Cours	se Code: 15EMDC701	Course Title: Failu	re Analysis and Design	
L-T-P	2: 4:0:0	Credits: 4	Contact Hrs: 4 / week	
CIE N	Aarks: 50	SEE Marks: 50	Total Marks: 100	
Teach	ing Hrs: 50		Exam Duration: 180 min	
No		Content		Hrs
1	Introduction: Role of failure prevention analysis in mechanical design, Modes of mechanical failure, Review of failure theories for ductile and brittle materials including Mohr's theory and modified Mohr's theory, Numerical examples.			06
2	Fatigue of Materials : Introductory concepts, High cycle and low cycle fatigue, Fatigue design models, Fatigue design methods, Fatigue design criteria, Fatigue testing, Test methods and standard test specimens, Fatigue fracture surfaces and macroscopic features, Fatigue mechanisms and microscopic features.			06
3	Surface Failure: Introduction, Surface geometry, Mating surface, Friction, Adhesive wear, Abrasive wear, Corrosion wear, Surface fatigue spherical contact, Cylindrical contact, General contact, Dynamic contact stresses, Surface fatigue strength.			08
4	Stress-Life (S-N) Approach: S-N curves, Statistical nature of fatigue test data, General S-N behavior, Mean stress effects, Different factors influencing S-N behaviour, S-N curve representation and approximations, Constant life diagrams, Fatigue life estimation using S-N approach.			06
5	Strain-Life (ε-N)approach : Monotonic stress-strain behavior ,Strain controlled test methods ,Cyclic stress-strain behavior ,Strain based approach to life estimation, Determination of strain life fatigue properties, Mean stress effects, Effect of surface finish, Life estimation by ε-N approach.		06	
6	Notches and their effects: Concentrations and gradients in stress and strain, S-N approach for notched membranes, mean stress effects and Haigh diagrams, Notch strain analysis and the strain – life approach, Neuber's rule, Glinka's rule, applications of fracture mechanics to crack growth at notches.		08	
7	Fatigue from Variable Amplitude Loading: Spectrum loads and cumulative damage, Damage quantification and the concepts of damage fraction and accumulation, Cumulative damage theories, Load interaction and sequence effects, Cycle counting methods, Life estimation using stress life approach.		05	
8	Load Determination: Loa loading, Beam loading.	ading classes, Load and	alysis, Vibration loading, Impact	05
 Me wiley Ma Fai 	ence Book: etal Fatigue in engineering, Ra Newyork, Second edition. 200 chine Design, An Integrated A)1. approach, Robert L. Norte al Design, Jack A Collins	mi, Robert .R. Stephens, Henry o. Fu on, Pearson. Second edition. 2000. , John Wiley & Sons; Second edition ess; Second edition. 1998.	

Cours	se Code: 15EMDC703	Course Title: Finit	te Element Practice in Machine Desi	ign	
L-T-F	P: 4:0:0	Credits: 4	Contact Hrs: 4 / week		
CIE N	Marks: 50	SEE Marks: 50	Total Marks: 100		
Teach	ning Hrs: 50		Exam Duration: 180 min		
No	Content		Hrs		
1	Introduction: Introduction to FEA, General FEM procedure, • Approximate solutions of differential equations: FDM method, W-R technique, collocation least square sub-domain and Galerkin method Numerical integration, Gauss quadrature in 2-D and 3-D, Structure of FEA program, Pre and Post processor, commercially available, standard packages, and desirable features of FEA packages, • Principal of minimum total potential, elements of variational calculus, minimization of functional, Rayleigh-Ritz method, Formulation of elemental matrix equation, and assembly concepts.			10	
2	 One Dimensional FEM: Coordinate system: Global, local, natural coordinate system, Shape functions: Polynomial shape functions, Derivation of shape functions, Natural co- ordinate and coordinates transformation, Linear quadratic and cubic elements, Shape functions using Lagrange polynomials. Convergence and compatibility requirement of shape functions, One dimensional field problems: structural analysis (step-bar, taper-bar), Structural analysis with temperature effect, Thermal analysis, heat transfer from composite bar, fins. 			10	
3	Two Dimensional FEM Trusses, Thermal effects in truss members, Beams, Two dimensional finite elements formulations, Three noded triangular element, Four-noded rectangular element, Four-noded quadrilateral element, derivation of shape functions: natural coordinates, triangular elements, and quadrilateral elements, Six-noded triangular elements, Eight-noded quadrilateral elements, Nine noded quadrilateral element, Strain displacement matrix for CST element			10	
4	Three dimensional elemen hexahedron, Three Dimension Three dimensional Truss(spac plasticity (Von-Mises Plastic	ts: Tetrahedron, Re nal polynomial shape fu ce trusses), Introduction ity), Hyper –elasticity.	ctangular prism (brick), Arbitrary inctions, Natural co-ordinates in 3D, a to material models: Introduction to Generating and using experimental rces of errors, method of elimination,	10	
5	 Penalty Method, Lagrange methods, Multipoint Constraints, Concept of Master/Slave entities, Examples of Contact problems, Iso-parametric concepts, basic theorem, Iso-parametric, super-parametric, sub-parametric elements, Concept of Jacobian. Finite element formulation of Dynamics, application to free-vibration problems, Lump and consistent mass matrices, Eigen value problems, Transient dynamic problems in heat transfer and solid mechanics, Convergence, Impact of Mesh quality on convergence. 			10	
<i>Refer</i> 1. Rec 2. S.S 3. Dec 4. Tir 5. Da 6. Ket	parametric, super-parametric, Finite element formulation of and consistent mass matrices, transfer and solid mechanics, ence Book: ddy J. N., "Finite Element Meth S.Rao, "The Finite Element Meth sai and Abel, "Introduction to F upati R. Chandrupatla and Ashe vid Hutton, "Fundamentals of I	sub-parametric element f Dynamics, applicatio Eigen value problems, <u>Convergence, Impact o</u> od", McGraw-Hill hod in Engineering", 4 inite Elements Method ok D.Belegundu, "Intro Finite Element Analysi	tts, Concept of Jacobian. n to free-vibration problems, Lump Transient dynamic problems in heat of Mesh quality on convergence. th Edition, Academic Press, Elsevier s", CBS Publication duction to Finite Elements in Enginee	ring"	

Cours	e Code: 15EMDC705	Course Title: Dy	namics and Mechanism design		
L-T-P	2: 4:1:0	Credits: 5	Contact Hrs: 6 / week		
CIE N	Aarks: 50	SEE Marks: 50	Total Marks: 100		
Teach	ing Hrs: 50		Exam Duration: 180 min		
No		Content		Hrs	
1	Geometry of Motion: Introduction, analysis and synthesis, Mechanism terminology, planar, Spherical and spatial mechanisms, mobility, Grashoffs law, Equivalent mechanisms, Unique mechanisms, Kinematic analysis of plane mechanisms: Auxiliary point method using rotated velocity vector, Hall - Ault auxiliary point method, Goodman's indirect method.			08	
2	Synthesis of Linkages: Type, number, and dimensional synthesis, Function generation, Path generation and Body guidance, Precision positions, Structural error, Chebychev spacing, Two position synthesis of slider crank mechanisms, Crank-rocker mechanisms with optimum transmission angle Motion Generation: Poles and relative poles, Location of poles and relative poles, polode, Curvature, Inflection circle.			10	
3	Graphical Methods of Dimensional Synthesis: Two position synthesis of crank and rocker mechanisms, Three position synthesis, Four position synthesis (point precision reduction) Overlay method, Coupler curve synthesis, Cognate linkages.			08	
4	Analytical Methods of Dimensional Synthesis: Freudenstein's equation for four bar mechanism and slider crank mechanism, Examples, Bloch's method of synthesis, Analytical synthesis using complex algebra.			06	
5	Spatial Mechanisms: Introduce analysis, Eulerian angles	ction, Position analysis	s problem, Velocity and acceleration	04	
6	Generalized Principles of Dynamics: Fundamental laws of motion, Generalized coordinates, Configuration space, Constraints, Virtual work, principle of virtual work, Energy and momentum, Work and kinetic energy, Equilibrium and stability, Kinetic energy of a system, Angular momentum, Generalized momentum.			10	
7		s principle, Lagrange's	D'Alembert's principles, Examples, , equation from Hamiltons principle,	04	
1. Th 2. Ma 3. Gre 4. Erd	ence Book: neory of Machines and Mechanis chines and Mechanisms - David cenwood "Principles of Dynamics Iman Sandor "Advanced Mechan ni A.H "Mechanism synthesis and	H. Myszka, PearsonEd s", Prentice Hall of Ind ism Design" Prentice	lucation, 2005. lia, 1988. Hall.		

Cours	e Code: 15EMDC706	Course Title: The	eory of Vibrations with Application	
L-T-P	2: 4:0:0	Credits: 4	Contact Hrs: 4 / week	
CIE M	Aarks: 50	SEE Marks: 50	Total Marks: 100	
Teach	ing Hrs: 50		Exam Duration: 180 min	
No	Content			Hrs
1	Fundamentals of Vibration Importance of the Study of Vibration; Basic Concepts of Vibration-Vibration, Elementary Parts of Vibrating Systems, Number of Degrees of Freedom, Discrete and Continuous Systems; Classification of Vibration-Free and Forced Vibration, Un-damped and Damped Vibration, Linear and Nonlinear Vibration, Deterministic and Random Vibration; Vibration Analysis Procedure; Harmonic Analysis-Fourier Series Expansion, Numerical Computation of Coefficients;			08
2	Free Vibration of Single-Degree-of-Freedom Systems Introduction; Free Vibration of an Un-damped Translational System- Equation of Motion Using Newton's Second Law of Motion, Equation of Motion Using Other Methods, Equation of Motion of a Spring-Mass System in Vertical Position, Solution, Harmonic Motion; Free Vibration of an Un-damped Torsional System-Equation of Motion, Solution; Free Vibration with Viscous Damping-Equation of Motion, Solution, Logarithmic Decrement, Energy Dissipated in Viscous Damping, Torsional Systems with Viscous Damping, Solution;			08
3	Harmonically Excited Vibration Introduction; Equation of Motion; Response of an Undamped System under Harmonic Force-Total Response, Beating Phenomenon; Response of a Damped System under Harmonic Force- Total Response, Quality Factor and Bandwidth; Response of a Damped System Under Damped System Under the Harmonic Motion of the Base- Force Transmitted, Relative Motion; Response of a Damped System Under Rotating Unbalance;			10
4	Two-Degree-of-Freedom Systems Introduction; Equations of Motion for Forced Vibration; Free Vibration Analysis of an Un- damped System; Torsional System; Coordinate Coupling and Principal Coordinates;		04	
5	damped System, Forsional System, Coordinate Coupling and Trincipal Coordinates, Forced-Vibration Analysis; Semi definite Systems;Multi degree-of-Freedom Systems- Determination of Natural Frequencies and Mode ShapesIntroduction; Influence Coefficients-Stiffness Influence Coefficients, Flexibility Influence Coefficients, Inertia Influence Coefficients; Dunkerley's Formula; Rayleigh s Method- Properties of Rayleigh s Quotient, Computation of the Fundamental Natural Frequency, Fundamental Frequency of Beams and Shafts; Holzer's Method- Torsional Systems, Spring-Mass Systems; Matrix Iteration Method-Convergence to the Highest Natural Frequency, Computation of Intermediate Natural Frequencies, Jacobi s Method, Standard Eigenvalue Problem-Choleski Decomposition;			10
6	Source; Control of Vibration Vibration Isolation-Vibration	; Control of Natural Free Isolation System with I	riteria; Reduction of Vibration at the equencies; Introduction of Damping; Rigid Foundation, Vibration Isolation with Flexible Foundation, Vibration	06

	Isolation System with Partially Flexible Foundation, Shock Isolation, Active Vibration Control; Vibration Absorbers- Undamped Dynamic Vibration Absorber, Damped Dynamic Vibration Absorber;	
	Nonlinear Vibration	
7	Introduction; Examples of Nonlinear Vibration Problems-Simple Pendulum, Mechanical Chatter, Belt Friction System, Variable Mass System; Exact Methods, Approximate Analytical Methods-Basic Philosophy, Lindstedt s Perturbation Method, Iterative Method, Ritz-Galerkin Method, Subharmonic and Superharmonic Oscillations- Subharmonic Oscillations, Superharmonic Oscillations; Systems with Time-Dependent Coefficients (Mathieu Equation); Stability of Equilibrium States-Stability Analysis, Classification of Singular Points, Limit Cycles	04
Refere	nce Book:	
1.	Mechanical Vibrations, - S. S. Rao., fourth edition, Pearson Education, 2005.	
2.	Theory of Vibration with Application, - William T. Thomson, Marie Dillon Dahleh, Fif	th edition,
	Pearson Education, 2003.	
3.	Mechanical Vibrations-S Graham Kelly, Adapted by: Shashidhar K Kudari, Schaum's out	ines, The
	McGraw-Hill Companies, 2007.	
4.	Vibrations Problem Solving Companion- Rao V. Dukkipti, J. Srinivas, Narosa, 2007	
5.	Mechanical Vibration Practice with Basic Theory- V. Ramamurti, Narosa, 2000	

Cours	ourse Code: 15EMDC801 Course Title: Machine Tool Design and Analysis			
L-T-P	2: 4:0:0	Credits: 4	Contact Hrs: 4 / week	
CIE N	Aarks: 50	SEE Marks: 50	Total Marks: 100	
Teach	ing Hrs: 50		Exam Duration: 180 min	
No		Content		Hrs
1	Machine design fundamentals, CAD tools-Training on modeling & drafting practice, Limits ,fits & tolerance, Materials & Heat treatment, Metal cutting Theory, CNC Machine Tools and Trends, M/c Design exercise, Design of Spindle Assembly, Design of Spindle Assembly with work holding, Design of hydraulics, Design of X & Z axis assembly of CNC Lathe, Ball Screw & L M guide ways, Design of X & Z Axes assembly, Overall machine Design, FEA approach, Manufacturing drawing, Power requirement Calculations & Controller Selection, Electrical switch gear elements, PLC Programming and Ladder Diagram, Electrical diagram, Vibration analysis, Final Test & evaluation.			50
	ence Book:		U.1. 1000	
1. 2.	 CMTI Machine Tool Design I Design of Machine Tools by S 			
3.	Fanuc drives, spindle motors	and servo motors.		
4.	. Material prepared and compile	ed by Mechanical Enginee	ring department (Machine Design).

Course Code: 15EMDI801	Course Title:	Internship/Industrial Training [#]
L-T-P: 0-0-2	Credits: 2	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
		Exam Duration: 120 min
	Content	

Each student has to undergo internship/industrial training for a period of 6 weeks at a reputed industry/R&D institution after the completion of III semester ESA. At the organization where the student is undergoing training, the student shall be assigned to work under the supervision of a Project Supervisor assigned for this purpose by the Head of the Department / institution. Student is expected to learn about the organization where the student is undergoing training in terms of its vision, mission, objectives, organizational structure, operations etc. At the end of the training, student must submit a report based on training.

The Project Supervisor at the industry shall award In Semester Assessment (ISA) marks out of a maximum of 50. The Department will conduct the End Semester (ESA) for a maximum of 50 marks.

Course Code: 15EMDW801	Course Title:	Minor Project/Project Work Phase I ^{*#}			
L-T-P: 0-0-8	Credits: 8				
ISA Marks: 50	ESA Marks: 50	Total Marks: 100			
		Exam Duration: 120 min			
Contents					

Minor Project: The Guide shall define the problem statement for the Project work. The student shall execute the Minor Project within three months duration during the 3rd semester. The student who has opted **Minor Project** shall opt **Major Project** in IV semester. However, Minor Project is independent of Major Project.

Project Work Phase I:

Student must select a research project in consultation with the Guide. Student should identify the problem and conduct an exhaustive literature survey in Project Work Phase I and shall continue the project in IV semester in Phase II. Student has to submit the report at the end of the III Semester based on the following:

- Back ground and significance of the Research Project
- Problem statement
- Objectives and scope of the project
- Literature review
- Methodology
- Future plan of action

Course Code: 15EMDW802	Course Title:	Major Project/Project Work Phase II*
L-T-P: 0-0-20	Credits: 20	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
		Exam Duration: 180 min
	Contents	

The student who has opted **Minor Project** should opt **Major Project** in IV semester. The **Major Project** shall be carried out by the student under the supervision of guide for a period of 6 months. For successful completion of this course the student should be able to identify the problem, define the objectives of the work as specific points indicating the scope within which the work is to be carried out, conduct the comprehensive literature survey, demonstrate the use of methodology adopted, analyze and interpret the experimental/numerical results obtained.

Project Work Phase II:

The student who has opted Project Work Phase I shall continue the project in IV semester in Phase II.

Phase II is assessed based on the following:

- Quality of literature survey and demonstration of creativity in the research problem
- Clarity in the objectives and scope of the research
- Clarity in the problem definition and feasibility in the problem solution
- Relevance to the current research/industrial trends
- Quality of work
- Analysis and Interpretation of results
- Quality of oral and written presentation
- Publication based on the research work in reputed national/international conference/journal.

Course	e Code: 17EMDP701	Course Title: Finite	e Element Analysis Lab	
L-T-P:	0-0-1	Credits: 1	Contact Hrs: 2 hrs / w	veek
ISA M	larks: 80	ESA Marks: 20	Total Marks: 100	
Teachi	ing Hrs: 24		Exam Duration: 120 n	nin
		Content		Hrs
4	Modeling of any automotive e and three dimensional. Static analysis of above mode elements and materials. Non-Linear Analysis of 3D m	elled component using odel created for any po	different possible types of	
	viz -Geometric, Material, and Dynamic Analysis of 3D mod different Boundary Conditions	el created by Modal or	Harmonic or Transient for	24
\triangleright	Thermal analysis of 3D model			
	Fatigue Analysis & Fatigue lif			
	Using theoretical concepts val Report to be submitted in the		alysis to be carried out.	
,	Materials and Resources Reg			
1.	Nitin S. Ghokale, Sanjay De Vikas Book house, Pune, 2008	eshapande, Sanjeev Be	edekar, "Practical Finite Ele	ement Analysis",
2.	 2008 Sham Tickoo, "Ansys Workbench 14.0 for Engineers and Designers-, A Tutorial Ap Tech Press, 2013 			pproach", Dream
3.	Liu G. R. and Quek S. S., "Th 2014.	ne Finite Element Meth	nod" A practical Course, 2 nd	Edition, Elsevier,
4.	http://148.204.81.206/Ansys/1	50/ANSYS%20Mecha	nical%20Users%20Guide.pd	<u>f</u>
5.	http://abaqus.software.polimi.	it/v6.12/pdf_books/CA	E.pdf	

Cours	e Code: 17EMDC707	Course Title: Fra	acture Mechanics		
L-T-P	: 4-0-0	Credits: 4	Contact Hrs: 4 hrs / week		
ISA N	Iarks: 50	ESA Marks: 50	Total Marks: 100		
Teach	ing Hrs: 50		Exam Duration: 180 min		
No		Content		Hrs	
1	Introduction: History and overview, Fundamental concepts, Fracture mechanics in Metals, Ductile fracture, Cleavage, The Ductile-Brittle transition, Inter-granular fracture, Modes of Fracture Failure;			04	
2	Energy Release Rate: Introduction, The Griffith energy balance, The energy release rate, Instability and the R-Curve, Thin plate vs Thick plate, Critical Energy release rate;			06	
3	Stress Intensity Factor: Introduction, Stress analysis of cracks, The stress Intensity Factor, Relationship between K and Global behavior, Effect of Finite size, Principle of superposition, Weight Functions, Relationship between K and G, Crack tip plasticity, Plane stress versus plane strain, K as a failure criterion, Mixed mode fracture			08	
4	Elastic Plastic Fracture Mechanics: Crack tip opening displacement, The J Contour Integral, Relationships between J and CTOD, Crack growth resistance curves, J-controlled fracture, Crack tip constraint under large scale yielding, HRR field;			08	
5	Mixed Mode fracture: A simple Elliptical Model, Maximum Tensile Stress Criterion, Strain Energy Density Criterion, Maximum Energy Release Rate Criterion, Experimental Verifications;			04	
6	Fracture Toughness testing of metals: General Considerations, K _{IC} testing, K-R Curve testing, J testing of metals, CTOD testing, Dynamic and crack arrest toughness, Fracture testing of weldments.			06	
7	Fatigue Crack Propagatio Similitude in fatigue, Empi amplitude loading and retar	rical fatigue crack growth dation, Growth of short c	equations, Crack Closure, Variable racks, Micro-mechanisms of fatigue, Damage Tolerance.	08	
8	 Experimental measurement of fatigue crack growth, Damage Tolerance. Dynamic and Time-Dependent Fracture Dynamic Fracture and Crack Arrest, Rapid Loading of a Stationary Crack, Rapid Crack Propagation and Arrest, Crack Speed, Elasto dynamic Crack-Tip Parameters, Dynamic Toughness, Crack Arrest, Dynamic Contour Integrals, Creep Crack Growth, The C* Integral, Short-Time vs. Long-Time Behavior, The Ct Parameter , Primary Creep 			06	
	ence Book:			lition	
1. 2. 3.	1995. Prashant Kumar, "Element Delhi, 2010.	s of Fracture Mechanics'	and Applications", CRC Press, 2 nd Ed		

Cours	se Code: 17EMDE707	Course Title: Mec	hanical Behavior of Materials	
L-T-F	P: 4-0-0	Credits: 4	Contact Hrs: 4 hrs / week	
ISA N	Marks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ning Hrs: 50		Exam Duration: 180 min	
No		Content		Hrs
1	Introduction: Materials in design , The evolution of engineering materials , Fundamental Characteristics of Composites, Interfaces in Composites, Fracture in Composites, , Functionally Graded Materials. Macro Mechanics of a Lamina: Hooke's law for different types of materials, Number of elastic constants, Derivation of nine independent constants for orthotropic material, Two - dimensional relationship of compliance and stiffness matrix. Hooke's law for two- dimensional angle lamina, engineering constants - Numerical problems. Invariant			10
2	properties. Numerical problems.Plastic Deformation and Dislocation Theory: Lattice defects, deformation in a perfectlattice, dislocation in crystal and deformation, strain hardening of single crystal, low anglegrain boundaries, Stress field of a dislocation, forces between dislocations, dislocationclimb and jog, interaction with vacancy and impurity. Multiplication of dislocation andpile-up; Plastic Deformation in Tension, Plastic Deformation in Compression Testing,Plastic Deformation of Polymers			10
3	Plastic Deformation of Polymers.Behavior under Tensile loading:Engineering and true stress-strain curves, yield point and strain ageing, strength coefficient and strain hardening exponent, necking or instability in tension, Effect of gauge length on strength and elongation, Effect of strain rate and temperature on tensile properties. Yield point phenomenon. Fracture under tension and torsion; Solid-Solution Strengthening, Mechanical Effects Associated with Solid Solutions.			10
4	characteristics. Fatigue testin	g and testing machines contact under pressur	e, fatigue curve, fatigue fracture , determination of fatigue strength. e. Under stressing, coaxing and	10
5	Deformation under high ten Creep strain and creep-time cu Fracture at elevated tempera Polymers, Heat-Resistant M	apperature and Superp arves, low temperature a ature, Stress rupture, aterials, Superplasticity	lasticity of Metals : and high temperature creep theories. Creep-Induced Fracture, Creep in y, Creep parameters and practical d materials for high temperature	10

Reference Book:

- 1. Marc Andre Meyers and Krishan Kumar Chawla: "Mechanical Behavior of Materials", Cambridge University Press, 2nd Edition 2008.
- 2. Norman Dowling, "Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture and Fatigue", Prentice Hall, 4th Edition 2012.
- 3. G.E. Dieter: "Mechanical Metallurgy". McGraw-Hill, 3rd Edition 1988.
- 4. Keith Bowman, "Mechanical Behavior of Materials", Wiley international edition, 2003.
- 5. Thomas Courtney, "Mechanical Behavior of Materials", Waveland Press Inc; 2nd Edition, 2005.
- 6. J. Roesler, H. Harders, M. Baeker, "Mechanical Behavior of Engineering Materials", 1st Edition, Springer, 2007
- 7. Ŵ.F. Hosford, "Mechanical Behavior of Materials", 2nd Edition, Cambridge University Press, 2009.

Course Code: 18EMDP701	Course Title: CAD	Course Title: CAD Modelling Lab		
L-T-P: 0-0-5	Credits: 5 Contact Hrs: 10 hrs / week			
ISA Marks: 80	ESA Marks: 20	Total Marks: 100		
		Exam Duration: 02 hrs		
	Content		Hrs	
 Introduction to CAD / CAM / CAE Software's Brief introduction to CATIA Software and Industrial applications Introduction to Work benches Brief introduction on Sketcher work bench environment Structure of users and saving of files. Part Design Generative Sheet Metal Design (GSMD) Workbench Assembly Design Workbench Drafting Workbench 			120	
	ol of Mechanical Engineer	ng, KLETU-Hubballi. Designers-,A Tutorial Approach",C	AD CIM	

Course Co	ode: 18EMDP702		Course Title: Advanced CAE	
L-T-P: 0-0	-3	Credits: 3	s: 3 Contact Hrs: 6 hrs/wee	
ISA Marks	s: 80	ESA Marks: 20	Total Marks: 80	
Teaching I	Hrs: 120		Exam Duration: 2 hrs	
Sl. No.		Contents	No of Slots	
01	Over View of Abaqus A First Look at Abaqus Linear Static Analysis		02	
02	Working with Geome Working with Native C Creating Native Geome	eometry	01	
03	Working with Geometry (Part 2) Generating a Shell From a Thin Solid Import and Geometry Repair of Intersecting Pipes Importing and Editing an Orphan Mesh Importing and Editing an Orphan Mesh: Pump Model		02	
04	Material and Section Creating Materials and Material and Section Pr Material and Section Pr	Assigning Sections operties: Pipe Creep Model	01	
05	Assemblies in Abaques Creating an Assembly Pump Model Assembly		01	
06	Steps, Output, Loads, Creating Steps Using the Load Module Step Definition and Lo Step Definition and Lo	ads: Pipe Creep Model	01	
07	Meshing Imported and Native Geometry Using the Mesh Module01Structured Hex Meshing: Pipe Creep Model Free and Swept Meshing: Pump Model Meshing of Intersecting Pipes01		01	
08	Job Management and Using the Keywords Ed Creep of a Pipe Intersed	litor	01	
	1	Linear and Nonlinear Problems		

	Analysis Procedures (Part 1)	
	Nonlinear Static Analysis	
09	Linear Analysis of a Skew Plate	02
	Nonlinear Analysis of a Skew Plate	
	Analysis Procedures (Part 2)	
10	Multiple Load Cases	02
10	Linear Static Analysis of a Cantilever Beam	02
	Analysis Procedures (Part 3)	
11	Dynamic Analysis of a Skew Plate	02
11	Pipe Whip Analysis	02
	Analysis Continuation Techniques	
12	Unloading Analysis of a Skew Plate	01
	Constraints and Connections	
13	Defining a Rigid Body	01
15	Tie Constraints: Pump Model	01
	Contact	
14	Using Automatic Contact Detection and General Contact	02
14	Nonlinear Static Analysis of a Pump Assembly	02
	Total	20
15	Case studies and Various analysis of components (Both created and imported models)	60
Referenc	e books:	
1. M	laterial prepared by School of Mechanical Engineering, KLETU-Hubballi.	
	itin S. Gokhale, Sanjay S Deshpande, Sanjeev V Bedekar, Anand N thite, "Practic inite To Infinite, 2008.	cal Finite Element Analysis
	ryan J Mac Donald "Practical Stress Analysis with Finite Elements", 2nd Edition,	Glasnevin Publishing, 201
4. A	bagus 6.14 documentation. http://abagus.software.polimi.it/v6.14/ind	ex.html

- 4. Abaqus 6.14 documentation, <u>http://abaqus.software.polimi.it/v6.14/index.html</u>
 5. http://ivt-abaqusdoc.ivt.ntnu.no:2080/v6.14/pdf_books/CAE.pdf

Course Code:19EMDC701	Course Title: Computational Met	thods in Engineering	g Analysis
L-T-P: 3-1-0	Credits: 4		Contact Hrs: 5
ISA Marks: 50	ESA Marks: 50	То	tal Marks: 100
Teaching Hrs: 40		Exam I	Duration: 3 hrs
	Contents		Hrs
1.Approximations and round off errors:Significant figures, accuracy and precision, error definitions, round off errors and truncation errors.Mathematical modelling and Engineering problem solving: Simple mathematical model, Conservation Laws of Engineering.			06
e 1	method, Bisection method, False nt Method. Multiple roots, Simple fin		06
3.Roots of polynomial - Polynomials in Engineering and Roots Squaring Method.	Science, Muller's method, Bairstow	's Method Graeffe's	06
-	drature Integration formulae, integr Differentiation Applied to Engineer		06
Introduction, Direct methods, Cu	Equations and Eigen Value Problem ramer's Rule, Gauss Elimination Me rization method, Cholesky Method s, iteration Methods.	ethod, Gauss-Jordan	06
6.Eigen values and Eigen Vectors: Bounds on Eigen Values, Jacobi method for symmetric matrices, Givens method for symmetric matrices, Householder's method for symmetric matrices, Rutishauser method for arbitrary matrices, Power method, Inverse power method.			05
Models in Science and Engg.	mation, The matrix of Linear Tran	nsformation, Linear	05
 S.S.Sastry, Introductory Steven C. Chapra, Raym Ed, 2002. M K Jain, S.R.K Iyenga New Age International Pervez Moin, Fundament 	ced Engineering Mathematics, 10 th E Methods of Numerical Analysis, PH ond P.Canale, Numerical Methods f r, R K. Jain, Numerical methods fo l, 2003. ttals of Engineering Numerical Analy lgebra and its applications, 3 rd editio	II, 2005. for Engineers, Tata M r Scientific and engg ysis, Cambridge, 2014	cgraw Hill, 4 th computation, 0.

Course Code: 19EMDE702	Course Title: Mechanic	es of Solids	
L-T-P: 4-0-0	Credits: 4	Contac	t Hrs: 5
ISA Marks: 50	ESA Marks: 50	Total Mar	ks: 100
Teaching Hrs: 50		Exam Duratio	n: 3 hrs
	Contents		hrs
stress components, stress compo	nents on an arbitrary plane, ipal stresses, Mohr's circle	state of stress at a point, rectangular equality of cross shears, differential s for the three-dimensional state of nd pure shear states.	07
		te of strain at a point, strain tensors, r strain tensors, octahedral strains,	07
	ss-strain relations for isotrain components to stress	cropic materials, transformation of components, relations between the eorem.	06
problems by the use of polynor	problems, Airy's stress fun nials, pure bending of a be apported beam subjected to	ction, solution of two-dimensional am, bending of a narrow cantilever point load and uniformly distributed	07
	equation, stress distribution es, thick-walled cylinders,	n symmetrical about an axis, strain rotating disks of uniform thickness,	07
6. Torsion of Prismatic Bars Introduction, general solution of triangular cross section bar, men	-	of circular, elliptical and equilateral nin tubes.	06
		cular disk; temperature symmetrical the beams due to thermal loading.	05
	and Von Mises yield criteria	stic deformation, strain hardening, , discussion of plasticity conditions,	05

Reference Books:

- 1. L S Srinath, Advanced Mechanics of Solids, 3rd Edition, Tata Mcgraw Hill Company, 2009.
- 2. T.G. Sitharam and L. Govindaraju, Elasticity for Engineers, I K International Publishing House, 2016.
- 3. Dr. Sadhu Singh, Theory of Plasticity and Metal Forming Process, 3rd Edition, Khanna Publishers, 2011.
- 4. J. Chakraborty, Theory of Plasticity, 3rd Edition, Butterworth-Heinemann, 2006.