc Wireless Networks.		8hrs		
Introduction. Issues in Designing a Routing Classifications of Routing Protocols. Table- Protocols. Hybrid Routing Protocols. Routin Mechanisms. Hierarchical Routing Protocols	Driven Routing Protocols. On-Den g Protocols with EffiISAnt Flooding	nand Routing			
Chapter No.5: Transport Layer and Sec Networks.	urity Protocols for Ad Hoc Wire	less	8 hrs		
Introduction. Issues in Designing a Transport Networks. Design Goals of a Transport Laye Classification of Transport Layer Solutions. Transport Layer Protocols for Ad Hoc Wirel Networks. Network Security Requirements. Network Security Attacks. Key Managemen Networks.	er Protocol for Ad Hoc Wireless Net TCP Over Ad Hoc Wireless Networks. Security in Ad Hoc Issues and Challenges in Security	etworks. orks. Other Wireless Provisioning.			
Chapter No. 6. Quality of Service in Ad H	Ioc Wireless Networks.		4 hrs		
Introduction. Issues and Challenges in Provi Classifications of QoS Solutions. MAC Laye					

Frameworks for Ad Hoc Wireless Networks.

Text Book:

C. Siva Ram Murthy, B.S. Manoj, "Ad Hoc Wireless Networks: Architectures and Protocols", Prentice Hall. 2012.

- 1. Clint smith, Daniel Collins, "Wireless networks", 3rd Edition, Mc Graw Hill Publication 2014.
- 2. Jim Geier, "Designing and Deploying 802.11n Wireless Networks" Cisco Press.2010.

Prog	ram: Master of Technology				
Cours	se Title: Applied Mathematics		Course Code: 18ECSC7	01	
L-T-F	L-T-P: 3-0-1Credits: 4Contact Hrs: 3 hrs/weekSA Marks: 50ESA Marks: 50Total Marks: 100		K		
ISA N					
Teach	ning Hrs: 42	Exam Duration: 3 hrs			
1					
T	Introduction to Statistics				
	-	ting data, Statistical Modeling Fr			
	•	portance of Data symmetry and D	Display, Graphical and Tabular		
	Display.			04 hrs	
2	Discrete Random Variabl	es and Probability Distribution	l		
	Discrete Random variable	es, Probability distributions a	nd Probability mass function,		
	Cumulative distribution fun	ction, Mean and Variance of a d	iscrete random variable, Discrete		
		Uniform distribution, Binomial distribution, Geometric distribution, Poisson distribution,			
	Applications.			07 hrs	
3	Continuous Random Varia	ables and Probability Distribut	ions		
	Continuous random variab	les, Probability distributions an	nd probability density functions,		
		•	a continuous random variable,		
	Uniform distribution, Norm	nal Distribution, Normal approxi	imation to Binomial and Poisson		
	distribution, Exponential dis	stribution.		07 hrs	
4	Testing of Hypothesis				
	Estimation theory, Hypothesis testing, Inference on the mean of population (variance known				
	and unknown) Inference on the variance of a normal population, Inference on a population				
	proportion, Testing for Goodness of fit, Inference for a difference in Means(variances				
	known), Inference for a difference in means of two normal distributions (variances unknown),				
	Inference on the Variances of two normal populations, Inference on two population proportions.				
	proportions.			08 hrs	
5	Simple Linear Regression	and Correlation			
	Simple Linear Regression, Properties of Least square Estimators and Estimation of Variances,				
	e e		ar regression model, Least square		
	-		ear regression, Properties of least		
	square estimators and estimations	ation of variance.		06 hrs	
6	Queuing Theory 1 :				
	Basics of queuing models, M	Model I (M /M/ 1): (∞/FIFO), Sin	gle Server with Infinite		
	Capacity, Model II (M/M/s)	: (∞ /FIFO), Multiple Server with	Infinite Capacity	05 hrs	
7	Queuing Theory 2:				
	Model III (M/M/1): (k/FIFC), Single Server with Finite Capa	acity, Model IV (M/M/s):		

Text Books:

- 1. Douglas C Montgomery, George C Runger, Applied Statistics for Engineers, 2nd Edition, John Wiley and Sons, ISBN-0-471-170027-5.
- 2. Richard I Levin, David S Rubin, Statistics for Management, 6th Edition, Prentice Hall India.
- 3. Willian W Hines, Douglas C Montgomery, Probability and Statistics in Engineering, 2nd Edition, John Wiley and Sons.
- 4. V. Sundarapandian, Probability, Statistics and Queuing theory, PHI, 2009.
- 5. Arnold Oral Allen, Probability, statistics, and queuing theory: with computer science applications, Gulf Professional Publishing, Edition: 2 ,28-Aug-1990

Program: Master of Technology				
Course Title: Internet Of Things		Course Code: 18ECSC702		
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 42	Exam Duration: 3 hrs			

1	Introduction to Internet of Things (IoT):	
1	Definition & Characteristics of IoT, Physical Design of IoT: IoT protocols, Logical Design	
	of IoT: IoT functional blocks, communication models and APIs.	04 hrs
2	IoT Enabling Technologies:	
4	Wireless Sensor Networks, Cloud Computing, Big Data Analytics, Communication	
	Protocols, Embedded Systems, IoT Levels and Deployment Templates.	06 hrs
3	Domain specific IoTs:	
5	Home Automation, Cities, Environment, Energy, Retail, Logistics, Agriculture, Industry,	
	Health and Lifestyle.	06 hrs
4	IoT Platforms Design Methodology:	00 1115
-	IoT Design Methodology, Case Study on IoT System for Weather Monitoring.	04 hrs
5	IoT systems – Logical design using Python:	•••
3	Introduction to Python, Data types, data structures, Control of flow, functions modules,	
	packages, file handling, data/time operations, classes, Python packages - JSON, XML,	
	HTTPLib, URLLib, SMTPLib.	06 hrs
6	IoT Physical Devices and Endpoints:	
U	Basic building blocks of an IoT device, Exemplary device: Rasyberry Pi, interface (serial,	
	SPI, I2C), Programming Rasyberry Pi with Python.	06 hrs
7	IoT Physical Servers & Cloud Offerings:	
,	Introduction to Cloud Storage models and communication APIs, Webserver – Web server	
	for IoT, Cloud for IoT, Python web application framework, Designing a RESTful web API	05 hrs
8	Case Studies Illustrating IoT Design:	
0	Home Automation-smart lighting, home intrusion detection, Cities-smart parking.	05 hrs
Text B		
1.		Drogg
1.	2015, ISBN: 9788173719547	11088,
	2013, ISBIN. 7/001/3/1734/	
Refere	ences:	

1. Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD), 2014, ISBN: 9789350239759

Program: Master of Technology			
Course Title: Computer Networks		Course Code: 18ECSC704	
L-T-P: 3-0-1	Credits: 4	Contact Hrs: 5 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 42	Exam Duration: 3 hrs		

1	Fundamental Concepts of computer Networks		
	Basic Definitions in Data Networks, Applications, Requirements, Network Architecture,		
	Packet Size and Optimizations, Performance.	04 hrs	
2	Data Link Layer		
	Perspectives on Connecting, Encoding (NRZ, NRZI, Manchester, 4B/5B), Framing, Error		
	Detection, Reliable Transmission, Ethernet and Multiple Access Networks	08 hrs	
3	The Network Layer: Data Plane		
	Overview of Network Layer, Router Architecture, The Internet Protocol (IP): IPv4,		
	Addressing, IPv6, Generalized Forwarding and SDN	08 hrs	
4	The Network Layer: Control Plane		
	Introduction, Routing Algorithms, Intra-AS Routing in the Internet: OSPF, Routing Among		
	the ISPs: BGP, The SDN Control Plane, ICMP: The Internet Control Message Protocol,		
	Multicast, Multiprotocol Label Switching (MPLS)	08 hrs	
5	Transport Layer		
	Introduction and Transport-Layer Services, Multiplexing and De-multiplexing,		
	connectionless Transport: UDP, Connection-Oriented Transport: TCP, Principles of		
	Congestion Control, TCP Congestion Control	08 hrs	
6	Application Layer		
	Principles of Network Applications, The Web and HTTP, Electronic Mail in the Internet,		
	DNS-The Internet's Directory Service, Peer-to-Peer Applications, Video Streaming and		
	Content Distribution Networks	06 hrs	
Text Bo	oks:		
1.	J. F. Kurose and K. W. Ross, , Computer Networking, A Top-Down Approach, 7th Ed, , Pearso	on, 2017	

2. Larry L Peterson & Bruce S Davien, Computer Networks A System Approach, 5th Ed , Morgan Kaufmann (Elsevier), 2011

- 1. Nader F. Mir, Computer and Communication Networks, 2nd Edition, Pearson Prentice-Hall, 2015
- 2. Behrouz Forouzan, Data Communications and Networking, 5th Ed, McGraw Hill, 2012.
- 3. A S Tanenbaum, D J Wetherall, Computer Networks, 5th Ed., Prentice-Hall, 2010.

Program: Master of Technology				
Course Title: Distributed and Cloud ComputingCourse Code: 18ECSC710				
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 42	Exam Duration: 3 hrs			

2 3 4	Scalable Computing over the Internet, Technologies for Network-Based Systems, System Models for Distributed and Cloud Computing Virtual Machines and Virtualization of Clusters Implementation Levels of Virtualization, Virtualization Structures/Tools and Mechanisms, Virtualization of CPU, Memory, and I/O Devices, Virtual Clusters and Resources Management. Cloud Platform Architecture over Virtualized Data Centers Cloud Computing and Service Models, Architectural Design of Compute and Storage Clouds, Public Cloud Platforms. Cloud Programming and Software Environments	04 hrs 06 hrs 06 hrs
3	Virtual Machines and Virtualization of Clusters Implementation Levels of Virtualization, Virtualization Structures/Tools and Mechanisms, Virtualization of CPU, Memory, and I/O Devices, Virtual Clusters and Resources Management. Cloud Platform Architecture over Virtualized Data Centers Cloud Computing and Service Models, Architectural Design of Compute and Storage Clouds, Public Cloud Platforms.	06 hrs
3	Implementation Levels of Virtualization, Virtualization Structures/Tools and Mechanisms, Virtualization of CPU, Memory, and I/O Devices, Virtual Clusters and Resources Management. Cloud Platform Architecture over Virtualized Data Centers Cloud Computing and Service Models, Architectural Design of Compute and Storage Clouds, Public Cloud Platforms.	
_	Virtualization of CPU, Memory, and I/O Devices, Virtual Clusters and Resources Management. Cloud Platform Architecture over Virtualized Data Centers Cloud Computing and Service Models, Architectural Design of Compute and Storage Clouds, Public Cloud Platforms.	
	Management. Cloud Platform Architecture over Virtualized Data Centers Cloud Computing and Service Models, Architectural Design of Compute and Storage Clouds, Public Cloud Platforms.	
_	Cloud Platform Architecture over Virtualized Data Centers Cloud Computing and Service Models, Architectural Design of Compute and Storage Clouds, Public Cloud Platforms.	
_	Cloud Computing and Service Models, Architectural Design of Compute and Storage Clouds, Public Cloud Platforms.	06 hrs
4	Clouds, Public Cloud Platforms.	06 hrs
4		06 hrs
4	Cloud Programming and Software Environments	
	Challenges and Opportunities in cloud application, architectural styles, workflows: co-	
	ordination of multiple activities, MapReduce programming model.	06 hrs
5	Cloud Resource Management	
	Policies and mechanisms for resource management, Applications of control theory to task	
	scheduling on a cloud, Stability of a two-level resource allocation architecture, Feedback	
	control based on dynamic thresholds, Coordination of specialized autonomic performance	
	managers.	08 hrs
6	Cloud Resource Scheduling	
	Resource bundling; combinatorial auctions for cloud resources, Scheduling algorithms for	
	computing clouds. Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud	0.63
	scheduling subject to deadlines, Scheduling Map Reduce applications subject to deadlines.	06 hrs
7	Cloud Security	
	Cloud security risks, Security; the top concern for cloud users, Privacy; privacy impact	
	assessment, Trust, Operating system security, Security of virtualization, Security risks	
	posed by shared images, Security risks posed by a management OS, Xoar - breaking the	0(1
l	monolithic design of the TCB, A trusted virtual machine monitor.	06 hrs
Text Bo		
	1. Kai Hwang, Geoffrey C. Fox, Jack J. Dongarra, Distributed and Cloud Computing from Par	allel
	Processing to the Internet of Things, 1, Elsevier, 2012	
2.	Dan C. Marinescu, Cloud Computing Theory and Practice, 1, Elsevier, 2013	

- 1. RajkumarBuyya, Christian Vecchiola, S.ThamaraiSelvi , Mastering Cloud Computing, 1, McGraw Hil, 2013
- 2. 2. Anthony T. Velte, Toby J. Velte, Robert Elsenpeter, Cloud Computing, A Practical Approach, 1, McGraw Hil, 2010

Program: Master of Technology				
Course Title: Machine Learning		Course Code: 18ECSC711		
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 42	Exam Duration: 3 hrs			

1	Introduction & Data Pre-Preprocessing	
	Introduction to data mining, Introduction to Machine Learning, Applications of Machine	
	Learning, Major tasks in data preprocessing - data reduction, data transformation and data	
	Discretization, data cleaning and data integration.	08 hrs
2	Mining Frequent Patterns, Associations and Correlations: Concepts and Methods	
	Basic Concepts, Efficient and Scalable Frequent Item set Mining Methods, finding	
	interesting Patterns, Pattern Evaluation Methods, Applications of frequent pattern and	
	associations, Advanced Frequent Pattern Mining- Frequent Pattern and Association	
	Mining: A Road Map, Mining Various Kinds of Association Rules. Pattern Mining in	
	Multilevel, Multidimensional Space.	07 hrs
3	Supervised Learning: Classification	
	Model Evaluation and Selection, Techniques to Improve Classification Accuracy:	
	ensemble Methods; Bayesian belief networks, Introduction to perceptron learning, Back	
	propagation algorithm.	08 hrs
4	Unsupervised Learning: Cluster Analysis	
	Partitioning methods, Hierarchical Methods, Density based methods, Outlier Detection.	07 hrs
5	Regression Analysis	
	ANOVA, Linear Discriminant Analysis, Support Vector Machines	06 hrs
6	Reinforcement Learning	
	Introduction to Reinforcement Learning (RL), Sequential Decision Problems, Passive RL,	
	Active RL, Generalization in RL, Applications of RL	06 hrs
Text B	ooks:	•
1.	Jiawei Han, MichelineKamber, and Jian Pei, Data Mining: Concepts and Techniques, 3rd	, Morgan
		, 0

1. Jiawei Han, MichelineKamber, and Jian Pei, Data Mining: Concepts and Techniques, 3rd, Morgan Kaufmann, 2011

2. Pang-Ning, Michael Steinbach, Vipin Kumar, Introduction to Data Mining, Pearson Education, 2007

References:

1. Ian H. Witten, Eibe Frank, Mark A. Hall, Data Mining - Practical Machine Learning Tools and Techniques, 3rd, Elsevier Inc, 2011.

2. M. H. Dunham, "Data Mining: Introductory and Advanced Topics", Pearson Education. 2008.

Program: Master of Technology			
Course Title: Software Engineering		Course Code: 18ECSC712	
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 3 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 42	Exam Duration: 3 hrs		

	Content	Hrs
1	Introduction to Software Engineering	4 hrs
	Introduction to Software Engineering and A Generic view of process	
2	Process Models	6 hrs
	Prescriptive Models, The waterfall model, Incremental process models, Evolutionary	
	process models, Specialized process models, The Unified process. Agile view of process.	
3	Requirements engineering :Requirements Engineering tasks, Initiating Requirements	5 hrs
	Engineering Process Eliciting Requirements, Elicitation Work Products ,Developing Use-	
	Cases, Analysis Model, Negotiating Requirements and Validating requirements.	
4	Design Engineering	4 hrs
	Design within the context of SE, Design process and design quality, Design concepts, The	
	design Model, Pattern based software design, Architectural design: Software Architecture,	
	Data design, Architectural styles and patterns, Architectural design,	
5	Overview of object-oriented concepts	6 hrs
	Unified Modeling Language (UML). Class Model, State Model and Interaction Models:	
	Use case, sequence and activity diagrams.	
6	Object Oriented System Design	7 hrs
	Reuse Plan, Breaking a system into sub-systems and organizing. Allocation of sub-systems	
	to hardware and software. High Level Class Design: Design Optimization, Adjustment of	
	Inheritance and Organizing a class design.	
7	Testing Strategies: A strategic approach to software testing, Test strategies for	5 hrs
	conventional software, validation testing, system testing. Testing tactics: White box testing,	
	basis path testing, control structure testing, black box testing, testing for specialized	
	environments, architectures and applications.	
8	Project Management and Metrics: Management spectrum, The people, product, process,	5 hrs
	metrics in the process and project domains, soft ware measurements, metrics for software	
	quality. Project Estimation: Observations on estimation, the project planning process,	
	software scope and feasibility, resources, software project estimation, Decomposition	
	techniques, empirical estimation models	
Refer	rences:	
1.		Hill
	International Edition, 2009	
2	. Blaha M, Rumbaugh, Object Oriented Modeling and Design with UML, Second, Pearson, 200)8
2.		

- 3. Ian Sommerville, Software Engineering, Seventh Edition, Pearson education, 2004.
 - Ali Bahrami, Object Oriented System Development using U M Languages, Mc-Grawhill, 2008

Program: Master of Technology				
Course Title: Image and Video ProcessingCourse Code: 18ECSC713				
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 42	Exam Duration: 3 hrs			

1	Fundamentals of Image processing and Image Transforms: Basic steps of Image	
	processing system sampling and quantization of an Image - Basic relationship between	
	pixels. Image Transforms: 2 D Discrete Fourier Transform, Discrete Cosine Transform	
	(DCT), Discrete Wavelet transforms.	07 hrs
2	Image Enhancement: Spatial Domain methods: Histogram Processing, Fundamentals of	
	Spatial Filtering, Smoothing Spatial filters, Sharpening Spatial filters. Frequency Domain	
	methods: Basics of filtering in frequency domain, image smoothing, image sharpening,	
	selective filtering.	08 hrs
3	Image Analysis: Spatial feature extraction, Transform features, Edge detection Boundary	
	Extraction, Boundary representation, Region representation, Moment representation,	
	Structure, Shape features, Texture, Scene matching & detection, Image segmentation and	
	Classification Techniques.	08 hrs
4	Basics of Video Processing: Analog video, Digital Video, Time varying Image Formation	
	models : 3D motion models, Geometric Image formation, Photometric Image formation,	
	sampling of video signals, filtering operations	07 hrs
5	2-D Motion Estimation: Optical flow, pixel based motion estimation, Block matching	
	algorithm, Mesh based motion Estimation, global Motion Estimation, Region based motion	
	estimation, multi resolution motion estimation.	06 hrs
6	Video Segmentation and Tracking : Change detection, Spatiotemporal change detection,	
	Motion segmentation, Motion tracking in video : Rigid object tracking and articulated object tracking	06 hrs
Text B		00 1115
	R. C. Gonzalez and R. E. Woods, "Digital Image Processing," 3 rd edition, Pearson Education(Asia) Pte.
	Ltd/Prentice Hall of India, 2009.	,
2	M. Takala "Digital Video Bracessing" 2nd adition Brantico Hall USA 2015	

2. M. Tekalp, "Digital Video Processing", 2nd edition, Prentice Hall, USA, 2015.

- 1. Anil K. Jain, "Fundamentals of Digital Image Processing," Pearson Education (Asia) Pte. Ltd./Prentice Hall of India, 2004.
- 2. Alan C Bovik "Essential Guide to Video Processing", AP Elsevier publication, 2009
- 3. Z. Li and M.S. Drew, "Fundamentals of Multimedia," Pearson Education (Asia) Pte. Ltd., 2004.

Program: Master of Technology			
Course Title: Cryptography and Network SecurityCourse Code: 18ECSC714			
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 42	Exam Duration: 3 hrs		

1	Network Security Overview	
	Computer Security Principles, The OSI Security architecture: Security attacks, services and	
	mechanisms, A model for Network Security, Classical Encryption techniques: Substitution	
	ciphers- Caesar, Monoalphabetic, Playfair and Hill ciphers, Substitution ciphers,	
	Taxonomy of Cryptography and Cryptanalysis.	08 hrs
2	Data Encryption Algorithms	
	Traditional block cipher structure, Data Encryption Standard, DES example, strength of	
	DES, Multiple DES, block cipher design prinicples, Advanced Encryption Standard, block-	001
	cipher modes of operation, Stream Ciphers: RC4 and A5/1.	08 hrs
3	Public-Key Cryptography and Key Management	
	Elementary Concepts and Theorems In Number Theory, principles of public-key	
	cryptosystems, The RSA algorithm, Diffie-Hellman Key Exchange, Elliptic curve	
	arithmetic, Elliptic key cryptography, Key Distributions and Management, X.509	00 1
	certificates, public key infrastructure	08 hrs
4	Data Authentication	
	Cryptographic Hash Functions: applications and requirements, Hash functions based on	
	cipher block chaining, Secure Hash algorithm, SHA3, Message authentication codes:	06 hrs
_	requirements and functions, HMAC, Digital Signatures, and Digital Signature Standard.	UO III'S
5	Application, Transport and Network layer Security	
	Web security considerations, Pretty Good Privacy and S/MIME, Secure Sockets Layer,	
	HTTPs, Kerberos, SSH, DomainKeys Identified Mail (DKIM), IPSec overview,	06 hrs
	Encapsulating security payload, combining security associations, Internet key exchange	00 1115
6	Wireless Network Security	
	Wireless security threats and measures, mobile device security, IEEE 802.11 WLAN	
	Standard, IEEE 802.11i Wireless Lan Security: Services and phases of operation, WPA and	06 hrs
Text E	WPA2	00 11 5

1. William Stallings, Cryptography and Network Security Principles And Practices, 6th Edition, Pearson, 2014.

References:

- 2. Behrouz A. Forouzan, "Cryptography and Network Security", 6th Edition, Tata McGraw-Hill, 2014.
- 3. Mark Stamp, "Information Security: Principles and Practices", 2nd Edition, John Wiley and Sons, 2011.

Expt./Job No.	Brief description about the experiment/job	No. of Lab. Slots
1.	Demo and practice on Crypto Library	1
2.	Implementation of symmetric key algorithm	1
	algorithms	
3.	Implementation of asymmetric key algorithm	2
	algorithms, Hash algorithms	
4.	Web Security using SSL certificates	1

Lab Plan

School of Computer Science and Engineering

5.	Secure access to resources to Kerberos	2
6.	Web server security using CAPTCHA	1
7.	Implemenetation of access Control	1
8.	Configuring Firewall, IDS	1

Program: Master of Technology			
Course Title: Embedded Systems		Course Code: 18ECSE715	
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 3 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 42	Exam Duration: 3 hrs		

1	The 8051 Architecture	
	Introduction, 8051 Microcontroller hardware, input/output pins, ports & circuits, External	
	memory.	06 hrs
2	Addressing modes and operations of 8051	
	Introduction, addressing modes, external data Moves. Code Memory Read Only Data	
	Moves / Indexed Addressing mode, PUSH and POP opcodes, Data exchanges, example	
	programs. Byte level logical Operations, Bit level Logical Operations, Rotate and Swap	
	Operations, Example Programs. Arithmetic Operations: Flags, Incrementing and	
	Decrementing, Addition, Subtraction, Multiplication and Division, Decimal Arithmetic,	0.61
	Example Programs.	06 hrs
3	Jump and Call Instructions	
	The JUMP and CALL Program range, jump calls and Subroutines, Example programs	04 hrs
4	8051 Programming in C	
	Data Types and Time delays in 8051C, I/O Programming, Logic operations, Data	
	Conversion programs, Data serialization.	04 hrs
5	8051 Timer/Counter Programming in Assembly and C	
	Programming 8051 Timers, Counter Programming, Programming Timer 0 and Timer1 in	0.4.1
	8051.	04 hrs
6	8051 Serial Port Programming in Assembly and C	
	Basics of Serial Communication, 8051 connection to RS232, 8051 serial port Programming	041
	in Assembly, 8051 serial port Programming in C.	04 hrs
7	8051 Interrupts Programming in Assembly and C	
	8051 Interrupts, Programming Timer Interrupts, Programming external hardware interrupts,	
	Programming the Serial Communication Interrupts, Interrupt Priority in the 8051, Interrupt	04 hrs
0	programming in assembly and C.	04 III'S
8	8051 Interfacing techniques using ATMEGA32 microcontroller	
	Interfacing 8051 to LEDs, DIP switches, BCD Decoder display, 7 Segment Display, Timers	05 hrs
9	hyperterminal (Serial Communication)	03 11 5
9	8051 Interfacing to peripheral devices using ARM microcontroller	
	Interfacing 8051 to LCD, Keypad, DAC, parallel and serial ADC, Stepper Motor and DC	05hrs
m ()	Motor	03115
	Books:	
3		ram
	International, 2006	
4	. Mazidi.M.A, Mazidi.J.G and McKinlay.R.D, "The 8051 Microcontroller and Embedded Syste	ms- usin

4. Mazidi.M.A, Mazidi.J.G and McKinlay.R.D, "The 8051 Microcontroller and Embedded Systems- using Assembly and C", 2ed, PHI 2006/Pearson, 2006

References:

3. Hall.D.V, "Microprocessors and Interfacing", Revised 2ed., TMH,2006

Program: Master of Technology			
Course Title: Computer Graphics and VisionCourse Code: 1		Course Code: 18ECSE716	
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 42	Exam Duration: 3 hrs		

1	Basic Raster Graphics Algorithms for Drawing 2d Primitives.		
	Overview, Scan Converting Lines, Scan Converting Circles, Filling Rectangles. Filli		
	Polygons, Filling Ellipse Arcs, Pattern Filling, Thick Primitives, Line Style and Pen Style.	08 hrs	
2	Clipping in a Raster World.		
4	Clipping Lines, Clipping Circles and Ellipses, Clipping Polygons. Antialiasing	04 hrs	
3	Texture Mapping: The Basics	04 11 3	
0	Loading Textures, Using the Color Buffer, Updating Textures, Mapping Textures to		
	Geometry ,Texture Matrix , A Simple 2D Example ,Texture Environment ,Texture		
	Parameters, Basic Filtering, Texture Wrap, Mipmapping, Texture Objects: Managing		
	Multiple Textures	05 hrs	
4	Geometric Objects and Transformations		
	Frames in OpenGL. Modeling a Colored Cube, Affine Transformations, Translation,		
	Rotation, and Scaling, Transformations in Homogeneous Coordinates, Concatenation of		
	Transformations, OpenGL Transformation Matrices	06 hrs	
5	Viewing		
	Classical and Computer Viewing, Viewing with a Computer, Positioning of the Camera		
	Simple Projections, Projections in OpenGL, Interactive Mesh Displays, Parallel- Projection		
	Matrices, Perspective-Projection Matrices, Projections and Shadows	05 hrs	
6	Representing Curves		
	Polygon Meshes, Parametric Cubic Curves: Hermit curves, Bezier curves, B-Splines	04 hrs	
7	Introduction to Computer Vision		
	Fundamentals of image formation, camera imaging geometry, feature detection and		
	matching, multiview geometry including stereo, motion estimation and tracking, and		
	classification.	05 hrs	
8	Basic methods for applications		
	Finding known models in images, depth recovery from stereo, camera calibration, image		
	stabilization, automated alignment (e.g. panoramas), tracking and recognition	05 hrs	
Text B		05 1118	
	Computer Graphics: Principles and Practice, James D. <i>Foley</i> , Andries van Dam, Steven K. Fe	einer	
т.	John F. Hughes ,2nd Edition, Pearson Education, 2008	, mer,	
5.	 Interactive Computer Graphics - A Top-Down Approach Using OpenGL (5/e), Edward Angel , 5th Edition Pearson Education, 2009. 		
6.	Computer Vision: Algorithms and Applications, Richard Szeliski, springer 2010		
Refere	nces		
	Computer Graphics using OpenGL, F. S. Hill Jr. and S. M. Kelley, 3rd Edition, Pearson Educ 2009	cation,	

Computer Graphics with OpenGL ,D. D. Hearn and M. P. Baker, 3rd Edition
 Dictionary of Computer Vision and Image Processing, Fisher,2nd edition,Weily,2014

Program: Master of Technology				
Course Title: Parallel Computing		Course Code: 18ECSE802		
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 3 hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 42	Exam Duration: 3 hrs			

1	Introduction and History			
	GPUs as Parallel Computers; Architecture of a Modem GPU; Parallel Programming			
	Languages and Models; Overarching Goals; Evolution of Graphics Pipelines; The			
	Era of Fixed- Function; Graphics Pipelines; Evolution of Programmable Real-Time			
	Graphics; Unified Graphics and Computing Processors; GPGPU; An Intermediate			
	Step; GPU Computing; Scalable GPUs Recent Developments; Future Trends	05 hrs		
2	Introduction to CUDA			
	Data Parallelism; CUDA Program Structure; A Matrix-Matrix Multiplication			
	Example; Device Memories and Data Transfer; Kernel Functions and Threading;			
	Function declarations; Kernel launch; Predefined variables; Runtime API.CUDA			
	Thread Organization; Using block Id x and thread Id x ; Synchronization and			
	Transparent Scalability; Thread Assignment ; Thread Scheduling and Latency	07 hrs		
3	Tolerance CUDA Memories. Performance Considerations and Floating Point	07 111 5		
3	CUDA Memories, Performance Considerations and Floating Point Considerations			
	Importance of Memory Access Efficiency; CUDA Device Memory Types; A			
	Strategy for Reducing Global Memory Traffic; Memory as a Limiting Factor to			
	Parallelism; Global Memory Bandwidth; Dynamic Partitioning of SM Resources;			
	Data Prefetching; Instruction Mix; Thread Granularity; Measured Performance;			
	More on thread execution, Global memory bandwidth, dynamic partitioning of SM			
	resources, Floating point format, Arithmetic Accuracy and rounding	07 hrs		
4	Floating Point Considerations			
	Floating-Point Format, Normalized Representation of M, Excess Encoding of E,			
	Representable Numbers, Special Bit Patterns and Precision, Arithmetic Accuracy and			
	Rounding, Algorithm Considerations	06 hrs		
5	Introduction to OPENCL			
	Introduction to OPENCL; Background; Data Parallelism, Model; Device, Architecture,			
	Kernel Functions, Device Management and Kernel Launch; Electrostatic Potential	06 hrs		
6	Map in OpenCL;	00 11 5		
0	Parallel Programming and Computational Thinking			
	Goals of Parallel Programming, Problem Decomposition, Algorithm Selection,	02 hrs		
_	Computational Thinking	U2 nrs		
7	Introduction to Embedded GPU Computing			
	Architecture, Programming Model, Programs, Configuration etc.	04 hrs		
8	Case Study /Projects			
	Concepts of Game Design, Applications like Matrix multiplication, MRI			

Text Books:

1. Programming Massively Parallel Processors: A Hands on Approach; David B. Kirk, Wen- mei W. Hwu; Morgan Kaufmann /Elsevier India reprint 2010

References:

1. Heterogeneous Computing with OpenCL, by Benedict R. Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry & Dana Schaa; Morgan Kaufmann 2011

Program: Master of Technology			
Course Title: Social Network Analysis		Course Code: 18ECSE803	
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 42	Exam Duration: 3 hrs		

1	Introduction: Aspects of Networks, Network Datasets: An Overview.	
	Strong and Weak Ties : Triadic Closure, The Strength of Weak Ties, Tie Strength and	
	Network Structure in Large-Scale Data, Tie Strength, Social Media, and Passive	
	Engagement, Closure, Structural Holes, and Social Capital	06 hrs
2	Networks in Surrounding Contexts : Homophily, Mechanisms Underlying Homophily:	
	Selection and Social Influence, Tracking Link Formation in On-Line Data, Spatial	
	Model of Segregation	06 hrs
3	Positive and Negative Relationships :Structural Balance Characterizing the Structure of	
	Balanced Networks, Applications of Structural Balance A Weaker Form of Structural	
	Balance ,Advanced Material: Generalizing the Definition of Structural Balance	06 hrs
4	Link Analysis and Web Search : Searching the Web: The Problem of Ranking , Link	
	Analysis using Hubs and Authorities, PageRank, Applying Link Analysis in Modern	
	Web Search, Applications beyond the Web, Spectral Analysis, Random Walks, and Web	
	Search .	06 hrs
5	Cascading Behavior in Networks : Diffusion in Networks , Modeling Diffusion through	
	a Network, Cascades and Clusters, Diffusion, Thresholds, and the Role of Weak Ties,	
	Extensions of the Basic Cascade Model, Knowledge, Thresholds, and Collective Action,	
	The Cascade Capacity .	
		06 hrs
6	Power Laws and Rich-Get-Richer Phenomena : Popularity as a Network Phenomenon,	
	Power Laws, Rich-Get-Richer Models, The Unpredictability of Rich-Get-Richer Effects,	
	The Long Tail, The Effect of Search Tools and Recommendation Systems, Advanced	
	Material: Analysis of Rich-Get-Richer Processes .	06 hrs
7	The Small-World Phenomenon : Six Degrees of Separation , Structure and Randomness ,	
	Decentralized Search , Modeling the Process of Decentralized Search , Empirical Analysis	
	and Generalized Models, Core-Periphery Structures and Difficulties in Decentralized	
	Search, Analysis of Decentralized Search	06 hrs
Text]	Books:	
1	Networks, Crowds and Markets by David Easley and Ion Kleinberg, Cambridge University F	Dragg

1. Networks, Crowds and Markets by David Easley and Jon Kleinberg, Cambridge University Press, 2010

2. Social and Economic Networks by Matthew O. Jackson, Princeton University Press, 2010.

References:

1. Peter R. Monge, Noshir S. Contractor, Theories of communication networks. Oxford University Press, 2003.

2. Duncan Watts. Six degrees: the science of a connected age. Norton, 2004.

3. Stanley Wasserman, Katherine Faust. Social network analysis: methods and applications. Cambridge University Press, 1994.

Program: Master of Technology				
Course Title: Wireless and Mol	oile Networks	Course Code: 18ECSE804		
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 42	Exam Duration: 3 hrs			

1	Introduction: Characteristics of Cellular Systems, Fundamentals of Cellular Systems,	
T	Cellular System Infrastructure, Satellite Systems, Network Protocols, Ad Hoc Networks,	
	Sensor Networks, Wireless LANs, MANs and PANs	04 hrs
2	Mobile Radio Propagation : Introduction, Types of Radio Waves, Propagation,	
4	Mechanisms, Free Space Propagation, Land Propagation, Path Loss, Slow Fading, Fast	
	Fading, Statistical Characteristics of Envelope, Characteristics of Instantaneous	
	Amplitude, Doppler Effect, Delay Spread, Intersymbol Interference, Coherence and width	
	Cochannel Interference	06 hrs
3	Cellular Concept : Introduction, Cell Area. Signal Strength and Cell Parameters,	
•	Capacity of a Cell, Frequency Reuse, How to Form a Cluster, Cochannel interference,	
	Cell Splitting, Cell Sectoring	07 hrs
4	Traffic Channel Allocation : Introduction, Static Allocation versus Dynamic Allocation	
	, Fixed Channel Allocation (FCA), Simple Borrowing Schemes, Complex Borrowing	
	Schemes, Dynamic Channel Allocation (DCA), Centralized Dynamic Channel	
	Allocation Schemes, Distributed Dynamic Channel Allocation Schemes, Hybrid	
	Channel Allocation (HCA), Hybrid Channel Allocation (HCA) Schemes, Flexible Traffic	
	Channel Allocation Schemes, Allocation in Specialized System Structure, Channel	
	Allocation in One-Dimensional Systems, Reuse Partitioning-Based Channel Allocation,	
	Overlapped Cells–Based Channel Allocation	04 hrs
5	Mobile Communication Systems: Introduction, Cellular System Infrastructure,	
	Registration, Handoff Parameters and Underlying Support, Parameters Influencing	
	Handoff, Handoff Underlying Support, Roaming Support, Home Agents, Foreign	
	Agents, and Mobile IP, Rerouting in Backbone Routers, Multicasting.	06 hrs
6	Mobile network and transport layer: Mobile IP Packet delivery-Tunneling-Reverse	
	tunneling, IPV6-Dynamic host routing protocol, Traditional TCP-Congestion control-	
	classical TCP-Snooping Mobile TCP, Transaction oriented TCP-TCP over 2.5/3G	
	Wireless Networks,	07 hrs
7	Emerging wireless technologies:	
	Femtocell Network : Introduction, Technical Features, Challenges Push-to-Talk (PTT)	
	Technology for SMS : PTT Network Technology, PTT in iDEN Cellular Networks, PTT	
	in Non-iDEN Cellular Networks: PoC	
	Multicast in Wireless Networks : Recent Advances in Multicast over Mobile IP, Reliable	
	Wireless Multicast Protocols, Broadcasting, Multicasting, and Geocasting in Ad	
	HocNetworks	04 hrs
Text	Books:	

Text Books:

1. Dharma PrakashAgrawal, Qing –An Zeng, "Introduction to wireless and mobile systems", Cengage Learning, 2014.

2. Roy Blake, "Wireless communication technology", Cengage Learning, sixth Indian reprint 2013.

3. Singal T.L., "Wireless communication", Tata McGraw Hill Education private limited, 2011.

- 1. Wireless telecommunications systems and networks by Gray J.Mullet, CengageLearning,Reprint 2014.
- 2. UpenaDalal, "Wireless communication" Oxford University press, first edition 2009.
- 3. MartynMallick, "Mobile and Wireless Design Essentials", Wiley Dreamtech India Pvt. Ltd., 2004.
- 4. Jochen Schiller, "Mobile Communications", Addision Wesley, 2nd Edition, 2011.