Syllabus

Course Content			
Course Code: 15EEEC201 Course Title: Circuit Analysis			
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 50	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 50		Exam Duration: 3 hrs	

Content	Hrs
Unit - 1	
Chapter No. 1.Network Equations Source Transformation, Star Delta transformation, Nodal Analysis, Super node, Mesh Analysis, Super mesh, Duality, Network Topology, Tie Set and Cut Set matrix formulation, Dot convention.	8 hrs
Chapter No. 2.Network Theorems Homogeneity, Superposition and Linearity, Thevenin's & Norton's Theorems, Maximum Power Transfer Theorem, Milman's theorem, Reciprocity principle, Application of theorems to both ac and dc networks	8 hrs
Chapter No. 3.Sinusoidal Steady state analysis Characteristics of sinusoids, Forced response to sinusoidal functions, The complex forcing function, Phasors & Phasor diagrams.	4 hrs
Unit - 2	
Chapter No. 4.First order circuits Order of a system, Concept of Time constant, System Governing equation, System Characteristic equation, Basic RL & RC circuit, Transient response with initial conditions, Frequency response characteristics, R-C, R-L circuits as differentiator and integrator models, time and frequency domain responses R-C, R-L circuits as Low pass and high pass filters	8 hrs
Chapter No. 5.Higher order circuits Higher order R-C, R-L, and R-L-C networks, time domain and frequency domain representation, Series R-L-C circuit, Transient response, Damping factor, Quality factor, Frequency response curve, Peaking of frequency curve and its relation to damping factor, Resonance Parallel, R-L-C circuit, Tank circuit, Resonance, Quality factor and Bandwidth	12 hrs
Unit - 3	
Chapter No. 6.Two Port Networks Two port variables, Z,Y, H,G, A- Parameter representations, Input and output impedance calculation, Series, Parallel and Cascade network connections, and their (suitable) models.	5 hrs
Chapter No. 7.Polyphase Circuits Polyphase systems, Single Phase three wire system, Three phase Y-Y connection, Delta connection, Analysis of balanced & unbalanced three phase circuits.	5 hrs

Syllabus

Text Book (List of books as mentioned in the approved syllabus)

- 1. W H Hayt, J E Kemmerly, S M Durban, Engineering Circuit Analysis, 6th, McGraw Hil, 2006
- 2. M E. Van Valkenburg, Network Analysis, 3rd, Pearson Ed, 2006

- 1. Joseph Edminister, Mahmood Nahavi, Electric Circuits, 3rd, Tata McGra, 1991
- 2. Bruce Carlson, Circuits, 3rd, Thomson Le, 2002
- 3. V. K. Aatre, Network Theory and Filter Design, 2nd, Wiley West, 2002
- 4. Anant Agarwal and Jeffrey H Lang, Foundations of Analog & Digital Electronics Circuits, 3rd, Morgan Kau, 2006
- 5. Muhammad H . Rashid, Introduction to PSPICE using OrCAD for circuits and Electronics, 3rd, Pearson Ed, 2005

Creating Value Leveraging Knowledge

Credits: 4

Course Title: Analog Electronic Circuits

KLE TECH.

L-T-P-SS: 4-0-0

Department of Electrical & Electronics Engineering

Syllabus

Course Code:15EEEC202
Contact Hours: 4Hrs/week
Total Marks: 100

CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hours: 50Hrs	Examination Duration	n: 3Hrs	
	Unit I		
Chapter 1: Applications of	f a Junction diode:		06Hrs
Recap of piece-wise linear	r model, constant volta	ge drop model, ideal diode model, small	
signal model. Applications	s of diodes as a Clippi	ng circuit and clamping circuits Voltage	
doubler.	11		
Chapter 2: MOSFETs st	ructure and physical o	peration: Device structure, operation with	12 Hrs
no gate voltage, creating a	channel for current flow	w, applying small vds, operation as vds is	
increased derivation of the	id-vds relationship, the	P-channel mosfet complementary mos or	
cmos operating the mos tra	ansistor in the sub thresh	old region. Current-voltage characteristics:	
circuit symbol the id	vs vds characteristics	finite output resistance in saturation	
characteristics of the p-cha	nnel mosfet the role of	the substrate-the body effect temperature	
effects breakdown and inpu	ut protection MOSEET (circuits at DC	
circets, breakdowir and inpe	<u>Init II</u>		
Chanter 3. Current mirro	rs		08 Hrs
Resignment mirror, Widler Cascode, and Wilson: Output impedance and Voltage swing			00 1115
Chapter 4: MOSEET amp	lifions.	. Output impedance and voltage swing.	
Diaging in MOS amplification	milers:	operation and models single stage mas	12 Hrs
Blashing in MOS amplifier	f circuits, siliali signal	bish fusion and models, single stage mos	12 HIS
amplifiers, the MOSFET internal capacitance and high frequency model, frequency response			
of CS amplifier.(CD and CC	J), Cascode Connection:	Implications on gain and Bandwidth	
	Unit III		0.4.77
Chapter 5: Feedback Am	plifiers : General feedb	ack structure (Block schematic), Feedback	06 Hrs
desensitivity factor, positi	ive and negative feedba	ck Nyquist stability Criterion, RC phase	
shift oscillator, wein bridg	ge oscillator, merits of	negative feedback, feedback topologies:	
series-shunt feedback ampl	lifier, series-series feedb	ack amplifier, and shunt-shunt and shunt-	
series feedback amplifier w	ith examples		
Chapter 6: Large Signal A	Amplifiers :		06 Hrs
Classification of amplifiers	S: $(A, B, AB \text{ and } C);$	Transformer coupled amplifier, push-pull	
amplifier Transistor case an	d heat sink.	_	
Text Books			

- 1. A.S. Sedra & K.C. Smith, "Microelectronic Circuits", 5th Edition, Oxford Univ. Press, 1999.
- 2. Jacob Millman and Christos Halkias, "Integrated Electronics", McGraw Hill,

- 1. David A. Bell, "Electronic Devices and Circuits" 4thedition, PHI publication 2007.
- Grey, Hurst, Lewis and Meyer, "Analysis and design of analog integrated circuits," 4thedition.
- 3. Thomas L. Floyd, "Electronic devices", Pearson Education, 2002
- 4. Richard R. Spencer & Mohammed S. Ghousi, "Introduction to Electronic Circuit Design", Pearson Education, 2003
- 5. J. Millman & A. Grabel, "Microelectronics"-2nd edition, McGraw Hill, 1987.
- 6. Behzad Razavi, "Fundamentals of Microelectronics", reprint 2015 Wiley publications.

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008	Document #: FMCD2005	Rev: 1.0	
Department of Electrical & Electro	nics Engineering			
Syllabus				
Course	e Content			
Course Code: 15EEEC203	Course Title: Di	gital Electron	ics	
L-T-P: 4-0-0	Credits: 4	Con	tact Hrs: 40	
CIE Marks: 50	SEE Marks: 50	Tota	l Marks: 100	
Teaching Hrs: 50		Exa	n Duration: 3	hrs
Cc	ntent			11.5
Chapter 1: Logic Families:				
Logic levels, output switching times, fan-in and fan-o	ut, comparison of	logic families		03Hrs
	-			
Chapter 2: Principles of Combinational Logic: Definition of combinational logic, canonical forms, G tables, Karnaugh maps-3,4 variables, Incompletely sp terms), Simplifying Maxterm equations, Quine-McClu McCluskey using don't care terms, Decimal method, 1	eneration of switc ecified functions(I skey minimization Reduced Prime Im	hing equations Don't care 1 technique- Qu plicant Tables	from truth uine-	08 Hrs
Chapter 3: Analysis and design of combinational log General approach, Decoders-BCD decoders, Encoders Boolean function generators. Adders and subtractors- adders, Binary comparators.	ic: s, Digital multiple: Cascading full add	xers- Using mu lers, Look ahea	lltiplexers as d carry	09 Hrs
Unit II				
Chapter 4: Flip Flops and its applications: Basic Bistable Element, Latches, A SR Latch, Applica SR Latch, The gated SR Latch, The gated D Latch, Th Flip-Flops): The Master-Slave SR Flip-Flops, The Ma Flip-Flop: The Positive Edge-Triggered D Flip-Flop, I Characteristic Equations.	ation of SR Latch, ne Master-Slave Fl aster-Slave JK Flip Negative-Edge Tri	A Switch De b lip-Flops (Puls p-Flop, Edge Th iggered D Flip-	oouncer, The e-Triggered riggered ·Flop;	
				10Hrs
Chapter 5: Analysis of Sequential Circuits: Registers and Counters, Binary Ripple Counters, Sync Counters, Design of a Synchronous counters, Design of clocked JK Flip-Flops Design of a Synchronous Mod- Flops.	chronous Binary co of a Synchronous on Counter using c	ounters, Ring a Mod-n Counte locked D, T or	nd Johnson r using SR Flip-	10Hrs
Unit – II	Ι			
Chapter 6: Introduction to Sequential Circuit: Introduction to Sequential Circuit Design, Mealy and Synchronous Sequential Circuit Analysis, Constructio	Moore Models, St n of state Diagran	ate Machine no	otations, design.	05Hrs
Chapter 7: Introduction to Memories: Introduction and role of memory in a computer system memory, MROM, PROM, EPROM, EPROM, I NVRAM.	n, memory types a Random access	and terminolog memory, SRA	y, Read Only M, DRAM,	05Hrs

S KLE Technological	
KLE TECH. Creating Value Leveraging Knowledge	L

Syllabus

Text Book

- 1. Donald D Givone, Digital Principles and Design, Tata McGraw Hill Edition, 2002.
- 2. John M Yarbrough, Digital Logic Applications and Design, Thomson Learning, 2001.
- 3. M. Raffiquzzman&Rajan Chandra, Modern Computer Architecture, Galgotia Publications, 1990.
- 4. David Patterson and John Hennessy, Computer Organization and Design, Elsevier, 2007.

- 1. Charles H Roth, Jr; Fundamentals of Logic Design, Thomson Learning, 2004.
- 2. ZviKohavi, Switching and Finite Automata Theory, 2ed, TMH
- 3. Mono and Kim, Logic and Computer Design Fundamentals, Pearson, 2ed, 2001
- 4. David Harris Money and Sarah Harris, Digital Design and Computer Architecture, Morgan Kaufman, 2007.

-	KLE Technological
Ι.	Creating Value

KLE TECH

Department of Electrical & Electronics Engineering

Syllabus

Course Code: 15EEEC204	Course Title: Electrical Machine	s -I	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40)
CIE Marks: 50	SEE Marks: 50	Total Marks: 10	00
Teaching Hrs: 40		Exam Duration	: 3 hrs
	Content		Hrs
	Unit - 1		
Chapter No. 1 Magnetic Circuits and	Induction		
Introduction, Magnetic circuits, Magnetic	c Materials and Their Properties, Ma	gnetically	5 hrs
Induced EMF and Force, AC Operation of	of Magnetic Circuits, Hysteresis and	Eddy - Current	
Losses, Permanent Magnets, Application	of Permanent Magnet Materials.		
Chapter No. 2 Single Phase Transform	ners		
Introduction, Transformer Construction a	nd Practical Considerations, Transfe	ormer on No-	10 hrs
Load, Ideal Transformer, real Transformer	er and Equivalent Circuit, Transform	er Losses,	
Transformer Testing, The Per Unit System	m, Efficiency and Voltage Regulation	on, Excitation	
Phenomenon in Transformers, transformer	er as a Magnetically Coupled Circuit		
Autotransformers.			
	Unit - 2		
Chapter No. 3 Three Phase Transform	ner		
Three Phase transformers, Parallel operation of transformers, Three – Winding transformers,			5 hrs
Phase Conversion, Tap Changing Transformers, Voltage and Current Transformers.			
Chapter No. 4 Principles of Electromed	chanical Energy Conversion		6 hrs
Introduction, Energy in Magnetic System, Field Energy and Mechanical Force, Multiply –			
Excited Magnetic Field Systems, Forces/	Torques in Systems with Permanent	Magnets,	
Energy Conversion via Electric Field.			
Chapter No. 5 DC Generators			
Introduction, Armature Winding and Cor	nmutator, EMF and Torque, Circuit	Model,	4 hrs
Armature Reaction, Compensating Wind	ing, Commutation, Methods of Exci	tation, Operating	
Characteristics of dc generator, Self – Excitation, Characteristics of dc generator, Shunt			
Generator – Predetermination of External	Characteristic, Parallel Operation o	f dc generators,	
	Unit - 3		
Chapter No. 6 DC Motors			
Characteristics of dc Motors, Starting of	dc Motors, Braking of dc Motors, Ef	ficiency and	5 hrs
Testing, Testing of dc Machines, Perman	ent Magnet dc (PMDC) Motors, DC	Machine	
Applications, Starters.			
Chapter No. 6 Speed Control			
Speed control by varying armature circuit	t resistance, varying field current, va	rying armature	5 hrs
terminal voltage.			
Text Book:			
1. A E Fizgerald, Charles K	ingsley, Jr Stephen D. Umans,		

- Electric machinery , 6th edition, TMH, 2012.
- 2. D. P. Kothari and I. J. Nararath, Electrical Machines, 4, MGH, 2011
- 3. P. C. Sen, Principles of Electric Machines and Power Electronics, 2, John Wiley, 2001

References

1. Bhimbra, Principles of Electric machinery, 3, Khanna, 2006

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008	Document #: FMCD2005	D 10
Department of Electrical & Electronics Engineering			Kev: 1.0
Svllabus			

Cou	rse Title: Microcontroller A	rchitecture & Programming	Course Code:	
Т_Т	-D· 0-1-1	Cradits: 2	15EEEP201 Contact Hours:	
L-1	-1.0-1-1	Creans. 2	4Hrs/week	
CIE	Marks: 80	SEE Marks:20	Total Marks: 100	
Tea	ching + Lab. Hours: 48Hrs	Examination Duration:3 Hrs		
1.	Overview of Architecture of	f 8051:		02+02 Hrs
	 Processor Core and F 	unctional Block Diagram		
	Description of memo	ory organization		
	Overview of ALL SI	FR's and their basic functionality		
2.	Low Level programming (Concepts:		02+02 Hrs
	Addressing Modes			
	Instruction Set and A	ssembly Language programming(A	ALP)	
	Developing, Building	g, and Debugging ALP's		
3.	Middle Level Programmin	g Concepts:		04+04Hrs
	Cross Compiler			
	Embedded C languag	e implementation, programming, &	k debugging	
	Differences from AN	SI-C		
	Memory Models			
	Library reference			
	• Use of directives	• • • •		
	Functions, Parameter	passing and return types		04.0411
4.	On-Chip Peripherals Study	,Programming, and Application	:	04+04Hrs
	• Ports: Input/Output			
	• Timers & Counters			
	• UART			
~	• Interrupts			04.0411
5.	External Interfaces Study,	Programming and Applications :		04+04Hrs
	• LEDS			
	• Switches(Momentary	(N l l DCD l L L		
	• Seven Segment Displ	ay: (Normal mode, BCD mode, Int	ernal Multiplexing &	
	External Multiplexing	g) - fl	`	
	• LCD (801t, 401t, Busy Kaunad Matrix	Thag, custom character generation)	
6	Keypad Maurix	Drugia at Danalaman ant		00.0011.00
0.	Selective Discussion during	Project Development		08+08HIS
	• A/D & D/A COnverte	l Intor		
	• Stepper Motor, DC W	TOTOL		
	• ZIUDEE			
	Fthernet MAC			
1				

Syllabus

Text Book*Text Books*:

- 1. Kenneth J. Ayala ; "The 8051 Microcontroller Architecture, Programming & Applications" 2e, Penram International, 1996 / Thomson Learning 2005
- 2. Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinlay; "The 8051 Microcontroller and Embedded Systems using assembly and C "- PHI, 2006 / Pearson, 2006

References Books:

- 1. Predko ; "Programming and Customizing the 8051 Microcontroller" -, TMH
- 2. Raj Kamal, "Microcontrollers: Architecture, Programming, Interfacing and System Design", Pearson Education, 2005
- 3. Ajay V.Deshmukh; "Microcontrollers- Theory and Applications", TMH, 2005
- 4. Dr.RamaniKalpathi and Ganesh Raja; "Microcontroller and its applications", Sanguine Technical publishers, Bangalore-2005

Syllabus

Course Title: Analog Electronics Laboratory		Course Code: 15EEEP202
L-T-P: 0-0-1	Credits: 1	Contact Hours: 2Hrs/week
CIE Marks: 80	SEE Marks: 20	Total Marks: 100
Laboratory Hours: 28Hrs	Examination Duration: 3Hrs	

List of Experiments:

- 1. Design & Testing of Diode Clipping (single/double ended) circuits
- 2. Design & Testing of Clamping circuits for Positive and Negative Clamping.
- 3. Design of RC Coupled single stage FET/BJT amplifier & determination of the gain frequency response, I/P & O/P impedance.
- 4. MOSFET characteristics
- 5. Design of single stage CS (MOSFET) amplifier & determination of the gain frequency response.
- 6. Design of source follower using MOSFET.
- 7. Design and testing Current mirror circuit MOSFET

8. Design of two stage voltage series feed-back amplifier & determination of the gain, frequency response, i/p &o/p impedance with &without feedback

- 9. Design and testing of Transformer-less push-pull class B power amplifier
- 10. Design of Darlington Emitter follower with and without Bootstrapping and determines the gain, i/p and o/p impedance.

Reference Books

- 1. "Electronic Devices & circuit Theory " by Nashelsky & Boylstead, PHI,9th Ed
- 2. "Integrated Electronics" By 'Jacob Millman and Christos Halkias', McGraw Hill,
- 3. "Electronic Principles" by A.P. Malvino, TaTa MGH.5th Ed

Syllabus

Course Title: Digital Electronics Laboratory		Course Code: 15EEEP203
L-T-P: 0-0-1	Credits: 1	Contact Hours: 2Hrs/week
CIE Marks: 80	SEE Marks: 20	Total Marks: 100
Laboratory Hours: 28Hrs	Examination Duration: 3Hrs	

List of Experiments:

- 1. Characterization of TTL & CMOS Gates– Propagation delay, Fan-in, Fan-out and Noise Margin.
- 2. Design and implement binary to gray, gray to binary, BCD to Ex-3 and Ex-3 to BCD code converters.
- 3. Design and implement BCD adder and Subtractor using 4 bit parallel adder.
- 4. Design and implement given functionality using decoders and multiplexers.
- 5. Design and implement n bit magnitude comparator using 4- bit comparators.
- 6. Design and implement Ring and Johnson counter using shift register.
- 7. Design and implement mod-6 synchronous and asynchronous counters using flip flops.
- 8. Design and implement a digital system to display a 3 bit counter on a 7 segment display. Demonstrate the results on a general purpose PCB.

9. Design and implement 1-bit serial adder. Demonstrate the results on a general purpose PCB.

Reference Books

- 1. Books/References: 1. K.A.Krishnamurthy "Digital lab primer", Pearson Education Asia Publications, 2003.
- 2. "Electronic Principles" by A.P. Malvino, TaTa MGH,5th ED

Q	KLE Technological University
KLE TECH.	Leveraging Knowledge

Syllabus

Course Code: 15EEEC205	Course Title: Electrical machines-II	
L-T-P-SS: 3-0-0-0	Credits: 3	Contact Hrs: 40
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hrs: 40		Exam Duration: 3 hrs

Content	Hrs
Unit - 1	
Chapter No. 1 Synchronous Machines Introduction, Basic Synchronous Machine Model, Circuit Model of Synchronous Machine, Determination of the Synchronous Reactance, MMF Method, Determination of Armature Reaction Ampere-Turns and Leakage Reactance of a Synchronous Machine – Potier Method, Nature of Armature Reaction, Synchronizing to Infinite Bus – Bars, Operating Characteristics, Efficiency of Synchronous Machines,	9 hrs
Chapter No. 2 Synchronous Machines - continued Power Flow (Transfer) Equations, Capability Curve of Synchronous Generator, Salient –Pole Synchronous Machine Two – Reaction Model, Staying in Synchronizm – The Synchronizing Power (Torque), Determination of X_D and X_Q – Slip Test, Parallel Operation of Synchronous Generators, Hunting in Synchronous Machines, Starting of Synchronous Motors, Short – Circuit transient in Synchronous Machine, Single – Phase Synchronous Generators, Brushless DC Motors	6 hrs
Unit - 2	
Chapter No. 3 Induction Machine Introduction, Construction, Flux and MMF Waves in Induction Motor – Principles of Operation, Development of Circuit Model (Equivalent Circuit), Power Across Air – Gap, Torque and Power Out Put, Tests to determine Circuit – Model Parameters, The Circle Diagram (Approximate),	09 hrs
Chapter No. 4 Speed Control of Induction Motors: Starting, Cogging and Crawling, Speed Control, Deep – bar/Double – Cage Rotor, Classes of Squirrel – Cage Motors, Induction Generator, Induction Machine Dynamics Acceleration Time, Inverted Induction machine, High Efficiency Induction Motors, Linear Induction Motor.	6 hrs
Unit - 3	
Chapter No. 5 Single Phase Induction Motor Introduction, Single Phase Induction Motors, Circuit Model of single – Phase Induction Motor, Types of single phase induction motors, Balanced 2-phase Motor Fed from Unbalanced Supply.	5 hrs
Chapter No. 6 Special Motors Stepper Motors, Series Motor (Universal Motor), Reluctance Motors, Hysteresis Motors, Speed Control.	5 hrs

Text Book:

- 1. A E Fizgerald , Charles Kingsley, Jr Stephen D. Umans, Electric machinery , 6th edition, TMH, 2012.
- 2. D. P. Kothari and I. J. Nararath, Electrical Machines, 4, MGH, 2011
- 3. P. C. Sen, Principles of Electric Machines and Power Electronics, 2, John Wiley, 2001

References

1. Bhimbra, Principles of Electric machinery, 3, Khanna, 2006

Course code: 15EEEC206

Course title: Linear Control Systems

Department of Electrical & Electronics Engineering

Syllabus

L-T-P: 4-0-0 CIE: 50 **SEE: 50**

Teach	ing hours: 50	SEE: 50
	Unit-I	
1	Introduction to control systems:	3 Hours
	Open loop and closed loop control systems-definitions, salient features and simple	
	examples	
2	Transfer function Models and block diagram representation:	13 Hrs
	Definition of transfer function, assumptions and properties, Block diagram	
	representation, symbols used. Block-diagram of negative and positive feedback	
	systems. Electrical systems: Derivation of transfer functions for electrical circuits.	
	Mechanical translation and rotational systems: Basic elements of mechanical	
	systems, Transfer functions of mechanical translation systems. Models of dc	
	servomotors-armature and field control, block-diagram representation.	
	Bock diagram reduction rules, Examples. Signal flow graphs-definition of terms,	
	Mason's gain formula.	
3	Introduction to Time-domain Analysis	4 Hrs
	Poles and Zeros, Type and order, Standard test signals. First order system: unit step	
	response, importance of time constant.	
	Unit-11	<i></i>
4	Time Response Specifications	5 Hrs
	Second order system: Standard T.F of second order system. Unit step response of	
	2 nd order system Time response specifications-definition. Expressions for rise time,	
	peak time, peak oversnot and settling time, Static error constants and steady-state	
5	Ctability Analysis of control systems:	5 Ura
5	Explanation of Pouth Hurryitz criterion necessary and sufficient condition for	5 118
	explanation of Routh-Hulwitz chieffon-necessary and sufficient condition for stability special cases. Absolute and Relative stability relative stability analysis	
6	Controllor design approaches:	5 Ura
0	Basic modes of controls and their features: On-Off proportional integral PL PD	51115
	and PID Controller design approaches. Zeigler Nichol's tuning method and Pole	
	placement design method design examples	
7	Frequency response analysis:	5 Hrs
,	Sinusoidal response: system response for sinusoidal inputs, sinusoidal transfer	0 1110
	functions. Frequency response of a second order system, definitions and	
	expressions of Frequency response specifications. Polar plot: method to draw	
	approximate polar plot, definition of phase and gain margin.	
	Unit-III	
8	Bode plot analysis of control systems:	5 Hrs
	Bode plots: asymptotic plots for basic factors, method to draw Bode asymptotic	
	plot and phase plot, determination of gain and phase margins from Bode plot.	
9	Root locus diagrams:	5 Hrs
	Basic principle – magnitude and angle criterion, Rules to construct root locus	
	diagram (proof not required), method to construct root locus diagram.	

Text Books:

- Nagarath and Gopal, *Control system Engineering*, Wiley Eastern Ltd., 1995, 2nd edition.
 Katsuhiko Ogata, *Modern Control Engineering*, PHI, 2002, 4th edition

Reference Book:

1. M. Gopal, Control Systems-Principles and Design, TMH 2002, 2nd edition

Syllabus

Course Code: 15EEEC207	Course Title: ARM	Course Title: ARM Processor & Applications		
L-T-P-SS: 4-0-0-0	Credits: 4	Contact Hours:4 Hrs/week		
CIE Marks: 50	SEE Marks:50	Total Marks: 100		
Teaching Hours:50Hrs		Examination Duration:3Hrs		

Content	Hrs
Unit - 1	
Chapter No.1 Interrupt programming 8051-Interrupts and programming (both assembly and 'C'): Interrupts for timer and serial communication.	5 hrs
Chapter No.2 ARM Architecture The Acorn RISC machine, Architectural inheritance, Architecture of ARM7TDMI, ARM programmers model, ARM development tools, 3 stage pipeline ARM organization, ARM instruction execution.	5 hrs
Chapter No.3 Introduction to ARM instruction set Data processing instruction, Branch instruction, Load store instruction, Software interrupt instruction, Program status register instruction, Conditional execution, Example programs.	5 hrs
Unit - 2	
Chapter No.4 Introduction to THUMB instruction set The Thumb programmer model, ARM-Thumb interworking, other branch instructions, Data processing instructions, Single/Multiple register load store instruction, Stack operation, Software interrupt instructions, example programs.	2 hrs
Chapter No.5 Assembler rules and Directives Introduction, structure of assembly language modules, Predefined register names, frequently used directives, Macros, Miscellaneous assembler features. Example programs.	4 hrs
Chapter No.6 Exception handling Introduction, Interrupts, error conditions, processor exception sequence, the vector table, Exception handlers, Exception priorities, Procedures for handling exceptions.	4 hrs
Chapter No.7 Architectural support for high level languages Abstraction in software design, data types, floating point data types, The ARM floating point architecture, use of memory, run time environment.	5 hrs
Unit - 3	
Chapter No.8 LPC2148 Architecture and applications On-chip memory, GPIOs, Timers, UART, ADC, I2C, SPI, RTC, ARM interfacing techniques and programming: LED, LCD, Stepper Motor, Buzzer, Keypad, ADC and I2C	10 hrs

Syllabus

_	
•	
<u> </u>	

Text Books (List of books as mentioned in the approved syllabus)

1.	Steve Furber, ARM System- on-Chip Architecture, 2nd, LPE, 2002
2.	William Hohl, ARM Assembly Language fundamentals and Techniques, 1st, CRC press, 2009

- "ARM system Developer's Guide"- Hardbound, Publication date: 2004 Imprint: MORGAN KAUFFMAN
- User manual on LPC21XX.

Syllabus

Course Content

Course code: 15EEEC208L-T-P: 3-0-0Course title: Electrical Power Generation, Transmission &
DistributionCIE: 50Teaching hours: 40SEE: 50

Chapter 1 : Selection of site, Classification, General arrangement and operation of Hydro electric plant with Components, General arrangement and operation of Thermal power plant with Components, General arrangement and operation of Nuclear power plant with Components, Safety of Nuclear power reactor, Storing and processing spent fuel	5hrs
Chapter 2: Substations: Types, bus-bar arrangement, schemes, location,	
substation equipments.	
Economics: Important terms and curves commonly used in system operation, Effect	5hrs
of Voltage and frequency on Loads, Scheduling of Generators, Choice of size and	
number of generator units, Interconnection of power stations.	
Chapter3: Introduction, electrical supply system, comparison of AC & D.C.	
Systems, Standard Voltages of Transmission & Distribution, Advantages of High	21
Voltage Power Transmission, (effect of increase in voltage on weight of conductor,	2nrs
Line Efficiency & Line Voltage Drop). Feeders, Distributors & Service Mains,	
Conductors types.	
Chapter4: Line supports & placing of the conductors, single phase and three phase	
systems. Single circuit and double circuit, Spacing of conductors, Length of span &	
Sag in OH lines. Sag calculation in conductors (a) Suspended on level supports (b)	21
Supports at different levels, Effect of wind and ice. Tension and sag. Corona:	3nrs
Phenomena, expression for disruptive and visual critical voltages and corona power	
loss.	
Unit – II	
Chapter 5:Line parameters Introduction to transmission line constants i.e.	
Resistance, Inductance and capacitance, Inductance of the single phase & three phase	
lines, Inductance calculation with equilateral and unsymmetrical spacing of the lines,	7hm
Transposition of line conductors. Capacitance for single phase & three phase lines,	/11/5
Effect of earth on capacitance of the line, Numerical solutions on resistance	
calculations.	
Chapter 6: Characteristics & Performance of Power transmission lines:	
Introduction to Short transmission lines, calculations for short lines, Medium	8hrs
transmission lines, Nominal-T and \prod representation for transmission lines, Long	
transmission lines, Long line solutions by Rigorous method, equivalent models,	
ABCD constants,	
Unit – III	
Chapter 7: Insulators: Types, potential distribution over a string of suspension	
insulators. String efficiency and methods of increasing string efficiency and methods	5 hrs
of increasing string efficiency, testing of insulators.	
Chapter 8: Underground Cables: Types, material used. Insulation resistance,	
thermal rating of cables, charging current. Grading of cables, capacitance grading and	5 hrs

Syllabus

Text Book:

1. Power Station Engineering and Economics by Skrotzki and Wavopat, McGraw Hill, 1995

Reference Books:

- 1. Principles of Power system By: V.K. Mehta & Rohit Metha. S. Chand & Company, LTD. 2014
- **2.** A course in Electrical Power By: Soni, Gupta & Bhatnagar. Dhanpat rai Publications .2014
- 3. Transmission & Distribution of Electrical Power By J.B.Gupta. SK Kataria, Publication
- 4. Electric Power Generation Transmission and Distribution by S. M. Singh, by Prentice Hall of India, Regd. Office: d 13/12, Model Town, Delhi

L-T-P: 0-0-1

CIE Marks: 80

Course Title: Machines lab

Laboratory Hours: 28Hrs

Department of Electrical & Electronics Engineering

Credits: 1

SEE Marks: 20

Examination Duration: 3Hrs

Syllabus

Course Code: 15EEEP204 Contact Hours: 2Hrs/week Total Marks: 100

Category: Demonstration				
Expt. No.	Experiment			
1	Introduction to meters and machines			
Category: E	xercise			
Expt. No.	Experiments			
2	No Load/Load characteristics of DC Generators			
3	Speed control of DC motor by armature voltage control and flux control			
4	Three Phase transformer Bank with STAR-STAR connection mode demonstration			
5	To Conduct Open Circuit and Short Circuit test on given single phase transformer and a) Calculate Voltage regulation at different loads & power factors. b) To represent the transformer by its equivalent circuit.			
6	Speed control of Induction motor by a) Stator Voltage control. b) Rotor resistance control.(SRIM)			
7	To Conduct NO – LOAD & BLOCKED ROTOR test on a given Induction motor and a) Represent the motor by its equivalent circuit referred to Stator or Rotor. b) To find the performance parameters			
8	Performance study of synchronous motor with change in its excitation (V and Inverted V curves)			
9	Voltage regulation of an Alternator by EMF method			
Category: O	pen Ended			
Expt. No.	Experiment			
1	Open delta connection of a three phase transformer OR Voltage regulation of an alternator by direct loading OR Load test on DC series motor OR			
	Determination of x_d and x_q of synchronous machines			

Syllabus

Course Title: ARM Microcontroller LabL-T-P: 0-0-1Credits: 1CIE Marks: 80SEE Marks:Teaching Hours: 25HrsExamination

ontroller Lab Credits: 1 SEE Marks: 20 Examination Duration: 2 Hrs Course Code: 15EEEP205 Contact Hours: 2Hrs/week Total Marks: 100

Chapter	List of Experiments				
No.					
1	Write an ALP to achieve the following arithmetic operations: i. 32 bit addition ii. 64 bit				
	addition iii. Subtraction iv. Multiplication v. 32 bit binary divide				
2	Write an ALP for the following using loops: i. Find the sum of 'N' 16 bit numbers ii. Find				
	the maximum/minimum of N numbers iii. Find the factorial of a given number with and				
	without look up table.				
3	Write an ALP to i. Find the length of the carriage r1eturn terminated string. ii. Compare				
	two strings for equality. ii.				
4	Write an ALP to pass parameters to a subroutine to find the factorial of a number or				
	prime number generation.				
5	Write a 'C' program to test working of LED's using LPC2148.				
6	Write a 'C' program & demonstrate an interfacing of Alphanumeric LCD 2X16 panel to				
	LPC2148 Microcontroller.				
7	7 Write an ALP to generate the following waveforms of different frequencies i. Squ				
	wave ii. Triangular iii. Sine wave II.Write a 'C' program & demonstrate interfacing o				
	buzzer to LPC2148(using external interrupt)				
<u>8</u>	Write a program to set up communication between 2 microcontrollers using I2C.				
9	Write a 'C' program & demonstrate an interfacing of ADC.				
Structure	d Enquiry				
1	Write a program that displays a value of 'Y' at port 0 and 'N' at port 2 and also generates				
	a square wave of 10Khz with Timer 0 in mode 2 at port pin p1.2 XTAL =22MHz				
2	Write a C program that continuously gets a single bit of data from P1.7 and sends it to				
	P1.0 in main, while simultaneously i. creating a square wave of 200us period on pin P2.5.				
	ii. Sending letter 'A' to serial port. Use Timer 0to create square wave.				
Open End	Open Ended				
1	Develop an ARM based application using i. sensors ii. Actuators iii. displays				

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008	Document #: FMCD2005		
Department of Electrical & Elect	ronics Engineering		Kev: 1.0	U
Syllabus				
Course Code, 17EEEC202	Course Titles D	igital Cinquita		
	Course The: D	igital Circuits	taat Ura. 10	
L-1-1-55. 5-0-0 CIF Marks: 50	SFF Marks: 50		1401 1115. 40 Morkey 101	n
Teaching Hrs. 50	SLE Marks. 30		n Duration.	2 hm
Teaching Hrs: 50	r	Exa	in Duration:	5 1175
Chapton 1: Logia Familiage	1			
Logic levels, output switching times, fan-in and far	-out, comparison of	logic families		03Hrs
Charter 2: Principles of Combinational Lagia				
Chapter 2: Principles of Combinational Logic: Definition of combinational logic, canonical forms, Generation of switching equations from truth tables, Karnaugh maps-3,4 variables, Incompletely specified functions(Don't care terms),Simplifying Maxterm equations, Quine-McCluskey minimization technique- Quine-McCluskey using don't care terms, Decimal method, Reduced Prime Implicant Tables.			08 Hrs	
Chapter 3: Analysis and design of combinational General approach, Decoders-BCD decoders, Encod as Boolean function generators. Adders and subtrac adders, Binary comparators.	logic: ers, Digital multiple tors-Cascading full	exers- Using m adders, Look a	ultiplexers head carry	09 Hrs
Unit	I			
Chapter 4: Introduction to Sequential Circuits : Basic Bistable Element, Latches, A SR Latch, App The SR Latch, The gated SR Latch, The gated D La Triggered Flip-Flops): The Master-Slave SR Flip-F Triggered Flip-Flop: The Positive Edge-Triggered F Flop; Characteristic Equations.	lication of SR Latch atch, The Master-Sla lops, The Master-Sl D Flip-Flop, Negativ	, A Switch De ave Flip-Flops ave JK Flip-Flo ve-Edge Trigge	bouncer, (Pulse- op, Edge ered D Flip-	10Hrs
Chapter 5: Analysis of Sequential Circuits: Registers and Counters, Binary Ripple Counters, Sy Johnson Counters, Design of a Synchronous counter using clocked JK Flip-Flops Design of a Synchronous Flip-Flops.	ynchronous Binary c ers, Design of a Sync ous Mod-n Counter	counters, Ring chronous Mod- using clocked I	and n Counter D, T or SR	10Hrs
Unit –	111			
Introduction to Sequential Circuit Design, Mealy a Synchronous Sequential Circuit Analysis, Construct	nd Moore Models, S tion of state Diagram	State Machine 1 ms and counter	notations, design.	05Hrs
Chapter 7: Introduction to Memories: Introduction and role of memory in a computer s Only memory, MROM, PROM, EPROM, EEPRO NVRAM.	ystem, memory typ M, Random access	es and termino memory, SRA	ology, Read M, DRAM,	05Hrs

Syllabus

Text Books (List of books as mentioned in the approved syllabus)

- 1. Donald D Givone, Digital Principles and Design, Tata McGraw Hill Edition, 2002
- 2. John M Yarbrough, Digital Logic Applications and Design, Thomson Learning, 2001
- 3. A Anand Kumar , Fundamentals of digital circuits, PHI, 2003

- 1. Charles H Roth, Fundamentals of Logic Design, Thomson Learning, 2004
- 2. Zvi Kohavi, Switching and Finite Automata Theory, 2nd, TMH
- 3. R.D. Sudhaker Samuel, Logic Design, Sanguine Technical Publishers, 2005
- 4. R P Jain, Modern Digital Electronics, 2nd, Tata McGraw Hill, 2000

Syllabus

L-T-P: 3-0-0 CIE: 50 SEE: 50

Unit –I	
Chapter 1 : Transformer : Transformer construction and principle of operation, Ideal Transformer, Practical Transformer, Transformer phasor diagrams, Equivalent circuit of transformers, Open circuit and short circuit tests, Voltage regulation, transformer losses and efficiency, Testing of transformers, Three phase transformers. Auto-transformers	10 hours
Chapter 2: DC Machines: Construction of DC machine and DC machine as generator, EMF equation of DC machine, Operating characteristics of types of DC generators, Operating characteristics of DC motors, DC motor starting, Speed control of DC motors.	05 hours
Unit – II	
Chapter 3: Induction (Asynchronous) Machines: Induction motor as transformer, Principle of operation, Rotor frequency, e.m.f, current and power, Losses and Efficiency, Equivalent circuit, Torque slip and Power-slip characteristics, Determination of equivalent circuit parameters. Circle diagram, Starting of polyphase induction motors.	10 hours
Chapter 4 : Synchronous Machines: Cylindrical and salient pole machines, Phasor diagram of cylindrical rotor alternator. AC armature winding, Voltage regulation of alternator using e.m.f method.	05 hours
Unit – III	
Chapter 5 : Synchronous Machines: Synchronous motor phasor, Power angle characteristic of synchronous machine, Measurement of Xd and Xq, Capability curves of synchronous generators, Power factor correction by synchronous motors.	5 hours
Chapter 6:Single phase induction machines: Double field revolving theory, Equivalent circuit, Resistance split phase motors, capacitor start motor, permanent capacitor motor, two-value capacitor motor, shaded-pole motor. Performance and cost comparison and choice of single phase induction motors.	5 hours

Text Book

KLE TECH.

Code: 17EEEC201

Teaching Hours: 40

Course Title: Electrical Machines.

1. P. C. Sen, "Principles of Electric Machines and Power Electronics", John Wiley & Sons Publications, Canada, 2nd Edition, 2001.

- 1. Bhimbra, "Principles of Electrical machinery", Khanna Publishers.2006.
- 2. D. P. Kothari and I. J. Nagrath, "Electrical Machines", MGH Publishers. 4th Edition, 2011.
- 3. Fitzgerald, Kingsly & Stephen, "Electric Machinery", 5ed., McGraw Hill, 1992

Syllabus

Course Code: 17EEEC204

Course Title: Linear Control Systems

L-T-P: 3-0-0 ISA Marks: 50

ESA Marks: 50

Credits: 3

Contact Hrs: 40 Total Marks: 100 Exam Duration: 3 hrs

Teaching Hrs: 50

Chapter	Unit-I	
No.		
1	Introduction to control systems:	
	Open loop and closed loop control systems-definitions, salient features and simple	
	examples	
2	Transfer function Models and block diagram representation:	6 Hrs
	Definition of transfer function, assumptions and properties, Block diagram and	
	signal flow graph representation, symbols used. Block-diagram of negative and	
	positive feedback systems. Electrical systems: Derivation of transfer functions for	
	electrical circuits, Models of dc servomotors-armature and field control, block-	
	diagram representation. Block diagram reduction rules, Examples.	
3	Time Response Analysis	7 Hrs
	Poles and Zeros, Type and order, Standard test signals. First order system: unit step	
	response, importance of time constant, Second order system: Standard T.F of	
	second order system. Unit step response of 2 nd order system Time response	
	specifications-definition. Expressions for rise time, peak time, peak overshot and	
	settling time, Static error constants and steady-state errors.	
	Unit-II	
4	Stability Analysis of control systems:	5 Hrs
	Explanation of Routh-Hurwitz criterion-necessary and sufficient condition for	
	stability, special cases, Absolute and Relative stability, relative stability analysis.	
5	Controller design approaches:	5 Hrs
	Basic modes of controls and their features: On-Off, proportional, integral, PI, PD	
	and PID, Controller design approaches- Zeigler Nichol's tuning method and Pole	
	placement design method, design examples	
6	Frequency response analysis:	5 Hrs
	Sinusoidal response: system response for sinusoidal inputs, sinusoidal transfer	
	functions. Frequency response of a second order system, definitions and expressions	
	of Frequency response specifications. Polar plot: method to draw approximate	
	polar plot, definition of phase and gain margin.	
	Unit-III	
1	Bode plot analysis of control systems:	5 Hrs
	Bode plots: asymptotic plots for basic factors, method to draw Bode asymptotic plot	
0	and phase plot, determination of gain and phase margins from Bode plot.	~ TT
8	Koot locus diagrams:	5 Hrs
	Basic principle – magnitude and angle criterion, Rules to construct root locus	
	diagram (proof not required), method to construct root locus diagram.	

Text Books

1 Nagarath and Gopal, *Control system Engineering*, Wiley Eastern Ltd., 1995, 2nd edition.

2 Katsuhiko Ogata, Modern Control Engineering, PHI, 2002, 4th edition

Reference Books:

M.Gopal, Control Systems-Principles and Design, 2, TMH, 2002. 1

Syllabus

	Course Content	
C	ourse Code: 17EEEC301 L-T-P-S: 3-0-0	
C	Course Title: Power Electronics CIE: 50	
Te	eaching Hours: 40 SEE: 50	
	Unit–I	
1	Introduction	2 11
	Power Electronics, Converter Classification, Power Electronics Concepts, Electronic	2 Hrs
•	Switches: The Diode, Thyristor, Transistors, switch Selection.	
2	Power Computations	
	and Consisters, Energy Recovery, Effective Volume, Emergy, Average Power, Inductors	1 Ura
	Power Eactor Power Computations for Sinusoidal AC Circuits Power Computations for	41115
	non-sinusoidal periodic waveforms Fourier Series Average Power Non-sinusoidal Source	
	and linear load Sinusoidal Source and Nonlinear load	
3	DC-DC Converters	
U	Linear voltage regulators, a basic switching converter, the buck converter. Voltage and	
	Current Relationships, output voltage ripple, capacitor resistance—The Effect on Ripple	
	Voltage Synchronous Rectification for the buck converter, design considerations, the boost	9 Hrs
	converter, Voltage and Current Relationships, Output Voltage Ripple, Inductor Resistance,	
	the Buck-Boost Converter, Voltage and Current Relationships, Output Voltage Ripple, Cuk	
	and SEPIC converters.	
	Unit–II	
4	Inverters	
	Introduction, the full-bridge converter, the square-wave inverter, Fourier series analysis,	
	total harmonic distortion, amplitude and harmonic control, the half-bridge inverter, pulse-	8 Hrs
	width-modulated output: bipolar switching, unipolar switching, three-phase inverters, the	
_	Six-Step Inverter, PWM three-phase inverters.	
5	Controlled Rectifiers	
	the effect of source inductores controlled full wave rectifiers, resistive load, PL load	7 Ura
	discontinuous current RI load continuous current controlled rectifier with RI-Source	/ 1115
	Load controlled single-phase converter operating as an inverter	
	Unit_III	
6	AC Voltage Controllers	
-	Introduction, The Single-Phase AC Voltage, Controller, Basic Operation, Single-Phase	C 11
	Controller with a Resistive Load, Single-Phase Controller with an RL Load, Static VAR	5 Hrs
	Control, AC Voltage Controllers.	
7	Drive Circuits, Snubber Circuits and Heat Sinks	
	Introduction, MOSFET and IGBT drive circuits, low-side drivers, high-side drivers,	5 Uro
	transistor snubber circuits, heat sinks and thermal management, steady-state temperatures,	51118
	time-varying temperatures.	
Τe	ext Book:	
_	1. Daniel W Hart, Power Electronics, Tata McGraw-Hill Edition, New-Delhi, 2011.	
Re	eferences:	
1.	Rashid M. H, Power Electronics: Circuits, Devices and Applications, 3rd edition, PHI, New	Delhi,

2000.

2. P. S. Bhimbra, Power Electronics, Khanna Publishers, 2007.

3. Umanand, Power Electronics, 2nd edition, Wiley-India Publications, New –Delhi, 2009.

CIE Marks: 50

SEE Marks: 50

Department of Electrical & Electronics Engineering

Syllabus

Course code: 17EEEC302 **Course title: Power System Analysis & Stability Teaching hours: 40**

Course Content	Hrs
Unit - 1	
Chapter No. 1: Power system representation Standard symbols of power system components, one-line diagram, impedance and reactance diagrams, per-unit quantity-definition, per-unit impedance of 3-phase component, change of base, equivalent load impedance, p.u impedance of two-winding transformer referred to primary and secondary, method to draw p.u impedance diagram, advantages of p.u system calculations, examples on obtaining per-unit reactance diagram and per-unit calculations	6 hrs
Chapter No. 2: Symmetrical fault analysis 3-Phase short circuit at the terminals of unloaded generator, definitions of sub-transient, transient and steady-state reactance, internal emf's of loaded machines, examples on short circuit calculations, selection of circuit breaker ratings-momentary current and interrupting capacity, examples on symmetrical fault calculations.	5 hrs
Chapter No. 3: Introduction to Symmetrical components and sequence networks Definition of sequence components as applied to 3-phase unbalanced systems, expressions for sequence components, examples on computations of sequence components.	4 hrs
Unit - 2	
Chapter No. 4 Sequence Networks Sequence impedance and sequence network, sequence networks of 3-phase generator, zero- sequence networks of 3-phase loads and transformers, Sequence network of power systems	4 hrs
Chapter No. 5: Unsymmetrical Fault Analysis Single line to ground, line to line and double line to ground fault with fault impedance at the terminals of unloaded generator- derivation of connection of sequence networks, Unsymmetrical faults on unloaded power systems, examples on unsymmetrical fault calculation for unloaded power systems.	7 hrs
Chapter No. 6: Introduction to power system Stability Power angle equation of SMIB system, steady-state analysis, M&H constants-definitions and relation, swing equation, equal area criterion (EAC),	4 hrs
Unit - 3	
Chapter No. 7: Stability analysis by EAC: EAC applications to to-sudden change in mechanical power input, 3-phase fault on transmission line, expression for critical clearing angle, examples on EAC applications	5 hrs
Chapter No. 8: Numerical solution of swing equation for stability analysis Point by point method of solving swing equation, applications of Euler, modified Euler and R-K numerical techniques for stability analysis, methods to improve transient stability, examples on stability analysis	5 hrs

Text Books

- 1. W.D. Stevenson, Elements of Power System Analysis, 4th Edition, McGraw Hill, 1982
- 2. I.J. Nagarath and D.P. Kothari, Power System Engineering, 2nd Edition, Tata McGraw Hill, 2010 **Reference Books**
 - 1. Hadi Sadat, Power System Analysis, First Edition, Tata McGraw Hill, 2002
 - 2. Nagarath and Kothari, Modern Power System Analysis, 2nd Edition, Tata McGraw Hill, 1993
 - 3. J.J. Grainger and W.D. Stevenson, Power System Analysis, McGraw Hill (New York), 1994

Syllabus

Course Code: 17EEEC303 L-T-P-SS: 3-0-0 CIE Marks: 40 SEE Marks: 50 Teaching Hrs: 40 hrs

Course Title: OS and Embedded Systems Credits: 3 Contact Hrs: 3 hrs/week Total Marks: 100 Exam Duration: 3 hrs

No	Content	Hrs
	Unit I	
1	Introduction and System structures Operating system definition; Operating System operations; Different types of operating system – Mainframe systems, Multi programmed systems, Time sharing systems, Desktop systems,	03 Hrs
	 Parallel systems, Distributed systems, Real time systems. Process Management Process concept; Process scheduling; Operations on processes; Inter-process communication. Multi-Threaded Programming: Overview; Multi threading models; Thread Libraries; Threading issues. Process Scheduling: Basic concepts; Scheduling criteria; Scheduling algorithms; Multiple-Processor scheduling; Thread scheduling. Memory Management Memory Management Strategies: Background; Swapping; Contiguous memory allocation; Paging; Structure of page table; Segmentation. Virtual Memory 	06 Hrs 06 Hrs
	Management: Background; Demand paging; Page replacement; Allocation of frames;	
	Thrashing. (Textbook: Galvin)	
	Introduction To Real-Time Operating Systems	
4	Introduction To Real-Time Operating Systems Introduction To Real-Time Operating Systems: Introduction to OS, Introduction to real time embedded system- real time systems, characteristics of real time systems, the future of embedded systems. Introduction to RTOS, key characteristics of RTOS, its kernel, components in RTOS kernel, objects, scheduler, services, context switch, Scheduling types: Preemptive priority-based scheduling, Round-robin and preemptive scheduling	08 Hrs
	Scheduling.Tasks, Semaphores and Message Queues:Tasks, Semaphores and Message Queues: A task, its structure, A typical finite statemachine, Steps showing the how FSM works. A semaphore, its structure, binarysemaphore, mutual exclusion (mutex) semaphore, Synchronization between two tasksand multiple tasks, Single shared-resource-access synchronization, Recursive shared-resource-access synchronization. A message queue, its structure, Message copyingand memory use for sending and receiving messages, Sending messages in FIFO orLIFO order, broadcasting messages.(Textbook: Qing Li with Caroline Yao, Real-Time Concepts for Embedded Systems,1E, Published, 2011)	07 Hrs
	Unit III	
	Typical Embedded System: Classification and purposes of embedded system, Characters and Quality attributes of embedded system, Core and Supporting	05 Hrs
3	components of embedded system, Embedded firmware (Text book: Shibu KV) Wired and Wireless Protocols: Bus communication protocol (USB,I²C,SPI) ,	
	Wireless and mobile system protocol (Bluetooth, 802.11 and its variants, ZigBee), Embedded design cycle-case study-ACVM (Text book: Rajkamal)	05 Hrs

Syllabus

Course Code: 17EEEC304 L-T-P: 3-0-0 Credits: 3 CIE Marks: 50 SEE Marks: 50 Teaching Hrs: 40 hrs Course Title: Digital Signal Processing Contact Hrs: 3 hrs/week Total Marks: 100 Exam Duration: 3 hrs

Unit I					
No	Content	Hrs			
1	 Introduction to Digital Signal Processing: Signals, Systems, and Signal Processing, Classification of Signals, Basic operations on signals, Elementary signals. 				
2	Discrete Time Signals and Systems: Properties of systems, representation of linear time in variant systems, Correlation of Discrete Time Signals.	08hrs			
	Unit II				
4	Discrete Fourier Series and Fourier Transform Representation : Fourier Series representation of discrete time signals and properties, Fourier Transform representation of discrete time signals and properties, Applications	04hrs			
5	The Discrete Fourier Transforms: Frequency Domain Sampling, Properties	06hrs			
6	 6 Efficient Computation of DFT: Fast Fourier Transform Algorithms, 6 Applications of FFT Algorithms, A linear Filtering Approach to Computation of the DFT. 				
	Unit – III				
7	Design of Digital IIR Filters: Introduction, Impulse Invariant & Bilinear Transformations, analog filters – Butterworth, design of digital Butterworth, Chebyshev	05hrs			
8	Design of FIR Filters: Introduction, windowing, rectangular, modified rectangular, Hanning, Hamming,	05hrs			
	 Text Book: Digital Signal Processing, by John G. proakis & Dimitris G. Manolakis, Third Edition, prentice-Hall of India Pvt. Ltd.,ISBN 81-203-1129-9. References: Discrete-Time Signal Processing, by Alan V Oppenheim & Ronald W. Schfer, Prentice-Hall of India Pvt. Ltd., ISBN 0-87692-720-7 Digital Signal Processing- A computer based approach by Sanjit K. Mitra, Tata McGraw-Hill Publishing Company Limited, New Delhi,ISBN 0-07-463723-1. A Student's Guide to Fourier Transforms With Applications in Physics and Engineering by J. F. James, Third Edition, www.cambridge.org/9780521176835 				

Credits:2

Course Code: 17EEEP301

CIE Marks: 80 SEE Marks: 20

L-T-P: 0-0-2

Department of Electrical & Electronics Engineering

Syllabus

Title: Data Structure Using C Lab Contact Hrs: 4 hrs/week Total Marks: 100 Exam Duration: 3 hrs

Teac	ching Hrs: 48hrs Exam Duration: 3 h	irs
1.	Programming on pointer concepts: Pointer concepts,1D and 2D arrays, pointers	02+02 Hrs
	to functions, memory management functions	
2.	Programming on string handling functions using pointers, structures, bit-	02+02 Hrs
	fields: Perform string handling functions like String length, String concatenate,	
	Strings compare, String copy and Strings reverse, Implementing Structures, union and bit-field.	
3.	Programming on files: Open, Close, Read, Write and Append the file.	02+02 Hrs
4.	Programming on stack data structures and applications: Insert delete and	02+02 Hrs
	display an integer in a stack, Conversion from Infix to postfix & Infix to Prefix,	
	Recursion.	
5.	Programming on queue data structures: Insert at rear end ,delete at front end	02+02 Hrs
	and display the integers in queue, Deque and circular queue.	
6.	Programming on linked lists: Insert, delete and display a node in Singly Linked List, Doubly Linked List and Circular Linked List.	06+03 Hrs
7.	Programming on trees: Perform various operations on binary trees, find max,	02+02 Hrs
	min value in a binary search trees, find the height of a tree, count nodes in a tree,	
	delete a node in a tree.	
8.	Programming on sorting: Merge sort, Quick sort, Heap sort, Shell sort, Radix	02+02 Hrs
_	sort.	
9.	Programming on graphs: Compare Breadth First Sort Sort, and Depth First Sort	02+02 Hrs
10	Programming on hashing tables: Implement different methods of hash tables.	02+02 Hrs
11	Open ended experiment: Implement given Data structures.	02+02 Hrs
NO	TE: The pseudo codes for different data structures and algorithms to be based of	on standard
pro	blems from geeksforgeeks website.	
Tex	t Book	
1.	Horowitz, Sahani, Anderson-Feed, "Fundamentals of Data Structures in C", 2e	d,Universities
	Press, 2008	
2.	Aaron M. Tenenbaum, "Data Structures Using C", Pearson Education India, 2003	
3.	Richard F. Gilberg, Behrouz A. Forouzan "Data Structures: A Pseudocode Approach	h With C", 2^{nd}
D	Edition, Course Technology, Oct 2009.	
i Ret	erences	

- 1. E Balaguruswamy, "The ANSI C programming Language", 2ed., PHI, 2010.
- 2. Yashavant Kanetkar, "Data Structures through C", BPB publications 2010

Syllabus

Course Code: 17EEEP302 L-T-P: 0-0-2 Credits:2 CIE Marks: 80 SEE Marks: 20 Teaching Hrs: 48hrs

Title: Linear Integrated Circuits Lab Contact Hrs: 4 hrs/week Total Marks: 100 Exam Duration: 3 hrs

1.	Inverting & Noninverting summer	02+02 Hrs	
2.	Conductance & Tansconductance Amplifier	02+02 Hrs	
3.	Instrumentation Amplifier	02+02 Hrs	
4.	High gain high input impedance amplifier	02+02 Hrs	
5.	Op-amp Phase shifter	02+02 Hrs	
6.	Non Inverting Integrator	06+03 Hrs	
7.	Active Low pass filter	02+02 Hrs	
8.	RC Phase shift Oscillator	02+02 Hrs	
11	Open ended experiment: Implement given LIC Circuit	02+02 Hrs	
	To design and implement Analog PI controller for single time constant system		
Text Book			
1. Jacob Milman, "Microelectronics: Digital and Analog Circuits and Systems", 6 th edition			
	McGrawhill,1984		

Syllabus

Course Code: 17EEEP303	Course Title: Embedded and IOT Lab		
L-T-P: 0-0-1	Credits: 1	Contact Hrs: 32	
CIE Marks: 20	SEE Marks: 80	Total Marks: 100	
Teaching Hrs: 32		Exam Duration: 2 hrs	

Chapter	List of Experiments		
No.			
1	Write a C program to use on chip Timers in LPC2148 and generate required delay		
2	Write a C program to demonstrate the concept of basic RTOS programming by		
	using RTX RTOS		
3	Write a 'C' program & demonstrate concept of Round Robin Task Scheduling.		
	Write a C program to demonstrate the concept of basic preemptive scheduling		
	algorithm by using RTX RTOS		
4	Write a 'C' program & demonstrate concept of Events and Flags for inter task		
	communication using RTX RTOS		
5	Write a 'C' program & demonstrate concept of Mailbox.		
6	Write a 'C' program & demonstrate concept of Semaphore.		
7	Write a 'C' program & demonstrate concept of interrupts(hardware and software)		
	Write a C program to interface I2C-RTC with LPC2148		
8	Write a C program to interface SPI-EEPROM with LPC2148		
	Structured Enquiry		
	Real-Time OS Application which successfully demonstrates the use of various		
	RTOS concepts		

Syllabus

Course Code: 17EEEW301			
L-T-P: 0-0-3	Credits:3		
CIE Marks: 50	SEE Marks: 50		

KLE TECH.

Title: Mini Project Contact Hrs: 3 hrs/week Total Marks: 100

Students are supposed to carry out the mini project based on the theme and guidelines as given below.

(I) Theme: A Computer Aided Solution to Electrical Engineering Problems

- 1. The work must involve designing and developing a computer solution to an electrical engineering problem with the help of a computer program written in C/C++.
- 2. Computer program must make use of data structures /algorithms suitable to the problem being solved.
- **3**. The solution must involve mathematical modeling, mathematical solution and numerical methods.
- 4. Computer program design must be well documented through flowcharts.
- 5. Computer program must have a user manual and source code documentation.
- 6. Computer program must generate a clear, concise report that is useful for other users.
- 7. The solution must be documented in a report consisting of problem definition, methodology, modeling, solution, results and discussion and conclusions.

(II) Project batches and Guide:

Each project batch consists of 3 or 4 students. Students are informed to form their own batch based on the kind of project work and their interest. Each batch is supposed to give four faculty names as guides in the order of their preference. Guides will be allocated based on the preference given by the batch. The primary role of the guide is to supervise the work, provide appropriate guidance in successfully carrying out the project work.

(III) Project implementation

The principle steps in carrying out the project work are summarized below:

Step-1: Literature survey:

A literature survey with regard to the given theme is to be carried out in order to understand the state of the current research. Further, a critical review of the collected literature will facilitate to summarize key observations. Key observations will lead to identifying a specific problem for the project work in terms of alternate/new solution techniques, possible improvements, new formulations or models, hardware implementations etc.

Step-2: Prepare a synopsis:

A synopsis highlights the definition of identified problem and its significance. The synopsis will also contain detailed literature review giving the state of the current research on the selected specialized area.

KLE TECH. KLE TECH. Creating Value	FORM	Document #:	D 10
Leveraging Knowledge	ISO 9001: 2008	FMCD2005	
Department of Electrical & Electro	Rev: 1.0		

Syllabus

It will also brief the problem formulation, solution methodology, tools employed and possible outcomes.

Step-3: Project implementation:

The work is to be carried out in phase wise manner, testing or analyzing the partial results obtained. Guide will periodically monitor the progress of the work done giving suitable suggestions as required.

(IV) Schedule:

S1.	Activity	Week No.	Evaluation Objectives
No.			
1	Announcement for	At the end of the	NA
	the formation of	previous semester	
	batches		
2	Allotment of guides	$1^{st} - 2^{nd}$	NA
3	Submission of	$3^{\rm rd}$ - $5^{\rm th}$	Literature review, problem
	Synopsis		formulation, solution methodology,
			tools employed
4	Review-I	$6^{\text{th}} - 8^{\text{th}}$	Literature review, problem
			formulation, solution methodology,
			tools employed
5	Review-II	9 th -10 th	Analysis and implementation
			(partial)
6	Review-III	$12^{\text{th}} - 14^{\text{th}}$	Analysis, complete implementation
			and results.

Evaluation:

Evaluation of the project work carried out by each batch will be reviewed periodically by a review committee. Review committee consists of guide and two other faculty members who are guiding other batches. Generally, two to three reviews will be held during a semester. However, each project batch will be supervised by the guide on a weekly basis. Review committee will evaluate for 40% and guide will evaluate for 60% of the total marks.

Continuous Internal Evaluation (50%)	Assessment	Weightage in Marks
	Evaluation by Project Guide	30
	Project Review committee	20
Semester End Examination	Using SEE Rubrics	50
(50%)	Total	100

Passing: 40% both in CIE and SEE

Syllabus

Course Code: 17EEEC305 L-T-P-S: 3-0-0 Teaching Hours: 40

Course Title: Electric Drives and Control CIE:50 SEE:50

Chapter 1. An introduction to Electrical Drives & its Dynamics: Electrical drives. Advantages of electrical drives. Parts of electrical drives, Choice of	
electrical drives, status of dc and ac drives, dynamics of electrical drives, fundamental	5 Hrs
torque equation, speed torque conventions and multi quadrant operation. Nature and	
classification of load torques, calculation of time and energy loss in transient operations.	
Chapter 2. D C Motor Drives:	
Starting braking, single phase fully controlled rectifier control of dc separately excited	
motor. Single-phase half controlled rectifier control of dc separately excited motor. Three	
phase fully controlled rectifier control of dc separately excited motor, three phase half	
controlled rectifier control of dc separately excited motor, multiquadrant operation of dc	10 Hrs
separately excited motor fed from fully controlled rectifier. Rectifier control of dc series	
motor chopper controlled dc drives chopper control of separately excited dc motor	
Chopper control of series motor	
Unit – II	
Chanter 3 Induction Motor Drives:	
Operation with unbelanced source voltage and single phasing operation with unbelanced	
rotor impedances, analysis of induction motor fed from non sinusoidal voltage supply	
starting, broking, Stater voltage control, voriable frequency control from voltage suppry,	10 II.
starting, braking, Stator voltage control, variable frequency control norm voltage sources,	IU HIS
voltage source inverter control, current source inverter control, current regulated voltage	
source inverter control, rotor resistance control, sup power recovery.	
Chapter 4. Synchronous Motor and Brushless dc Motor Drives:	
Operation from fixed frequency supply, synchronous motor variable speed drives, variable	05 11
frequency control of multiple synchronous motors, self controlled synchronous motor	05 Hrs
drive, PMAC motor drives, brushless dc motor drives	
Unit – III	
Chapter 5. Stepper Motor and Swiched Reluctance Motor Drives:	
Stepper Motor: variable reluctance, permanent magnet, torque versus stepping rate	
characteristics drive circuits for stepper motors	5 Hrs
Switched Reluctance Motor: Operation and control requirements, converter circuits, modes	
of operation	
Chapter 6. Solar and Battery Powered Drives:	
Solar panels, motors suitable for pump drives, battery powered vehicles, solar powered	5 Hrs
electrical vehicles	
	•

Text Book :

1. G. K Dubey, *"Fundamentals of Electrical Drives"*, 2nd ed., Narosa Publishing House, Chennai, 2002. *References:*

KLE TECH.

Department of Electrical & Electronics Engineering

Syllabus

Course code: 17EEEC306 Course title: Power System Modeling, Operation & Control Teaching hours: 50

L-T-P: 3-0-0 CIE Marks: 50 SEE Marks: 50

Unit - 1	Hrs
Chapter No. 1: Formation of network matrices : Multi-port power system representation, performance equations in bus frame of reference, definitions of Network models Ybus and Zbus, Primitive element representations, primitive performance equations,. Formation of Ybus by method of Inspection, Introduction to graph theory- definitions of terms, Bus incidence matrix, Ybus by the method of singular transformation, Examples on Ybus formation by singular transformation (with no mutual coupling) and Inspection method, Zbus building algorithm-addition of uncoupled branches and links, modification of Zbus for changes in elements not mutually coupled, Examples on Zbus formation	8 hrs
Chapter No. 2: Optimal load dispatch : Importance and objective of economic load dispatch, Fuel cost and Incremental fuel cost, Optimal load allocation between plants neglecting transmission losses, Examples on optimal load allocation with and without generation constraints, Optimal load allocation considering transmission losses, General transmission loss formula, Examples.	7 hrs
Unit - 2	
Chapter No. 3: Load flow analysis : Importance of Power flow, Classification of busses, General steps in load flow analysis, Off-nominal ratio tap changing ratio transformer representation. Bus voltage solution by Gauss and Gauss-Seidel methods without PV buses, Handling PV buses in Gauss-Seidel method, N-R load flow model in polar coordinates, formation of NR Jacobian, Introduction to FDLF load flow model, Comparison of Gauss-Seidel, NR and FDLF load flow methods, Examples on one iteration of load flow solution.	8 hrs
Chapter No. 4: Load frequency control : Introduction to load frequency control problem, Working principle of speed governor, Model of isolated power system area –block diagram representation, Expression for steady-state frequency deviation, Parallel operation of generators – expression for operating frequency and load sharing,, two area load frequency control, steady-state operation of multi-area system under free governor operation, Examples on load sharing between areas.	7 hrs
Unit - 3	
Chapter No. 5: Reactive power and voltage control : Power flow through a line, Relation between voltage, power and reactive power at a node, Brief descriptions of methods of voltage control-by injection of reactive power and tap changing transformer. Generator reactive power control by AVR-simplified AVR system model, AVR response.	5 hrs
Chapter No. 6:Power System Simulations: Simulation of automatic generation control, simulation of small signal stability of a SMIB power system, Transient stability simulation of SMIB power system using trapezoidal integration, simulation of classical economic load dispatch Algorithm	5 hrs

Text Books

- 1. Stagg and El-Abid, Computer Methods in power system analysis, First Edition, Mc-Graw Hill, 1968
- 2. Kothari and Nagarath, Modern power system analysis, 3rd Edition, Tata McGraw Hill, 2004 **References :**
- 1. P. Kundur, Power system stability and control, First Edition, Tata McGraw Hill, 2007
- 2. Hadi Sadat, Power System analysis, Ed. First Edition, Tata McGraw Hill, 2002
- 3. A.R. Bergen and Vijay Vittal, Power system analysis, Ed. First Edition, Pearson Ed, 2009

Syllabus

Course Code: 17EEEC307 L-T-P-SS: 3-0-0 Credits:3 CIE Marks: 50 SEE Marks: 50 Teaching Hrs: 40hrs

KLE TECH.

Course Title: Automotive Electronics Contact Hrs: 3 hrs/week Total Marks: 100 Exam Duration: 3 hrs

	Unit I			
No	Content	Hrs		
1	Automotive Systems, Design cycle and Automotive industry overview Overview of Automotive industry, Vehicle functional domains and their requirements, automotive supply chain, global challenges. Role of technology in Automotive Electronics and interdisciplinary design. Introduction to modern automotive systems and need for electronics in automobiles and application areas of electronic systems in modern automobiles, Introduction to power train, Automotive transmissions system ,Vehicle braking fundamentals, Steering Control, Overview of Hybrid Vehicles ECU Design Cycle : Types of model development cycles(V and A), Components of ECU, Examples of ECU on Chassis, Infotainment, Body Electronics and cluster	8		
2	 Automotive Sensors and Actuators: Sensor characteristics, Sensor response, Sensor error, Redundancy of sensors in ECUs, Avoiding redundancy, Smart Nodes, Examples of sensors : Accelerometer (knock sensors), wheel speed sensors, Engine speed sensor, Vehicle speed sensor, Throttle position sensor, Temperature sensor, Mass air flow (MAF) rate sensor, Exhaust gas oxygen concentration sensor, Throttle plate angular position sensor, Crankshaft angular position/RPM sensor, Manifold Absolute Pressure (MAP) sensor. Actuators: Engine Control Actuators, Solenoid actuator, Exhaust Gas Recirculation Actuator. 	7		
3	 Embedded system in Automotive Applications & Automotive safety systems: Review of microprocessor, microcontroller and digital signal processor within the automotive context. Criteria to choose the right microcontroller/processor for various automotive applications, Architectural attributes relevant to automotive applications Automotive grade processors ex: Renesas, Quorivva, Infineon. EMS: Engine control functions, Fuel control, Electronic systems in Engines , Development of control algorithm for EMS, Look-up tables and maps, Need of maps, Procedure to generate maps, Fuel maps/tables, Ignition maps/tables, Engine calibration, Torque table, Dynamometer testing Safety Systems in Automobiles: Active and Passive safety systems: ABS, TCS, ESP, Brake assist, Airbag systems etc. 	10		
4	Automotive communication protocols : Overview of Automotive communication protocols : CAN LIN Flex Ray MOST	5		
	Unit III			
	Advanced Driver Assistance Systems (ADAS) and Functional safety standards:			
5	Advanced Driver Assistance Systems (ADAS):Examples of assistance applications: Lane Departure Warning, Collision Warning, Automatic Cruise Control, Pedestrian Protection, Headlights Control, Connected Cars technology and trends towards Autonomous vehicles. Functional Safety: Need for safety standard-ISO 26262, safety concept, safety process for product life cycle, safety by design, validation	5		

Syllabus

	Diagnostics: Fundamentals of Diagnostics: Basic wiring system and Multiplex wiring	
	system, Preliminary checks and adjustments, Self-diagnostic system. Fault finding and	
	corrective measures, Electronic transmission checks and Diagnosis, Diagnostic	5
)	procedures and sequence, On board and off board diagnostics in Automobiles, OBDII,	3
	Concept of DTCs, DLC, MIL, Freeze Frames, History memory, Diagnostic tools,	
	Diagnostic protocols : KWP2000 and UDS	

Text Book:

f

- 1. Ribbens Understanding of Automotive electronics
- 2. Denton.T Automobile Electrical and Electronic Systems.
- 3. Denton.T Advanced automotive fault diagnosis

- 1. Ronald K Jurgen: "Automotive Electronics Handbook, 2nd Edition, McGraw-Hill, 1999
- 2. James D Halderman: -Automotive electricity and Electronics", PHI Publication
- 3. Terence Rybak. Mark Stefika: Automotive Electromagnetic Compatibility (EMC), Springer. 2004
- 4. Allan Bonnick.: "Automotive Computer Controlled Systems" Diagnostic Tools and Techniques". Elsevier Science, 2001
- 5. William T.M Automotive Electronic Systems.
- 6. Nicholas Navet Automotive Embedded System Handbook 2009.
- 7. BOSCH Automotive Handbook, 6th Edition.

FORM

ISO 9001: 2008

Department of Electrical & Electronics Engineering

Syllabus

Course code: 17EEEC308

Course title: Machine Learning

Teaching hours: 40

Chapter	Unit-I		
No.			
1	Introduction	5 hrs	
	Introduction to Machine Learning, Applications of Machine Learning, Types of		
	Machine Learning: Supervised, Unsupervised and Reinforcement learning, Dataset		
	formats, Basic terminologies.		
2	Supervised Learning	10 hrs	
	Linear Regression, Logistic Regression Linear Regression: Single and Multiple		
	variables, Sum of squares error function, The Gradient descent algorithm,		
	Application, Logistic Regression, The cost function, Classification using logistic		
	regression, one-vs-all classification using logistic regression, Regularization.		
	Unit-II		
3	Supervised Learning: Neural Network	10 hrs	
	Introduction to perception learning, Implementing simple gates XOR, AND, OR		
	using neural network. Model representation, Gradient checking, Back propagation		
	algorithm, Multi-class classification, Application- classifying digits, SVM.		
4	Unsupervised Learning: Clustering		
	Introduction, K means Clustering, Algorithm, Cost function, Application.		
	Unit-III		
5	Unsupervised Learning: Dimensionality Reduction	4 hrs	
	Dimensionality reduction, PCA- Principal Component Analysis. Applications,		
	Clustering data and PCA.		
6	Introduction to Deep Learning	8 hrs	
	What is deep learning?, Difference between machine learning and deep learning,		
	Convolution Neural Networks (CNN), Recurrent Neural Networks(RNN), When to		
	use deep learning?		

Text Books

- Tom Mitchell, Machine Learning, 1, McGraw-Hill., 1997 1
- 2 Christopher Bishop, Pattern Recognition and Machine Learning, 1, Springer, 2007

Reference Books:

1 Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning : Data Mining, Inference and Prediction, 2, Springer, 2009

CIE Marks: 50 SEE Marks: 50

L-T-P: 2-0-1

Syllabus

Laboratory Title: Power Electronics & Drives Lab Total Hours: 36 Hrs Total Exam Marks: 100

Lab. Code: 17EEEP304 Duration of Exam: 03 Hrs Total CIE. Marks: 80

S No	Experiment list		
	Demonstration		
1	Forward and Flyback DC-DC Converter		
2	Single phase full bridge inverter		
3	Half controlled Rectifier feeding R and RL load		
4	Fully controlled bridge rectifier feeding R and RL load		
	Exercises		
1	Three phase full bridge controlled rectifier fed DC motor drive.		
2	Class AB chopper fed DC Motor drive.		
3	Four Quadrant Closed loop control of DC motor drive		
4	VSI based open loop volts/hertz control of three phase induction motor drive.		
	Structured Enquiry		
1	Title: Each batch (consisting of 4 students) will work on one hard ware circuit out of the below mentioned circuits, obtain the simulation results, and experimentally verify the working principle and prepare a report. To design and implement closed loop DC motor/Induction motor drive to meet defined emerifications		

Syllabus

Laboratory Title: Automotive Electronics Lab Total Hours: 36 Hrs Total Exam Marks: 100

Lab. Code: 17EEEP305 Duration of Exam: 03 Hrs Total CIE. Marks: 80

Sl. No.	Name of Experiment		
	Demonstration Experiment		
1	Electronic engine control system: Injection and Ignition control system,		
	Transmission trainer modules		
	Exercise Experiment		
2	Simulation of an automobile engine		
3	Modeling a vehicle motion on a flat surface during hard acceleration, deceleration		
	and steady acceleration.(ABS and suspension system)		
4	Basic gate logic simulation and modeling using Simulink and realization on the		
	hardware platform.		
5	Modeling Seat belt warning system, and Vehicle speed control based on the gear		
	input.		
6	EGAS modeling and simulation using Simulink and realization on the hardware		
	platform.		
7	Interior lighting control modeling with state flow		
8	Gear input transmission over CAN bus using ARM Cortex m3 and signal analysis		
	using CANalyzer/BusMaster software. Code driven and Model driven integration		
	for Vehicle speed control function based on the gear input.		
	Structured Enquiry		
1	Develop Matlab code for stepper motor control and convert it to		
	Simulink model and port it on to an embedded hardware		
2	Develop a C code for LCD display device and convert it to Simulink model and		
	port it to embedded hardware/FPGA		

Syllabus

Laboratory Title: Minor Project Total Hours: 36

SEE Marks: 50

Lab. Code: 17EEEW302 Duration of SEE Hours: 3 CIE Marks: 50

Students are supposed to carry out the minor project based on the theme and guidelines as given below. (I) Theme:

Hardware Design and Implementation of Electrical and / or Electronics System for application in Controls, Measurement and Instrumentation, Power Electronics and Drives, Relays, Renewable Energy Systems etc using specialized ICs /Microcontrollers /DSPs.

(II) Project batches and Guide:

Each project batch consists of 3 or 4 students. Students are informed to form their own batch based on the kind of project work and their interest. Each batch is supposed to give four faculty names as guides in the order of their preference. Guides will be allocated based on the preference given by the batch. The primary role of the guide is to supervise the work, provide appropriate guidance in successfully carrying out the project work.

(III) Project implementation

The principle steps in carrying out the project work are summarized below:

Step-1: Literature survey:

A literature survey with regard to the given theme is to be carried out in order to understand the state of the current research. Further, a critical review of the collected literature will facilitate to summarize key observations. Key observations will lead to identifying a specific problem for the project work in terms of alternate/new solution techniques, possible improvements, new formulations or models, hardware implementations etc.

Step-2: Prepare a synopsis:

A synopsis highlights the definition of identified problem and its significance. The synopsis will also contain detailed literature review giving the state of the current research on the selected specialized area. It will also brief the problem formulation, solution methodology, tools employed and possible outcomes.

Step-3: Project implementation:

The work is to be carried out in phase wise manner, testing or analyzing the partial results obtained. Guide will periodically monitor the progress of the work done giving suitable suggestions as required.

Sl. No.	Activity	Week No.	Evaluation Objectives
1	Announcement for	At the end of the	NA
	the formation of	previous semester	
	batches		
2	Allotment of guides	$1^{st} - 2^{nd}$	NA
3	Submission of	3 rd - 5 th	Literature review, problem formulation,
	Synopsis		solution methodology, tools employed
4	Review-I	6^{th} - 8^{th}	Literature review, problem formulation,
			solution methodology, tools employed
5	Review-II	9 th -10 th	Analysis and implementation (partial)
6	Review-III	$12^{\text{th}} - 14^{\text{th}}$	Analysis, complete implementation and
			results.

(IV) Schedule:

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008	Document #: FMCD2005	
Department of Electrical & Electro	Rev: 1.0		
Syllabus			

Evaluation:

Evaluation of the project work carried out by each batch will be reviewed periodically by a review committee. Review committee consists of guide and two other faculty members who are guiding other batches. Generally, two to three reviews will be held during a semester. However, each project batch will be supervised by the guide on a weekly basis. Review committee will evaluate for 40% and guide will evaluate for 60% of the total marks.

Continuous Internal	Assessment	Marks
Evaluation (50%)	Evaluation by Project Guide	30
	Project Review committee	20
Semester End Examination	Using SEE Rubrics	50
(50%)	Total	100

Passing: 40% both in CIE and SEE

Syllabus

Course Code: 18EEEP201 L-T-P: 0-0-3 CIE Marks: 80 SEE Marks: 20 Teaching Hrs: 48hrs Title: Data Structure Using C Lab Credits:3 Contact Hrs: 4 hrs/week Total Marks: 100 Exam Duration: 3 hrs

Chapter	Unit-I	
No.		
1	Programming on pointer concepts: Pointer concepts,1D and 2D arrays, pointers	02+02 Hrs
	to functions, memory management functions	
2	Programming on string handling functions using pointers, structures, bit-	02+02 Hrs
	fields: Perform string handling functions like String length, String concatenate,	
	Strings compare, String copy and Strings reverse, Implementing Structures,	
	union and bit-field.	
3	Programming on files: Open, Close, Read, Write and Append the file.	02+02 Hrs
4	Programming on stack data structures and applications: Insert delete and	02+02 Hrs
	display an integer in a stack, Conversion from Infix to postfix & Infix to Prefix,	
	Recursion.	
5	Programming on queue data structures: Insert at rear end ,delete at front end and	02+02 Hrs
	display the integers in queue, Deque and circular queue.	
6	Programming on linked lists: Insert, delete and display a node in Singly Linked	06+03 Hrs
	List, Doubly Linked List and Circular Linked List.	
7	Programming on trees: Perform various operations on binary trees, find max, min	02+02 Hrs
	value in a binary search trees, find the height of a tree, count nodes in a tree, delete	
	a node in a tree.	
8	Programming on sorting: Merge sort, Quick sort, Heap sort, Shell sort, Radix sort.	02+02 Hrs
9	Programming on graphs: Compare Breadth First Sort Sort, and Depth First Sort	02+02 Hrs
10	Programming on hashing tables: Implement different methods of hash tables.	02+02 Hrs
11	Open ended experiment: Implement given Data structures.	02+02 Hrs

Text Books

- 1 Horowitz, Sahani, Anderson-Feed, "Fundamentals of Data Structures in C", 2ed, Universities Press, 2008
- 2 Aaron M. Tenenbaum, "Data Structures Using C", Pearson Education India, 2003
- 3 Richard F. Gilberg, Behrouz A. Forouzan "Data Structures: A Pseudocode Approach With C", 2nd Edition, Course Technology, Oct 2009.

Reference Books:

- 1 E Balaguruswamy, "The ANSI C programming Language", 2ed., PHI, 2010.
- 2 Yashavant Kanetkar, "Data Structures through C", BPB publications 2010

L-T-P: 3-0-0

ISA Marks: 50

Teaching Hrs: 40

Course Code: 18EEEC201

Department of Electrical & Electronics Engineering

Syllabus

Course Title: Electrical Machines

Credits: 3 ESA Marks: 50 Contact Hrs: 40 Total Marks: 100 Exam Duration: 3Hrs

Chapter	Unit-I	
No.		
1	Transformer : Transformer construction and principle of operation, Ideal	10 hrs
	Transformer, Practical Transformer, Transformer phasor diagrams, Equivalent	
	circuit of transformers, Open circuit and short circuit tests, Voltage regulation,	
	transformer losses and efficiency, Testing of transformers, Three phase	
	transformers, Auto-transformers.	
2	DC Machines: Construction of DC machine and DC machine as generator, EMF	05 hrs
	equation of DC machine, Operating characteristics of types of DC generators,	
	Operating characteristics of DC motors, DC motor starting, Speed control of DC	
	motors.	
	Unit-II	
3	Induction (Asynchronous) Machines: Induction motor as transformer, Principle of	10 hrs
	operation, Rotor frequency, e.m.f, current and power, Losses and Efficiency,	
	Equivalent circuit, Torque slip and Power-slip characteristics, Determination of	
	equivalent circuit parameters. Circle diagram, Starting of polyphase induction	
	motors.	
4	Synchronous Machines: Cylindrical and salient pole machines, Phasor diagram of	05 hrs
	cylindrical rotor alternator. AC armature winding, Voltage regulation of alternator	
	using e.m.f method.	
	Unit-III	
5	Synchronous Machines: Synchronous motor phasor, Power angle characteristic of	5 hrs
	synchronous machine, Measurement of Xd and Xq, Capability curves of	
	synchronous generators, Power factor correction by synchronous motors.	
6	Single phase induction machines: Double field revolving theory, Equivalent circuit,	5 hrs
	Resistance split phase motors, capacitor start motor, permanent capacitor motor,	
	two-value capacitor motor, shaded-pole motor. Performance and cost comparison	
	and choice of single phase induction motors.	

Text Books

1 P. C. Sen, "Principles of Electric Machines and Power Electronics", John Wiley & Sons Publications, Canada, 2nd Edition, 2001.

Reference Books:

- 1 Bhimbra, "Principles of Electrical machinery", Khanna Publishers.2006.
- 2 D. P. Kothari and I. J. Nagrath, "Electrical Machines", MGH Publishers. 4th Edition, 2011.
- 3 Fitzgerald, Kingsly & Stephen, "Electric Machinery", 5ed., McGraw Hill, 1992

Syllabus

Laboratory Title: Control System Lab Total Hours: 32 Total Exam Marks: 20

Lab. Code: 18EEEP202 Duration of Exam: 02 Total ISA. Marks: 80

Category	: Demonstration	Total Weightage:	10.00	No. of lab sessions: 2.00
Expt./ Job No.		Experiment	/job Details	5
1	Demonstration of heat learning model	tank simulator with	out controll	er using Labview Interactive
2	Demonstration of temp Interactive learning mo	perature control of li odel	iquid tank si	imulator using Labview
Category	: Exercises	Total Weightage:	40.00	No. of lab sessions: 5.00
Expt./ Job No.		Experiment	/job Details	8
1	Time response specific	ations of second or	der system	
2	Frequency response of	second order system	n	
3	P,PI and PID controlle	rs-effect on plant st	ep response	
4	Lag and Lead Compen	sators- determination	on of freque	ncy response
5	Determination of Phase	e and Gain margin		
Category	: Structured Enquiry	Total Weightag	e: 30.00	No. of lab sessions: 4.00
Expt./ Job No.		Experiment	job Details/	5
1.	Each batch consisting of MATLAB to design co specifications and anal responses. To submit a list of assumptions, design validation)	of 4 students work of ompensator/controll yze the performanc technical report (co sign formulation, de	on a given d er for a syst e by simula onsisting of esign calcula	esign problem- To employ em to meet given ting the time and frequency objectives, specifications set, ations, simulation results,

4hrs

Department of Electrical & Electronics Engineering

Syllabus

Course Title: Digital System Design using Verilog			Course Code: 18EEEP203		
L-T-P: 0-0-2		Credits: 2	Contact Hours: 4Hrs/week		
ISA Marks: 80		SEA Marks:20	Total Marks: 100		
Teaching + Lab.		Examination Duration: 2	Hrs		
Hou	Hours: 48 Hrs				
1. Chapter No. 1. Architecture of FPGA					
	Architecture of FPGS: Spartan 3, What Is HDL, Verilog HDL Data Types and				

	Architecture of FPGS: Spartan 3, What Is HDL, Verilog HDL Data Types and	
	Operators.	
2.	Chapter No. 2. Data Flow Descriptions	6 hrs
	Highlights of Data-Flow Descriptions, Structure of Data-Flow Description, Data	
	Type – Vectors, Testbench.	
3.	Chapter No. 3. Behavioral Descriptions	10 hrs
	Behavioral Description highlights, structure of HDL behavioral Description, The	
	VHDL variable – Assignment Statement, sequential statements, Tasks and	
	Functions	
4.	Chapter No. 4. Structural Descriptions	10 hrs
	Highlights of structural Description, Organization of the structural Descriptions,	
	Binding, state Machines, Generate, Generic, and Parameter statements	
5.	Chapter No. 5: Finite State Machine:	4hrs
	Moore Machines, Mealy Machines	
6.	Chapter No. 6: Timing Issues in Digital Circuits:	6hrs
	Setup Time Constraints, Hold Time Constraints, Static Time analysis, Critical	
	Path, Clock Skew.	
7.	Chapter No. 7. Advanced HDL Descriptions	8hrs
	File operations in Verilog, Memories: RAM, ROM, Block Memories(Xilinx IP)	

Syllabus

Course Code: 18EEEC301

Course Title: Linear Integrated Circuits

L-T-P: 3-0-0 CIE Marks: 50 Teaching Hrs: 40

Credits: 3 SEE Marks: 50 Contact Hrs: 40 Total Marks: 100 Exam Duration: 3 hrs

Chapter	Unit-I	
No.		
1	Current Mirrors	05 Hrs
	Current Mirror circuits and Modeling, Figures of merit (output impedance, voltage	
	swing), Widlar, Cascode and Wilson current Mirrors, Current source and current	
	sink.	
2	Basic OPAMP architecture	06 Hrs
	Basic differential amplifier, Common mode and difference mode gain, CMRR, 5-	
	pack differential amplifier, 7-pack operational amplifier, Slew rate limitation,	
	Instability and Compensation, Bandwidth and frequency response curve	
3	OPAMP characteristics	04 Hrs
	Ideal and non-ideal OPAMP terminal characteristics, Input and output impedance,	
	output Offset voltage, Small signal and Large signal bandwidth.	
	Unit-II	
4	OPAMP with Feedback	
	OPAMP under Positive and Negative feedback, Impact Negative feedback on	0511-0
	linearity, Offset voltage, Bandwidth, Input and Output impedances, Follower	USHIS
	property, Inversion property	
5	Linear applications of OPAMP	
	DC and AC Amplifiers, Voltage Follower, Summing, Scaling and	
	Averagingamplifiers (Inverting, Non-inverting and Differential configuration),	10 Hrs
	Integrator, Differentiator, , Currentamplifiers, Instrumentation amplifier, Phase	10 115
	shifters, Voltage to current converter, Phase shift oscillator, Weinbridge oscillator,	
	Active Filters – First and second order Low pass & High pass filters.	
	Unit-III	
6	Nonlinear applications of OPAMP	
	Crossing detectors (ZCD. Comparator), Schmitt trigger circuits, Monostable &	
	Astable multivibrator, Triangular/rectangular wave generators, Waveform	10 Hrs
	generator, Voltage controlled Oscillator, Precisionrectifiers, Limiting	101115
	circuits.Clamping circuits, Peak detectors, sample and hold circuits, Log and	
	antilog amplifiers, Multiplier and divider Amplifiers, Voltage Regulators.	
Text Boo	bks	

- 1 Sedra and Smith, "Microelectronics", 5th edition, Oxford University Press.
- 2 Ramakant A. Gayakwad, "Op Amps and Linear Integrated Circuits", 4th edition, PHI.

Reference Books:

- 1 Robert. F. Coughlin & Fredrick F. Driscoll, "Operational Amplifiers and Linear Integrated Circuits", PHI/Pearson, 2006.
- 2 James M. Fiore, "Op Amps and Linear Integrated Circuits", Thomson Learning, 2001
- 3 Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", TMH, 3e, 2005
- 4 David A. Bell, "Operational Amplifiers and Linear IC's", 2nd edition, PHI/Pearson, 2004

Syllabus

Course Code: 18EEEP301

L-T-P: 0-0-3 CIE Marks: 20 Teaching Hrs: 48

Course Title: Data Structure Using C Lab

Credits: 3 SEE Marks: 80 Contact Hrs: 48 Total Marks: 100 Exam Duration: 2 hrs

Chapter	Unit-I	
No.		
1	Programming on pointer concepts: Pointer concepts, 1D and 2D arrays, pointers	02+02 Hrs
	to functions, memory management functions	
2	Programming on string handling functions using pointers, structures, bit-	02+02 Hrs
	fields: Perform string handling functions like String length, String concatenate,	
	Strings compare, String copy and Strings reverse, Implementing Structures,	
	union and bit-field.	
3	Programming on files: Open, Close, Read, Write and Append the file.	02+02 Hrs
4	Programming on stack data structures and applications: Insert delete and	02+02 Hrs
	display an integer in a stack, Conversion from Infix to postfix & Infix to Prefix,	
	Recursion.	
5	Programming on queue data structures: Insert at rear end ,delete at front end and	02+02 Hrs
	display the integers in queue, Deque and circular queue.	
6	Programming on linked lists: Insert, delete and display a node in Singly Linked	06+03 Hrs
	List, Doubly Linked List and Circular Linked List.	
7	Programming on trees: Perform various operations on binary trees, find max, min	02+02 Hrs
	value in a binary search trees, find the height of a tree, count nodes in a tree, delete	
	a node in a tree.	
8	Programming on sorting: Merge sort, Quick sort, Heap sort, Shell sort, Radix sort.	02+02 Hrs
<u>9</u>	Programming on graphs: Compare Breadth First Sort Sort, and Depth First Sort	02+02 Hrs
10	Programming on hashing tables: Implement different methods of hash tables.	02+02 Hrs
11	Open ended experiment: Implement given Data structures.	02+02 Hrs

NOTE: The pseudo codes for different data structures and algorithms to be based on standard problems from geeksforgeeks website.

Syllabus

Laboratory Title: Control System Lab Total Hours: 32 Total Exam Marks: 20

Lab. Code: 18EEEP302 Duration of Exam: 02 Total ISA. Marks: 80

Category	: Demonstration	Total Weightage:	10.00	No. of lab sessions: 2.00
Expt./ Job No.		Experiment	/job Details	3
1	Demonstration of heat learning model	tank simulator with	out controll	er using Labview Interactive
2	Demonstration of temp Interactive learning mo	erature control of lindel	iquid tank si	imulator using Labview
Category	: Exercises	Fotal Weightage:	40.00	No. of lab sessions: 5.00
Expt./ Job No.		Experiment	/job Details	3
1	Time response specific	ations of second or	der system	
2	Frequency response of	second order system	m	
3	P,PI and PID controller	rs-effect on plant st	ep response	
4	Lag and Lead Compen	sators- determination	on of freque	ncy response
5	Determination of Phase	e and Gain margin		
Category	: Structured Enquiry	Total Weightag	e: 30.00	No. of lab sessions: 4.00
Expt./ Job No.		Experiment	/job Details	5
1.	Each batch consisting of MATLAB to design co specifications and anal responses. To submit a list of assumptions, des design validation)	of 4 students work of ompensator/controll yze the performanc technical report (cosign formulation, de	on a given d er for a syst e by simula onsisting of esign calcula	esign problem- To employ em to meet given ting the time and frequency objectives, specifications set, ations, simulation results,

Syllabus

Course Code: 17EEEP306 L-T-P: 0-0-1 CIE Marks: 20 Teaching Hrs: 32 Course Title: RTOS Lab Credits: 1 SEE Marks: 80

Contact Hrs: 32 Total Marks: 100 Exam Duration: 2 hrs

Expt No.	List of Experiments
1	Write a C program to use on chip Timers in LPC2148 and generate required delay
2	Write a C program to demonstrate the concept of basic RTOS programming by using RTX RTOS
3	Write a 'C' program & demonstrate concept of Round Robin Task Scheduling.
	Write a C program to demonstrate the concept of basic preemptive scheduling algorithm by using RTX RTOS
4	Write a 'C' program & demonstrate concept of Events and Flags for inter task communication using RTX RTOS
5	Write a 'C' program & demonstrate concept of Mailbox.
6	Write a 'C' program & demonstrate concept of Semaphore.
7	Write a 'C' program & demonstrate concept of interrupts(hardware and software)
	Write a C program to interface I2C-RTC with LPC2148
8	Write a C program to interface SPI-EEPROM with LPC2148
	Structured Enquiry
9	Real-Time OS Application which successfully demonstrates the use of various RTOS concepts

Syllabus

Course Code: 18EEEC302 L-T-P: 2-0-1 ISA Marks: 50 Teaching Hrs: 30 Course Title: Electric Drives & Control Credits: 3 Contact Hrs: 30 ESA Marks: 50 Total Marks: 100 Exam Duration: 3 hrs

Content	Hrs
Unit 1	
Chapter 1: Introduction to electric drives: Fundamental torque equation, speed toque conventions and multi-quadrant operation, components of load torque, nature and classification of load torques Control of electric drives: Closed loop control of drives: current limit control, closed loop torque control, closed loop speed control.	04Hrs
Chapter 2 : DC motor drives: DC motor and their performance: shunt and separately excited motors, series motors, permanent magnet motors. Braking: regenerative braking, dynamic braking, plugging. Speed control, methods of armature control, chopper controlled dc drives, chopper control of separately excited dc motors, chopper control of series motor.	
Unit 2	
Chapter 3: Induction motor drives: Three phase induction motor: analysis and performance, Braking: regenerative braking, Plugging or reverse voltage braking, speed control, variable frequency control from voltage sources, Voltage Source Inverter (VSI) Control: VSI induction motor drives, braking and multi-quadrant operation of VSI induction motor drives. Closed loop speed control and converter rating of VSI induction motor drives.	10 hrs
Unit 3	
Chapter 4: Permanent magnet synchronous machines and BLDC drives: Permanent magnet synchronous motors, Electromotive force EMF (voltage induced), Electromagnetic (developed) torque, Vector control concepts, drive system schematics, control strategies, Permanent magnet DC brushless motors and its working principle.	05 hrs
Chapter 5: Switched Reluctance Motor drives: What is a switched reluctance machine, Aligned and unaligned positions, Electromagnetic torque, Power electronics converters for SRMs: Current hysteresis control, Voltage PWM control.	05 hrs

Text Book

- 1. G. K Dubey, "Fundamentals of Electrical Drives", 2, Narosa Publishing House, Chennai, 2002
- 2. R. Krishnan, Permanent Magnet Synchronous and Brushless DC Motor Drives, CRC Press, Taylor & Francis Group, 2010.

References

- 1. T. J. E.Miller, "Brushless Permanent-Magnet and Reluctance Motor Drives", Oxford Science Publications, 1989.
- 2. Jacek F. Gieras, "Electrical Machines: Fundamentals of Electromechanical Energy Conversion", CRC Press, Taylor & Francis Group, 2017.

4hrs

6 hrs

10 hrs

10 hrs

4hrs

6hrs

8hrs

Department of Electrical & Electronics Engineering

Syllabus

Cour	se Title: Digital System Desi	gn using Verilog	Course Code: 18EEEP303
L-T-l	P: 0-0-2	Credits: 2	Contact Hours: 4Hrs/week
ISA I	Marks: 80	SEA Marks:20	Total Marks: 100
Teacl	hing + Lab. Hours: 48 Hrs	Examination Duration: 2Hrs	
1.	Chapter No. 1. Architecture	of FPGA	
	Architecture of FPGS: Spart	an 3, What Is HDL, Verilog HDL	Data Types and Operators.
2.	Chapter No. 2. Data Flow D	escriptions	
	Highlights of Data-Flow Des	scriptions, Structure of Data-Flow	Description, Data Type –
	Vectors, Testbench.		
3.	Chapter No. 3. Behavioral I	Descriptions	
	Behavioral Description high	ights, structure of HDL behaviora	al Description, The VHDL
	variable - Assignment Staten	nent, sequential statements, Tasks	and Functions
4.	Chapter No. 4. Structural De	escriptions	
	Highlights of structural Desc	ription, Organization of the struct	tural Descriptions, Binding,
	state Machines, Generate, Ge	eneric, and Parameter statements	
5.	Chapter No. 5: Finite State M	lachine:	
	Moore Machines, Mealy Ma	achines	
6.	Chapter No. 6:Timing Issue	s in Digital Circuits:	
	Setup Time Constraints, Hol	d Time Constraints, Static Time a	nalysis, Critical Path, Clock
	Skew.		
7.	Chapter No. 7. Advanced H	DL Descriptions	
	File operations in Verilog, M	Iemories: RAM, ROM, Block Me	emories(Xilinx IP)

Syllabus

Course Code:17EEEC401

L-T-P-SS: 3-0-0 CIE Marks: 50 Teaching Hrs: 40

Course Title: Switched Mode Power Converters

Credits: 3 SEE Marks: 50 Contact Hrs: 40 Total Marks: 100 Exam Duration: 3 hrs

Chapter	Unit-I	
No.		
1	Chapter No. 1.DC Power Supplies:	15 hrs
	Introduction, transformer models, the flyback converter: Continuous Current Mode,	
	Discontinuous Current Mode, Summary of flyback converter operation, the forward	
	converter, summary of forward converter, operation, the doubly ended (two	
	switch)forward converter, the push-pull converter, summary of push-pull converter	
	operation, full-bridge and half-bridge DC-DC converters, multiple outputs,	
	converter selection, power factor correction, simulation of DC power supplies, pwm	
	control circuits, the Ac line filter, the complete DC power supply .	
	Unit-II	
2	Chapter No. 2. DC-AC Switched Mode Inverters	15 hrs
	Introduction, basic concepts of switch-mode inverters, single phase inverters, three	
	phase inverters, effect of blanking time on output voltage in inverters, other inverter	
	switching schemes, rectifier mode of operation.	
	Unit-III	
3	Chapter No. 3. Multilevel Converters:	05 hrs
	Introduction, Generalized topology with a Common DC Bus, Converters Derived	
	from the Generalized Topology, Diode Clamped Topology, Flying Capacitor	
	Topology,	
4	Diode Clamped Multilevel Converters: Introduction, Converters structure and	05 hrs
	Functional description: voltage clamping, switching logic, Modulation of	
	multilevel converters, Multilevel space vector modulation	

Text Books

- 1 Ned Mohan, T. M. Undeland and W. Robbins, Power Electronics: Converters, Applications and Design, 2, John Wiley and Sons, 1995
- 2 Daniel W Hart, Power Electronics, 1, Tata McGRAW-HILL, 2011
- **3** YorkSergio Alberto González, Santiago Andrés Verne, María Inés Valla, Multilevel converters for Industrial Applications, CRC Press, 2014.

Reference Books:

- 1 Rashid M. H, Power Electronics: Circuits, Devices and Applications, 3, PHI, 2005
- 2 Bose B. K., , Power Electronics and AC Drives, 5, PHI, 2003
- 3 Rashid M. H, Digital Power Electronics and Applications, 1, Elsevier, 2005
- 4 V. Ramanarayanan, Switched Mode Power Converters Notes, IISC, Bangalore, 2008

Total Hours: **32**

SEE Marks: 20

Laboratory Title: Soft Computing Lab

Department of Electrical & Electronics Engineering

Syllabus

Credits: L-T-P: 0-0-1 Credits: 1

Lab. Code: 17EEEP401 Duration of SEE Hours: 2 CIE Marks: 80

Category: Demonstration			
Expt./ Job No.	Experiment / Job Details		
1	Demonstration of Fuzzy, Genetic and PSO programs/tool-box of MATLAB		
Category	: Exercise		
2	Fuzzy based Automatic Generation controllers for isolated and two-area power system.		
3	GA, DE and PSO optimization of PI/PID controllers for AGC		
4	GA, DE and PSO based optimal load dispatch for multi-machine power systems.		
Category: Structured Enquiry			
1.	Formulation and Simulation of Fuzzy logic based PSS for SMIB power system		
2.	PSS Design for SMIB power system using GA/ PSO/ DE algorithms		

Syllabus

Laboratory Title: Relay & High Voltage Engineering LabLab. Code:17EEP402Total Hours: 32Credits: L-T-P: 0-0-2Credits: 2Duration of SEE Hours: 2SEE Marks: 20CIE Marks: 80

Expt./ Job No.	Experiment / Job Details	
Catego	ry: Exercise	
1	Introduction Session	2 hrs
2	To obtain the inverse time characteristics of a given fuse wire and wires of different lengths.	2hrs
3	To obtain the inverse time characteristics of an electromagnetic over current relay	2hrs
4	To obtain the operating characteristics of microprocessor based differential relay.	2hrs
5	To obtain the operating characteristics of microprocessor based directional over current relay.	2hrs
6	To obtain the breakdown strength of air using Copper sphere gap with HVAC and HVDC.	2hrs
7	a) To obtain the breakdown strength of air using different pairs of electrode gap with HVAC and HVDC.b) To obtain the breakdown voltage of a solid dielectric.c) To obtain the breakdown voltage of a liquid dielectric.	2hrs
Catego	ry: Structured Enquiry	
1.	To develop microcontroller based overcurrent, over voltage and impedance relay using CT /PT giving details of program and demonstrate it's working output.	4hrs

Syllabus

Laboratory Title: Capstone Project Credits: L-T-P: 0-0-14 Credits: 14 SEE Marks: 50 Lab. Code: 18EEEW401 Duration of SEE Hours: 3 CIE Marks: **50**

Capstone Project Guidelines

(I) Preamble

KLE TECH.

A project work essentially gives the students a platform to integrate the concepts studied during the study, enhance their analytical capabilities and develop abilities to effectively communicate technical information in multiple formats. During the course of projects, students are asked to follow the research methodology in identifying a problem of their interest though literature survey, carry-out feasibility study, formulate the problem, develop mathematical models, select suitable solution technique etc. Students are also encouraged to develop new formulations, alternate solution techniques, study and new optimization algorithms, develop new simulation models and use modern apply engineering/simulation tools.

(II) Project batch and Guide

Each project batch consists of 3 or 4 students. Students will be informed to form their own batch based on the kind of project work and their interest. Each batch is supposed to give four faculty names as guides based on faculty expertise in the order of their preference. Guides will be allocated based on the preference given by the batch. The primary role of the guide is to supervise the work, give appropriate guidance in successfully carrying out the project work.

(III) Project implementation

The principal steps in carrying out the project work are summarized below:

Step-1: Selection of a specialized area for the project work

A specialized area in which the project work is to be carried out depends on the interest and specialized skills acquired by the project team. This includes areas such as power system analysis, power system dynamics, renewable energy, electric drives, VLSI & Embedded system, Power quality issues etc. The proposed work may include simulation studies, hardware implementation or both.

Step-2: Selection of topic based on literature survey

A literature survey in the selected specialized area is to be carried out in order to understand the state of the current research. Further, a critical review of the collected literature will facilitate to summarize key observations. Key observations will lead to identifying a specific problem for the project work in terms of alternate/new solution techniques, possible improvements, new formulations or models, hardware implementations etc.

Step-3: Prepare a synopsis

A synopsis highlights the definition of identified problem and its significance. The synopsis will also contain detailed literature review giving the state of the current research on the selected specialized area. It will also brief the problem formulation, solution methodology, tools employed and possible outcomes.

Step-4: Project implementation

The work is to be carried out in phase wise manner, testing or analyzing the partial results obtained. Guide will periodically monitor the progress of the work done giving suitable suggestions as required.

Syllabus

(IV) Schedule

Sl. No.	Activity	Week No.	Evaluation Objectives		
1	Announcement to	At the end of the	NA		
	form the batches	previous 7 th sem			
2	Allotment of guides	1^{st} - 2^{nd}	NA		
3	Submission of	4^{th} - 5^{th}	Literature review, problem formulation,		
	Synopsis		methodology by respective Guides		
4	Review-I	6 th - 8 th	Literature review, problem formulation,		
			methodology, tools used in the		
			presence Review Committee		
5	Review-II	9 th -10 th	Implementation and analysis done		
6	Review-III	$12^{\text{th}} - 14^{\text{th}}$	Completion along with Hardware/		
			Software/ Report. Results and		
			Conclusions.		

(V) Evaluation

Evaluation of the project work carried out by each batch will be reviewed periodically by a review committee. Review committee consists of guide and two/ three other faculty members who are guiding other batches. Generally, two to three reviews will be held during a semester. However, each project batch will be supervised by the guide on a weekly basis. Review committee will evaluate for 40% and guide will evaluate for 60% of the total marks.

Activity	Assessment	Marks
ISA (50%)	Project Review committee	20
	Evaluation by Project Guide	30
ESA	Using ESA Rubrics	50
(50%)	Total	100

Passing: 40% both in ISA and ESA

Keview Committee Evaluation Schedule				
Activity	Week	Marks		
Review I: Problem Definition	6 th	05		
Review II: Progress	8 th	05		
Review III: Results & Conclusions	12 th	10		
Guide Evaluation	12 th	30		
Total		50		

aview Committee Evaluation Schedule

Syllabus

In Semester Assessment (ISA)

Review	Phases of the project	PI	Marks			
	Identification of problem, Literature survey,	2.4.1				
	Methodology					
1	Relevance of project topic literature review	24.1	10 Marks			
1	Tools/ Software/ Hardware using	2.2.3				
	Team and Individual Work	9.2.1				
	Develop models and simulate power/ energy/	13.1.1				
	electronics systems using appropriate engineering					
	tools					
	Presentation and communication skills	10.3.2	10 Marks			
2	Design/ Development of solutions	3.4.1				
	Investigation of complex problems	4.3.4				
	Work done	2.2.3	<u>3</u> 1			
	Team and Individual Work	9.2.1				
	Develop models and simulate power/ energy/	13.1.1				
	electronics systems using appropriate engineering					
	tools					
	Work done	2.2.3	-			
3	Design/ Development of solutions	3.4.1	30 Marks			
	Investigation of complex problems	4.3.4				
	Analysis and Results	3.4.1	_			
	Team and Individual Work	9.2.1				
Total (A		50 Marks				

Syllabus

End Semester Assessment (ESA)

CAPSTONE PROJECT					
	Grou	p Evaluation	PO Assessed	PI Assessed	Weightage
	Relevance of project topic and Literature review	 Problem identification Problem objectives and scope	2	2.2.3 2.4.1	30%
d Semester Assessment (ESA)	Quality and Quantity of work reported Quality of presentation and report	 Problem formulation Contribution to the field of knowledge Experimentation/simu lation Analysis of results Drawing conclusions Assumptions and justifications Organization of the report/presentation Clarity of language Clarity of illustrations 	2 3 4 13	2.4.2 13.1.1 3.4.1 4.3.4	40%
E	Individ	and Tables			
	Presentation/ Communicatio n skills	 Clarity of language Technical Knowled 	10	10.3.2	5%
	Viva Voce	• Demonstration of clear understanding of the concept	10	10.3.2	5%

Syllabus

Course Code: 19EEEC202

L-T-P-Self Study: 3-0-0-0

ISA Marks: 50

KLE TECH.

Teaching Hrs: 40

Course Title: Electrical Power Generation, Transmission & Distribution

Credits: 3 ESA Marks: 50 Contact Hrs: 40

Total Marks: 100

Exam Duration: 3 hrs

Content	Hrs
Unit - 1	
Chapter No. 1. Generating Stations. selection of Site, Classification, General arrangement and operation of Hydroelectric plant with components, General arrangement and operation of Thermal power plant with components, General arrangement and operation of Nuclear power plant with components, Safety of Nuclear power reactor, storing and processing of spent fuel.	5 hrs
Chapter No. 2. Substations and Economic operations Sub stations : Types, Bus-bar arrangement Schemes, location and substation equipment's Economics :Important terms and curves commonly used in system operation, effect of Voltage and frequency on loads , Scheduling of generators, Choice of size and number of generator units, Interconnection of power stations	5 hrs
Chapter No. 3.Typical Transmission & distribution systems Introduction, electric supply system, comparison of AC and DC systems, Standard Voltages of Transmission & Distribution Advantages of High Voltage Power Transmission. (effect of increase in voltage on weight of conductor, Line Efficiency & Line Voltage Drop) Feeders, Distributors & Service Mains. Conductor types.	2 hrs
Chapter No. 4. Overhead Transmission Line (Mechanical Design) Overhead transmission lines: introduction, components of a typical OH system. Line supports & placing of the conductors, single phase and three phase systems. Single circuit and double circuit Spacing of conductors, Length of span & Sag in OH lines. Sag calculation in conductors. (a) Suspended on level supports. (b) Supports at different levels. Effect of wind and ice. Tension and sag at erection. Corona Phenomena & Factors affecting corona in OH lines Expressions for Critical disruptive & visual critical voltage. and corona power loss	3 hrs
Unit - 2	
Chapter No. 5. Line parameters (Electrical Design) Introduction to transmission line constants i.e. Resistance, Inductance and capacitance . Distributed resistance of the transmission line, skin effect and proximity effect. Inductance of the single phase & three phase lines. Inductance calculation with equilateral and unsymmetrical spacing of the lines. Transposition of line conductors. Capacitance for single phase & three phase lines. Effect of earth on capacitance of the line. Numerical solutions on resistance calculations. Inductance & Capacitance calculations.	7 hrs
Chapter No. 6. Characteristics & Performance of Power transmission lines:	8 hrs

Syllabus

Introduction to Short transmission lines, calculations for short lines. Medium transmission lines. Nominal-T and □ representation for transmission lines Long transmission lines. Long line solutions by Rigorous method, equivalent models, ABCD constants.	
Unit - 3	
Chapter No. 7. Insulators Materials of insulators. Different types of insulators. Potential distribution over a string of suspension insulators. String efficiency and methods of increasing string efficiency. Testing of insulators.	5 hrs
Chapter No. 8. Underground Cables Underground Cables: Types of cables & material used for Insulation. Resistance, thermal	5 hrs

rating of cables & charging current, Grading of cables Capacitance grading and inter sheath grading, testing of cables.

Text Books

1. Skrotzki and Wavopat, Power station Engineering and economics ., McGraw Hill, 1995 **References**

- 1. Soni, Gupta and Bhatnagar, A Course in Electrical Power, Dhanpatrai, 2014
- 2. S M Singh, Electric Power generation, transmission and Distribution., Prentice Hall of India., 2012
- 3. J B Gupta., Transmission and Distribution of Electrical power., Kataria, 2012

V K Metha and Rohit Metha., Principles of Power System., S Chand & Company Ltd.,

Syllabus

Course Code: 19EEEC201 L-T-P-SS: 4-0-0 CIE Marks: 50 Teaching Hrs: 50 Course Title: Circuit Analysis Credits: 4 Contact Hrs

SEE Marks: 50

Contact Hrs: 50 Total Marks: 100 Exam Duration: 3 hrs

Chapte	Unit-I		
r No.			
1	Network Equations :Source Transformation, Star Delta transformation, Nodal		
	Analysis, Super node, Mesh Analysis, Super mesh, Duality, Network Topology, Tie		
	Set and Cut Set matrix formulation, Dot convention.		
2	Network Theorems :Homogeneity, Superposition and Linearity, Thevenin's &	8 hrs	
	Norton's Theorems, Maximum Power Transfer Theorem, Milman's theorem,		
	Reciprocity principle, Application of theorems to both ac and dc networks		
3	Two Port Networks : Two port variables, Z,Y, H,G, A- Parameter representations,	4 hrs	
	Input and output impedance calculation, Series, Parallel and Cascade network		
	connections, and their (suitable) models.		
	Unit-II		
4	First order circuits :Order of a system, Concept of Time constant, System	8 hrs	
	Governing equation, System Characteristic equation, Basic RL & RC circuit,		
	Transient response with initial conditions, Frequency response characteristics, R-C		
	, R-L circuits as differentiator and integrator models, time and frequency domain		
	responses R-C, R-L circuits as Low pass and high pass filters		
5	Higher order circuits: Higher order R-C, R-L, and R-L-C networks, time domain	12 hrs	
	and frequency domain representation, Series R-L-C circuit, Transient response,		
	Damping factor, Quality factor, Frequency response curve , Peaking of frequency		
	curve and its relation to damping factor, Resonance Parallel, R-L-C circuit, Tank		
	circuit, Resonance, Quality factor and Bandwidth		
	Unit-III		
6	Sinusoidal Steady state analysis : Characteristics of sinusoids, Forced response to	5 hrs	
	sinusoidal functions, The complex forcing function, Phasors & Phasor diagrams.		
7	Polyphase Circuits : Polyphase systems, Single Phase three wire system, Three	5 hrs	
	phase Y-Y connection, Delta connection, Analysis of balanced & unbalanced three		
	phase circuits.		

Text Books

- 1 W H Hayt, J E Kemmerly, S M Durban, Engineering Circuit Analysis, 6th, McGraw Hil, 2006
- 2 M E. Van Valkenburg, Network Analysis, 3rd, Pearson Ed, 2006

Reference Books:

- 1 Joseph Edminister, Mahmood Nahavi, Electric Circuits, 3rd, Tata McGra, 1991
- 2 Bruce Carlson, Circuits, 3rd, Thomson Le, 2002
- 3 V. K. Aatre, Network Theory and Filter Design, 2nd, Wiley West, 2002
- 4 Anant Agarwal and Jeffrey H Lang, Foundations of Analog & Digital Electronics Circuits, 3rd, Morgan Kau, 2006
- 5 Muhammad H . Rashid, Introduction to PSPICE using OrCAD for circuits and Electronics, 3rd, Pearson Ed, 2005

KLE TECH.

Department of Electrical & Electronics Engineering

Syllabus

Course Code: 19EEEC203	Course Title: Digita	Course Title: Digital Circuits	
L-T-P-Self Study: 4-0-0	Credits: 4	Contact Hrs: 50	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50		Exam Duration: 3 hrs	

Content	Hrs
Unit – 1	
Chapter No. 1. Logic Families Logic levels, output switching times, fan-in and fan-out, comparison of logic families	2 hrs
Chapter No. 2.Principles of Combinational Logic Definition of combinational logic, canonical forms, Generation of switching equations from truth tables, Karnaugh maps-3,4 variables, Incompletely specified functions(Don't care terms),Simplifying Maxterm equations, Quine-McCluskey minimization technique- QuineMcCluskey using don't care terms, Reduced Prime Implicant Tables.	8 hrs
Chapter No. 3.Analysis and design of combinational logic General approach, Decoders-BCD decoders, Encoders, Digital multiplexers- Using multiplexers as Boolean function generators. Adders and subtractors-Cascading full adders, Look ahead carry adders, Binary comparators.	10 hrs
Unit – 2	
Chapter No. 4.Introduction to Sequential Circuits Basic Bistable Element, Latches, A SR Latch, Application of SR Latch, A Switch De bouncer, The SR Latch, The gated SR Latch, The gated D Latch, The Master-Slave FlipFlops (Pulse-Triggered Flip-Flops): The Master-Slave SR Flip-Flops, The Master- Slave JK Flip-Flop, Edge Triggered Flip-Flop: The Positive Edge-Triggered D Flip-Flop, Negative- Edge Triggered D Flip-Flop; Characteristic Equations	10 hrs
Chapter No. 5. Analysis of Sequential Circuits Registers and Counters, Binary Ripple Counters, Synchronous Binary counters, Ring and Johnson Counters, Design of a Synchronous counters, Design of a Synchronous Mod-n Counter using clocked JK Flip-Flops Design of a Synchronous Mod-n Counter using clocked D, T or SR Flip-Flops.	10 hrs
Unit – 3	
Chapter No. 6. Sequential Circuit Design Introduction to Sequential Circuit Design, Mealy and Moore Models, State Machine notations, Synchronous Sequential Circuit Analysis, Construction of state Diagrams and counter design.	5 hrs

Syllabus

Chapter No. 7. Introduction to memories	5 hrs
Introduction and role of memory in a computer system, memory types and terminology,	
Read Only memory, MROM, PROM, EPROM, EEPROM, Random access memory,	
SRAM, DRAM, NVRAM.	

Text Books (List of books as mentioned in the approved syllabus)

- 1. Donald D Givone, Digital Principles and Design, Tata McGraw Hill, 2002
- 2. John M Yarbrough, Digital Logic Applications and Design, Thomson Learning, 2001
- 3. A Anand Kumar, Fundamentals of Digital Circuits, PHI, 2003

References

- 1. Charles H Roth, Fundamentals pf Logic Design, Thomson Learning, 2004
- 2. R.D.Sudhaker Samuel, Logic Design, Sanguine Technical Publishers, 2005
- 3. R P Jain, Modern Digital Electronics, Tata McGraw, 2000

Creating Value Leveraging Knowledge

Department of Electrical & Electronics Engineering

Syllabus

Course Code: 19EEEC204 L-T-P : 4-0-0 ISA Marks: 50 Teaching Hrs: 50

KLE TECH.

Course Title: Electrical Machines Credits: 3 Contact Hrs: 50 ESA Marks: 50 Total Marks: 100 Exam Duration: 3Hrs

Content	Hrs
Unit – 1	
Chapter 1: Transformers: Single phase transformer- Principle of operation and construction, Ideal transformer, Real transformer, Phasor diagrams, Equivalent circuit, Open-circuit test, Short-circuit test, Voltage regulation, Efficiency, Three phase transformers.	09 hours
Chapter 2: Three Phase Induction Machines: Principle of energy conversion in machines, Construction, Fundamental relationships- Slip, Rotor speed, Input power, Electromagnetic power, Electromagnetic (developed) torque, Mechanical power, Efficiency, Shaft torque. , Equivalent circuit, Analogies between induction machine and transformer, No-load and locked-rotor tests, Torque-speed characteristics, Starting, Speed control. Inverter fed induction motor.	11 hours
Unit – 2	
Chapter 3: DC Machines: Principle of operation, Construction of DC machine, Fundamental equations, Armature reaction, Classification of DC machines, DC generators, DC motors, Starting, Speed control of DC motors, Braking, Switched Reluctance Machines- Construction, principle of operation, Aligned and unaligned positions, Electromagnetic torque, Advantages, disadvantages and Applications of SRMs, Steady state analysis of SRM. BLDC motor Construction and operation.	12 hours
Chapter 4 : Synchronous Machines: Construction, Classification of synchronous machines, Electromotive force induced in armature winding, Generator and motor operation, Phasor diagrams of synchronous machine with Non-salient pole rotor and salient pole rotor, Voltage regulation calculation by EMF and MMF method, Synchronous motor, Synchronous motor as a synchronous condenser, Study of V and inverted V curves.	08 hours
Unit – 3	
Chapter 5: Synchronous Machines: Permanent magnet synchronous motors, Air gap magnetic flux density, Equivalent circuit of PM synchronous machine, Phasor diagram, Performance Characteristics of PM synchronous machine, Starting.	05 hours
Chapter 6: Single phase induction motors: Double revolving field theory, Equivalent circuit, Split-phase induction motor, Capacitor-start induction motor, Permanent split capacitor induction motor, Capacitor start capacitor-run induction motor, and Shaded pole induction motor.	05 hours

Text Book

1. Jacek F. Gieras, "Electrical Machines: Fundamentals of Electromechanical Energy Conversion", CRC Press, Taylor & Francis Group, 2017.

References

1. P. C. Sen, "Principles of Electric Machines and Power Electronics", John Wiley & Sons Publications, Canada, 2nd Edition, 2001.

KLE TECH. KLE TECH. KLE TECH.	FORM ISO 9001: 2008	FORM Document #: FMCD2005	
Department of Electrical & Electronics Engineering			Rev: 1.0
Syllabus			

- 2. Bhimbra, "Principles of Electrical machinery", Khanna Publishers.2006.
- 3. Mehrdad Ehsani...[et al.],"Modern electric, Hybrid electric, and Fuel Cell Vehicles: fundamentals, theory, and design.", CRC Press, 2005.
- 4. T. J. E.Miller, "Brushless Permanent-Magnet and Reluctance Motor Drives", Oxford Science Publications, 1989.

KLE TECH.

Department of Electrical & Electronics Engineering

Syllabus

Course Title: Signals and Systems Teaching **Course Code: 19EEEC205** Hrs. L-T-P: 3-0-0 Credits:3 **Contact Hours:** 3Hrs/week **ISA Marks: 50** SEA Marks:50 Total Marks: 100 **Teaching Hours: 40 Hrs Examination Duration: 3 Hrs** Chapter No. 1. Introduction and Classification of signals: Definition of 1. 8hrs signal and systems. Sampling of analog signals, Continuous time and discrete time signal, Classification of signals as even, odd, periodic and non-periodic, deterministic and non-deterministic, energy and power. Elementary signals/Functions: exponential, sine, impulse, step and its properties, ramp, rectangular, triangular. Operations on signals: Amplitude scaling, addition, multiplication, differentiation, integration, time scaling, time shifting and time folding Systems: Definition Classification: linear and poplinger time variant

	Torumg. Systems: Dermitton, Clussification: Intear and Hommear, time variant	
	and invariant, causal and non-causal, static and dynamic, stable and unstable,	
	invertible.	
2.	Chapter No. 2. Time domain representation of LTI System: Definition of	7hrs
	impulse response, convolution sum, convolution integral , computation of	
	convolution sum using graphical method for unit step to unit step, unit step to	
	exponential, exponential to exponential, unit step to rectangular and	
	rectangular to rectangular only. Properties of convolution.	
3.	Chapter No. 3. Fourier Representation of Periodic Signals: Fourier	5hrs
	Representation of Periodic Signals: Introduction to CTFS and DTFS,	
	definition, properties and basic problems.	
4.	Chapter No. 4. Fourier Representation of aperiodic Signals: FT	10hrs
4.	Chapter No. 4. Fourier Representation of aperiodic Signals: FT representation of aperiodic CT signals, definition, FT of standard CT signals,	10hrs
4.	Chapter No. 4. Fourier Representation of aperiodic Signals: FT representation of aperiodic CT signals, definition, FT of standard CT signals, Properties and their significance. FT representation of aperiodic discrete	10hrs
4.	Chapter No. 4. Fourier Representation of aperiodic Signals: FT representation of aperiodic CT signals, definition, FT of standard CT signals, Properties and their significance. FT representation of aperiodic discrete signals DTFT, definition, DTFT of standard discrete signals, Properties and	10hrs
4.	Chapter No. 4. Fourier Representation of aperiodic Signals: FT representation of aperiodic CT signals, definition, FT of standard CT signals, Properties and their significance. FT representation of aperiodic discrete signals DTFT, definition, DTFT of standard discrete signals, Properties and their significance, Impulse sampling and reconstruction: Sampling theorem	10hrs
4.	Chapter No. 4. Fourier Representation of aperiodic Signals: FT representation of aperiodic CT signals, definition, FT of standard CT signals, Properties and their significance. FT representation of aperiodic discrete signals DTFT, definition, DTFT of standard discrete signals, Properties and their significance, Impulse sampling and reconstruction: Sampling theorem and reconstruction of signals.	10hrs
4.	 Chapter No. 4. Fourier Representation of aperiodic Signals: FT representation of aperiodic CT signals, definition, FT of standard CT signals, Properties and their significance. FT representation of aperiodic discrete signals DTFT, definition, DTFT of standard discrete signals, Properties and their significance, Impulse sampling and reconstruction: Sampling theorem and reconstruction of signals. Chapter No. 5: Z-Transforms: Introduction, the Z-transform, properties of 	10hrs 10hrs
4.	 Chapter No. 4. Fourier Representation of aperiodic Signals: FT representation of aperiodic CT signals, definition, FT of standard CT signals, Properties and their significance. FT representation of aperiodic discrete signals DTFT, definition, DTFT of standard discrete signals, Properties and their significance, Impulse sampling and reconstruction: Sampling theorem and reconstruction of signals. Chapter No. 5: Z-Transforms: Introduction, the Z-transform, properties of the Region of convergence, Properties of the Z-Transform, Inversion of the Z- 	10hrs 10hrs

Text Book

Simon Haykin and Barry Van Veen, Signals and Systems -2nd Edition, John Wiley, 2004 .

66

FORM

ISO 9001: 2008

FMCD2005

Department of Electrical & Electronics Engineering

Technological

University

Creating Value Leveraging Knowledge

Syllabus

Course code: 19EEEC301 Course title: Machine Learning Teaching hours: 40

L-T-P: 2-0-1 **CIE Marks: 50** ESA Marks: 50

Chapter	Unit-I	
No.		
1	Introduction	5 hrs
	Introduction to Machine Learning, Applications of Machine Learning, Types of	
	Machine Learning: Supervised, Unsupervised and Reinforcement learning, Dataset	
	formats, Basic terminologies.	
2	Supervised Learning	10 hrs
	Linear Regression, Logistic Regression Linear Regression: Single and Multiple	
	variables, Sum of squares error function, The Gradient descent algorithm,	
	Application, Logistic Regression, The cost function, Classification using logistic	
	regression, one-vs-all classification using logistic regression, Regularization.	
	Unit-II	
3	Supervised Learning: Neural Network	10 hrs
	Introduction to perception learning, Implementing simple gates XOR, AND, OR	
	using neural network. Model representation, Gradient checking, Back propagation	
	algorithm, Multi-class classification, Application- classifying digits, SVM.	
4	Unsupervised Learning: Clustering	5 hrs
	Introduction, K means Clustering, Algorithm, Cost function, Application.	
	Unit-III	
5	Unsupervised Learning: Dimensionality Reduction	4 hrs
	Dimensionality reduction, PCA- Principal Component Analysis. Applications,	
	Clustering data and PCA.	
6	Introduction to Deep Learning	8 hrs
	What is deep learning?, Difference between machine learning and deep learning,	
	Convolution Neural Networks (CNN), Recurrent Neural Networks(RNN), When to	
	use deep learning?	

Text Books

- Tom Mitchell, Machine Learning, 1, McGraw-Hill., 1997 1
- 2 Christopher Bishop, Pattern Recognition and Machine Learning, 1, Springer, 2007

Reference Books:

Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical 1 Learning : Data Mining, Inference and Prediction, 2, Springer, 2009

L-T-P: 0-0-1

CIE Marks: 80

Course Title: Machines lab

Laboratory Hours: 28Hrs

Department of Electrical & Electronics Engineering

Syllabus

Credits: 1

SEE Marks: 20

Examination Duration: 3Hrs

Course Code: 19EEEP301 Contact Hours: 2Hrs/week Total Marks: 100

Category:	Demonstration
Expt./ Job No.	Experiment / Job Details
1	Star and Delta Connected Lighting Loads
2	Open circuit characteristics of DC machine
3	Speed control of separately excited DC motor by armature voltage control and flux control
4	Synchronization of Alternator with Bus bar/ Parallel operation of Alternator
Category:	Exercise
Expt./ Job No.	Experiment / Job Details
1	To Conduct NO – LOAD & BLOCKED ROTOR test on a given Induction motor to a) Find the performance parameters b) Represent the motor by its equivalent circuit model referred to Stator or Rotor.
2	To Conduct Open Circuit and Short Circuit test on given single phase transformer to a) Calculate efficiency and voltage regulation at different loads & power factors. b) Draw the transformer equivalent circuit model.
3	Load test on 3Ø Induction motor
4	Three phase Transformer bank using three single phase transformers with different configurations of primary and secondary windings.
5	Speed control of Induction motor by V/f method
6	Performance study of synchronous motor with change in its excitation (V and Inverted V curves)
7	Voltage regulation of an Alternator by EMF and MMF method
Category:	Structured Enquiry
Expt./ Job No.	Experiment / Job Details
1	To develop the second order response surface methodology (RSM) based speed prediction model of DC shunt motor by conducting experiments as per Design of Experiments.(DOE)

Syllabus

Course Content Course Code: 19EEEC302 L-T-P-S: 3-0-0 Teaching Hours: 40

Course Title: Electric Drives and Control CIE:50 SEE:50

Chapter 1. An introduction to Electrical Drives & its Dynamics:	
Electrical drives. Advantages of electrical drives. Parts of electrical drives, Choice of electrical drives, status of dc and ac drives, dynamics of electrical drives, fundamental torque equation, speed torque conventions and multi quadrant operation. Nature and classification of load torques, calculation of time and energy loss in transient operations	5 Hrs
Chapter 2. D C Motor Drives: Starting braking, single phase fully controlled rectifier control of dc separately excited motor, Single-phase half controlled rectifier control of dc separately excited motor. Three phase fully controlled rectifier control of dc separately excited motor, three phase half controlled rectifier control of dc separately excited motor, multiquadrant operation of dc separately excited motor fed from fully controlled rectifier. Rectifier control of dc series motor, chopper controlled dc drives, chopper control of separately excited dc motor. Chopper control of series motor.	10 Hrs
Unit – II	
Chapter 3. Induction Motor Drives: Operation with unbalanced source voltage and single phasing, operation with unbalanced rotor impedances, analysis of induction motor fed from non-sinusoidal voltage supply, starting, braking, Stator voltage control, variable frequency control from voltage sources, voltage source inverter control, current source inverter control, current regulated voltage source inverter control, rotor resistance control, slip power recovery.	10 Hrs
Chapter 4. Synchronous Motor and Brushless dc Motor Drives: Operation from fixed frequency supply, synchronous motor variable speed drives, variable frequency control of multiple synchronous motors, self controlled synchronous motor drive, PMAC motor drives, brushless dc motor drives	05 Hrs
Unit – III	
Chapter 5. Stepper Motor and Swiched Reluctance Motor Drives: Stepper Motor: variable reluctance, permanent magnet, torque versus stepping rate characteristics drive circuits for stepper motors Switched Reluctance Motor: Operation and control requirements, converter circuits, modes of operation	5 Hrs
Chapter 6. Solar and Battery Powered Drives:	
Solar panels, motors suitable for pump drives, battery powered vehicles, solar powered electrical vehicles	5 Hrs

1. G. K Dubey, *"Fundamentals of Electrical Drives"*, 2nd ed., Narosa Publishing House, Chennai, 2002. **References**

- 1. N. K. De and P. K. Sen, Electrical Drives, PHI, 2007
- 2. S. K. Pillai, A First Course On Electric Drives, Wiley Eastern Ltd, 1990
- 3. V. R. Moorthi, Power Electronics, Devices, Circuits & Industrial Applications, Oxford University Press, 2005

Syllabus

Course Code: 19EEEC303Course Title: Object Oriented Programming using C++
Credits: 3L-T-P: 2-0-1Credits: 3Contact Hrs: 3ISA Marks: 50ESA Marks: 50Total Marks: 100Teaching Hrs: 40Exam Duration: 03 hrs

Content	Hrs	
Unit - 1		
Chapter 01: Introduction	4 hrs	
Principles of Object Oriented Programming, Procedure oriented and Object oriented		
Programming, Basic Concepts of OOP, Benefits and Applications of OOP,		
Beginning with C++, Simple C++ program, C++ with classes, Structure of C++		
program, Creating, compiling and linking C++ programs.		
Chapter 02: Classes and Objects		
Structures and Classes, Specifying a Class, Defining Member functions, C++		
program with class, Access Specifiers, Scope Resolution Operators, Inline		
functions, Static Data Members, Static Member Functions, Friend Functions.		
Chapter 03: Constructors and Destructors		
Introduction, Parameterized Constructors, Multiple Constructors, Copy Constructor,		
Dynamic Constructor, Destructors, Dynamic allocation of objects - new and delete		
operators.		
Unit - 2		
Chapter 04: Inheritance		
Introduction, Defining Derived Classes, Types of Inheritance, Virtual Base Classes,		
Abstract Classes, Constructors in Derived Classes, Nesting of Classes.		
Chapter 05: Virtual Functions and Polymorphism		
Pointers to objects, this pointer, Pointers to Derived classes, Virtual Functions. Pure		
Virtual Functions.		
Chapter 06: Exception Handling	4 hrs	
Basics, Exception Handling Mechanism, Throwing, Catching and Rethrowing		
Exceptions.		
Unit - 3		
Chapter 07: Function Overloading, Operator Overloading		
Function Overloading, Overloading Constructors, Defining operator Overloading,		
Unary and Binary operator overloading, Rules for overloading operators.		
Chapter 08: Templates, STL		
Class Templates, Function Templates, Overloading of Template functions,		
Components of STL, Containers, Iterators, Application of Container Classes.		

Text Books (List of books as mentioned in the approved syllabus)

- 1. E.Balagurusamy, Object Oriented Programming with C++, 4th edition, Tata McGrawHill, 2008
- 2. Herbert Schildt, C++ The Complete Reference, Fourth Edition, Tata McGrawHill, 2003

References

- 1. Yashavant P. Kanetkar, Let Us C++, 1st, BPB Publications,
- 2. Stanley B.Lippmann, Josee Lajore, Barbara E. Moo, C++ Primer, 4th Edition, Pearson Education, 2005

Syllabus

Laboratory Title: **Power Electronics & Drives Laboratory** Total Hours: **24**

SEE Marks: 20

Lab. Code: **19EEEP302** Duration of SEE Hours: 3 CIE Marks: **80**

Category: Demonstration			
Expt./ Job No.	Experiment / Job Details		
1	Forward and Flyback DC-DC Converter		
2	Single phase full bridge inverter		
3	Half controlled Rectifier feeding R and RL load		
4	Introduction to STEmbed Model based design and C-code generation for Power Electronics & Drives Application using TI's DSPs.		
Category: Exercise			
Expt./ Job No.	Experiment / Job Details		
1	Three phase full bridge controlled rectifier fed DC motor drive.		
2	Fully controlled bridge rectifier feeding R and RL load		
3	VSI based open loop volts/hertz control of three phase induction motor drive.		
4	ADC, PWM pulse Generation and PI Controller design for PE and Drives application using STEmbed and TI's DSPs.		
Category: Structured Enquiry			
Expt./ Job No.	Experiment / Job Details		
1	To design, simulate and experimentally verify given drive system to meet defined specifications.		

Creating Value Leveraging Knowledge

Department of Electrical & Electronics Engineering

Syllabus

Course Code: 19EEEC401

Course Title: Power System Modeling, Operation & Control

L-T-P: 3-0-0 CIE Marks: 50 Teaching Hrs: 40

Credits: 3 SEE Marks: 50

Contact Hrs: 40 Total Marks: 100 Exam Duration: 3 hrs

Chapter	Unit-I	
No.		0.1
1	Formation of network matrices : Multi-port power system representation,	8 nrs
	performance equations in bus frame of reference, definitions of Network models	
	I_{bus} and Z_{bus} , Finnerve element representations, primitive performance equations, Formation of Vbus by mathed of Inspection. Introduction to graph theory	
	definitions of terms. Bus incidence matrix. Vhus hy the method of singular	
	transformation. Examples on Vhus formation by singular transformation (with no	
	mutual coupling) and Inspection method. Thus building algorithm addition of	
	induction coupling) and inspection method, Zous building algorithm-addition of uncoupled branches and links, modification of Zhus for changes in elements not	
	mutually coupled Framples on Thus formation	
2	Initially coupled, Examples of Zous formation	7 has
Z	Optimal load dispatch : Importance and objective of economic load dispatch, Fuel	/ nrs
	cost and incremental fuel cost, Optimal load allocation between plants neglecting	
	transmission losses, Examples on optimal load allocation with and without	
	generation constraints, Optimal load allocation considering transmission losses,	
	General transmission loss formula, Examples.	
		0.1
3	Load flow analysis : Importance of Power flow, Classification of busses, General	8 hrs
	steps in load flow analysis, Off-nominal ratio tap changing ratio transformer	
	representation. Bus voltage solution by Gauss and Gauss-Seidel methods without	
	PV buses, Handling PV buses in Gauss-Seidel method, N-R load flow model in	
	polar coordinates, formation of NR Jacobian, Introduction to FDLF load flow	
	model, Comparison of Gauss-Seidel, NR and FDLF load flow methods, Examples	
	on one iteration of load flow solution.	- 1
4	Load frequency control :Introduction to load frequency control problem, Working	7 hrs
	principle of speed governor, Model of isolated power system area –block diagram	
	representation, Expression for steady-state frequency deviation, Parallel operation	
	of generators –expression for operating frequency and load sharing,, two area load	
	frequency control, steady-state operation of multi-area system under free governor	
	operation, Examples on load sharing between areas.	
	Unit-III	
5	Reactive power and voltage control : Power flow through a line, Relation	5 hrs
	between voltage, power and reactive power at a node, Brief descriptions of methods	
	of voltage control-by injection of reactive power and tap changing transformer.	
	Generator reactive power control by AVR-simplified AVR system model, AVR	
	response.	
6	Power System Simulations: Simulation of automatic generation control,	5 hrs
	simulation of small signal stability of a SMIB power system, Transient stability	
	simulation of SMIB power system using trapezoidal integration, simulation of	
	classical economic load dispatch Algorithm	

Syllabus

Text Books

- 1 Stagg and El-Abid, Computer Methods in power system analysis, First Edition, Mc-Graw Hill, 1968
- 2 Kothari and Nagarath, Modern power system analysis, 3rd Edition, Tata McGraw Hill, 2004

Reference Books:

- 1 P. Kundur, Power system stability and control, First Edition, Tata McGraw Hill, 2007
- 2 Hadi Sadat, Power System analysis, Ed. First Edition, Tata McGraw Hill, 2002
- 3 A.R. Bergen and Vijay Vittal, Power system analysis, Ed. First Edition, Pearson Ed, 2009

SEE Marks: 20

Department of Electrical & Electronics Engineering

Syllabus

Laboratory Title: Power System Simulation Lab Credits: L-T-P: 0-0-1 Credits: 1

Lab. Code: 19EEEP401 Duration of SEE Hours: 2 CIE Marks: 80

Experiment wise Plan

List of experiments/jobs planned to meet the requirements of the course.

Category	tegory: Demonstration			
Expt./ Job No.	Experiment / Job Details			
1	To use interactive simulation software "SofTCAPS" for the simulation of (i)Load flow analysis by Gauss-Seidel and NR models (ii) Voltage control analysis by shunt capacitor and tap changing transformer (iii) P-V Curve at a load bus			
2	To use interactive software "SofTCAPS" for the simulation of Economic load dispatch problem with and without coordinating the transmission losses			
Category: Exercise				
Expt./ Job No.	Experiment / Job Details			
3	To form bus admittance matrix [Ybus] by singular transformation.			
4	To form [Ybus] by the method of inspection			
5	ABCD constants and line performance using short and medium π/T models			
Category: Structured Enquiry				
Expt./ Job No.	Experiment / Job Details			
6	Each batch (consisting of 4 students) will work on one problem from the below mentioned sets, obtain the simulation results, carry out the analysis, interpret the results, draw practical conclusions from them and prepare a report. (a) To formulate and develop MATLAB/Scilab program/ SIMULINK model on one of the power problem which include, but not limited to - Load frequency control method, Study to determine the effect of excitation on dynamic stability, Comparison of various numerical techniques for stability study, Multimachine transient stability study, Load flow model development, (b) To employ an interactive power system software to simulate a given problem such as multimachine transient stability, multimachine small signal stability, contingency analysis, performance comparison of various load flow models, economic load dispatch etc.			

Q	KLE Technological
KLE TECH	Creating Value
	Leveraging Knowledge

Department of Electrical & Electronics Engineering

Syllabus

Laboratory Title: Relay and High Voltage Engineering labLab. Code: 19EEEP402Total Hours: 32Credits: L-T-P: 0-0-1Credits: 1SEE Marks: 20CIE Marks: 80

Expt./ Job	Experiment / Job Details	
No.		
Category: Exercise		
1	Introduction Session	2 hrs
2	To obtain the inverse time characteristics of a given fuse wire and wires of different lengths.	2hrs
3	To obtain the inverse time characteristics of an electromagnetic over current relay	2hrs
4	To obtain the operating characteristics of microprocessor based differential relay.	2hrs
5	To obtain the operating characteristics of microprocessor based directional over current relay.	2hrs
6	To obtain the breakdown strength of air using Copper sphere gap with HVAC and HVDC.	2hrs
7	a) To obtain the breakdown strength of air using different pairs of electrode gap with HVAC and HVDC.b) To obtain the breakdown voltage of a solid dielectric.c) To obtain the breakdown voltage of a liquid dielectric.	2hrs
Category: Structured Enquiry		
1.	To develop microcontroller based overcurrent, over voltage and impedance relay using CT /PT giving details of program and demonstrate it's working output.	4hrs