

Earlier known as

B. V. B. College of Engineering & Technology

Change summary between 2015-16 and 2016-17 admitted batches (i.e. 2015 to 19 batch 2016 to 20 batch)

Course Title: Digital Circuits		Course Code: 17EECC203	
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3Hrs/week	Teaching
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	Hours
Teaching Hours: 42 Hrs	Examination Duration: 3 Hrs		
	Unit-I		03
Chapter No. 1. Logic Families	f in and f	of lonin formilian	03
	imes, fan-in and fan-out, comparison	of logic families	
maps-3,4 variables, Incomple	ogic, canonical forms, Generation of etely specified functions(Don't care	switching equations from truth tables, Karnaugh terms),Simplifying Maxterm equations, Quinere terms, Reduced Prime Implicant Tables.	07
		tiplexers- Using multiplexers as Boolean function ad carry adders, Binary comparators.	08
	Unit-II		
Latch, The gated D Latch, The	ss, A SR Latch, Application of SR Latch Master-Slave Flip-Flops (Pulse-Trigger e Triggered Flip- Flop: The Positive Edg	, A Switch De bouncer, The SR Latch, The gated SR red Flip-Flops): The Master-Slave SR Flip-Flops, The re-Triggered D Flip-Flop, Negative-Edge Triggered D	08
Chapter No. 5. Analysis of Seq	uential Circuits		
= -	of a Synchronous Mod-n Counter us	counters, Ring and Johnson Counters, Design of a sing clocked JK Flip-Flops Design of a Synchronous	08
	Unit-III		
Chapter No. 6. Sequential Circ	<u> </u>	State Machine notations, Synchronous Sequential	04

Earlier known as

B. V. B. College of Engineering & Technology

Chapter No. 7. Introduction to memories

Introduction and role of memory in a computer system, memory types and terminology, Read Only memory, MROM, PROM, EPROM, EPROM, Random access memory, SRAM, DRAM, NVRAM.

04

Text Books

- 1. Donald D Givone, Digital Principles and Design, Tata McGraw Hill Edition, 2002
- 2. John M Yarbrough, Digital Logic Applications and Design, Thomson Learning, 2001
- 3. A Anand Kumar, Fundamentals of digital circuits, PHI,2003

References

- Charles H Roth, Fundamentals of Logic Design, Thomson Learning, 2004 2.Zvi Kohavi, Switching and Finite Automata Theory, 2nd, TMH
- 2. .R.D. Sudhaker Samuel, Logic Design, Sanguine Technical Publishers, 2005
- 3. .R P Jain, Modern Digital Electronics, 2nd, Tata McGraw Hill, 2000

Earlier known as

Program: III Semester B	achelor of Engineering (Electronics & Co	ommunication Engineering)	
Course Title: Engineering	ng Design	Course Code: 17EECF201	Teaching
L-T-P: 0-0-3	Credits: 3	Contact Hours: 03 Hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	Hours
Teaching Hours:	Examination Duration: 2 Hrs		
	PART A		
Planning Introduction to Enginee Specifications	ring Design, Problem Definition, Design a	ittributes Gantt Chart, Design Objectives, Desig	02
Conceptual Design			03
Functional Analysis, Cor	ncept generation, Concept Evaluation		
System Level Design			03
Product Architecture, Co	onfiguration Design, Parametric Design		
Detail Design			03
Sub-system Design, Des	ign Verification		
	PART B		
OrCAD			
Functional simulation of	f basic Analog and Digital application circ	uits using OrCAD eCAD tool	01
Schematic Capture of th	e reference design using using OrCAD eC	CAD tool.	01
Layout Design of the ref	erence design using using OrCAD eCAD t	ool.	01
Creation of Symbols/Ce	II/Part		01
LabVIEW			01
Introduction to LabVIEV	V and functional simulation of basic Analo	og and Digital application circuits in LabVIEW	
Functional Simulation of	f the circuit for selected problem stateme	ent	01
Co-simulation of the circ	cuit for selected problem statement.		01

Earlier known as

Program: IV Semester Bach	elor of Engineering (Electronics & Com	munication Engineering)	Teachig
Course Title: Linear Integrated circuits Course Code:17FFCC205		Hours	
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3Hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40Hrs	Examination Duration: 3 Hrs		Hrs
	Ur	nit I	
Chapter No 1. OPAMP cha	racteristics		
Ideal and non-ideal OPAMP Large signal bandwidth.	terminal characteristics, Input and outp	out impedance, output Offset voltage, Small signal and	04
Chapter No 2. OPAMP with	ı Feedback		
		edback on Bandwidth, Input and Output impedances, ion Property under linear mode operation.	04
Chapter No 3. Basic OPAMI	P architecture		08
		gain, CMRR, 5-pack differential amplifier with design, and Compensation, Bandwidth and frequency	
	Unit II		
Chapter No 4. Current Mirr	ors		
Current Mirror circuits and current Mirrors, Current sou		dance, voltage swing), Widlar, Cascode and Wilson	08
Chapter No 5. Linear applic	cations of OPAMP		
configuration), Integrator,		plifiers (Inverting, Non-inverting and Differential sources and current sinks, Active Filters –First and rs.	08
	Unit III		
Chanter No. 6 Nonlinear a	pplications of OPAMP		
Chapter No 6 . Nonlinear a			08

Earlier known as

B. V. B. College of Engineering & Technology

Text Book

- 1. Behzad Razavi, Fundamentals of microelectronics, 2ndedition.
- 2. Phillip E. Allen, Douglas R. Holberg, CMOS Analog CircuitDesign.
- 3. Ramakant A. Gayakwad, Op Amps and Linear IntegratedCircuits.

References

- 1. A.S. Sedra& K.C. Smith, MicroelectronicCircuits,
- 2. Sergio Franco, Design with Operational Amplifiers and Analog IntegratedCircuits.
- 3. David A. Bell, Operational Amplifiers and LinearIC's.
- 4. B. Razavi, Design of Analog CMOS Integrated Circuits McGraw-Hill,2001

Earlier known as

B. V. B. College of Engineering & Technology

Semester: IV

Course Title: Product Realization	Course Code: 17EECF203
Total Contact Credits: 2	Duration of SEE Credits: -
(0-0-2)	
ISA Marks: 80	FSA Marks: 20

Week #	Particulars	Template #	Venue
Week 1	> Introduction to Prototyping		Studio Engagement
and	> Defining-		
Week 2	Specifications, Part Drawings, Assembly Drawings, PCB Layout, Wireframe , Pseudocode, BOM, Process Plan, Fabrication and Test Plan Validation		
	> IOT Workshop		
Week 3	Identifying sub-assemblies (minimum of 3)		Makers Space/
	Selection of materials for all the parts and joining techniques		
Week 4	> Process plan		
	Identifying the proper machines and tools required for prototyping.		
	Preparing of raw materials for prototyping.		
	Plan and procure the bought out parts.		
Week 5	> Fabricate the parts for sub assembly 1		
Week 6	> Fabricate the parts for sub assembly 2		
Week 7	> Fabricate the parts for sub assembly 3		
Week 8	 Assemble the sub assemblies and check for interference and functionality 		
Week 9	> Test the functional prototype using proper identified test methods.		

Earlier known as

Week 10	Analyse the test resultsSystem modification	
Week 11	 Final concluding review Product catalogue 	Studio/ Makers Space

Refer 1.	nces Pahl, G., Beitz, W., Feldhusen, J. and Grote ; "Engineering Design-A Systematic Approach" by, KH- Springer; 3rd ed. 2007	

Earlier known as

B. V. B. College of Engineering & Technology

Course Title: Embedded Intelligent Systems		Course Code: 17EECE310
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 6hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs: 60	Exam Duration: 3 hrs	

	Unit - I	
1	Basics of embedded systems Linux Application Programming, System V IPC, . Linux Kernel Internals and Architecture, Kernel Core, Linux Device Driver Programming, Interrupts & Timers, Sample shell script, application program, driver source build and execute	10 hrs
2	Heterogeneous computing	
	Basics of heterogeneous computing with various hardware architectures designed for specific type of tasks, Advanced heterogeneous computing with a. Introduction to Parallel programming b.GPU programming (OpenCL). Open standards for heterogeneous computing (Openvx), Basic OpenCL examples - Coding, compilation and execution	12 hrs
	Unit - II	
3	ML Frameworks with the target device Caffe, tensorflow, TF Lite machine learning frameworks & architecture ,Model parsing, feature support and flexibility ,Supported layers , advantages and disadvantages with each of these frameworks, Android NN architecture overview , Full stack compilation and execution on embedded device	16 hrs
4	Model Development and Optimization Significance of on device AI ,Quantization , pruning, weight sharing, Distillation ,Various pre-trained networks and design considerations to choose a particular pre-trained model ,Federated Learning , Flexible Inferencing	8 hrs
	Unit - III	
5	Android Anatomy Android Architecture ,Linux Kernel , Binder , HAL Native Libraries , Android Runtime, Dalvik Application framework , Applications, IPC	8 hrs

Text Books

- 1. Linux System Programming , by Robert Love , Copyright © 2007 O'Reilly Media
- 2. Heterogeneous Computing with OpenCL, 2nd Edition by Dana Schaa, Perhaad Mistry, David R. Kaeli, Lee Howes, Benedict Gaster , Publisher: Morgan Kaufmann

Reference Books:

- 1. Deep Learning, MIT Press book, Goodfellow, Bengio, and Courville's
- 2. Beginning Android, by Wei-Meng Lee, Publisher: Wrox, O'Reilly Media

Earlier known as

B. V. B. College of Engineering & Technology

Scheme for End Semester Assessment (ESA)

UNIT	Experiments to be set of 10 Marks Each	Chapter Numbers	Instructions
1	Project Examination	1,2,3,4,5	Project implementation and demonstration
			20 marks

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi 580031. Karnataka (India)

Earlier known as

Course Code: 19EECE416	Course Title: Biosensor	
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 72
ISA Marks: 00	ESA Marks: 100	Total Marks: 100
Teaching Hrs: 72		Exam Duration: 3 hrs

Content	Hrs
Unit - 1	
Chapter No. 1. Basic Introduction to sensors Introduction to sensors: fundamental characteristics such as Sensitivity, linearity, repeatability, hysteresis, drift. Sensing Principles: optical sensors, electrochemical sensors, micromechanical sensors, surface Plasmon sensors, colorimetric Sensors, acoustic sensors	5 hrs
Chapter No. 2. Active Electrical Transducers Thermoelectric transducers, thermoelectric phenomenon, common thermocouple systems, piezoelectric transducers, piezoelectric phenomenon piezoelectric materials, piezoelectric force transducers, piezoelectric strain, piezoelectric torque transducers, piezoelectric pressure transducers, piezoelectric acceleration transducers. Magnetostrictive transducers Magnetostrictive force transducers, Magnetostrictive acceleration transducers, Magnetostrictive torsion transducers, Hall Effect transducers, and application of Hall transducer. Electromechanical transducers-Tachometers, variable reluctance tachometers Electrodynamic vibration transducers, Electromagnetic pressure electromagnetic flowmeter. Photoelectric transducers- photoelectric phenomenon, photoelectric transducers, Photo volatile transducers, Photo emissive transducers. Electrochemical transducers- basics of electrode potentials, reference electrodes, indicator electrodes, measurement of PH, measurement of bioelectric signals.	10 hrs
Unit - 2	
Chapter No. 3. Passive electrical transducer Introduction, Resistive transducers- resistance thermometers, hot wire resistance transducers, Resistive displacement transducer, Resistive strain transducer, resistive pressure transducer, resistive optical radiation transducers. Inductive transducers-Inductive thickness transducers, Inductive displacement transducers, Movable core-type Inductive transducers, eddy current type Inductive transducers. Capacitive transducers-Capacitive thickness transducers, capacitive displacement transducers, capacitive moisture transducers Substrate and Wafers, Active Substrate Materials, Silicon as Substrate Material, Silicon Compounds, Silicon Piezo resistors, Gallium Arsenide, Quartz, Piezoelectric Crystals, Polymers, Packaging Materials.	5 hrs
Chapter No. 4. Microfabrication Technology Design of process flow for device fabrication for application in biology and medicine: Introduction to the Clean room and contaminants, Wafer cleaning processes (DL water, RCA, metallic impurities, etc.), Substrate materials: Silicon,	10 hrs

Earlier known as

B. V. B. College of Engineering & Technology

polymer and PCB, Thermal oxidation: Wet and dry oxidation, thin film deposition techniques: PVD- DC and RF Magnetron Sputtering, thermal evaporation, e-beam evaporation, LPCVD, PLD.

Types of masks: Hard and soft Lithography, Lithography – UV Photolithography, Soft lithography, additive manufacturing. Mask design and fabrication – Photo resists and mechanical mask such as stencils. Types of etching-Wet etching- anisotropic and Isotropic and dry etching RIE and DRIE. Device fabrication and inspection in the clean room.

Unit - 3

Chapter No. 5. Biosensors

Introduction: Biosensors and its applications in health care, agriculture, drug discovery and environmental monitoring. Devices for biology and medicine: Microfluidic channels, flow cytometry/ sorting, microchip using electrophoresis, force measurement with cantilevers, micro engineered devices for medical therapeutics, blood pressure sensors, devices for drug delivery, and devices for minimally invasive surgery.

Chapter No. 6. Biological components for detection

5 hrs

Enzymes, antigen-antibody reaction, biochemical detection of analysts, organelles, whole cell, receptors, DNA probe,

Text Books (List of books as mentioned in the approved syllabus):

1. Fundamentals of Microfabrication and Nanotechnology by Marc J. Madou, 3rd edition. Taylor and Francis group.

pesticide detection, sensors for pollutant gases. Surface chemistry: Immobilization of biorecognition element,

- 2. Transducers and Instrumentation D.V.S. Murthy, 2nd Edn, PHI Ltd, 2010.
- 3. A.P.F. Turner, I. Karube & G.S. Wilson: Biosensors: Fundamentals & Applications, Oxford University Press, Oxford, 1987.

References:

1. Ernest O. Doeblin: Measurement Systems, Application and Design, McGraw-Hill, 1985.

Antigen-Antibody functionalization, and assay labels including radioisotopes, fluorophores, dyes.

- 2. Richard S.C. Cobbold: Transducers for Biomedical Measurements: Principles and Applications, John Wiley & Sons, 1974
- 3. John G. Webster (ed.): Medical Instrumentation Application and Design; Houghton Mifflin Co., Boston, 1992.
- 4. Stephen D. Senturia: "Micro system Design", Kluwer Academic Publishers, 2001

Earlier known as

B. V. B. College of Engineering & Technology

Course Code: 19EECE402	Course Title: Information Theory and Coding	
L-T-P-SS: 2-0-1	Credits: 3	Contact Hrs: 40
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40		Exam Duration: 3 hrs

Content	Hrs
Unit - 1	I
Chapter No. Chapter 1:Information Theory:	7 hrs
Information Theory: Introduction, Measure of information, Average information content of symbols in long independent sequences, Average information content of symbols in long dependent sequences. Mark-off statistical model for information source, Entropy and information rate of mark-off source	
Chapter No. Chapter 2: Source Coding:	8 hrs
Encoding of the source output, Shannon's encoding algorithm. Communication Channels, Discrete communication channels, Continuous channels. Source coding theorem,, Huffman coding	
Unit - 2	
Chapter No. Chapter 3: Channel coding	4 hrs
Discrete memory less Channels, Mutual information, Channel Capacity Channel coding theorem, Differential entropy and mutual information for continuous ensembles, Channel capacity Theorem.	
Chapter No. Chapter 4: Introduction to Error Control Coding:	7 hrs
Introduction, Types of errors, examples, Types of codes Linear Block Codes: Matrix description, Error detection and correction, Standard arrays and table look up for decoding.	
Chapter No. Chapter 5: Binary Cycle Codes	4 hrs
Algebraic structures of cyclic codes, Encoding using an (n-k) bit shift register, Syndrome calculation.	
Unit - 3	1
Chapter No. Chapter 6: BCH codes RS codes	10 hrs
Golay codes, Shortened cyclic codes, Burst error correcting codes. Burst and Random Error correcting codes. Convolution Codes, Time domain approach. Transform domain approach. Systematic Convolution codes	

Text Book (List of books as mentioned in the approved syllabus)

- 1. K. Sam Shanmugam, Digital and analog communication systems, John Wiley, 1996
- 2. Simon Haykin, Digital communication, John Wiley, 2003

References

1. Ranjan Bose, ITC and Cryptography, TMH(reprint 2007), 2002

Earlier known as

- 2. Glover and Grant, Digital Communications , 2, Pearson, 2008
- 3. D Ganesh Rao, K N Haribhat, Digital Communications, Sanguine, 2009

Earlier known as

B. V. B. College of Engineering & Technology

Course Title: CMOS ASIC Design	Course code: 18EECE420		
L-T- P: 0-0-3	Credits: 03 Contact Hrs: 06hrs/week		
CIE Marks: 100	SEE Marks: 00	Total Marks: 100	
Teaching Hrs: 16hrs Lab Hrs: 24 hrs			
Chapter No. 1. Introduction: Design of combinational and sequential less standard cells. Verilog for representing gate level netlists.	ogic gates in CMOS. La	yout and characterization of	8 hrs
Chapter No. 2. Timing Analysis: Sequential circuit timing and static timing analysis. Cell and net delays and cross-talk. Rationale and implementation of scan chains for testing standard-cell based logic circuits. Timing Verification: Setup Timing Check, Hold Timing Check, Timing across Clock Domains			10hrs
Chapter No. 3: Physical design Physical design of standard-cell based CMOS ASICs: scan insertion, placement, and clock tree synthesis and routing. Netlist transformations at each step of the physical design process. Net parasitic and parasitic extraction. Use of PLLs for clock generation and de-skew.			12 hrs
Chapter No. 4. Standard Data formats: Standard data formats for representing technology and design: LEF, Liberty, SDC, DEF and SPEF. Clock gating and power gating for reduction of device power consumption. Design for reliability: electro- migration, wire self heat and ESD checks and fixes.			6 hrs
Chapter No. 5. Packaging An overview of package design and implementation and system level timing.			4 hrs

Reference Books:

- 1. The Design & Analysis of VLSI Circuits, L. A. Glassey & D. W. Dobbepahl, Addison Wesley Pub Co. 1985.
- 2. H. Bhatnagar, Advanced ASIC Chip Synthesis Using Synopsys Design Compiler Physical Compiler and PrimeTime, 2nd edition, 2001.
- 3. Static Timing Analysis for Nanometer Designs A Practical Approach, J. Bhasker Rakesh Chadha, Springer Science+Business Media, LLC 2009

Tools: Cadence Innovous, Encounter

Earlier known as

B. V. B. College of Engineering & Technology

Course Title: Physical Design-Analog	Course code: 18EECE419		
L-T- P: 0-0-3	Credits: 03	Contact Hrs: 06hrs/week	
CIE Marks: 100	SEE Marks: 00	Total Marks: 100	
Teaching Hrs: 16hrs Lab Hrs: 24 hrs			
Chapter No 1. Standard cell Layout creation Layout Practice Sessions (DRC/LVS Dirty layout), Understanding experience of using layout editor, Quality of the layout, Half DRC rule		00 0	8 hrs
Chapter No 2. Analog layout Importance of performance in Analog layout, Importance of floor pla during routing stage, Introduction to DRC, LVS, Density and RCX.	nning and placement, A	ttributes need to be taken care	8 hrs
Chapter No 3. Matching and Guard rings, Matching: Introduction mismatch, Rules for matching, Activities. Guard ring: What is guard ring, Usage of guard ring	o mismatch concepts,	Causes for mismatch, Types of	6 hrs
Chapter No 4. Reliability issues Introduction to failure mechanism, Causes of reliability issues, Proce to reduce reliability issues	ss enhancement technic	ques and Layout considerations	8 hrs
Chapter No 5. Physical design of amplifier and buffer Applying the studied concepts and doing layout, Prioritising the implementations, Documentation	constraints given, Quali	ty checks, Buddy reviews and	10 hrs
Reference: The Art of Analog Layout – Alan Hastings			

CMOS IC layout – Dan Clien

IC Layout Basics – Chris saint and Judy saint

Earlier known as

Course Code: 19EECE322 / 19EECE422	Course Title: Introduct	Course Title: Introduction to Deep Learning		
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 42		Exam Duration: 3 hrs		
	Content		Hrs	
	Unit - 1			
Chapter 1: Introduction to Deep Learning: What is Deep Learning?, Applications of deep learning, D Neural Networks, Supervised Learning with Neural Networkshallow neural networks, Deep neural networks. Introductensorflow.	orks, Logistic regression as a neu	ral network, Computation graph,	8 hrs	
Chapter 2: Hyper-Parameter Tuning, Regularization and Basics of Hyper-parameters, Regularization, Need for reggradient descent, exponentially weighted averages and it optimization algorithm, The problem of localminima, weinetwork, Fitting Batch norm into a network, Softmax reg	pularization, dropout regularizations to biascorrection, Gradient desceught initialization in neural netwo	nt with decay, Adam's	8 hrs	
	Unit - 2		-	
Chapter 3: Convolutional Neural Networks Introduction to Computer Vision and Image Processing, 2 One layer of a convolution network, ReLu and pooling, Ex Inception Networks, Transfer learning, Data Augmentatio detection, Convolutional implementation of sliding windousing YOLO, One shot learning, Face recognition algorithm	kample of aConvNet, Classic CNN on, Residual networks, Object Loc ows, YOLO algorithm, Car detecti	Networks, ResNet architecture, alization, Landmark and object	12 hrs	
Chapter 4: Recurrent Neural Networks Backpropogation through time, RNN model, Types of RN Bidirectional RNN, Deep RNN, basics of NLP and Concept			04 hrs	
	Unit - 3			
Chapter 5: Unsupervised Deep Learning Concepts of Unsupervised deep learning, RBM (Restricte encoders, collaborative filtering with RBM, Deep belief no		ncoders, structure of Auto	10 hrs	

Earlier known as

B. V. B. College of Engineering & Technology

Change summary between 2016-17 and 2018-19 admitted batches (i.e. 2016 to 20 batch 2017 to 21 batch)

Laboratory Title: C Programming (for Diploma)	Lab. Code: 18EECF204
Total Hours: 20	Duration of Exam: 02
ESA Marks: 20	Total ISA. Marks: 80

Experiment wise plan

1. <u>List of experiments/jobs planned to meet the requirements of the course.</u>

Expt./Job No.	Experiment/job Details	No. of Lab. Session/s per batch (estimate)	Marks/Experiment
1.	Write a C program to perform addition , subtraction , multiplication and division of two numbers .	01	8.00
2.	Write a C program to i) Identify greater number between two numbers using C program. ii) To check a given number is Even or Odd.	01	8.00
3.	Write a C program to i) To find the roots of a quadratic equation. ii) Find the factorial of given number.	01	8.00
4.	Write a C program to i) To find the sum of n natural numbers. ii) Print the sum of 1 + 3 + 5 + 7 + + n	01	8.00
5.	Write a C program to i) Print the pattern . * ** *** *** ii) Print the pattern 1	01	8.00
	12		

Earlier known as

B. V. B. College of Engineering & Technology

	123 1234 12345		
6.	Write a C program to To test whether the given character is Vowel or not. (using switch case)	01	8.00
7.	Write a C program to To accept 10 numbers and make the average of the numbers using one dimensional array.	01	8.00
8.	Write a C program to Find out square of a number using function.	01	8.00
9	Write a C program to To find the summation of three numbers using function.	01	8.00
10	Write a C program to Find out addition of two matrices.	01	8.00

1. Materials and Resources Required:

Text Book

1. Programming in ANSI C, E Balagurusamy

Earlier known as

B. V. B. College of Engineering & Technology

Program: IV Semester Bachelor of Engineering (Electronics & Communication Engineering)				
Course Title: Data Structures Application Lab Course Code: 18EECC210				Teaching
L-T-P: 0-0-2		Credits: 2	Contact Hours: 4Hrs/week	Hours
ISA N	larks: 80	ESA Marks:20	Total Marks: 100	
Teach	ning + Lab. Hours: 48 Hrs	Examination Duration:2 Hrs		
1.	Hashing Hash, Hash function, Hash	Table, Collision resolution techniques, Hashin	g Applications	12Hrs
2.	·	Trees Computer representation, Tree properties, Binary Tree properties, Binary search trees properties and implementation, Tree traversals, AVL tree, 2-3 Tree		
3.	Graphs			
	Computer representation,	Adjacency List, Adjacency Matrix, Graph prop	erties, Graph traversals	16Hrs

Book

- 1. Data Structures A Psedocode Approach with C, Richard F. Gilberg & Behrouz A. Forouzan, second edition, CENGAGE Learning.
- 2. Data Structures Using C. Author, Aaron M. Tenenbaum. Publisher, Pearson Education.

Earlier known as

Course Code: 19EECC302	Course Title: OOPS using C++	
L-T-P: 2-0-1	Credits: 3 Contact Hrs: 42	
ISA: Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs: 42		Exam Duration:

Content	Hrs
Unit - 1	
Chapter 1: Fundamental concepts of object oriented programming:	04 hrs
Introduction to object oriented programming, Programming Basics (keywords, identifiers, variables, operators, classes, objects),Arrays and Strings	
Functions/ methods (parameter passing techniques),	
Chapter 2: OOPs Concepts:	08hrs
Overview of OOPs Principles, Introduction to classes & objects ,Creation & destruction of objects, Data Members, Member Functions , Constructor & Destructor , Static class member, Friend class and functions, Namespace	
Unit - 2	
Chapter 3: Inheritance:	8 hrs
Introduction and benefits, Abstract class, Aggregation: classes within classes	
Access Specifier, Base and Derived class Constructors, Types of Inheritance.	
Function overriding	
Chapter 4: Polymorphism:	6 hrs
Virtual functions, Friend functions, static functions, this pointer	
Unit - 3	I
Chapter 5: Exception Handling:	8 hrs
Introduction to Exception, Benefits of Exception handling, Try and catch block, Throw statement, Pre-defined exceptions in C++,Writing custom Exception class	
Chapter 6: I/O Streams:	6 hrs
C++ Class Hierarchy, File Stream, Text File Handling, Binary File Handling	
Error handling during file operations, Overloading << and >> operators	

Earlier known as

B. V. B. College of Engineering & Technology

Books/References:

Text Book

1. Robert Lafore, "Object oriented programming in C++", 4th Edition, Pearson education, 2009.

References

- 1. Lippman S B, Lajorie J, Moo B E, C++ Primer, 5ed, Addison Wesley, 2013.
- 2. Herbert Schildt: The Complete Reference C++, 4th Edition, Tata McGraw Hill

Earlier known as

B. V. B. College of Engineering & Technology

Change summary between 2018-19 and 2019-20 admitted batches (i.e. 2017 to 21 batch 2018 to 22 batch)

Program: III Semester Bachelo	r of Engineering (Electronics & Communica	tion Engineering)	
Course Title: Signals and Syste	ems	Course Code: 19EECC202	Tarabina
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4Hrs/week	Teaching Hours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	Hours
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		
	Unit I		
deterministic and random sigr variable, dependent variable	systems, classification of signals,(analog nals, even and odd signals, energy and pov , time scaling, multiplication, time revers	and discrete signal, periodic and aperiodic, ver), basic operation on signals(independent al), elementary signals (Impulse, step, ramp, el and cascade), properties of linear systems.	10
,superposition, linearity and tir	me invariance, stability, memory, causality)		
	ion and properties, Convolution, convoluti sentation, Block diagram representation	on sum and convolution integral. Differential	10
	Unit II		
Chapter No. 03:Fourier representation, Discrete time For (derivation of transform exclude)	urier series(derivation of series excluded) a	nd their properties. Discrete Fourier transform	10
Chapter No. 04:Applications of	of Fourier transform		
Introduction, frequency respon		sentation of periodic signals, Fourier transform s.	10
	Unit III		
	perties of ROC, Properties of Z-transforms: ral Z-transform, Transform of LTI.	Inverse z-transforms (Partial Fraction method,	10
Simon Haykin and Barry Alan V Oppenheim ,Ala References	entioned in the approved syllabus) y Van Veen , Signals and Systems, Second, Jo n S Willsky and S. Hamid Nawab , Signals an nals and Systems , TMH,2006		

Earlier known as

- ${\it 2.}~Ganesh Rao and Satish Tunga,, Signals and Systems, Sanguine T, 2004$
- 3. M.J.Roberts, Fundamentals of Signals and Systems, first Edition, TMH

Earlier known as

B. V. B. College of Engineering & Technology

Change summary between 2018-19 and 2019-20 admitted batches (i.e. 2018 to 22 batch 2019 to 23 batch)

Laboratory Title: Senior Design Project	Lab. Code: 20EECW401
Credit: 0-0-6 Total Hours: 70hours/week	Duration of exam: 2 hours
Total Hours, 70 Hours/week	
Total Exam Marks: 100	ISA Marks: 50

Application Areas are,

- · Smart City
- Connected Cars
- Home Automation
- Health care
- Smart energy
- Automation of Agriculture

Guide lines for selection of a project:

- The project needs to encompass the concepts learnt in the previous semesters, so that the student will learn to integrate, the knowledge base acquired to provide a solution to the defined problem statement of the project work.
- Student can select a project which leads to a product or model or prototype.
- Time plan: Effort to do the project should be between 60-70Hrs per team, which includes self-study of an individual member (80-100 Hrs) and team work (40-50hrs).
- Learning overhead should be 20-25% of total project development time.

Criteria for group formation:

- 3-4 students in a team.
- Role of teammates: Team lead and members.

Allocation of Guides and Mentors for the projects:

Every Project batch will be allocated with one faculty.

Details of the project batches:

- Number of faculty members: 50
- Number of students:3-4 students in a team.

Role of a Guide

Earlier known as

B. V. B. College of Engineering & Technology

The primary responsibility of the guide is to help students to understand the meaning and need of various stages in the implementation of the project. At every stage of the project development, guide should help towards its successful completion as per the predefined standards.

How student should carry out a project:

- Define the problem.
- Specify the requirements.
- Specify the design in the understandable form (Block Diagram, Flowchart, Algorithm, etc).
- Analyze the design and identify hardware and software componentsseparately.
- Select appropriate simulation tool and development board for the design.
- Implement the design.
- Optimize the design and generate the results.
- Result representation and analysis.
- Prepare a document and presentation.

Report Writing

- The format for report writing should be downloaded from ftp://10.3.0.3/projects
- The report needs to be shown to guide and committee for each review.

•

Evaluation Scheme

- Internal semester assessment (ISA)
- Evaluation is done based on the evaluation rubrics given in Table 1
- Project shall be reviewed and evaluated by the concerned Guide for 50% of the marks.
- Project shall be evaluated by the review committeefor 50% of the marks.