

PG – Digital Electronics

Program: Digital Electronics				
Course Title: Principles and Practices of Engineering Education Course Code: 15ECRC701				
L-T-P : 2-0-1	Credits: 3	Contact Hours: 3		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 40	Examination Duration: 3 hrs			
Fundamental Principles of Teaching and Learning Learning Styles and Theories		8 Hours		
3. Instructional Design Models and Technology Enhanced Learning 4. Assessment and Evaluation		8 Hours		
5. Engineering Learning Mo		8 Hours 8 Hours		

	Title: Fault diagnoses and te		1			
	Course Title: Fault diagnoses and testing for VLSI circuits Course Code: 15EDEC708					
L-T-P: 4	4-0-0	Credits: 4	Contact Hours: 4			
CIE Marks: 50		SEE Marks: 50	Total Marks: 100			
Teachir	ng Hours: 50	Examination Duration: 3 hours				
1.	Threshold Logic:Introduction,	Synthesis of threshold networks.		5 hrs		
2.		iagnosis:Different types of Faults, Fault nents, Different approaches used in faul n, Quadded Logic.		15 hrs		
3.	3. Capabilities, Minimization and Transformation of Sequential Machines: Finite State Model (FSM) used in Machine design, Capabilities & Limitations of finite state machines, State equivalence and machine minimization, Simplification of incompletely specified machines.		10hrs			
4. Structure of Sequential Machines:						
State Assignments Using Partitions, The Lattice of Closed Partitions, Reduction of the Output Dependency, Input Independence and Autonomous Clocks, Covers and Generation of Closed Partitions by State Splitting, Information Flow in Sequential Machines, Machine Decomposition.		10 hrs				
5.	5. State-Identification And Fault-Detection					
Fault detection / location Experiments, Machine Identification, Fault-Detection Experiments, Design of Diagnosable Machines, Second Algorithm for the Design of Fault-Detection Experiments, Fault-Detection Experiments for Machines, Which have no Distinguishing Sequences.			10 hrs			

1. Khohavi ZVI Switching and Finite Automata Theory, 2ed., TMH, 1999,

Reference Books:

2. Samuel Lee Digital Circuits & Logic Design, PHI, 1990

PG – Digital Electronics

Program: Digital Electronics				
Course Title: Real Time Embedded System lab Course Code: 15EDEP706				
L-T-P: 0-0-1	Credits: 1	Contact Hours: 2		
CIE Marks: 80	SEE Marks: 20	Total Marks: 100		
Lab Hours: 20	Examination Duration: 3 hours			

Experiments

- I Advanced Embedded Systems
- 1. Use any EDA (Electronic Design Automation) tool to learn the Embedded Hardware Design and for PCB design.
- 2. Familiarize the different entities for the circuit diagram design.
- 3. Familiarize with the layout design tool, building blocks, component placement, routings, design rule checking etc.
- II Embedded Programming Concepts (RTOS)
- **4**. Create "n" number of child threads. Each thread prints the message " I"m in thread number …" and sleeps for 50 ms and then quits. The main thread waits for complete execution of all the child threads and then quits. Compile and execute in Linux.
- 5. Implement the multithread application satisfying the following:
 - i. Two child threads are crated with normal priority.
 - ii. Thread 1 receives and prints its priority and sleeps for 50ms and then quits.
 - iii.Thread 2 prints the priority of the thread 1 and rises its priority to above normal and retrieves the new priority of thread 1, prints it and then quits.
 - iv The main thread waits for the child thread to complete its job and guits.
- **6.** Implement the usage of anonymous pipe with 512 bytes for data sharing between parent and child processes using handle inheritance mechanism.
- 7. Test the program below using multithread application
 - i.The main thread creates a child thread with default stack size and name Child_Thread".
 - ii. The main thread sends user defined messages and the message "WM_QUIT" randomly to the child thread.
 - iii. The child thread processes the message posted by the main thread and quits when it receives the "WM_QUIT" message.
 - iv. The main thread checks the termination of the child thread and quits when the child thread complete its execution.
 - v. The main thread continues sending the random messages to the child thread till the "WM_QUIT" message is sent to child thread.
 - vi. The messaging mechanism between the main thread and child thread is synchronous.

Program: Digital Electronics		
	Course Title: Data Structure using C	Course Code: 17EDEC701

L-T-P: 0-0-1	Credits: Audit	Contact Hours: 2	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hours: 25	Examination Duration: -		
Chapter 01:C language features Pointers revisited, Strings, Structus structures, Self Referential Struct	ures – Basics, Structures and fu	nctions, Arrays of structures, Pointe	rs to 5 Hrs
Chapter 02:Stacks and Queues	oplications of stack. Definitions,	representation and applications of li	5 Hrs
Chapter 03:Lists Linked lists, singly, doubly, circula	ar lists, definitions, representatio	ns. Implementation of list operations	5 Hrs
	als (recursive and iterative versi	ed stacks, Linked Queues ons), Building and searching, Threa	5 Hrs
Binary trees, Trees and their app Exchange sorts, Selection and tre			5 Hrs
Text Book 1. Aaron M. Tenenbaum, et al, Data Structures using C, II Edition, PHI, 2006 2. Horowitz, Sahani, Anderson-Feed, Fundamentals of Data Structures in C, II Edition, University, 2008			ty,
Yashavant Kanetkar, Dat			, II
 Programs on Pointer con Programs on string hand Programming on files Programming on stacks of 	ling functions, structures union A	And bit-files.	
5. Programs on implementa6. Programs on implementa7. Programs on Implementa	ition of different queue data stru- ition of different types of Linked ition of trees		
8. Programs to implement different sorting techniques.9. Programming on graph10. Programming on hashing tables			
11. Design and implement st12. Design and implement lir13. project			

Program: I Semester Master of Technology (Digital Electronics)		Teaching			
	Course Title: Principles of Embedded Systems Course Code: 17EDEC703		Hours		
	L-T-P: 0-0-2	Credits: 2	Contact Hours: 4 Hrs/week		
	ISA Marks: 80	ESA Marks: 20	Total Marks: 100		
	Teaching Hours: 42 Hrs	Examination Duration:			

PG – Digital Electronics

Introduction to embedded system: Introduction, Classification of Embedded System, Major Application Areas, Purpose of Embedded System. Characteristics and quality attributes of Embedded Systems, Design Metric and Optimizing the metrics.	06 Hrs
2. Typical Embedded Systems: Core of Embedded System-processor fundamentals, up vs uc, risc vs cisc, vonneumann vs Harvard, 8051 controller architecture and programmer model, Memory, Sensor and Actuators, Communication Network, Embedded Firmware	08 Hrs
3. Low Level programming Concepts:	
Addressing Modes, Instruction Set and Assembly Language programming(ALP), Developing, Building, and Debugging ALP's	08 Hrs
4. Middle Level Programming Concepts:	
Cross Compiler, Embedded C language implementation, programming, & debugging, Differences from ANSI-C, Memory Models, Use of directives, Functions, Parameter passing and return types	02 Hrs
5. On-Chip Peripherals Study, Programming, and Application:	
Ports: Input/Output, Timers & Counters, UART, Interrupts	08 Hrs
6. External Interfaces Study, Programming and Applications :	
LEDS, Switches(Momentary type, Toggle type), Seven Segment Display: (Normal mode, BCD mode, Internal Multiplexing & External Multiplexing), LCD (8bit, 4bit, Busy flag, custom character generation), Keypad Matrix, Stepper Motor, DC Motor	10 Hrs
Tayt Books	

Text Books

- 1. Introduction to Embedded Systems 1E by Shibu K V.
- 2. Kenneth J. Ayala; "The 8051 Microcontroller Architecture, Programming & Applications" 2e, Penram International, 1996 / Thomson Learning 2005
- 3. Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinlay; "The 8051 Microcontroller and Embedded Systems using assembly and C "- PHI, 2006 / Pearson, 2006

References

- Embedded System Design: A Unified Hardware/Software Introduction Frank Vahid, Tony Givargis, John Wiley & Sons, Inc.2002
- 2. Predko; "Programming and Customizing the 8051 Microcontroller" -, TMH
- 3. Raj Kamal, "Microcontrollers: Architecture, Programming, Interfacing and System Design", Pearson Education, 2005

Program: Digital Electronics			Teaching
Course Title: Fundamenta	ls of signal processing	Course Code: 17EDEC704	Hours
L-T-P: 3-0-1	Credits: 4	Contact Hours: 5 Hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40 Hrs	Examination Duration: 3 hrs		
Chapter No. 1. Introduction Definition of a signals and systems, classification of signals, basic operation on signals, elementary signals, Systems viewed as Interconnection of operation, properties of systems.		08 Hrs	
Chapter No. 2. Time-Domain representation for LTI systems Convolution, Impulse response representation, convolution sum and convolution integral. Properties of impulse response representation.		08 Hrs	

PG – Digital Electronics

Chapter No. 3. Discrete Fourier Transforms Discrete Fourier Transforms (DFT): Frequency domain sampling and reconstruction of discrete time	
signals. DFT as a linear transformation, its relationship with other transforms. use of DFT in linear filtering, overlap-save and overlap-add method. Fast-Fourier-Transform (FFT) need for efficient computation of the DFT (i.e. FFT algorithms). Radix-2 FFT algorithm for the computation of DFT and IDFT: decimation-in-time and decimation-in-frequency algorithms. Composite FFT.	08 Hrs
Chapter No. 4. Design of digital filters Design of digital filters: Considerations and Characteristics of practical digital filters. Design of digital filters: symmetric and anti symmetric FIR filters, design of linear phase FIR filters using windowing method- Rectangular, Hamming, Hanning, Bartlet and Kaiser windows. Design of linear phase FIR filters using frequency sampling technique.	08Hrs
Chapter No. 5. Design of IIR filters from analog filters Design of IIR filters from analog filters: Approximation of derivative, Impulse invariance method, bilinear transformation. Characteristics of commonly used Analog Filters: Butterworth and Chebyshev filters. Frequency transformation in the digital domain Text Books	08Hrs

- Simon Haykin and Barry Van Veen, Signals and Systems, second, John Wiley & Sons, 2002 1.
- 2. Proakis & Monalakis, Digital signal processing Principles Algorithms & Applications, 4th Edition, PHI, New Delhi, 2007

References

1. Alan V. Oppenheim, Alan S Willsky and S. Hamid Nawab, Signals and Systems, second, Pearson Education Asia, 1997

Implementation Assignments:

- 1. Implementation assignments are designed using Python. Ex:
 - Generate different elementary signals and perform mathematical operations on them.
 - Calculate N point DFT and find the cost of computation, justify the use of FFT algorithms to calculate DFT.
 - Design Filters (FIR/IIR) for given specifications.
- 2. Explore the feature of SDR to build signal processing applications like,
 - Noise cancellation
 - Audio file editing

Program: I Semester Master of Technology (Digital Electronics)			Teaching
Course Title: Machine lear	rning	Course Code: 17EDEC705	Hours
L-T-P: 3-0-1	Credits: 4	Contact Hours: 5 Hrs/week	
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200	
Teaching Hours: 40 Hrs	Examination Duration: 3 hrs		
Chapter No. 1: Introduction			
Introduction What is Machine Learning? Applications of Machine Learning, Types of Machine Learning: Supervised, Unsupervised and Reinforcement learning, Dataset formats, Basic terminologies.			05 Hrs

PG – Digital Electronics

Chapter No. 2: Supervised Learning Linear Regression, Logistic Regression Linear Regression: Single and Multiple variables, Sum of squares error function, The Gradient descent algorithm, Application, Logistic Regression, The cost function, Classification using logistic regression, one-vs-all classification using logistic regression, Regularization.	10 Hrs
Chapter No. 3: Supervised Learning: Neural Network Introduction to perception learning, Implementing simple gates XOR, AND, OR using neural network. Model representation, Gradient checking, Back propagation algorithm, Multi-class classification, Application- classifying digits, SVM.	10 Hrs
Chapter No. 4: Unsupervised Learning: Clustering Introduction, K means Clustering, Algorithm, Cost function, Application.	05Hrs
Chapter No. 5: Unsupervised Learning: Dimensionality reduction Dimensionality reduction, PCA- Principal Component Analysis. Applications, Clustering data and PCA.	05Hrs
Chapter No. 6: Machine Learning System Design Evaluating a hypothesis, Model selection, Bias and variance, error analysis, error metrics for skewed classes. Building a Model.	05 Hrs

Text Book (List of books as mentioned in the approved syllabus)

- 1. Tom Mitchell, Machine Learning, 1, McGraw-Hill., 1997
- 2. Christopher Bishop, Pattern Recognition and Machine Learning, 1, Springer, 2007

References

1. Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2, Springer, 2009

Implementation Assignments:

- 1. Assignments are designed to explore the concepts like
 - Supervise and unsupervised learning,
 - Clustering,
 - Regression and estimation
- 2. Motivate students to take up open challenges like Kaggle, walmart, ect

Program: I Semester Master of Technology (Digital Electronics)			Teaching
Course Title: RISC Architectures Course Code: 17EDEC706		Hours	
L-T-P: 3-0-1 Credits: 4		Contact Hours: 3 Hrs/week	
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200	
Teaching Hours: 46 Hrs	Examination Duration:		

1. The 32 bit RISC Architecture: The Acorn RISC machine, Architectural inheritance, Architecture of ARM7TDMI, ARM programmers model, ARM development tools, 3 stage pipeline ARM organization, ARM instruction execution.	06 Hrs
2. 32 bit Instruction set: Data processing instruction, Branch instruction, Load store instruction, Software interrupt instruction, Program status register instruction, Conditional execution, Example programs, 16bit Instruction set-The Thumb programmer model, ARM-Thumb interworking, other branch instructions, Data processing instructions, Single/Multiple register load store instruction, Stack operation, Software interrupt instructions, example programs.	06 Hrs
3. Exception Handling:	
Introduction, Interrupts, error conditions, processor exception sequence, the vector table, Exception handlers, Exception priorities, Procedures for handling exceptions.	04 Hrs
4. Memory Hierarchy Design:	
Cache basics, Miss rate and penalty, Cache Hierarchy, Memory Organizations, Memory Hierarchy.	06 Hrs
5. Pipelining:	
Linear pipeline processor, Nonlinear pipeline processor, Instruction pipeline design, Branch handling techniques, Arithmetic pipeline design, Computer arithmetic principles, Static arithmetic pipeline, Multifunctional arithmetic pipeline.	08 Hrs
6. Cortex M4 :	
Functional description, programmer's model, memory protection unit, nested vectored interrupt controller.	06 Hrs
7. Multi-Core Architectures :	
Introduction to Intel Architecture, How an Intel Architecture System works, Basic Components of the Intel Core 2 Duo Processor: The CPU, Memory Controller, I/O Controller.	07 Hrs
8. Current Trends in Intel Architectures and Applications :	02 11==
Seminar on current trends in Intel Architectures	03 Hrs

PG – Digital Electronics

Text Books

- 1. "ARM System- on-Chip Architecture" by 'Steve Furber', LPE, Second Edition.
- 2. "ARM Assembly Language fundamentals and Techniques" by William Hohl, CRC press, 2009.
- 3. D. A. Patterson and J. L. Hennessey "Computer Organization and Design", Morgan, Kaufmann, 2002
- 4. H. Jonathan Chao and Bin Liu, "High performance switches & routers", Wiley Interscience, 2007.
- 5. Kai Hwang, "Advanced Computer Architecture TMH 1993
- 6. Web resources for Example Architectures of INTEL and Texas Instruments: http://download.intel.com/design/intarch/papers/321087.pdf

References

- 1. Kai Hwang, Faye A. Briggs, Computers Architecture and Parallel Processing MGH 1985
- 2. David E Culler, Jaswinder Pal Singh, Anoop Gupta "Parallel Computer Architecture", Harcourt Asia Pte Ltd 2000
- Stalling W." Computer Organization and Architecture- Designing for performance" PHI,2005
- 4. D. Sima, T. Fountain, P.Kasuk," Advanced Computer Architecture-A Design Space Approach" Addisson Wesley, 1997.
- 5. M. J. Flynn,"Computer Architecture, Pipelined And Parallel Processing", Narosa Publications, 1998.

List of Experiments:

- 1. Write an ALP to verify data transfer w.r.t memory to achieve following
 - i. 8 bit data transfer
 - ii. 16 bit data transfer
 - iii. 32 bit data transfer
- 2. Write an ALP for Tables and lists to do following:
 - i. Add an entry to a list
 - Remove an element from the gueue
- 3. Write an ALP to pass parameters to a subroutine.
 - i. Ascending order
 - ii. Descending order
- 4. Write a 'C' program & demonstrate an interfacing of Alphanumeric LCD 2X16 panel to LPC2148Microcontroller
- 5. Write a 'C' program & demonstrate concept of Interrupts interface to LPC2148 Microcontroller.
- 6. Write a 'C' program & demonstrate an interfacing of DAC to LPC2148 Microcontroller.
- 7. Write a 'C' program & demonstrate an interfacing of UART to LPC2148 Microcontroller.
- 8. Write a 'C' program & demonstrate an interfacing of ADC to LPC2148 Microcontroller.
- 9. Write a 'C' program & demonstrate an interfacing of RTC to LPC2148 and read time, date and year.
- 10. Write a 'C' program & demonstrate interface I2C to LPC2148
- 11. Develop a code for college bell system. (Use the following interfaces LCD, RTC and Buzzer).

Reference Books

- 1. "ARM System- on-Chip Architecture" by 'Steve Furber", LPE, Second Edition.
- 2. "Embedded Systems- Architecture, Programming and Design" by Raj Kamal, TMH
- Dr. K.V.K.K. Prasad, "Embedded/Real-time systems: concepts, Design & Programming", published by dreamtech press.

Manual

- 1. LPC2148 datasheet by NXP.
- 2. LPC2148 board manual by ALS, Bangalore.

Program: Digital Electro	nics		Teaching
Course Title: Electronic System Design Course Code: 17EDEC707		Hours	
L-T-P: 0-0-3	Credits: 3	Contact Hours:6 Hrs/week	

PG – Digital Electronics

ISA Marks: 100	ESA Marks:	Total Marks: 100	
Teaching Hours: 25 Hrs	Examination Duration:		
To level specifications, Blo plan, Schematic capture	ock level specifications, Timing of m	nicro architecture, Verification and test	05 Hrs
Simulation, Advanced simulation, Signal Integrity			05 Hrs
PCB layout- Floor planning, component pre planning, PCB printing- 2 layer		05 Hrs	
Functionality and performance check, Failure analysis, Validation and system integration		05 Hrs	
System Analysis		05 Hrs	

References

- 1. A. S Sedra and KC Smith, Microelectronic circuits, Oxford, 1998.
- 2. G.L. Ginsberg, Printed Circuit Design, McGraw Hill, 1991.

Program: Digital Electronics			
Course Title: Automotive Elect	Course Title: Automotive Electronics Course Code: 17EDE		EC708
L-T-P: 3-0-1	Credits: 4	Contact Hours: 5	
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200	
Teaching Hours: 40	Examination Duration: 3 hrs		
Chapter No. 1. Automotive Fun	damentals Overview		8Hrs
classifications and specifications electronics in the automobiles Fo	Introduction to Automotive Industry and Modern Automotive Systems Vehicle classifications and specifications need for electronics in automobiles, Application areas of electronics in the automobiles Four Stroke Cycle, Engine Control, Ignition System, Spark plug, Spark pulse generation, Ignition Timing, Drive Train, Transmission, Brakes, Steering		7Hrs
Chapter No. 2. Sensors and Ac	tuators		
Oxygen (O2/EGO) Sensors, Throttle Position Sensor (TPS), Engine Crankshaft Angular Position (CKP) Sensor, Magnetic Reluctance Position Sensor, Engine Speed Sensor, Ignition Timing Sensor, Hall effect Position Sensor, Optical Crankshaft Position Sensor, Manifold Absolute Pressure (MAP) Sensor Strain gauge, Engine Coolant Temperature (ECT) Sensor, Knock Sensor, Throttle angle sensor, Fuel Injector Actuator, Ignition Actuator			
Chapter No. 3. Electronic Engi	ne Control		511
Engine parameters, variables, Engine Performance terms, Electronic Fuel Control System, Electronic Ignition control, Idle sped control, EGR Control		5Hrs	
Chapter No. 4. Vehicle Motion	Control and Safety Systems		
Cruise Control, Antilock Brake System (ABS), Electronic Steering Control, Power Steering, Traction Control, Electronic Stability Program.		6Hrs	
Chapter No:5. Automotive communication protocols		3Hrs	
Overview of Automotive communication protocols : CAN, LIN .			
Warning, Collision Warning, Auto Control, Connected Cars technology	river Assistance Systems (AD omatic Cruise Control, Pedestrian logy and trends towards Autonomousty standards ISO26262 and Diag	Protection, Headlights is vehicles.	5Hrs

PG – Digital Electronics

Functional Safety: Need for safety standard-ISO 26262, safety concept, safety process for product life cycle, safety by design, validation.

Fundamentals of Diagnostics: Basic wiring system and Multiplex wiring system, Preliminary checks and adjustments, Self-diagnostic system. Fault finding and corrective measures, OBD & off board diagnostic.

6Hr

Text books:

1. Denton.T – Automobile Electrical and Electronic Systems, Edward Arnold publication, 1995.

References:

- 1. William T.M Automotive Electronic Systems, Heiemann Ltd., London ,1978.
- 2. Nicholas Navet Automotive Embedded System Handbook, CRC Press, 2009.
- 3. BOSCH Automotive Handbook, Wiley Publications, 8th Edition, 2011.
- 4. Co-Verification of hardware & software for ARM SoC Design Jason.R.Andrews, Newnes Publications, 2004.
- 5. Hardware Software co-design of embedded systems, F.Balarin, Kluwer Academic Oublishers, 1987.

Lab:

- 1. Demonstration of cut section modules: Engine, Transmission, Steering, Braking, Suspension Automobile dept.
- 2. Electronic engine control system: Injection and Ignition control system Transmission trainer modules
- 3. Modeling an engine Vehicle model simulation with Simulink using PI CONTROLLER
- 4. Basic gate logic simulation and modeling using Simulink and realization on the hardware platform.
- Seat belt warning system simulation and modeling using Simulink and realization on the hardware platform.
 Vehicle speed control based on the gear input simulation and modeling using Simulink and realization on the hardware platform.
- 6. Throttle control modeling and simulation using Simulink and realization on the hardware platform.
- Accelerator pedal interfacing software modeling and simulation using Simulink and realization on the hardware platform.
- 8. Develop matlab code for stepper motor control and convert it to Simulink model and port it to embedded hardware

PG – Digital Electronics

Cou	irse Code:	Course Title: Teaching Hrs: 40 Hrs		Teaching Hrs: 40 Hrs	
17E	DEC710	Multimedia and Signal Prod	cessing		
L-T	·P: 3-0-1	Credits: 4		Contact Hrs: 5 Hrs/week	
ISA	Marks: 50+100	Exam Duration: 3Hrs	ESA Marks: 50	Total Marks: 200	
1	Introduction to M	ultimedia:	L		02Hrs
	Multimedia and Hy	per media, WWW, overview of	multimedia software	tools.	OZI II S
2	-	ige representation:		Graphics /	02Hrs
	•	Popular file formats.			
3	Fundamental con	-			06Hrs
	7,	nals, analog video, digital video).		
4	4 Basics of digital audio: Digitization of sound, MIDI, Quantization and transmission of audio.			05Hrs	
5	Lossless compre	ssion algorithms:			
	Introduction, run-le lossless image con	ength coding, variable length compression.	oding, dictionary base	d coding, arithmetic coding,	05Hrs
6	Lossy compressi	on algorithms:			
	· ·	rtion measures, quantization, d zero tree of wavelet coefficie	•	avelet based coding, wavelet	06Hrs
7	Image compressi			The	
	JPEG standard, The standard.	ne JPEG2000 standard, The JF	PEG-LS standard, Bi l	evel image compression	06Hrs
8		pression techniques:		Overview,	08Hrs
	video compression	based on motion compensation	on, H.261 .		

Text books

1. Ze-Nian Li & Mark S Drew, "Fundamentals of multimedia", Pearson Education, 2004.

References books

- Ralf Steinmetz & Kalra Nahrstedt, "Multimedia: Computing, Communication & Applications", Pearson Education, 2004
- 2. K R Rao, Zoran S Bojkovic, Dragord A Milovanvic, Pearson education, "Multimedia communication systems: Techniques, Standards, & Networks",. Second Indian reprint, 2004.

PG – Digital Electronics

Cou	rse Code:	Course Title:		Teaching Hrs: 40 Hrs	
17EI	DEE701	Image and Video Processin	g		
L-T-	P: 2-0-1	Credits: 3		Contact Hrs: 4 Hrs/week	(
ISA	Marks: 50+100	Exam Duration: 3Hrs	ESA Marks: 50	Total Marks: 100	
1	Introduction: 2D systems, Mathematical Preliminaries- FT, Z-transform, Optical and Modulation Transfer Functions (OTF and MTF). Matrix theory, Image perception: Light, Luminance, Brightness, Contrast, MTF of the visual system, Visibility function, Monochrome Vision Models, Fidelity criteria, Color Representation, Color Vision Models, Temporal Properties of Vision.			2 hrs	
2	Image sampling and Quantization: 2D Sampling theory, Quantization, Optimal Quantizer, Compander and Visual Quantization.			2 hrs	
3	Image Transforms: 2D orthogonal and unitary transforms, DFT, DCT, Harr, KLT		4hrs		
4	Image Enhancement: Histograms Modeling, Spatial operations, Transform operations, Multispectral Image Enhancement,		4hrs		
5	Image Filtering and Restoration: Image Observation Models, Inverse and Weiner filtering , Frequency Domain Filters. Smoothing Splines and Interpolation.			4hrs	
6	Basics of Video: Analog Video, Digital Video			2 hrs	
7	Two dimensional methods.	motion estimation: Optical	flow methods, Block ba	sed methods, Bayesian	7 hrs

Text books

- 1. Jain, A.K., Fundamentals of Digital Image Processing, 3rd Edision, Pearson Education (Asia) 2013
- 2. A. Murat Tekalp, Digital Video processing Pearson Education (Asia) Pte. Ltd.
- 3. Li and, Z. Drew, M.S. Fundamentals of Multimedia, Pearson Education (Asia) Pte. Ltd,. 2010.

References books

- 1. Gonzalez, Rafael C., Woods, Richard E. and Eddins Steven L., Digital Image Processing Using Matlab, Pearson Education (Asia) Pvt. Ltd.,
- 2. Al. Bovik, Essential guide to Video Processing, Academic Press

Program: III Semester Master of Technology (Digital Electronics)			Teaching
Course Title: Embedded S	Software Design	Course Code: 17EDEC801	Hours
L-T-P: 0-0-3	Credits: 3	Contact Hours: 6 Hrs/week	
ISA Marks: 80	ESA Marks: 20	ESA Marks: 20 Total Marks: 100	
Teaching Hours: 40 Hrs	Examination Duration:		
Introduction to OS, Introduction to RTOS, key scheduler, services, contextrobin and preemptive scheduler.	t switch, Scheduling types: Preemp duling.	real time systems, characteristics of components in RTOS kernel, objects, tive priority-based scheduling, Round-	08 Hrs
A task, its structure, A typica its structure, binary semaph tasks and multiple tasks, Si resource-access synchronize	nore, mutual exclusion (mutex) sema ngle shared-resource-access synchr	re, Message copying and memory use	08 Hrs
3. Typical RTOSs: Study of VX works, RT Linux and Android OS and comparisons. Real time programming using RTX/free RTOS. Applications and Common Design Problems: Embedded RTOS for Image Processing & Control Systems, and common problems encountered in these applications.			04 Hrs
4. Introduction to em	bedded linux:		
	nains in Ėmbedded Linux-GNU Tool	and device driver model-Embedded Chain (GCC,GDB, MAKE, GPROF &	02 Hrs
system operation-S		Root file system-Binaries required for Writing applications in user space-GUI	02 Hrs
6. File system in Linu	JX:		
File system Hierarchy-File system Navigation -Managing the File system -Extended file systems-INODE-Group Descriptor-Directories-Virtual File systems-Performing File system Maintenance - Locating Files -Registering the File systems-Mounting and Un-mounting -Buffer cache-/proc file systems-Device special files		08 Hrs	
7. Program design a	nd Analysis :		
buffers, queues. Models of loading. Basic compilation optimization: Expression transformations, register all Program level performance	programs: data flow graph and cont techniques: Statement translation, simplification, dead code elir location, scheduling, instruction sele analysis, software performance of do optimization of program size. Pro-	n oriented programming and circular rol flow graphs, Assembly, linking and procedures, data structures. Program nination, procedure inlining, loop ection, interpreters and JIT compilers. otimization, program level energy and gram validation and testing: Clear box	08 Hrs

PG – Digital Electronics

Text Books

- 1. Qing Li with Caroline Yao, "Real-Time Concepts for Embedded Systems", Published by CMP Books, 2011
- 2. Dr. K.V.K.K. Prasad, "Embedded/Real-time systems: concepts, Design & Programming", published by dreamtech press .
- 3. "Embedded Systems- Architecture, Programming and Design" by Raj Kamal, TMH

References

- 1. Philip.A.Laplante, "Real Time System Design and Analysis", Prentice Hall of India, 3rd Edition, April 2004.
- 2. "Programming embedded systems" in C and C++ Micheal Barr orielly

List of Experiments:

- 1. Write a 'C' program & demonstrate concept of Task Scheduling.
- 2. Write a 'C' program & demonstrate concept of Semaphore.
- 3. Write a 'C' program & demonstrate concept of Mailbox.
- 4. Write a 'C' program & demonstrate concept of S/W Interrupts.
- 5. Write a 'C' program & demonstrate concept of interrupts.
- 6. Write a 'C' program & demonstrate concept of Inter Task Communication.

Reference Books

1. Dr. K.V.K.K. Prasad, "Embedded/Real-time systems: concepts, Design & Programming", published by dreamtech press.

Manual

1. LPC2148 datasheet by NXP.

LPC2148 board manual by ALS, Bangalore.

Program: Digital Electronics			
Course Title: Automotive Communication		Course Code: 17EDEC802	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3	
CIA Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3 hrs		
	Content		Hrs
Chapter No. 1: Controller Area Network Introduction to CAN, Basic Concepts, Message Transfer, Frame Types, Message Validation, Error Handling, Fault Confinement, Bit Timing Requirements, Increasing Can Oscillator Tolerance, Protocol Modifications.			15 hrs
Chapter No. 2: Local Interconnect Network Overview of LIN protocol, LIN Workflow ,LIN Physical Layer ,LIN Communication, Synchronization of the LIN nodes, LIN Message & Scheduling, Message Types, Status & Network Management, Introduction to LIN slave diagnostics , Introduction to LIN slave configuration.			5 hrs
Introduction to LIN slave diagnostics, Introduction to LIN slave configuration. Chapter No. 3: Flexray Communication protocol Introduction to Fleray, Basic Concepts, Message Transfer, Static and dynamic data transmission, Flexray BUS, FlexRay controller states, Frame Types, Message Validation, Error Handling, Fault Confinement, Bit Timing Requirements, Fault tolerant and time triggered services implemented in hardware.			5 hrs

Chapter No. 4: Media oriented system transport protocol Technology background, MOST25, MOST50, MOST150, MOST topology, different masters in MOST network, control channel, synchronous channel, asynchronous channel, MOST application frame work, addressing scheme, frame formats,	5 hrs
Chapter No. Chapter 5: Keyword 2000 protocol Overview of KWP protocol, KWP Workflow , Physical topology ,message structure, frame format,	5 hrs
Chapter No. Chapter 6: SENT, I2C, SPI and UART Overview about SENT, I2C, SPI and UART, frame formats, application of I2C, SPI, SENT and UART in automotive.	5 hrs
Text Books (List of books as mentioned in the approved syllabus) Ronald K. Jurgen, Infotainment systems, 2007, SAE International, 2007	

Progr	ram: III Semester Mas	ster of Technology (Digital Elec	etronics)	Teaching
Cours	se Title: Internet of T	hings	Course Code: 17EDEE801	Hours
L-T-P	: 2-0-1	Credits: 3	Contact Hours: 5 Hrs/week	
ISA M	larks: 50+100	ESA Marks: 50	Total Marks: 200	
Teach	ning Hours: 25 Hrs	Examination Duration:		
1	Introduction to Ir	nternet of Things (IoT)		
	Definition & Cha		IoT, IoT protocols, IoT functional blo	ocks, 04 hrs
2	IoT Architecture			
		ogies: Sensors, Zigbee, Bluetoot 802.11.ah, DASH7, Low Power W	h, IoT ecosystem, Data Link protocols: I /ide Area Network (LoRaWAN).	EEE 04 hrs
3	Network protoco	ls		
			orks (RPL), cognitive RPL (CORPL), Char ess Personal Area Networks (LoWPAN).	nnel- 04 hrs
4	Application and	Security protocols		
	Advanced Messag		MQTT for Sensor Networks, Secure Mo constrained Application Protocol (CoAP), ond Lossy Networks (RPL).	
5	IoT Platforms De	sign Methodology		
			em for Weather Monitoring etc., Basic buil e (serial, SPI, I2C), IoT Operating Syste	
6	Programming wi	th Raspberry Pi		
	XML, JSON, SOA	P and REST-based approach, W	ebSocket protocol.	04 hrs
7	IoT prototyping			
		example applications: Case stude, Health with emphasis on data	lies on Home automation, Cities, Environm analytics and security.	nent, 06 hrs
Text E	Books:			L

PG – Digital Electronics

- 1. Arshdeep Bahga, Vijay Madisetti "Internet of Things (A Hands-on-Approach)" Universities Press- 2014.
- 2. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things: Key Applications and Protocols" John Wiley & Sons 2012.

Reference Books:

1. Subhas Chandra Mukhopadhyay "Internet of Things Challenges and Opportunities" Springer- 2014.

Lab:

- 1. Programming with Raspberry Pi
- 2. Cloud service interface for data storage and retrieval
- 3. Performance analysis of Data link protocols, routing and application protocols
- 4. Open Ended Experiment with focus on data analytics and security

Course Code: 17EDEE802	Course Title: AUTOS	AR	
L-T-P : 2-0-1	Credits: 3	Contact Hrs:	3 Hours
ISA Marks: 50	ESA Marks: 50 Total Marks: 100		100
Teaching Hrs: 40		Exam Durati	on: 3
Content			Hrs
Unit - 1			I
Chapter No. 1: AUTOSAR Fundamentals Evolution of AUTOSAR – Motivations and Objectives AUPackages, AUTOSAR Partnership, Goals of the part AUTOSAR specification, AUTOSAR Current development ICC2, ICC3, and Drawbacks of AUTOSAR.	tnership, Organization	of the partnership,	8 hrs
Chapter No. 2: AUTOSAR layered Architecture AUTOSAR Basic software, Details on the various layers, Details on the stacks Virtual Function Bus (VFB) Concept Overview of AUTOSAR Methodology, Tools and Technologies for AUTOSAR AUTOSAR Application Software Component (SW-C), Types of SW-components AUTOSAR Run Time Environment (RTE): RTE Generation Process: Contract Phase, Generation Phase, MCAL, IO HW Abstraction Layer, Partial Networking, Multicore, J1939 Overview, AUTOSAR Ethernet, AUTOSAR E2E Overview, AUTOSAR XCP, Metamodel, From the model to the process, Software development process.			7 hrs
Unit - 2			-
Chapter No. 3: Methodology of AUTOSAR and Communication in AUTOSAR CAN Communication, CAN FD, CAN in Automation, CANape, Application Layer and RTE, intra and inter ECU communication, Client-Server Communication, Sender-Receiver, Communication, CAN Driver, Communication Manager (ComM), Overview of Diagnostics Event and Communication Manager			10 hrs
Chapter No. 4: BSW Development and Integration BSW Constituents: Memory layer, COM and Services layer, ECU abstraction, AUTOSAR, Operating system, Interfaces: Standard interface, AUTOSAR standardized interface, BSW-RTE interface,(AUTOSAR interface), BSW-ECU hardware interface, Complex device drivers and BSW module configuration, AUTOSAR Integration.			5 hrs
Unit - 3			1

Chapter No. Chapter 5: Infotainment Systems in Automobiles Infotainment Systems Fundamentals: Radio, Multimedia, and Navigation: Introduction to In Vehicle Infotainment (IVI) systems, Use of operating systems in IVI, GENIVI Alliance, Tuner: AM/FM, XM/Sirrus, DAB/DMB, Software Defined Radio; Concepts of HD, radio, Ensemble, Traffic Announcements, Spread Spectrum, d. Multimedia: Types of Media; Music, Video, Podcasts, etc. Media management; Playback, Track Control, Metadata, Playlists, Categories, Trick play, Audio/Video Source Management, Navigation: Points of Interests, Routes, Waypoints, Dead Reckoning position, Traffic Info, GLONASS, GNSS, RTK, GPS, and SBAS/GBAS,INS f. Media types: CD, DVD, CDDA, USB, SDCARD, Media Formats:MP3, WMV, RealAudio/Video, QTP, Architecture – Design Patterns - Proxies, Adaptors, Interfaces, Singleton, Factory method	5 hrs
Chapter No. Chapter 6: Communication Systems in Automobiles Automotive & Consumer Electronic Communication Systems: Introduction to Bluetooth – Pairing, HFP, A2DP, PAN, PBAP, DUN, Concepts of MOST network, DLNA, AVB, Concepts of TCP/IP, Ethernet, WiFi, WiFi Direct, MyWiFi and CAN, Mirror link, Tethering	5 hrs
Text Book (List of books as mentioned in the approved syllabus) 1. Ribbens, Understanding of Automotive electronics, 6th Edition, Elsevier, 2003 2. Denton.T, Automobile Electrical and Electronic Systems, Elsevier, 3rd Edition, 2004 3. Denton.T, Advanced automotive fault diagnosis, 2000	
References 1. Ronald K Jurgen, Automotive Electronics Handbook, 2nd Edition, McGraw-Hill, 1999 2. James D Halderman, Automotive electricity and Electronics, PHI Publication, 2000 3. Allan Bonnick, Automotive Computer Controlled Systems Diagnostic Tools and Techniques, Elsevier Science, 2001 4. Nicholas Navet, Automotive Embedded System Handbook, 2009	

Program: Digital Electronics Course Title: Advanced Computer Architecture & Course Code: 17EDEC801 Programming			Teaching Hours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40 Hrs	Examination Duration: 3 hrs		
Immediates and more con	nplex addressing modes, Parallelis	computer, ARM Addressing for 32-Bit m and Instructions: Synchronization,	
Translating and Starting a Program.			05
Chapter 2: Arithmetic for	Computers		
Addition and Subtraction, Architecture: Associativity.	, Multiplication, Division, Floating	Point, Parallelism and Computer	05
Chapter 3: The Processor		A Simple Implementation Scheme, An	10
overview of pipelining, Pip Control hazards, Exceptions	elined datapath and control, Data s, Parallelism and advanced instruc	Hazards: Forwarding versus Stalling, tion level parallelism, Real Stuff: AMD d model a pipeline and more pipelining	

PG – Digital Electronics

illustrations.	
Chapter 4: Large and Fast: Exploiting Memory Hierarchy	10
Introduction, The Basics of Caches, Measuring and Improving Cache Performance, Virtual Memory	
A Common Framework for Memory Hierarchies, Virtual machines, using a finite state machine to control a simple cache, Parallelism and memory hierarchy: cache coherence ,Advanced material: Implementing cache controllers, Real Stuff: AMD Opteron & Intel Nehalem Memory hierarchies	
Chapter 5: Storage, Networks, and Other Peripherals	10
Introduction, Dependability, Reliability and Availability, Disk Storage, Flash storage, Connecting Processors, Memory, and I/O Devices, Interfacing I/O Devices to the Processor, Memory and Operating System, I/O Performance Measures: Examples from Disk and File Systems, Designing an I/O System, Parallelism and I/O: Redundant arrays of inexpensive disks, Real Stuff: Sun firwe x4150 server, Advanced topics: Networks	
Chapter 6: Multicores, Multiprocessors and Clusters	
Introduction, Difficulty of creating parallel processing programs, Shared memory multiprocessors	
Clusters and other message passing multiprocessors, Hardware multithreading, SISD, MIMD, SIMD, SPMD, and vector, Introduction to graphics processing units, Introduction to multiprocessor network topologies, Multiprocessor benchmarks, Roofline: A simple performance model, Real Stuff: Benchmarking four multicores using the roofline model.	10

Text Books:

Computer Organization and Design, The hardware/Software interface, ARM edition

– David A. Patterson, John
L.Hennessy. 4th edition, MK publishers, 2009

Reference Books:

1. Computer Architecture and Organization- John P. Hayes, 3rd edition, McGraw-Hill, 1998

Program: Digital Electronics			
Course Title: AUTOSAR and Infotainment Systems		Course Code: 17EDEC802	
L-T-P : 2-0-1	Credits: 3	Contact Hrs: 4	
CIA Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 24	Exam Duration: 3 hrs		
Chapter No. 1: AUTOSAR Fundar Evolution of AUTOSAR – Motivatio Packages, AUTOSAR Partnership AUTOSAR specification, AUTOSAI ICC2, ICC3, and Drawbacks of AUT	ns and Objectives AUTOSAR of Goals of the partnership, R Current development status,		4 hrs
(VFB) Concept Overview of AUT AUTOSAR Application Software C Time Environment (RTE): RTE Ge	on the various layers, Details OSAR Methodology, Tools Component (SW-C), Types of neration Process: Contract Physelectron Process: J1939	SW-components AUTOSAR Run ase, Generation Phase, MCAL, IO Overview, AUTOSAR Ethernet,	4 hrs

PG – Digital Electronics

Unit - 2	4 hrs
Chapter No. 3: Methodology of AUTOSAR and Communication in AUTOSAR CAN Communication, Application Layer and RTE, intra and inter ECU communication, Client-Server Communication, Sender-Receiver, Communication, CAN Driver, Communication Manager (ComM), Overview of Diagnostics Event and Communication Manager	
Chapter No. 4: BSW Development and Integration BSW Constituents: Memory layer, COM and Services layer, ECU abstraction, AUTOSAR, Operating system, Interfaces: Standard interface, AUTOSAR standardized interface, BSW-RTE interface,(AUTOSAR interface), BSW-ECU hardware interface, Complex device drivers and BSW module configuration, AUTOSAR Integration.	4 hrs
Chapter No. Chapter 5: Infotainment Systems in Automobiles Infotainment Systems Fundamentals: Radio, Multimedia, and Navigation: Introduction to In Vehicle Infotainment (IVI) systems, Use of operating systems in IVI, GENIVI Alliance, Tuner: AM/FM, XM/Sirrus, DAB/DMB, Software Defined Radio; Concepts of HD, radio, Ensemble, Traffic Announcements, Spread Spectrum, d. Multimedia: Types of Media; Music, Video, Podcasts, etc. Media management; Playback, Track Control, Metadata, Playlists, Categories, Trick play, Audio/Video Source Management, Navigation: Points of Interests, Routes, Waypoints, Dead Reckoning position, Traffic Info, GLONASS, GNSS, RTK, GPS, and SBAS/GBAS,INS f. Media types: CD, DVD, CDDA, USB, SDCARD, Media Formats:MP3, WMV, RealAudio/Video, QTP, Architecture – Design Patterns - Proxies, Adaptors, Interfaces, Singleton, Factory method	4 hrs
Chapter No. Chapter 6: Communication Systems in Automobiles Automotive & Consumer Electronic Communication Systems: Introduction to Bluetooth – Pairing, HFP, A2DP, PAN, PBAP, DUN, Concepts of MOST network, DLNA, AVB, Concepts of TCP/IP, Ethernet, WiFi, WiFi Direct, MyWiFi and CAN, Mirror link, Tethering	

1. Ronald K. Jurgen, Infotainment systems, 2007, SAE International, 2007