

Course Content Course Code: 16EARC201 Course Title: Analog and Digital Electronic Circuits L-T-P-SS: 4-0-0-0 Credits: 4 Contact Hrs: 50 ISA Marks: 50 ESA Marks: 50 Total Marks: 100 Teaching Hrs: 50 Exam Duration: 3 hrs Content Hrs Unit - 1 1.0 Modeling and Analysis of electrical circuits The Lumped Circuit Abstraction, Modeling Physical Elements using lumped circuit abstraction, Signal Representation, Dependent Sources and the Control Concept, Network theorems: The Node Method, Loop Method, Superposition, Thévenin's Theorem and Norton's Theorem. 2.0 Basics of Digital Electronics Number Representation, MOSFET Switch Implementation of Logic Gates, The SR Model of the MOSFET, Active Pullups Voltage Levels and the Static Discipline, Simplifying Logic Expressions using K-map, Combinational circuits: encoder/decoder, multiplexers/demultiplexers, Binary adder/ subtractor, Binary comparator, Sequential Circuits: Gated D Latch, JK Flip-Flop, Registers, Counters. **3.0Transistors**

7

7

Operating point, Fixed bias circuits, Emitter stabilized biased circuits, Voltage divider biased, Bias stabilization, BJT transistor modeling, , Emitter follower, CB configuration, 6 Collector feedback configuration, analysis of CE configuration using h- parameter model; Relationship between h-parameter model of CE,CC and CB configuration.

Unit - 2

4.0 Operational Amplifiers

Device Properties of the Operational Amplifier, Simple Op Amp Circuits: The Non-Inverting Op Amp, The Inverting Connection, A Special Case: The Voltage Follower, Op Amp RC 7 Circuits: Op Amp Integrator, Op Amp Differentiator, An RC Active Filter, The RC Active Filter Impedance Analysis, Sallen-Key Filter, Op Amp in Saturation: Op Amp Integrator in Saturation, Positive Feedback : RC Oscillator.

5.0 Printed Circuit Board (PCB) Design Issues

Partitioning , Resistance Of Conductors ,"Kelvin Feedback" , Ground Noise And Ground 7 Loops, Ground Isolation Techniques, Static PCB Effects, Inductance, Parasitic Effects In Inductors ,Capacitative Noise And Faraday Shields , Buffering ADCs against Logic Noise, Skin Effect, Transmission Lines, Basic Linear Design, Decoupling Mixed Signals ICs With

Low Digital Content, Sampling Clock Considerations, Mixed Signal Grounding, Grounding DSPs with Internal Phase-Locked Loops, Decoupling ,Ringing, Thermal Management Thermal Basics, Data Converter Thermal Considerations	
6.0 First Order Transients in Linear Electrical Circuits Analysis of RC & RL circuits, Propagation Delays, State and State variables, Problems	6
Unit - 3	
7.0 Energy and Power in Digital Circuits Energy Storage Elements; capacitors and inductors, Power and Energy Relations for a Simple RC Circuit, Average Power in an RC Circuit, Power Dissipation in Logic Gates: Static Power Dissipation, Total Power Dissipation, CMOS Logic Gate Design.	5
8.0 Transients in Second Order Circuits Undriven Series RLC circuit, Stored Energy in Transient Series RLC circuit, Undriven Parallel RLC circuit, Driven Parallel RLC circuit, State Space Analysis	5

Course Code: 16EARC203	Course Title: Manufacturing Technology	
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 50
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50		Exam Duration: 3 hrs

Content	Hrs
Unit - 1	
Chapter No. 1. Turning , Shaping and Planing Machines Classification, constructional features of Lathe, Shaping Machine, Planing Machine. Driving mechanisms of Lathe, Shaping and Planing machines. Different operations on Lathe, Shaping Machine & Planing Machine. Cutting tools. Simple problems on machining time calculations	7 hrs
Chapter No. 2. Milling Machines Classification, constructional features of milling machines. Types of milling cutters & milling cutter nomenclature. Milling processes, up milling and down milling concepts. Various milling operations. Indexing: Simple, compound, differential and angular indexing. Simple problems on simple and compound indexing	7 hrs
Chapter No. 3. Drilling & Grinding Machines Classification, constructional features of drilling machine & related operations. Types of drill & drill bit nomenclature, drill materials. Types of abrasives, Grain size, bonding process, grade and structure of grinding wheels, grinding wheel types. Classification, constructional features of grinding machines (Center less, cylindrical and surface grinding). Selection of grinding wheel, dressing and truing of grinding wheels. Analysis of the grinding process	6 hrs
Unit - 2	
Chapter No. 4. CNC Machine Tools Introduction to CNC machines- Principles of operation. Axes of CNC machine-Coordinate systems. Elements of CNC machines, Basics of Manual part programming methods.	7 hrs
Chapter No. 5. Nontraditional Machining Need for nontraditional machining, principle, equipment & operation of Abrasive Jet Machining, Water Jet Machining, Electro-Chemical Machining, Electrical Discharge Machining, Wire EDM, Electron Beam Machining, Laser Beam Machining & Plasma Arc Machining	7 hrs
Chapter No. 6. Metrology and Inspection:	6 hrs

Definition, need of inspection, terminologies, methods of measurement. Standards of measurement-line standards, end standards & wavelength standards. Limits, fits & gauges-introduction, tolerances, limits of size, fit and tolerances, Limit gauges classification.	
Unit - 3	
Chapter No. 7. Comparators and Angular Measurement Devices Characteristics of comparators , classification of comparators- Mechanical, Electrical & Pneumatic comparators. Introduction to angular measurement - Vernier & optical Bevel Protractor ,sine bar, sine centre, angel gauges.	5 hrs
Chapter No. 8. Advanced Metrology: Introduction & applications of: Co-ordinate Measuring Machine-important features of CMM, possible causes of errors in CMM, Performance, applications & advantages of CMM. Universal Measuring Machine- comparison of CMM & UMM, inspection on UMM. Precision instruments based on laser – principle- laser interferometer- application in linear, angular measurements	5 hrs

Laboratory Plan

Semester: III

Year: 2017 - 2018

Laboratory Title: Programming laboratory	Lab. Code: 16EARP203
Total Hours: 24	Duration of SEE Hours: 3
SEE Marks: 20	CIE Marks: 80

Experiment wise Plan

Catego	ry: structured query	Total Weighta	ge: 8	0	No. of lab sessions: 11
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimat	:e)	Marks / Experiment	Correlation of Experiment with the theory
1	Experiment on –Structure and union			10	
	Learning Objectives: The students should be able to: 1.Demonstrate how to compile ar C/C++ 2. Write program using operators 3. Write program using structures	nd run a c program in Eclipse IDE and control statements.			Analysis of algorithms & Design of Programs -Unit II
2	Experiment on-queues		10		
	Learning Objectives: The students should be able to: 1. Write program using different t 2. Develop a program using circula	ent types of arrays and strings.		Analysis of algorithms & Design of Programs -Unit II	
3	Experiment on –doubly linked list		12		

	 Learning Objectives: The students should be able to: 1.Demonstrate how to maintain information of an university 2. Demonstrate how to specify different types of constraints on a given set of operations. 3. Develop a program in c using doubly linked list. 			Analysis of algorithms & Design of Programs -Unit II
4	Experiment on- self balancing binary tree		12	
	Learning Objectives: The students should be able t 1. Demonstrate how to search 2. Develop a program in c using	operation in execu		Analysis of algorithms & Design of Programs -Unit II
5	Experiment on –circular doubly link list.		12	
	1.Demonstrate how it will store	·		Analysis of algorithms & Design of Programs -Unit II
6	Experiment on-Dynamic programming		12	
	Learning Objectives: The students should be able to 1. Demonstrate the graphical so 2. Analyze the efficiency of the 3. Develop the program in c us technique.	olution for the pro algorithm.		Analysis of algorithms & Design of Programs -Unit III
7	Experiment on-Dynamic programming		12	
	Learning Objectives: The students should be able to 1. Demonstrate the graphical so 2. Analyze the efficiency of the 3. Develop the program in c us	olution for the pro algorithm.		Analysis of algorithms & Design of Programs -Unit III

	technique.			
Categor	tegory: Open Ended Total Weightage: 20		No. of lab sessions: 3	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
11	Implement software using the knowledge of Analysis of algorithms & Design of Programs for building the applications in automation and robotics engineering. (FOR SEE)	2	20	
	Learning Objectives: The students should be ab 1. Use Analysis of algorithm implement the project. 2. Select the appropriat project. 3. Write a technical report of 4. Present the technical rep 5. Demonstrate the learning	ns & Design of Prop e tool/software to using IEEE standard ort for the impleme	o implement the ented project.	Analysis of algorithms & Design of Programs Unit I, Unit II , Unitl III

Cou	rse Code: 16EARC207	Course Title: Microc	controllers	
L-T-I	^D -SS: 4-0-0-0	Credits:4	Contact Hrs: 4	
ISA I	Marks: 50	ESA Marks: 50	Total Marks: 100	
Tead	ching Hrs: 50		Exam Duration: 100	
		Unit I		
No		Content		Hrs
1	microprocessors, Difference architectures: RISC/CISC and family, Introduction to diffe	ssor and Microcontroller: H between Microprocessors d Harvard/Von-Neumann, (rent microcontroller famili	Overview of PIC Microcontroller es (8051, ATMEL/AVR, and ARM).	5 Hrs
2	Introduction to assembly la	ons, Registers and Instructi nguage programming, Prog loop: Branch instructions a	ions, Data formats and directives, gram counter and program ROM space. and looping, Call instruction and stack,	7 Hrs
3	programs: Arithmetic instru	bit manipulation programm ctions, Signed number con otate instructions and data	ning, Arithmetic, logic instructions and cepts and arithmetic operations, logic a serialization, BCD and ASCII	8 Hrs
	·······	Unit II		
4		vs in C, I/O programming, Ic	ogic operations, data serialization, nC18, State diagrams, Timing diagrams	5 Hrs
5	Chapter 5: Timer and Ser Programming TIMERS 0 a	nd 1, counter programming ations, PIC18 connection to	g, Programming TIMER0 and 1 in C, o RS232, PIC18 serial port	8 Hrs
6	Polling Vs interrupts, PIC1 external hardware interru change interrupts. ADC, D	pts, programming the serie AC and sensor interfacing:	; timer interrupts, programming al communication interrupt, PortB	7 Hrs
		Unit – III		···•
7		d EEPROM Memories for a	data storage in the PIC18F, Reading and writing to	

	Chapter 8: Applications of Microcontroller:	
8	Event counter, Linear variable Differential Transformer (LVDT), Angular speed	
0	measurement (RPM meter), Digital Thermometer, Digital PID controller.	
		5 Hrs

Course Plan

Semester: IV	Year: 2017-18
Course Title: Product Realization	Course Code: 16EARP208
Total Contact Credits: 2(0-0-2)	Duration of SEE Credits:
ISA Marks: 80	ESA Marks: 20

Week wise Plan:

Week #	Particulars	Venue
Week 1 and Week 2	 Introduction to Prototyping Specifications, Part Drawings, Assembly Drawings, PCB Layout, Wireframe, Pseudocode, BOM, Process Plan, Fabrication and Test Plan Validation IOT Workshop 	Studio Engagement
Week 3	 Identifying sub-assemblies Procurement of logistics for proof of concept testing. Selection of materials for all the parts and joining techniques Selection of UI and Core Component of Android 	Makers Space/
Week 4	 Process plan Identifying the proper machines, tools and operations required for prototyping. Selection of appropriate raw materials for prototyping. Demonstrate breadboard prototype of entire electronics in the system. (To have tested electronic circuit for PCB design) UI implementation using XML 	
Week 5	 Fabricate the parts for sub assembly Initiate schematic entry in PCB design software, also refine and optimize thesize of the board. UI implementation and validation 	
Week 6	 Fabricate the parts for sub assembly Generate gerber files for the optimal PCB design. Android core component implementation and Unit Testing 	
Week 7	 Fabricate the parts for sub assembly Fabricate PCB using MITS machine, solder components and test the design. Android core component implementation and Unit Testing 	
Week 8	Assemble the sub assemblies and check for interference and	

	 functionality Revisit PCB testing for increasing reliability of the design. (test to avoid/eliminate lose connections, dry soldering, andbad electronic components) Android core components integration and testing 	
Week 9	 Test the functional prototype using proper identified test methods. Demonstrate working of fully functional PCB. Configuration of IoT Server 	
Week 10	 Integratesubsystems for prototype testing. Analyse the test results System modification System integration 	
Week 11	 Final concluding review Product catalog System Tesing. 	Studio/ Makers Space

Laboratory Plan

Laboratory Course Plan: B E in A&R

Semester IV

Year:2018-2019

Laboratory Title: Manufacturing & Metrology lab	Lab. Code: 16EARP205
Total Hours: 24	Duration of ESA Hours: 3
ISA Marks: 80	ESA Marks: 20

Experiment wise Plan

Category	Demonstration	Total Weightage:	20	No. of lab sessions: 5
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1.	Material Removal Operations(Lathe)	4	15	
	Learning Objectives: The students should be abl Perform various operations I work piece using Lathe mach Perform operations like drilli using Drilling Machine. Perform surface milling operation Demonstrate grinding operations. Demonstrate arc welding pro Demonstrate sheet metal cu operations, drilling & riveting	ike Facing, Turning, nine. ng of holes on a giv ration on a given s tion on a given met ocess tting operations- Sł	Unit I, II & III	
2.	Measurement	1	5	
	Learning Objectives: The students should be abl Extract the dimensions of the Compare the dimensions of t machine & CMM	Unit III		
Category	Exercise	Total Weightage:	50	No. of lab sessions: 7

Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
3	Measurement for Linear and angular dimensions	1	10	
	Learning Objectives: The students should be able Select proper instruments for Calculate least count of inst Take reading using the instru- Interpret the observation, re Measure dimensions of the micrometer Measure unknown angle of gauges	Unit II & III		
4	Sheet metal	3	20	
	Learning Objectives: The students should be ab Demonstrate how to use too Mark & cut the sheet metal Construct common sheet me Construct a sheet metal pro-			
5	Fabricate the Parts for Table Clamping Device	3	20	
	Learning Objectives: The students should be able to: To machine a given raw metal sheet to actual dimensions. Perform drilling operations at suitable locations. Mark the work piece before going for manufacture. Taking measurements at every step of operations using vernier calipers. Perform welding operation on hinges to achieve perfect right angle. Fill machining time calculation chart. Performing threading on a circular bar to a given pitch. Fill operation chart and inspections reports			Unit I,II,III

FMTH0303-3.0

Laboratory Plan

Semester: V

Year: 2018 - 19

Laboratory Title: OOP and Python Practice	Lab Code: 16EARP305
Total Hours: 22	Duration of ESA: 2 hours
ISA Marks: 80	ESA Marks: 20

Experiment wise Plan

Category: Demonstration		Total Weightage: 20		No. of lab sessions: 2
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	Write programs using the concept of OOP (C++/Java) Language Fundamentals and concept of command line arguments.	1	10	
	Learning Objectives: The students should be able to: 1. Demonstrate how to compile and run a program in command prompt. 2. Write programs using operators and control statements. 3. Write programs for accepting command line arguments and process them in program. 4. Demonstrate how to compile and run a Java program using different IDE's like eclipse, Net beans etc.			Object Oriented Programming - I
2	Write programs using the concept of arrays, Strings and String Buffer class and exception Handling.	1	10	
	Learning Objectives: The students should be ab	le to:		Object Oriented

	 Write programs using different types of arrays and strings. Write a program to catch different types of exceptions. Demonstrate how the String Buffer is used in a program. 				Programming - I
Category: E	xercise To	tal Weightage: 20	No	. of lab sess	ions: 2
3	Develop a swing based GUI using swing components and containers and connect it to database .	1	10	Object Ori Programm	
	Learning Objectives: The students should be ab 1. Develop a GUI using swir 2. Demonstrate how to inse from a database by using a 3. Demonstrate the proced	ng components and ert, update and ret simple swing based	rieve data d program.		
4	Write programs using the concept of Generic class, Inheritance, Interface and Package.	1	10		
	 and demonstrate the inheriprogram. Write a program to creathow to use the interface for 3. Use the built in packages task. Create the user packages the user package in other package i	ble to: ate base class and derived class ritance concept using the same ate interface and demonstrate or other programs also. as to write programs for defined es and demonstrate how to use programs or other classes. eate parameterized constructors		Object Ori Programm	
Category: E	xercise	Total Weightage:	30	No. of lab	sessions: 3
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation with the th	n of Experiment neory
5	Write a program using the concepts of python	1	10	Python pro	ogramming-II

	scripting elements python constructs, data structures. Learning Objectives: The students should be ab 1. Demonstrate how to con command prompt. 2. Write programs using op 3. Write programs for acception	npile and run a pro erators and contro	l statements.	
	 and process them in program 4. Demonstrate how to con using different IDE's like and 	m. npile and run a pyt	hon program	
6	Write programs using the concept of functions, modules, packages and regular expressions	1	10	Python programming-II
	Learning Objectives: The students should be able to: 1. Write programs using functions and modules. 2. Write a program to use packages and regular expressions			
7	Write a python program to use the language scripting elements and constructs, data structures, and repository of standard library, to develop real world applications.	1	10	Python programming-II
	Learning Objectives: The students should be able to: 1. Write a program using scripting elements and data structures. 2. Create the user packages and demonstrate how to use the user package in other programs or other classes. 3. Write a program to create interface and demonstrate how to use the interface for other programs also			
Category: S	tructured Enquiry	Total Weightage:	10	No. of lab sessions: 3

Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
8	Solving a Maze: Program a robot to solve a maze by finding the goal position in the maze starting from a starting position. You will need a data structure to keep track of positions found in the maze that are yet to be explored, starting with positions around the starting position. You will compare the maze solutions found using a Stack versus a Queue for storing unexplored positions.	2	10	
	Learning Objectives: The students should be ab 1. Select fundamentals con programming concepts/pyt scenario to implement prog	cepts of object orion hon, based on the		Object Oriented Programming –I/ Python programming-II
Category: C	Dpen Ended	Total Weightage: 20		No. of lab sessions: 2
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
9	Implement a project using C++/Java/python concepts, for automation and robotics applications. (FOR SEE)	2	20	
	Learning Objectives: The students should be able to: 1. Use the C++/Java/python concepts to implement the project. 2. Select the appropriate tool/software to implement the project.			Object Oriented Programming –I/ Python programming-II

3. Write a technical report using IEEE standard.	
4. Present the technical report for the implemented project.	
5. Demonstrate the learning experiences of working in a	
team.	

KLE TECH. Creating Value Leveraging Knowledge _____ DEPARTMENT OF AUTOMATION & ROBOTICS

Laboratory Plan

FMTH0303-3.0

Semester: V

Year: 2018-2019

Laboratory Title: DBMS Practice	Laboratory Code 16EARP306
Total Contact Hours: 48	Duration of ESA: 3 Hours
Total ISA Marks: 80	Total ESA Marks: 20

Experiment wise Plan

Category: Demonstration		Total Weightage:	No. of lab sessions: 1	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the practice
1	Preparing an ER diagram for given database	1	10	Basic Knowledge of data base design
	Learning Objectives: The students should be Demonstrate how struct graphically by an ER diag Demonstrate how to rep sets, link attribute to ent			
Category: Exercise Total Weightage: 10		10	No. of lab sessions: 1	
2	Execute basic SQL queries on a given database. (DDL, DML, DCL commands)	1	10	DDL, DML, DCL commands

	Learning Objectives: The students should be able to: 1. Demonstrate how to use DDL, DML and DCL commands on a database. 2. Demonstrate how to specify different types of constraints on a table while creating a table.				
Category	: Structured Enquiry	Total Weightage:	60	No. of lab sessions: 10	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory	
3	Execute nested, correlated queries using exist, like, union, intersection and joins on a given database.	2	10	Nested queries	
	Learning Objectives: The students should be 1. Write SQL queries to queries, nested queries, and intersection. 2. Demonstrate how to and use keywords exist,				
4	Execute SQL queries on - group by, having clauses and aggregate functions on a given database to retrieve the required data.	2	20	Nested queries using clauses- group by, having &aggregate functions.	
	Learning Objectives: The students should be 1. Write SQL queries usi functions to retrieve the				
5	Specifying views in SQL	2	10	Views of SQL	
	Learning Objectives: The students should be	e able to			

	1. Write SQL queries to a	create & update Vie	ews	
6	Design a database for the given schema using normalization concept and execution of given queries on the database and execution of queries.	2	10	Normalization- 1NF,2NF,3NF & BCNF
	Learning Objectives: The students should be 1. Design the database f concepts and use the give database.	for the given schem	-	
7	Design a database for the given specifications & implement the database and write and execute the queries for the given statements.	2	10	Basic Knowledge of data base design, DDL, DML, DCL commands
	Learning Objectives: The students should be 1. Draw the ER diagram 2. Design a database ba tables by specifying diffe write SQL queries for giv 3. Select the proper RDI	for a given specific sed on the specific erent types of const ren statements and	ations given and create traints on database and execute them.	
Category	: Open Ended	Total Weightage:	20	No. of lab sessions:
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
8	Implement a project using Java/database		20	

(FOR ESA)			
Learning Objectives: The students should be 1. Use the java /databas project. 2. Select the appropriate 3. Write a technical repo 4. Present the technical	e management cor e tool/software to ort using IEEE stand	implement the project. ard.	
5. Demonstrate the lear	ning experiences o	f working in a team.	

Uni	t - 3		I		
CHAPTER NO. 6. POWER ELECTRONICS FOR MOTOR AND DRIVE APPLICATIONS DC and AC motor control, Single phase SCR drive, Three phase SCR drive, Reversible SCR drive, Speed control of DC motor, chopper-controlled DC drives, Microprocessor-Controlled DC drives, AC motor characteristics, speed control methods of induction motor, commutator less DC motor and Electronic commutation.					
CHAPTER NO. 5. DC-DC CONVERTERS - Introduction, principle of step-down operation and its analysis with RL load, principle of step-up operation, Step-up converter with a resistive load, Performance parameters, Converter classification, Switching mode regulators: Buck regulator, Boost regulator, Buck-Boost Regulators.					
CHAPTER NO. 4. STATIC SWITCHES AND POWER Single phase ac static switches, three phase ac sta Solid state relays, Design of static switches, DC po supplies, bidirectional power supplies, Switched N	SUPPLIES atic switches, three phase ower supplies, DC Switched	-	7 hrs		
Firing Circuit, Resistance capacitance firing circuit. Unit - 2					
CHAPTER NO. 3. THYRISTORS AND COMMUTATION THEORY Introduction, Principle of Operation of SCR, Static Anode-Cathode Characteristics of SCR, two transistor model of SCR, Gate Characteristics of SCR, Firing circuits for SCRs, Turn-On Methods, Turn-Off Mechanism, Turn-Off. Natural and Forced Commutation – Class A and Class B types, Gate Trigger Circuit: Resistance					
CHAPTER NO. 2. POWER DIODES, BJT, MOSFET AND RECTIFIERS: Introduction, Diode Characteristics, Reverse Recovery Characteristics, Power Diode Types, Freewheeling Diodes with Switched RL Load. power BJT, structure of BJT, MOSFET and IGBT, characteristics of BJT, MOSFET and IGBT, comparison of power devices. Introduction, Single-Phase Full-Wave Rectifiers, Single- Phase Full-Wave Rectifier with RL Load, Single-Phase Full-Wave Rectifier with a Highly Inductive Load.					
CHAPTER NO. 1. INTRODUCTION TO PE AND ELE Applications of Power Electronics, Types of Powe Characteristics and Specifications of Switches. Ba Mechanical loads, electric motors, power sources	r Electronic Circuits, Periph sic components of an Elect	neral Effects, ric drive system:	7 hrs		
Unit - 1					
Con	tent		Hrs		
Teaching Hrs: 50		Exam Duration: 3 hrs			
ISA Marks: 50	ESA Marks: 50	Total Marks: 100			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40			
Course Code: 16EARE301 Course Title: Power Electronics, Motors & Drives					

CHAPTER NO. 7. STEPPER MOTOR Principle of Stepper motor, Classification of Stepper motor, Principle of variable reluctant stepper motor, Principle of Permanent magnet stepper motor, Principle of hybrid stepper motor, driver for stepper motor, Applications of Stepper motor.	5 hrs
CHAPTER NO. 8. DRIVES FOR INDUSTRIAL APPLICATIONS Rolling mill drives, cement mill drives, electric traction drives, textile mill drives and machine tool drives.	5 hrs

Laboratory Plan

FMTH0303-3.1

Semester:6

Year: 2018-19

Laboratory Title: Hydraulics And Pneumatics Lab	Lab. Code: 16EARP302
Total Hours: 24	Duration of Exam: 2 Hours
Total Exam Marks: 20	Total ISA. Marks: 80

Experiment wise Plan

Category	: Demonstration	Total Weightage: 25.00		No. of lab sessions: 5.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	To study hydraulic pump, its characteristics and calculate the hydraulic power	1.00	4.00	
	Learning Objectives: The students should be able to 1. Differentiate betweer 2. Plot and infer characte	types of pumps.	Pump.	Unit - I
2	 A. To study concepts of Meter-in and Meter-out circuits using Single-rod cylinder and 4/2 DCV B.To study the application of different center configuration of 4/3 DCV. (Tandem and closed centre) 	1.00	8.00	

	 Learning Objectives: The students should be able to: Identify hydraulic cylinders and various direction control valves. Explain meter-in and meter-out circuits used to control the speed of a single acting cylinder using meter in/out throttle. Demonstrate how a hydraulic cylinder is controlled by a 4/3 directional valve with different spool shapes (blocked and circulation position). 				
3	In a machining station, a hydraulic rotary drive is to swivel a drum from the horizontal to the vertical position after a welding process. The movement is to be performed by a hydraulic motor. Despite varying loads, the motor speed must remain constant.	1.00	4.00		
	 Learning Objectives: The students should be able to: Discuss the operating features of a hydraulic motor. Explain how a 4/3 directional valves can be used to implement clockwise and counter-clockwise running of the hydraulic motor. 				
4	On a machine tool the velocity of a feed cylinder is to be increased and thus the cycle time of the system shortened without changing the pump flow. The advance velocity (extending time of the hydraulic cylinder) is to be adjustable independently of the load.	1.00	4.00		
	Learning Objectives: The students should be able to):		Unit – I	

		nderstand and record the table of the travel times alculate the velocity of the piston.		
5	In a fixture, a tool is to be moved by means of a hydraulic cylinder into and out of the machining area. In the event of a hydraulic pump failure, the tool must be extended by means of stored energy.	1.00	5.00	
	Learning Objectives: The students should be able to 1. Understand the worki		cumulator.	Unit - II
Category	: Exercise	Total Weightage: 24.00		No. of lab sessions: 4.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch	Marks / Experiment	Correlation of Experiment with the theory
6	 A. Study of indirect control of a double-acting cylinder with a pneumatically operated 5/2 directional control valve. B. To study position dependent control of a double acting cylinder using mechanical limit switches. 	1.00	6.00	
	Learning Objectives: The students should be able to 1. Demonstrate how a s cylinder.		sed control a double acting	Unit - II

	 Identify switches an circuits. 	d push buttons a	nd use them to build the	
7	 A. Study of Speed Control of Single Acting Cylinder - Slow Speed Extension and Rapid Retraction. B. Stop control, double-acting cylinder with 5/3 directional control valve, tensile load 		6.00	
	quick-exhaust valve.	d of a single acting 5/3 directional co	cylinder is controlled using a ntrol valve with closed mid- inder.	Unit - I
8	The sequential control with two hydraulic drives.	1.00	6.00	
	Learning Objectives: The students should be able t 1. Explain how the sequ		een multiple cylinders.	Unit I and II
9	Control of hydraulic circuit using logic gates, timers and counters.	1.00	6.00	
	Learning Objectives: The students should be able t 1. Identify different logi 2. Demonstrate circuit u	c gates	unters.	Unit - III
Category	Structured Enquiry	Total Weightage:	14.00	No. of lab sessions: 2.00
Expt./	Experiment / Job Details	No. of Lab	Marks / Experiment	Correlation

Job No.		Session(s) per batch		of Experiment with the theory
10	Hydraulic feed drive with electrical control and proportional valve.	1.00	7.00	
	Learning Objectives: The students should be able to 1. Explain how the doub proportional valve.		controlled using	Unit - I
11	The sequential control with two pneumatic drives. The signal overlapping occurring during this exercise is constructively solved by use of rollers with idle return. Practice is obtained in developing sequential diagrams and pneumatic circuit diagrams.	1.00	7.00	
		linders, appropriat d construct the ci	e DCVs, flow control valves rcuit diagram for sequential	Unit - II
Category	: Open Ended	Total Weightage:	7.00	No. of lab sessions: 1.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch	Marks / Experiment	Correlation of Experiment with the theory
12	A double-acting cylinder is used to press together glued components. Upon pressing	1.00	7.00	

a push-button, the clamping cylinder is to extend and trip the roller valve. Once the fully extended position of the cylinder has been reached and sufficient clamping force has been developed, the cylinder is to retract to the initial position. Develop a control circuit using a pressure sequence valve.		
Learning Objectives: The students should be able to: 1. Construct a control circuit usin given application.	g a pressure sequence valve for	Unit - I, II and III

Course Code: 16EARE403	Course Title: Machine learning	and ROS	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40		Exam Duration : 3 hours	
	Content		Hours
	UNIT – 1		1
ROS nodes, running ROS n scheduling node timing, writin minimal subscriber, minimal s nodes more ROS tools: catkin	ackages writing a minimal ROS p odes, examining running minima g a minimal ROS subscriber com ubscriber and publisher node sum simple, ROSlaunch, simplifying ng multiple nodes viewing output	al publisher node, piling and running mary writing ROS cmakelists.txt with	5 hrs
manual interaction with ROS se service and client, using C++ introduction to action servers a	OS services- service messages, R ervices, example ROS service clien classes in ROS creating library and action clients- creating an action nessages, designing an action client	t, running, example modules in ROS, on server package,	5 hrs
Chapter 3: Introduction to ma Introduction Machine Learning supervised learning ,unsupervi Associations, Designing of learning, Concept learning t maximally specific hypotheses	•	learning, Learning issues in machine Find-S: Finding a nination algorithm,	5 hrs
	UNIT – 2		
Motivation, Estimating hypoth approach for deriving confiden	Earning theory and decision tree l lesses accuracy, Basics of sampli- ce intervals, comparing learning a ect hypothesis, sample complexity	ng theory, general lgorithm. Probably	8 hrs

spaces, sample complexity for infinite hypothesis spaces, instance based learning-K nearest neighbor learning, locally weighted regression, Representation, decision tree algorithm, hypotheses space search in decision tree algorithm inductive bias in decision tree algorithm, issues in DTL, Bayesian decision theory classification.	
Chapter 5:Kernel methods and Graphical models Embedding's into feature spaces, the kernel trick, Multiple kernel learning, Kernel dimensionality reduction Canonical Cases for Conditional Independence, Example Graphical Models, Naive Bayes' Classifier, Hidden Markov Model, Linear Regression, d-Separation Belief Propagation, Linkage–Based clustering algorithms- means and other cost minimization clustering.	7 hrs
UNIT – 3	
Chapter 6:Reinforcement Learning The learning task,Q-learning,Nondeterministic rewards & actions, temporal difference learning, generalizing from examples, relationship to dynamic programming.	5 hrs
Chapter 7: Artificial neural network Biological motivation, neural network representations, and appropriate problems for neural network learning, perceptron's, multilayer networks and the back propagation, algorithm, an illustrative example: face recognition	5 hrs

Course Code: 16EARE401	Course Title: Measureme	nt Systems	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40 hours	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Duration of ESA: 3 Hrs		Hrs
Cont	ent		Hrs
Unit	:-I		1
Chapter No. 1. Introduction to Measurement Systems , Classif Need for study of Measurement Systems, Classif Computer-Aided Machines and Processes, Funct Passive Transducers, Analog And Digital Modes Input-Output Configuration of Instruments and and Static Calibration, Dynamic Characteristics.	fication of Types of Measure tional Elements of an Instru s of Operation , Null and De	iment , Active and flection Methods ,	5 hrs
Chapter No. 2. Sensors and Signal conditioning Sensor characterization, Relations between Specifications, Error reduction techniques, Load operational amplifier, Filtering, Wheatstone bridge	ling errors, Signal condition	-	5 hrs
Chapter No. 3. Motion Measurement Fundamental Standards, Relative Displacement Translation and Rotational, Relative-Acceleration Pickups, Acceleration Pickups, Calibration and Vil	Measurements, Displaceme	nt Pickups, Velocity	5 hrs
Unit	- II		1
Chapter No. 4. Force, Torque, and Shaft Power Measurement Standards and Calibration, Basic Methods of Force Measurement, Characteristics of Elastic Force Transducers, Torque measurement on Rotating shaft, Shaft Power Measurement (Dynamometers), Vibrating Wire Force Transducers.		5 hrs	
Chapter No. 5. Pressure & Sound Measuremen Standards and Calibration, Basic Methods of P Manometers, Elastic Transducers, Vibrating-Cylin Testing of Pressure-Measuring Systems, Measurement, Sound Measurement.	ressure Measurement, Deac ider and Other Resonant Tra	insducers, Dynamic	5 hrs
Chapter No. 6. Flow and Temperature Measure Local Flow Velocity, Magnitude and Direction		te, Standards and	

Calibration of Temperature Measurement, Thermal-Expansion methods, Thermoelectric Sensors, Electrical-Resistance Sensors, Junction Semiconductor Sensors, Digital Thermometers, 5 hrs Radiation Methods. Unit – III **Chapter No.7. Data Acquisition Systems** Data conversion devices, Signal sampling and aliasing, Sampling theorem, Quantization, Encoding, Digital to analog conversion methods, Analog to digital conversion methods, Sample & 5 hrs Hold circuit, Flash ADC, Successive approximation ADC, Dual slope ADC, Sigma Delta ADC, Multiplexers. Chapter No. 8. Transmission and Recording of Data Cable Transmission of Analog Voltage and Current Signals, Cable Transmission of Digital Data, Fiber-Optic Data Transmission, Analog Voltmeters and Potentiometers, Electrical Instruments, 5 hrs Digital Voltmeters and Multimeters, Signal Generation, Electromechanical XT and XY Recorders, Fiber Optic Sensors.

Course Code: 17EARC203	Course Title: Algorithm Analysis & Prog	gram Design	
L-T-P : 4-0-0	Credits: 4	Contact Hrs: 50	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50		Duration of ESA: 03	8 hours
	Content		Hrs
	Unit - 1		1
Everyday Life, Types of I Definition, Solution Design Coding and Testing, Using	ROBLEM SOLVING CONCEPTS- For Problems, Problem Solving with Conduct & Refinement, Testing Strategy Development, Testing Method, , Brown and Former Stores Data, Problem Solving. How the Computer Stores Data, Prosections and Equations.	nputers - Problem elopment, Program eak-Out Diagrams,	5 hrs
Requirement Modeling fra modeling language: UML I diagram, component diagram SysML ,Using the Tools, 7	LANNING- Software Development Cy mework, Computer Communication Building Blocks, UML Diagrams-Class n, UML Modeling Types, UML Basic Testing the Solution, Coding the Solution ram for the Plant operation, Modeling to	methods, Unified ss Diagram, object e Notations, UML- tion, Case studies-	7hrs
ALGORITHMS- Algorith programming concepts, data principles-inheritance,polym Their Representations, Mod Asymptotic Notations, Ma Algorithms, Brute Force Ap Sequential Search and Brut	ING CONCEPTS FOR DESIGN AN ms and Procedure oriented concepts a types, control structures, class and corphism, abstraction, exception hand difying Algorithms, Alternative Algorithematical Analysis of Non-Recursing pproaches: Introduction, Selection Sort e Force String Matching, Divide and Board, Binary Search, Merge Sort, Corport Unit - 2	s, Object oriented class concepts ,oop lling mechanisms rithms. Review of ve and Recursive t and Bubble Sort, Conquer: General	
Chanter 4. ARRAVS S	FACKS & QUEUES: Arrays, Dyna	amically Allocated	10
Chapter 4: AKKAIS, 5	IACHO & QUEUES: Allays, Dyna	annearry Anocated	10

Arrays, , Polynomials, Sparse Matrices, Representation of Multidimensional Arrays, hrs

Structures and Unions, Stacks, Stacks Using Dynamic Arrays, Queues, Circular Queues, Evaluation of Expressions, Multiple Stacks and Queues, Single- and Double-Ended Priority Queues.	
Chapter 5: LINKED LISTS, TREES & GRAPHS: Singly Linked lists and Chains, Representing Chains in C, Linked Stacks and Queues, Polynomials, Additional List operations, Sparse Matrices, Doubly Linked Lists. Introduction, Binary Trees, Binary Tree Traversals, Threaded Binary Trees, Heaps, Graph representation, Adjacency	10hrs
matrix, Adjancey list, Application of graphs.	
Unit - 3	
Unit - 3 Chapter 6:DYNAMIC PROGRAMMING & GREEDY METHOD: Depth First Search and Breadth First Search, The General Method, Warshall's Algorithm, Floyd's Algorithm for the All-Pairs Shortest Paths Problem, Single-Source Shortest Paths, The Traveling Salesperson problem,Kruskal's algorithm, Huffman trees.	5 hrs

Cours	se Code: 17EARC207	Course Title: Microco	ontrollers	
L-T-P	-SS: 4-0-0-0	Credits:4	Contact Hrs: 4	
ISA N	1arks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ning Hrs: 50		Exam Duration: 100	
		Unit I		
No		Content		Hrs
1	microprocessors, Difference	sor and Microcontroller between Microprocesso Harvard/Von-Neumann	: History and Evolution, types of ors and Microcontrollers. CPU , Overview of PIC Microcontroller ilies (8051, ATMEL/AVR, and	5 Hrs
2	Chapter 2: PIC Microcontroller Architecture and assembly language programming Architecture and pin functions, Registers and Instructions, Data formats and directives, Introduction to assembly language programming, Program counter and program ROM space. Branch, Call and Time delay loop: Branch instructions and looping, Call instruction and stack, Time delay instructions and pipeline. Timing diagrams.			
3	Chapter 3: I/O Port programming I/O port programming, I/O bit manipulation programming, Arithmetic, logic instructions and programs: Arithmetic instructions, Signed number concepts and arithmetic operations, logic and compare instructions, rotate instructions and data serialization, BCD and ASCII conversion.			
		Unit II		
4	Chapter 4: PIC and AVR prog Data types and time delays i program ROM allocation, Pro diagrams in-depth.	n C, I/O programming, lo	gic operations, data serialization, C18, State diagrams, Timing	5 Hrs
5	Chapter 5: Timer and Serial	1, counter programming ons, PIC18 connection to	;, Programming TIMER0 and 1 in C, 9 RS232, PIC18 serial port	8 Hrs
6	Chapter 6: Interrupt program Polling Vs interrupts, PIC18 I external hardware interrupts change interrupts. ADC, DAC	mming in Assembly and nterrupts, Programming s, programming the seria and sensor interfacing:	timer interrupts, programming al communication interrupt, PortB	7 Hrs

	Unit – III	
7	Chapter 7: High end processors Introduction to 80386 and 80486, architecture and pin definitions of 80386 and 80486, EFLAG Register Of The 80486, 80486 Memory System, Real Address Mode, Features of 80386 and 80486.	5 Hrs
8	Chapter 8: Introduction to MicroPython : Design Philosophy, Exploring MicroPython, Object-Oriented Programming and Some Python Basics, Using MicroPython with a Pyboard, Bare-Metal Approach, programming to handle interrupts, ADC.	5 Hrs

Course Code: 17EARC209	Course Title: Control Systems			
L-T-P : 4-1-0	Credits: 5	Contact Hrs: 50		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 50		Exam Duration: 3 Hrs	6	
Conte	nt		Hrs	
Unit -	· 1			
Chapter No. 1. Introduction to Control Systems and System Modeling in Frequency domain System Configurations (open-loop & closed loop systems), Analysis and Design Objectives, The Design Process. Mathematical modeling of physical Systems: Transfer function, Electrical networks, Mechanical systems, Transfer Functions for Systems with Gears, Electromechanical System Transfer Functions, Analogous systems, Block diagram representation and reduction, Signal flow graph representation and reduction using Mason's Gain formula.				
Chapter No. 2. Time Response Introduction, Poles, Zeros, and System Response, Standard test signals, First-order system response to step, ramp and impulse inputs, Second-order system response to step input; Un- damped, Under damped, Critical damped and Over damped systems. Time response specifications of first and second order systems, Analysis and Design of Feedback Systems, Steady state errors and error constants.			8	
Chapter No. 3. Introduction to PID controller desig Types of Controllers, Mathematical modeling of F Derivative and Integral elements on system behavior	PID, ON-OFF controller, Ef		4	
Unit -	- 2			
Chapter No. 4. Stability Analysis Concepts of stability, Necessary conditions for Sta Criterion: Special Cases.	ability, Routh-Hurwitz Crite	erion, Routh-Hurwitz	5	
Chapter No. 5: Root Locus Techniques Defining the Root locus, General rules for constructing root loci, Sketching the Root locus, Effect of gain adjustment, addition of pole and addition of zero on system response and system stability.			5	
Chapter No. 6 : Frequency Domain Analysis Introduction, Correlation between time and freque Nyquist plot to obtain phase margin and gain margi Introduction to lead, lag and lead-lag compensating Unit -	ency response, Stability and n of a given system. networks.	alysis, Bode plot and	10	

Chapter No. 7 : Design Via Frequency Response Transient Response via Gain Adjustment, Lag Compensation, Lead Compensation, Lag-Lead Compensation, tuning of PID controllers.	5
Chapter No. 8: Design Via Root Locus and Introduction to State Space Design Via Root Locus: Improving Transient Response and Steady-State Error via Cascade	5
Compensation, Feedback Compensation, Physical Realization of Compensation,	
State Space: Introduction, General State-Space Representation	

Laboratory Course Plan: B E in A&R

Semester IV	Year:2018-19
Laboratory Title: Microcontroller Lab	Lab. Code: 17EARP207
Total Hours: 28	Duration of ESA Hours: 3
Total Exam Marks: 20	Total ISA Marks: 80

Experiment wise Plan

List of experiments/jobs planned to meet the requirements of the course.

	Category: Demonstration Total Weightage:20 No. o	f lab sessions	5: 2		
Expt./ Job No.	Experiment/job Details	No. of Lab. Session/s per batch (estimate)	Marks/E xperime nt	Marks obtain ed	Correlation of Experiment with the theory
1	Compare Architectures of different microcontrollers w.r.t to time response, frequency response, delay, process time etc. Write a program to demonstrate the blinking of LED in PIC16F877A and Arduino board.	1	5		Chap1
	Learning Objectives : The students should be able to: Study the data sheets and make a comparative study of the Architectur applications of different microcontroller Compare and contrast different microcontrollers. Connect microcontroller to LED and blink LED with proper delay. Apply suitable method or logic to solve given problem. Pre-lab: Download the data sheets of PIC16F877a, ATMEGA328, 8051 microcontroller- 168A-168PA-328-328P_datasheet_Complete.pdf http://ww1.microchip.com/downloads/en/DeviceDoc/39582b.pdf http://ww1.microchip.com/downloads/en/devicedoc/41159d.pdf http://www.farnell.com/images/doc8161.pdf http://www.farnell.com/datasheets/46220.pdf http://www.nxp.com/documents/data_sheet/LPC2921_23_25.pdf	rollers from ATmega48A	the followir -48PA-88A-1	0	

	PIC16F877a				
	ATMEGA328				
	8051				
	Make a comparative study and fill up the table 1 given in lab manual.				
	Download the application notes.				
	Prepare flowcharts and develop the code to demonstrate the use of the microcontroller as a simple digital output device.				
	Study Proteus 8 Professional				
	Study different ports and understand the basic LED program				
	In lab:				
	Must be able to explain difference between various types of Microcontro	llers and its	architectu	res.	
	Setup the hardware platform and deploy the code on the hardware.				
	If any errors debug the code until it works.				
	Make a note of the number and types of errors.				
	Simulate LED blink program on Proteus 8 Professional				
	Post-lab:				
	Analyze the cause for errors and make a note.				
2	Write a program to demonstrate a counting machine which count from	1	5		Chap2
	0000 to 9999 and display on 7 segment LED display using PIC16F877A				·
	and Arduino board.				
	Learning Objectives :				
	The students should be able to:				
	Use 7Segment LED for counting numbers.				
	Use appropriate logic or method for counting.				
	Pre-lab				
	Study the application notes of Arduino and PIC16F877a				
	Study advantages and disadvantages of Arduino and PIC16F877a microco	ontrollers			
	Understand 7segment LED.				
	Prepare flowcharts and develop the code to demonstrate the use of the r	nicrocontro	ller as a sir	nple	
	digital input and output device				
	Study different segments of LED				
	In-lab				
	Write program for both Arduino and PIC				
	If any errors debug the code until it works.				
	Make a note of the number and types of errors.				
	Simulate in Proteus				
	Setup the hardware platform and deploy the code on the hardware.				
	Execute the code and note the output.				
	Post-lab				
	Record the results and experience you got in lab				
	Analyze the cause for errors and make a note				
3.	Write a program to read the values from the temperature sensor	1	5		Chap2,3
э.	(LM35) and display the temperature in degree Celsius on LCD display	1 1	J		Chapz,5
	(Liviss) and display the temperature in degree Ceisius on LCD display				

1					1
	using PIC16F877A and Arduino board.				
	Learning Objectives :				
	The students should be able to:				
	Connect LM35, LCD and microcontroller.				
	Write function to read values from LM35 and display it on LCD.				
	Pre-lab				
	Study the application notes of Arduino and PIC for interfacing LM35 and				
	Prepare flowcharts and develop the code to demonstrate the use of the	microcontro	oller as a sir	nple	
	digital input and output device.				
	Study what is 16*2 LCD and how it works.				
	Analyze the driver required for LCD.				
	In-lab				
	Write program for both Arduino and PIC				
	Execute the code and note the output.				
	If any errors debug the code until it works.				
	Simulate LCD display in Proteus.				
	Setup the hardware platform and deploy the code on the hardware.				
	Make a note of the number and types of errors.				
	Post-lab				
	Analyze the cause for errors and make a note.				
-	List down different types of LCDs and sensors.		-		
4	In bank lockers there is requirement of password protection to	1	5		Chap2,3
	open the locker. Develop an application Using a 4*3 keypad				
	and LCD to secure the lockers by providing password				
	protection.				
	Learning Objectives :				
	The students should be able to:				
	Connect Keypad, LCD with microcontroller.				
	Write logic to read key press event from keypad.				
	Pre-lab				
	Study the application notes of Arduino and PIC for interfacing keypad and	d LCD.			
	Prepare flowcharts and develop the code to demonstrate the use of the	microcontro	oller as a sir	nple	
	digital input and output device.				
	List down different types of keypads				
	Analyze the driver required for 4*3 keypad.				
	In-lab				
	Write programs for both Arduino and PIC				
	Execute the code and note the output.				
	If any errors debug the code until it works.				
	Make a note of the number and types of errors.				
	Simulate both in Proteus				
	Setup the hardware platform and deploy the code on the hardware				
	Post-lab				

	Record the results and expe	rience in manual lications of Keypad in real world.(eg. In Sec	rurity applicatio	ans)		
	Category: Exercises	Total Weightage: 20		-	ab sessior	ns:4
Expt./ Job No.	Experiment/job Details		No. of Lab. Session/s per batch (estimate)	Marks/E xperime nt	Marks obtain ed	Correlation of Experiment with the theory
5	ultrasonic Sensors and displ inches. Make the connection flowchart and the code to p Learning Objectives : The students should be able Connect Ultrasonic Distance Logic to find distance in CM Pre-lab Study the application notes Understand different types	e Sensor and microcontroller and Meters. of Arduino and PIC for interfacing Ultrasor of sensors.		5		Chapter 4
	Prepare flowchart and deve analog input sensor and cor In-lab Write programs for both are Execute the code and note If any errors debug the code Make a note of the number Setup the hardware platfor Post-lab Record the results and expe	duino and PIC the output. e until it works. r and types of errors m and deploy the code on the hardware. erience in manual other sensors and note down the readings		ller as a sim	ple	
6	Write a program to control servo motors.	the speed and direction of DC, stepper and	d 1	5		Chapter 4,5
	Discuss how motor driver h Pre-lab: Study the application notes Study the working principle	s from microcontroller to DC motor using e elps in controlling the speed on a DC moto of Arduino and PIC for interfacing DC mot of DC motor. ent types of DC motors and list out them	or.			

	List the applications in the real world					
	In lab:					
	Write programs for both Arduino and PIC					
	Simulate in Proteus					
	Demonstrate the hardware for both Arduino and PIC.					
	Post-lab					
	Record the results and experience in manual					
7	Measure the speed of the DC motor w.r.t voltage.		1		Chanton 4 E	
7	Design a development board using Atmega328 or PIC 18 us	sing eagle/	1	5	Chapter 4,5	
	Dip-trace					
	Learning Objectives :					
	The students should be able to:					
	Design circuit diagram of development board.					
	Pre-lab:					
	Get familiar with circuit design software like eagle or diptrace					
	Sketch circuit diagram on paper.					
	In lab:					
	Design circuit.					
	Simulate in Proteus					
	Demonstrate the hardware for both Arduino and PIC.					
	Post-lab					
	Record the results and experience in manual					
	Measure the speed of the stepper motor w.r.t step angle.		,			
8	Develop a printed circuit board (PCB) for your designed At	mega328 or	1	5	Chap 6	
	PIC18 development board.					
	Learning Objectives :					
	The students should be able to:					
	Develop a PCB and assemble the components.					
	Pre-lab:					
	Design of the PCB has to be ready.					
	In lab:					
	Develop the PCB and mount the components.					
	Simulate in Proteus					
	Demonstrate the hardware for both Arduino and PIC.					
	Post-lab					
	Record the results and experience in manual					
	Category: Structured Enquiry Total Weightage:	20		No. of lab se	ssions:4	
Expt./Jo	Experiment/job Details	No. of Lab.	Marks/Ex	oe Marks	Correlation of	
b No.		Session/s per	riment	obtained	Experiment with	
		batch (estimate)			the theory	
9	Design a programmer for your PIC18 development board	1	10		Chapter 6,7	
	to burn the program using PICkit2 or any similar	-				
	software's.					
	Solution Si				1	

					1
	Learning Objectives :				
	The students should be able to:				
	Design circuit diagram of development board.				
	Pre-lab:				
	Get familiar with circuit design software like eagle or diptra	асе			
	Sketch circuit diagram on paper.				
	In lab:				
	Design circuit.				
	Simulate in Proteus				
	Demonstrate the hardware for both Arduino and PIC.				
	Post-lab				
	Record the results and experience in manual				
	Measure the speed of the stepper motor w.r.t step angle.				
10	Develop a printed circuit board (PCB) for your designed	1	10		Chapter 6,7
	and validated programmer which can burn programs on				
	the PIC16 or PIC18 ICs.				
	Learning Objectives :	•			
	The students should be able to:				
	Develop a PCB and assemble the components.				
	Pre-lab:				
	Design of the PCB has to be ready.				
	In lab:				
	Develop the PCB and mount the components.				
	Simulate in Proteus				
	Demonstrate the hardware for both Arduino and PIC.				
	Post-lab				
	Record the results and experience in manual				
	Category: Open Ended Total Weightage:	20		No. of lab sessi	on:2
Expt./	Experiment/job Details	No. of Lab.	Marks/Expe	Marks	Correlation
Job		Slots per batch	riment	obtained	of
No.		(estimate)			Experiment
					with the
					theory
11	Write a program on Pyboard microcontroller using	2	20		, Chapter 1 to
	python programming and image processing to detect the				7
	tennis ball.				
	Learning Objectives :	1	I	1	
	The students should be able to:				
	Identify the problem and solve.				
	Apply the knowledge of electronics and programming to m	easurement Lic	uid flow rate.		
					1

Course Code: 17EARC304	Course Title: Measuremer	Course Title: Measurement Systems			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40 hou	ırs		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100			
Teaching Hrs: 40		Duration of ESA: 3 I	Hrs		
Conte	nt		Hrs		
Unit -	- I				
Chapter No. 1. Introduction to Measurement Systems Need for study of Measurement Systems, Classification of Types of Measurement Applications, Computer-Aided Machines and Processes, Functional Elements of an Instrument, Active and Passive Transducers, Analog And Digital Modes of Operation, Null and Deflection Methods, Input-Output Configuration of Instruments and Measurement Systems, Static Characteristics and Static Calibration, Dynamic Characteristics.					
Chapter No. 2. Sensors and Signal conditioning Sensor characterization, Relations between physical quantities, Sensor Classification, Specifications, Error reduction techniques, Loading errors, Signal conditioning processes, The operational amplifier, Filtering, Wheatstone bridge, Pulse modulation.					
Chapter No. 3. Motion Measurement Fundamental Standards, Relative Displacement: Translation and Rotational, Relative Velocity: Translation and Rotational, Relative-Acceleration Measurements, Displacement Pickups, Velocity Pickups, Acceleration Pickups, Calibration and Vibration Pickups, Jerk Pickups.					
Unit –	II				
Chapter No. 4. Force, Torque, and Shaft Power Measurement Standards and Calibration, Basic Methods of Force Measurement, Characteristics of Elastic Force Transducers, Torque measurement on Rotating shaft, Shaft Power Measurement (Dynamometers), Vibrating Wire Force Transducers.					
Chapter No. 5. Pressure & Sound Measurement Standards and Calibration, Basic Methods of Pre Manometers, Elastic Transducers, Vibrating-Cylind Testing of Pressure-Measuring Systems, H Measurement, Sound Measurement.	er and Other Resonant Tra	ansducers, Dynamic	5 hrs		
Chapter No. 6. Flow and Temperature Measurem Local Flow Velocity, Magnitude and Direction, Gross		ards and Calibration			

of Temperature Measurement, Thermal-Expansion methods, Thermoelectric Sensors, Electrical-Resistance Sensors, Junction Semiconductor Sensors, Digital Thermometers, Radiation Methods. 5 hrs

Unit – III

Chapter No.7. Data Acquisition Systems

Data conversion devices, Signal sampling and aliasing, Sampling theorem, Quantization, Encoding, Digital to analog conversion methods, Analog to digital conversion methods, Sample & Hold circuit, Flash ADC, Successive approximation ADC, Dual slope ADC, Sigma Delta ADC, Multiplexers.

Chapter No. 8. Transmission and Recording of Data

Cable Transmission of Analog Voltage and Current Signals, Cable Transmission of Digital Data, Fiber-Optic Data Transmission, Analog Voltmeters and Potentiometers, Electrical Instruments, Digital Voltmeters and Multimeters, Signal Generation, Electromechanical XT and XY Recorders, Fiber Optic Sensors.

Semester:V

Year: 2019-20

Laboratory Title: Mechatronics & Measurements Lab	Lab. Code: 17EARP303
Total Hours: 24	Duration of Exam: 3 hrs
Total Exam Marks: 20	Total ISA. Marks: 80

Experiment wise Plan

List of experiments/jobs planned to meet the requirements of the course.

Category: Demonstration		Total Weightage: 10.00		No. of lab sessions: 2.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	Demo of Quanser Mechatronics Sensor kit, DC Motor Control Trainer module, Inverted Pendulum Trainer module with NI ELVIS Platform	1.00	5.00	Unit-1, Unit II
2	Data Acquisition process using DAQ card from NI using LABVIEW with strain guage load cell	1.00	5.00	
Category	: Exercise	Total Weightage: 20.00		No. of lab sessions: 3.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
3	Sensor characterization using sensor modules, namely, Accelerometer, Ultrasonic sensor, Temperature sensor, Strain gauge	1.00	5.00	Unit I & Unit II
4	Sensor fusion of IMU and compass	1.00	5.00	Onit i & Onit ii
5	Development of a Data acquisition system , DAQ hardware as an embedded system	1.00	10.00	

Category: Structured Enquiry		Total Weightage: 45.00		No. of lab sessions: 5.00	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory	
6	System identification of DC motor	2.00	15.00	Unit – 1, Unit - 2	
7	Hardware in Loop model for a stated problem using Speed goat / Controller/ Processor and MATLAB2018A	1.00	15.00	and Unit - 3	
8	Develop a plant model using Inverted pendulum in MATLAB and analyze its performance characteristics	2.00	15.00		
Category: Open Ended		Total Weightage: 5.00		No. of lab sessions: 2.00	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory	
9	Design and develop a Haptic kit for physically challenged people	2.00	5.00	Unit – 1, Unit - 2 and Unit - 3	

Course Code: 17EARC305 Course Title: Machine learning and ROS				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40		
ISA Marks: 50	ESA Marks: 50	:: 50 Total Marks: 100		
Teaching Hrs: 40		Exam Duration : 3 h	ours	
	Content		Hours	
	UNIT – 1			
Chapter 1:Introduction to Robot operating system ROS concepts, creating ROS packages writing a minimal ROS publisher, compiling ROS nodes, running ROS nodes, examining running minimal publisher node, scheduling node timing, writing a minimal ROS subscriber compiling and running minimal subscriber, minimal subscriber and publisher node summary writing ROS nodes more ROS tools: catkin simple, ROSlaunch, simplifying cmakelists.txt with catkin simple automating starting multiple nodes viewing output in a ROS console recording and playing back data with ROSbag.				
Chapter 2:Messages, Classes and Servers in ROS Defining custom messages, ROS services- service messages, ROS service nodes, manual interaction with ROS services, example ROS service client, running, example service and client, using C++ classes in ROS creating library modules in ROS, introduction to action servers and action clients- creating an action server package, defining custom action-server messages, designing an action client running the example code, introduction to parameter server.				
Chapter 3: Introduction to machine learning Introduction Machine Learning ,Well posed learning problem, Types of learning, supervised learning ,unsupervised learning and reinforcement learning, Learning Associations, Designing of learning system, perspectives & issues in machine learning, Concept learning task, concept learning search, Find-S: Finding a maximally specific hypotheses, version spaces & candidate elimination algorithm, inductive bias.			5 hrs	
UNIT – 2				
Motivation, Estimating hypothe	rning theory and decision tree lesses accuracy, Basics of samplir e intervals, comparing learning al	ig theory, general	8 hrs	

learning an approximately correct hypothesis, sample complexity for finite hypnosis spaces, sample complexity for infinite hypothesis spaces, instance based learning-K nearest neighbor learning, locally weighted regression, Representation, decision tree algorithm, hypotheses space search in decision tree algorithm inductive bias in decision tree algorithm, issues in DTL, Bayesian decision theory classification.		
Chapter 5:Kernel methods and Graphical models Embedding's into feature spaces, the kernel trick, Multiple kernel learning, Kernel dimensionality reduction Canonical Cases for Conditional Independence, Example Graphical Models, Naive Bayes' Classifier, Hidden Markov Model, Linear Regression, d-Separation Belief Propagation, Linkage–Based clustering algorithms- means and other cost minimization clustering.		
UNIT – 3		
Chapter 6:Reinforcement Learning The learning task,Q-learning,Nondeterministic rewards & actions, temporal difference learning, generalizing from examples, relationship to dynamic programming.	5 hrs	
Chapter 7: Artificial neural network	5 hrs	

Course Code: 17EARC301 Course Title: Object Oriented Programming Database Management Systems			and
L-T-P: 4-0-0	Credits: 3 Contact Hrs: 50		
ISA Marks: 50	ESA Marks: 50 Total Marks: 50		
Teaching Hrs: 50		Exam Duration: 3	hrs
Conte	ent		Hrs
Unit	- I		1
Chapter 1 Introduction to Software Developm Language: Software Development Lifecycle, SE Framework, Computer Communication Methods Unified Modeling Language (UML): UML Buildin Object Diagram, Component Diagram, UML Mod SysML, Using the Tools, Testing the Solution, C the Sequence Diagram for the Plant Operation,	DLC Models, Requirement I g Blocks, UML Diagrams - deling Types, UML Basic N oding the Solution, Case S	Modeling Class Diagram, lotations, UML- itudies - Modeling	6
Chapter 2 Data Modeling using the ER Model for Database Design, An Example Database Ap and Keys, Relationship Types, Relationship Sets Entity Types, Refining the ER Design, Relations Diagrams, Naming Conventions and Design Issu	plication, Entity Types, Enti s, Roles and Structural Cor hip Types of Degree Highe	ity Sets, Attributes nstraints, Weak	6
Chapter 3 Introduction to Object-Oriented Programming - I : Introduction to .NET Environment, The Java Virtual Machine, Variables and Data Types, Conditional and Looping Constructs, Arrays, Fields and Methods, Constructors, Overloading Methods, Garbage Collection, Nested Classes, Simple Inheritance, Multilevel Inheritance, Overriding, Overloading, Defining Interfaces, Implementing Interfaces, Polymorphism, Abstract Classes, Access Control, Access Modifiers, Access Protection			8
Unit	- 11		Ì
Chapter 4 Object-Oriented Programming - II : Finalizer Method: finalise (), Exception Handling Exception Types, Constructors and Methods in Unchecked and Checked Exception, Creating Ye	, Fundamentals of Exception Throwable Class, Java's Bu	on Handling, uilt-in Exceptions,	4
Unchecked and Checked Exception, Creating Your Own Exception Sub-Classes Chapter 5 Object-Oriented Programming - III : Features of Python Variables, Operators and Branching, Core elements of Programs - Bindings, Strings, Input/Output, IDEs, Control Flow and Iteration, Functions - Decomposition and Abstraction, Functions and Scope, Keyword Arguments, Specifications, Lists, Tuples, Sets, Mutation, Aliasing, Cloning, Functions as Objects, Dictionaries, Example with a Dictionary, Fibonacci and Dictionaries, Global Variables, Classes and Inheritance: Object-Oriented Programming, Class Instances, Methods Classes, Examples, Hierarchies			10

Chapter 6 Introduction to Database Management Systems : Introduction to DBMS with an example, Characteristics of Database Approach, Actors on and Behind the Scene, Advantages and Disadvantages of using DBMS, Data models, Schemas and Instances, Three-Schema Architecture and Data Independence, Database Languages and Interfaces, Database System Environment	6
Unit - III	
Chapter 7 Relational Data Model and SQL : Relational Model Concepts, Relational Model Constraints and Relational Database Schemas, Update Operations, Transactions and Dealing with Constraint Violations, SQL Data Definition and Data Types, Specifying Basic Constraints in SQL, Schema Change Statements in SQL, Insert, Delete and Update Statements in SQL, Specifying Constraints as Assertion and Trigger, Indexing Techniques, Views in SQL, Basic Queries in SQL, More Complex SQL Queries, Informal Design Guidelines for Relation Schemas, Functional Dependencies, Normal Forms Based on Primary Keys, General Definitions of Second and Third Normal Forms, Boyce-Codd Normal Form	5
Chapter 8 Object-Relational Databases and Semantic Modeling Approach : Overview of Object Database Concepts, Object-Relational Features: Object Database Extensions to SQL, The ODMG Object Model and the Object Definition Language ODL, Object Database Conceptual Design, The Object Query Language OQL, Semantic Introduction to Databases, Semantic Modeling, Semantic Binary Schemas, Schema Quality Criteria, Subschemas and User views, Transaction Processing Concepts	5

Course Code: 17EARC303	Course Title: Mechatronics System Design			
L-T-P : 4-0-0	Credits: 4	Contact Hrs: 50 hours		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 50 hours		Exam Duration: 3 Hrs		
Con	tent		Hrs	
Un	it - I			
1. Introduction to Mechatronics Systems and elements Introduction to Mechatronic Systems and Design, Mechatronic systems in Precision mechanics, Micromechanics and Process Engineering, Confinement of Mechatronic Systems, Functions, Distribution of Mechanical and Electronic Functions, Integration Forms of Processes and Electronics, Ways of Information Processing, Multi-level Control Systems, Special Signal Preprocessing, Design Procedures for Mechatronics Systems, V model			8	
2. Modeling of Processes Theoretical and Experimental Modeling, Classification of Process Elements, Process Elements with Lumped and Distributed Parameters, Mechanical System model, Mechanical Elements : Bars, Springs, Dampers, Mechanical Systems with Friction, Backlash, Electrical System model, Analogies between Mechanical and Electrical Systems, Dynamics of Mechanical Systems, Newton's Laws of Kinetics, Translational and RotationalMotion, Principles of Mechanics, d'Alembert's Principle, Lagrange's Equations, Problems.			12	
Uni	t - II			
3.Electrical Drives Types of Electrical Drives, Electromagnets, Direct Current Motors, Dynamic Behavior, Static Behavior, Special Types of DC Motors, Alternating Current Motors (AC), Induction Motors, Synchronous Motors, Single-phase Motors, Commutator Motors (Universal Motors), Squirrel-cage Motors, Power Electronics Circuits, Internally or Externally Commutated Electro-motors, Electrical Motor Sizing and Selection Procedure, Electric Motor Operational Conditions, Motion Profile, Load Torque Calculation, Motor Shaft Torque Calculation, Load Torque–Speed Profile, DC Motor Parameter Estimation, Process Dynamics Particularities, Electrical Binary Actuators.			10	
4. Model based Design of Systems & Identification Introduction to model based design ,Basic block diagrams, Model-based Methods of Control,Supervision and Fault Diagnosis, Intelligent Systems,Non-linear Control and Fault Detection , Model-based Compensation of Non-linearities, Modeling and Fault Diagnosis , Examples for the Design of Mechatronic Systems using UML and SysML, Identification Methods , classification of Identification Methods ,Test Signals , Closed-loop Identification , Type of Application, Parameter Estimation for Discrete Time-varying Systems, Non-linear Processes, Problems.			10	
Unit - III				
5. Recent trends in Mechatronics System Design process Mechatronics systems contributing to economic growth, Changes in technological processes and products, Tools and methods in mechatronics system design and development, Use of Artificial Neural Networks and Fuzzy-logic Models, Fields of application, Future Mechatronics systems.			5	
6. Case studies Dynamic Models ofa Electromagnetic actuator,	Control Prototyping and	Hardware-in-the-loop	5	

Simulation, Rapid Control Prototyping for Engine Control, Hardware-in-the-loop Simulation for Industrial Robot , Process control system, etc, UML/ SysML and State chart modeling for each example.

FMTH0303-3.1

Semester: V

Year: 2019-20

Laboratory Title: Object-Oriented Programming and Database Management Systems Lab	Lab. Code: 17EARP301
Total Hours: 24	Duration of Exam: 2 hrs
Total Exam Marks: 100	Total ISA. Marks: 80

Experiment-wise plan

1. List of experiments/jobs planned to meet the requirements of the course.

Category: D	emonstration Total Weighta	ge: 35	No. of lab sessior	ns: 7	
Learning Outcomes: The students should be able to: Design and model using UML diagrams and ER models. Demonstrate how to compile and run a program in JAVA, Python, and .NET environment. Write programs using class, inheritance, and other fundamentals of OOP. Write SQL statements concerning data manipulation using retrieving, inserting, updating, and deleting commands. Write packages/procedure for manipulating data and triggers to enhance data retrieval.					
Expt./Job No.	Experiment/job Details	No. of Lab. Session/s p batch (estimate)		Correlation of Experiment with the theory	
1	SysML - Getting used to tool, use case, cr class diagram, sequence diagram, and sta diagram.	eating	5	Introduction to Software Development Lifecycle and Unified Modeling Language	
2	Creating ER models considering different relationship and attributes.	1	5	Data Modeling using the ER Model	
3	Write programs in Java or .NET using the concept of OOP like arrays, strings, functi overloading, and exception handling.	ons, 1	5	Introduction to Object-Oriented Programming - I	
4	Write programs in JAVA or .NET using the concept of a generic class, inheritance, interface, and package.	2 1	5	Object-Oriented Programming - II	
5	Write programs in PYTHON using the con of generic classes, inheritance, interface, package.		5	Object-Oriented Programming - III	

6	Write SQL statements related to data			Relational Data
J.	manipulation, like insert, delete, and update.	1	5	Model and SQL
7	Write statements to create views, procedures			Relational Data
7	packages, and indexing for fast retrieval.	' 1	5	Model and SQL
	puckuges, and mucking for fust retrieval.			Woder and SQL
Category: Ex		20 No.	. of lab session	s: 2
Learning Ou				
	s should be able to:			
-	model using UML diagrams.			
•	classes in JAVA or .NET environment.			
•	d build JAR/DLL files.			
-	mode ER models for different scenarios.			
	database schema with data manipulation SQL s	statement, a prop	per procedure i	in place, and create
	fast data retrieval.			
Expt./Job	Experiment/job Details	No. of Lab.	Marks/Exp	Correlation of
No.		Session/s per batch	eriment	Experiment with the
		(estimate)		theory
1	Develop a class diagram concerning sensor,	()		Introduction to
	actuators and controls, implement these			Software
	classes, and build JAR/DLL files.			Development
				Lifecycle and
				Unified Modeling
				Language
		1	10	Introduction to
			-	Object-Oriented
				Programming - I
				Object-Oriented
				Programming - II
				Object-Oriented
				Programming - III
	Develop an ER model and construct a databas	e		Data Modeling using
	schema for a given manufacturing scenario.	-		the ER Model
				Relational Data
		1	10	Model and SQL
				Relational Data
				Model and SQL
Category: St	tructured Enquiry Total Weig	phtage: 25	No. of lab	sessions: 2
Learning Ou	s should be able to:			
	elop and implement application utilizing previo			
	rom the application into the database	usiy ueveloped Jr	NY DEL 11165.	

Store data from the application into the database.

Design, development and implement the user interface for visualization of data from the database.

Expt./Job No.	Experiment/job De	tails	No. of Lab. Session/s per batch (estimate)	Marks/ Experiment	Correlation of Experiment with the theory
	generated JAR/ store data from the actuators. A	oject which utilizes previously DLL files and database schema to automation devices and control dditionally, proper checks have to d and with necessary visualization.	2	25	
Category: C	pen Ended	Total Weightage: 20	No. of lab session	s: 2	
Use the OO Use databa Select the a Write a tech Present the	ts should be able P concepts to imp se concept to imp ppropriate tool/s nnical report usin technical report te the learning ex	plement the project. Dement the project oftware to implement the project. g a predefined template. of the implemented project. periences of working in a team.			
Expt./Job No.	Experiment/job De	tails	No. of Lab. Slots per batch (estimate)	Marks/ Experiment	Correlation of Experiment with the theory
1.		oject using C++/Java/python/DB Itomation and robotics	2	20	

CourseCode:17EARE301	Course Title: Artificial I	Intelligence for autonomous systems	
L-T-P:3-0-0	Credits:3	ContactHrs:40	
ISAMarks:50	ESAMarks:50	Total Marks: 100	
TeachingHrs:40		ExamDuration:3hours	
Content Hours			
	UNIT–1		
Chapter1:IntroductiontoArt	ficialintelligenceand		5hrs
autonomoussystemsFoundationautonomouscontrol,Sevenareas TheStructure of Agents,Probl	onofartificialintelligence,rol sofAI,TheConceptofRationa em-SolvingAgents,Searchin nformedSearchStrategies,Ku	alityTheNatureofEnvironments, ng forSolutions, nowledgerepresentationinAI,knowledgeb	
Chapter2:Roboticsoftwarear Subsumptionarchitecture,Three AttributesoftheHierarchicalPar AttributesofReactiveParadigm AttributesofHybridParadigm,A AutonomousRobotArchitecture HierarchyArchitectures,Model	e-layerarchitecture, Pi adigm,ReactiveParadigm- ,HybridDeliberative/Reactiv ,rchitecturalAspects,Manage e(AuRA),SensorFusionEffe	erialArchitectures-	5hrs.
Chapter3:BiologicalFoundat	ionsoftheReactiveParadig	m	5hrs
Agencyandcomputationaltheor ,CoordinationandControlofBel inBehaviors,Action- perceptioncycle,Twofunctionso	y,AnimalBehaviors,Reflexi naviors,Innatereleasingmech ofperceptionGibson:Ecolog		
	UNIT–2		
Behaviors inDesigningaReactiveBehavio blagesofBehaviors,Logicalsens	tationwithcommonsensing asObjects ralSystem,CaseStudy:Unma sors,BehavioralSensorFusio	gtechniquesforroboticsperception inOOP,Steps annedGroundRoboticsCompetition,Assem n,DesigningaSensorSuite,ProprioceptiveS on,CaseStudy:Horsd'Oeuvres,Anyone?	

Chapter5: Multi-agentsandnavigation inrobotics

Heterogeneity, Control, Cooperation, Emergent Social Behavior, Topological Path Planning, Relational Methods, Associative Methods, Case Study of Topological Navigation with a Hybrid Architecture Study of Topological Navigation and the study of the st

7hrs

Course Code: 17EARE304	Course Title: Digital Syster programming	A		
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 50		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 50		Exam Duration: 3	hrs	
Content				
Unit – 2	L		I	
Chapter No. 1. Review of Logic Design Fundamentals: Combinational logic, Boolean algebra and algebraic Simplification Karnaugh maps, designing with NAND and NOR gates, hazards in combinational circuits, flip-flops and latches, Mealy sequential circuit design, design of a Moore sequential circuit, equivalent states and reduction of state tables, sequential circuit timing, tristate logic and busses. Advanced Design Issues: Meta-stability, Noise Margins, Power, Fanout, TimingConsiderations, Brief overview of programmable logic devices, simple programmable logic devices (SPLDs), complex programmable logic devices (CPLDs), field-programmable gate arrays (FPGAs),				
Chapter No. 2. Introduction to State Machine Charts and Microprogramming : State machine(SM) charts, derivation of SM charts, realization of SM charts, implementation of the dice game, microprogramming,: Design Examples				
Unit – 2			7hrs	
Chapter No. 3. Designing with Field Programmable Gate Arrays: Implementing functions in FPGAs, implementing functions using Shannon's decomposition, carry chains in FPGAs, cascade chains in FPGAs, examples of logic blocks in commercial FPGAs, dedicated memory in FPGAs, dedicated multipliers in FPGAs, cost of programmability, FPGAs and One-Hot state assignment				
Chapter No. 4. Modeling and design with HDL Basic Concepts, Dataflow Descriptions, Behavioral Descriptions ,Structural Descriptions, Design examples,Timing and Delays, BCD to 7- Segment Display Decoder, BCD Adder, 32-Bit Adders, Traffic Light Controller, Shift-and-Add Multiplier, Array Multiplier. Introduction to Verilog and VHDL : Data Types, Modeling Concepts, Task and Functions, Specify Block and Timing Checks , Architecture study of popular FPGA families			8hrs	
Unit – 3				
Chapter No. 5. Testing and Verification What is Verification, what is a Test bench, The Importance of Verification, Convergence Model, What Is Being Verified, Functional Verification Approaches, Testing Versus Verification, Design and Verification Reuse, Cost of Verification				
Chapter No. 6 Case studies on FPGA technologies in Automation and Robotics applications Robotic Car from Georgia Institute of Technology Robotic Controller: ASIC versus FPGA				

Expanding a robot's life: Low power object recognition via FPGA-based DCNN deployment FPGA-powered parallel, pipelined vision algorithms

Course Code: 17EARC308 Course Title: Hydraulics and Pneumatics				
L-T-P : : 3-0-0	Credits: 3	Contact Hrs: 40 hours		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40 hours		Exam Duration: 3 H	rs	
Conte	nt		Hrs	
Unit -	1			
Chapter No. 1. Introduction to Hydraulic Power and Hydraulic Pumps Pascal's law, Structure of Hydraulic Control System. The Source of Hydraulic Power: Pumps Pumping theory, pump classification, gear pumps, vane pumps, piston pumps, Variable displacement pumps, pump performance, pump selection. Problems on determining the pump flow rate, pump efficiency and pump power.				
Chapter No. 2. Hydraulic Actuators: Cylinders and Motors Linear Hydraulic Actuators (cylinders), Mechanics of Hydraulic Cylinder loading, Hydraulic Rotary Actuators, Gear motors, vane motors, piston motors, Hydraulic Motor Performance. Problems on determining motor speed, torque, power ,motor efficiency and Mechanics of Hydraulic Cylinder loading.				
Chapter No. 3. Hydraulic Valves Hydraulic Valves: Directional Control Valves- classification of directional control valves, direction control valves actuating devices, Symbolic representation as per ISO 1219 and ISO 5599, pressure control valves, flow control valves- classification of flow control valves, proportional control valves, and servo valves.			5hrs	
Unit - 2				
Chapter No. 4. Hydraulic Circuit Design and Analysis Control of single acting and double acting Hydraulic Cylinder, regenerative circuit, pump unloading circuit, Double pump Hydraulic system, Counter Balance Valve application, Hydraulic cylinder sequencing circuits. Locked cylinder using pilot check valve, cylinder synchronizing circuits, Speed control of hydraulic cylinder: Meter-in circuit, Meter-out circuit and Bleed-off circuit, speed control of hydraulic motors. Ancillary Hydraulic Devices: Reservoirs, Accumulators, Pressure Intensifiers, Sealing Devices.			5hrs	
Chapter No. 5. Pneumatic Systems Structure of Pneumatic control system, Choice of working medium, characteristics of compressed air, Pneumatic Actuators: Types of Linear Actuators or Pneumatic cylinders, Cylinder mountings, Cylinder seals, End cushioning in pneumatic cylinders. Pneumatic Control Valves: Direction control valve- types of direction control valves, ISO designation of direction control valves, Non return valves, methods of actuation of pneumatic directional control valves, Flow control valves, and Pressure control valves.			5hrs 5hrs	
Chapter No. 6. Pneumatic Circuit Design				

Direct and indirect control of single acting cylinder, control of single acting cylinder using "or" valve, control of single acting cylinder using "and" valve, control of single acting cylinder using "not" valve. Direct control of a double acting cylinder, Indirect control of double acting cylinder using memory valve, Supply air throttling and exhaust air throttling, Various methods of checking end position of a cylinder, Pressure dependent controls and Time dependent controls.	
Unit - 3	
Chapter No. 7. Hydraulic Control Systems Servo Control, Valve servo systems: Valve lap, mechanical feedback, systems response, electro hydraulic servo valves, system response and stability, Pump servo systems, Proportional valves: Force control, force position control, spool position control, proportional pressure control, two stage proportional valves, proportional flow control, electrical control of proportional valve, Proportional versus Servo valves, Applications of proportional control valves.	5 hrs
Chapter No. 8. Electro Pneumatics Basic electrical devices- Manually actuated push button switches, Limit switches, Pressure switches, Solenoids, Relays, Timers, Temperature switches, Direct and indirect control of single acting cylinders using electro pneumatics, Direct and indirect control of double acting cylinders using electro- pneumatics, Control of double acting cylinder OR logic (Parallel circuit), Control of double acting cylinder AND logic.	5 hrs

Laboratory Course Plan: B.E in A&R

Semester: VI

Year: 2019-2020

Laboratory Title: Industrial Robotics Lab	Lab. Code: 17EARP306
Total Hours: 28	Duration of Exam: 3 hrs.
ISA Marks: 80	ESA. Marks: 20

Experiment wise Plan

List of experiments/jobs planned to meet the requirements of the course.

Category	: Exercise	Total Weightage: 70	0.00	No. of lab sessions: 8.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Marks / Session(s) per Experiment batch (estimate)		Correlation of Experiment with the theory
1	Matlab Introduction	1.00	10	
	Matlab Introduction1.0010Millions of engineers and scientists worldwide use MATLAB® to analyze and design the systems and products transforming our world. The matrix-based MATLAB language is the world's most natural way to express computational mathematics. Built-in graphics make it easy to visualize and gain insights from data. The desktop environment invites experimentation, exploration, and discovery. These MATLAB tools and capabilities are all rigorously tested and designed to work together. MATLAB helps you take your ideas beyond the desktop. You can run your analyses on larger data sets, and scale up to clusters and clouds. MATLAB code can be integrated with other languages,		UNIT – I	

	 MATLAB, and its open source relatives, such as Octave, is very popular with some robotic engineers for analyzing data and developing control systems. Programming for a robot requires designing the controller that governs robot behavior. Modeling and simulation became vital to understand how the controller interacts with the robot's environment perception, mobility, and interaction. Why MATLAB is the Most Used Programming Language in Robotics? MATLAB is highly useful in designing the entire robotic system. It is widely used in the robotics industry as it is deeply rooted in the foundation and development of robots. It is a simulation tool whereby you can provide your algorithm or design and it simulates the result. On the other hand, simulation helps engineers to refine the system design and eliminate errors before developing hardware prototypes. 				
2	Robotics Toolbox	1.00	10)	
	The Toolbox has always provided many functions that are useful for the study and simulation of classical arm-type robotics, for example such things as kinematics, dynamics, and trajectory generation. The toolbox contains functions and classes to represent orientation and pose in 2D and 3D (SO (2), SE (2), SO (3), SE (3)) as matrices, quaternions, twists, triple angles, and matrix exponentials. The Toolbox also provides functions for manipulating and converting between data types such as vectors, homogeneous transformations and unit-quaternions which are necessary to represent 3- dimensional position and orientation.			UNIT – I	
3	RoboAnalyzer	2.00	20)	
	Explaining the concepts in a course on Robotics typically requires a 3D model of a serial-robot/manipulator, either in the form of a physical robot or a virtual robot in software environment, for a better understanding. With the experience of handling Robotics courses and the feedback received so far, we have come up with a list of Virtual Experiments using RoboAnalyzer. List of Virtual Experiments using RoboAnalyzer			UNIT-I & II	
	SI Practical Assignments using No. RoboAnalyzer		Topics Cove		
	1 Introduction to RoboAnalyzer		Usage of Rob		
	2 Virtual Models of Industrial Ro		Industrial Ro		
	3 Understanding coordinate fram	nes and	DH Paramete	ers. Robot	

		transformations		Geometry	y	
	4	Forward kinematics of robots		Robot Kinematic Analysis		
	5	Inverse kinematics of robots		Robot Kin	nematic Analysis	
	6	Case Study: Kinematics of MTAB N Robot	1ini	Robot Kin	ematic Analysis	
	7	Case Study: Workspace Analysis of axis robot	a 6	Workspac	ce Analysis	
	8	Inverse and Forward dynamics of r	obots	Robot Dy	namics	
	9	Creating robot joint trajectories		Trajector	y Planning	
4	Intro	duction to ABB Robotstudio	1.00		5.00	
	 Offline programming is the best way to maximize return on investment for robot systems. ABB's simulation and offline programming software, RobotStudio, allows robot programming to be done on a PC in the office without shutting down production. RobotStudio provides the tools to increase the profitability of your robot system by letting you perform tasks such as training, programming, and optimization without disturbing production. This provides numerous benefits including: Risk reduction Quicker start-up Shorter change-over Increased productivity RobotStudio is built on the ABB VirtualController, an exact copy of the real software that runs your robots in production. This allows very realistic simulations to be performed, using real robot programs and configuration 			UNIT-I & II		
5		lation/Offline Programming otstudio)	2.00		15.00	
	Topic Creat Autol Set Ta Collis Reach	cs to be covered: e mechanism				UNIT-I & II

6	Online Programming	1.00	10		
	To perform a particular action, robots are programmed either by guiding or by off-line programming. Most of the industrial robots are programmed by guiding a robot from point to point through the phases of an operation, with each point stored in the robotic control system. Robots receive instructions through computer commands and this is referred to as manipulator level off-line programming. Usage of off- line programming involves higher-level languages, in which robotic actions are defined by tasks or objectives. Robotic programmers must have knowledge on different types of programming languages as switching from computers to robots is not the smooth transition that many developers/programmers may think.				
Category	: Structured Enquiry	Total Weightage: 20.00		No. of lab sessions: 1.00	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory	
7	Project Students should form a team of 4 in numbers and select a problem or need statement in industrial robotics area. The project should consists of following requirements: Minimum 3 to 6 DOF robot arm DH Parameters Students are free to choose the software to complete the project	1	20.00	UNIT-I & II	

FMTH0303-3.1

Year: 2020-21

Laboratory Title: Project	Lab Code: 18EARW401
Total Hours: 30	Duration of Exam: 3 Hrs
Total ESA Marks: 50	Total ISA. Marks: 50

Prerequisites:

Semester:

Subjects learnt up to VI semester.

VII

Course Outcomes-CO

At the end of the course student will be able to:

- 1. Carry out market survey, do need analysis and identify suitable problems.
- 2. Write a project proposal, which will involve developing a complete solution for the identified problem from the real world.
- 3. Apply the principles of engineering design to plan and manage the project.
- 4. Apply suitable design processes and develop the best possible solution.
- 5. Develop proof of concepts and models for verification.
- 6. Prepare production drawings, bill of materials and process plans.

	Course Content		
Course Code: 18EARC201 Course Title: Analog and Digital Electronic Circuits			
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 50	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50		Duration of ESA: 3 hrs	
	Content		Hrs
	Unit - 1		
1.0 Introduction of PN junctions Diode theory, forward and reverse diode applications – limiters, clip rectification, voltage regulators, purpose diodes – Zener diode, vai and applications: KVL, KCL, Theorem and Norton's Theorem.	biased junctions, reverse- bia pers, clampers, voltage mult voltage dividers,pull up, ractor, light emitting diodes,	tipliers, half wave and full wave pull down, optocoupler,special photodiodes. Network theorems	7
2.0 Transistors Bipolar Junction Transistors and in Operating point, Fixed bias circui Bias stabilization, BJT transistor feedback configuration, analysis of between h-parameter model of MOSFET as a switch.	its, Emitter stabilized biased modeling, , Emitter follow of CE configuration using h	ver, CB configuration, Collector - parameter model; Relationship	7
3.0 Operational Amplifiers Op-Amp Basics, practical Op-Amp circuits, differential and Common mode operation, Inverting &Non-Inverting Amplifier, differential and cascade amplifier, Op-Amp applications: Voltage follower, Comparator, summing, integrator, differentiator, instrumentation amplifiers, Schmitt trigger, Op-amp based oscillators.			6
	Unit - 2		
4.0 Number system and digital le Decimal, binary, octal, hexadecir signed numbers, 1s and 2s comple Logical Operators, Logic Gates-B Universal Gates and realization Characteristics and Parameters.	nal number system and con ment codes, Binary arithmeti asic Gates, Other gates, Activ	c. ve high and Active low concepts,	6
5.0 Boolean algebra and combinational logic circuits Binary logic functions, Boolean laws, truth tables, half adder, full adder, subtractor, associative and distributive properties, DE Morgan's theorems, realization of switching functions using logic gates. Switching equations, canonical logic forms, sum of product & product of sums, Karnaugh maps, two, three and four variable Karnaugh maps, simplification of expressions.			7
6.0 Design of combinational logi	c circuits and sequential log	gic	7

Introduction to combinational circuits, code conversions, decoder, encoder, priority encoder, multiplexers as function generators, binary adder, subtractor, BCD adder, Binary comparator, arithmetic logic units. Sequential circuits, flip-flops, clocked and edge triggered flipflops, timing specifications, asynchronous and synchronous counters, counter design with state equations, Registers, serial in serial out shift registers, tristate register, timing considerations.	
Unit - 3	
7.0 Data conversions Introduction to data conversions, $R/2^{n}R$ DAC, $R/2R$, Flash, Digital ramp ADC, Successive approximation ADC, Slope (integrating) ADC, Delta-Sigma ($\Delta\Sigma$) ADC, Practical considerations of ADC circuits.	5
8.0 Digital integrated circuits Logic levels, propagation delay time, power dissipation fan-out and fan-in, noise margin, logic families and their characteristics TTL, LSTTL CMOS and ECL integrated circuits and their performance comparison, open collector and tristate gates and buffers.	4

Course Code: 18EARC203	Course Title:Data structures ,Algorithm	design and analysis	
L-T-P : 4-1-0	Credits: 4	Contact Hrs: 50	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50		Exam Duration: 03 ho	ours
	Content		Hrs
	Unit - 1		1
Everyday Life, Types of Definition, Solution Design Coding and Testing, Using	ROBLEM SOLVING CONCEPTS - Problems, Problem Solving with Co in & Refinement, Testing Strategy Dev ing the Problem Solving Method, Bi olving. How the Computer Stores Data essions and Equations.	omputers - Problem velopment, Program reak-Out Diagrams,	6hrs
Representations, Modifyi Mathematical Analysis of Approaches: Introduction, S Force String Matching, Div	D ANALYSIS OF ALGORITHMS- Ang Algorithms, Review of Asymon-Recursive and Recursive Algorithms and Bubble Sort, Sequent wide and Conquer: General Method, Def Quick Sort and its performance.	mptotic Notations, ithms, Brute Force ial Search and Brute	7 hrs
Chapter 3: ARRAYS, STACKS & QUEUES: Arrays, Dynamically Allocated Arrays, , Polynomials, Sparse Matrices, Representation of Multidimensional Arrays, Structures and Unions, Stacks, Stacks Using Dynamic Arrays, Queues, Circular Queues, Evaluation of Expressions, Queues, Single- and Double-Ended Priority Queues.			
	Unit - 2		1
Representing Chains in C, operations, Sparse Matrices	TS, TREES & GRAPHS: Singly Link Linked Stacks and Queues, Polynomi , Doubly Linked Lists. Introduction, E resentation, Adjacency matrix, Adjance	als, Additional List Binary Trees, Binary	
Search and Breadth First S	ROGRAMMING & GREEDY MET earch, The General Method, Warshall's Shortest Paths Problem, Single-Source	Algorithm, Floyd's	7 hrs

Traveling Salesperson problem, Kruskal's algorithm, Huffman trees.	
Unit - 3	
Chapter 6: INTRODUCTION TO C++: Overview of C++, Sample C++ program, Different data types, operators, expressions, and statements, arrays and strings, pointers & user defined types. Class Specification, Class Objects, Scope resolution operator, Access members, Defining member functions, Data hiding, Constructors, Destructors, Parameterized constructors,	8hrs
Chapter 7:BASIC OOP CONCEPTS: Base Class, Inheritance and protected members, Protected base class inheritance, Inheriting multiple base classes, Virtual function, Calling a Virtual function through a base class reference, Virtual attribute is inherited, and Virtual functions are hierarchical, Pure virtual functions, Abstract classes, Using virtual functions.	7hrs

Course Code: 18EARC209	Course Title: Object	Oriented Programming ent Systems	g and	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40		
ISA Marks: 80	ESA Marks: 20	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 2 hrs			
Content			Hrs	
UNI	ті			
Chapter 1. Introduction to Software Development Software Development Lifecycle, SDLC Models, Agi Engineering, System Modelling, Architecture Design Testing, Software Evolution	le Software Developme	•	4	
Chapter 2. Introduction to Object-Oriented Programming - I Structure vs. Class, Components of a Class, Encapsulation, Access Specifiers, Member Functions, Instance of a Class, Default Constructors, Destructors, Accessing Data Fields, Constructors with Parameters, Static Class Members - Data Members and Member Functions, Scope Resolution Operator, Nested Classes, Local Classes, Passing Objects to Functions, Return Objects, Object Assignment, Friend Function, Operator Overloading, Function Overloading, Copy Constructors		7		
Chapter 3. UML Diagram UML Walkthrough, Class Diagram, Use Case Diagram, State Chart Diagram, Activity Diagram, Sequence Diagram		4		
UNI	TII			
Chapter 4. Introduction to Object-Oriented Progr Inheritance, Derived Class, Calling the Base Class O Polymorphism, Class Inheritance Hierarchies, Revisi Run-Time Information, Early vs. Late Binding, Virtua Interfaces	Constructor, Overriding iting Class Diagrams, A	Abstract Classes,	7	
and Keys, Relationship Types, Relationship Sets, Ro Entity Types, Relationship Types of Degree Higher t Guidelines for Relation Schemas, Functional Depend Keys, First Normal Form (1NF), Second Normal Forr Boyce-Codd Normal Form (BCNF)	Chapter 5. Entity Relationship (ER) Model High-Level Conceptual Data Models for Database Design, Entity Types, Entity Sets, Attributes and Keys, Relationship Types, Relationship Sets, Roles and Structural Constraints, Weak Entity Types, Relationship Types of Degree Higher than Two, ER Notations, Informal Design Guidelines for Relation Schemas, Functional Dependencies, Normal Forms Based on Primary Keys, First Normal Form (1NF), Second Normal Form (2NF) and Third Normal Form (3NF),			
	T III			
Chapter 6. Database Management System Introduction, Characteristics of Database Approach,	Actors on the Scene, \	Norkers Behind the	5	

Scene, Advantages and Disadvantages of using DBMS Approach, Data models, Schemas and Instances, Three-Schema Architecture and Data Independence, Database Languages and Interfaces, Database System Environment	
Chapter 7. Cloud Computing Introduction to Cloud Computing, Virtualization Concepts, Main Players, Types of Cloud – Public, Private and Hybrid, Cloud Services – CaaS, SaaS, PaaS, and IaaS, Service Level Agreement, Cloud Security, Cloud Computing at Enterprise Systems Level, Hybrid Cloud Options	5

Laboratory Plan

FMTH0303-3.1

Semester: IV

Year: 2019-20

Laboratory Title: Object-Oriented Programming and Database Management Systems Lab	Lab. Code: 18EARP209
Total Hours: 52	Duration of Exam: 2 hrs
Total Exam Marks: 100	Total ISA. Marks: 80

Experiment-wise plan

2. List of experiments/jobs planned to meet the requirements of the course.

Category: D	Demonstration Total Weig	ghtage: 10	No. of lab	sessions: 9
Learning O	utcomes:			
The studen	ts should be able to:			
Demonstra	te how to compile, debug and run a program in.	NET environment		
Write prog	rams using class, inheritance, and other fundam	entals of OOP.		
	model using UML diagrams.			
Expt./Job No.	Experiment/job Details	No. of Lab. Session/s per batch (estimate)	Marks/ Experiment	Correlation of Experiment with the theory
1	Visual Studio IDE, Hello World Project, Project Properties Programming, Compiling, Debugging, Input, Output and Formatted Output, Number Types, String, Arrays, Variab Definition, Assignments, Constants, Namespace	5,	1	
2	<i>if</i> Statement, <i>switch</i> Statement, Nested <i>if</i> and <i>switch</i> Statements, ? Alternative, <i>while</i> Loop, <i>for</i> Loop, <i>do</i> Loop Nested Loops, Predefined Functions, Functions, Return Values, Arguments, Parameters, Debugging, Default Function Arguments, Procedures, Friend Function, Inline Function, Variable Scope, Global Variable, Program Style	1	1	
3	Pointers, Pointer Variables, Pointer Operators, Pointer Expressions, Array of Pointers, Pointers to Functions, Structures, Structure Members, Structure Assignments, Passing Structures to Functions, Structure Pointers	1	1	
4	Structure vs. Class, Components of a Class, Encapsulatio Access Specifiers, Member Functions, Instance of a Class Default Constructors, Destructors, Accessing Data Fields	, 1	1	Introduction to Object- Oriented Programming - I
5	Passing Objects to Functions, Return Objects, Object Assignment, Friend Function	1	1	Introduction to Object- Oriented Programming - I

6	UML Class Diagram, Use Case Diagram, State Chart Diagram, Activity Diagram, Sequence Diagram	1	1	UML Diagram	
7	Abstract Classes, Multiple Inheritance, Interfaces	1	1	Introduction to Object- Oriented Programming - II	
8	File Handling, MVC, User Interface	1	2		
9	Connecting Database through C++ Programs	1	1		
Category: E	Category: Exercise Total Weightage: 30 No. of lab sessions: 10				

Learning Outcomes:

The students should be able to:

Design and model using ER models.

Write programs using class, inheritance, and other fundamentals of OOP.

Write SQL statements concerning data manipulation using retrieving, inserting, updating, and deleting commands.

Write packages/procedure for manipulating data and triggers to enhance data retrieval.

Design and model ER models for different scenarios.

Construct a database schema with data manipulation SQL statement, a proper procedure in place, and create triggers for fast data retrieval.

Expt./Job No.	Experiment/job Details	No. of Lab. Session/s per batch (estimate)	Marks/ Experiment	Correlation of Experiment with the theory
01	Exception Handling, Lists, Queues, Stack	1	3	
02	Constructors with Parameters, Static Class Members - Data Members and Member Functions, Scope Resolution Operator, Nested Classes, Local Classes	1	3	Introduction to Object- Oriented Programming - I
03	Function Overloading, Operator Overloading, Copy Constructors	1	3	Introduction to Object- Oriented Programming - I
04	Inheritance, Derived Class, Calling the Base Class Constructor	1	3	Introduction to Object- Oriented Programming - II
05	Overriding Member Functions, Polymorphism	1	3	Introduction to Object- Oriented Programming - II
06	Class Inheritance Hierarchies	1	3	Introduction to Object- Oriented Programming - II
07	ER Diagram	1	3	Entity Relationship (ER) Model
08	DDL (Data Definition Language), like CREATE, DROP, ALTER, TRUNCATE and RENAME commands, DML (Data Manipulation Language), like SELECT, INSERT, UPDATE and DELETE commands	1	3	Database Management System

09	DML (Data Manipulation Language), like SELECT, INSERT, UPDATE and DELETE commands, and TCL (Transaction Control Language), like COMMIT and ROLLBACK commands	1	3		Database System	e Management	
10	Database Performance, Indexing, Views, Procedure	1	3	Database N System		Management	
Category: St	tructured Enquiry Total Weighta	ge: 20	No.	No. of lab sessions: 2			
Design, dev Store data f	itcomes: is should be able to: elop and implement application utilizing previously from the application into the database. elopment and implement the user interface for vis				tahase		
Expt./Job No.	Experiment/job Details	No. of Lab. Session/s p batch (estin	er E	Marks/ Experimer		Correlation of Experiment with the theory	
1	Implement an application that utilizes previously learnt concepts to replicate an automation system using classes	2		10			
2	Implement a database schema that utilizes previously learnt concepts to capture the data to and from an automation system	2		10			
Category: O	pen Ended Total Weightage: 20	No	. of lab se	essions:	2		
Use the OO Use databas Select the a Write a tech Present the	atcomes: as should be able to: P concepts to implement the project. Se concept to implement the project ppropriate tool/software to implement the project nnical report using a predefined template. technical report of the implemented project. as the learning experiences of working in a team.						
Expt./Job No.	Experiment/job Details	No. of Lab. per batch (estimate)		Marks/ Experim	ent	Correlation of Experiment with the theory	
1	Implement an open-ended project using C++/DB concepts for an automation application	^{or} 2		20			

Cour	se Code: 18EARC208	Course Title: Microo	controllers Programming & Interfaci	ng
L-T-P	-SS: 4-0-0-0	Credits:4	Contact Hrs: 4	
ISA N	1arks: 50	ESA Marks: 50	Total Marks: 100	
Teac	hing Hrs: 50		Exam Duration: 100	
		Unit I	I	
No		Content		Hrs
1	Chapter 1: Introduction to Microcontroller Introduction To Microprocessor and Microcontroller: History and Evolution, types of microprocessors, Difference between Microprocessors and Microcontrollers. CPU architectures: RISC/CISC and Harvard/Von-Neumann, Overview of PIC Microcontroller family, Introduction to different microcontroller families (8051, ATMEL/AVR, and ARM).			5 Hrs
2	Chapter 2: PIC Microcontroller Architecture and assembly language programming Architecture and pin functions, Registers and Instructions, Data formats and directives, Introduction to assembly language programming, Program counter and program ROM space. Branch, Call and Time delay loop: Branch instructions and looping, Call instruction and stack, Time delay instructions and pipeline. Timing diagrams			7 Hrs
3	diagrams. Chapter 3: I/O Port programming I/O port programming, I/O bit manipulation programming, Arithmetic, logic instructions and programs: Arithmetic instructions, Signed number concepts and arithmetic operations, logic and compare instructions, rotate instructions and data serialization, BCD and ASCII conversion.			8 Hrs
		Unit II		
4	Chapter 4: PIC and AVR prog Data types and time delays in program ROM allocation, Pro diagrams in-depth.	C, I/O programming, lo	gic operations, data serialization, C18, State diagrams, Timing	5 Hrs
5	Chapter 5: Timer and Serial p	, counter programming	, Programming TIMERO and 1 in C, RS232, PIC18 serial port	8 Hrs
6	Chapter 6: Interrupt program Polling Vs interrupts, PIC18 In external hardware interrupts change interrupts. ADC, DAC	nming in Assembly and Iterrupts, Programming , programming the seria and sensor interfacing:	timer interrupts, programming Il communication interrupt, PortB	7 Hrs

	Unit – III	
7	Chapter 7: Introduction to the STMicroelectronics Line of Microcontrollers STM Nucleo Boards, STM32CubeMX Application: Pinout Tab, MCU Alternative Functions, Integrated Peripheral (IP) Tree Pane, Creating a Project using CubeMX, ARM Cortex Microcontroller Software Interface Standard, Memory-Mapped Peripherals, Core Memory Addresses, Peripheral Memory Addresses, HAL_GPIO Module	5 Hrs
8	Chapter 8: Interrupts and Timers: Interrupts, NVIC Specifications, Interrupt Process, External Interrupts, Interrupt Demonstration, STM Timer Peripherals STM Timer Configuration, Update Event Calculation, Polled or Non-interrupt Blink LED Timer Demonstration, Test Run: Interrupt-Driven Blink LED Timer Demonstration, Test Run: Multi-rate Interrupt-Driven Blink LED Timer Demonstration	5 Hrs

	e content			
Course Code: 18EARC207	Course Title: Control Sy	stems		
L-T-P : 4-0-0	Credits: 5	Contact Hrs: 50		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 50		Exam Duration: 3 Hrs		
Cont	tent		Hrs	
Unit	t - 1			
Chapter No. 1. Introduction to Control Syst Introduction to Control Systems, Classification of with Feedback, Mathematical Preliminaries – Com	Dynamic Systems, Closed		4	
Chapter No. 2. System Modeling in Frequer Standard Inputs, Free and Forced Response, Tran Response to various Inputs, Effect of Poles, No stability, Block diagram reduction and signal flow g	sfer Function, Poles and Zention of Bounded Input Bo		8	
Chapter No. 3. Time Response Effect of Zeros, Closed Loop Transfer Function, Dynamic Performance Specification, First Order Systems, Second Order Systems, Unit Step Response of Underdamped Second Order Systems, Concepts of Rise Time, Peak Time, Maximum Peak Overshoot and Settling Time, Steady state errors and error constants			8	
Unit	t - 2			
Chapter No. 4. Controllers Controllers – Proportional (P), Integral (I) and De design, Problems	erivative (D) Blocks, Exam	ples of PID controller	4	
Chapter No. 5: Stability Analysis Routh's Stability Criterion, Use in Control Design Controller Design, Analysis of Steady State Err Design.	-	•	8	
Chapter No. 6 : Frequency Domain Analysis Stability analysis, Bode plot, Nyquist Stability Criterion, Relative Stability – Gain and Phase Margins.			8	
Unit	t - 3			
Chapter No. 7 : Design Via Frequency Resp Control System Design via Frequency Response –		Compensation	5	
Chapter No. 8: Case Studies Plants for Pressure Control, Electromechanical Pla Modeling and design of Aircraft.	nts, Modeling and design of I	nvertedPendulum,	5	

Laboratory Plan

Laboratory Course Plan: B E in A&R

Semester: 4th Semester

Year:2019-2020

Laboratory Title: Microcontroller Lab	Lab. Code: 18EARP208			
Total Hours: 28	Duration of SEE Hours: 2			
SEE Marks: 20	CIE Marks: 80			

Experiment wise Plan

List of experiments/jobs planned to meet the requirements of the course.

	Category: Demonstration Total Weightage:20 No	o. of lab sessions	: 2		
Expt./ Job No.	Experiment/job Details	No. of Lab. Session/s per batch (estimate)	Marks/E xperime nt	Mark s obtai ned	Correlation of Experiment with the theory
1	Compare Architectures of different microcontrollers w.r.t to time response, frequency response, delay, process time etc. Write a program to demonstrate the blinking of LED in PIC16F877A a Arduino board.	and 1	5		Chap1
	Learning Objectives : The students should be able to: Study the data sheets and make a comparative study of the Architect applications of different microcontroller Compare and contrast different microcontrollers. Connect microcontroller to LED and blink LED with proper delay. Apply suitable method or logic to solve given problem. Pre-lab: Download the data sheets of PIC16F877a, ATMEGA328, 8051 microcontroller to websites http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller 168A-168PA-328-328P_datasheet_Complete.pdf http://ww1.microchip.com/downloads/en/DeviceDoc/39582b.pdf http://ww1.microchip.com/downloads/en/devicedoc/41159d.pdf http://www.farnell.com/images/doc8161.pdf http://www.farnell.com/idatasheets/46220.pdf http://www.nxp.com/documents/data_sheet/LPC2921_23_25.pdf Draw the architectural layout of the following microcontrollers with p	ontrollers from t ler-ATmega48A-4	:he followir 48PA-88A-8	•	

	PIC16F877a						
	ATMEGA328						
	8051 Make a comparative study and fill up the table 1 given in lab manual.						
	Download the application notes.						
	Prepare flowcharts and develop the code to demonstrate the use of the microcontroller as a simple digital output device. Study Proteus 8 Professional						
	Study different ports and understand the basic LED program						
	In lab:						
	Must be able to explain difference between various types of Microcontro	llers and its	architectu	res.			
	Setup the hardware platform and deploy the code on the hardware.						
	If any errors debug the code until it works.						
	Make a note of the number and types of errors.						
	Simulate LED blink program on Proteus 8 Professional						
	Post-lab:						
	Analyze the cause for errors and make a note.						
2	Write a program to demonstrate a counting machine which count from	1	5		Chap2		
	0000 to 9999 and display on 7 segment LED display using PIC16F877A						
	and Arduino board.						
	Learning Objectives :			1			
	The students should be able to:						
	Use 7Segment LED for counting numbers.						
	Use appropriate logic or method for counting.						
	Pre-lab						
	Study the application notes of Arduino and PIC16F877a						
	Study advantages and disadvantages of Arduino and PIC16F877a microco	ntrollers					
	Understand 7segment LED.						
	Prepare flowcharts and develop the code to demonstrate the use of the r	nicrocontro	ller as a sir	nple			
	digital input and output device						
	Study different segments of LED						
	In-lab						
	Write program for both Arduino and PIC						
	If any errors debug the code until it works.						
	Make a note of the number and types of errors.						
	Simulate in Proteus						
	Setup the hardware platform and deploy the code on the hardware.						
	Execute the code and note the output.						
	Post-lab						
	Record the results and experience you got in lab						
	Analyze the cause for errors and make a note						
3.	Write a program to read the values from the temperature sensor	1	5		Chan? ?		
э.		1	5		Chap2,3		
	(LM35) and display the temperature in degree Celsius on LCD display						

[[r	I	
	using PIC16F877A and Arduino board.					
	Learning Objectives :					
	The students should be able to:					
	Connect LM35, LCD and microcontroller.					
	Write function to read values from LM35 and display it on LCD. Pre-lab Study the application notes of Arduino and PIC for interfacing LM35 and LCD. Prepare flowcharts and develop the code to demonstrate the use of the microcontroller as a simple					
	digital input and output device.					
	Study what is 16*2 LCD and how it works.					
	Analyze the driver required for LCD.					
	In-lab					
	Write program for both Arduino and PIC					
	Execute the code and note the output.					
	If any errors debug the code until it works. Simulate LCD display in Proteus.					
	Setup the hardware platform and deploy the code on the hardware.					
	Make a note of the number and types of errors.					
	Post-lab					
	Analyze the cause for errors and make a note.					
	List down different types of LCDs and sensors.					
4	In bank lockers there is requirement of password protection to	1	5		Chap2,3	
т		-	5		chap2,5	
	open the locker. Develop an application Using a 4*3 keypad					
	and LCD to secure the lockers by providing password					
	protection.					
	Learning Objectives :					
	The students should be able to:					
	Connect Keypad, LCD with microcontroller.					
	Write logic to read key press event from keypad.					
	Pre-lab					
	Study the application notes of Arduino and PIC for interfacing keypad and					
	Prepare flowcharts and develop the code to demonstrate the use of the	microcontro	oller as a sir	nple		
	digital input and output device.					
	List down different types of keypads					
	Analyze the driver required for 4*3 keypad. In-lab					
	Write programs for both Arduino and PIC					
	Execute the code and note the output.					
	If any errors debug the code until it works.					
	Make a note of the number and types of errors.					
	Simulate both in Proteus					
	Setup the hardware platform and deploy the code on the hardware					
	Post-lab					

	Record the results and experience in manual List down the different applications of Keypad in real	world (eg. In Securit	ty applicati	ans)		
	Category: Exercises Total Weights		ty application		ab sessior	าร:4
Expt./ Job No.	Experiment/job Details	0	No. of Lab. Session/s per batch (estimate)	Marks/E xperime nt	Marks obtain ed	Correlation of Experiment with the theory
5	Write a program to measure the distance of an object ultrasonic Sensors and display the distance in terms of inches. Make the connections as per the schematic a flowchart and the code to perform the required oper Learning Objectives : The students should be able to: Connect Ultrasonic Distance Sensor and microcontro	of centimeters and nd develop the ration.	1	5		Chapter 4
	 Logic to find distance in CM and Meters. Pre-lab Study the application notes of Arduino and PIC for interfacing Ultrasonic Sensors. Understand different types of sensors. List the advantages and disadvantages of different sensors. Prepare flowchart and develop the code to demonstrate the use of the microcontroller as a simple analog input sensor and convertor. In-lab Write programs for both arduino and PIC Execute the code and note the output. If any errors debug the code until it works. Make a note of the number and types of errors Setup the hardware platform and deploy the code on the hardware. Post-lab Record the results and experience in manual Try interfacing at least two other sensors and note down the readings. 					
6	List real world applications of sensors. Write a program to control the speed and direction of servo motors.	f DC, stepper and	1	5		Chapter 4,5
	Learning Objectives : The students should be able to: Understand the connections from microcontroller to Discuss how motor driver helps in controlling the spe Pre-lab: Study the application notes of Arduino and PIC for in Study the working principle of DC motor. Study in detail about different types of DC motors an List advantages and disadvantages of DC motors	eed on a DC motor. terfacing DC motor.	es.			

					1		
	List the applications in the real world						
	In lab:						
	Write programs for both Arduino and PIC						
	Simulate in Proteus						
	Demonstrate the hardware for both Arduino and PIC.						
	Post-lab						
	Record the results and experience in manual						
	Measure the speed of the DC motor w.r.t voltage.		1	1			
7	Design and develop an interconnected connection of contr		1	5	Chapter 4,5		
	communicate and transfer data between them. Use Bluet	ooth					
	modulecontroller.						
	Learning Objectives :						
	The students should be able to:						
	Establish connection between different controllers and tra	nsfer the data					
	Pre-lab:						
	Get familiar with Bluetooth module						
	Sketch circuit diagram on paper.						
	In lab:						
	Design circuit.						
	Simulate in Proteus						
	Demonstrate the hardware for both Arduino and PIC.						
	Post-lab						
	Record the results and experience in manual						
	Measure the speed of the stepper motor w.r.t step angle.						
8	Design and develop an IOT (Internet of Things) system to c	ollect data	1	5	Chap 6		
	from NPK or pH sensor and store the data in the cloud. Us	e Wi-Fi-					
	module and controller.						
	Learning Objectives :						
	The students should be able to:						
	Develop an IOT system that must be able to record and sto	ore the data on	n cloud.				
	Pre-lab:						
	Get familiar with IOT and Wi-Fi module.						
	In lab:						
	Wire-up the circuit and place the sensor in the farm field/	garden and co	llect the data	۱.			
	Store the collected data on cloud for analysis.	5					
	Demonstrate the hardware for STM MCU.						
	Post-lab						
	Record the results and experience in manual						
	Category: Structured Enquiry Total Weightage: 20 No. of lab sessio						
Expt./Jo	Experiment/job Details	No. of Lab.	Marks/Exp		Correlation of		
b No.		Session/s per	riment	obtained	Experiment		
		batch		e stanica	with the		
	Write Times and interrupt are successed as CTMANACL	(estimate)	10		theory		
9	Write Timer and interrupt programs on STM MCU.	1	10		Chapter 6,7		

	Learning Objectives : The students should be able to: Differentiate between polling and interrupt. Control the flow of program using timers. Pre-lab: Understand types of timers and interrupts Applications and working principles of timers and interrupt	s.				
	In lab: i. Simulate the working of timers and interrupts ii. Demonstrate the hardware for STM. Post-lab Record the results and experience in manual Massure the second of the store or materia wat store and a					
10	Measure the speed of the stepper motor w.r.t step angle. Develop an applications using STM MCU to predict the data using the existing trained module.	1	10		Chapter 6,7	
	Learning Objectives : The students should be able to: Demonstrate the knowledge of data analysis. Pre-lab: Understand different trained modules that can be used on STM MCU. In lab: Analyze and predict data for the selected trained module. Demonstrate the hardware for STM MCU. Post-lab Record the results and experience in manual					
	Category: Open Ended Total Weightage:	20	_	No. of lab sessi	on:2	
Expt./ Job No.	Experiment/job Details	No. of Lab. Slots per batch (estimate)	Marks/Expe riment	Marks obtained	Correlation of Experiment with the theory	
11	Develop an IOT system using NPK and existing prediction module to suggest the crop to be grown in the field considering weather forecasting.	2	20		Chapter 1 to 7	
	Learning Objectives : The students should be able to: Identify the problem and solve. Apply the knowledge of electronics, data science and progr	amming.				