

L-T-P: 3-0-0 CIE: 50

SEE: 50

Code: 17EEEC201 Course Title: Electrical Machines. Teaching Hours: 40

KLE TECH.

Unit –I

Chapter 1 : Transformer : Transformer construction and principle of operation,
Ideal Transformer, Practical Transformer, Transformer phasor diagrams, Equivalent
circuit of transformers, Open circuit and short circuit tests, Voltage regulation,
transformer losses and efficiency, Testing of transformers, Three phase
transformers, Auto-transformers.10 hoursChapter 2: DC Machines: Construction of DC machine and DC machine as
generator, EMF equation of DC machine, Operating characteristics of types of DC
generators, Operating characteristics of DC motors, DC motor starting, Speed
control of DC motors.05 hours

Unit	– II
------	------

Chapter 3: Induction (Asynchronous) Machines: Induction motor as	
transformer, Principle of operation, Rotor frequency, e.m.f, current and power,	
Losses and Efficiency, Equivalent circuit, Torque slip and Power-slip	10 hours
characteristics, Determination of equivalent circuit parameters. Circle diagram,	
Starting of polyphase induction motors.	
Chapter 4 : Synchronous Machines: Cylindrical and salient pole machines,	05 hours
Phasor diagram of cylindrical rotor alternator. AC armature winding, Voltage	05 nours
regulation of alternator using e.m.f method.	

Omt - m	
Chapter 5 : Synchronous Machines: Synchronous motor phasor, Power angle characteristic of synchronous machine, Measurement of Xd and Xq, Capability curves of synchronous generators, Power factor correction by synchronous motors.	5 hours
Chapter 6:Single phase induction machines: Double field revolving theory, Equivalent circuit, Resistance split phase motors, capacitor start motor, permanent capacitor motor, two-value capacitor motor, shaded-pole motor. Performance and cost comparison and choice of single phase induction motors.	5 hours

Text Book

1. P. C. Sen, "Principles of Electric Machines and Power Electronics", John Wiley & Sons Publications, Canada, 2nd Edition, 2001.

References

- 1. Bhimbra, "Principles of Electrical machinery", Khanna Publishers.2006.
- 2. D. P. Kothari and I. J. Nagrath, "Electrical Machines", MGH Publishers. 4th Edition, 2011.
- 3. Fitzgerald, Kingsly & Stephen, "Electric Machinery", 5ed., McGraw Hill, 1992

Course Title: Linear Integrated Circuits

Department of Electrical & Electronics Engineering
Curriculum Structure with Content- Course wise

Course Code: 18EEEC301

L-T-P: 3-0-0

CIE Marks: 50 Teaching Hrs: 40 Credits: 3 SEE Marks: 50 Contact Hrs: 40 Total Marks: 100 Exam Duration: 3 hrs

Chapter	Unit-I	
No.		
1	Current Mirrors	05 Hrs
	Current Mirror circuits and Modeling, Figures of merit (output impedance, voltage	
	swing), Widlar, Cascode and Wilson current Mirrors, Current source and current	
	sink.	
2	Basic OPAMP architecture	06 Hrs
	Basic differential amplifier, Common mode and difference mode gain, CMRR, 5-	
	pack differential amplifier, 7-pack operational amplifier, Slew rate limitation,	
	Instability and Compensation, Bandwidth and frequency response curve	
3	OPAMP characteristics	04 Hrs
	Ideal and non-ideal OPAMP terminal characteristics, Input and output impedance,	
	output Offset voltage, Small signal and Large signal bandwidth.	
	Unit-II	
4	OPAMP with Feedback	
	OPAMP under Positive and Negative feedback, Impact Negative feedback on	05Urc
	linearity, Offset voltage, Bandwidth, Input and Output impedances, Follower	031115
	property, Inversion property	
5	Linear applications of OPAMP	
	DC and AC Amplifiers, Voltage Follower, Summing, Scaling and	
	Averagingamplifiers (Inverting, Non-inverting and Differential configuration),	10 Hrs
	Integrator, Differentiator, , Currentamplifiers, Instrumentation amplifier, Phase	101115
	shifters, Voltage to current converter, Phase shift oscillator, Weinbridge oscillator,	
	Active Filters – First and second order Low pass & High pass filters.	
	Unit-III	
6	Nonlinear applications of OPAMP	
	Crossing detectors (ZCD. Comparator), Schmitt trigger circuits, Monostable &	
	Astable multivibrator, Triangular/rectangular wave generators, Waveform	10 Hrs
	generator, Voltage controlled Oscillator, Precisionrectifiers, Limiting	101115
	circuits.Clamping circuits, Peak detectors, sample and hold circuits, Log and	
	antilog amplifiers, Multiplier and divider Amplifiers, Voltage Regulators.	

Text Books

- 1 Sedra and Smith, "Microelectronics", 5th edition, Oxford University Press.
- 2 Ramakant A. Gayakwad, "Op Amps and Linear Integrated Circuits", 4th edition, PHI.

Reference Books:

- 1 Robert. F. Coughlin & Fredrick F. Driscoll, "Operational Amplifiers and Linear Integrated Circuits", PHI/Pearson, 2006.
- 2 James M. Fiore, "Op Amps and Linear Integrated Circuits", Thomson Learning, 2001
- 3 Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", TMH, 3e, 2005
- 4 David A. Bell, "Operational Amplifiers and Linear IC's", 2nd edition, PHI/Pearson, 2004

Laboratory Title: Control System Lab Total Hours: 32 Total Exam Marks: 20 Lab. Code: **18EEEP302** Duration of Exam: **02** Total ISA. Marks: **80**

Category	: Demonstration	Fotal Weightage:	10.00	No. of lab sessions: 2.00
Expt./ Job No.		Experiment/	job Details/	
1	Demonstration of heat t learning model	ank simulator with	out controlle	er using Labview Interactive
2	Demonstration of tempe Interactive learning mod	erature control of li del	quid tank si	mulator using Labview
Category	: Exercises T	otal Weightage:	40.00	No. of lab sessions: 5.00
Expt./ Job No.		Experiment/	job Details/	
1	Time response specifica	ations of second or	ler system	
2	Frequency response of s	second order system	n	
3	P,PI and PID controller	s-effect on plant ste	ep response	
4	Lag and Lead Compens	ators- determinatio	on of frequer	icy response
5	Determination of Phase	and Gain margin		
Category	Structured Enquiry	Total Weightage	e: 30.00	No. of lab sessions: 4.00
Expt./ Job No.		Experiment/	job Details/	
1.	Each batch consisting o MATLAB to design con specifications and analy responses. To submit a list of assumptions, design design validation)	f 4 students work of mpensator/controller ze the performance technical report (co ign formulation, de	on a given de er for a syste e by simulat onsisting of sign calcula	esign problem- To employ em to meet given ing the time and frequency objectives, specifications set, tions, simulation results,

Course Code: 18EEEE301

L-T-P: 3-0-0

ISA Marks: 50

Teaching Hrs: 40

Department of Electrical & Electronics Engineering Curriculum Structure with Content- Course wise

Course Title: Object Oriented Programming with C++ Credits: 3 ESA Marks: 50

Contact Hrs: 3 Total Marks: 100 Exam Duration: 03 hrs

Content	Hrs	
Unit - 1		
Chapter 01: Introduction	4 hrs	
Principles of Object Oriented Programming, Procedure oriented and Object oriented		
Programming, Basic Concepts of OOP, Benefits and Applications of OOP,		
Beginning with C++, Simple C++ program, C++ with classes, Structure of C++		
program, Creating, compiling and linking C++ programs.		
Chapter 02: Classes and Objects	7 hrs	
Structures and Classes, Specifying a Class, Defining Member functions, C++		
program with class, Access Specifiers, Scope Resolution Operators, Inline		
functions, Static Data Members, Static Member Functions, Friend Functions.		
Chapter 03: Constructors and Destructors	4 hrs	
Introduction, Parameterized Constructors, Multiple Constructors, Copy Constructor,		
Dynamic Constructor, Destructors, Dynamic allocation of objects - new and delete		
operators.		
Unit - 2		
Chapter 04: Inheritance		
Introduction, Defining Derived Classes, Types of Inheritance, Virtual Base Classes,		
Abstract Classes, Constructors in Derived Classes, Nesting of Classes.		
Chapter 05: Virtual Functions and Polymorphism	5 hrs	
Pointers to objects, this pointer, Pointers to Derived classes, Virtual Functions. Pure		
Virtual Functions.		
Chapter 06: Exception Handling	4 hrs	
Basics, Exception Handling Mechanism, Throwing, Catching and Rethrowing		
Exceptions.		
Unit - 3		
Chapter 07: Function Overloading, Operator Overloading	5 hrs	
Function Overloading, Overloading Constructors, Defining operator Overloading,		
Unary and Binary operator overloading, Rules for overloading operators.		
Chapter 08: Templates, STL		
Class Templates, Function Templates, Overloading of Template functions,		
Components of STL, Containers, Iterators, Application of Container Classes.		

Text Books (List of books as mentioned in the approved syllabus)

- 1. E.Balagurusamy, Object Oriented Programming with C++, 4th edition, Tata McGrawHill, 2008
- 2. Herbert Schildt, C++ The Complete Reference, Fourth Edition, Tata McGrawHill, 2003

References

- 1. Yashavant P. Kanetkar, Let Us C++, 1st, BPB Publications,
- 2. Stanley B.Lippmann, Josee Lajore, Barbara E. Moo, C++ Primer, 4th Edition, Pearson Education, 2005

KJ	Technological University
	Creating Value
	_ Leveraging Knowledge

KLE TECH.

Department of Electrical & Electronics Engineering Curriculum Structure with Content- Course wise

Course Title: Digital System Design using Verilag

Course Thie: Digital System Design using vernog				
L-T-P: 0-0-2	Credits: 2			
ISA Marks: 80	SEA Marks:20			
Teaching + Lab. Hours:	Examination Duration: 2			
48 Hrs	Hrs			

Course Code: 18EEEP303 Contact Hours: 4Hrs/week Total Marks: 100

48 HI	S HIS	
1.	Chapter No. 1. Architecture of FPGA	4hrs
	Architecture of FPGS: Spartan 3, What Is HDL, Verilog HDL Data Types and	
	Operators.	
2.	Chapter No. 2. Data Flow Descriptions	6 hrs
	Highlights of Data-Flow Descriptions, Structure of Data-Flow Description,	
	Data Type – Vectors, Testbench.	
3.	Chapter No. 3. Behavioral Descriptions	10 hrs
	Behavioral Description highlights, structure of HDL behavioral Description,	
	The VHDL variable – Assignment Statement, sequential statements, Tasks and	
	Functions	
4.	Chapter No. 4. Structural Descriptions	10 hrs
	Highlights of structural Description, Organization of the structural	
	Descriptions, Binding, state Machines, Generate, Generic, and Parameter	
	statements	
5.	Chapter No. 5: Finite State Machine:	4hrs
	Moore Machines, Mealy Machines	
6.	Chapter No. 6: Timing Issues in Digital Circuits:	6hrs
	Setup Time Constraints, Hold Time Constraints, Static Time analysis, Critical	
	Path, Clock Skew.	
7.	Chapter No. 7. Advanced HDL Descriptions	8hrs
	File operations in Verilog, Memories: RAM, ROM, Block Memories(Xilinx	
	IP)	

Course Code: 19EEEC401

Course Title: Power System Modeling, Operation & Control

L-T-P: 3-0-0 CIE Marks: 50

Credits: 3 SEE Marks: 50

Teaching Hrs: 40

Contact Hrs: 40 Total Marks: 100 Exam Duration: 3 hrs

Chapter	Unit-I		
No.			
1	Formation of network matrices : Multi-port power system representation, performance equations in bus frame of reference, definitions of Network models Ybus and Zbus, Primitive element representations, primitive performance equations,. Formation of Ybus by method of Inspection, Introduction to graph theory- definitions of terms, Bus incidence matrix, Ybus by the method of singular transformation, Examples on Ybus formation by singular transformation (with no mutual coupling) and Inspection method, Zbus building algorithm-addition of uncoupled branches and links, modification of Zbus for changes in elements not mutually coupled, Examples on Zbus formation	8 hrs	
2	Optimal load dispatch : Importance and objective of economic load dispatch, Fuel cost and Incremental fuel cost, Optimal load allocation between plants neglecting transmission losses, Examples on optimal load allocation with and without generation constraints, Optimal load allocation considering transmission losses, General transmission loss formula Examples	7 hrs	
3	Load flow analysis : Importance of Power flow, Classification of busses, General steps in load flow analysis, Off-nominal ratio tap changing ratio transformer representation. Bus voltage solution by Gauss and Gauss-Seidel methods without PV buses, Handling PV buses in Gauss-Seidel method, N-R load flow model in polar coordinates, formation of NR Jacobian, Introduction to FDLF load flow model, Comparison of Gauss-Seidel, NR and FDLF load flow methods, Examples on one iteration of load flow solution.	8 hrs	
4	Load frequency control : Introduction to load frequency control problem, Working principle of speed governor, Model of isolated power system area –block diagram representation, Expression for steady-state frequency deviation, Parallel operation of generators –expression for operating frequency and load sharing,, two area load frequency control, steady-state operation of multi-area system under free governor operation, Examples on load sharing between areas.	7 hrs	
5	Unit-III Departive newer and voltage control : Dever flow through a line. Deletion between	5 hm	
5	Reactive power and voltage control : Power flow through a line, Relation between voltage, power and reactive power at a node, Brief descriptions of methods of voltage control-by injection of reactive power and tap changing transformer. Generator reactive power control by AVR-simplified AVR system model, AVR response.	5 nrs	
6	Power System Simulations: Simulation of automatic generation control, simulation of small signal stability of a SMIB power system, Transient stability simulation of SMIB power system using trapezoidal integration, simulation of classical economic load dispatch Algorithm	5 hrs	

Text Books

- 1 Stagg and El-Abid, Computer Methods in power system analysis, First Edition, Mc-Graw Hill, 1968
- 2 Kothari and Nagarath, Modern power system analysis, 3rd Edition, Tata McGraw Hill, 2004

Reference Books:

- 1 P. Kundur, Power system stability and control, First Edition, Tata McGraw Hill, 2007
- 2 Hadi Sadat, Power System analysis, Ed. First Edition, Tata McGraw Hill, 2002
- 3 A.R. Bergen and Vijay Vittal, Power system analysis, Ed. First Edition, Pearson Ed, 2009

50

Department of Electrical & Electronics Engineering Curriculum Structure with Content- Course wise

> L-T-P: **3- 0- 0** CIE Marks: **50** SEE Marks:

Course Code: 19EEEE401
Course Title: Flexible AC Transmission System (FACTS
Teaching Hrs: 40 hrs

	UNIT I	Hrs
1.	FACTS: Concept and General System Considerations:	
	Transmission Interconnection, Flow of power in AC system, Limits of	10 hrs
	loading capability, Power flow and dynamic stability consideration of a	
	Transmission Interconnection, Relative importance of controllable	
	parameters, and Basic types of FACTS controllers, Brief description and	
	Definitions of FACTS controllers, Perspective: HVDC or FACTS	
2.	Voltage Sourced Converters:	05 hrs
	Basic Concepts, Single Phase Full Wave Bridge Converter Operation, Single	
	phase Leg operation, Three Phase Full Wave Bridge Converter, Transformer	
	Connection for 12 pulse operation	
	UNIT II	
3.	Current Sourced Converters:	
	Basic concepts, Three phase full wave diode rectifier, Thyristor based	
	converter Rectifier operation with gate turn ON, Current sourced converter	05 hrs
	with turn OFF devices, Current sourced versus Voltage sourced converter.	
4.	Objectives of Series and Shunt Compensation:	10 hrs
	Objective of Shunt Compensation, Methods of Controllable VAR	
	Generation, Static VAR Compensators SVC STATCOM, Objective of	
	Series Compensation, Static Series Compensators, GCSC, TSSC, TCSC and	
	SSSC	
	Unit – III	
5.	Static Voltage, Phase Angle Regulators:	05hrs
	Objectives of Static Voltage and Phase Angle Regulators, Approach to	
	Thyristor Controlled Voltage and Phase Angle Regulators, TCVR and	
	TCPAR,	
6.	Combined Compensators:	05hrs
	Unified Power Flow Controller UPFC and Interline Power Flow Controller	
	IPFC.	

Text Book:

1. Narain G. Hingorani, and Laszlo Gyugyi., "*Understanding FACTS*", IEEE Press, Standard Publishers Distributors, Delhi, 200, ISBN 81 86308 79 2. **References Book:**

1. K. R Padiyar, "*FACTS controllers in Power Transmission and Distribution*", New Age International Publishers, New-Delhi, 2007, ISBN 978 81 224 2142 2.

Course Title: Wind and PV Electrical Energy Systems CIE: 50 Marks Teaching Hours: 42 1. Introduction to Wind Energy Systems 2 hrs 1. Introduction to Wind Energy Systems 2 hrs 2. Wind Turbine generators 5 hrs Impact of tower height, maximum rotor efficiency, wind turbine generators, importance of variable slip induction generators, indirect grid connection systems. 5 hrs 3. Average power in the wind 5 hrs Discrete wind histogram, wind power probability density functions, Weibull and Rayleigh statistics, average power in the wind with Rayleigh statistics. Annual energy using average turbine efficiency, wind farms. 8 hrs 4. Specific wind turbine performance calculations 5 hrs A Aerodynamics, idealized wind turbine power curve, optimizing rotor diameter and generator rated power, wind speed cumulative distribution function, using real power curves with Weibull statistics, using capacity factor to estimate energy produced. 5 hrs 5. PV materials and electrical characteristics 5 Hrs Introduction, generic PV cell, cells to modules to arrays, PV I-V curve at STC, impacts of temperature and insolation on I-V curve, shading impacts on I-V curve 5 Hrs 6. PV systems 1. 5 Hrs 1. Unit -III 5 Hrs		Course Code: 19EEEO401 L-T-P	:3-0-0
SEE: 50 MarksTeaching Hours: 421.Introduction to Wind Energy Systems Historical development of wind power, types of wind turbines, power in the wind.2 hrs2.Wind Turbine generators Impact of tower height, maximum rotor efficiency, wind turbine generators, importance of variable rotor speeds, pole changing induction generators, multiple gear boxes, variable slip induction generators, indirect grid connection systems.5 hrs3.Average power in the wind Discrete wind histogram, wind power probability density functions, Weibull and Rayleigh statistics, average power in the wind with Rayleigh statistics. Annual energy using average turbine efficiency, wind farms.8 hrs4.Specific wind turbine performance calculations Aerodynamics, idealized wind turbine power curve, optimizing rotor diameter and generator rated power, wind speed cumulative distribution function, using real power curves with Weibull statistics, using capacity factor to estimate energy produced.5 hrs5.PV materials and electrical characteristics Introduction, generic PV cell, cells to modules to arrays, PV I-V curve at STC, impacts of temperature and insolation on I-V curve, shading impacts on I-V curve5 Hrs6.PV systems Introduction, current-voltage curves for loads, grid connected systems, grid connected PV system economics, stand-alone PV systems, PV power water pumping5 Hrs7.The solar resource Solar spectrum, earth's orbit, altitude angle of the sun, solar position at any time of day, sun nath diagrams, solar time and civil time, sun rise and sun set, clear5 Hrs		Course Title: Wind and PV Electrical Energy Systems CIE: 50	Marks
1. Introduction to Wind Energy Systems Historical development of wind power, types of wind turbines, power in the wind. 2 hrs 2. Wind Turbine generators Impact of tower height, maximum rotor efficiency, wind turbine generators, multiple gear boxes, variable rotor speeds, pole changing induction generators, multiple gear boxes, variable slip induction generators, indirect grid connection systems. 5 hrs 3. Average power in the wind Discrete wind histogram, wind power probability density functions, Weibull and Rayleigh statistics, average power in the wind with Rayleigh statistics. Annual energy using average turbine efficiency, wind farms. 8 hrs 4. Specific wind turbine performance calculations Aerodynamics, idealized wind turbine power curve, optimizing rotor diameter and generator rated power, wind speed cumulative distribution function, using real power curves with Weibull statistics, using capacity factor to estimate energy produced. 5 hrs 5. PV materials and electrical characteristics Introduction, generic PV cell, cells to modules to arrays, PV I-V curve at STC, impacts of temperature and insolation on I-V curve, shading impacts on I-V curve 5 Hrs 6. PV systems Introduction, current-voltage curves for loads, grid connected systems, grid connected PV system economics, stand-alone PV systems, PV power water pumping 5 Hrs 7. The solar resource Solar spectrum, earth's orbit, altitude angle of the sun, solar position at any time of day, sun path diagrams, solar time and civil time, sun rise and sun set, clear 5 Hrs		SEE: 50 Marks Teaching Hot	ırs: 42
 Intervence of the protocy of perior what the others, power in the what importance of variable stores protocy of the terms is power in the what importance of variable rotor speeds, pole changing induction generators, multiple gear boxes, variable slip induction generators, indirect grid connection systems. Average power in the wind Discrete wind histogram, wind power probability density functions, Weibull and Rayleigh statistics, average power in the wind with Rayleigh statistics. Annual energy using average turbine efficiency, wind farms. Unit–II Specific wind turbine performance calculations	1.	Introduction to Wind Energy Systems Historical development of wind power, types of wind turbines, power in the wind	2 hrs
 Impact of tower height, maximum rotor efficiency, wind turbine generators, importance of variable rotor speeds, pole changing induction generators, multiple gear boxes, variable slip induction generators, indirect grid connection systems. Average power in the wind Discrete wind histogram, wind power probability density functions, Weibull and Rayleigh statistics, average power in the wind with Rayleigh statistics. Annual energy using average turbine efficiency, wind farms. Unit–II Specific wind turbine performance calculations Aerodynamics, idealized wind turbine power curve, optimizing rotor diameter and generator rated power, wind speed cumulative distribution function, using real power curves with Weibull statistics, using capacity factor to estimate energy produced. PV materials and electrical characteristics 	2	Wind Turbine generators	
3. Average power in the wind 8 hrs 3. Average power in the wind 8 hrs Biscrete wind histogram, wind power probability density functions, Weibull and Rayleigh statistics, average power in the wind with Rayleigh statistics. Annual energy using average turbine efficiency, wind farms. 8 hrs 4. Specific wind turbine performance calculations 5 hrs Aerodynamics, idealized wind turbine power curve, optimizing rotor diameter and generator rated power, wind speed cumulative distribution function, using real power curves with Weibull statistics, using capacity factor to estimate energy produced. 5 hrs 5. PV materials and electrical characteristics 5 Hrs Introduction, generic PV cell, cells to modules to arrays, PV I-V curve at STC, impacts of temperature and insolation on I-V curve, shading impacts on I-V curve 5 Hrs 6. PV systems 1 5 Hrs Introduction, current-voltage curves for loads, grid connected systems, grid connected PV system economics, stand-alone PV systems, PV power water pumping 5 Hrs 7. The solar resource 5 Hrs Solar spectrum, earth's orbit, altitude angle of the sun, solar position at any time of day, sun path diagrams, solar time and civil time, sun rise and sun set, clear 5 Hrs	2.	Impact of tower height, maximum rotor efficiency, wind turbine generators, importance of variable rotor speeds, pole changing induction generators, multiple gear boxes, variable slip induction generators, indirect grid connection systems.	5 hrs
Discrete wind histogram, wind power probability density functions, Weibull and Rayleigh statistics, average power in the wind with Rayleigh statistics. Annual energy using average turbine efficiency, wind farms. 6 Iff 4. Specific wind turbine performance calculations Aerodynamics, idealized wind turbine power curve, optimizing rotor diameter and generator rated power, wind speed cumulative distribution function, using real power curves with Weibull statistics, using capacity factor to estimate energy produced. 5 hrs 5. PV materials and electrical characteristics Introduction, generic PV cell, cells to modules to arrays, PV I-V curve at STC, impacts of temperature and insolation on I-V curve, shading impacts on I-V curve 5 Hrs 6. PV systems Introduction, current-voltage curves for loads, grid connected systems, grid connected PV system economics, stand-alone PV systems, PV power water pumping 5 Hrs 7. The solar resource Solar spectrum, earth's orbit, altitude angle of the sun, solar position at any time of day, sun path diagrams, solar time and civil time, sun rise and sun set, clear 5 Hrs	3.	Average power in the wind	9 hmg
Unit–II Unit–II 4. Specific wind turbine performance calculations Aerodynamics, idealized wind turbine power curve, optimizing rotor diameter and generator rated power, wind speed cumulative distribution function, using real power curves with Weibull statistics, using capacity factor to estimate energy produced. 5 hrs 5. PV materials and electrical characteristics Introduction, generic PV cell, cells to modules to arrays, PV I-V curve at STC, impacts of temperature and insolation on I-V curve, shading impacts on I-V curve 5 Hrs 6. PV systems Introduction, current-voltage curves for loads, grid connected systems, grid connected PV system economics, stand-alone PV systems, PV power water pumping 5 Hrs 7. The solar resource Solar spectrum, earth's orbit, altitude angle of the sun, solar position at any time of day, sun path diagrams, solar time and civil time, sun rise and sun set, clear 5 Hrs		Discrete wind histogram, wind power probability density functions, Weibull and Rayleigh statistics, average power in the wind with Rayleigh statistics. Annual energy using average turbine efficiency, wind farms.	ð nrs
 4. Specific wind turbine performance calculations Aerodynamics, idealized wind turbine power curve, optimizing rotor diameter and generator rated power, wind speed cumulative distribution function, using real power curves with Weibull statistics, using capacity factor to estimate energy produced. 5. PV materials and electrical characteristics		Unit–II	
5. PV materials and electrical characteristics 5 Hr. Introduction, generic PV cell, cells to modules to arrays, PV I-V curve at STC, impacts of temperature and insolation on I-V curve, shading impacts on I-V curve 5 Hr. 6. PV systems 1 Introduction, current-voltage curves for loads, grid connected systems, grid connected PV system economics, stand-alone PV systems, PV power water 5 Hr. 7. The solar resource 5 Hr. Solar spectrum, earth's orbit, altitude angle of the sun, solar position at any time of day, sun path diagrams, solar time and civil time, sun rise and sun set, clear 5 Hr.	4.	Specific wind turbine performance calculations Aerodynamics, idealized wind turbine power curve, optimizing rotor diameter and generator rated power, wind speed cumulative distribution function, using real power curves with Weibull statistics, using capacity factor to estimate energy produced.	5 hrs
Introduction, generic PV cell, cells to modules to arrays, PV I-V curve at STC, impacts of temperature and insolation on I-V curve, shading impacts on I-V curve 5 Hr. 6. PV systems 1 Introduction, current-voltage curves for loads, grid connected systems, grid connected PV system economics, stand-alone PV systems, PV power water pumping 5 Hr. 7. The solar resource Solar spectrum, earth's orbit, altitude angle of the sun, solar position at any time of day, sun path diagrams, solar time and civil time, sun rise and sun set, clear 5 Hr.	5.	PV materials and electrical characteristics	7 TT
 6. PV systems Introduction, current-voltage curves for loads, grid connected systems, grid connected PV system economics, stand-alone PV systems, PV power water 5 Hrst pumping 7. The solar resource Solar spectrum, earth's orbit, altitude angle of the sun, solar position at any time of day, sun path diagrams, solar time and civil time, sun rise and sun set, clear 		Introduction, generic PV cell, cells to modules to arrays, PV I-V curve at STC, impacts of temperature and insolation on I-V curve, shading impacts on I-V curve	5 Hrs
0. Introduction, current-voltage curves for loads, grid connected systems, grid connected PV system economics, stand-alone PV systems, PV power water pumping 5 Hrs 7. The solar resource Solar spectrum, earth's orbit, altitude angle of the sun, solar position at any time of day, sun path diagrams, solar time and civil time, sun rise and sun set, clear 5 Hrs	6	PV systems	
Unit -III 5 Hrs 7. The solar resource Solar spectrum, earth's orbit, altitude angle of the sun, solar position at any time of day, sun path diagrams, solar time and civil time, sun rise and sun set, clear 5 Hrs	0.	Introduction, current-voltage curves for loads, grid connected systems, grid connected PV system economics, stand-alone PV systems, PV power water pumping	5 Hrs
7. The solar resource Solar spectrum, earth's orbit, altitude angle of the sun, solar position at any time of day, sun path diagrams, solar time and civil time, sun rise and sun set, clear		Unit -III	
Solar spectrum, earth's orbit, altitude angle of the sun, solar position at any time of day, sun path diagrams, solar time and civil time, sun rise and sun set, clear	7.	The solar resource	<i>с</i> тт
sky direct beam radiation.		Solar spectrum, earth's orbit, altitude angle of the sun, solar position at any time of day, sun path diagrams, solar time and civil time, sun rise and sun set, clear sky direct beam radiation.	5 Hrs
8. Insolation and its measurement 5 Hr	8.	Insolation and its measurement	5 Hrs
Total insolation on a solar collecting surface, monthly clear sky insolation, solar radiation measurements, average monthly insolation.		Total insolation on a solar collecting surface, monthly clear sky insolation, solar radiation measurements, average monthly insolation.	

Text Book

1. Gillbert M Masters, Renewable and efficient Electric Power Systems, Wily Interscience, New Jersey, 2004.

References:

1. B. H. Khan, Non Conventional Energy Resources, TMH Publishers, New Delhi, 2006.

Q	K	LE
KLE TECH		Creati
KEE TECH.		Leveraging

Course Code: 19EEEP403	Course Title: Embedded Linux		
L-T-P: 3-0-0	Credits: 03	Contact Hrs: 03	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40		Exam Duration: 03 hrs	

Content	Hrs
Unit - 1	
Chapter 01: Introduction to Embedded Linux:	4 hrs
A Brief History of Linux -Benefits of Linux -Acquiring and Using Linux -Examining	
Linux Distributions - Devices and Drives in Linux-Components: Kernel, Distribution,	
Sawfish, and Gnome.	
Chapter 02: Overview of Embedded Linux:	5 hrs
Overview: Development-Kernel architectures and device driver model- Embedded	
development issues-Tool chains in Embedded Linux-GNU Tool Chain (GCC,GDB,	
MAKE, GPROF & GCONV)- Linux Boot process.	
Chapter 03: System Management and user interface:	5 hrs
Boot sequence-System loading, sys linux, Lilo, grub-Root file system-Binaries required	
for system operation-Shared and static Libraries overview-Writing applications in user	
space-GUI environments for embedded Linux system.	
Unit - 2	
Chapter 04: File system in Linux:	6 hrs
File system Hierarchy-File system Navigation -Managing the File system –Extended file	
systems-INODE-Group Descriptor-Directories-Virtual File systems- Performing File	
system Maintenance -Locating Files – Registering the File systems- Mounting and	
Unmounting –Buffer cache-/proc file systems-Device special files.	
Chapter 05: Configuration:	4 hrs
Configuration, Compilation & Porting of Embedded Linux-Examining Shells -Using	
Variables - Examining Linux Configuration Script Files - Examining System Start-up Files	
-Creating a Shell Script.	
Chapter 06: Process management and Inter process communication:	8 hrs
Managing Process and Background Processes -Using the Process Table to Manage	
Processes -Introducing Delayed and Detached Jobs - Configuring and Managing Services -	
Starting and Stopping Services -Identifying Core and Non-critical Services -Configuring	
Basic Client Services -Configuring Basic Internet Services –Working with Modules.	
IPC-Benefits of IPC- Basic concepts-system calls-creating pipes-creating a FIFO-FIFO	
operations-IPC identifiers-IPC keys-IPCS commands- Message queues-Message buffer-	
Kernel Ring Buffer semaphores-semtools-shared memory semtools- signals-sockets.	
Unit - 3	
Chapter 07: Linux device drivers:	8 hrs
Devices in Linux- User Space Driver APIs- Compiling, Loading and Exporting- Character	
Devices- Tracing and Debugging- Blocking and Wait Queues- Accessing Hardware-	
Handling Interrupts- Accessing PCI hardware- USB Drivers- Managing Time- Block	
Device Drivers- Network Drivers- Adding a Driver to the Kernel Tree.	

Text Books (List of books as mentioned in the approved syllabus)

- 1. Embedded Linux Hardware, Software and Interfacing Craig Hollabaugh, Addison-Wesley Professional, 2002
- 2. Embedded / Real-Time Systems: Concepts, Design and Programming Black Book, New ed (MISL-DT) Paperback – 12 Nov 2003.

References

- 3. Building Embedded Linux Systems, Karim Yaghmour, First edition, April 2003.
- 4. Embedded Linux- John Lombardo, Newriders.com

Course Code: 18EEEP201 L-T-P: (0-0-3) Credits:3 CIE Marks: 80 SEE Marks: 20 Teaching Hrs: 48hrs

KLE TECH.

Title: Data Structure Using C Lab Contact Hrs: **4 hrs/week** Total Marks: **100** Exam Duration: **3 hrs**

Chapter No.	Unit-I	
1	Programming on pointer concepts : Pointer concepts,1D and 2D arrays, pointers to functions, memory management functions	02+02 Hrs
2	Programming on string handling functions using pointers, structures, bit-fields : Perform string handling functions like String length, String concatenate, Strings compare, String copy and Strings reverse, Implementing Structures, union and bit- field.	02+02 Hrs
3	Programming on files: Open, Close, Read, Write and Append the file.	02+02 Hrs
4	Programming on stack data structures and applications: Insert delete and display an integer in a stack, Conversion from Infix to postfix & Infix to Prefix, Recursion.	02+02 Hrs
5	Programming on queue data structures: Insert at rear end ,delete at front end and display the integers in queue, Deque and circular queue.	02+02 Hrs
6	Programming on linked lists: Insert, delete and display a node in Singly Linked List, Doubly Linked List and Circular Linked List.	06+03 Hrs
7	Programming on trees: Perform various operations on binary trees, find max, min value in a binary search trees, find the height of a tree, count nodes in a tree, delete a node in a tree.	02+02 Hrs
8	Programming on sorting: Merge sort, Quick sort, Heap sort, Shell sort, Radix sort.	02+02 Hrs
<u>9</u>	Programming on graphs: Compare Breadth First Sort Sort, and Depth First Sort	02+02 Hrs
10	Programming on hashing tables: Implement different methods of hash tables.	02+02 Hrs
11	Open ended experiment: Implement given Data structures.	02+02 Hrs

Text Books

- 1 Horowitz, Sahani, Anderson-Feed, "Fundamentals of Data Structures in C", 2ed,Universities Press, 2008
- 2 Aaron M. Tenenbaum, "Data Structures Using C", Pearson Education India, 2003
- 3 Richard F. Gilberg, Behrouz A. Forouzan "Data Structures: A Pseudocode Approach With C", 2nd Edition, Course Technology, Oct 2009.

Reference Books:

- 1 E Balaguruswamy, "The ANSI C programming Language", 2ed., PHI, 2010.
- 2 Yashavant Kanetkar, "Data Structures through C", BPB publications 2010

Q	K
KLE TECH.	

Course Code: 19EEEE301

Course Title: CMOS VLSI Circuits

L-T-P: 3-0-0

ISA Marks: 50

Teaching Hrs: 40

Credits: 3 Contact Hrs: 40

ESA Marks: 50

Total Marks: 100

Exam Duration: 3 hrs

Content	Hrs
Unit – 1	
Chapter No. 1. Introduction to VLSI and IC fabrication technology VLSI Design Flow, Semiconductor Technology - An Overview, Czochralski method of growing Silicon, Introduction to Unit Processes (Oxidation, Diffusion, Deposition, Ion-implantation), Basic CMOS technology - Silicon gate process, n-Well process, p- Well process, Twin-tub Process, Oxide isolation.	06 hrs
Chapter No. 2. Electronic Analysis of CMOS logic gates DC transfer characteristics of CMOS inverter, Beta Ratio Effects, Noise Margin, MOS capacitance models. Transient Analysis of CMOS Inverter, NAND, NOR and Complex Logic Gates, Gate Design for Transient Performance, Switch-level RC Delay Models, Delay Estimation, Elmore Delay Model, Power Dissipation of CMOS Inverter, Transmission Gates & Pass Transistors, Tristate Inverter.	14 hrs
Unit – 2	
Chapter No. 3. Design of CMOS logic gates Stick Diagrams, Euler Path, Layout design rules, DRC, Circuit extraction, Latch up – Triggering Prevention.	06 hrs
Chapter No. 4. Designing Combinational Logic Networks Gate Delays, Pseudo nMOS, Clocked CMOS, Dynamic CMOS Logic Circuits, Dual- rail Logic Networks: CVSL, CPL.	08 hrs
Unit – 3	
Chapter No. 5. VLSI Design Flow Structured Design Strategies: Hierarchy, Regularity, Modularity, Locality, SDEF Layout Flow, Case Study IC tape out.	06 hrs

Text Books (List of books as mentioned in the approved syllabus)

- 1. □John P. Uyemura, Introduction to VLSI Circuits and Systems, 1, Wiley, 2007
- Neil Weste, David Harris & Ayan Banerjee, CMOS VLSI Design, 3, Pearson Ed, 2005
- **3.** Sung-Mo Kang & Yusuf Leblebici, CMOS Digital Integrated Circuits: Analysis

and Design, 3, Tata McGra, 2007

References

- 1. Wayne, Wolf, Modern VLSI design: System on Silicon, 3, Pearson Ed, 2005
- 2. Douglas A Pucknell and Kamran Eshraghian, Basic VLSI Design, 3, PHI, 2005
- **3.** Phillip. E. Allen, Douglas R. Holberg, CMOS Analog circuit Design, 1, Oxford University, 2002

KLE TECH.

Department of Electrical & Electronics Engineering Curriculum Structure with Content- Course wise

Course Code: 19EEEE302	Course Title: Battery Management Systems		
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40		Exam Duration: 3 hr	S
Conte	nt		Hrs
Unit –	1		
Chapter No. 1. Introduction : Introduction to elect batteries and their specific applications, Lithium- Battery Construction, Battery Chemistry, Safety, L	tric vehicle & hybrid ele ion battery fundamenta ongevity, Performance,	ectric vehicle, types of ls: Battery Operation, and Integration.	03 hrs
Chapter No. 2. Battery Models : Battery Models, C Equivalent Circuit, Hysteresis, Coulombic E identification using SOC/OCV.	Overview, self-Discharg fficiency, Nonlinear	ge Modeling, Thevenin Elements, parameter	04hrs
Chapter No. 3. BMS (Black-box approach) : Need typical functions Battery management system network	d for BMS, Typical inpu ork in a typical electric	its, typical outputs and vehicle.	02 hrs
Chapter No. 4. BMS Architectures: Monolithic Methods, Additional Scalability, Battery Pack Arch	c, Distributed, Semi-Dinitectures.	istributed, Connection	02 hrs
Chapter No. 5. System Control: Contactor Cont Topologies, Contactor Opening Transients, C	rol, Soft Start or Prech hatter Detection, Eco	arge Circuits, Control onomizers, Contactor	04 hrs

Topologies, Contactor Fault Detection.

Unit – 2

Chapter No. 6. Data acquisition (Measurement): Cell voltage, current and temperature 05 hrs measurement, Synchronization of Current and Voltage.

Chapter No. 7. Battery Management System Functionalities: CC/CV Charging Method, 03 hrs Target Voltage Method, Constant Current Method, Thermal Management, and Operational Modes.

Chapter No. 8. Charge Balancing(Cell balancing): Charge Balancing Strategies, Balancing 05 hrs Optimization, Charge Transfer Balancing, Flying capacitor.

Chapter No. 9. SoC Estimation: Columb counting, SoC corrections, OCV measurements, 02 hrs temperature compensation.

Unit – 3

Chapter No. 10. BMS communications:Overview, Network Technologies ,I2C/SPI, RS-23205 hrsand RS-485 134, Local Interconnect Network, CAN 136 ,Ethernet and TCP/IP, Modbus, FlexRay,
Network Design.05 hrs

Chapter No. 11. Battery Safety: Functional Safety, Hazard Analysis, Safety Goals, Safety 05hrs Concepts and Strategies, Reference Design for Safety.

Text Books

1. Phillip Weicker "A Systems Approach to Lithium-Ion Battery Management" 2013, Artech house publisher

References

1. Jiuchun Jiang and Caiping Zhang, "Fundamentals and Applications of Lithium-Ion Batteries in Electric Drive Vehicles", John Wiley & Sons, 2015

٦

Department of Electrical & Electronics Engineering Curriculum Structure with Content- Course wise

Laboratory Title: Electric Drives and Control Lab

Lab. Code: 19EEEP302

Duration of SEE Hours: 3

Total Hours: 24

CIE Marks: 80

SEE Marks: 20

Г

Category	Category: Demonstration				
Expt./ Job No.	Experiment / Job Details				
1	Forward and Flyback DC-DC Converter				
2	Single phase full bridge inverter				
3	Half controlled Rectifier feeding R and RL load				
4	Introduction to STEmbed Model based design and C-code generation for Power Electronics & Drives Application using TI's DSPs.				
Category	Exercise				
Expt./ Job No.	Experiment / Job Details				
1	Three phase full bridge controlled rectifier fed DC motor drive.				
2	Fully controlled bridge rectifier feeding R and RL load				
3	VSI based open loop volts/hertz control of three phase induction motor drive.				
4	ADC, PWM pulse Generation and PI Controller design for PE and Drives application using STEmbed and TI's DSPs.				
Category	Structured Enquiry				
Expt./ Job No.	Experiment / Job Details				
1	To design, simulate and experimentally verify given drive system to meet defined specifications.				

KLE TECH. KLE TECH.	FORM ISO 9001: 2008	Document #: FMCD2005	Rev: 1	.0
Department of Electrical & Electronics Engineering				
Course Code: 20EEEE401	Course Title: Tra	ction Systems	for Electric	Vehicles
L-T-P: 3-0-0	Credits: 3	Contact	Hrs: 40	
ISA Marks: 50	ESA Marks: 50	Total M	arks: 100	
Teaching Hrs: 40		Exam D	uration: 3 h	rs
Conten	nt			Hrs
Unit -	1			
Chapter No. 1. Motion and dynamic equations f Introduction to hybrid and electric vehicles, dynamic and dynamic equations for hybrid and electric vehicles	or vehicles mics of hybrid and cles.	electric vehic	les, motion	5 hrs
Chapter No. 2. Vehicle Power Plant and Transmission Characteristics The drive train configuration, Various types of vehicle power plants, The need of gearbox in a vehicle, The mathematical model of vehicle performance			5 hrs	
Chapter No. 3: Basic Architecture of Electric Drive Trains Electric Vehicle Configuration, EV alternatives based on drivetrains, EV alternatives based on power source configuration, Single and Multi-motor drives in wheel drives			5 hrs	
Unit - 2	2		i	
Chapter No. 4. Permanent Magnet Machines for Permanent Magnet (PM) Machines, Principle of O Machine Supplied by DC-AC Converter with 1 Machine Supplied by DC-AC Converter with 1800	r Hybrid and Elec Dperation of PM M 200Mode of Ope Mode of Operation	tric Vehicles Iachine, Operat ration, Operati	tion of PM on of PM	7 hrs
Chapter No. 5. Permanent Magnet Machines suitability Electric Vehicles Relevance /operation of PM Motor specific to electric vehicles, Operation of PM Machine Supplied by DC-AC Converter with 120 degree Mode of Operation, Operation of PM Machine Supplied by DC-AC Converter with 180 degree Mode of Operation, Steady state characteristic operation of PM motor and importance of reluctance torque			8 hrs	
Unit - 3	3			
Chapter No. 6. Control of PM machines Control Strategies of PM Machines, Constant Toro Flux Linkage Control, Optimum Torque per Ampe	que Angle Control, re Control	Constant Mut	ıal Air gap	5 hrs
Chapter No. 7. Drive cycle analysis and sizing of Power Train and Drive Cycles, New York City Cy 75), Sizing of Electric machine, Peak Torque and Sizing, Sizing Power Electronics	f Electric Machine ycle (NYCC), Fede d Power, Constant	e for EVs and E eral Test Proce Power Speed	HEVs dure (FTP- Ratio, EM	5 hrs

.

.

I.

1. Chris Mi and M Abul Masrur, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons, 2018.

Course Code: 20EEEE402	2 Course Title: Powertra	in Control Laboratory	
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 40	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40		Exam Duration: 3	hrs
	EV Laborato	ry (0-0-3)	• \
Plan f	or 12 Weeks $(12*6 = 72 \text{ Ho})$	urs = 24 Lab sessions of 3 Hrs eac	ch)
1 Introduction to N	Content	matheda configuration sottings	Hrs
data acquisition, da	ata representation)	methods, configuration settings,	
 2. Battery Modelling a. Series and b. Charge and c. SoC algorit d. Passive and 	g and Simulation Parallel connection discharge curves of individu hms Active Cell Balancing	ual cell and battery pack.	(4 Sessions)
3. Mathematical Mo a. Bi-direction battery) b. Three phase	delling and Simulation of I nal DC-DC converters (For i e voltage source inverter (mo	Power Converters nterface between Inverter and otor driver)	(3 Sessions)
 4. dq Transformation a. Parks trans b. Clarke's trans 	on theory formation ansformation		(1 sessions)
 5. Induction Motor 1 a. dq Model o b. Scalar Con c. Vector Con i. Dire ii. Fiel 	Drive of Three Phase Induction Ma trol (Constant Voltz/Hertz L atrol strategies ect Torque Control d Oriented Control	chine aw)	(4 sessions)
6. PMBLDC Drive a. Model of B b. Speed Cont	LDC motor trol Strategies		(4 sessions)
 7. PMSM Drive a. dq Model o b. Scalar Con c. Vector Con i. Diro ii. Fiel 	of PMSM machine trol (Constant Voltz/Hertz L atrol strategies ect Torque Control d Oriented Control	aw)	(4 sessions)
Course Project (4 la	b Sessions)		
1. System Integratio	on and testing (End-to-End	Simulation)	
2. Experimental Ver	rification (Build sub modul	es throughout the semester)	

KLE TECH. KLE TECH.	echnological niversity ^{Value} nowledge	FORM ISO 9001: 2008	Document #: FMCD2005	
Department of	_			
Guindalaire				_
Laboratory Title: Project			Lab. Code:	20EEEW401
Credits: L-T-P: 0-0-14	Credits: 14		Duration of S	SEE Hours: 3

Duration of SEE Hours: 3

CIE Marks: 50

Capstone Project Guidelines

(I) Preamble

SEE Marks: 50

A project work essentially gives the students a platform to integrate the concepts studied during the study, enhance their analytical capabilities and develop abilities to effectively communicate technical information in multiple formats. During the course of projects, students are asked to follow the research methodology in identifying a problem of their interest though literature survey, carry-out feasibility study, formulate the problem, develop mathematical models, select suitable solution technique etc. Students are also encouraged to develop new formulations, alternate solution techniques, study and apply new optimization algorithms, develop new simulation models and use modern engineering/simulation tools.

(II) Project batch and Guide

Each project batch consists of 3 or 4 students. Students will be informed to form their own batch based on the kind of project work and their interest. Each batch is supposed to give four faculty names as guides based on faculty expertise in the order of their preference. Guides will be allocated based on the preference given by the batch. The primary role of the guide is to supervise the work, give appropriate guidance in successfully carrying out the project work.

(III) Project implementation

The principal steps in carrying out the project work are summarized below:

Step-1: Selection of a specialized area for the project work

A specialized area in which the project work is to be carried out depends on the interest and specialized skills acquired by the project team. This includes areas such as power system analysis, power system dynamics, renewable energy, electric drives, VLSI & Embedded system, Power quality issues etc. The proposed work may include simulation studies, hardware implementation or both.

Step-2: Selection of topic based on literature survey

A literature survey in the selected specialized area is to be carried out in order to understand the state of the current research. Further, a critical review of the collected literature will facilitate to summarize key observations. Key observations will lead to identifying a specific problem for the project work in terms of alternate/new solution techniques, possible improvements, new formulations or models, hardware implementations etc.

Step-3: Prepare a synopsis

A synopsis highlights the definition of identified problem and its significance. The synopsis will also contain detailed literature review giving the state of the current

research on the selected specialized area. It will also brief the problem formulation, solution methodology, tools employed and possible outcomes.

Step-4: Project implementation

The work is to be carried out in phase wise manner, testing or analyzing the partial results obtained. Guide will periodically monitor the progress of the work done giving suitable suggestions as required.

(IV) Schedule

Sl. No.	Activity	Week No.	Evaluation Objectives		
1	Announcement to form the batches	At the end of the previous 7 th sem	NA		
2	Allotment of guides	1^{st} - 2^{nd}	NA		
3	Submission of Synopsis	4 th - 5 th	Literature review, problem formulation, methodology by respective Guides		
4	Review-I	6 th - 8 th	Literature review, problem formulation, methodology, tools used in the presence Review Committee		
5	Review-II	9 th -10 th	Implementation and analysis done		
6	Review-III	12 th - 14 th	Completion along with Hardware/ Software/ Report. Results and Conclusions.		

(V) Evaluation

Evaluation of the project work carried out by each batch will be reviewed periodically by a review committee. Review committee consists of guide and two/ three other faculty members who are guiding other batches. Generally, two to three reviews will be held during a semester. However, each project batch will be supervised by the guide on a weekly basis. Review committee will evaluate for 40% and guide will evaluate for 60% of the total marks.

Activity	ctivity Assessment	
ISA (50%)	SA (50%) Project Review committee	
	Evaluation by Project Guide	30
ESA	Using ESA Rubrics	50
(50%)	Total	100

Passing: 40% both in ISA and ESA

Review Committee Evaluation Schedule			
Activity	Week	Marks	
Review I: Problem Definition	6^{th}	05	
Review II: Progress	8 th	05	
Review III: Results & Conclusions	12 th	10	
Guide Evaluation	12 th	30	
Total	•	50	

C-L . C **T**---- 1-**.**.... ъ

In Semester Assessment (ISA)

Review	Phases of the project	PI	Marks	
	Identification of problem, Literature survey, Methodology	2.4.1		
	Relevance of project topic literature review	24.1	10 Marks	
1	Tools/ Software/ Hardware using	2.2.3		
	Team and Individual Work	9.2.1		
	Develop models and simulate power/ energy/ electronics systems using appropriate engineering tools	13.1.1		
	Presentation and communication skills	10.3.2	10 Marks	
2	Design/ Development of solutions	3.4.1		
	Investigation of complex problems	4.3.4		
	Work done	2.2.3		
	Team and Individual Work	9.2.1		
	Develop models and simulate power/ energy/ electronics systems using appropriate engineering tools	13.1.1		
	Work done	2.2.3		
3	Design/ Development of solutions3.4.130 MInvestigation of complex problems4.3.4		30 Marks	
U			50 Marks	
	Analysis and Results	3.4.1	-	
	Team and Individual Work	9.2.1		
Total (Average of three reviews)				

End Semester Assessment (ESA)

CAPSTONE PROJECT					
	Grou	p Evaluation	PO Assessed	PI Assessed	Weightage
	Relevance of project topic and Literature review	 Problem identification Problem objectives and scope 	2	2.2.3 2.4.1	30%
End Semester Assessment (ESA)	Quality and Quantity of work reported Quality of presentation and report	 Problem formulation Contribution to the field of knowledge Experimentation/simu lation Analysis of results Drawing conclusions Assumptions and justifications Organization of the report/presentation Clarity of language Clarity of illustrations and Tables 	2 3 4 13	2.4.2 13.1.1 3.4.1 4.3.4	40%
	Individ	ual Evaluation			<u>I</u>
	Presentation/ Communicatio n skills	Clarity of languageTechnical Knowled	10	10.3.2	5%
	Viva Voce	• Demonstration of clear understanding of the concept	10	10.3.2	5%

Course Title: Signals and Systems

L-T-P: 3-0-0

ISA Marks: 50

Credits:3

SEA Marks:50

Department of Electrical & Electronics Engineering Curriculum Structure with Content- Course wise

Course Code: 19EEEC205
Contact Hours: 3Hrs/week
Total Marks: 100

Teac	hing Hours: 40 Hrs Examination Duration: 3 Hrs	
1.	Chapter No. 1. Introduction and Classification of signals: Definition of signal and systems. Sampling of analog signals, Continuous time and discrete time signal, Classification of signals as even, odd, periodic and non-periodic, deterministic and non-deterministic, energy and power. Elementary signals/Functions: exponential, sine, impulse, step and its properties, ramp, rectangular, triangular. Operations on signals: Amplitude scaling, addition, multiplication, differentiation, integration, time scaling, time shifting and time folding. Systems: Definition, Classification: linear and nonlinear, time variant and invariant, causal and non-causal, static and dynamic, stable and unstable, invertible.	8hrs
2.	Chapter No. 2. Time domain representation of LTI System: Definition of impulse response, convolution sum, convolution integral ,computation of convolution sum using graphical method for unit step to unit step, unit step to exponential, exponential to exponential, unit step to rectangular and rectangular to rectangular only. Properties of convolution.	7hrs
3.	Chapter No. 3. Fourier Representation of Periodic Signals: Fourier Representation of Periodic Signals: Introduction to CTFS and DTFS, definition, properties and basic problems.	5hrs
4.	Chapter No. 4. Fourier Representation of aperiodic Signals: FT representation of aperiodic CT signals, definition, FT of standard CT signals, Properties and their significance. FT representation of aperiodic discrete signals DTFT, definition, DTFT of standard discrete signals, Properties and their significance, Impulse sampling and reconstruction: Sampling theorem and reconstruction of signals.	10hrs
5.	Chapter No. 5: Z-Transforms: Introduction, the Z-transform, properties of the Region of convergence, Properties of the Z-Transform, Inversion of the Z-Transform, Implementation of discrete time of LTI systems.	10hrs

Text Book

1. Simon Haykin and Barry Van Veen, Signals and Systems –2nd Edition, John Wiley, 2004.