

Course Title: Data Structure and Algorithms Lab		Course Code: 19ECSP201
L-T-P: 0-0-2	Credits: 2	Contact Hrs: 4 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs:56 hrs	Exam Duration: 3 hrs	

Tentative plan of lab Implementation

Week No	Lab Assignments
1	
2	02 Programming Assignments on Basic Data structures
3	
4	02 Assignments on Algorithm Efficiency Analysis
5	
6	02 Assignments on Trees
7	
8	02 Assignments on Sorting and Searching
9	
10	
11	04 Assignments on Graphs and Design Techniques
12	
13	Open Ended Experiment

Materials and Resources Required:

Text Books:

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press. 2009.
- 2. Anany V. Levitin. 2002. Introduction to the Design and Analysis of Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Reference Books:

- 1. Hemant Jain, Problem Solving in Data structures and Algorithms Using C, TaranTechnologies Private Limited, 2016
- 2. Online Sites: HackerRank / CodeChef

Program: Bachelor of Engineering			
Course Title: Object Oriented Programming with C++		Course Code: 18ECSC207	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40			

Unit –	I		
1	Chapter No. 1: Introduction: Introduction to object oriented programming.		
	Characteristics of object oriented languages, Programming Basics, arrays,		
	Functions in C++ (parameter passing techniques.)	4 hrs	
2	Chapter No. 2: Classes and Objects: Introduction to Classes and Objects,		
	encapsulation visibility modifiers, constructor and its types, nested classes, String		
	class. UML diagrams to describe classes and relationships.	6 hrs	
3	Chapter No. 3:Inheritance: Introduction, types of Inheritance, constructors,		
	Abstract class, Aggregation: classes within classes	6 hrs	
	Unit –II		
4	Chapter No. 4: Virtual Functions and Polymorphism: Virtual functions,		
	Friend functions, static functions, The 'this' pointer	6 hrs	
5	Chapter No. 5:Templates and Exception Handling: Function and class		
	templates.Introduction to exceptions, Throwing an Exception, Try Block,		
	Exception Handler (Catching an Exception), Multiple exceptions. Exceptions		
	with arguments	6hrs	
6	Chapter No. 6:Design Patterns: Creational, Structural and Behavioural design		
	patterns.	4 hrs	
Unit –	III		
7	Chapter No. 7:Streams and Files: Stream classes, File I/O with streams.		
		4 hrs	
8	Chapter No. 8:Standard Template Library: container classes: Sequence and		
	Associative Containers	4 hrs	
Textbooks			
1. Robert Lafore, "Object oriented programming in C++", 4 th Edition, Pearson education,			
Reference Books			
1.	1. Lippman S B, Lajorie J, Moo B E, C++ Primer, 5ed, Addison Wesley, 2013.		

2. Herbert Schildt: The Complete Reference C++, 4th Edition, Tata McGraw Hill

Program: Bachelor of Engineering			
Course Title: Object Oriented Programming with Course Code:			
C++ Lab		18ECSP203	
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3	
		hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hrs: 39	Exam Duration: 3hrs		

Experiments	Lab assignments/experiment	
2-Demonstration	Introduction to Code Blocks IDE (Integrated Development	
	Environment), C++ programming basics.	
4–Exercise	Classes and objects, Inheritance, Polymorphism, Templates and	
	Exceptions Handling	
2-Structured	Classes and objects, Inheritance, Polymorphism, Templates and	
Enquiry	Exceptions Handling	
1-Open Ended	Data types, Classes and Objects, Inheritance polymorphism,	
	Exception Handling. Design patterns	

Text Book:

1. Robert Lafore, "Object oriented programming in C++", 4thEdition, Pearson education.

Reference Books:

- 1. Lippman S B, Lajorie J, Moo B E, C++ Primer, 5ed, Addison Wesley, 2013.
- 2. Herbert Schildt: The Complete Reference C++, 4th Edition, Tata McGraw Hill

1.

Evaluation :

Students Assessment Through CIE (80%) + SEE (20%)

Continuous Internal	Assessment	Weightage in Marks

Department of Computer Science & Engineering

Evaluation (80%)	Exercises	40
	Structured Enquiry	20
	Open Ended Experiment	20
Semester End Examination	Structured Enquiry	20
(20%)	Total	100

Program: Bachelor of Engineering			
Course Title Scripting Languages Lab Course Code: 18ECSP201			
L-T-P: 0-0-2	Credits: 2	Contact Hrs: 4hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hrs: 30	Exam Duration: 3 hrs		

1	Introduction to UNIX Utilities	
	Architecture, Commands, File Attributes, vi Editor, Process, Simple Filter, File	
	System, Handling Files and Basic File Attributes.	06hrs
2	UNIX shell Scripting	
	Shell Basics, Shell Environment, Shell Script Programming Concepts,	
	Decision Structures, Looping Structures, and Command line arguments, Functions	
	and Arrays, Regular Expression & Filters, Processes.	06hrs
3	Python Scripting	
	Python: Types, Variables, and Simple I/O, Branching and Looping, String	
	Manipulation, Numbers, Lists and Dictionaries, Regular Expressions, Functions,	
	Files and Exceptions, Programming using numpy and scipy libraries.	12hrs
4	System Administration	
	Common administrative tasks, creating and mounting file system, File system	
	management, managing users and group accounts, monitoring system	
	performance, accessing system information, backup and restore files,	
	reconfiguration hardware with kudzu, installing and removing packages.	06 hrs

Tentative plan of lab implementation

Expt./ Job No.	Lab assignments/experiment	No. of Lab. Slots per batch (estimate)
1-2	Introduction to UNIX Utilities	02
3-4	Shell Script	03
5-10	Python programming	05
11-12	System Administration	02

Text Books

- 1. Sumitabha Das, UNIX Concepts and Applications", 4th Edition, McGraw-Hill, 2017.
- 2. Mark Lutz, "Programming Python", 4th Edition, O'Reilly, 2010.

Reference Books

- 1. Noah Gift, Jeremy Jones, Python for Unix and Linux System Administration, 2008.
- 2. <u>RytisSileika</u>m, Pro Python System Administration, 2nd Edition, 2014
- Michael Dawson, Python Programing for the Absolute Beginner, Premier Press, 3rd Edition 2010.

Program: Bachelor of Engineering			
Course Title: Operating System Principles and Course Code:			
Programming 18ECSC202			
L-T-P: 4-0-1	Credits: 5	Contact Hrs:	
		4+2hrs/week	
ISA Marks: 50 ESA Marks: 50		Total Marks: 100	
Teaching Hrs: 74Exam Duration: 3 hrs			

Unit –I		
1	Chapter No. 1. Introduction and Systems structures	04
		hrs +
	Operating system definition; Operating System operations;	02
	Modules of OS, Overview of UNIX Operating System, UNIX APIs	hrs
		(lab)
2	Chapter No. 2. Process Management	10
	Drassas concert: Drassas achadulian: Orarationa an prossass	hrs
	Process concept, Process scheduling; Operations on processes;	
	Inter-process communication (Pipes and PIPOs). Inteads,	+
	Scheduling algorithms	08
		hrs
	Process management using UNIX APIs: Process Management	(lab)
	Functions, User IDs and Group IDs, Creating process, parent child	、
	relationship.	
3	Chapter No. 3. Process Synchronization	06
		hrs +

Synchronization: The Critical section problem; Peterson's solution;	02
Semaphores, Classical problems of synchronization, Process	hrs
synchronization UNIX APIs.	(lab)
Unit –II	
4 Chapter No. 4. Deadlocks	06
	hrs +
Deadlocks: System model; Deadlock characterization; Methods	02
for handling deadlocks; Deadlock prevention; Deadlock	hrs
avoidance; Deadlock detection and recovery from deadlock.	(lab)
5 Chapter 5 : File management	07
File concepts Directory structure File Types File systems File	hrs
Attributes. Inodes in UNIX . UNIX Kernel Support for Files.	+ 04
Directory Files, Hard and symbolic names. General File APIs: File	hrs
and record lock API, Symbolic file API	(lab)
6 Chapter No. 6. Memory Management	07
Memory Management Strategies: Background; Swapping;	hrs
Contiguous memory allocation; Paging; Segmentation. Virtual	+ 02
Memory Management: Background; Demand paging; Page	hrs
replacement.	(lab)
Unit –III	I
7 Chapter No. 7. Secondary Storage Management	5hrs
Mass storage structures: Disk structure: Disk attachment: Disk	
scheduling: Disk management.	
8 Chapter No. 8. Case study	5hrs
Architecture of Mobile OS - Introduction, .Overall Architecture.	
Linux Kernel, various components, Network OS, Applications.	
Text Books	1
1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne: Operating	

System Principles, 9th edition, Wiley-India, 2006.

2. W. Richard Stevens, Stephen A. Rago, "Advanced Programming in the UNIX Environment", 3rd Edition, Addison Wesley Professional, 2013

References

- William Stallings,"Operating System Internals and Design Principles", 5th edition, Pearson Education, Asia, 2005
- 2. Gary Nutt," Operating System"3rd edition, Pearson Education,2004
- 3. Terrence Chan, "Unix System Programming Using C++", 1 ed., Prentice Hall India, 2007
- 4. Marc J. Rochkind, "Advanced Unix Programming", 2nd Edition, Pearson Education, 2005.

Program: Bachelor of Engineering		
Course Title: Product RealizationCourse Code: 17ECSP203		
L-T-P: 0-0-2	Credits: 02	Contact Hrs: 03 Hrs
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs:	Exam Duration:	

Experiments	Lab assignments/experiment
Week 1	IOT workshop: Introduction to Android studio, Introduction to
And	Arduino programming, PHP
Week 2	
Week 3	Selection of UI and Core Component of Android
Week 4	UI implementation using XML
Week 5	UI implementation and validation
Week 6	Android core component implementation and Unit Testing
Week 7	Android core component implementation and Unit Testing
Week 8	Android core components integration and testing
Week 9	Configuration of IoT Server
Week 10	Integratesubsystems for prototype testing, Analyze the test results,
	System modification, and System integration.
Week 11	System Testing

Reference:

1. Beginning Android Programming with Android Studio by J.F. DiMarzio

Program: Bachelor of Engineering		
Course Title: Engineering Design Practice [Part B]		
[Part A – Central Level]		Course Code. 17ECSI 202
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3 hrs/week
ISA Marks: 40	ESA Marks: 0	Total Marks: 40
Teaching Hrs: 39 hrs	Exam Duration: 3 hrs	

Experiments	Lab assignments/experiment		
Phase 1 (Plannig)	Introduction to Eclipse –IDE		
	Requirement modeling :		
	 Identifying use cases and actors 		
	Apply UML notations to draw use case diagram		
Phase 2 (Conceptual	Behaviour Modeling using DFD		
Design)	 List behavior of system/sub-system 		
	• List states, tasks and their dependencies		
	Illustrate DFD :		
	Identify data flow and processes of a system		
	Draw data flow diagrams for system/sub-system		
	• Draw system diagram to show interaction of all domain		
	(Draw state and sequence diagram for identified tasks)		
Phase 3(System Design)	Software Architectures:		
Thase 5(System Design)	List components of architecture		
	List components of architectures		
	List type of architectures Choose appropriate, architecture for given system		
Phase 4 (Detail Design)	UI Design using GUI wireframe:		
Thase 4 (Detail Design)	• Design function prototyping for event diagrams(DED)		
	 Design function prototyping for event diagrams(DFD) Identify user interface components 		
	Identify user interface components Chaose appropriate property of component		
	Use wirefrome to design a user interface		
Taxt books:	• Ose when alle to design a user interface		
IGAL DOOKS.			

1. Ian Somerville, Software Engineering, 9th, Pearson Ed, 2015

2. Clive L Dym and Patrick Little, "Engineering Design: A Project Based Introduction", John Wiley & Sons

Reference books:

1. Roger S. Pressman, Software Engineering: A Practitioners Approach, 7th, McGraw, 2007

2. Shari Lawrence Pfleeger and Joanne M. Atlee, Software Engineering Theory and Practice,

- 3rd, Pearson Ed, 2006
- 3. Jalote, P, An Integrated Approach to Software Engineering, 3rd, Narosa Pub, 2005

Program: Bachelor of Engineering			
Course Title: Database Management System Course Code: 15ECSC208			
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4 hrs/week	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 50	Exam Duration: 3 hrs		

Unit –		
1	Introduction and ER Model:	
	Introduction to DBMS and an example ; Data models, schemas and instances;	
	Three-schema architecture; Database languages; Using High-Level Conceptual	
	Data Models for Database Design; An Example Database Application; Entity	
	Types, Entity Sets, Attributes and Keys, Relationship types, Relationship Sets.	
	Roles and Structural Constraints; Weak Entity Types; Refining the ER Design;	07hrs
	ER Diagrams, Naming Conventions and Design Issues.	071115
2	Relational Data Model and Relational Algebra	
	Relational Model Concepts; Relational Model Constraints and Relational	
	Database Schemas; Update Operations and dealing with constraint violations;	
	Unary Relational Operations: SELECT and PROJECT; Binary Relational	
	Operations: CARTESIAN PRODUCT, JOIN: Additional Relational Operations;	08hrs
2	sor	
3	SQL	
	SQL Data Definition and Data Types; Specifying basic constraints in SQL;	
	Basic queries in SQL IOIN operations Complex SQL Queries	06hrs
Unit –	Lasie queries in 5QE,3011 operations, complex 5QE Queries.	
4	Database Design	
	Informal Design Guidelines for Relation Schemas: Functional Dependencies:	
	Normal Forms Based on Primary Keys; Boyce-Codd Normal Form.	06 hrs
5	PL/SQL	
	Features of PL/SQL; Advantages of PL/SQL; PL/SQL Basic syntax; PL/SQL	
	Data types; PL/SQL variables; PL/SQL Constraints and Literals; PL/SQL	
	Operators; PL/SQL Conditions; PL/SQL Loops; PL/SQL Strings; PL/SQL	
	Arrays; PL/SQL Procedures; PL/SQL Functions; PL/SQL Cursors; PL/SQL	07 hrs
	Records; PL/SQL Triggers.	07 11 5
6	Introduction to Transaction Processing	
	Introduction to Transaction Processing; Transactions and System concepts;	
	Desirable Properties of Transactions; Characterizing schedules based on-	06 hrs
T T •4	recoverability, Serializibility.	
Unit –		
7	Concurrency control techniques	

Department of Computer Science & Engineering

	Introduction, Two-phase locking techniques for concurrency control, dealing	
	with dead-lock and starvation, Concurrency control based on Time stamp	05 hrs
	ordering.	05 113
8	Database Security	
	Introduction to DB security issues, Discretionary access control based	
	on granting and revoking privileges, Mandatory access control and role-based	05 h.m.
	access control, Mandatory Access Control.	05 nrs
Text B	ooks:	
1.	Elmasri R. and Navathe S., Fundamentals Database Systems, 6th edition,	Pearson
	Education, 2011.	
2.	Steven Feuerstein, Bill Pribyl Oracle PL/SQL Programming, 6th Edition,	O'Reilly
	Media,2014.	-
Refere	nces:	
1.	Ramakrishnan S. and Gehrke J., Database Management Systems, 3rd edition, N	McGraw
	Hill, 2007.	
2.	Silberschatz A., Korth H.F. and Sudharshan S., Data base System Concepts, 5th	Edition,
	Mc- GrawHill, 2006.	

3. PL/SQL User's Guide and Reference 10g Release 1 (10.1) December 2003.

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
ш	Q.No7	7	Solve Any 1 out of 2
111	Q.No8	8	201101111912000012

Program: Bachelor of Engineering			
Course Title: Database application Lab Course Code: 15ECSP2			
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3 hrs/week	
CIE Marks: 80	SEE Marks:20	Total Marks: 100	
Teaching Hrs: 36	Exam Duration: 3 hrs		

Experiments	Lab assignments/experiment
2-Demonstration	SQL and PL/SQL
5-Exercise	Cartesian Product, Aggregate Functions, Nested Queries, Procedures & Functions
2-Structured Enquiry	Database Design, Cursors and Triggers

- 1. Elmasri R. and Navathe S., Fundamentals Database Systems, 6th edition, Pearson Education, 2011.
- 2. Steven Feuerstein, Bill Priby<u>l</u> Oracle PL/SQL Programming, 6th Edition, O'Reilly Media, 2014.
- 3. Ramakrishnan S. and Gehrke J., Database Management Systems, 3rd edition, McGraw Hill, 2007.
- 4. Silberschatz A., Korth H.F. and Sudharshan S., Data base System Concepts, 5th Edition, Mc- GrawHill, 2006.
- 5. PL/SQL User's Guide and Reference 10g Release 1 (10.1) December 2003.

Program: Bachelor of Engineering				
Course Title: Digital System Design Course Code: 15ECSC202				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 3 hrs			

	Unit –I	
1	Boolean Function Minimization	
	Canonical representation of expressions, Complete and Incomplete Boolean	
	Functions and significance of don't Care Conditions. Minimization of logic	
	functions using Karnaugh -map- Prime Implicants, Essential Prime Implicants	0.0
	and implicates.	06hrs
2	Combinational Circuit Design	
	Design of combinational circuits using combinational ICs: Code convertors,	
	decoders encoders, comparators, multiplexers, de-multiplexers, Adders: Ripple	
	adders and Parallel adders and Subtractors.	06hrs
3	Introduction to Sequential Circuits	
	The basic bistable element, latches, flip flops and Characteristic equations	04hrs
Unit –II		
4	Sequential Circuit Design	
	Design of shift registers and counters.	06 hrs
5	Synchronous Sequential Networks	
	Structure and Operation of Clocked Synchronous Sequential Networks, Analysis	
	of clocked Synchronous Sequential Networks.	06 hrs
6	Asynchronous Sequential Networks	
	Structure and Operation of Asynchronous Sequential Networks, Analysis of	
	Asynchronous Sequential Networks.	04 hrs
Unit –III		
7	Logic Design with PLDs	
	Introduction to Programmable Devices, Architecture of PLDs.	04 hrs
8	The 555 Timer:	04 hrs

Department of Computer Science & Engineering

Monostable Multivibrator, Astable Multivibrator.

Text Books:

1. Donald D. Givone "Digital Principles and Design" Tata McGraw Hill edition 2003.

Reference Books:

- 1. M. Morris Mano and C. R. Kime "Logic and Computer Design Fundamentals" 2nd Edition Updated Publishers Pearson Education 2005.
- 2. Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss, "Digital Systems Principles and Applications" 10th Edition, PHI/Pearson Education, 2007.

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2 & 3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4, 5 & 6	Solve Any 2 out of 3
ш	Q.No7	7	Solve Any 1 out of 2
	Q.No8	8	,, ,,, ,, ,, ,, ,, ,, ,, ,

Program: Bachelor of Engineering			
Course Title: Object Oriented Programming Course Code: 15ECSC204			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3 hrs		

Unit –	I		
1	Introduction to Java		
	Introduction to Object Oriented concepts. Features of Java, Java Development		
	Kit, Java Source File Structures, Basic Data Types, Arrays, Strings, StringBuffer,		
	Class diagrams-UML notations.	4 hrs	
2	Classes and Objects		
	Class Fundamentals, Declaring objects, Assigning object reference variables,		
	Introducing methods, Constructors, this key word, Garbage collection: The		
	finalize method. A closer Look at Methods and Classes: Overloading: Methods,		
	Constructors. Using objects as Parameters, Returning objects, Access control.		
	Understanding static and final keywords. Introducing nested and inner classes.	6 hrs	
3	Inheritance and Polymorphism		
	Inheritance: Basics, types of inheritance, implementing inheritance, Method		
	overriding, Dynamic method dispatch, Abstract classes, Object class.	6 hrs	
Unit –	п		
4	Packages, Interfaces & Exception handling		
	Packages and Interfaces: Packages: creating and importing, Access protection.		
	Interfaces: creating, implementing. Exception Handling: Fundamentals,	6 hrs	

	Exception Types, Uncaught Exceptions, Using try, catch, throw, throws and	
	finally, Multiple catch, Nested try statements, User defined exceptions.	
5	Java Design Patterns	
	Creational, Structural and Behavioral design patterns.	4 hrs
6	GUI Design using AWT and Swings	
	Introduction: AWT Classes, Window Fundamentals, Working with Frame	
	Windows, Using AWT Controls, Layout managers and Menus: Control	
	Fundamentals, Labels, Buttons, CheckBoxes, List, TextField, TextArea, Layout	
	managers, Menu Bars and Menus. Event Handling: Event Handling Mechanism,	
	Delegation Event Model. Swings: introduction to swings, swing features,	
	U abal image Icon ITextEigld IPutton Check Power Padio Putton II ist and	
	JLabel, image icon, JTexiField, JButton, Check Boxes, Radio Button, JList, and IComboBox	6 hrs
Unit _		
7		
/	Collections Framework Set Interface Set Implementation Classes List	
	Interface List Implementation Classes. The Man Interface Man Implementation	
	Classes.	4 hrs
8	Generics	
	Introduction, Type safety, Generic class with two type parameters, general form	
	of generic class, Bounded types, Wild card arguments, generic method.	4 hrs
Text B	looks:	
1.	Herbert Schildt, The Complete Reference, 7, McGraw-Hill.	
Refere	nce Books:	
1.	Kathy Sierra and Bert Bates, Head First JAVA, 2, O'Reilly Media, 2005.	

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2 and 3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4, 5 and 6	Solve Any 2 out of 3
ш	Q.No7	7	Solve Any 1 out of 2
	Q.No8	8	~

Program: Bachelor of Engineering			
Course Title: Digital System Design Lab Course Code: 15ECSP202			
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3 hrs/week	
CIE Marks: 80	SEE Marks: 20	Total Marks: 100	
Teaching Hrs: 42	Exam Duration: 3 Hrs		

Tentative plan of lab implementation

Week	Lab Assignments	
No		
1.	Introduction to digital trainer kit.	
2	Design of combinational circuits using SSI and MSI components/ Verilog	
3	programming.	
4	Code converters	
5	Arithmetic Circuits	
6	Decoders/encoders	
	Mutliplexers/Demultiplers	
7	Design of Sequential circuits using SSI and MSI components/ Verilog programming.	
8	Shift registers	
9	• Counters	
10		
11	Structured Enquiry	
12		
13		

Materials and Resources Required:

Reference Books:

- 1. Donald D. Givone "Digital Principles and Design" Tata McGraw Hill edition 2002.
- 2. Hamacher C., Vranesic Z., and Zaky S., "Computer Organization", 5th Edition, McGraw Hill, 2012.
- 3. HDL Programming (VHDL and Verilog)-NazeithM.Botros- Creamtech Press 2006 edition.
- John P. Hayes "Computer Architecture and Organization" Tata McGraw Hill 3rd Edition, 2012.
- M. Morris Mano and C. R. Kime "Logic and Computer Design Fundamentals" 2nd Edition Updated Publishers Pearson Education 2005.
- 6. Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss, "Digital Systems Principles and Applications" 10th Edition, PHI/Pearson Education, 2007.

Manuals: Lab Manual available in Lab.

Program: Bachelor of Engineering				
Course Title: Principles of Compiler Design Course Code: 15ECSC205				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 03 hrs			

Unit –	[
1	Introduction to compilers	
	Brief History of Compilers, Translation process, Major data structures in	
	Compilers, Chomsky hierarchy, Lexical analysis: Scanning process, Regular	
	expressions for tokens, lexical errors, applications of Regular expressions.	06 hrs
2	Finite Automata	
	Introduction: Language, automata, From regular expressions to Deterministic	
	Finite Automata (DFA): C-Nondeterministic Finite Automata (C-NFA), NFA,	
	DFA, Equivalence of Deterministic Finite Automata, Nondeterministic Finite Automata Finite automata as reasonizar Implementation of Finite Automata	06 hrs
2	Automata, Finite automata as recognizer, implementation of Finite Automata.	00 11 5
3	Introduction to Syntax Analysis Bolo of partor Bagular Grammars Contact Free Grammars (CEGs) Barcars	
	Role of parser, Regular Oranimars, Context-Free Oranimars (CFOS), Faisers,	
	recovery strategies	04 hrs
Unit _		
4	Top Down Parsing	
	Top Down parsing: Recursive Parsing, Left Recursion, Left factoring, LL(1) Parsing FIPST and FOLLOW sats, arrow recovery in Top Down Parsing	08 hrs
5	Patsing, FIRST and FOLLOW sets, error recovery in Top Down Patsing.	00 11 3
5	Dottom Up ratsing Bottom Up parsing: Overview, SLP(1) parsing General LP(1) and LALP(1)	
	Doublin Op paising. Overview, SLK(1) paising, General LK(1) and LALK(1) Darsing arrow recovery in bottom up parsing	
Unit _	III	
6	Somentie Analysis	
U	Attributes and Attributes grammars. Algorithm for attribute computation	
	Symbol table data types and Data checking	04 hrs
7	Intermediate Code Generation	
,	Intermediate Code and data structure for code generation. Code generation of	
	data structure references, code generation of control statements and expressions.	04 hrs
Text B	ooks:	
1.	Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D Ullman, Compilers - Pr.	inciples,
	Techniques and Tools, 2nd Edition, Pearson, 2007	_
2.	Kenneth C Louden, Compiler Construction Principles & Practice, 1997, G	Cengage
	Learning, 1997	
Refere	nce Books:	
1.	Andrew W Apple, Modern Compiler Implementation in C, Cambridge Universit	y Press,
	1998	
2.	Charles N. Fischer, Richard J. leBlanc, Jr, Crafting a Compiler with C, Pearson, 2	010.
3.	Peter Linz, An Introduction to formal languages and Automata, IV edition, Naros	a, 2009.

4. Basavaraj S Anami,, Karibasappa K.G, Formal Languages and Automata Theory, First, Wiley India, 2011.

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2 and 3	Solve Any 2 out of 3
II	Q.No4, Q.No5	4 and 5	Solve Any 2 out of 3
ш	Q.No6	6	Solve Any 1 out of 2
111	Q.No7	7	Solve Ally 1 Out of 2

Program: Bachelor of Engineering		
Course Title: Computer Organization and Architecture Course Code: 15ECSC206		
L-T-P: 3-1-0	Credits: 4	Contact Hrs: 04 hrs/week
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hrs: 40	Exam Duration: 03 hrs	

Unit –	I	
1	Basic Structure of Computers and Machine Instructions	
	Basic operational concepts; Bus structures; Performance; Numbers, arithmetic operations & characters; memory locations and addresses.	
	Basic Processing Unit	
	Fundamental concepts; Instruction Execution, Hardware Components	
	Instruction Fetch and Execution Steps, Control Signals, Hardwired Control, CISC-Style Processors.	06 hrs
2	Pipelining	
	Basic Concept, Pipeline Organization, Pipelining Issues, Data Dependencies,	
	Memory Delays, Branch Delays, Resource Limitations, Performance Evaluation.	05 hrs
3	Input /Output Organization	
	Accessing i/o devices; interrupts	
	Bus Structure, Bus Operation, Arbitration, Interface Circuits, Interconnection	
	Standards.	05 hrs
Unit –	П	
4	The Memory System	
	Basic Concepts, Semiconductor RAM Memories, Read-only Memories	
	Direct Memory Access, Memory Hierarchy, Cache Memories, Performance	
	Considerations, Virtual Memory, Memory Management Requirements,	
	Secondary Storage.	06 hrs
5	Arithmetic	
	Addition and Subtraction of Signed Numbers, Design of Fast Adders,	
	Multiplication of Unsigned Numbers, Multiplication of Signed Numbers	
	Fast Multiplication, Integer Division, Floating-Point Numbers and Operations.	06 hrs

~		
6	The ARM architecture	
	The Acorn RISC machine, Architectural inheritance, The ARM programmers	
	model, ARM development tools, 3-stage pipeline ARM organization, ARM	
	instruction execution, Addressing Modes, Examples.	04 hrs
Unit –	Ш	
7	The ARM Instruction Set	
	Data processing instructions, Data transfer instructions, Control flow	
	instructions, Examples.	04 hrs
8	ARM Assembly Programming	
	Exceptions, Conditional execution, Branch instructions.	04 hrs
Text B	ooks:	
1.	Hamacher C., Vranesic Z., and Zaky S., Computer Organization, 6 ed., McGr	aw Hill,
	2012.	
2.	Steve Furber, ARM System-on-chip Architecture, 2, Pearson, 2000	
Refere	nce Books:	
1.	William Stallings, "Computer Organization & Architecture", 8th Edition, Education, 2010.	Pearson
2.	Miles Murdocca and Vincent Heuring, "Computer Architecture and Organiza Integrated Approach", 2nd Edition, WSE, 2010.	ation an

Scheme for Semester End Examination (SEE)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2 & 3	Solve Any 2 out of 3
Π	Q.No4, Q.No5, Q.No6	4, 5 & 6	Solve Any 2 out of 3
ш	Q.No7	7	Solve Any 1 out of 2
	Q.No8	8	,, ,

Tentative plan of Tutorial implementation

Sl. No	Assignments
1.	Introduction to ARM architecture
2.	Programming on Data transfer instructions
3.	Programming on Data processing instructions: arithmetic and logical instructions
4.	Programming on Control flow instructions
5.	Interfacing techniques

Materials and Resources Required:

Text Books:

1. Steve Furber, "ARM System-on-chip Architecture" LPE, 2nd Edition, 2000.

Reference Books:

1. David E. Simon, "An Embedded Software Primer", Addison-Wesley Professional, 1st

- Edition, 1999.
- 2. William Hohl, "ARM Assembly Language Fundamentals and techniques" CRC Press, 2009.

Program: Bachelor of Engineering			
Course Title: Principles of Compiler Design Course Code: 17ECSC202			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 03 hrs		

Unit –	I	
1	Introduction to compilers	
	Brief History of Compilers, Translation process, Major data structures in	
	Compilers, Chomsky hierarchy, Lexical analysis: Scanning process, Regular	
	expressions for tokens, lexical errors, applications of Regular expressions	08 hrs
2	Top Down Parsing	
	Top Down parsing: Recursive Parsing, Left Recursion, Left factoring, LL (1)	
	Parsing, FIRST and FOLLOW sets, error recovery in Top Down Parsing	08 hrs
Unit –	П	
3	Bottom up Parsing	
	Bottom Up parsing: Overview, SLR (1) parsing, General LR (1) and LALR (1)	
	Parsing, error recovery in bottom up parsing	08 hrs
4	Semantic Analysis	
	Attributes and Attributes grammars, Algorithm for attribute computation,	
	Symbol table, data types and Data checking.	08 hrs
Unit –	Ш	
5	Intermediate Code and data structure for code generation, Code generation of	
	data structure references, code generation of control statements and expressions.	04 hrs
6	Machine Independent Code optimizer	
	Principal sources of optimization, Data flow analysis, Redundancy elimination,	
	Loops in flow graphs.	04 hrs

Text Book:

- 1. Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D Ullman: Compilers Principles, Techniques and Tools, 2nd Edition, Pearson, 2008.
- Kenneth C Louden: Compiler Construction Principles & Practice, Cengage Learning, 1997.

References:

- 1. Andrew W Apple: Modern Compiler Implementation in C, Cambridge University Press, 1997.
- 2. Charles N. Fischer, Richard J. leBlanc, Jr.: Crafting a Compiler with C, Pearson, 1991.

Program: Bachelor of Engineering			
Course Title: Computer Organization and Architecture Course Code: 17ECSC205			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 03 hrs		

Unit –	I	
1	Basic GPU Structure	
	Basic operational concepts. Bus structures. Performance. Numbers, arithmetic	
	operations. Memory locations and addresses. Fundamental concepts: Instruction	
	Execution, Hardware Components. Instruction Fetch and Execution Steps,	
	Control Signals. CISC-Style Processors.	06 hrs
2	Pipelining	
	Basic Concepts. Pipeline Organization. Pipelining Issues: Data DependenISAs,	
	Memory Delays, Branch Delays, and Resource Limitations. Performance	
	Evaluation.	05 hrs
3	Input /Output Organization	
	Accessing i/o devices. Interrupts. Bus Structure/Operation, Arbitration. Interface	
	Circuits. Interconnection Standards.	05 hrs
Unit –	Π	
4	The Memory System	
	Basic Concepts. Semiconductor RAM Memories. Read-only Memories. Direct	
	Memory Access. Memory Hierarchy. Cache Memories. Performance	
	Considerations. Virtual Memory. Memory Management Requirements.	
	Secondary Storage	06 hrs
5	Arithmetic	
	Addition and Subtraction of Signed Numbers. Design of Fast Adders.	
	Multiplication of Signed and Unsigned Numbers. Fast Multiplication. Integer	
	Division. Floating-Point Numbers and Operations	06 hrs

6	The ARM architecture	
	The Acorn RISC machine. Architectural inheritance. The ARM programmer's	
	model. ARM development tools. 3-stage pipeline ARM organization. ARM	
	instruction execution. Addressing Modes.	04 hrs
Unit –	Ш	
7	The ARM Instruction Set	
	Data processing instructions. Data transfer instructions. Control flow	
	instructions.	04 hrs
8	ARM Assembly Programming	
	Exceptions. Conditional execution. Branch instructions. Programming Examples.	04 hrs
Text B	ooks:	
1.	1Hamacher C., Vranesic Z., andZaky S., Computer Organization, Sixth, McGraw	Hill,
	2012.	
2.	2. Steve Furber, ARM System-on- chip Architecture, Second, Pearson Education, 2000	
Refere	nce Books:	
1.	William Stallings., Computer Organization & Architecture, Eighth, Pearson Educ	ation,
	2010.	
2.	2. Miles Murdocca and Vincent Heuring, Computer Architecture and Organization an	
	Integrated Approach, Second, WSE, 2010.	

Scheme for Semester End Examination (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
Ш	Q.No7	7	Solve Any 1 out of 2
	Q.No8	8	~~~~~

Tentative plan of Tutorial implementation

Sl. No	Assignments
6.	Introduction to ARM architecture
7.	Programming on Data transfer instructions
8.	Programming on Data processing instructions: arithmetic and logical instructions
9.	Programming on Control flow instructions
10.	Interfacing techniques

Materials and Resources Required:

Text Books:

2. Steve Furber, "ARM System-on-chip Architecture" LPE, 2nd Edition, 2000.

Reference Books:

3. David E. Simon, "An Embedded Software Primer", Addison-Wesley Professional, 1st

- Edition, 1999.
- 4. William Hohl, "ARM Assembly Language Fundamentals and techniques" CRC Press, 2009.

Program: Bachelor of Engineering				
Course Title: Computer Organization and Architecture Course Code: 18ECSP202				
Lab				
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3 hrs/week		
ISA Marks: 80	ESA Marks: 20	Total Marks: 100		
Teaching Hrs: 42	Exam Duration: 3 Hrs			

Tentative plan of lab implementation

Experiments	Lab assignments/experiment	Hrs
1-	Exercises on Combinational Logic	03 hrs
2-	Exercises on Sequential Circuit Design	08 hrs
3-	Structured Enquiry	
	Applications of Computer Organization concepts	03 hrs

Materials and Resources Required:

Text Books:

- 1. Donald D. Givone "Digital Principles and Design" Tata McGraw Hill edition 2003.
- 2. Hamacher C., Vranesic Z., and Zaky S., Computer Organization, 5ed., McGraw Hill,2002.

Reference Books:

- 3. John P. Hayes. Computer Architecture and Organization, 3rd Edition, McGraw Hill
- 4. M. Morris Mano and C. R. Kime "Logic and Computer Design Fundamentals" 2nd Edition, Updated Publishers Pearson Education 2005.
- 5. Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss, "Digital Systems Principles and Applications" 10th Edition, PHI/Pearson Education, 2007.

Course Code: 18ECSC206 Course Title: Microcontroller Programming& Interfacing		ng&	
L-T-P-SS: 3-0-1	Credits: 4	Contact Hrs: 3+2 hrs	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40 Exam Duration: 3			3 hrs
Content			Hrs
Unit – I	[1	
Chapter No. 1.The 8051 Architecture Introduction, 8051 Microcontroller hardware, input/o memory,	utput pins, ports & circuits,	External	04 hrs
Chapter No. 2. Assembly Programming Introduction, addressing modes, External Data Moves, Code Memory Read Only Data Moves / Indexed Addressing mode, PUSH and POP opcodes, Data exchanges, assembler directives, example programs. Byte level logical Operations, Bit level Logical Operations, Rotate and Swap Operations, Example Programs. Arithmetic Operations: Flags, Incrementing and Decrementing, Addition, Subtraction, Multiplication and Division, Decimal Arithmetic, Example Programs. The JUMP and CALL Program range, Jumps, Call and Subroutines, Example programs			12hrs +08 hrs (Lab)
Unit – II			
Chapter No. 3. Timer/Counter & Serial Port Prog C Data Types and Time delay computation in 8051 C Timers/counters in different modes, Basics of Serial C connection to RS232, 8051 serial port Programming.	gramming. Jounters and Timers, Program Communication, RS232 star	nming 8051 Idards, 8051	12 hrs
Chapter No. 4. Interrupts Programming 8051 Interrupts, Programming Timer Interrupts, Programming external hardware interrupts, Programming the Serial Communication Interrupts, Interrupt Priority in the 8051, Interrupt programming.			04 hrs
Unit – III			
Chapter No. 5. Interfacing to Peripheral Devices Interfacing 8051 to LEDs, DIP switches, BCD Decoder display, 7 Segment Display, LCD, Keypad, DAC, ADC, Stepper Motor and DC Motor			08hrs +12 Hrs (Lab)

Text Books (List of books as mentioned in the approved syllabus)

- 2. Ayala.K.J, "The 8051 Microcontroller", 3rd., CENGAGELearning, 2007.
- Mazidi.M.A, Mazidi.J.G and McKinlay.R.D, "The 8051 Microcontroller and Embedded Systemsusing Assembly and C", 2ed, PHI 2006/Pearson, 2006.

References

- Ayala.K.J., Gadre D.V., "The 8051 Microcontroller & Embedded Systems using Assembly and C", 1ed., CENGAGE Learning, 2010
- 2. V. Udayashankara, M.S. Mallikarajunaswamy, "8051 Microcontroller Hardware, Software and Applications", 1ed., Tata McGraw Hill, 2009.

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1 & 2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	3 &4	Solve Any 2 out of 3
ш	Q.No7	5	Salva Any 1 out of 2
111	Q.No8	5	Solve Any I out of 2

Program: Bachelor of Engineering				
Course Title: Software Engineering Course Code: 15ECSC301				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 3 hrs			

Unit –	I	
1	Chapter No. 1. Software Engineering process	
	Professional software development Software engineering ethics, Case studies,	
	Software processes: Software process models, Process activities, Coping with	
	change, The rational unified process, Continuous Integration and Continuous	
	Deployment and Tools.	06 hrs
2	Chapter No. 2. Agile Software Development	
	Agile methods, Plan-driven and agile development, Extreme programming, Agile	
	project management.	04 hrs
3	Chapter No. 3. Requirement Engineering	
	Functional and Non-functional requirements; The software requirements	
	Document, Requirement specification, Requirements Engineering Processes,	
	Requirements elicitation and analysis; Requirements validation; Requirements	
	management	06 hrs
Unit –	П	
4	Chapter No. 4. System Modeling	
	Context models, Interaction Models, Structural models, Behavioral models.	06 hrs
5	Chapter No. 5. Architectural Design	
	Architectural Design Decision, Architectural views, Architectural patterns,	05 hrs

	Application Architectures	
6	Chapter No. 6. Object-Oriented design and implementation	
	Object oriented design using UML, design patterns, Implementation Issues, Open	
	source development.	05 hrs
Unit –	Ш	
7	Chapter No. 7. Software Testing	
	Development Testing, Test Driven Development, Release Testing, User Testing	04 hrs
8	Chapter No. 8. Configuration management	
	Change management, Version management, System building, Release	
	management	04 hrs
Text B	ooks	
1.	Ian Somerville, Software Engineering, 9th, Pearson Ed, 2015	
Refere	nce Books:	
1.	Roger S. Pressman, Software Engineering: A Practitioners Approach, 7th, McGraw	/- , 2007
2.	Shari Lawrence Pfleeger, Joanne M. Atlee, Software Engineering Theory and I	Practice,
	3rd, Pearson Ed, 2006	

3. Jalote, P, An Integrated Approach to Software Engineering, 3rd, Narosa Pub, 2005

UNIT	8 Questions to be set of 20 Marks Each	Chapter	Instructions
		Numbers	
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
ш	Q.No7	7	Solve Any 1 out of 2
111	Q.No8	8	Solve Ally 1 out of 2

Program: Bachelor of Engineering				
Course Title: Computer Networks - I Course Code: 17ECSC301				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 3 hrs			

Unit –	Ι		
1	Introduction		
	Internet, The Network Edge and Core, Protocol layer and service models: OSI		
	and TCP/IP, Networks attacks, History of computer network and Internet	08 hrs	
2	Application Laver		
	Principles of Network Applications, HTTP, SMTP, DNS		
Unit –II			
3	Transport-Layer Services		
	Introduction, connectionless transport, principles of reliable data transfer	10 hrs	

Department of Computer Science & Engineering

	protocol, connection-oriented and connectionless transport, principle of		
	congestion control, TCP congestion control		
4	Network Layer: Data plane		
	Introduction to data and control plane and, virtual circuit and datagram networks,		
	Internet protocol: datagram format, fragmentation, IP addressing	06 hrs	
Unit –	III		
5	Network Layer: Data plane		
	NAT, IPv6, generalized forward and SDN	04hrs	
6	Network tools		
6	Network tools HTTP, DNS, SMTP tools, packet analysis	04 hrs	
6 Text B	Network tools HTTP, DNS, SMTP tools, packet analysis cooks:	04 hrs	
6 Text B 1.	Network tools HTTP, DNS, SMTP tools, packet analysis cooks: J. F. Kurose, K. W. Ross, "Computer Networking, A Top-Down Approach", 7 th	04 hrs Edition,	
6 Text B 1.	Network tools HTTP, DNS, SMTP tools, packet analysis cooks: J. F. Kurose, K. W. Ross, "Computer Networking, A Top-Down Approach", 7 th Pearson Education, 2017.	04 hrs Edition,	
6 Text B 1. Refere	Network tools HTTP, DNS, SMTP tools, packet analysis sooks: J. F. Kurose, K. W. Ross, "Computer Networking, A Top-Down Approach", 7 th Pearson Education, 2017. Ence Books:	04 hrs Edition,	
6 Text B 1. Refere	Network tools HTTP, DNS, SMTP tools, packet analysis cooks: J. F. Kurose, K. W. Ross, "Computer Networking, A Top-Down Approach", 7 th Pearson Education, 2017. cnce Books:	04 hrs Edition,	
6 Text B 1. Refere 1.	Network tools HTTP, DNS, SMTP tools, packet analysis sooks: J. F. Kurose, K. W. Ross, "Computer Networking, A Top-Down Approach", 7 th Pearson Education, 2017. Ence Books: Peterson, Larry L, "Computer networks : a systems approach", 5th Edition, The Mo	04 hrs Edition,	

2. Behrouz Forouzan, Data Communications and Networking, McGraw Hill 4ed., 2007

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3
Ш	Q.No7	5	Solve Any 1 out of 2
	Q.No8	6	,

Program: Bachelor of Engineering		
Course Title: System Software Course Code		Course Code: 17ECSC302
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40	Exam Duration: 3 hrs	

	Unit –I	
1	Introduction to a Machine Architecture	
	Introduction, System Software and Machine Architecture, Simplified	
	Instructional Computer (SIC) - SIC Machine Architecture, SIC/XE Machine	
	Architecture, SIC and SIC/XE Programming Examples.	06hrs
2	Assembler	
	Basic Assembler Function - A Simple SIC Assembler, Assembler Algorithm and	
	Data Structures, Machine Dependent Assembler Features - Instruction Formats &	
	Addressing Modes, Program Relocation.	09hrs

	Unit –II		
3	Assembler M/c Independent Features and Design options		
	Machine Independent Assembler Features: Literals, Symbol Defined Statements,		
	Expression, Program Blocks, Control Sections and Programming Linking,		
	Assembler Design Options: One Pass Assembler, Multi Pass Assembler, Implementation Examples: Assembler(8086): MASM	07 hrs	
4	Loaders and Linkers	07 mb	
-	Basic Loader Functions: Design of an Absolute Loader. A Simple Bootstrap		
	Loader, Machine Dependent Loader Features: Relocation, Program Linking.		
	Algorithm and Data Structures for a Linking. Loader M/c Independent		
	Features: Automatic Library Search, Loader Options, Loader Design Options -		
	Linkage Editor, Dynamic Linkage, Bootstrap Loaders, Implementation		
	Examples: 8086 Linker.	08 hrs	
	Unit –III		
5	Macro Processor		
	Basic Macro Processor Functions: Macro Definitions and Expansion, Macro		
	Processor Algorithm and Data Structures, Machine Independent Macro		
	Processor Features: Concatenation of Macro Parameters, Generation of Unique		
	Labels, Conditional Macro Expansion, Keyword Macro Parameters		
	Implementation Examples: 8086 Macro Processor.	05 hrs	
6	Back end of Compiler: Code generation and Machine dependent features.		
	Review of phases of compilers, code generation routines, machine dependent		
	features.	05 hrs	
Text E	Books:		
4	Leland.L.Beck and D. Manjula: System Software, 3 ed, Pearson Education, 2007		
2	Ayala: The 8051 Microcontroller, 3rd ed, Cenagage Learning- 2009		
Refere	ence Books:		
1	. Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D Ullman, "Compilers- Pr	inciples,	
	Techniques and Tools". 2nd Edition. Addison-Wesley, 2007.		

Pechniques and Tools", 2nd Edition, Addison-Wesley, 2007.
 Muhammad Ali Mazidi et al: The 8051 Microcontroller and Embedded systems, 2nd Edition, Pearson education, 2009.

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
Π	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3
Ш	Q.No7	5	Solve Any 1 out of 2
	Q.No8	6	, - out of -

Program: Bachelor of Engineering			
Course Title: Data Mining & AnalysisCourse Code: 18ECSC301			
L-T-P: 3-0-1	Credits: 4	Contact Hrs: 5 hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3hrs		

Unit –	I	
1	Data Pre-Preprocessing	
	Introduction to data mining, Data Warehouse and OLAP Technology for	
	Data mining: Data Warehouse, Multidimensional Data Model, Data	
	Warehouse Architecture, Major tasks in data preprocessing- data	
	reduction, data transformation and data Discretization, data cleaning and	
	data integration.	08 hrs
2	Frequent Pattern Mining	
	Frequent item sets and association rules; Item set mining algorithms;	
	Generating association rules; Summarizing item sets: maximal and	
	closed frequent item sets; Interesting patterns: pattern evaluation	
	methods;	08 hrs
Unit –	П	
3	Classification Techniques	
	Probabilistic classification: naïve Bayes classifier, K-nearest neighbours;	
	Decision tree classifier: decision tree induction, tree pruning; Model evaluation	
	and selection: metrics, cross validation, random sampling, ROC curves;	08 hrs
4	Cluster Analysis	
	Cluster Analysis- Partitioning methods, Hierarchical Methods, Density based	
	methods, Outlier Detection.	08 hrs
Unit –		
5	Advanced Mining Techniques	
	Popular data pre-processing techniques: One hot encoding, stacking; Techniques	
	to improve classification accuracy: ensemble methods, random forests,	
	XGBoosting; Bias-variance trade-off; Post processing: Visualization and	
	Interpretation;	08 hrs
Text B	ooks:	
2.	Jiawei Han, Micheline Kamber and Jian Pei, Data Mining: Concep	ots and
	Techniques, 3rd edition, Morgan Kaufmann, 2012.	
Reference Books:		
7.	Ian H. Witten, Eibe Frank, Mark A. Hall and Christopher J. Pal, Data N	Mining:

Practical Machine Learning Tools and Techniques, Morgan Kaufmann; 4th edition, 2016.

- 8. Pang-Ning, Michael Steinbach and Vipin Kumar, Introduction to Data Mining, Pearson, International edition, 2013.
- 9. Mohammed J. Zaki and Wagner Meira, Jr., Data Mining and Analysis: Fundamental Concepts and Algorithms, Cambridge University Press, 2014.
- 10. M. H. Dunham, Data Mining: Introductory and Advanced Topics, Pearson Education, 1st edition, 2006.

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 3 out of 4
П	Q.No4, Q.No5, Q.No6	3, 4,5	Solve Any 3 out of 4
III	Lab exam	6	Lab exam evaluation

Program: Bachelor of Engineering			
Course Title: Machine Learning		Course Code: 17ECSC306	
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 30	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 30	Exam Duration: 3 hrs		

Content	Hrs
Unit – 1	1
Chapter No 1. Introduction to machine learning Introduction to Machine Learning, Applications of Machine Learning, Types of Machine Learning: Supervised, Unsupervised and Reinforcement learning, Dataset formats, Features and observations.	5 hrs
Chapter No 2. Supervised Learning: Linear Regression, Logistic Regression Linear Regression: Single and Multiple variables, Sum of squares error function, The Gradient descent algorithm, Application, Logistic Regression, The cost function, Classification using logistic regression, one-vsall classification using logistic regression, Regularization.	7 hrs

Unit – 2 Chapter No 3. Supervised Learning: Neural Network 6 hrs Introduction to perceptron learning, Model representation, Gradient checking, Back propagation algorithm, Multi-class classification, and Application- classifying digits. Support vector machines, Chapter No 4. Unsupervised Learning : Dimensionality reduction and Learning 6 hrs Theory Expectation Maximization (EM), Factor Analysis, The dimensionality reduction, PCA : PCA for compression, Incremental PCA, Randomized PCA, Kernel PCA, ICA (Independent Component Analysis). Bias/variance tradeoff, Union and Chernoff / Hoeffding bounds VC dimension. Unit – 3 **Chapter No 5. Reinforcement Learning** 6 hrs Reinforcement Learning: Introduction, Applications, Model of the environment, Policy search, Learning to optimize rewards and value functions, Evaluating actions: The credit assignment problem, Policy gradients, Markov decision processes, Olearning.

Text Book

- 1. Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science, 3rd edition.
- 2. Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006.

References:

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems, AurelianGerona, Publisher: O'Reilly Media , July 2016.
- 2. Advanced Machine Learning with Python Paperback, 28 Jul 2016 by John Hearty.

Program: Bachelor of Engineering			
Course Title: System Software Lab Course Code: 15ECSP30			
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3 hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hrs: 36	Exam Duration: 3 hrs		

<u>Sl No</u>	<u>Experiments</u>	<u>Slots/Hrs</u>
1.	Practice programs on user defined functions, structures and programs on	3 hrs
	file handling	

2.	Introduction to basics of given assembly language Programs	3 hrs
3.	Evaluation on given assembly language Program	3 hrs
4.	Implementation of Pass 1 Assembler	3 hrs
5.	Implementation of Pass 2 Assembler	6 hrs
6.	Implementation of Pass 1 Linking loader	3 hrs
7.	Implementation of Pass 2 linking loader	6 hrs
8.	Course Project on Identifying machine to implement assembler , learning its architectural features and design Pass 1 Assembler or Pass2 Assembler	6 hrs

Reference Books:

- 1. Leland.L.Beck and D. Manjula: System Software, 3 ed, Pearson Education, 2007
- 2. Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D Ullman, "Compilers- Principles, Techniques and Tools", 2nd Edition, Addison-Wesley, 2007.

Program: Bachelor of Engineering			
Course Title: Mini Project		Course Code: 15ECSW301	
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 3 hrs/week	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 39	Exam Duration: 3 Hrs		

Student Evaluation Matrix

Sl. No	Continuous Internal Evaluation	Assessment	Weightage in Marks
1	Review 1 :	Problem identification & Defining a problem statement, test plan and Construction of software system	15
2.	Review 2 :	Software Requirement Specification (SRS)	10
3.	Review 3 :	Software Design	05
4.	Review 4 :	Construction (as per design) & testing	10
5.	Review 5 & peer review:	Final Demo & exhibition Peer review will be done after review 1 & review 4)	10
		Total	50

Program: Bachelor of Engineering				
Course Title: Computer Networks-II Course Code: 17ECSC304				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 3 hrs			

Unit –	Unit –I			
1	Introduction:			
	Overview of IP addressing, Network layer control plane: routing algorithms,			
	routing in internet, broadcast and multicast routing, SDN control plane, Network			
	management and SNMP	08 hrs		
2	Data Link Layer			
	Error-Detection and -Correction Techniques, Parity Checks, Check summing			
	Methods, Cyclic Redundancy Check (CRC), multiple access links and protocols	08 hrs		
Unit –	Ш			
3	Switched Local Area Networks			
	Link-Layer Addressing and ARP, Ethernet, Link-Layer Switches, Virtual Local			
	Area Networks (VLANs), Multiprotocol Label Switching (MPLS), Data Center			
	Networking.	08 hrs		
4	Wireless Networks			
	Wireless Links and Network Characteristics, 802.11 Wireless LANs,			
	Architecture, MAC Protocol, Frame, Mobility, Advanced Features, Personal			
	Area Networks: Bluetooth and Zigbee, Cellular networks and internet access	08 hrs		
Unit –III				
6	Mobility Management			
	Mobility, mobile IP, managing mobility in cellular network, wireless and mobile:			
	impact on higher layer protocols	04 hrs		
7	Multimedia Networking:			
	Applications, Voice-over-IP, Protocols for real-time applications.	04 hrs		
Text Books:				
1.	J. F. Kurose, K. W. Ross, "Computer Networking, A Top-Down Approach", 7th	Edition,		
	Pearson Education, 2017.			
Reference Books:				
1.	Peterson, Larry L, "Computer networks : a systems approach", 5th Edition, The	Morgan		
2	Kaufmann series in networking, 2012 Debroug Forgugen Dete Communications and Networking, McCrew Hill 4-4, 20	007		
2.	Behrouz Forouzan, Data Communications and Networking, McGraw Hill 4ed., 20	007		

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3
III	Q.No7	5	Solve Any 1 out of 2
	Q.No8	6	borvernig i out of 2

Program: Bachelor of Engineering			
Course Title: Distributed and Cloud Computing Course Code: 17ECSC305			
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 04 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 30	Exam Duration: 03 hrs		

Unit –	I	
1	Distributed System Models and Enabling Technologies	
	Scalable Computing over the Internet, Technologies for Network-Based	
	Systems, System Models for Distributed and Cloud Computing.	04 hrs
2	Virtual Machines and Virtualization of Clusters and Data Centers	
	Implementation Levels of Virtualization, Virtualization Structures/Tools and	
	Mechanisms, Virtualization of CPU, Memory, and I/O Devices, Virtual Clusters	
	and Resources Management.	04 hrs
3	Cloud Platform Architecture over Virtualized Data Centers	
	Cloud Computing and Service Models, Architectural Design of Compute and	
	Storage Clouds, Public Cloud Platforms.	04 hrs
Unit –	П	
4	Cloud Programming and Software Environments	
	Features of Cloud and Grid Platforms, Parallel and Distributed Programming	
	Paradigms, Programming Support of Google App Engine.	04 hrs
5	Cloud Resource Management	
	Policies and mechanisms for resource management, Applications of control	
	theory to task scheduling on a cloud, Stability of a two-level resource allocation	
	architecture, Feedback control based on dynamic thresholds, Coordination of	
	specialized autonomic performance managers.	04 hrs
6	Cloud Resource Scheduling	
	Resource bundling; combinatorial auctions for cloud resources, Scheduling	
	algorithms for computing clouds. Fair queuing, Start-time fair queuing,	
	Borrowed virtual time, Cloud scheduling subject to deadlines, Scheduling	
	MapReduce applications subject to deadlines.	04 hrs
Unit –	III	

6	Cloud Security			
	Cloud security risks, Security; the top concern for cloud users, Privacy; privacy			
	impact assessment, Trust, Operating system security, Security of virtualization.	03 hrs		
7	Hypervisor & Operating System security			
	Security risks posed by shared images, Security risks posed by a management			
	OS, Xoar - breaking the monolithic design of the TCB, A trusted virtual machine			
	monitor.	03 hrs		
Text Books:				
3.	Kai Hwang, Geoffrey C. Fox, Jack J. Dongarra, "Distributed and Cloud Computi	ng from		
	Parallel Processing to the Internet of Things", Morgan Kaufman, Elsevier- 2012.			
4.	4. Dan C. Marinescu "Cloud Computing Theory and Practice", Morgan Kaufman, Elsevie			
	2013.			
Refere	Reference Books:			
5	Raikumar Buyya, Christian Vecchiola, S Thamarai Selvi "Mastering Cloud Com	nuting"		

- Rajkumar Buyya, Christian Vecchiola, S. Thamarai Selvi "Mastering Cloud Computing", McGraw Hill Education (India) Pvt. Limited, 2013.
- 6. Anthony T. Velte, Toby J. Velte, Robert Elsenpeter: Cloud Computing, A Practical Approach, McGraw Hill, 2010.

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2, 3	Solve Any 2 out of 3
Π	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
ш	Q.No7	7	Solve Any 1 out of 2
111	Q.No8	8	Solve Any 1 Out of 2

Expt./Job	Brief description about the experiments	No. of Lab slots per
No.		batch (estimate)
1.	Hypervisors (Type-I and Type-II)	01
2.	Instance building using Infrastructure as a Service	01
3.	Application hosting using Platform as a Service	01
4.	Private cloud setup	01
5.	Developing Task Model Applications using Aneka	
	Management Studio	02
6.	Developing Thread Model Applications using Aneka	
	Management Studio	02
7.	VMware Online Hands on Lab (HOL)	01

Program: Bachelor of Engineering			
Course Title: Professional Aptitude and Logical Reasoning Course Code:15EHSC301			
L-T-P:3-0-0	Credits: 3	Contact Hrs: 03 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	

Unit –	Unit –I			
1	Arithmetical Reasoning	10hrs		
2	Analytical Thinking	4hrs		
3	Syllogistic Logic	3hrs		
Unit –	П			
4	Verbal Logic			
5	Non-Verbal Logic			
Unit –III				
6	Lateral Thinking			
Text Books:				
1. A Modern Approach to Verbal and Non – Verbal Reasoning – R. S. Aggarwal,				
Sultan	Sultan Chand and Sons, New Delhi			
 Quantitative Aptitude – R. S. Aggarwal, Sultan Chand and Sons, New Delhi Evaluation Scheme 				
 Verbal and Non – Verbal Reasoning – Dr. Ravi Chopra, MacMillan India Lateral Thinking – Dr. Edward De Bono, Penguin Books, New Delhi 				

Scheme for End Semester Assessment (ESA)

ISA Scheme

Assessment	Weight age in Marks
Minor Exam 1	15
Minor Exam 2	15
Assignments	

Department of Computer Science & Engineering

Written	10
Class Tests	10
Total	50

Program: Bachelor of Engineering			
Course Title: Computer Networks Lab		Course Code: 15ECSP302	
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3 hrs/week	
CIE Marks: 80	SEE Marks: 20	Total Marks: 100	
Teaching Hrs: 36	Exam Duration: 3hrs		

Expt.	Brief description about the experiment/job
/Job No.	
1.	Introduction to Hardware components and Ethernet LAN set up.
2.	Introduction to socket programming
3.	Implementation of FTP
4.	Implementation of error control techniques.
5.	Implementation of flow control ARQs
6.	Introduction to NOS.
7.	Subnet design
8.	VLAN setup
9.	OSPF and RIP configuration and performance analysis
10.	eBGP and iBGP configuration and performance analysis
11.	Wireless network performance analysis
12.	Wireless network performance analysis

Program: Bachelor of Engineering			
Course Title: Web Technologies Lab		Course Code:15ECSP303	
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3 hrs/week	
CIE Marks: 80	SEE Marks: 20	Total Marks: 100	
Teaching Hrs: 42	Exam Duration: 3 hrs		

	Tutorial	
1	Javascript Frameworks	
	Angular2: Introduction, Navigation: Angular router, Dependency injection,	
	Bindings, observables, and pipes, component communications, forms,	
	Interacting with servers using HTTP and WebSockets, Bundling and deploying	
	applications.	
	Node.js Introduction to Node.js Building servers using the http and net	
	modules, Node modules and events, Express, Accessing Data.	12 hrs

2	Python Frameworks	
	Introduction to Python Frameworks, components of frameworks,-building	
	RESTful web services.	06 hrs
3	Using Python full stack frameworks	
	Django: Introduction to Django, Django's take on MVC: Model, View and	
	Template, Django Forms: Form classes, Validation, Authentication, Advanced	
	Forms processing techniques, working with databases, Integrate with RESTful	
	web services.	06 hrs
4	Building Enterprise Web Applications.	
	Ruby on Rails: An Overview Of Ruby on Rails, Rails and HTML Forms, Form	
	Helpers and Validation, Databases and Rails, Adding Style to an Application,	
	Sessions.	06 hrs

Tentative Lab Plan

Expt./ Job No.	Lab assignments/experiment	No. of Lab. Slots per batch
		(estimate)
1	Demonstration on Angular.js	01
2	Exercise on Angular.js	01
3	Demonstration on Node.js	01
4	Exercise on Node.js	01
5	Demonstration on Django	01
6	Exercise on Django	01
7	Demonstration on Ruby on Rails	01
8	Exercise on Ruby on Rails	01
9	Structured enquiry 1 – JavaScript	02
10	Structured enquiry 2 – Django	02
11	Structured enquiry 3 – Ruby on Rails	02

Reference Books:

- 1. Yakov Fain, Anton Moiseev, "Angular 2 Development with TypeScript", Manning Publications Company, 2016.
- 2. Azat Mardan, "Practical Node.js: Building Real-World Scalable Web Apps", Apress, 2014.
- Jeff_Forcier, "Python Web Development with Django", 1st edition, Pearson Education, 2008.
- 4. Michael Hartl, "Ruby on Rails Tutorial: Learn Web Development with Rails (2nd Edition) (Addison-Wesley Professional Ruby)".

Program: Bachelor of Engineering			
Course Title: Minor Project Course Code: 15ECSW302			
L-T-P: 0-0-6	Credits: 6	Contact Hrs: 3 hrs/week	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 39	Exam Duration: 3 hrs		

Student Evaluation Matrix

	Assessment	Weightage in Marks
Continuous Internal	Problem Definition & Literature survey	05
Evaluation Review -1	Requirement analysis and System design	05
	Synopsis and SRS report	07
	Presentation skills and team work	03
	Total	20
Continuous Internal	Implementation and testing	15
Evaluation Review -2	Presentation skills and team work	05
	Total	20
Continuous Internal	Result Analysis	03
Evaluation Review -3	Project Report	05
	Presentation skills and Viva-voce	02
	Total	10

Program: Bachelor of Engineering			
Course Title: Computer Vision Course Code:17ECSE30			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 30		Exam Duration: 3 hrs	

Unit – 1		
1	Introduction	4hrs
	Computer Vision Overview, Pixels and image representation, Filters:	
	Linear systems, Convolutions and cross-correlations; Lab: Basics, Filters	

2	Features and filtering	8hrs
	Edge detection: Gaussian, Sobel filters, Canny edge detector, Features and	
	fitting: RANSAC Local features, Harris corner detection, Feature descriptors:	
	Difference of gaussians, Scale invariant feature transform; Lab: Filters, Edges,	
	Features	
Unit – 2	2	
3	Semantic segmentation	6 hrs
	Perceptual grouping, Agglomerative clustering, Super pixels and over	
	segmentation; Clustering: K-means, Mean shift; Visual Bag of Words: Texture	
	features, Visual bag of words; Lab: Resizing, clustering, recognition	
4	Motion	6hrs
-	Optical Flow, Lucas-Kanade method, Horn-Schunk Method, Pyramids for	01115
	large motion, Tracking: Feature Tracking, Lucas KanadeTomasi (KLT)	
	tracker: Lab: Object detection. optical flow	
TL.M.	·····, ·····, ····, ····	
Unit – .	§	
	Advanced Techniques	6hrs
5	Image stitching, Image pyramids, Object recognition, Dimensionality	
	reduction, Face identification, Detecting objects by parts	
Referen	ice Books:	
1.	Richard Szeliski, Computer Vision: Algorithms and Applications, Springer, 201	1.
2.	. D. Forsyth and J. Ponce, Computer Vision: A Modern Approach, Pearson Education India	
	2 nd Ed, 2015.	
3.	R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vis	sion, Cambridge
	University Press, 2nd Edition, 2004.	C C

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2	Solve Any 3 out of 4
Π	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 3 out of 4
III	Q.No-7,Q.No-8	5	Solve Any 1 out of 2

Program: Bachelor of Engineering				
Course Title: Algorithmic Problem Solving Course Code: 17ECSE309				
L-T-P: 0-0-6	Credits: 6	Contact Hrs: 74		
ISA Marks: 70	ESA Marks: 30	Total Marks: 100		
Teaching Hrs: 74	Exam Duration: 2 to 3 days			

Course Content

Unit – 1	
Chapter 0: Building Blocks	06 hrs
Understanding coding platforms and tools, Data Structures and Algorithms	
revisited	
Chapter 1: Strategies and Performance	06 hrs
Warm up problems, Parsing and Formatting text, Code performance analysis and	
tools	
Chapter 2: Advanced Data Structures	10 hrs
Matrix, Grids, Trees and variants, Lists, Skip lists, Hash, Trie and variants	
Chapter 3: Dynamic Programming	08 hrs
Memory functions, Optimization problems	
Unit – 2	
Chapter 4: Graph algorithms	25 hrs
Traversal Algorithms, Shortest Path Algorithms, Spanning Tree Algorithms and	
variants	
Chapter 5: Introduction to Computational Geometry	05 hrs
Points, Line Segments, Polygons and Basics of Geometric Problems	
Unit – 3	
Chapter 6: Problem Solving	14 hrs
Assortment of problems and techniques.	

Text Book

1. Levitin A., "Introduction to the Design and Analysis of Algorithms", Third Edition, Pearson Education, 2017.

2. Levitin A, Levitin M, "Algorithmic Puzzles", First Edition, Oxford University Press, 2011.

3. Online Coding Platforms

References

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, "Introduction to Algorithms", Third Edition, MIT Press, 2010.

Program: Bachelor of Engineering			
Course Title: Internet of Things Course Code: 17ECSE303			
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 30 hrs	Exam Duration: 3 hrs		

	Unit –I	
1	Introduction to Internet of Things (IoT)	
	Definition & Characteristics of IoT, Things in IoT, IoT protocols, IoT functional	
	blocks, communication models and APIs.	04 hrs
2	IoT Architecture	
	Enabling technologies: Sensors, Zigbee, Bluetooth, IoT ecosystem, Data Link	
	protocols: IEEE 802.15.4e, IEEE 802.11.ah, DASH7, Low Power Wide Area	
	Network (LoRaWAN).	04 hrs
3	Network protocols	
	Routing Protocol for Low-Power and Lossy Networks (RPL), cognitive RPL	
	(CORPL), Channel-Aware Routing Protocol (CARP), Low power Wireless	
	Personal Area Networks (LoWPAN).	04 hrs
	Unit –II	
4	Application and Security protocols	
	Message Queue Telemetry Transport (MQTT), MQTT for Sensor Networks,	
	Secure MQTT, Advanced Message Queuing Protocol (AMQP), Constrained	
	Application Protocol (CoAP), OPC UA, 6LoWPAN), Routing Protocol for Low-	
	Power and Lossy Networks (RPL).	04 hrs
5	IoT Platforms Design Methodology	
	IoT Design Methodology, Case Study on IoT System for Weather Monitoring	
	etc., Basic building blocks of an IoT device, Raspberry Pi, interface (serial, SPI,	
	I2C), IoT Operating Systems: Contiki, RIOT.	04 hrs
6	Programming with Raspberry Pi	
	XML, JSON, SOAP and REST-based approach, WebSocket protocol.	04 hrs
	Unit –III	
7	IoT prototyping	
	Business models, example applications: Case studies on Home automation,	
	Cities, Environment, Energy, Agriculture, Health with emphasis on data analytics	06 has
	and security.	vo nrs

Text Books:

- 2. Arshdeep Bahga, Vijay Madisetti "Internet of Things (A Hands-on-Approach)" Universities Press- 2014.
- 3. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things: Key Applications and Protocols" John Wiley & Sons 2012.

Reference Books:

1. Subhas Chandra Mukhopadhyay "Internet of Things Challenges and Opportunities" Springer- 2014.

Scheme for Semester End Examination (SEE)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
III	Q.No7	7	Solve Any 1 out of 2

Expt./Job	Brief description about the experiments	No. of Lab slots per
No.		batch (estimate)
1.	Programming with Raspberry Pi	3
2.	Cloud service interface for data storage and retrieval	2
3.	Performance analysis of Data link protocols, routing and application protocols	3
4.	Open Ended Experiment with focus on data analytics and security	2

Program: Bachelor of Engineering				
Course Title: Active Directory Domain Services Course Code: 17ECSE304				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 03 hrs			

Unit –	I	
1	Introduction to Microsoft Active Directory Introduction to Microsoft Active Directory, Roles of Active directory services	
	Features in ADDS.	06 hrs
2	Domains and Forests Active Directory Structure Storage and Technologies, Data Store Components,	05 hrs

Department of Computer Science & Engineering

	Active Directory Domains and Forests, The Logical Structure of Active		
	Directory.		
3	Physical Structure		
	The Physical Structure of Active Directory, Network Ports used by Domains and		
	Forests.	04 hrs	
Unit –	П		
4	Installation of R2 server		
	Requirements for installing ADDS, Understanding of Active Directory Domain		
	Services Functional levels.	06 hrs	
5	Administration		
	Guidelines for raising domain and forests functional levels, Introduction to		
	various AD Snap-ins and their functions 04 hrs		
6	Domain Services		
	Active Directory Users and Computers, Active Directory Domains and Trusts,		
	Active Directory Sites and Services.		
Unit –	III		
7	Backup/Restore		
	Backing Up Directory Domain Services Active, Recovering Active Directory		
	Domain Services. Authoritative restore, Methods of authoritative restore	10 hrs	
Text B	Books:		
1.	1. Introduction to MICROSOFT Active Directory Domain Services (ADDS), Microsoft		
	reference materials.		

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2,3	Solve Any 2 out of 3
Π	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
III	Q.No7, 8	7	Solve Any 1 out of 2

Program: Bachelor of Engineering			
Course Title: Parallel Computing Course Code: 17ECSE307			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 43	Exam Duration: 03 hrs		

Unit –	I		
1	Introduction to Parallel Computing & Parallel Programming Platforms:		
	Motivating Parallelism, Scope of Parallel Computing, Implicit Parallelism:		
	Trends in Microprocessor Architectures, Limitations of Memory System		
	Performance, Dichotomy of Parallel Computing Platforms, Physical		
	Organization of Parallel Platforms, Communication Costs in Parallel Machines,		
	Routing Mechanisms for Interconnection Networks, Impact of Process-		
	Processor Mapping and Mapping Techniques	07 hrs	
2	Principles of Parallel Algorithm Design:		
	Preliminaries, Decomposition Techniques, Characteristics of Tasks and		
	Interactions, Mapping Techniques for Load Balancing, Methods for Containing		
	Interaction Overheads, Parallel Algorithm Models	09 hrs	
Unit –	Ш		
3	Analytical Modeling of Parallel Programs:		
	Sources of Overhead in Parallel Programs, Performance metrics for parallel		
	systems, The effect of Granularity on performance, Scalability of Parallel		
	Systems, Minimum execution time and minimum cost optimal execution time,		
	Asymptotic analysis of Parallel programs, Other Scalability Metrics		
4	Programming Using the Message Passing Paradigm:		
	Principles of Message - Passing Programming, The Building Blocks, MPI: The		
	Message passing Interface, Overlapping Communication with Computation,		
	Collective Communication and Computation Operations, Groups &		
	Communicators	07 hrs	
Unit –	III		
5	Programming Shared Address Space Platforms: Thread Basics, POSIX		
	Thread API, Synchronization Primitives in Pthreads, Controlling Thread and		
	Synchronization Attributes, Thread Cancellation, Composite Synchronization		
	Constructs, OpenMP: A standard for Directive Based Parallel Programming.	06 hrs	
6	Case Study/ Projects and Recent Trends: Case Study/ Projects and Recent		
	Trends	05 hrs	

Text Books:

1. Ananth Grama, George Karypis, Vipin Kumar and Anshul Gupta, Introduction to Parallel Computing, Second Edition, Pearson India, 2013

References:

1. Michael Quinn, Parallel Computing Theory and Practice, Tata McGraw Hill, 2003

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3
III	Q.No7, 8	5,6	Solve Any 1 out of 2

Program: Bachelor of Engineering				
Course Title: Quantum Computing Course Code:17ECSE306				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 50	Exam Duration: 3hrs			

Unit –I		
1	Introduction and Background:	
	Overview, Computers and the Strong Church–Turing Thesis, The Circuit Model of	
	Computation, A Linear Algebra Formulation of the Circuit Model, Reversible	
	Computation, A Preview of Quantum Physics, Quantum Physics and Computation.	07hrs
2	Linear Algebra and the Dirac Notation:	
	The Dirac Notation and Hilbert Spaces, Dual Vectors, Operators, The Spectral	
	Theorem, Functions of Operators, Tensor Products, The Schmidt Decomposition	
	Theorem, Some Comments on the Dirac Notation.	05hrs
3	Introduction to Quantum Toolbox in Python:	
	Installation, Basics and Quantum mechanics	04 hrs
Unit –II		
4	Qubits and the Framework of Quantum Mechanics:	
	The State of a Quantum System, Time-Evolution of a Closed System, Composite	
	Systems, Measurement, Mixed States and General Quantum Operations, Mixed	

	States, Partial Trace, General Quantum Operations.	08hrs
5	A Quantum Madel of Computation	
3	A Quantum Model of Computation:	
	The Quantum Circuit Model, Quantum Gates, 1-Qubit Gates, Controlled-U Gates,	
	Universal Sets of Quantum Gates, Efficiency of Approximating Unitary	
	Transformations, Implementing Measurements with Quantum Circuits.	05hrs
6	Exploring Python for Solving Problems / Projects using Quantum Computing	03 hrs
Unit –II	I	
7	Introductory Quantum Algortihms:	
	Probabilistic Versus Quantum Algorithms, Phase Kick-back, The Deutsch	
	Algorithm, The Deutsch-Jozsa Algorithm, Simon's Algorithm.	04hrs
8	Case Studies and Projects done during the course:	
	Image processing, Data Sciences, Machine Learning, Networking	04 hrs
Text Bo	oks	
2.	Phillip Kaye, Raymond Laflamme and Michele Mosca "An Introduction to	
	Quantum Computing ", Oxford University, Press, 2007	
3.	User Guide - Quantum Toolbox in Python, Release 4.2.0 – Qutip.org	
Referen	ces:	
1.	Internet References, toolbox and other relevant software's.	

Scheme for Semester End Examination (ESA)

Г

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
Π	Q.No4, Q.No5, Q.No6	4, 5, 6	Solve Any 2
III	Q.No7	7	Solve Any 1
	Q.No8	8	

Program: Bachelor of Engineering				
Course Title: Embedded Intelligent Systems Course Code: 18ECSE302				
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 6hrs/week		
ISA Marks: 80	ESA Marks: 20	Total Marks: 100		
Teaching Hrs: 60	Exam Duration: 3 hrs			

1	Basics of embedded systems	
	Linux Application Programming, System V IPC, . Linux Kernel Internals and	
	Architecture, Kernel Core, Linux Device Driver Programming, Interrupts &	10 hrs

٦

	Timers , Sample shell script, application program, driver source build and execute	
2	Heterogeneous computing Basics of heterogeneous computing with various hardware architectures designed for specific type of tasks, Advanced heterogeneous computing with a. Introduction to Parallel programming b.GPU programming (OpenCL) c. Open standards for heterogeneous computing (Openvx), Basic OpenCL examples - Coding, compilation and execution	12 hrs
3	ML Frameworks lab with the target device Caffe, tensorflow, TF Lite machine learning frameworks & architecture ,Model parsing, feature support and flexibility ,Supported layers , advantages and disadvantages with each of these frameworks, Android NN architecture overview , Full stack compilation and execution on embedded device	16 hrs
4	Model Development and Optimization Significance of on device AI ,Quantization , pruning, weight sharing, Distillation ,Various pre-trained networks and design considerations to choose a particular pre-trained model ,Federated Learning , Flexible Inferencing	8 hrs
6	Android Anatomy Android Architecture ,Linux Kernel , Binder , HAL Native Libraries , Android Runtime, Dalvik Application framework , Applications, IPC	8 hrs

Progr	ram: Bachelor of Enginee	ering		
Course Title: JAVA Programming		Course Code: 19ECSP301		
L-T-P	:1-0-1.5	Credits: 2.5	Contact Hrs: 4 Hrs/week	
ISA M	1arks: 80	ESA Marks: 20	Total Marks: 100	
Teach	ing Hrs: 52	Exam Duration: 3hrs		
Unit -	-I			
1	1 JAVA Language Fundamentals: Java Features, Programming basics, Arrays and Strings, classes and objects			4 Hrs
2	2 Inheritance : Introduction, types of inheritance, static and dynamic polymorphism.			2 Hrs
Unit -	-II			
3	Interfaces and Exception Handling: Introduction,Create and implement interfaces, Exception handling,			2 Hrs
4 Generics and Collections Frame work: Introduction to generic programming, Collections: Interfaces: List, Set, Queue Classes: ArrayList, LinkedList and HashSet, Map			2 Hrs	
Unit -	-III			
5	Lambda Expressions: operations on collection	Functional programming, Func s	tional interface, Bulk	2hrs

6	Java Database Connectivity (JDBC): Introduction, Drivers, Interfaces and classes to develop data base applications, case study	2 Hrs
Text l	Books:	
1	. JAVA The Complete Reference, Herbert Schildt, 10th Ed, 2017, McGraw-Hill	

Reference Book

- 1. Kathy Sierra and Bert Bates, Head First Java: A Brain-Friendly Guide, 2nd Edition, O'Reilly Media
- 2. Introduction to Java Programming, Liang Y D, Pearson, 11th Edition

Program: Bachelor of Engineering				
Course Title: Semantic Web		Course Code:19ECSE303		
L-T-P: 3-0-0 Credits: 3		Contact Hrs: 3hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 03 hrs			

Unit -	-I			
1	Introduction to Semantics			
	History of the Web, Limitations, Vision of Semantic Web, Principles, Data			
	Integration Across Web, Data Modeling Methods, Semantic Relationships,			
	Metadata, Perpetual Data	4 hrs		
2	Expressing Meaning			
	Triple Store, Merging Graphs, Querying: Case Study	4 hrs		
3	Using Semantic Data			
	Query Language, Feed Forward Inference, Searching for Connections, Linked			
	Data, Freebase	8 hrs		
Unit -	-II			
4	Working with Semantics			
	RDF—The Basis of the Semantic Web, OWL, Metadata with RDF, Metadata			
	Taxonomies, Ontology	8 hrs		
5	Reasoning and Social Web			
	Reasoning types: Approximate Reasoning and Bounded Reasoning, Social			
	Semantic Web, Semantic Crawlers	8 hrs		
Unit -	-III			
6	Semantic Modeling			
	Semantic Modeling, Semantic Web Applications, Logic for Semantic Web, Case			
	Studies: Dr. Watson, Yahoo! SearchMonkey	8 hrs		
Text	Text Books			
1	. Grigoris Antoniou, Paul Groth, Frank van Harmelen and Rinke Hoekstra, A Sem	antic Web		
	Primer, MIT Press; 3rd edition, 2012.			
2	2. Toby Segaran, Colin Evans, and Jamie Taylor, Programming the Semantic W	/eb: Build		
	Flexible Applications with Graph Data, O'Reilly Media; 2 edition, July 2009.			
Refer	rence Books:			

- Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, Foundations of Semantic Web 1. Technologies, Chapman and Hall; 1st edition, 2009.
- Dean Allemang, and James Hendler, Semantic Web for the Working Ontologist, Effective 2. Modeling in RDFS and OWL, Morgan Kaufmann; 2nd edition, 2011.
- John Hebeler, Matthew Fisher, Ryan Blace, Andrew Perez-Lopez, and Mike Dean 3. (Foreword), Semantic Web Programming, Wiley Publishers, 1 edition 2009.

Scheme fo	or End Semester Assessment (ESA)		
UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2
III	Q.No7	6	Solve Any 1
	Q.No8	6	Solve Ally I

Course Title: Block Chain Technology		Course ode:19ECSE301	
L-T-P: 2-0-1 Credits: 3		Contact Hrs: 3hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3 hrs		

	Unit –I			
1	Introduction			
	Overview of Blockchain, History: Digital Money to Distributed Ledgers, Design	08 hrs		
2	Blockchain Architecture and Design	00 11 3		
-	Crypto primitives- Hash, Signature, Hashchain to Blockchain, basic consensus			
	mechanisms, Requirements for the consensus protocols, Proof of Work, Proof of			
	State, Scalability issues of consensus protocols	08 hrs		
	Unit –II			
3	Blockchain Contracts			
	Financial Services, Crowdfunding, Bitcoin Prediction Markets, Smart Property,			
	Smart Contracts, Blockchain Development Platforms and APIs, Blockchain			
	Ecosystem: Decentralized Storage, Communication, and Computation	08 hrs		
4	Etherium			
	Etherium transactions, accounts, smart contracts, smart contract development,			
	Solidity basics, basic contracts, distributed storage, Etherium scaling	08 hrs		
Unit –III				
5	Blockchain Applications			
	Blockchain in Financial Software and Systems: Settlements, KYC,			
	InsuranceBlockchain for Government: Digital identity, land records and other kinds			
	of record keeping between government entities, public distribution system social			
	welfare systems	08hrs		

Text Books:

1. Melanie Swan, "Blockchain: Blueprint for New Economy", 1st Edition, O'Reilly Media, 2014.

Reference Books:

1. ArshdeepBhaga, Vijay Madisetti, "Blockchain Applications: A Hands-On Approach", Paperback– January 31, 2017

UNIT	8 Questions to be set of 20 Marks	Chapter Numbers	Instructions
	Each		
Ι	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
III	Q.No7, 8	5	Solve Any 1

Course Title: The ARM Architecture		Coursecode:19ECSE302
L-T-P: 2-1-0 Credits: 3		Contact Hrs: 3hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 30	Exam Duration: 3 hrs	

Unit –I			
1	ARM Embedded Systems and Processor Fundamentals	06 hrs	
	The RISC Design Philosophy, The ARM Design Philosophy, Embedded System		
	Hardware, Embedded System Software, Registers, Current Program Status Register,		
	Pipeline, Exceptions, Interrupts, and the Vector Table, Core Extensions,		
	Architecture Revisions, ARM Processor Families		
2	Introduction to the ARM Instruction Set & Assembly Programming	06 hrs	
	Data Processing Instructions, Branch Instructions, Load-Store Instructions,		
	Software Interrupt Instruction, Program Status Register Instructions, Loading		
	Constants, ARMv5E Extensions, Conditional Execution, Thumb instruction set.		
	Unit –II		
3	Efficient C Programming	06 hrs	
	Overview of C Compilers and Optimization, Basic C Data Types, C Looping		
	Structures, Register Allocation, Function Calls, Pointer Aliasing, Structure		
	Arrangement, Bit-fields,		
	Unaligned Data and Endianness, Division.		
4	Writing and Optimizing ARM Assembly Code	06 hrs	
	Writing Assembly Code, Profiling and Cycle Counting, Instruction Scheduling,		
	Register Allocation, Conditional Execution, Looping Constructs, Bit Manipulation,		
	Efficient Switches, Handling Unaligned Data.		
Unit –III			
5	Introduction to LPC-2148 controller	03 hrs	

control and control registers, introduction to interfacing standards	
6 ARM Interfacing ARM interfacing to peripherals like LED, LCD, Seven segments, Motors, Converters, Keypad. 0.	03 hrs

Text Books

1. Andrew N.Sloss et al, ARM System Developer's Guide- Designing and Optimizing System Software

Reference Books:

- 1.Marilyn Wolf, Computers as Components: Principles of embedded computing system design, Morgan Ka, 2012
- 2.Steve Furber, ARM System-on-chip Architecture, 2, Pearson, 2000

Tutorial Plan

Expt./	assignments/experiment	No. of Lab.
Job No.		Slots per batch
		(estimate)
1	ALP on arithmetic instructions set	01
2	ALP on logical instructions set	01
3	ALP on loop and branch instructions	01
4	Interface LED and Seven segments to ARM for displaying	01
•	message.	
5	Interface LCD to ARM for displaying message.	01
6	Interface Keypad to read the characters	01
7	Rotate DC and stepper motor for variable speed and direction	01
8	Interface DAC to ARM controller	01

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2 out of 3
Π	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3
III	Q.No7, 8	5	Solve Any 1 out of 2

Program: Bachelor of Engineering				
Course Title: Big Data and Analytics Course Code: 17ECSC401				
L-T-P: 2-0-1	Credits: 03	Contact Hrs: 04 hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 54	Exam Duration: 03 hrs			

Uni	it –]	[
1		Understanding Big Data - What is Big Data?, Data Analytics, Data Analytics	
		Life Cycle, Big Data Characteristics, Different Types of Data.	04hrs
2		Big Data Storage Concepts - Clusters, File Systems and Distributed File	
		Systems, NoSQL, Sharding, Replication, Combining Sharding and Replication.	06 hrs
3		Big Data Processing Concepts - Parallel Data Processing, Distributed Data	
		Processing, Hadoop.	03 hrs
Uni	it –]	П	
4		Big Data Processing Concepts - Map Reduce - Processing Workloads, Cluster,	
		Processing in Batch Mode, Processing in Real-time Mode.	06hrs
5		Introduction to MongoDB- What is MongoDB?, WhyMongoDB?, Terms Used	
		in RDBMS and MongoDB, Data Types in MongoDB, MongoDB Query	
		Language.	06hrs
Uni	it –		
6		Introduction to Hive - What is Hive?, Hive Architecture, Hive Data Types,	
		Hive File Format, Hive Query Language (HQL), RCFile Implementation, User-	0.51
Tor	,+ D	Defined Function (UDF).	UShrs
Tex	1 I	Thomas Erl. WaiidKhattak and Paul Ruhler "Rig Data Fundamentals Concents. I	Trivers
	1.	* Tackrigues" Drantice Hell 2015	51110215
	2	α rechniques, Prenice Hail, 2015.	
	2.	SeemaAcharya, SubhashiniChellappan, "Big Data and Analytics", wiley India P	vt Lta,
		2014.	
Ref	ere	nce Books	
	1.	Frank J Ohlhorst, "Big Data Analytics: Turning Big Data into Big Money", W	iley and
		SAS Business Series, 2012.	
	2.	Colleen Mccue, "Data Mining and Predictive Analysis: Intelligence Gathering an	d Crime

Analysis", Elsevier, 2007.

Scheme for End Semester Assessment(ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2 out of 3
III	Q.No7, Q.No8	6	Solve Any 1 out of 2

Program: Bachelor of Engineering			
Course Title: Canstone Project		Course Code:	
Course Thie. Cupstone Project		18ECSW401	
L-T-P: 0-0-14	Credits: 6	Contact Hrs: 3 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
	Exam Duration: 3hrs		

Project themes:

Networking	Data Engineering	System Engineering
 Internet of Things Cloud Computing Software Defined Network Social Network Analysis 	 Data Analytics Image and video processing Computer Vision and Graphics Natural Language Processing 	 Parallel Computing High Performance Computing Parallel system design

<u>Evaluation:</u> Students Assessment through ISA (50%) + ESA (50%)

	Assessment	Weightage in Marks
Internal Semester Assessment* (50%)	Periodic reviews by Project Guide	25
	Periodic reviews by Committee	25
	Final Review	50
End Semester Assessment (50%)	Total	100

Program: Bachelor of Engineering			
Course Title: Industry Training Course Code: 18ECSI493			
Credits: 6	ISA Marks: 50	ESA Marks: 50	
Total Marks: 100	Exam Duration: 3 hrs	L-T-P: 0-0-6	

Overview of the Course

Industry Training is a supervised, practical training periods for which Undergraduate, final year students earn academic credits. Industry Training provide excellent opportunities for students to put into practice much of the knowledge and skills acquired during their studies and to gain firsthand knowledge of the software industry. It is also an opportunity for employers to observe the student in the work environment and evaluate their potential for possible future employment.

The companies selected for the Industry Training can range from start-ups to large scale industries. The students who got placed in campus interviews may be offered Industry Training depending upon the need of the company. Other students who wish to do internship are responsible to find a company on their own for the Training.

Course Learning Outcomes.

CO 1. Apply the knowledge and skills acquired on campus in a real-life work situation. CO 2. Provide students with opportunities for practical, hands-on learning from practitioners.

CO 3. Enhance the employability skills of the students.

CO 4. Practice ethical standards appropriate to Internship site.

CO 5. Ability to write technical documents and give oral presentations of the work completed.

Scheme for In Semester Assessment(ISA) and End Semester Assessment (ESA)

Course	Course Code	Max ISA marks	Max ESA marks	Minimum Passing Marks
Industry Training	18ECSI493	50	50	Students must secure minimum of 40% marks in both ISA and ESA.

Program: Bachelor of Engineering			
Course Title: Industry Project Course Code: 18ECSW494			
Credits: 14	ISA Marks: 50	ESA Marks: 50	
Total Marks: 100	Exam Duration: 3 hrs	L-T-P: 0-0-14	

Overview of the Course

The purpose of providing the Industry Project is to give you the opportunity for students, to apply the knowledge, skills and competencies they have acquired, in real life practice. An Industry Project involves a stay in a relevant company or organization.

The students who got placed in campus interviews may be offered Industry Project depending upon the need of the company. Other students who wish to do Industry Project are responsible to find a company on their own.

Course Learning Outcomes.

CO 1. Identify the problem and perform requirement analysis

CO 2. Design potential solutions and evaluate to select optimal solution

CO 3. Apply professional norms of project implementation to meet specified requirements

CO 4. Apply fundamental activities of module, integration and system testing to validate the system

CO 5. Analyze results and present technical/scientific findings effectively through written and oral mode

Scheme for In Semester Assessment(ISA) and End Semester Assessment (ESA)

Co	urse	Course Code	Max ISA marks	Max ESA marks	Minimum Passing Marks
Industr Projec	y t	18ECSW494	50	50	Students must secure minimum of 40% marks in both ISA and ESA.

Program: Bachelor of Engineering				
Course Title: Cyber Security Course Code: 18ECS				
L-T-P: 2-0-1	T-P: 2-0-1 Credits: 3 Contact Hours: 04 hrs		/week	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hours: 40 Examination Duration: 03 Hrs				
	Unit I			
Chapter No. 1. Introduction to Cybercrime, Cyber offenses & Cybercrime: Cybercrime definition and origins of the world, Cybercrime and information security, Classifications of cybercrime, A global Perspective on cybercrimes. Cyber attack plans, Social Engineering, Cyber stalking, Cyber cafe and Cybercrimes, Botnets, Proliferation of Mobile and Wireless Devices, Credit Card Frauds in Mobile and Wireless Computing Era.				
Chapter No. 2. Cybercrimes an Why do we need Cyber law: The the Indian IT Act, Amendments t	d Cyber security: The Legal Persp Indian Context, The Indian IT Act, o the Indian IT Act, Cybercrime and	ectives: Digital Signature and Punishment.	06 hrs	
	Unit II			
Chapter No. 3. Understanding computer forensic: Historical background of cyber forensic, Forensic analysis of email, Digital forensic life cycle, Network forensic, Setting up a computer forensic Laboratory, Forensic analysis of digital media.				
Chapter No. 4. Cyber security: Organizational Implications: Cost of Cybercrimes and IPR Issues, Protecting People's Privacy in the Organization, Organizational Guidelines for Internet Usage, Intellectual Property in the Cyberspace of Cyber security.			06 hrs	
Unit III				
Chapter No. 5. Cybercrime: Illustrations, Examples and Case studies: Introduction, Real-Life Examples, Case Studies: Illustrations of Financial Frauds in Cyber Domain, Digital Signature-Related Crime Scenarios, Online Scams.				
Text Books: 1. Nina Godbole&SunitBelapure, "Cyber Security", Wiley India, 2012.				
 Reference Books: Harish Chander, "Cyber laws & IT protection", PHI learning pvt.ltd, 2012. Dhiren R Patel, "Information security theory & practice", PHI learning pvt.ltd, 2010 Ms.M.K.Geetha&Ms.Swapne Raman, "Cyber Crimes and Fraud Management", Mo MILLAN, 2012. Bill Nelson, "Guide to Computer Forensics and Investigations", 4th Edition, CENG. Publication. 2009.). AGE	

Tentative list of lab experiments: 1. Crime Scene / Field Response Evidence Preservation -1 Hr

Department of Computer Science & Engineering

2.	System Image Restoration and Target drive preparation	-1Hr
3.	Removable/External Media Imaging	-1 Hr
4.	Evidence Search	-1 Hr
5.	Forensic analysis on Image documents	-2 Hr
6.	Forensic analysis on Audio files	-2 Hr
7.	Forensic analysis on Video files	-2 Hr
8.	Forensic analysis on Text Document	-2 Hr

UNIT	8 Questions to be set of 20 Marks Each	Chapter	Instructions
		Numbers	
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2 out of 3
III	Q.No7, Q.No8	5	Solve Any 1 out of 2

Program: Bachelor of Engineering				
Course Title: Social Network Analysis Course Code: 18ECSE402				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 03 hrs			

	Unit –I			
1	Introduction Introduction : Motivation, different sources of network data, types of networks, tools for visualizing network data.	06 hrs		
2	Structural properties of networks Structural properties of networks : Notions of centrality, cohesiveness of subgroups, roles and positions, structural equivalence, equitable partitions, stochastic block models.	10 hrs		
Unit –II				
3	Cascading properties of networks Cascading properties of networks : Information/influence diffusion on networks, maximizing influence spread, power law and heavy tail distributions, preferential			
	attachment models.	10 hrs		
4	Small world phenomenon Small world phenomenon : Six Degrees of Separation, Structure and Randomness, Decentralized Search, Empirical Analysis and Generalized Models, Core- Periphery Structures and Difficulties in Decentralized Search, Advanced Material:			
	Analysis of Decentralized Search.	06 hrs		

	TT*4 TTT				
	Unit –III				
5	Mining Graphs- I				
	Mining Graphs- I : Community and cluster detection: random walks.	04 hrs			
6	Mining Graphs- II				
	Mining Graphs- II : Spectral methods; link analysis for web mining.	04 hrs			
Text B	ooks				
1.	Stanley Wasserman, Katherine Faust, Social network analysis: methods and appli	cations,			
	Cambridge University Press, 1994.				
2.	David Easley and Jon Kleinberg, Networks, Crowds, and Markets: Reasoning Ab	out a			
	Highly Connected World., Cambridge University Press, 2010.				
Refere	nce Books:				
1.	Peter R. Monge, Noshir S, Contractor, Theories of communication networks, Ox	ford			
	University Press, 2003.				

2. Duncan Watts, Six degrees: the science of a connected age. Norton, 2004.

Scheme for Semester End Examination (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
Π	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2 out of 3
Ш	Q.No7	5	Solve Any 1 out of 2
111	Q.No8	6	Solve Ally I out of 2

Program: Bachelor of Engineering				
Course Title: Unix Network Programming Course Code: 18ECSE404				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 3 hrs			

Unit –	I	
1	Communication Protocols	5 hrs
	Introduction TCP/IP - Internet Protocols XNS SNA NetBIOS UUCP Protocol	
	comparisons.	
2	Elementary Socket Programming	5 hrs
	Introduction Overview UNIX Domain Protocols Socket Addresses Elementary	
	Socket system calls A simple example.	

3	Advanced Socket Programming	6 hrs		
	Advanced Socket System calls Reserved Ports Stream Pipes Passing file			
	descriptors Socket options Asynchronous I/O Input/output Multiplexing Out-of-			
	Band Data Sockets and Signals Internet Super server Socket implementation.			
Unit	-II			
4	Time and Date Routines	5 hrs		
	Introduction Internet Time and Date Client Network Time Synchronization.			
5	Ping Routines	5 hrs		
	Introduction Internet Ping Client XNS Echo Client.			
6	Trivial File Transfer Protocol	6 hrs		
	Introduction Protocol Data Formats Connections Client user interface UDP			
	implementation TCP implementation.			
Unit	-III			
7	Remote Command Execution	4 hrs		
	Introduction Security Issues rcmd function and rshd Server rexec function and			
	rexecd Server.			
8	Remote Login	4 hrs		
	Introduction Terminal Line disciplines A simple Example.			
Text	Books			
	1. W.R. Stevens, Unix Network Programming, PHI 2003.			
	2. M. J. Rochkind, Advanced Unix Programming, 2nd Edition, Pearson Education	n 2004.		
Refe	rence Books			
	1. Sumitabha Das, Unix Concepts and Applications, 3rd Edition, Tata McGraw-F	Hill		
	2006			

UNIT	8 Questions to be set of 20 Marks Each	Chapter	Instructions
		Numbers	
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
ш	Q.No7	7	Solve Any 1 out of 2
111	Q.No8	8	Solve Ally 1 out of 2

Program: Bachelor of Engineering				
Course Title: Software Testing Course Code:18ECSE407				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 3 hrs			

Content	Hrs		
Unit - 1			
Chapter No. 1.Software Testing Principles: Need for testing ,The Psychology and	04hrs		
Economics of Program Testing Program ,Inspections, Walkthroughs, and Reviews.			
Chapter No. 2. Test-Case Design: Overview, White box testing, Error Guessing,	06hrs		
strategies, Module (Unit) Testing-Incremental Testing, Top-down versus Bottom-up			
Testing, Performing the Test.			
Chapter No. 3. Higher-Order Testing: Function testing, System testing,	06hrs		
Acceptance testing, Installation testing, Test planning and Control, Test completion			
criteria, Extreme testing.			
Unit - 2			
Chapter No. 4. Testing Tools and Standards: Automated Tools for Testing - Static	10hrs		
code analyzers - Test case generators - GUI Capture/Playback - Stress Testing -			
Testing Client - server applications - Testing compilers and language processors -			
Testing web-enabled applications.			
Chapter No 5 : CMM Model and its stages – Introduction to PCMM, CMMI and 06hrs			
Six Sigma concept – ISO 9000.			
Unit - 3			
Chapter No. 6. Software Quality and Testing: Introduction to software quality and	04hrs		
quality control - Benefits of quality control - Quality assurance - quality circles and			
quality improvement.			
Chapter No. 7. Introduction to quality cost – Measuring quality cost – Total	04hrs		
Quality Management (TQM). Architecture, Process, memory and file management in			
Mobile OS, Network OS.			
Text Books			
1. Glenford J. Myers, Tom Badgett, Corey Sandler, and Todd M. Thomas, "The	e Art of		
 Software Testing", John Wiley & Sons, Second edition, 2004. Roger S. Pressman, "Software Engineering. A Practitioners Approach", McGraw-Hill 			
International Edition, Seventh edition, 2009.			
References			
1. William E. Perry, "Effective Methods for Software Testing", John Wiley & Sons,			
 Boris Beizer, "Techniques for Functional Testing of Software and Systems", John Wiley & Sons, 1995. 			
3. P.C. Jorgensen, "Software Testing - A Craftman's Approach", CRC Press, 19	995.		

4. Boris Beizer, "Software Testing Techniques", Van Nostrand Reinhold, Second edition, 1990.

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2, 3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4, 5	Solve Any 2 out of 3
III	Q.No7, Q.No8	6, 7	Solve Any 1 out of 2

Program: Bachelor of Engineering					
Course Title: C# Programming and .NET Course Code: 18ECSE409					
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3hrs/week			
ISA Marks: 50	ESA Marks: 50	Total Marks: 100			
Teaching Hrs: 40 Exam Duration: 3 hrs					

	Unit –I	
1	The Philosophy of .NET Understand the motivation behind the .NET platform, Common Language	
	Infrastructure (CLI). Know the role of the Common Type System (CTS), the	
	Common Language Specification (CLS) and the Common Language Runtime	
	(CLR), Understand the assembly, metadata, namespace, type distinction,	
	Contrast single-file and multi-file assemblies, Know the role of the Common	
	Intermediate Language (CIL), Platform independent .NET(Mono / Portable	
	.NET distributions).	5hrs
2	C# Language Fundamentals Language Fundamentals, Reference and value Types, primitive types the	
	Nullable and enum types, Classes and objects, Defining classes Creating objects,	
	Using static members, Overloading Methods, Various Constructors.	
	Encapsulating data, access modifiers, properties, indexers arrays and readonly	
	fields. Structures. String and DateTime classes, three pillars of OOPs	7 hrs
3	Exceptions and Object Life Time Ode to Errors, Bugs and Exceptions, The Role of .NET Exception handling, the	
	System. Exception base class, Throwing a generic Exception, Catching	
	Exceptions, CLR System-Level Exceptions (System.SystemException), Custom	
	Application-Level Exceptions (System.ApplicationException). Handling	4 hrs

Department of Computer Science & Engineering

	Multiple Exception, The Finally Block, The Last Chance Exception,		
	Understanding Object Life time. The CIL of "new", The Basics of Garbage		
	Collection		
	Unit –II		
4	Event handling paradigm Interfaces and Collections		
-	Understanding the .NET Delegate type, Multicast Delegate and events.		
	Interfaces, overriding interface implementation. Explicit interface		
	implementation, Collection, IEnumerable, IEnumerator, IList, IComparer and		
	their Generic equivalent. Working with generic List, Stack, Dictionary and		
	Queue	6 hrs	
5	Programming Window Forms Applications		
	Anatomy of a Form, Component Class, Control Class, Control Events,		
	Responding to Keyboard Events, Form Class, Building Menus with Windows		
	Forms, Building your Menu System, Creating Pop-Up Menu, Adding Controls to		
	Forms (IDE-Free), Adding Controls to Forms (via VS.NET), Working with		
	Basic Controls like Buttons, Configuring Tab Order.	5 hrs	
6	Working with Database		
	Introduction to ADO.NET, Connecting to a database, Understanding		
	Navigating records Adding editing and deleting records Building an		
	ADO NET example	5 hrs	
		5 11 5	
7	7 Understanding the .NET Assemblies		
	Problems with Classic.COM Binaries, An overview of .NET Assembly, Building		
	a single file test assembly, A C# Client Application, A Visual Basic .NET Client		
	Application, Cross-Language Inheritance, Exploring the Car Library's Manifest,	1 hrs	
0	Exploring the Car Library's Types.	4 111 5	
0	Building a multi file assembly. Using the Multifile Assembly. Understanding the		
	private Assemblies, Probing for private Assemblies (The Basics), Private		
	Assemblies and XML Configuration Files, Probing for Private Assemblies(The		
	details), Understanding Shared Assemblies, Understanding Shared Names,		
	Building a Shared Assembly, Understanding Delay Signing, Installing/Removing	4 hm	
Tort D	Shared Assembly, Using a Shared Assembly.	4 mrs	
1. 1.	Herbert Schildt, "The Complete Reference C# 4.0", Tata McGraw –Hill, 2010		
2.	Andrew Troelsen, "Pro C# with .NET 3.0", Special Edition, Dream tech Press, In	dia,	
	2007.		
Reference Books:			
	1. Stephen C. Perry, AtulKahate, Stephen Walther, Joseph Mayo, "Essential of .net	and	

Related Technologies with a focus on C#, XML, ASP.net and ADO.net", 2nd Edition, Pearson, 2009.

- Paul J. Deitel, Harvey Deitel, "Visual C# 2010 for Programmers", 4th Edition, Pearson, 2010.
- 3. Joseph Albahari and Ben Albhari, "C# 3.0/4.0 in Nutshell", 3rd Edition, O'Rilley, 2007.

UNIT	8 Questions to be set of 20 Marks Each	Chapter	Instructions
		Numbers	
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
ш	Q.No7	7	Solve Any 1 out of 2
111	Q.No8	8	Solve Any I out of 2

Program: Bachelor of Engineering				
Course Title: Database Management System Course Code: 15ECSO402				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 3 hrs			

	Unit –I		
1	Introduction to Database: Introduction to DBMS and an example, Characteristics of	6 Hrs	
	Database approach, Actors On and Behind the Scene, Advantages and Disadvantages of		
	using DBMS, Data models, schemas and instances, Three-schema architecture and data		
	independence, Database languages and interfaces, The database system environment.		
2	Data Modeling Using ER Model: Using High-Level Conceptual Data Models for	6 hrs	
	Database Design, An Example Database Application, Entity Types, Entity Sets, Attributes		
	and Keys, Relationship types, Relationship Sets. Roles and Structural Constraints, Weak		
	Entity Types, Refining the ER Design, Degree of Relationship type, ER Diagrams, Naming		
	Conventions and Design Issues.		
3	Relational Data Model : Relational Model Concepts, Relational Model Constraints and	4 hrs	
	Relational Database Schemas, Update Operations, Transactions and dealing with constraint		
	violations.		
Unit –II			
4	Structured Query Language(SQL): SQL Data Definition and Data Types, Specifying	6 hrs	
	basic constraints in SQL, Schema change statements in SQL, Views in SQL, Basic queries		
	in SQL.		

Department of Computer Science & Engineering

r			
5	Basics of Functional Dependencies and Normalization for Relational Databases:	6 hrs	
	Informal Design Guidelines for Relation Schemas, Functional Dependencies, Normal		
	Forms Based on Primary Keys, General Definitions of Second and Third Normal Forms,		
	Boyce-Codd Normal Form.		
6	Introduction to Transaction Processing: Introduction to Transaction Processing,	4 hrs	
	Transactions and System concepts, Desirable Properties of Transaction, Transaction		
	support in SQL.		
	Unit –III		
7	Emerging Database Technologies: Introduction, cloud computing and data management,	4 hrs	
	Mobile databases, Multimedia Databases.		
8	Emerging Database Technologies: GIS Database, Biological Database, Dealing with	4 hrs	
	massive datasets-MapReduce and Hadoop.		
Тех	t Books:		
1.	Elmasri R. and Navathe S., Fundamentals of Database Systems, 6th Edition, Pearson Education, 2	2011.	
Ref	erence Books:		
1.	1. Ramakrishnan S. and Gehrke J., Database Management Systems, 3rd Edition, McGraw Hill, 2007.		
2.	Silberschatz A., Korth H.F. and Sudharshan S., Database System Concepts, 6th Edition, Mc- GrawHill,		
	2010		

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
ш	Q.No7	7	Salar Anna 1 ant af 3
111	Q.No8	8	Solve Any 1 out of 2

Program: Bachelor of Engineering				
Course Title: High Performance C Applications	Course Code:15ECSO404			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 3hrs			

Unit –I

-					
1		Introduction to High Performance Computing:			
		Computational Science and Engineering Applications; characteristics and			
		requirements, Review of Computational Complexity, Performance: metrics and			
		measurements, Granularity and Partitioning, Locality:			
		temporal/spatial/stream/kernel, Basic methods for parallel programming, Real-			
		world case studies like CFD, Bioinformatics, Flow analysis etc.			
2		High Performance Computing Systems:			
		Memory Hierarchies, Multi-core Processors: Homogeneous and Heterogeneous,			
		Shared-memory Symmetric Multiprocessors, Vector Computers, Distributed			
		Memory Computers, Supercomputers and Petascale Systems, Application			
		Accelerators / Reconfigurable Computing, Novel computers: Stream,			
		multithreaded, and purpose-built	08hrs		
		· · ·			
Un	it –	ll de la constant de			
3		Parallel Algorithms:			
		Parallel models: ideal and real frameworks, Basic Techniques: Balanced Trees,			
		Pointer Jumping, Divide and Conquer, Partitioning, Regular Algorithms; Matrix			
		operations and Linear Algebra. Irregular Algorithms: Lists, Trees, Graphs,			
		Randomization: Parallel Pseudo-Random Number Generators Sorting Monte			
		Carlo techniques			
5		Parallel Programming:			
		Revealing concurrency in applications. Task and Functional Parallelism. Task			
		Scheduling, Synchronization Methods, Parallel Primitives (collective operations).			
	SPMD Programming (threads, OpenMP, MPI)		08hrs		
Un	.;+ 1				
	ut –		r		
5		Achieving Performance:			
		Measuring performance, Identifying performance bottlenecks, Restructuring			
		applications for deep memory nierarchies, Partitioning applications for	04hrs		
6		Case Studies and Projects done during the course:	041113		
U		Various case studies from various engineering discipline	04 hrs		
То	vt B		04 11 5		
10	4.	Introduction to Parallel Computing, AnanthGrama, Anshul Gupta, George Karypis	and		
		Vipin Kumar, 2nd edition, Addison-Welsey, 2003.			
	5.	5. Petascale Computing: Algorithms and Applications, David A. Bader (Ed.), Chapman &			
	Hall/CRC Computational Science Series, 2007				
Re	fere	nce Books:			
	2.	G.E. Karniadakis, R.M. Kirby II, Parallel Scientific Computing in C++ and MPI: A	4		
		Seamless Approach to Parallel Algorithms and their Implementation, Cambridge			
		University Press,2003.			
	2	University Press,2003.	04		

Scheme for Semester End Examination (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
Ш	Q.No7	5	Solve Any 1
	Q.No8	6	501.01111/1

Program: Bachelor of Engineering				
Course Title: Essential of Information Technology Course Code: 15ECSO405				
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 6hrs/week		
ISA Marks: 80	ESA Marks: 20	Total Marks: 100		
Teaching Hrs: 60	Exam Duration: 3 hrs			

Unit - I				
1	Introduction to computer systems:	06		
	Components of computer systems, program execution cycle, computer	hrs		
	networks, software and its classification, Operating System: introduction,			
	memory management, process management, file management.			
2	Programming basics:			
	Introduction to problem solving, SDLC overview and need for object	06		
	oriented approach, object oriented concepts, introduction to java, control	hrs		
	structures, arrays, strings.			
3	Classes and Objects:	04		
	Class fundamentals, access specifiers, constructors and its types, method	hrs		
	overloading, static members.			
Unit - II				
4	Data structures:	05		
	Introduction, Linear data structures: stack, queue, linked lists, Non-	hrs		
	Linear data structures: trees, binary search tree, illustration using java			
	collection framework.			
5	Inheritance and Polymorphism:	05		
	Inheritance: basics, types of inheritance, method overloading and	hrs		
	overriding, dynamic method dispatch.			

6	Packages, Interfaces and Exceptions:	06
	Introduction to packages, access protection, interfaces, exception	hrs
	handling mechanism, and user defined exceptions.	
	Unit - III	
7	Database Design Process:	04
	Characteristics of DBMS, ER model, mapping ER model to relational	hrs
	schema, normalization.	
8	Structured Query Language:	04
	SQL data types, database languages, operators, aggregate functions,	hrs
	order by and group by clause, joins and sub queries.	
Text	Books	
1.	Infosys Campus Connect Foundation Program Volume: 1–3, Education and	
	Research Department, Infosys Technologies Ltd, 2013.	
2.	Herbert Schildt, "Java The Complete Reference", 8th Edition, McGraw-Hill,	2012.
Refe	rence Books:	
1. Elmasri. and Navathe, "Fundamentals of Database Systems", 6th Edition, Per		
Education, 2011.		
2.	Silberschatz, Galvin, and Gagne, "Operating System Concepts", 8th Edition, 2009.	Wiley,

UNIT	Experiments to be set of 10 Marks Each	Chapter	Instructions
		Numbers	
Ι	Project Examination	4 - 8	Project implementation
			and demonstration
			20 marks

Program: Bachelor of Engineering					
Course Title: Natural Language Processing Course Code: 18ECSE403					
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 04 hrs/week			
ISA Marks: 50	ESA Marks: 50	Total Marks: 100			
Teaching Hrs: 30	Exam Duration: 3 hrs				

Unit –I						
1	Introduction to NLP and Deep Learning					
	Introduction to Natural Language Processing, Applications of Natural Language					
	Processing, Word2vec introduction, Word2vec objective function gradients					
2	Dependency Parsing, Recurrent Neural Networks					
	Dependency Grammar, Neural dependency parsing, Recurrent Neural Networks					
	and Language Models, Vanishing Gradients, Fancy RNNs	07 hrs				

	Unit –II				
3	Machine Translation, Seq2Seq and Attention				
	Machine Translation, Seq2Seq and Attention, Advanced Attention	06 hrs			
4	Transformer Networks, Coreference Resolution, Memory Networks				
	Transformer Networks and CNNs, Tree Recursive Neural Networks and				
	Constituency Parsing, Advanced Architectures and Memory Networks	06 hrs			
	Unit –III				
5	Reinforcement Learning				
	Reinforcement Learning for NLP, Semi-supervised Learning for NLP, Future of				
	NLP Models, Multi-task Learning and QA Systems	06 hrs			
Text l	Books:				
1	1. Yoav Goldberg. A Primer on Neural Network Models for Natural Language Processing,				
	2016.				
Refer	ence Books:				
Γ	Dan Jurafsky and James H. Martin. Speech and Language Processing (3rd ed. draft).				
I	Ian Goodfellow, YoshuaBengio, and Aaron Courville. Deep Learning. MIT Press.				

UNIT	8 Questions to be set of 20 Marks Each	Chapter	Instructions
		Numbers	
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2 out of 3
ш	Q.No7	6	Solve Any 1 out of 2
111	Q.No8		Solve Ally 1 out of 2

Program: Bachelor of Engineering					
Course Title: Wireless Ad Hoc and Sensor Networks Course Code: 18ECSE406					
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3hrs/week			
CIE Marks: 50	SEE Marks: 50	Total Marks: 100			
Teaching Hrs: 40 hrs	Exam Duration: 3 hrs				

Unit –I				
1	Introduction: Fundamentals of wireless communication technology,			
	Characteristics of wireless channel, Multiple Access Techniques, IEEE802.11			
	Standards, Bluetooth, Cellular Concept, Cellular Architecture.	07 hrs		
2	Ad hoc Networks: Introduction, Issues in Ad hoc wireless networks, Ad hoc			
	wireless internet.	04 hrs		

Department of Computer Science & Engineering

3		MAC Protocols: Introduction, Issues in Designing MAC protocol, Design goals,	
		Classification, Contention Based Protocols with Reservation Mechanisms.	
		Contention-Based MAC Protocols with Scheduling Mechanism.	05 hrs
Un	it –	П	
4		Routing Protocols: Introduction, Issues in designing a routing protocol,	
		classification, Table drive routing protocol, On-demand routing protocol, Hybrid	
		routing protocol, Hierarchical routing protocols, Power aware routing protocols.	06 hrs
5		Energy Management: Introduction, Need for Energy Management,	
		Classification, Battery Management Scheme, Transmission Power Management	
		Schemes, System Management Scheme.	05 hrs
6		Sensor Networks: Introduction, Architecture, Data Dissemination, Data	
		Gathering, MAC Protocols (schedule based protocols).	05 hrs
Un	it _1	III.	00 1115
-		Destine Destande for General Networks Desting Classic ist	
7		Routing Protocols for Sensor Networks, Routing Unaracteristics	
7		Routing Protocols for Sensor Networks: Routing Characteristics, Routing Strategies, LEACH, SPIN	
7		Routing Protocols for Sensor Networks: Routing Characteristics, Routing Strategies, LEACH, SPIN.	04 hrs
7 8		Routing Protocols for Sensor Networks: Routing Characteristics, Routing Strategies, LEACH, SPIN. Sensor Network Applications: Case Study: Traffic Control, Health Care, Green	04 hrs
7 8		Routing Protocols for Sensor Networks: Routing Characteristics, Routing Strategies, LEACH, SPIN. Sensor Network Applications: Case Study: Traffic Control, Health Care, Green House Monitoring.	04 hrs 04 hrs
7 8 Tez	xt B	Routing Protocols for Sensor Networks: Routing Characteristics, Routing Strategies, LEACH, SPIN. Sensor Network Applications: Case Study: Traffic Control, Health Care, Green House Monitoring.	04 hrs 04 hrs
7 8 Ter	xt B 1.	Routing Protocols for Sensor Networks: Routing Characteristics, Routing Strategies, LEACH, SPIN. Sensor Network Applications: Case Study: Traffic Control, Health Care, Green House Monitoring. Sooks: C. Siva Ram Murthy and B. S. Manoj, "Ad hoc Wireless Networks",2 nd Edition,	04 hrs 04 hrs Pearson
7 8 Tex	xt B 1.	Routing Protocols for Sensor Networks: Routing Characteristics, Routing Strategies, LEACH, SPIN. Sensor Network Applications: Case Study: Traffic Control, Health Care, Green House Monitoring. C. Siva Ram Murthy and B. S. Manoj, "Ad hoc Wireless Networks",2 nd Edition, Education, 2006.	04 hrs 04 hrs Pearson
7 8 Tex	xt B 1. 2.	Routing Protocols for Sensor Networks: Routing Characteristics, Routing Strategies, LEACH, SPIN. Sensor Network Applications: Case Study: Traffic Control, Health Care, Green House Monitoring. C. Siva Ram Murthy and B. S. Manoj, "Ad hoc Wireless Networks",2 nd Edition, Education, 2006. KazemSohraby, Daniel Minoli, TaiebZnati, "Wireless Sensor Networks: Tech	04 hrs 04 hrs Pearson mology,
7 8 Te	xt B 1. 2.	 Routing Protocols for Sensor Networks: Routing Characteristics, Routing Strategies, LEACH, SPIN. Sensor Network Applications: Case Study: Traffic Control, Health Care, Green House Monitoring. cooks: C. Siva Ram Murthy and B. S. Manoj, "Ad hoc Wireless Networks",2nd Edition, Education, 2006. KazemSohraby, Daniel Minoli, TaiebZnati, "Wireless Sensor Networks: Tech Protocols, and Applications", John Wiley and Sons, 2007. 	04 hrs 04 hrs Pearson nnology,
7 8 Tez	xt B 1. 2.	 Routing Protocols for Sensor Networks: Routing Characteristics, Routing Strategies, LEACH, SPIN. Sensor Network Applications: Case Study: Traffic Control, Health Care, Green House Monitoring. Cooks: C. Siva Ram Murthy and B. S. Manoj, "Ad hoc Wireless Networks",2nd Edition, Education, 2006. KazemSohraby, Daniel Minoli, TaiebZnati, "Wireless Sensor Networks: Tech Protocols, and Applications", John Wiley and Sons, 2007. nce Books: 	04 hrs 04 hrs Pearson mology,
7 8 Tey Ref	xt B 1. 2. fere 1.	 Routing Protocols for Sensor Networks: Routing Characteristics, Routing Strategies, LEACH, SPIN. Sensor Network Applications: Case Study: Traffic Control, Health Care, Green House Monitoring. C. Siva Ram Murthy and B. S. Manoj, "Ad hoc Wireless Networks",2nd Edition, Education, 2006. KazemSohraby, Daniel Minoli, TaiebZnati, "Wireless Sensor Networks: Tech Protocols, and Applications", John Wiley and Sons, 2007. nce Books: Ozan K. Tonguz and Gianguigi Ferrari, "Ad hoc Wireless Networks", John Wiley 	04 hrs 04 hrs Pearson mology, , 2006.
7 8 Tez	xt B 1. 2. fere 1. 2.	 Routing Protocols for Sensor Networks: Routing Characteristics, Routing Strategies, LEACH, SPIN. Sensor Network Applications: Case Study: Traffic Control, Health Care, Green House Monitoring. cooks: C. Siva Ram Murthy and B. S. Manoj, "Ad hoc Wireless Networks",2nd Edition, Education, 2006. KazemSohraby, Daniel Minoli, TaiebZnati, "Wireless Sensor Networks: Tech Protocols, and Applications", John Wiley and Sons, 2007. nce Books: Ozan K. Tonguz and Gianguigi Ferrari, "Ad hoc Wireless Networks", John Wiley C.K. Toh, "Adhoc Mobile Wireless Networks", Protocols and Systems, Prent 	04 hrs 04 hrs Pearson nology, , 2006. tice-Hall
7 8 Ter	xt B 1. 2. fere 1. 2.	 Routing Protocols for Sensor Networks: Routing Characteristics, Routing Strategies, LEACH, SPIN. Sensor Network Applications: Case Study: Traffic Control, Health Care, Green House Monitoring. ooks: C. Siva Ram Murthy and B. S. Manoj, "Ad hoc Wireless Networks",2nd Edition, Education, 2006. KazemSohraby, Daniel Minoli, TaiebZnati, "Wireless Sensor Networks: Tech Protocols, and Applications", John Wiley and Sons, 2007. nce Books: Ozan K. Tonguz and Gianguigi Ferrari, "Ad hoc Wireless Networks", John Wiley C.K. Toh, "Adhoc Mobile Wireless Networks", Protocols and Systems, Prent PTR, 2002. 	04 hrs 04 hrs Pearson nnology, , 2006. tice-Hall

UNIT	8 Questions to be set of 20 Marks Each	Chapter	Instructions
		Numbers	
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
ш	Q.No7	7	Solve Any 1 out of 2
111	Q.No8	8	Solve Ally 1 out of 2

Program: Bachelor of Engineering				
Course Title: Advanced Parallel Computing Course Code: 18ECSE4				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 3 hrs			

Unit –	I	
1	Introduction and History	
	GPUs as Parallel Computers; Architecture of a Modem GPU; Parallel	
	Programming Languages and Models; Overarching Goals; Evolution of Graphics	
	Pipelines; The Era of Fixed- Function ; Graphics Pipelines; Evolution of	
	Programmable Real-Time Graphics; Unified Graphics and Computing	
	Processors; GPGPU; An Intermediate Step; GPU Computing; Scalable GPUs	
	Recent Developments; Future Trends.	07 hrs
2	Introduction to CUDA	
	Data Parallelism; CUDA Program Structure; A Matrix-Matrix Multiplication	
	Example; Device Memories and Data Transfer; Kernel Functions and Threading;	
	Function declarations; Kernel launch; Predefined variables; Runtime API.CUDA	
	Thread Organization; Using block Id x and thread Id x ; Synchronization and	
	Transparent Scalability; Thread Assignment ; Thread Scheduling and Latency	
	Tolerance.	09 hrs
Unit –	Π	
3	CUDA Memories	
	Importance of Memory Access Efficiency; CUDA Device Memory Types; A	
	Strategy for Reducing Global Memory Traffic; Memory as a Limiting Factor to	
	Parallelism; Global Memory Bandwidth; Dynamic Partitioning of SM Resources;	
	Data Perfetching; Instruction Mix; Thread Granularity; Measured Performance.	07 hrs
4	Introduction to OPENCL	
	Introduction to OPENCL; Background; Data Parallelism Model; Device	
	Architecture; Kernel Functions; Device Management and Kernel Launch;	
	Electrostatic Potential Map in OpenCL.	09 hrs
Unit –		
5.	Case Study	
	Concepts of Game Design, Applications like Matrix multiplication, MRI	
	reconstruction Molecular Visualization and Gaming.	04 hrs
6.	Parallel Programming and Computational Thinking	
	Goals of Parallel Programming, Problem Decomposition, Algorithm Selection,	
	Computational Thinking.	04 hrs

Text Books:

3. David B. Kirk, Wen-mei W. Hwu, "Programming Massively Parallel Processors: A Hands on Approach", Morgan Kaufmann/Elsevier India reprint, 2010.

Reference Books:

1. Benedict R Gaster, Lee Howes, David Kaeli, Perhaad Mistry and Dana Schaa, "Heterogeneous Computing with OpenCl", Morgan Kaufmann/Elsevier reprint, 2012.

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3
ш	Q.No7	5	Solve Any Lout of ?
111	Q.No8	6	Solve Mily 1 Out of 2

Program: Bachelor of Engineering				
Course Title: Software Architecture and Design Thinking Course Code: 18ECSE410				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3hrs/week		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 3 hrs			

Unit –	I	
1	Chapter No. 1 What Is Software Architecture?	
	What Software Architecture Is and What It Isn't ,Architectural Structures and	
	Views, Architectural Patterns, What Makes a "Good" Architecture?	
		5 hrs
2	Chapter No. 2 Why Is Software Architecture Important?	6hrs
	Inhibiting or Enabling a System's Quality Attributes, Reasoning About and	
	Managing Change, Predicting System Qualities, Enhancing Communication	
	among Stakeholders, Carrying Early Design Decisions, Defining Constraints on	
	an Implementation, Influencing the Organizational Structure, Enabling	
	Evolutionary Prototyping, Improving Cost and Schedule Estimates, Supplying a	
	Transferable, Reusable Model, Allowing Incorporation of Independently	
	Developed Components, Restricting the Vocabulary of Design Alternatives,	
	Providing a Basis for Training	
3	Chapter No. 3 The Many Contexts of Software Architecture	5 hrs
	Architecture in a Technical Context, Architecture in a Project Life-Cycle	
	Context, Architecture in a Business Context, Architecture in a Professional	
	Context, Stakeholders, How Is Architecture Influenced?, What Do Architectures	
	Influence?	
Unit –	II	

4	Chapter No. 4. Understanding Quality Attributes	
	Architecture and Requirements, Functionality, Quality Attribute Considerations,	
	Specifying Quality Attribute Requirements, Achieving Quality Attributes	
	through Tactics, Guiding Quality Design Decisions	5 hrs
5	Chapter No. 5. Quality Attributes	6hrs
	Tactics for Availability, Tactics for Interoperability, Tactics for Modifiability,	
	Tactics for Performance, Tactics for Security, Tactics for Testability, Tactics for	
	Usability,	
6	Chapter No. 6. Architectural Tactics and Patterns	5 hrs
	Architectural Patterns, Overview of the Patterns Catalog, Relationships between	
	Tactics and Patterns, Using Tactics Together	
Unit –	III	
5.	Chapter No. 7 Architecture and Requirements	
	Gathering ASRs from Requirements Documents, Gathering ASRs by	
	Interviewing Stakeholders, Gathering ASRs by Understanding the Business	
	Goals, Capturing ASRs in a Utility Tree, Tying the Methods Together	4 hrs
6.	Chapter No. 8 Designing an Architecture, Implementation, Testing and	
	EvaluationDesigning:	
	Design Strategy, The Attribute-Driven Design Method, The Steps of ADD,	
	Implementation, and Testing: Architecture and Implementation, Architecture and	
	Testing, Evaluation: Evaluation Factors, The Architecture Tradeoff Analysis	
	Method, Lightweight Architecture Evaluation	4 hrs
Text E	Books:	
1	Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practic	e (3rd
-	Edition) Addison Wasley Professional: 2 adition	0 (010
	Eulion), Addison-wesley Professional, 5 edition	
Refere	ence Books:	

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
Π	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3
ш	Q.No7	5	Solve Any Lout of 2
111	Q.No8	6	Solve Any I out of 2

Course Title: Model Thinking	Course Code: 18ECSE411		
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 30	
CIA Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 40		Exam Duration: 3 hrs	

Content	40 Hrs

Unit – 1	
1. Why Model Model Thinking - The need, Advantages and disadvantages, Segregation/Peer Effects, Case study	4 hrs
2. Modeling People, Tipping Points & Economic Growth Rational models, Behavioral models, Rule based models, Percolation Models, Growth and its kinds	6 hrs
3. Special Topics Standing ovation model, Game of Life, Lyapunov Functions: Equilibrium, A cycle, Randomness or complexity, Coordination and culture. Urn models, Polya process, paths and networks, Prisoners' Dilemma, Collective Action & Mechanism Design	6 hrs
Unit – 2	
4. Randomness and Learning Models Luck as randomness, Random Walks & Colonel Blotto, Replicator Dynamics, Fisher's fundamental theorem, Prediction and the Many Model Thinker	8 hrs
5. Model Checking and Modelling Concurrent Systems Model Checking, Characteristics of Model Checking, Transition Systems, Parallelism and Communication, The State Space Explosion	8 hrs
Unit – 3]
6. Linear-Time Properties Linear-Time behavior, Safety Properties and Invariants, Liveness Properties, Fairness	4 hrs
7. Regular Properties Automata on Finite Words, Model-Checking Regular Safety Properties, Automata on Infinite Words, Model Checking with omega-regular properties	4 hrs

Text Books

- 1. Scott E Page, The Model Thinker, Basic Books Publication, 2018
- 2. ChristelBaier and Joost-Pieter Katoen, Principles of Model Checking (Representation and Mind Series), The MIT Press, 2008

References

1. Model Thinking Coursera online course from Michigan University.

Program: Bachelor of Engineering		
Course Title: Cyber Security		Course Code: 19ECSE401
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 04 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks:100
Teaching Hrs: 40	Exam Duration: 03hrs	

1	Introduction to Cybercrime	08hrs
-	Cybercrime definition and origins of the world. Cybercrime and information	00110
	security, Classifications of cybercrime, A global Perspective on cybercrimes. Cyber	
	attack plans, Social Engineering, Cyber stalking, Cyber cafe and Cybercrimes,	
	Botnets, Proliferation of Mobile and Wireless Devices, Credit Card Frauds in	
	Mobile and Wireless Computing Era.	
2	Methods used in Cybercrime	08hrs
	Phishing, password Cracking, Keyloggers and Spyware, Virus and Worms, Trojan	
	and backdoors, Steganography, DOS and DDOS attack, SQLinjection, Buffer	
	Overflow, Attack on wireless networks, Identity theft	
Unit	П	
3	Cybercrimes and Cyber security: The Legal Perspectives	08hrs
	Why do we need Cyber law: The Indian Context, The Indian IT Act, Digital	
	Signature and the Indian IT Act, Amendments to the Indian IT Act, Cybercrime and	
	Punishment.	
4	Cybercrime: Illustrations, Examples and Case studies Introduction, Real-Life	08hrs
	Examples, Case Studies: Illustrations of Financial Frauds in Cyber Domain, Digital	
	Signature-Related Crime Scenarios, Online Scams.	
Unit	III	
5	Digital Forensics	
	Historical background of cyber forensic, Forensic analysis of email, Digital forensic	
	life cycle, Network forensic, Setting up a computer forensic Laboratory, Forensic	
	analysis of digital media.	
Text	Books:	
	1. Nina Godbole&SunitBelapure, "Cyber Security", Wiley India, 2012.	
Refer	rence Books:	
4	5. Dhiren R Patel, "Information security theory & practice", PHI learning pvt.ltd, 201	0.
	5. Bill Nelson, "Guide to Computer Forensics and Investigations", 4 th Edition, CENG	AGE
	Publication. 2009.	

List of Experiments

Expt./Job No.	Experiment	No. of Lab. Slots (2hrs)
1.	Password cracking and recovery	1
2.	DDOS attack detection	1
З.	Firewall and IPS	1
4.	SQL Injection	1
5.	Forensic analysis of email	1
6.	Forensic analysis on digital media	1

Department of Computer Science & Engineering

7.	Removable/External Media Imaging	1
8.	Course Project	3

Scheme for End Semester Assessment(ESA)

UNIT	8 Questions to be set of 20 Marks	Chapter	Instructions
	Each	Numbers	
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2 out of 3
III	Q.No7, Q.No8	5	Solve Any 1 out of 2

Program: Bachelor of Engineering			
Course Title: Capstone Project		Course Code: 18ECSW401	
L-T-P: 0-0-14	Credits: 6	Contact Hrs: 3 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
	Exam Duration: 3hrs		

Project themes:

Networking	Data Engineering	System Engineering
 Internet of Things Cloud Computing Software Defined Network Social Network Analysis 	 Data Analytics Image and video processing Computer Vision and Graphics Natural Language Processing 	 Parallel Computing High Performance Computing Parallel system design

Evaluation:

Students Assessment through ISA (50%) + ESA (50%)

Assessment	Weightage in Marks
Periodic reviews by Project	25
Guide	23
Periodic reviews by	25
Committee	23
Final Review	50
	Assessment Periodic reviews by Project Guide Periodic reviews by Committee Final Review

10tal 100

Program: Bachelor of Engineering				
Course Title: Fuzzy Set The	eory	Course Code: 19ECSE402		
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks:100		
Teaching Hrs: 40	Exam Duration: 3hrs			

Unit	-I				
1	Introduction : Introduction to Fuzzy Logic, Fuzzy Membership Functions, Operations on Fuzzy Sets	8hrs			
2	Fuzzy Measures: Fuzzy Relations, Fuzzy Proposition, Fuzzy	8hrs			
	Implications, Fuzzy Inferences				
Unit	-II				
3	Fuzzy Relations and Fuzzy Graphs: Fuzzy Relations, Compositions of				
	Fuzzy Relations, Properties of the Min-Max Composition,				
	DefuzzificatinTechniques,Lambda-cut method, Weighted average method,	0.1			
_	Maxima methods, Centroid methods, Output of a Fuzzy System	8 nrs			
4	Uncertainty Modeling: Application-oriented Modeling of Uncertainty,	8hrs			
	Causes of Uncertainty, Uncertainty Methods, Possibility Theory				
Unit	-III				
5	Fuzzy Data Bases and Queries: Introduction, Fuzzy Relational Databases,	4 hrs			
	Fuzzy Queries in Crisp Databases				
6	6 Fuzzy Sets and Expert Systems: Introduction to Expert Systems, 4 hrs				
	Uncertainty Modeling in Expert Systems, Applications				
Text	Books:				
 H. J. Zimmermann ., Fuzzy Set Theory-and Its Applications, Fourth Edition, 4th Ed., Springer Science Business Media, LLC, 2001 					
	 Chander Mohan, An Introduction to Fuzzy Set Theory and Fuzzy Logic,2nd ed. Vivo Books pvt ltd, 2015 				
Reference Books:					
1.	1. Timothy J. Ross, Fuzzy Logic With Engineering Applications, 3ed., 2010, A John Wiley and Sons, Ltd., Publication				
2.	Kumar S. Ray,Soft Computing and Its Applications: Fuzzy Reasoning and I 1st Edition, Apple Academic Press 2014	Fuzzy Control,			
3.	Ahmed M. Ibrahim, Fuzzy Logic for Embedded Systems Applications, I 2004.	Elesvier Press,			

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter	Instructions
		Numbers	
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
ш	Q.No7	5	Salva Any 1
111	Q.No8	6	