Course Code: 15EARC201 Course Title: Analog and Digital Electronic C		Circuits	
L-T-P-SS: 4-0-0-0	Credits: 4 Contact Hrs: 50		
CIE Marks: 50	SEE Marks: 50	Total Marks: 10	0
Teaching Hrs: 50		Exam Duration:	3 hrs
Conten	t		Hrs
Unit - :	1		i
Chapter No. 01 Modeling and analysis of electrical circuits The Lumped Circuit Abstraction, Modeling Physical Elements using lumped circuit abstraction, Signal Representation, Dependent Sources and the Control Concept, Network theorems: The Node Method, Loop Method, Superposition, Thévenin's Theorem and Norton's Theorem			8 hrs
Chapter No. 02 Basics of Digital Electronics Number Representation , MOSFET Switch Implementation of Logic Gates, The SR Model of the MOSFET, Active Pullups Voltage Levels and the Static Discipline, Simplifying Logic Expressions using K-map, Combinational circuits: encoder/decoder, multiplexers/de- multiplexers , Binary adder/ subtractor, Binary comparator, Sequential Circuits: Gated D Latch JK Elip-Elop Registers, Counters			7 hrs
Chapter No. 03 Transistor Modeling Operating point, Fixed bias circuits, Emitter stabilized biased circuits, Voltage divider biased, Bias stabilization, BJT transistor modeling, , Emitter follower, CB configuration, Collector feedback configuration, analysis of CE configuration using h- parameter model; Relationship between h-parameter model of CE,CC and CB configuration.			5 hrs
Unit - 2			
Chapter No. 04 Power Amplifiers Definitions and amplifier types, series fed class A amplifier, Transformer coupled Class A amplifiers, Class B amplifier operations, Class B amplifier circuits, Amplifier distortions. Designing Power amplifiers: Heat flow calculations using analogous circuit. Calculation of actual power handling capacity of transistors with and without heat sink. Heat sink design.			6 hrs
Chapter No. 05 Operational Amplifiers Device Properties of the Operational Amplifier, Simple Op Amp Circuits: The Non-Inverting Op Amp, The Inverting Connection, A Special Case: The Voltage Follower, Op Amp RC Circuits: Op Amp Integrator, Op Amp Differentiator, An RC Active Filter, The RC Active Filter Impedance Analysis, Sallen-Key Filter, Op Amp in Saturation: Op Amp Integrator in Saturation, Positive Feedback : RC Oscillator.			8 hrs
Energy Storage Elements; capacitors and inductors, Power and Energy Relations for a			

Simple RC Circuit, Average Power in an RC Circuit, Power Dissipation in Logic Gates: Static	
Power Dissipation, Total Power Dissipation, CMOS Logic Gate Design.	
Unit - 3	
Chapter No. 07 First Order Transients in Linear Electrical Circuits	5 hrs
Analysis of RC & RL circuits, Propagation Delays, State and State variables	
Chapter No. 08 Transients in Second Order Circuits	5 hrs
Undriven Series RLC circuit, Stored Energy in Transient Series RLC circuit, Undriven Parallel	
RLC circuit, Driven Parallel RLC circuit, State Space Analysis	

Course Code: 15EARC202	urse Code: 15EARC202 Course Title: Mechanics of Materials			
L-T-P-Self Study: 3-1-0-0	Credits: 4	Contact Hrs: 50		
CIA Marks: 50	SEE Marks: 50	Total Marks: 10	0	
Teaching Hrs: 50	g Hrs: 50 Exam Duration: 3 h			
Content			Hrs	
Unit - 1				
Chapter No. 1.Stress & Strain Introduction,Normal Stress Under Axial Loading,Direct Shear Stress,BearingStress,Stresses on Inclined Sections,Equality of Shear Stresses on Perpendicular Planes,Strain,Displacement, Deformation, and the Concept of Strain,NormalStrain,Shear Strain			5 hrs	
Chapter No. 2.Mechanical Properties of MaterialsTheTensionTest,TheStress–StrainDiagram,Hooke'sLaw,Poisson'sRatio,DesignConcepts,TypesofLoads,Safety,AllowableStress Design.Load and Resistance Factor Design			5 hrs	
Chapter No. 3.Axial Deformation Introduction,Saint-Venant'sPrinciple,Deformations in Axially Loaded Bars,Deformations in a System of Axially Loaded Bars,Statically Indeterminate Axially Loaded Members			5 hrs	
Unit - 2				
Chapter No. 4.Torsion Introduction, Torsional Shear Strain, Torsional S Torsional Deformations, Torsion Sign Conver Indeterminate Torsion Members.	hear Stress, Stresses on on the stress on the stress on the stress on the stress of th	Oblique Planes, sion, Statically	5 hrs	
Chapter No. 5. Equilibrium of Beams Introduction, Shear and Moment in Beams, Graphical Method for Constructing Shear and Moment Diagrams, Discontinuity Functions to Represent Load, Shear, and Moment			5 hrs	
Chapter No. 6.Bending Introduction, Flexural Strains, Normal Stresses in Beams, Analysis of Bending Stresses in Beams, Introductory Beam Design for Strength, Flexural Stresses in Beams of Two Materials, Bending Due to Eccentric Axial Load, Unsymmetric Bending			5 hrs	
Unit - 3				
Chapter No. 7. Shear Stress in Beams Introduction, Resultant Forces Produced by Bending Stresses, The Shear Stress Formula, The First Moment of Area Q, Shear Stresses in Beams of Rectangular Cross Section, Shear Stresses in Beams of Circular Cross Section.			5 hrs	

Chapter No. 8. Beam Deflections	5 hrs
Introduction, Moment-Curvature Relationship, The Differential Equation of the Elastic	
Curve, Deflections by Integration of a Moment Equation, Deflections by Integration of	
Shear-Force or Load Equations, Deflections Using Discontinuity Functions	

Course Code: 15EARC203	Course Title: Manufacturing Technology & Metrolog			
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 50		
CIA Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hrs: 50		Exam Duration:	3 hrs	
Content			Hrs	
Unit - 1				
Chapter No. 1. Turning , Shaping and Planing Machines Classification, constructional features of Lathe, Shaping Machine, Planing Machine. Driving mechanisms of Lathe, Shaping and Planing machines. Different operations on Lathe, Shaping Machine & Planing Machine. Simple problems on machining time calculations			7 hrs	
Chapter No. 2. Milling Machines Classification, constructional features of milling machines. Types of milling cutters & milling cutter nomenclature. Milling processes, up milling and down milling concepts. Various milling operations. Indexing: Simple, compound, differential and angular indexing. Simple problems on simple and compound indexing			7 hrs	
Chapter No. 3. Drilling & Grinding Machines Classification, constructional features of drilling machine & related operations. Types of drill & drill bit nomenclature, drill materials. Types of abrasives, Grain size, bonding process, grade and structure of grinding wheels, grinding wheel types. Classification, constructional features of grinding machines (Center less, cylindrical and surface grinding). Selection of grinding wheel, dressing and truing of grinding wheels. Analysis of the grinding process			6 hrs	
Unit - 2				
Chapter No. 4. CNC Machine Tools Introduction to CNC machines- Principles of operation. Axes of NC machine-Coordinate systems. Basics of Manual part programming methods			7 hrs	
Chapter No. 5. Nontraditional Machining Need for nontraditional machining, principle, equipment & operation of Abrasive Jet Machining, Water Jet Machining, Electro-Chemical Machining, Electrical Discharge Machining, Wire EDM, Electron Beam Machining, Laser Beam Machining & Plasma Arc Machining			7 hrs	
Chapter No. 6. Measurement and Inspection Standards of measurement, allowance and tolerance, inspection methods of measurement, measuring instruments, gauges for attribute measurements, geometric dimensioning and tolerance, comparators & angular measurements			6 hrs	

Unit - 3	
Chapter No. 7. Advancements in Metrology: Introduction & applications of: Co-ordinate Measuring Machine, Universal Measuring Machine, Laser in Metrology.	5 hrs
Chapter No. 8. Form Measurement Measurement of screw thread-Thread gauges, measurement of gears-tooth thickness, Measurement of surface finish, straightness, flatness and roundness measurements	5 hrs

Course Code: 15EARC204	Course Title: Analysis of algorithms & Design of Programs				
L-T-P : 3-0-0-0	Credits: 3	Contact Hrs: 40			
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		Total Marks: 100	
Teaching Hrs: 40		Exam Duration: 03 ho	urs		
	Content		Hrs		
	Unit - 1				
Chapter 1: GENERAL PROBLEM SOLVING CONCEPTS - Problem Solving in Everyday Life, Types of Problems, Problem Solving with Computers - Problem Definition, Solution Design & Refinement, Testing Strategy Development, Program Coding and Testing, Using the Problem Solving Method, Break-Out Diagrams, Difficulties with Problem Solving. How the Computer Stores Data, Functions-function prototypes, Operators, Expressions and Equations,					
Chapter 2: SOLUTION PLANNING - Software Development Cycle, Requirement Modeling framework, Computer Communication methods, Unified modeling language: UML Building Blocks, UML Diagrams-Class Diagram, object diagram, component diagram, UML Modeling Types, UML Basic Notations, UML-SysML , Using the Tools, Testing the Solution, Coding the Solution, Case studies-Modeling the sequence diagram for the Plant operation, Modeling the control strategy action.			5 hrs		
Chapter 3: DESIGN AND ANALYSIS OF ALGORITHMS -Algorithms and Their Representations, Modifying Algorithms, Alternative Algorithms. Review of Asymptotic Notations, Mathematical Analysis of Non-Recursive and Recursive Algorithms, Brute Force Approaches: Introduction, Selection Sort and Bubble Sort, Sequential Search and Brute Force String Matching ,Divide and Conquer: General Method, Defective Chess Board, Binary Search, Merge Sort, Quick Sort and its performance			5 hrs		
	Unit - 2				
Chapter 4: ARRAYS, STACKS & QUEUES: Arrays, Dynamically Allocated Arrays, , Polynomials, Sparse Matrices, Representation of Multidimensional Arrays, Structures and Unions, Stacks, Stacks Using Dynamic Arrays, Queues, Circular Queues, Evaluation of Expressions, Multiple Stacks and Queues, Single- and Double-Ended Priority Queues.					
Chapter 5: LINKED LISTS, TREES & GRAPHS: Singly Linked lists and Chains, Representing Chains in C, Linked Stacks and Queues, Polynomials, Additional List operations, Sparse Matrices, Doubly Linked Lists. Introduction, Binary Trees, Binary Tree Traversals, Threaded Binary Trees, Heaps, Graph representation, Adjacency matrix, Adjancey list, Application of graphs.					
Unit - 3					
Chapter 6:DYNAMIC PROGRA	MMING& GREEDY METHOD:Depth First	Search and Breadth	5 hrs		

First Search, The General Method, Warshall's Algorithm, Floyd's Algorithm for the All-Pairs Shortest Paths Problem, Single-Source Shortest Paths, The Traveling Salesperson problem, Kruskal's algorithm, Huffman trees.

Chapter 7:LIMITATIONS OF ALGORITHMIC POWER AND COPING WITH THEM: Lower-Bound 5 hrs Arguments, Decision Trees, P, NP, and NP-CompleteProblems, Challenges of Numerical Algorithms

Semester:	Ш

Year: 2016 - 2017

Laboratory Title: Programming laboratory	Lab. Code: 15EARP201
Total Hours: 28	Duration of SEE Hours: 2
SEE Marks: 20	CIE Marks: 80

Experiment wise Plan

Category: Demonstration		Total Weightage: 10		LO	No. of lab sessions:2	
Expt.	Experiment / Job Deta	ails	No. of Lab		Marks /	Correlation of
/ Job			Session(s) per		Experimen	Experiment with the
No.			batch (estima	te)	t	theory
1	program to sort the	e given N	1		5	
	numbers using	1.bubble				
	sort,2.Quick sort					
	Learning Objectives:					Unit I
	The students should b	e able to:				
	1.Rearrange the giver	set of elem	nents in ascend	ing o	r descending	
	order					
	2.Use different types of	of tool to ex	ecute programs			
2	Program to search an	element	1	5		Unit I
	from a given set of ele	ements				
	using 1.Linear search,	2.Binary				
	search.					
	Learning Objectives:					Unit I
	The students should be able					
	1. Search an element	based on th	e specific meth	od		
			-	_		
Category :Exercises Total weight		ntage:5			No of lab sessions1	
3	Program to simulate		1	10		
	arrangement of goods	in a box				
	by robot on first come first serve					
	basis and perform the following					
	operations on it					
	a.pushb.popc.display>The					
	program should print					

	appropriate messages for stack	í.		
	overflow,stack,underflow and			
	stack empty.			
	Learning Objectives:			Unit II
	The students should be able to	:		
	1. Developing of program using	stack concepts		
	Category:Structured Enquiry	Total weightag	ge:45	No of lab sessions 6
			1	
4	Design an algorithm to	1	10	
	create a record to maintain			
	details of 5 flights, having			
	informationas name, source			
	& destination stations,			
	seatsavailable with category			
	Learning Objectives:			Unit II
	The students should be able to	:		
	1.Demonstrate how to compile	and run a C progr	am in Microsoft	
	visual studio,			
	2. Develop programs using ope	rators and control		
	statements			
	3. Develop programs using stru			
			ſ	
5	Design an algorithm to	1	10	
	assign a job for a robot &			
	make it to perform jobs in			
	circular manner.			
	Learning Objectives:			Unit II
	The students should be able to	:		
	1. Illustrate using of structure c	lefinition.		
	2. Develop a program using cir	cular queue.		
6	Develop menu driven	1	10	
	program in C language for			
	maintaining university			
	information.			
	Learning Objectives:			Unit III
	The students should be able to	:		
	1. Demonstrate how to maintain	in information of a	university 2.	
	2.Demonstrate how to specify	different types of o	constraints	
	on a given set of operations			
	3. Develop a program in C lange	uage using linked l	ist.	

7	Design an algorithm to a	1	10	
	Student Prerequisite			
	Subjects Management			
	System to store different			
	courses and their			
	prereguisites and based on			
	this list it will allow any			
	student to take particular			
	Learning Objectives:			Unit II
	The students should be able to:			
	1. Demonstrate how it will store	Prereguisite subi	ect details	
	2. Classify the method of course	allocation for stu	dent	
	3 Develop the programs in Clar	nguage using dout	ly linked	
	list		in in the second s	
0	Design an algorithm to find the	1		Lipit III
0	optimal solution for travelling	1	10	
			10	
	problem			
	Leaming Outcomes:			
	The students should be able to:			
	1. Demonstrate the graphical			
	solution for the problem.			
	2. Analyze the efficiency of an			
	algorithm.			
	3.Develop the program in C			
	language using dynamic			
	Programming technique.			
9	Design an algorithm to			Unit III
	implement Floyd's algorithm	1	10	
	Learning Outcomes:			
	The students should be able to:			
	1.Demonstrate the graphical			
	solution for the problem			
	2. Analyze the efficiency of an			
	algorithm.			
	3. Develop the program in c			
	using dynamic programming			
	technique			

Category: Open Ended		Total Weightage:	20	No. of lab sessions: 2
Expt./	Experiment / Job Details	No. of Lab	Marks /	Correlation of
Job No.		Session(s) per	Experiment	Experiment with the
		batch		theory
		(estimate)		
10	Implement a project using	2	20	
	C language, for			
	automation and robotics			
	applications. (FOR SEE)			
	Learning Objectives:			Analysis of algorithms &
	The students should be able to:			Design of Programs
	1. Use Analysis of algorithm	s & Design of Prog	rams concepts to	
	implement the project.			Unit I, Unit II , Uniti III
	2. Select the appropriate to			
	project.			
	3. Write a technical report using IEEE standard.			
	4. Present the technical rep	ort for the implem	ented project.	
	5. Demonstrate the learning	g experiences of wo	orking in a team.	

Laboratory Course Plan: B E in A&R 2015-2019

Laboratory Title: Machine Drawing Lab	Lab. Code: 15EARP202
Total Hours: 28	Duration of SEE Hours: 2
SEE Marks: 20	CIE Marks: 80

Experiment wise Plan

Category:	Demonstration	Total Weightage: 15.00		No. of lab sessions: 3.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	Blueprint Reading	1.00	5.00	
	 Learning Outcomes: The students should be abled. The students should be abled. Explain the importance Explain the differences beted. detail drawings. • Described. reproduce blueprints. • Described. blueprint. • Identify element. of a detail drawing. • List models. blueprints. • Identify the blueprints. • Explain the standard lines on blueprint. disadvantages of various procession. 	le to: e to: of information on tween assembly d e methods used to efine and describe ts located within t nethods of care an ne standard line meaning and ap nts. • Identify cor Name the adva rojection types. •	blueprints. • rawings and o create and e parts of a he title block d security of s used on plications of mmon views antages and Explain the	Workshop & CAD
2	Geometric Dimensioning and Tolerancing	1.00	5.00	
	 Learning Outcomes: The students should be abl The students should be a 	e to: ble to:		Workshop & CAD

	 Concepts of zero defect Drawing conventions used applications Limits, fits control, orientation control, profile control Compari practices How to standard 			
3	Introduction to SolidWorks [®] Interface	1.00	5.00	
	 Learning Outcomes: The students should be able Learning Objectives: The Familiar with the SolidWork the basic functionality of Create part modeling • Be Windows • Become familiar interface • Develop an under recognition of an object in geometry, rectangle, circle, 	CAD/CREO PARAMTERIC		
	3D features that add and Extruded Base, Extruded Cur	l remove geomet t, Fillet and Shell	ry including	
Category:	3D features that add and Extruded Base, Extruded Cur Exercise	I remove geomet t, Fillet and Shell Total Weightage:	try including	No. of lab sessions: 4.00
Category: Expt./ Job No.	3D features that add and Extruded Base, Extruded Cur Exercise Experiment / Job Details	t, Fillet and Shell Total Weightage: No. of Lab Session(s) per batch (estimate)	45.00 Marks / Experiment	No. of lab sessions: 4.00 Correlation of Experiment with the theory
Category: Expt./ Job No. 4	3D features that add and Extruded Base, Extruded Cur Exercise Experiment / Job Details Part Modeling	t, Fillet and Shell Total Weightage: No. of Lab Session(s) per batch (estimate) 2.00	45.00 Marks / Experiment 20.00	No. of lab sessions: 4.00 Correlation of Experiment with the theory

	different planes • Create the	e Chisel part		
5	Advanced Modeling & Assembly	1.00	15.00	
	 Learning Outcomes: The students should be abl Learning Objectives: The students should be able Assemble Knuckle joint, Familiar with the mating condition of the students and the students are standing one part with are tools to offset geometry a sketch plane 	Engineering Graphics		
6	SolidWorks [®] Routing- Electrical	1.00	10.00	
	 Learning Outcomes: The students should be abl The students should be a Explains how to create, edit from the critical routing of requirements to the sub- routes. Topics include: Fundamentals of Ro Basic Electrical Rout Routing with Clips 	e to: ble to: and manage Elec components and assemblies that uting ing	trical routes, their design contain the	CAD LAB
Category:	ry: Structured Enquiry Total Weightage: 10.00		No. of lab sessions: 1.00	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
7	Sustainability	1.00	10.00	

ILearning Outcomes:

IThe students should be able to:The students should be able to:

As an engineer or product designer, you have the power to dramatically alter how we interact with our environment. The question is how. Many designers don't know about the life cycle assessment (LCA) process or how it could guide them to more sustainable designs. Others may think the process is too complex and time-consuming, or is someone else's responsibility. Learning about designing for the environment now will put you ahead of the curve. With SolidWorks® Sustainability, you'll have the built-in environmental intelligence to make more informed decisions about what materials to use. You'll also see how region-specific material sourcing, manufacturing, use, and disposal will affect your product's life cycle before manufacturing begins. 1. Understand the basic concepts of sustainable design 2. Measure the environmental impacts of various design choices, including material, manufacture location, and more on the various parts and assemblies

Category: Open Ended		Total Weightage:	20.00	No. of lab sessions: 1.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
8	Project Work	1.00	20.00	
	 Learning Outcomes: The students should be able The students should be a Reverse Engineering The process engineering Reverse drawings, documentation, or reverse engineering Reverse the process of analyzing system's components and the representations of the system level of abstraction 3. Creation of that system Tasks Investigation 	Learning Outcomes: The students should be able to: . The students should be able to: . everse Engineering The process of duplicating an existing omponent, subassembly, or product, without the aid of rawings, documentation, or computer model is known as everse engineering Reverse engineering can be viewed as he process of analyzing a system to 1. Identify the ystem's components and their interrelationships 2. Create epresentations of the system in another form or a higher evel of abstraction 3. Create the physical representation		

the given product 3. Take measurements with tolerance 4. Capture the surface details like texture, colour, pattern etc. 5. Identify the material 6. Reproduce the same components using solidworks 7. Assemble all the components in solidworks 8. Render the product using solidworksphotoview 360

Laboratory Course Plan: B E in A&R 2015-2019

Semester-III

Laboratory Title: Analog and Digital Circuits Lab	Lab. Code: 15EARP203	
Total Hours: 28	Duration of SEE Hours: 2	
SEE Marks: 20	CIE Marks: 80	

Experiment wise Plan

Category: Demonstration		Total Weightage: 10.00		No. of lab sessions: 2.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
01	Demonstration of lab equipments and components: CRO, Multimeter, Function Generator, Power supply- Active/Passive Components & Bread Board. Demonstration of Software – Multisim / Ultiboard.	1.00	0.00	
	 Dearning Objectives: The students should be ab Identify and demo knowl purposes of different comp capacitors, transistors etc. Identify and demo knowl purposes of different Test a as Multimeters, Power Sup generators etc. 	le to: edge of functionin onents like Resisto edge of functionin and Measuring equ plies, CROs and Fui	g and rs, Inductors, g and ipments such nction	Chapter 1

	 Description of an operation of an Ope			Chapter 5
4	Design a Line sensor circuit using an Operational Amplifier.	2.00	10.00	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
Category: St	tructured Enquiry	Total Weightage:	60.00	No. of lab sessions: 10.00
	 Learning Objectives: The students should be ab Study the behavior of the Study the behavior of the 	le to: 2 MOSFET as a Swit 2 MOSFET as an Am	ch. 1plifier.	Chapter 1
3	Analyze the operation of a MOSFET as I. A Switch II. An Amplifier And conclude it for different regions	1.00	10.00	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
Category: Ex	xercise	Total Weightage:	10.00	No. of lab sessions: 1.00
	 Learning Objectives: The students should be ab Carryout design of experi 	le to: ments (DOE).		Chapter 2
2	DOE: Study of different methods used for DOE and Obtain the step response of the Resonant circuit by taking fixed resistance of 10Ω and choosing the values of inductor (L) & capacitor(C).	1.00	10.00	
	3. Simulate circuits using M	ultisim software.		

	3. Analyze the behavior of a line sensor.			
5	Build a circuit that converts an input voltage of – 1 V to + 2.2 V to an output voltage of 0 to 5 V. Dual supply of 2 12 V available and need to drive a 10 k2 load. Test designs under different input voltages and verify that output voltages are within 2 5% of the calculated ones.	2.00	10.00	
	 Learning Objectives: The students should be ab Build, test, and troublesh conditioning circuit using M Analyze an analog signal a range of desired output vor range of input voltages. 	le to: noot an analog sigr lultisim. conditioning circu pltages in respond	nal it to provide to a certain	Chapter 5
6	A sensor provides temperature sensitivity of 200 @V/°C. Design a circuit that activates an alarm when the temperature reaches 300 °C. Use a single 10 V supply. The alarm could be any type, visual- or sound-based.	2.00	10.00	
	 Description 			Chapter 4
7	Design a simple DAC circuit with 0-10V output voltage.	2.00	10.00	

	 DLearning Objectives: The students should be able to: 1. Learn how to design a DAC circuit that converts digital input signals to expected corresponding analog voltage levels. 2. Build, test, and troubleshoot a DAC circuit using Multisim. 			Chapter 6
8	Design an 8-bit ADC circuit that utilizes LEDs to indicate its binary output value. Use a reference voltage of 2.5V to 5 VDC.	2.00	10.00	
Category:Vi Attendance	va, Journal and	Total Weightage	:: 10	No. of lab sessions: 01
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
09	Viva, Journal and Attendance	01	10	
	Learning Outcomes : The students should be able to: 1. Command of appropriate communication skills such as technical reports, viva and presentations through the lab. Maintaining the punctuality to all the lab sessions.			
Category: O	pen Ended Enquiry	Total Weightage: 20		No. of lab sessions: 02
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
10	Project	02	20	
	Learning Outcomes :			

The students should be able to:	
1. Carryout a project in a team.	
2. Come up with PCB design using Ultiboard.	

Course Code: 15EARC205 Course Title: Kinematics of machinery			
Credits: 4Contact Hrs: 50			
CIA Marks: 50 SEE Marks: 50 Total Marks: 100			
Teaching Hrs: 50 Exam Duration: 3 h			rs
Conte	ent		Hrs
Unit	- 1		
Chapter No. 1.INTRODUCTION TO KINEMATICS Introduction, Mechanisms, kinematics, mechanism terminology, kinematic diagrams, kinematic inversion, mobility, four bar mechanism, slider crank mechanism, techniques of mechanism analysis.			
Chapter No. 2.POSITION ANALYSIS Position, displacement, position analysis, position analysis applications to simple mechanisms – analytical analysis, Displacement Diagrams			5 hrs
Chapter No. 3.VELOCITY ANALYSIS Velocity of a point, velocity of a link, linear and angular velocities, relative velocity, velocity image, analytical velocity analysis: relative velocity method, algebraic solutions for common mechanisms, instantaneous center of rotation, velocity curves			
Chapter No. 4. ACCELERATION ANALYSIS Linear acceleration of a point, acceleration of a link, normal and tangential acceleration, relative acceleration analysis: analytical method, algebraic solutions for common mechanisms, acceleration of a general point on a floating link, coriolis acceleration, equivalent linkages, acceleration curves.			
Unit	- 2		
Chapter No. 5.CAMS: DESIGN AND KINEMATIC ANALYSIS Introduction, Types of Cam, Types of Followers, Prescribed follower motion, Follower motion schemes, Graphical disk cam profile design, Pressure angle, Design Limitations, Analytical disk cam profile design.			7 hrs
Chapter No. 6.GEARS: KINEMATIC ANALYSIS AND SELECTION Types of gears, spur gear terminology, involute tooth profiles, spur gear kinematics, rack and pinion kinematics, gear trains, idler gears, planetary gear trains.			7 hrs
Chapter No. 7.BELTS AND CHAIN DRIVES Introduction, Belts, Belt drive geometry, Belt drive kinematics, Chains, Chain drive geometry, Chain drive kinematics.			6 hrs
	-		

Unit - 3

Chapter No. 8.SCREW MECHANISMS

Introduction, Thread features, Thread forms, Ball screws, Lead, Screw kinematics, Screw forces and torques, Differential screws, Auger screws.

5 hrs

5 hrs

Chapter No. 9.STATIC FORCE ANALYSIS

Introduction ,Forces ,Moments and Torques, Laws of Motion, Free-Body Diagrams ,Drawing a Free-Body Diagram ,Characterizing Contact Forces ,Static Equilibrium ,Analysis of a Two-Force Member ,Sliding Friction Force.

Course Code: 15EARC206	Course Code: 15EARC206 Course Title: Control Systems		
L-T-P: 4-1-0 Credits: 4 Teaching Hours		Teaching Hours:	50 hrs
CIA Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 50		Exam Duration: 3	hrs
U	nit –I		
1.Introduction to control system and system model Introduction, A History of Control Systems, Systems), Analysis and Design Objectives, To of physical Systems: Electrical networks, Mecha Analogous systems.	deling in frequency doma ystem Configurations (op The Design Process.Mathe anical systems, Electro me	in en-loop & closed matical modeling chanical systems,	7h
2. Topological Models Transfer function, Block diagram representation and reduction, signal flow graph representation and reduction using Mason's Gain formula, Transfer functions of control components – dc servomotor			6h
3. Time –Domain modeling and Analysis The General State-Space Representation, Applying the State-Space Representation, Converting a Transfer Function to State Space, Converting from State Space to a Transfer Function, Standard test signals, Unit step response of First and second order systems, Time response specifications of first and second order systems, steady – state errors and error constants			7h
Unit – II			
4. Stability analysis Concepts of stability, Necessary conditions for Stability, Routh- stability criterion, Relative stability analysis: More on the Routh stability criterion.			5h
5. Root-Locus Techniques and Design Via Root Locus Introduction, The root locus concepts, Construction of root loci. Improving Transient Response and Steady-State Error via Cascade Compensation, Feedback Compensation, Physical Realization of Compensation.			7 h
6. Frequency domain analysis Introduction, Correlation between time and frequency response, Stability analysis, Bode plot and Nyquist plot to obtain phase margin and gain margin of a given system. Experimental determination of transfer functions, Assessment of relative stability using Bode Plots.			8h
Unit – III			
7. Design Via Frequency Response Transient Response via Gain Adjustment, Lag Co Compensation.	ompensation, Lead Compo	ensation, Lag-Lead	5h
8. State Space Design Controller Design, Controllability, Observability,	Observer Design, Exampl	es.	5h

Course Code: 15EARC207	Course Title: Machine Design		
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 50	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 50 Exam Duration: 3 hrs			5
Cont	ent		Hrs
Unit	- 1		1
Chapter No. 1. THE DESIGN PROCESS 1. Introduction, Materials in Design, 2. The Evolution of Engineering Materials, 3. The Evolution of Materials in Products, the Design Process, Types of Design, 4. Design Tools and Materials Data, Eurotion, Material, Shape, and Process.			
Chapter No. 2. MATERIAL PROPERTY CHARTS Exploring Material Properties, 2. modulus–density chart 3. strength–density chart 4. modulus– strength chart 5. maximum service temperature chart, Cost bar charts 6. The modulus–relative cost chart 7. The strength–relative cost chart ENGINEERING MATERIALS, THEIR PROPERTIES AND MATERIAL SELECTION The Families of Engineering Materials 2. Materials Information for Design 3. Material Properties and 4. Units			
Chapter No. 3. KINEMATICS OF GEARS AND GEAR DESIGN Spur Gear Geometry: Involute-Tooth Form, Interference Between Mating Spur Gear Teeth, Devising Gear Trains, Forces, Torque And Power In Gearing, Gear Manufacture, Gear Quality, Allowable Stress Numbers, Stresses In Gear Teeth, Selection Of Gear Material Based On Bending Stress, Design Of Spur Gears, Power-Transmitting Capacity, Practical Considerations For Gears And Interfaces With Other Elements. Forces and stresses on helical gear teeth, design of helical gears, bearing forces on shafts carrying bevel gears, bending moments on shafts carrying bevel gears, design of bevel gears for pitting resistance, forces, friction, and efficiency in worm gear sets, stress in worm gear teeth, surface durability of worm gear drives.			
Unit	- 2		
Chapter No. 4. KEYS, COUPLINGS, SEALS AND SHAFT DESIGNS Materials for keys, stress analysis to determine key length, other methods of fastening elements to shafts, couplings, universal joints, retaining rings and other means of axial location, types of seals, seal materials, shaft design procedure, forces exerted on shafts by machine elements, stress concentrations in shafts, design stresses for shafts, shafts in bending and torsion only, shaft design example, recommended basic sizes for shafts, shaft rigidity and dynamic considerations, flexible shafts			
Chapter No. 5. LINEAR MOTION ELEMENTS, SPRINGS, FASTNERS Power screws, ball screws, application considerations for power screws and ball screws, bolt materials and strength, externally applied force on a bolted joint, thread stripping strength,			7

other means of fastening and joining. Kinds of springs, helical compression springs, stresses and deflection for helical compression springs, analysis of spring characteristics, design of helical compression springs, helical torsion springs, improving spring performance by shot peening, spring manufacturing.

Chapter No. 6. CLUTCHES AND BRAKES

Descriptions of clutches and brakes, types of friction clutches and brakes, performance parameters, time required accelerating a load, inertia of a system referred to the clutch shaft speed, effective inertia for bodies moving linearly, energy absorption: heat-dissipation requirements, response time, friction materials and coefficient of friction, plate-type clutch or brake.

Unit - 3

Chapter No. 7. BEARINGS: ROLLING CONTACT & SURFACE CONTACT

Types of rolling contact bearings, thrust bearings, mounted bearings, bearing materials, load/life relationship, design life, bearing selection: radial loads only, bearing selection: radial and thrust loads combined, mourning of bearings, tapered roller bearings, practical considerations in the application of bearings, importance of oil film thickness in bearings, life prediction under varying loads.

Chapter No. 8. MACHINE FRAMES, BOLTED CONNECTIONS AND WELDED JOINTS Machine frames and structures, recommended deflection limits, design to resist bending,

design of members to resist torsion, eccentrically loaded bolted joints, types of joints, types of welds, size of weld, method of treating weld as a line, welded joints.

7

5

5

Cours	Course Code: 15EARC208 Course Title: Microcontrollers				
L-T-P-	L-T-P- SS: 3-0-0-0 Credits:3 Contact Hrs: 4				
CIE M	CIE Marks: 50 SEE Marks: 50 Total Marks: 100				
Teach	ing Hrs: 50		Exam Duration: 100		
		Unit I			
No		Content		Hrs	
1 Chapter 1: Introduction to Microcontroller Introduction To Microprocessor and Microcontroller: History and Evolution, types of microprocessors, Difference between Microprocessors and Microcontrollers. CPU architectures: RISC/CISC and Harvard/Von-Neumann, Overview of PIC Microcontroller family, Introduction to different microcontroller families (8051, ATMEL/AVR, and			5 Hrs		
2 Chapter 2: PIC and AVR Microcontroller Architecture and ALP Architecture and pin functions, Registers and Instructions, Data formats and directives, Introduction to assembly language programming, Program counter and program ROM space. Branch, Call and Time delay loop: Branch instructions and looping, Call instruction and stack, Time delay instructions and pipeline. Timing diagrams			7 Hrs		
 Chapter 3: I/O Port programming I/O port programming, I/O bit manipulation programming, Arithmetic, logic instructions and programs: Arithmetic instructions, Signed number concepts and arithmetic operations, logic and compare instructions, rotate instructions and data serialization, BCD and ASCII conversion. 			8 Hrs		
Unit II					
4 Chapter 4:PIC and AVR programming in C Data types and time delays in C, I/O programming, logic operations, data serialization, program ROM allocation, Program ROM allocation inC18, State diagrams, Timing diagrams in-depth			5 Hrs		
5	 Chapter 5: Timer and Serial port programming Programming TIMERS 0 and 1, counter programming, Programming TIMER0 and 1 in C, Basics of serial communications, PIC18 connection to RS232, PIC18 serial port programming in assembly and C 			8 Hrs	
6	 Chapter 6:Interrupt programming in Assembly and C Polling Vs interrupts, PIC18 Interrupts, Programming timer interrupts, programming external hardware interrupts, programming the serial communication interrupt, PortB change interrupts. ADC, DAC and sensor interfacing: ADC characteristics, ADC programming in the PIC18, DAC interfacing, sensor interfacing and signal interfacing. 			7 Hrs	
Chanter 7:Using Flash and FEPROM Memories for data storage					
7	Semiconductor memory, Erasir writing to data EEPROM in the	ng and writing to flash in the PIC18.	PIC18F, Reading and	5 Hrs	

8	Chapter 8: Applications of Microcontroller: Event counter, Linear variable Differential Transformer (LVDT), Angular speed measurement (RPM meter), Digital Thermometer, Digital PID controller.	5 Hrs	
Text B	ook		
Mazidi&Mazidi, "PIC Micrcontroller and Embedded systems", Pearson Edition			
Mazidi&Mazidi, "Introduction to AVR Micrcontroller and Embedded systems", Pearson Edition			
Reference Books			
Ramesh Gaonkar, Fundamentals of microcontrollers and Applications in Embedded Systems. Penram			
International Publishing(India) Pvt. Ltd.			
Ajay V Deshmukh, "Microcontroller: Theory and Applications"			

Course Code:15EARC209	Course Title: Engineering Design Practice	
L-T-P:2-1-0	Credits:3 Contact Hrs: 4	
CIE Marks: 80	SEE Marks: 20	Teaching Hours: 30 hrs SEE: 20 marks

Unit –I

Г

٦

Т

1. Engineering Design and the Design Process Definition of engineering design, Design levels, Importance and challenges of engineering design, Introduction to systematic design, Design process and models.	4 hrs
2. Essential transferable skills, Identifying needs and gathering information Working In Teams, Forming a Team, Dynamics of a Team, Scheduling, Gantt Chart, CPM/PERT, Definitions, CPM/PERT Network Development, Problem Definition: Need Statement, Gathering Information: Clarifying the Need, How To Conduct a Market Analysis, Product Information, Industry Information, Company Information, Market Information.	5 hrs
3. Customer requirements & Design specifications Identifying Customer Requirements, Prioritizing Customer Requirements, Organizing Customer Requirements—Objective Tree, Kano Model Customer Needs Assessment, Design specifications	3 hrs

4. Functional analysis & performance specifications		
Functions, Function Decomposition and Structure, Bounding Box and Overall Function		
Diagram, Function Tree, Function Structure, Detailed Procedure to Establish Functional	4 hrs	
Structures, Function Structure, Reverse Engineering, Performance-Specification Method,		
Quality-Function-Deployment Method.		
5. Conceptual design and evaluation		
Developing Working Structures, Steps to Develop Concepts From Functions, Brainstorming,		
Mechanism of Brainstorming Session, Ideation, Creativity, How to Increase Your Level of		
Creativity, Developing Concepts, Sketch Assembly of Alternatives, Evaluating Conceptual		
Alternatives, Pugh's Evaluation Matrix, Decision Matrix.		
6. Embodiment design		
Product Drawings, Prototype, Design for "X", Design for Manufacturing, Design for Assembly,	4 hrs	
Design for Environment, Safety Considerations, Safety Analysis Techniques, Human Factors,		
Human Sensory Capabilities, Anthropometric Data.		

Unit – III

7. Detailed design	
Analysis, Material Selection, Material Classifications and Properties, Material Selection	3 hrs
Process, Primary Manufacturing Methods, Material Selection Theory, Bill of Material	

8. Ethics in Design

Ethics: Understanding obligations, Codes of ethics: What are our professional obligations?3 hrsObligations may start with the client. But what about the public and the profession? On
engineering practice and the welfare of the public, Ethics: Always a part of engineering
practice.3 hrs

Text Books:

1. Yousef Haik, Engineering Design Process, Cengage Learning India Private Limited, New Delhi

References:

- 2. Clive L Dym and Patrick Little, Engineering Design: A Project Based Introduction, John Wiley & Sons.
- 3. George Dieter and Linda C Schimdt, Engineering Design, Macgraw Hill

Laboratory Course Plan: B E in A&R

Laboratory Title: Manufacturing & Metrologylab	Lab. Code: 15EARP204	
Total Hours: 24	Duration of SEE Hours: 3	
SEE Marks: 20	CIE Marks: 80	

Experiment wise Plan

Category: Demonstration		Total Weightage: 20		No. of lab sessions: 2
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1.	Material Removal Operations	1	10	
	 Learning Objectives: The students should be abl 1. Demonstrate variou Turning, threading machine. 2. Perform operations work material using 3. Perform Tapping operations 4. Demonstrate grinding cube to achieve precess 5. Demonstrate taper to bar 	ole to: us operations like Facing, g on a work piece using Lathe s like drilling of holes on a given g Drilling Machine. peration on a given slab of metal. ing operation on a given metal edefined dimensions.		Unit 1
2.	Material Testing	1	10	
	 Learning Objectives: The students should be able to: To calculate various stresses acting on a circular bar subjected to axial loading using UTM and plot a graph by taking the readings. 			Unit I

	 To calculated Impact strength of a given material using CHARPY and IZOD testing machine. To calculate Hardness of a given material 			
Category	Exercise Total Weightage: 30		No. of lab sessions: 6	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
3.	Fabricate the Parts for Table Clamping Device	6	30	
	 Dearning Objectives: The students should be able To machine a given r dimensions. Perform drilling ope Mark the work piece Taking measurement using vernier caliper Perform welding ope Perfect right angle. Fill machining time of pitch. Fill operation chart a 	e to: raw metal sheet to erations at suitable e before going for m ts at every step of o s. eration on hinges to alculation chart. g on a circular bar t	Unit I, II	
Category	Structured Enquiry	Total Weightage: 10		No. of lab sessions: 1
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
4.	Assembly of parts Learning	1	10	
	 Dearning Objectives: The students should be able to: 1. Ensure all the parts are ready for assembly. 			Unit I, II

	 Make sure all the parts are within the defined limits Prepare a process chart to ensure easy flow of assembly Write specification of assembly . 			
Category: Open Ended		Total Weightage: 10		No. of lab sessions: 1
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
5.	DFM using Solid works Learning outcomes	1	10	
	Interning Objectives:			
	IThe students should be able to:			
	 Ensure all the parts any difficulties. 	Ensure all the parts can be manufactured without any difficulties.		
	Ensure dimensions g perform the operation	Ensure dimensions given and machine selected can perform the operation.		
	3. Visualize all the parts each link in assembly	s and remember th y.		
	4. Identify alternate di	mensions to any fa	iling part and	
	 Select suitable mach operations. 	nine to perform spe	cific	
	operations.			

Laboratory Course Plan: B E in A&R 2014-2018

Laboratory Title: Microcontroller Lab	Lab. Code: 15EARP205
Total Hours: 24	Duration of SEE Hours: 3
SEE Marks: 20	CIE Marks: 80

Experiment wise Plan

Category: Demonstration		Total Weightage: 15		No. of lab sessions: 6
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	Compare Architectures of different microcontrollers w.r.t to time response, frequency response, delay, process time etc. Write a program to demonstrate the blinking of LED in PIC16F877A and Arduino board	2	5	
	 Dearning Objectives: The students should be able to: study the data sheets and make a comparative study of the Architectures, resources, tools and applications of different microcontroller Compare and contrast different microcontrollers. Connect microcontroller to LED and blink LED with proper delay. Apply suitable method or logic to solve given problem. 			
2	Develop a counter machine which count from 0000 to 9999 and display on 7 segment LED display using PIC16F877A and Arduino	2	5	

	board.			
	 Learning Objectives: The students should be able 1. 1. Use 7Segment LED Use appropriate logic 			
3	In a manufacturing industry there is a need of continuous temperature monitoring and inform to the concern authority. Develop an application that reads the values from LM35 temperature sensor and display the temperature in degree Celsius on LCD display using PIC16F877A and Arduino board.	2	5	
	 Learning Objectives: The students should be able 1. 1. Connect LM35, LCD Write function to reac it on LCD. 	ler. 5 and display		
Category:	Exercise	Total Weightage: 20		No. of lab sessions: 8
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
4	In bank lockers there is requirement of password protection to open the locker. Develop an application Using a 4*3 keypad and LCD to secure the lockers by providing password protection.	2	5	
	 ILearning Objectives: IThe students should be able to: 1. Connect Keypad, LCD with microcontroller. 2. Write logic to read key press event from keypad 			

5	There is a need to develop a microcontroller based in an automobile to estimate the exact distance of an object from the car. Develop a system using Ultrasonic Sensors to find the distance of an object and inform the driver. The schematic of the system with all the connections are shown in the diagram below. Make the connections as per the schematic and develop the flowchart and the code to perform the required operation.	2 o: onic Distance S	5 ensor and	
	microcontroller 2. Logic to find dista	nce in CM and Me	ters.	
6	There is a need to develop a microcontroller based system to do control the speed and direction of a wheeled autonomous mobile robot. Develop an add-on to autonomous robot using sensors to control the speed control of a DC motor hence control the robot movement.	2	5	
	 Learning Objectives: The students should be able to a connection of the conn	o: ctions from micro river helps in col	controller to ntrolling the	

7	Write a program to sensor based control of a stepper motor	2	5	
	 Dearning Objectives: The students should be able to: 1. Connect stepper motor to microcontroller using driver. 2. Understand different types of stepper motors. 			
Category:	Structured Enquiry	Total Weightage	: 25	No. of lab sessions: 4
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
8	There is a need to develop a microcontroller based system to continuously monitor and check products for defect which are moving on a conveyer belt using sensors and kick out the defect product from the queue.	2	5	
	 Learning Objectives: The students should be able <i>1. Connect Push button,</i> <i>2. Logic to control ON/O</i> 	troller. sh button.		
9	People sitting in a car have the tendency of keeping their hand out of window and when driver closes the window their hand may get struck in between. Implement an Anti-Pinch System for Power Window which helps in avoiding such accidents.	2	20	
	 Learning Objectives: The students should be able 	to:		

	 Understand difference between software and hardware interrupts. Write interrupt programs 			
Category:	Open Ended	Total Weightage: 20		No. of lab sessions: 4
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
11	Develop a system to create Liquid flow rate measurement using any microcontroller.	4	20	
	 Learning Objectives: The students should be able 1. Identify the problem a 2. Apply the knowle programming to meas 	to: Ind solve. edge of elect surement Liquid flc	ronics and ow rate.	

Laboratory Plan

Laboratory Course Plan: B Ein A&R 2014-2018

Laboratory Title: Kinematics of Machinery lab	Lab. Code:15EARP206
Total Hours: 24	Duration of SEE Hours: 3
SEE Marks: 20	CIE Marks: 80

Experiment wise Plan

Category	: Demonstration	Total Weightage: 15.00		No. of lab sessions: 3.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	SolidWorks Motion	1.00	5.00	
	 Learning Outcomes: The students should be able Demonstration of comma interface. Demonstration of mechanical mates The stude students are asked to answe How do you start a SolidWork you activate SolidWorks Motion analyses are available analysis? 5. Why analysis is in SolidWorks Motion analysis 	e to: nds used in SolidW advanced mates ar nts should be able r the following que ks Motion session tion Add-In? 3. What in SolidWorks? 4. mportant? 6. What calculate?	Yorks Motion ad to: The estions 1. 2. How do at types of What is does	UNIT – I
2	Position, Velocity and Acceleration Analysis	1.00	5.00	
	 Dearning Outcomes: The students should be able to: Simulate and compare the results obtained for the given scenario Graphically determine the combined effect of velocity vectors. Calculate the final position, direction and velocity of a ball 			UNIT – I
3	Simulations of sliding, and rigid body rotations (using SolidWorks motion)	1.00	5.00	

	 Dearning Outcomes: The students should be able to: 1. Demonstration of sliding, and rigid body rotation using solidworks motion 2. Examine problems involving objects sliding and/or rolling down inclined planes The students should be able to: The students are asked to answer the following questions 1. What will be the motion of the block on the plane if there is no friction? 2. Calculate the velocity of the block at the bottom of the ramp if we know its starting position? 3. What will be the motion of the block on the plane if friction is included? 4. Calculate the velocity of the block at the bottom of the ramp? 5. How will the motion of a roller be different than that of the block? 			UNIT – I
Category:	Exercise	Total Weightage:	45.00	No. of lab sessions: 9.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	Motion simulation 4 bar linkage(Tracing the path generated by the points on the mechanisms)	1.00	5.00	
	 Dearning Outcomes: The students should be able to: Simulate and apply motors to the given mechanism The students are asked to answer the following questions Students simulate the motion of 4 bar linkage with respective to each other. This exercise shows the following key figures of Motion Simulation in SolidWorks. 1. Applying motors to simulate the movement. 2. Setting the time flow and frame rate 			UNIT-I
2	Motion Analysis of a 4 bar mechanism (Using SolidWorks Motion)	1.00	5.00	
	 Dearning Outcomes: The students should be able to: 1. 1. Simulation of 4 bar link mechanism 2. Apply motors to the joints 3. Plot angular acceleration and angular velocity The students should be able to: Use SolidWorks Motion Simulation to perform motion analysis on the assembly 			UNIT-I

	shown below. The green link displacement of 45 degrees i direction and it is required to velocity and acceleration of t time & Create a Trace Path			
3	Modification of the geometry of 4 bar mechanism and its effect on kinematic properties (Using SolidWorks Motion)	1.00	5.00	
	 Learning Outcomes: The students should be able Students should modify the the 4Bar mechanism looks likelow. Now ask them to use the new torque required to compare uniform angular velocition 	UNIT-I		
4	Motion analysis of a Slider Crank Mechanism	1.00	5.00	
	 Learning Outcomes: The students should be able Use SolidWorks Motion to mechanism. The goal of the selection of the sele	UNIT-I		
5	Analysis of Torque and Power of a rotating drum	1.00	5.00	
	 Dearning Outcomes: The students should be able to: 1. 1. Compute the torque and power analytically 2. Obtaining the results in solidworks 			UNIT-I
6	Simulation of CAM – Following mechanism	1.00	5.00	
	 Pollowing mechanism Design and simulate the motion of CAM & Follower using SolidWorks motion 1. Design CAM & Follower 2. Applying motors to simulate the movement 3. Setting the time flow 			UNIT-II

	and frame rate			
7	Gears: Motion study of spur gears & Planetary gear.	1.00	5.00	
	 Learning Outcomes: The students should be able Importing Standard Gears Meshing of Gears (Spur gear) Gear) 	UNIT-II		
8	Simulation of Belt and Chain Drive Mechanism.	2.00	10.00	
	 Learning Outcomes: The students should be able to: Silmulation of conveyor system using belt and chain command using SolidWorks Motion Study. 			UNIT-II
Category	Structured Enquiry	Total Weightage:	10.00	No. of lab sessions: 2.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per	Marks / Experiment	Correlation of Experiment with the theory
		batch (estimate)		
1	EVENT BASED MOTION ANALYSIS	batch (estimate) 2.00	10.00	

Course Code: 15EARC301		Course Title: Robot Analysis & Design			
L-T-P	-P: 4-0-0 Credits: 4 Contact Hrs: 50				
ISA N	SA Marks: 50 ESA Marks: 50 Total Marks: 10				
Теас	Teaching Hrs: 50 Exam Duration:				
	UN	lit – I			
No	Con	tent		Hrs	
1	Chapter 1:Introduction to Robotics and Applications Introduction, Classifications of Robots, Robot Components, Robot Degrees of Freedom, Robot Joints, Robot Coordinates, Robot Reference Frames, Programming Modes, Robot Characteristics, Robot Workspace, Robot Languages, and Robot Applications.				
2	Chapter 2: Representing Position and Orientation Coordinate frames, representing Pose in 2-Dimensions, representing Pose in 3- Dimensions, representing Orientation in 3-Dimensions, orthonormal Rotation Matrix, three-Angle Representations, combining Translation and Orientation.				
3	Chapter 3: Position Analysis of Serial Manipulators Describing a Robot Arm, Link Parameters and Link Coordinate systems, Homogeneous transformation Matrices, Denavit-Hartenberg, Forward Kinematics, Inverse Kinematics, A 2-Link Robot, A 6-Axis Robot .				
	UN	IIT - II			
4	Chapter 4:Jacobian Analysis of Serial Manipulators Different Kinematics of rigid body, Different Kinematics of serial manipulators, screw coordinates and screw systems, Manipulator Jacobian Matrix, conventional Jacobian, Screw-Based Jacobian, and Transformations of screw coordinates. Relationship Between Two Methods, condition number, singularity analysis.			6	
	Chapter 5: Staticsand Dynamics of Serial Ma	nipulators			
5	Statics of Serial Manipulators, Transformatio momentum, transformation of inertia ma Recursive Newton-Euler Formulation, Lagr Rotors, End-Effectors Space Dynamical Equat	ns of Forces and Moments, m atrix, kinetic energy. Newto angian Formulation, Inertia ions.	ass properties, on-Euler Laws, Effects of the	7	

Chapter 6: Trajectoryplanning

Path versus Trajectory, Joint-Space versus Cartesian-Space Descriptions, Basics of Trajectory Planning, Joint-Space Trajectory Planning, Third-Order Polynomial Trajectory Planning, Fifth-Order Polynomial Trajectory Planning, Linear Segments with Parabolic Blends, Linear Segments with Parabolic Blends and Via Points, Higher-Order Trajectories, Other Trajectories, Cartesian-Space Trajectories, Continuous Trajectory Recording.

7

5

5

UNIT - III

Chapter 7: Wrist Mechanisms

- 7 Introduction, Bevel-Gear Wrist Mechanisms, structure representation of mechanisms, structure characteristics of epicyclic Gear Drives, Kinematics of Robotic Wrist Mechanisms, and static force analysis.
 Chapter 8:Tendon-Driven Manipulators
- 8 Introduction, classification of Tendon-Driven Manipulators, Planar Schematic Representation, Kinematics of Tendon-Driven Manipulators, Static Force Analysis, Feasible Structure Matrices, Redundant forces resolution.

Course Code: 15EARC302	Course Title: Hydraulics and Pneumatics	
L-T-P : : 4-0-0	Credits: 4	Contact Hrs: 50 hours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50 hours		Exam Duration: 3 Hrs

Content	Hrs
Unit - 1	
Chapter No. 1. Introduction to Hydraulic Power and Hydraulic Pumps Pascal's law, Structure of Hydraulic Control System. The Source of Hydraulic Power: Pumps Pumping theory, pump classification, gear pumps, vane pumps, piston pumps, Variable displacement pumps, pump performance, pump selection.	7hrs
Chapter No. 2. Hydraulic Actuators: Cylinders and Motors Linear Hydraulic Actuators (cylinders), Mechanics of Hydraulic Cylinder loading, Hydraulic Rotary Actuators, Gear motors, vane motors, piston motors, Hydraulic Motor Performance	6hrs
Chapter No. 3. Hydraulic Valves Hydraulic Valves: Directional Control Valves- classification of directional control valves, direction control valves actuating devices, Symbolic representation as per ISO 1219 and ISO 5599, pressure control valves, flow control valves- classification of flow control valves, proportional control valves, and servo valves.	7hrs
Unit - 2	
Chapter No. 4. Hydraulic Circuit Design and Analysis Control of single acting and double acting Hydraulic Cylinder, regenerative circuit, pump unloading circuit, Double pump Hydraulic system, Counter Balance Valve application, Hydraulic cylinder sequencing circuits. Locked cylinder using pilot check valve, cylinder synchronizing circuits, Speed control of hydraulic cylinder: Meter-in circuit, Meter-out circuit and Bleed-off circuit, speed control of hydraulic motors. Ancillary Hydraulic Devices: Reservoirs, Accumulators, Pressure Intensifiers, Sealing Devices.	6hrs
Chapter No. 5. Pneumatic Systems Structure of Pneumatic control system, Choice of working medium, characteristics of compressed air, Pneumatic Actuators: Types of Linear Actuators or Pneumatic cylinders, Cylinder mountings, Cylinder seals, End cushioning in pneumatic cylinders. Pneumatic Control Valves: Direction control valve- types of direction control valves, ISO designation of direction control valves, Non return valves, methods of actuation of pneumatic directional control valves, Flow control valves, and Pressure control valves.	5hrs
Chapter No. 6. Pneumatic Circuit Design and Hydraulic Control Systems Pneumatic Circuit Design: Direct and indirect control of single acting cylinder, control of	9hrs

single acting cylinder using "or" valve, control of single acting cylinder using "and" valve, control of single acting cylinder using "not" valve. Direct control of a double acting cylinder, Indirect control of double acting cylinder using memory valve, Supply air throttling and exhaust air throttling, Various methods of checking end position of a cylinder, Pressure dependent controls and Time dependent controls. Hydraulic Control Systems: Servo Control, Valve servo systems: Valve Iap, mechanical feedback, systems response, electro hydraulic servo valves, system response and stability, Pump servo systems, Proportional valves: Force control, force position control, spool position control, proportional pressure control, two stage proportional valves, proportional flow control, electrical control of proportional valve, Proportional versus Servo valves, Applications of proportional control valves.	
Unit - 3	
Chapter No. 7. Electro Pneumatics Basic electrical devices- Manually actuated push button switches, Limit switches, Pressure switches, Solenoids, Relays, Timers, Temperature switches, Direct and indirect control of single acting cylinders using electro pneumatics, Direct and indirect control of double acting cylinders using electro- pneumatics, Control of double acting cylinder OR logic (Parallel circuit), Control of double acting cylinder AND logic.	5 hrs
Chapter No. 8. Hydraulic System Maintenance Common faults in a hydraulic systems, contamination, Filter and filter maintenance, pump maintenance, Hydraulic system maintenance, fault diagnosis of Hydraulic system.	5 hrs

Course Code: 15EARC303	Course Title: Mechatronic Systems Design		
L-T-P : 4-0-0	Credits: 4 Contact Hrs: 50 hou		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50 hours		Exam Duration: 3 Hrs	

Content	Hrs
Unit - 1	
Chapter No. 1. Mechatronic Systems Design, Engineering & Modeling Introduction to mechatronic systems design, structure of mechatronic systems, Traditional approach to mechatronic systems design, Mechatronics design methodology (V-model) – VDI 2206, Model based design, Bond graph approach to modeling State charts, UML &SysML, Case studies.	10
Chapter No. 2. Design of Mechatronic control systems in State spaceControllerDesign, AlternativeApproachestoControllerDesign, ObserverDesign, AlternativeapproachestoObserverDesign, Steady-StateErrorDesignViaIntegralControl,RobustControlSystemDesign, The z-Transform:TransferFunctions, BlockDiagramReduction,Stability,Steady-StateErrors, TransientResponse on the z-Plane, GainDesign on the z-Plane,CascadeCompensationviathe s-Plane,Implementingthe DigitalCompensator.Compensator.CompensatorCompensatorCompensatorCompensator	10
Unit - 2	
Chapter No.3. Mechanisms for motion transmission Characteristics of motion transmission mechanism, Rotary to rotary motion transmission mechanisms, Rotary to translational motion mechanisms, Cyclic motion transmission mechanisms, Shaft misalignments and flexible couplings, Actuator sizing.	6
Chapter No. 4: Motion control systems Design Methodology for Programmable motion control Systems, Motion Controller Hardware and Software, Basic Single-Axis Motions, Coordinated Motion Control Methods, Point-to-point Synchronized Motion, Electronic Gearing Coordinated Motion, CAM Profile and Contouring Coordinated Motion, Sensor Based Real-time Coordinated Motion, Coordinated Motion Applications.	7
Chapter No. 5 : Sensors Principles & characteristics of measurement devices, Signal conditioning, Sensor characterization, Relations between physical quantities, Sensor Classification, Specifications, Error reduction techniques, Loading errors, Wheatstone bridge circuit, Sensors for position, Velocity, Acceleration, Strain, Force, Torque, Pressure, Temperature, Flow rate, Humidity, Vision systems, Sensor fusion.	7

Unit - 3		
Chapter No.6. Actuators	7	
Principle and characteristics of electric motors, Solenoids, DC motors & drives, AC		
induction motors & drives, Step motors, Linear motors.		
Chapter No.7. Data Acquisition Systems	7	
Data conversion devices, Filters, Signal sampling and aliasing, Sampling theorem,		
Quantization, Encoding, Digital to analog conversion methods, Analog to digital conversion		
methods, Sample & Hold circuit, Flash ADC, Successive approximation ADC, Dual slope		
ADC, Sigma Delta ADC, Multiplexers.		

Course Code: 15EARC304	Course Title: Programming Industrial Automation Systems		
L-T-P-SS: 3-0-0-0	Credits: 3 Contact Hrs: 40		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3 hrs		

Content	Hrs	
Unit - 1		
Chapter No. 01.Programmable logic controllers(PLC) & its building blocks Internal architecture of Programmable Logic Controllers systems, Input/ Output devices, Memory Organization, I/O processing, Signal conditioning, Remote connections, Networks, Processor Scan cycle, Error Checking and Diagnostics.	4 hrs	
Chapter No. 02. The IEC 61131 , IEC61499 standards & Ladder , FB, IL, SFC and ST programming IEC 61131-3: Building Blocks , Goals , benefits, , Programming Languages of IEC 61131-3, Ladder diagrams, Analogy with Boolean Algebra and Binary Logic , Function blocks, Instruction lists, Sequential function charts, State chart modelling, Structured text programming with example programs for each, IEC 61499 models: models ,concepts and industrial examples like Temperature control system, Conveyor test station	6 hrs	
Chapter No. 03.Advanced PLC functions PLC Sequencer, Shift registers, Program / Flow Control Instructions, Arithmetic Instructions, Data handling Instructions like FIFO, FAL, ONS, Data Transfer Instructions PLC MOVE, PLC Matrix functions, Network Communication Instructions, Analog PLC operation, PID control of continuous processes.	5 hrs	
Unit - 2		
Chapter No. 04.Designing systems, PLC Start-up & Maintenance PLC Core application development, Development Cycle, Safe systems, Commissioning, Fault finding, PLC System Layout, Power Requirements and Safety Circuitry, Noise, Heat, and Voltage Considerations,, I/O Installation, System wiring strategies, and Precautions ,Safety Standards like NEMA & NEC, Electrical wiring diagrams PLC Start-Up and Checking Procedures, PLC System Maintenance & Troubleshooting	7 hrs	
Chapter No. 05.PC based Automation, SCADA Technologies and advantages of PC based Automation, Programmable Automation Controller systems (PACs) for Industrial control, Comparison of PLC with PAC Supervisory Digital Control and Data Acquisition (SCADA) system & Distributed Control Systems(DCS): SCADA Hardware and software, Open SCADA protocols like DNP3 and IEC60870,	8 hrs	

Unit - 3	
Chapter No. 06. DCS & Field Bus Overview of DCS, Network Standards: Device net, CAN bus, Control Net, Profibus, Sercos,	5 hrs
EtherCAT, Ethernet Powerlink, Comparison of each of them with other network standard.	
Chapter No. 07. System Selection Guidelines & Commissioning PLC Selection process ,estimation of program memory and time requirements, PLC Sizes and Scope of applications, Special I/O modules, Electrical relay diagram symbols, Fail Safe Design, IEC 61508/61511 safety standards, Process modeling, Programming for large systems ,Control system documentation & Commissioning	5 hrs

Laboratory Course Plan: B E in A&R 2014-2018

Laboratory Title: Automation Lab	Lab. Code: 15EARP303
Total Hours: 28	Duration of SEE Hours: 2
SEE Marks: 20	CIE Marks: 80

Experiment wise Plan

Category: Demonstration		Total Weightage: 20.00		No. of lab sessions: 4.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	Introduction to Safety guidelines & PLC and system wiring. Introduction to SELEC Hardware and instruction set, demo programs.	1.00	5.00	
	 Learning Outcomes: The students should be able appreciate the guide working with PLC and procedures involved elements Solve the problems of PLC, sensor and acture 	e to: lines to be followed d I/O devices and fo in wiring the PLC sy on interfacing by us ators.	l while ollow the ostem ing Selec	UNIT I
2	Introduction to Panasonic PLC Hardware and FPWinPro software , Instruction set, Demo Programs	1.00	5.00	
	 Learning Outcomes: The students should be able Identify the different inpuction for interfacing elements Solve the problems on intersection of the sensors and different types of the sensors and sensors and types of the sensors and types of	e to: t and output device with Panasonic PLC erfacing by using Pa f actuators through	rs and their Csystem anasonic PLC, n ladder	UNITI

	logic, Function block and Stru			
3	Introduction to Bosch Rexroth PLC Hardware, Indra Works, Instruction set and Demo Programs	1.00	5.00	
	 Learning Outcomes: The students should be able Simulate PLC logic using In problems on ON - OFF control coming on a conveyor with p 	e to: ndra logic Software I strategy , Countin lanned intervals	by solving ng Items	UNIT I
4	Demo on Electro Pneumatics : A. Time- dependent control of a double-acting cylinder with switch-on delay B. Sequential control of 2 double-acting cylinders with impulse valves	1.00	5.00	
	 Learning Outcomes: The students should be able Implement PLC logic solution elements based on stated case OFF control strategy , Countion with planned intervals 	e to: ion to drive electro se study problems e ng Items coming or	- <i>pneumatic</i> ems on ON - n a conveyor	UNIT I
Category	Exercise	Total Weightage:	25.00	No. of lab sessions: 5.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
5	Simulation Exercises on FPWINPro Software & Panasonic PLC a. Car safety system b. Solving Boolean Expressions c. Sequential Logic Control	1.00	5.00	
	 ILearning Outcomes: The students should be able to: 1. Solve problems based on given case studies using ladder logic and function blocks 			UNIT II and III

6	Exercises using Panasonic PLC hardware interfaced with sensors and actuators &FPWinPro software	1.00	5.00	
	 Learning Outcomes: The students should be able <i>Implement PLC control log control of DC motor/stepper and process indicators</i> 	e to: nic by interfacing se motor using timers	nsors for , counters	
7	simulate exercises using Rexroth PLC software using ladder diagram, function block and structured text programming for the given case studies	1.00	5.00	
	 ILearning Outcomes: The students should be able to: <i>simulate exercises using Rexroth PLC software using ladder diagram, function block and structured text programming for the aiven case studies</i> 			
8	Solve case study problems using Rexroth PLC hardware interfaced with sensors, actuators and process indicators	1.00	5.00	
	 Learning Outcomes: The students should be able simulate exercises using R ladder diagram, function bloc programming for the given compared 	e to: exroth PLC softwar ck and structured to ase studies	e using ext	
9	Exercises using Rexroth PLC software and hardware Building ALU , Timer and Counter b. Motor Control c.Burglar Alarm . d. Conveyor Control e. To explore PID control	1.00	5.00	
	ILearning Outcomes:IThe students should be able	e to:		

	1. Solve case study problems interfaced with sensors, actu indicators.indent:25in;mso- exercises using Rexroth PLC s function block and structured given case studies			
Category:	Structured Enquiry	Total Weightage:	15.00	No. of lab sessions: 2.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
10	Case studies on A. Automatic stamp B. Vehicle control system C. Process control system	2.00	15.00	
	2			UNIT III
Category:	Open Ended	Total Weightage:	20.00	No. of lab sessions: 2.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
11	Exploring PLC Serial communication using Ethernet	2.00	20.00	UNIT III

Laboratory Plan

Laboratory Course Plan: B E in A&R 2015-2019

Laboratory Title: Mechatronics Laboratory	Lab. Code: 15EARP304
Total Hours: 30	Duration of ESA Hours: 2hrs

Experiment wise Plan

Category: Demonstration		Total Weightage: 10		No. of lab sessions: 2	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory	
1	Demo on Quanser Mechatronics Sensor kit, DC Motor Control Trainer module, Inverted Pendulum Trainer module with NI ELVIS Platform.	1	05	Unit - 2	
	 Learning Objectives: The students should be able to: 1. Demonstrate the working of O Motor Control Trainer module with NI ELVIS Platform. 	Quanser, Mech e, Inverted Pen			
2	 Model physical systems using bond graph techniqueusing Model-20Sim software/Open modelica/ /Hopsansoftware. Discretization(S→Z) (Simulation) using Labview. 	1	05	Unit - 1	
	 Learning Objectives: The students should be able to: 1. Model physical systems using 20Sim software/Open modeli 2. Realize discretizition methods 	Objectives: ents should be able to: del physical systems using bond graph technique using Model- im software/Open modelica software.			

	3. Make basic calculation us				
Category	: Exercise		Total Weig	No. of lab sessions: 3	
Expt./ Job No.	Experiment / Job Details		No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
3	A/D and D/A (Simulation) using 1 05 Labview. Learning Objectives:				Unit - 3
	 Measure and characterize Measure and characterize Measure and characterize Make basic calculation us 	e Anal e Digit ing La	og to Digital al to Analog bVIEW Virtu	Converter (ADC). Converter (DAC). Ial Instrument.	
4	Implementing a Level Co System in LabVIEW.	ntrol	1	05	Unit - 1
	Learning Objectives: The students should be able to 1. Implement a level control	: syster	n using PID	controller.	
5	Ultrasonic Transducer110Characterization and MotorControl on starter kit 2.01				Unit - 2
	 Learning Objectives: The students should be able to 1. Realize the characteristic kit 2 and LABVIEW. 2. Discover how to control techniques. 3. Realize the characteristic LABVIEW. 4. Apply conversions betwee preferred units. 				
Category	: Structured Enquiry	Total	Weightage:	40	No. of lab sessions: 6
Expt./ Job No.	Experiment / Job Details	No. of Sessio batch (estim	f Lab on(s) per nate)	Marks / Experiment	Correlation of Experiment with the theory

6	System identification (DC motor, Inverted pendulum)	2	20		Unit - 2
7	Learning Objectives: The students should be able t 1. Derive analytically th identify experimentally 2. Measure the resistan EMF) constant of the speed transfer functio 3. Investigate various ph experimentally determ Design a Lag controller for a DC motor using the frequency response method.	o: e mathematical n y its physical paran ce and the back- DC motor and d n. hysical principles o hine its moment of 2	nodel of a Do neters. electromotive erive the volt f the rotary po inertia. 10	C motor and force (back- age-to-motor endulum and	Unit – 1, 2
	Learning Objectives: The students should be able t 1. Design a Lag controlle 2. Derive and simulate a	o: er for a DC motor digital equivalent	controller usin	g emulation.	
8	Design a PI controller for a DC motor using the Ziegler Nichols method, and then use this controller to build the discrete equivalent controller using emulation, investigating the effect of the discretization method and sampling frequency.	2	10		Unit – 1, 2
	Learning Objectives: The students should be able t 1. Design a PI controller 2. Derive and simulate a	o: using the Ziegler N digital equivalent	lichols method controller usin	g emulation.	
Category	: Open Ended	Total Weightage:	10	No. of lab see	ssions: 2
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation o the theory	f Experiment with
9	Select any one of these following experiments and	2	10	Unit – 1, 2 an	d 3

per				
	form the experiment:			
1.	Kinematics. Perception			
	with PING))) and			
	Localization using			
	starter kit 2.0.			
2.	Pole placement using			
	state feedback (PPSF			
	emulation) for the			
2	Inverted pendulum			
5.	LabVIEW software and			
	SbRIO/ CRIO to build			
	control system.			
4.	Build SCADA and Cam			
	profile applications			
	using Rexroth Win-			
	studio and MLD-CAM			
	builder software tools.			
1.	Discover the steering f	rame. Add moto	or control of	
2. 3. 4. 5. 6. 7.	from point A to point B. Learn about hierarchi machine architectures programs to sequence co to navigate from point A Calibrate PING)))'s orient Displayperception data w Communicate perception Streams Write a program to extraction method to obstacle and follow a wa Determine DaNI's locat	cal programming to build more ontrol tasks like rot to point B. tation and file IO with an XY Graph n data to the host identify edges u identify an obs II.	oility to drive g and state sophisticated cate and drive with network using feature stacle, avoid onment with	
2. 3. 4. 5. 6. 7.	from point A to point B. Learn about hierarchi machine architectures programs to sequence co to navigate from point A Calibrate PING)))'s orient Displayperception data w Communicate perception Streams Write a program to extraction method to obstacle and follow a wa Determine DaNI's locat odometric localization (d Build an occupancy grid r	cal programming to build more ontrol tasks like rot to point B. cation and file IO with an XY Graph n data to the host identify edges u identify an obs II. cion in the enviro lead reckoning).	oility to drive g and state sophisticated cate and drive with network using feature stacle, avoid onment with	
2. 3. 4. 5. 6. 7. 8. 9.	from point A to point B. Learn about hierarchi machine architectures programs to sequence co to navigate from point A Calibrate PING)))'s orient Displayperception data w Communicate perception Streams Write a program to extraction method to obstacle and follow a wa Determine DaNI's locat odometric localization (d Build an occupancy grid n	cal programming to build more ontrol tasks like rot to point B. tation and file IO with an XY Graph n data to the host identify edges u identify an obs II. tion in the enviro lead reckoning). map using LABVIEV ck controller for	oility to drive g and state sophisticated cate and drive with network using feature stacle, avoid onment with V. the inverted	
2. 3. 4. 5. 6. 7. 8. 9.	from point A to point B. Learn about hierarchi machine architectures programs to sequence co to navigate from point A Calibrate PING)))'s orient Displayperception data w Communicate perception Streams Write a program to extraction method to obstacle and follow a wa Determine DaNI's locat odometric localization (d Build an occupancy grid n Design a state feedbac pendulum using pole pla	cal programming to build more ontrol tasks like rot to point B. cation and file IO with an XY Graph n data to the host identify edges u identify an obs II. cion in the enviro lead reckoning). map using LABVIEV ck controller for cement.	oility to drive g and state sophisticated cate and drive with network using feature stacle, avoid onment with V. the inverted	
2. 3. 4. 5. 6. 7. 8. 9.	from point A to point B. Learn about hierarchi machine architectures programs to sequence co to navigate from point A Calibrate PING)))'s orient Displayperception data w Communicate perception Streams Write a program to extraction method to obstacle and follow a wa Determine DaNI's locat odometric localization (d Build an occupancy grid n Design a state feedbac pendulum using pole play	cal programming to build more ontrol tasks like rot to point B. tation and file IO with an XY Graph n data to the host identify edges u identify an obs II. tion in the enviro lead reckoning). map using LABVIEV ck controller for cement. gital equivalent co	oility to drive g and state sophisticated cate and drive with network using feature stacle, avoid onment with V. the inverted ntroller using	
2. 3. 4. 5. 6. 7. 8. 9. 10.	from point A to point B. Learn about hierarchi machine architectures programs to sequence co to navigate from point A Calibrate PING)))'s orient Displayperception data w Communicate perception Streams Write a program to extraction method to obstacle and follow a wa Determine DaNI's locat odometric localization (d Build an occupancy grid n Design a state feedbac pendulum using pole play Derive and simulate a dig emulation.	cal programming to build more ontrol tasks like rot to point B. cation and file IO with an XY Graph n data to the host identify edges u identify an obs II. cion in the enviro lead reckoning). map using LABVIEV ck controller for cement. gital equivalent co	oility to drive g and state sophisticated cate and drive with network using feature stacle, avoid onment with V. the inverted ntroller using	
2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	from point A to point B. Learn about hierarchi machine architectures programs to sequence co to navigate from point A Calibrate PING)))'s orient Displayperception data w Communicate perception Streams Write a program to extraction method to obstacle and follow a wa Determine DaNI's locat odometric localization (d Build an occupancy grid r Design a state feedbac pendulum using pole pla- Derive and simulate a dij emulation.	cal programming to build more ontrol tasks like rot to point B. tation and file IO with an XY Graph in data to the host identify edges u identify an obs II. tion in the enviro lead reckoning). map using LABVIEV tk controller for cement. gital equivalent co	oility to drive g and state sophisticated cate and drive with network using feature stacle, avoid onment with V. the inverted ntroller using stem.	
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	from point A to point B. Learn about hierarchi machine architectures programs to sequence co to navigate from point A Calibrate PING)))'s orient Displayperception data w Communicate perception Streams Write a program to extraction method to obstacle and follow a wa Determine DaNI's locat odometric localization (d Build an occupancy grid r Design a state feedbac pendulum using pole pla- Derive and simulate a di- emulation.	cal programming to build more ontrol tasks like rot to point B. cation and file IO with an XY Graph in data to the host identify edges u identify an obs II. cion in the enviro lead reckoning). map using LABVIEV ck controller for cement. gital equivalent co ling rate on the system p face using SCADA	with network with network using feature stacle, avoid onment with V. the inverted ntroller using stem.	

Semester:VYear: 2017Laboratory Title:Mini projectLab. Code: 15EARW301Total Hours:30Total Credits: 3Total ESA Marks:50Total ISA. Marks: 50

Experiment wise plan

List of activities planned to meet the requirements of the syllabus

Week No	Activities	Deliverables	CIE Marks out of 50
1&2	Need analysis, Identification of problem statement, Engineering Design process	Problem statement, Project plan	10
3&4	Control System Design	Component designs & Integration, Modeling and simulation	10
5,6,7&8	Fabrication, Testing and validation	Prototype (hardware and software)	20
9&10	Report generation	Test reports and Conclusion	10

Cou	rse Content				
Course Code: 15EARC305	Course Title: Real Time Embedded Systems				
L-T-P-SS: 4-0-0-0	Credits: 4	Contact Hrs: 50			
ISA Marks: 50	ESA Marks: 50	0 Total Marks: 100			
Teaching Hrs: 50	Exam Duration: 3 hrs				
Content			Hrs		
Ur	nit - 1		I		
1.0 Introduction to System Structures, Embedded System and Operating System System Structures types, Real time systems & basics, Operating system definition, operations, types,Embedded system purpose, Quality attributes, Core and Supporting components of embedded system, Embedded firmware					
2.0 Target Architectures : ARM Cortex M3 processors & its Programming: Architecture of ARM Cortex M3, Nested Vector Interrupt Controller. Interrupt behavior of ARM Cortex M3. Exceptions Programming. Advanced Programming Features. Memory Protection. Debug Architecture. Digital Signal Processor (DSP). Field Programmable Generic Array (FPGA).					
3.0 Real-Time Kernels and Operating Systems: Introduction to Real-Time Kernels, Tasks, process and threads, Introduction to RTOS, key characteristics of RTOS, its kernel, components in RTOS kernel, objects, scheduler, services, context switch, Task scheduling, Task communication and synchronization, Multiprocessing and multitasking, Scheduling types: Preemptive priority-based scheduling, Round-robin and preemptive scheduling.first come first served scheduling, shortest job first scheduling, Device drivers and selection of an BTOS.					
Unit - 2					
4.0 Inter-task Communication in RTOS Tasks, Semaphores and Message Queues: A task, its structure, A typical finite state machine, Steps showing the how FSM works. A semaphore, its structure, binary semaphore, mutual exclusion (mutex) semaphore, Synchronization between two tasks and multiple tasks, Single shared-resource-access synchronization, Recursive shared- resource-access synchronization. A message queue, its structure, Message copying and memory use for sending and receiving messages. Sending messages in FIFO or LIFO order, broadcasting messages.					
5.0 Tasks and Task Management VxWorks- task creation and Management, task scheduling, kernel services, inter-task- communication, Micro C/OS-II- task creation and Management, task scheduling, kernel services, inter-task-communication.					
6.0 Handling Deadlocks Sharing Resources, Deadlock Model- Necessary Conditions, A Graph Theoretic Tool—The Resource Allocation Graph, Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection.					
Ur	nit - 3				
7.0 Performance Analysis and Optimization Performance or Efficiency Measures, Complexit Methodology, Analyzing Code, algorithms, Resp Evaluating Performance, Performance Optimiza	ty Analysis—A High-Lev ponse Time, Time Loadi ation, optimizing for Po	el Measure, The ng, Memory Loading, wer Consumption.	5		

8.0 Wired and Wireless Protocols used in Real Time Embedded System:	
Bus communication protocol (USB, I2C, SPI), Wireless and mobile system protocol (Bluetooth,	5
802.11 and its variants, ZigBee), Embedded design cycle-case study-ACVM	

Laboratory Plan Semester: VI FMTH0303-3.0

Year: 2018 - 2019

Laboratory Title: OOP & Python Practice	Lab Code: 15EARC306
Total Hours: 48	Duration of SEE Hours: 3
ISA Marks: 80	ESA Marks: 20

Experiment wise Plan

Category: Demonstration		Total Weightage:	20	No. of lab sessions: 2
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	Write programs using the concept of OOP (C++/Java) Language Fundamentals and concept of command line arguments.	1	10	
	 Learning Objectives: The students should be ab Demonstrate how to cor command prompt. Write programs using op Write programs for acce and process them in progra Demonstrate how to cor using different IDE's like ecl 	le to: npile and run a pro perators and contro pting command lin m. npile and run a Jav ipse, Net beans et	ogram in ol statements. e arguments ra program c.	Object Oriented Programming -I
2	Write programs using the concept of arrays, Strings and String Buffer class and exception Handling.	1	10	
	 Learning Objectives: The students should be ab Write programs using difference 	Object Oriented Programming -I		

	strings. 2. Write a program to catch 3. Demonstrate how the St				
Category: E	xercise To	tal Weightage: 20	N	o. of lab sessions: 2	
3	Develop a swing based GUI using swing components and containers and connect it to database .	1	10	Object Oriented Programming -I	
	 Learning Objectives: The students should be ab Develop a GUI using swire Demonstrate how to insefinom a database by using a signal Demonstrate the proced 				
4	Write programs using the concept of Generic class, Inheritance, Interface and Package.	1	10		
	 Learning Objectives: The students should be ab Write a program to creat and demonstrate the inheri program. Write a program to creat how to use the interface for Use the built in packages task. Create the user packages the user package in other p Demonstrate how to creat and how to use different typ program. 	 Learning Objectives: The students should be able to: Write a program to create base class and derived class and demonstrate the inheritance concept using the same program. Write a program to create interface and demonstrate now to use the interface for other programs also. Use the built in packages to write programs for defined ask. Create the user packages and demonstrate how to use he user package in other programs or other classes. Demonstrate how to create parameterized constructors and how to use different types of access specifies in a program. 			
Category: E	xercise	Total Weightage:	30	No. of lab sessions: 3	
Expt./ Job No.	Experiment / Job Details	No. of Lab Marks / Session(s) per Experiment batch (estimate)		Correlation of Experiment with the theory	

5	Write a program using the concepts of python scripting elements python constructs, data structures.	1	10	Python programming-II
	 Learning Objectives: The students should be ab Demonstrate how to cor command prompt. Write programs using op Write programs for acce and process them in progra Demonstrate how to cor using different IDE's like and 	le to: npile and run a pro perators and contro pting command lin m. npile and run a pyt aconda ,ipython et	ogram in ol statements. e arguments :hon program c.	
6	Write programs using the concept of functions, modules, packages and regular expressions	1	10	Python programming-II
	Learning Objectives: The students should be ab Write programs using function Write a program to use program	le to: nctions and modul backages and regul	es. ar expressions	
7	Write a python program to use the language scripting elements and constructs, data structures, and repository of standard library, to develop real world applications.	1	10	Python programming-II
	 Learning Objectives: The students should be ab Write a program using sc structures. Create the user packages the user package in other p Write a program to creat to use the interface for other 	le to: ripting elements a s and demonstrate rograms or other c e interface and de er programs also	nd data how to use lasses. monstrate how	

Category: S	itructured Enquiry	Total Weightage:	10	No. of lab sessions: 3
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
8	Solving a Maze: Program a robot to solve a maze by finding the goal position in the maze starting from a starting position. You will need a data structure to keep track of positions found in the maze that are yet to be explored, starting with positions around the starting position. You will compare the maze solutions found using a Stack versus a Queue for storing unexplored positions.	2	10	
	 Learning Objectives: The students should be ab Select fundamentals con programming concepts/pyt scenario to implement prog 	le to: cepts of object orio hon, based on the grams.	ented problem	Object Oriented Programming –I/ Python programming-II
Category: C	Dpen Ended	Total Weightage:	20	No. of lab sessions: 2
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
9	Implement a project using C++/Java/python concepts, for automation and robotics applications. (FOR SEE)	2	20	

ILearning Objectives:	Object Oriented
IThe students should be able to:	Programming –I/ Python
1. Use the C++/Java/python concepts to implement the	programming-II
project.	
2. Select the appropriate tool/software to implement the	
project.	
3. Write a technical report using IEEE standard.	
4. Present the technical report for the implemented project.	
5. Demonstrate the learning experiences of working in a	
team.	

Laboratory Plan	Laboratory	Plan
-----------------	------------	------

Semester:

VI

FMTH0303-3.0 Year: 2018-2019

Laboratory Title: DBMS Lab	Lab. Code: : 15EARC307
Total Hours: 24	Duration of ESA Hours: 3
ESA Marks: 20	ISA Marks: 80

Experiment wise Plan

Category:	Demonstration	Total Weightage:	20	No. of lab sessions: 4
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	Preparing an ER diagram for given database	2	10	
	 Learning Objectives: The students should be able to 1. Demonstrate how structure of a database can beexpressed graphically by an ER diagram. 2. Demonstrate how torepresent attributes, relationships among entity sets, link attribute to entity sets and entity sets to relationships 			
2	Execute basic SQL queries on a given database. (DDL, DML, DCL commands)	2	10	
	 Learning Objectives: The students should be able to: 1. Demonstrate how to use DDL, DML and DCL commands on a database. 2. Demonstrate how to specify different types of constraints on a table while creating a table. 			
Category:	Exercise	Total Weightage: 40		No. of lab sessions: 4
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
3	Execute nested, correlated queries using exist, like,	1	10	

	union, intersection and joins on a given database.			
	Learning Objectives: The students should be able to: 1. Write SQL queries to retrieve the required data, using correlated queries, nested queries, joins, and using keywords exist, like, union and intersection. 2. Demonstrate how to join two tables using different types of joins and use keywords exist, like, union, and intersection to retrieve data.			
4	Execute SQL queries on - group by, having clauses and aggregate functions on a given database to retrieve the required data.	1	10	
	 Dearning Objectives: The students should be able to: Write SQL queries using group by, having clauses and aggregate functions to retrieve the required data. 			
5	Specifying views in SQL	1	10	
	Learning Objectives: The students should be able to 1. Write SQL queries to create & update Views			
6	Design a database for the given schema using normalization concept and execution of given queries on the database and execution of queries.	1	10	
	 Dearning Objectives: The students should be able to: Design the database for the given schema using normalization concepts and use the given RDBMS software and implement the database. 			
Category:	Structured Enquiry	Total Weightage:	20	No. of lab sessions: 2
Expt./	Experiment / Job Details	No. of Lab	Marks /	Correlation of Experiment

Job No.		Session(s) per batch (estimate)	Experiment	with the theory
7	Design a database for the given specifications & implement the database and write and execute the queries for the given statements.	2	20	
	 Description 			
Category	Open Ended	Total Weightage:	20	No. of lab sessions: 2
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
8	Implement a project using Java/database management systems concepts, for automation and robotics applications. (FOR SEE)	2	20	
	 Dearning Objectives: The students should be able to: Use the java /database management concepts to implement the project. Select the appropriate tool/software to implement the project. Write a technical report using IEEE standard. Present the technical report for the implemented project. Demonstrate the learning experiences of working in a team. 			

Course Content				
Course Code: 15EARE301 Course Title: Power Electronics, Motors & Drives				
T-P: 3-0-0 Credits: 3 Contact Hrs: 40				
ISA Marks: 50 ESA Marks: 50 Total Marks: 100				
Teaching Hrs: 40 Exam Duration: 3 hrs				
Con	tent		Hrs	
Uni	it - 1			
Chapter No. 1.Elements and Dynamics of Electric Drive Systems Basic components of an Electric drive system: Mechanical loads, electric motors, power sources, converters and controllers. Moment of inertia , basic concept of Traveling time, gears and belts, traveling time of dc motors and traveling time of induction motors.(Book-1,3)			3 hrs	
Chapter No. 2.Power electronic devices Ratings of power electronic devices, Characteristics of : power diodes, power transistors, power mosfets, triac and IGBT. Thyristors (SCR): static VI characteristics, turn on methods, switching characteristics, gate characteristics, two transistor model, di/dt and dv/dt protection. Firing circuits for SCRs(Book-2,5)			6 hrs	
Chapter No. 3.Solid state switching circuits Single- phase , half-wave, ac/dc conversion for resistive loads, Single- phase , full-wave, ac/dc conversion for resistive loads, Single- phase , half-wave, ac/dc conversion for inductive loads without/with freewheeling diode, single phase dc/ac converter, voltage, frequency and sequence control and PWM,. Current source Inverter(Book-2,5)				
Unit - 2				
Chapter No. 4. Power Amplifiers Definitions and amplifier types, series fed class A amplifier, Transformer coupled Class A amplifiers, Class B amplifier operations, Class B amplifier circuits, Amplifier distortions. Designing Power amplifiers: Heat flow calculations using analogous circuit. Calculation of actual power handling capacity of transistors with and without heat sink. Heat sink design.(Book-4)			6 hrs	
Chapter No. 5.Speed –torque characteristics &Speed Control of Electric motors Joint Speed-Torque Characteristics of Electric Motors and Mechanical Loads, DC motors: separately excited motors, shunt motors, series motors and compound motors, Speed control of shunt or separately excited DC motors: by adding resistance, adjusting armature voltage, adjusting field voltage and solid-state control, Speed control of DC series motor: by adding resistance to armature circuit, adjusting armature voltage, and by adjusting field current, Induction motors: equivalent circuit, power flow, torque characteristics, starting procedure ,Damage to electric machines. speed control of induction motors: by rotor resistance, by slip energy recovery method, by adjusting the stator voltage, adjusting the supply frequency, voltage/frequency (V/F) control(Book-1,3)			9hrs	
Unit - 3				

Chapter No. 6.Braking of electric motors

DC shunt and series motors: Regenerative, dynamic, and concurrent braking. Induction motors: Regenerative, dynamic and concurrent braking. (Book-1,3)

5 hrs

5 hrs

Chapter No. 7. Drives for industrial Applications

Rolling mill drives, cement mill drives, electric traction drives, textile mill drives drives and machine tool drives. .(Book-1,3)

Course Code: 15EARE302	Course Title: Computer vision & digital image processing		
L-T-P-SS: 3-0-0-0	Credits: 3	Contact Hrs: 40	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40		Exam Duration: 3 hrs	

Content	Hrs
Unit - 1	
CHAPTER 1: FUNDAMENTALS OF COMPUTER VISION & DIGITAL IMAGE PROCESSING Introduction to –computer vision system, Geometric Camera Models- Pinhole Perspective, Cameras with Lenses, the Human Eye, Intrinsic and Extrinsic Parameters, Geometric Camera Calibration. Digital image processing system, application of computer vision & digital image processing. Design of machine vision system.	6 hrs
CHAPTER 2:LIGHT & SHADING, COLOR	6hrs
Modeling Pixel Brightness, Reflection at Surfaces, Sources and Their Effects, the Lambertian+SpecularModel, Inference from Shading, Radiometric Calibration and High Dynamic Range Images, the Shape of specularities, Inferring Lightness and Illumination, Color- Human Color Perception, The Physics of color, representing Color, Inference from Color Finding specularities Using Color Shadow removal, usingColor Constancy: Surface Color from Image Color.	
CHAPTER 3: IMAGE FORMATION & PROCESSING Image Acquisition – Sampling and Quantization- Pixel Relationships, image enhancement Spatial Domain Gray level Transformations Histogram Processing Spatial Filtering – Smoothing and Sharpening, Introduction to the Fourier Transform and the Frequency Domain, DFT, FFT.	5 hrs
Unit - 2	
CHAPTER 4:IMAGE SEGMENTATION AND FEATURE ANALYSIS	6hrs
Detection of Discontinuities – Edge Operators – Edge Linking and Boundary Detection – Thresholding – Region Based Segmentation, A Model of the Image Degradation/Restoration Process, Noise Models, Restoration in the Presence of Noise Only–Spatial Filtering, Periodic Noise Reduction by Frequency Domain Filtering.	
CHAPTER 5: COLOR IMAGE PROCESSING & IMAGE COMPRESSION	6hrs

Color Fundamentals, Color Models, Pseudo color Image Processing, Basics of Full-Color Image Processing Color Transformations, Smoothing and Sharpening, Color Segmentation, Noise in Color Images Color Image Compression, Image Compression-Fundamentals, Image Compression Models, Elements of Information Theory, Error-Free Compression, Lossy Compression	
Unit - 3	
CHAPTER 6: MORPHOLOGICAL PROCESSING Dilation and Erosion, Opening and Closing, The Hit-or-Miss Transformation, Some Basic Morphological Algorithms.	6hrs
CHAPTER 7: RECOGNITION & BAYESIAN MODELING Object detection, Face recognition. Instance recognition, Category recognition, Context and scene understanding, Recognition databases and test sets, Prior models and Bayesian inference. Gradient descent and simulated annealing, Graph cuts, Markov random fields	5 hrs

Course Code: 15EARE303	Course Title: Computer-Integrated Manufacturing			
L-T-P: 3-0-0	Credits: 3 Contact Hrs: 40 ho			
ISA Marks: 50	ESA Marks: 50 Total Marks: 100			
Teaching Hrs: 40 hours		Exam Duration: 3 Hrs		
Unit –I				

1. Geometric Modelling and Computer-Aided Design, CAD Data Exchange and CAD Standards	
Introduction to Geometric Modelling	
 Geometric Modelling Approaches: Wire-Frame Modelling, Surface Modelling Solid Modelling 	, OE bours
Computer-Aided Design, CAD System Architecture	05 Hours
Computer Hardware for CAD	
CAD Kernels	
 Data Interoperability: Different Types of Data Translation/Conversion, Dual Kernel CAD Systems, Direct Data Translators, Common/Neutral Translators 	
2. Group Technology and Flexible manufacturing system	
 Group Technology: Part Families, Part Classification and Coding, Production flow analysis, Machine Cell Design, Benefits of Group Technology 	/ 05 hours
 Flexible Manufacturing Technology: Introduction, FMS workstations, Materia Handling and storage Systems, Computer Controls Systems, Planning the FMS Analysis Methods for FMS 	l ,
3. Computer-Aided Process Planning and Manufacturing	
 Computer-Aided Process Planning: Basic Steps in Developing a Process Plan, Principal Process Planning Approaches Computer-Aided Manufacturing: Computer Applications in a Manufacturing Plant, Key Aspects of CAM in a Manufacturing System, Manufacturing Control 	05 hours
Unit –II	
4. Integration of CAD/CAPP/CAM/CNC, Integration Based on STEP Standards, Function	
Block-Enabled Integration	
 Models of Integrating CAD/CAPP/CAM/CNC A Case Study of Integrating CAD/CAPP/CAM: Concurrent Product Modelling in a CAD/CAM System, A Bird's-Eye View of the Case Study, CAD/CAM Enabling a Concurrent Environment, Reflections Limited Efforts to Integrate CAM and CNC, Post-Processor: A Source of Vexation, Challenges, The APT Effort, The BCL Effort, The BNCL Effort, Intermediate Languages for CNC Programming Data Exchange Using STEP and STEP-NC Data Exchange between CAD Systems 	05 Hours

• Data Flow between CAD, CAPP, CAM and CNC Systems

-		
	 Features as a Common Thread 	
	 Integration through STEP AP Harmonization 	
	 Integrate CAD with CAPP 	
	 Integrate CAPP with CAM 	
	 Integrate CAM with CNC 	
	 STEP-NC Data Model 	
	 Data Access Implementation Methods 	
5. Integ	grating CAD/CAPP/CAM/CNC with Inspections	
	Classed Learn Machine and On Machine Inspection	
•		05.11
•	Past Research	05 Hours
•	A Data Model for UMI	
•	An integrated Machining and inspection System	
• C linter	Implementation	
6. Intel	net-Based Integration	
•	A Collaborative Framework	
•	System Model	
	O Client Tier: User Interface	
	 Business Logic Tier: CAPP Server 	
	 Data Tier: Data Model 	05 Hours
•	Framework Development	
	 Client Tier Implementation 	
	 Business Logic Tier Implementation 	
	• Data Tier Implementation	
	Linit –III	
7. Fron	CAD/CAPP/CAM/CNC to PDM. PLM and Bevond	
•	PDM's Capabilities	
•	Benefits of PDM Systems	
•	Web-Based PDM	
•	PDM Standardization	
•	Integrated and Extended PDM	
	Droduct Lifocycle Management	
•		
•	Looking Forward to "Grand" Integration	
8. Key	Enabling Technologies	
•	Knowledge-Based Systems	
	Artificial Neural Network Methods	
		05 Hours
•	Genetic Algorithm	
•	Agent-Based Technology	
•	Other Technologies	

Laboratory Plan

FMTH0303-3.3

Semester: VI

Year: 2018

Laboratory Title: Robotics Lab	Lab. Code: 15EARP301
Total Hours: 28	Duration of Exam: 3
Total ESA Marks: 20	Total ISA Marks: 80

Experiment wise plan

1. List of experiments/jobs planned to meet the requirements of the course.

Category: D	Category: Demonstration Total Weightage: 10 No. of lab sessions: 4						
Learning Ou	Learning Outcomes :						
The student	s should be able to:						
1. Den	nonstrate the knowledge about the basic pr	inciples and la	ws of robot	- -			
2. Den	nonstrate the knowledge about the basic pr	inciple of oper	ation, coor	dinates and parts	of robot	: .	
3. Den	nonstrate the knowledge about Mat lab and	l Robot studio	software b	ased tools.			
Expt./Job	Experiment/job Details	No. of Lab.	Marks/	Correlation of			
No.		Session/s	Experim	Experiment	CLO	PI Codo	
		(estimate)	ent	theory		Coue	
	Demonstration on working with Mat Lab						
1	software.	1	10	Chapter 1-3	1	4.1.1	
	Demonstration of operations of ABB		10				
2	Robot and Robot Studio Software.	1	10	Chapter 1-3	1	4.1.1	
	Demonstration of controlling the robot		10		_		
3	using Flex pendant.	1	10	Chapter 1-3	2	5.1.1	
	Demonstration on working with ROS.						
4	Description: This tutorial introduces ROS	1	10	Chapter 1-3	2	5.1.1	
	filesystem concepts, and covers using						
	the roscd, rosls, and						

	rospackcommandline tools.					
Category: E	xercises Total Weight	age: 20 No. of	lab session	ns: 4		
Learning Ou	itcomes:					
The student	The students should be able to:					
1. Den	nonstrate the robot proarammina methods.					
2. Den	nonstrate the operation of robot using robot	t controller.				
3. Sim	ulate the robot using Mat lab and Robot stu	dio software.				
Expt./Job	Experiment/job Details	No. of Lab.	Marks/	Correlation of		
No.		Session/s	Experim	Experiment	CLO	PI Codo
		(estimate)	ent	theory		code
		(,				
	Create dynamic simulation of a simple					
5	robot with flexible transmission using	1	20	Chapter 3-5	2	5.1.1
	the toolbox with Mat lab Simulink.					
	Obtain the kinematic equation of the 3					
	DOF articulated arm with three revolute					
6	joints and simulate the same using ABB	1	20	Chapter 7, 8	2	5.1.1
	robot.					
	Obtain the position & orientation of the					
	tool point P with respect to the base for					
	the 2 DOF, RP planar manipulator using					
7	ABB robot studio software.	1	20	Chapter 2-8	3	5.1.1
	Example: Path Tracing Collision					
	Detection					
	Creating a ROS Package.					
Q	Description: This exercise covers using	1	20	Chapter 2.9	2	511
0	roscreate-pkg or catkin to create a new	1	20			J.1.1
	package, and rospack to list package					
	dependencies.					

Category: Structured Enquiry

Total Weightage: 20No. of lab sessions: 4

Learning Outcomes :

The students should be able to:

- 1. Demonstrate the knowledge of solid modeling software tools.
- 2. Demonstrate the knowledge of industrial applications of robot.
- *3. Demonstrate the knowledge about the mapping of sensors and end effectors with the robot.*

Expt./Job No.	E	Experiment/job Details	No. of Lab. Session /s per batch (estima te)	Marks/ Experim ent	Correlation of Experiment with the theory	CLO	PI Code
9	Design an e application work softw	end effector for a particular using Robot Studio and Solid vare.	2	20	Chapter 1-8	4 and 6	4.2.1
10	Writing a S (Python). i. ii. iii.	imple Publisher and Subscriber Writing the Publisher Node Writing the Subscriber Node Building your nodes	2	20	Chapter 1-8	3	4.2.1
Category: C)pen Ended	Total Weightage: 20	No. c	of lab sessio	on: 2		

Learning Outcomes :

The students should be able to:

1. Demonstrate the knowledge about the commands used in simulating the robot.

2. Demonstrate the knowledge about work stations and conveyors.

Expt./Job No.	Experiment/job Details	No. of Lab. Slots per batch (estima te)	Marks/ Experim ent	Correlation of Experiment with the theory	CLO	PI Code

	Design a complete process for welding,					
17	assembly, drilling, gluing or sorting using	2	20	Chanter 1-8	5	4.2.1
12	Robot Studio and DELMIA Software.	2	20			10.1.1
						12.1.1

Laboratory Plan

Laboratory Course Plan: B E in A&R 2015-2019

Laboratory Title: Hydraulics And Pneumatics Lab	Lab. Code: 15EARP302
Total Hours: 24	Duration of SEE Hours: 2
ESA Marks: 20	ISA Marks: 80

Experiment wise Plan

List of experiments/jobs planned to meet the requirements of the course.

Category: Demonstration		Total Weightage: 25.00		No. of lab sessions: 5.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	To study hydraulic pump, its characteristics and calculate the hydraulic power	1.00	4.00	
	Learning Objectives: The students should be able t 1. Differentiate between ty 2. Plot and infer characteris	o: pes of pumps. tic curve of the Pu	mp.	Unit - I
2	 A. To study concepts of Meter-in and Meter-out circuits using Single-rod cylinder and 4/2 DCV B. Automation Studio Exercises 	1.00	6.00	
	Learning Objectives: The students should be able to 1. Identify hydraulic cylinder valves. 2. Explain meter-in and mer the speed of a single actin throttle.	o: s and various dire ter-out circuits use g cylinder using	ection control ed to control meter in/out	Unit II

3	To study pressure	1 00	4.00	
5	intensification of a single rod	1.00	4.00	
	cylinder.			
	Learning Objectives: The students should be able to 1. Demonstrate how the sp using 4/2 directional valve. 2. Demonstrate the pressure cylinder.	o: eed of a cylinder intensification of t	is controlled he single-rod	Unit - II
4	Study of Hydraulic Motor with 4/3 DCV	1.00	5.00	
	Learning Objectives: The students should be able to 1. Discuss the operating featu 2. Explain how a 4/3 direct implement clockwise and con hydraulic motor.	o: ires of a hydraulic tional valves can unter-clockwise ru	motor. be used to Inning of the	Unit – I
5	 A. Study of indirect control of a double-acting cylinder with a pneumatically operated 5/2 directional control valve. B. Automation Studio Exercises 	1.00	6.00	
	Learning Objectives: The students should be able to 1. Demonstrate how a 5/2 DC acting cylinder.	o: V can be used con	trol a double	Unit - II
Category	Exercise	Total Weightage:	20.00	No. of lab sessions: 4.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
6	To study position dependent control of a double acting cylinder using mechanical limit switches.	1.00	5.00	
	Learning Objectives: The students should be able to	o:		Unit - II

	1. Identify switches and push buttons and use them to build the circuits.			
7	To study the application of different center configuration of 4/3 DCV. (Tandem and closed centre)	1.00	5.00	
	Learning Objectives: The students should be able to: 1. Demonstrate how a hydraulic cylinder is controlled by a 4/3 directional valve with different spool shapes (blocked and circulation position)			Unit - I
8	Study of Speed Control of Single Acting Cylinder - Slow Speed Extension and Rapid Retraction.	1.00	5.00	
	Learning Objectives: The students should be able to: 1. Explain how the speed of a single acting cylinder is controlled using a guick-exhaust valve.			Unit I and II
9	Stop control, double-acting cylinder with 5/3 directional control valve, tensile load	1.00	5.00	
	Learning Objectives: The students should be able to: 1. Explain the use of a 5/3 directional control valve with closed mid-position for stopping a double-acting cylinder		Unit - II	
Category	Structured Enquiry	Total Weightage:	20.00	No. of lab sessions: 3.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
10	To study the application of Regenerative Circuit	1.00	8.00	
	Learning Objectives: The students should be able to: 1. Understand and record the table of the travel times 2. Calculate the velocity of the piston.		Unit - II	

11	By using a 3/2 directional control valve with adjustable minimum pressure of response, a pressure- dependent (and in addition displacement) control of a double acting cylinder is put into effect.	1.00	6.00	
	Learning Objectives: The students should be able to 1. Use double acting cylinder, valves and push buttons and o the given application.	o: appropriate DCVs, construct the circui	, flow control t diagram for	Unit - II
12	The sequential control with two pneumatic drives. The signal overlapping occurring during this exercise is constructively solved by use of rollers with idle return. Practice is obtained in developing sequential diagrams and pneumatic circuit diagrams.	1.00	6.00	
	Learning Objectives: The students should be able to 1. Use double acting cylin control valves and push but diagram for sequential contro	o: ders, appropriate tons and construc l of two pneumatic	DCVs, flow ct the circuit c drives.	Unit - II
Category	: Open Ended	Total Weightage:	10.00	No. of lab sessions: 2.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
13	A double-acting cylinder is used to press together glued components. Upon pressing a push-button, the clamping cylinder is to extend and trip the roller valve. Once the fully extended position of the cylinder has been reached and sufficient	2.00	10.00	

clamping force has been developed, the cylinder is to retract to the initial position. Develop a control circuit using a pressure sequence valve.			
Learning Objectives: The students should be able to 1. Construct a control circuit u for a given application.	o: Ising a pressure se	quence valve	Unit - I, II and III

Laboratory Plan	FMTH0303-3.0
Semester: VII	Year: 2017

Laboratory Title: Real Time Embedded Systems Lab	Lab. Code: 15EARP305
Total Hours: 28	Duration of ESA Exam: 3hrs
Total ESA Marks: 20	Total ISA. Marks: 80

LIST OF EXERCISES & ISA COMPUTATION

SI. No	EXPERIMENTS	MAX MARK S
	Demo on Energia IDE and TM4c1294NCPDT, TIVA C series microcontroller board &	
1	Solving problems on Data Acquisition for Bio Medical / Process control/Industrial control application	10
2	Demo on Code Composer Studio(CCS) and TIVA C series TM4C1294NCPDT	
	microcontroller board and problem solving on ADC, TIMERS, INTERRUPTS	10
	Demo on LABVIEW on multitasking to implement Semaphores, Queue	
3	Demo on Introduction to Keiluvision 4 problem solving	10
4	Demo on Raspberry Pi Programming and peripheral programming	05
5	Exercises on basic RTOS program, RTX Kernel using peripherals like RTC, TIMERS,	
	UART, SEMAPHORES	10
6	Exercises on implementing scheduling algorithms like Preemptive /Round Robin /	10
0	Interrupts/ and Multitasking operations in RTX Kernel of Keiluvision 4.	10
7	Structured Query : Implementing Communication Protocols like I2C / SPI / UART /CAN /	10
,	ETHERNET with Energia /CCS & TM4C1294 TIVA board	10
8	Synopsis for ESA Project	10
9	Attendance & Timely Submission of document	05
	TOTAL ISA MARKS	80

ESA	Design using state machine architecture or Unified Modeling Language and implement solution for a real world problem using IOT technology for applications related Smart Home, Energy Management, Smart Grid, Smart Agriculture, Wearable Device, Smart Health Care, Connected Car, Smart Machine involving Inter-process communication, Resource sharing and an effective scheduling technique satisfying real time constraints.	20
	TOTAL MARKS	100

Semester: VI

Year: 2015-16(Even)

Course Title: Professional Aptitude and Logical Reasoning	Course Code:HSC301
Total Contact Hours: 40	Duration of SEE: 90 mins
SEE Marks: 50	CIE Marks: 50

Unit –I - Arithmetical Reasoning and Analytical Thinking

Chapter 1. – ArithmeticalReasoning	10hrs
Chapter 2. – AnalyticalThinking	4hrs
Chapter 3. – SyllogisticLogic	3hrs

Unit – II – Verbal and Non – Verbal Logic

Chapter 1. – Verbal Logic	9hrs
Chapter 2. – Non-Verbal Logic	6hrs

Unit – III - Lateral Thinking

Chapter 1 Lateral Thinking	8hrs

Text Book

1. A Modern Approach to Verbal and Non – Verbal Reasoning – R. S. Aggarwal, Sultan Chand and Sons, New Delhi

2. Quantitative Aptitude – R. S. Aggarwal, Sultan Chand and Sons, New Delhi

References:

1. Verbal and Non – Verbal Reasoning – Dr. Ravi Chopra, MacMillan India

2. Lateral Thinking – Dr. Edward De Bono, Penguin Books, New Delhi

Semester:VIYear: 2017-18Laboratory Title:Minor projectLab. Code: 15EARW302Total Hours:30Duration of Exam: 3 Hrs

Total ESA Marks: 50

Design Process

Total ISA. Marks: 50

Figure 2. V-shaped model on the macro-level

Combination of V-model and project plan

Experiment wise plan

1.	List of activities planned	to meet the requirements	s of the syllabus	(Demonstration only)
			· · , · · · , · · · · ·	1

Week No	Activities	Deliverables	ISA Marks out of 50
1&2	Engineering Design	Problem statement, Project plan	10
3&4	Mechatronics System Design	Component designs & Integration	10
5,6,7&8	Fabrication	Prototype	20
9&10	Testing, Validation an Improvements	Test reports and Recommendations	10

Course Code: 15EARC401	Course Title: Industrial Data Networks	
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 50
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50		Duration of ESA: 3 hrs

Content	Hrs
Unit I	
Chapter No. 1. DATA NETWORK FUNDAMENTALS AND INDUSTRIAL ETHERNET Modern Instrumentation and Control Systems, Open Systems Interconnection (OSI) Model, EIA-232, EIA-485, Fiber Optics Overview, Local Area Networks (LANs), Metropolitan Area Networks (MANs), Wide Area Networks (WANs), Circuit Switching and Packet Switching, Network Topologies, Ethernet, Ethernet Topology, 10 Mbps Ethernet, 1 Gigabit Ethernet, Internetwork Connections Devices (Repeaters, Bridges, Hubs, Switches, Routers and Gateways)	8
Chapter No. 2. TCP/IP IP Version 4 (IPv4), IP Version 6 (IPv6), Address Resolution Protocol (ARP), Internet Control Message Protocol (ICMP), IP Routing, Transmission Control Protocol (TCP), User Datagram Protocol (UDP)	7
Chapter No. 3. MODBUS MODBUS: Protocol Structure, Function Codes	5
Unit II	
Chapter No. 4. FIELDBUS, PROFIBUS AND AS-INTERFACE FIELDBUS: Physical Layer, Data Link Layer and Application Layer of FOUNDATION Fieldbus PROFIBUS: PROFIBUS DP (Decentralized Periphery), PROFIBUS DP Communication Protocol, Application Profiles, PROFIBUS PA (Process Automation) AS-Interface: AS-Interface, Physical Layer, Data Link and Application Layer of the AS- Interface	7
Chapter No. 5. ETHERCAT, ETHERNET POWERLINK AND SERCOS III ETHERCAT: Architecture Model, Protocol, Topology, Distributed Clocks, Device Profiles, EtherCAT Master, EtherCAT Slave Ethernet POWERLINK: Slot Communication Network Management, Physical Layer, Data Link Layer, Transport and Application Layer of Ethernet POWERLINK, Ethernet POWERLINK Addressing, Frame Structures SERCOS III: OSI Layers of SERCOS III, Communication Cycle, Protocol Structure, Topology, Communication Network Infrastructure	8

Chapter No. 6. HART, BLUETOOTH AND OPC	5
HART: HART Protocol, Physical Layer, Data Link Layer and Application Layer of HART.	
BLUETOOTH: Protocol Stack, Topologies, Generic Data Transport Architecture, Basic	
Rate/Enhanced Data Rate (BR/EDR) Radio Operation, Low Energy (LE) Operation,	
Operational Procedures and Modes, Profiles	
OPC: Enterprise Integration, Manufacturing Execution Systems (MES), Process Analysis,	
Process Modeling, Data Modeling, Data Flow Diagrams (DFDs), Communication Patterns,	
Data Collection Technologies, OPC (OLE for Process Control)	
Unit III	
Chapter No. 7. CAN, CAN FD AND DEVICENET	5
CAN: Physical Layer, Data Link Layer and Application Layer of CAN, Protocol, Bus	
Arbitration, Frames, Bit Stuffing, Bit Synchronization, Bit Timing	
CAN FD: Physical Layer, Data Link Layer and Application Layer of CAN FD, Protocol,	
Frames	
DEVICENET: Physical Layer, Data Link Layer, Network and Transport Layers, and	
Application Layer of DeviceNet	
Chapter No. 8. FLEXRAY AND MOST	5
FLEXRAY: Topologies, Protocol, Media Access Control (Communication Cycle), Frame	
Format, Clock Synchronization	
MOST: OSI Layers for MOST, Data Frame, Timing Master, Timing Slave, MOST Devices	

Course Code: 15EARE401	Course Title: MeasurementSystems	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40 hours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40		Duration of ESA: 3 Hrs

Content	Hrs
Unit – 1	/
Chapter No. 1. Introduction to Measurement Systems Need for study of Measurement Systems, Classification of Types of Measurement Applications, Computer-Aided Machines and Processes, Functional Elements of an Instrument, Active and Passive Transducers, Analog And Digital Modes of Operation, Null and Deflection Methods, Input-Output Configuration of Instruments and Measurement Systems, Static Characteristics and Static Calibration, Dynamic Characteristics and Problems.	7hrs
Chapter No. 2. Motion Measurement Fundamental Standards, Relative Displacement: Translation and Rotational, Relative Velocity: Translation and Rotational, Relative-Acceleration Measurements, Seismic- Displacement Pickups, Seismic-Velocity Pickups, Seismic-Acceleration Pickups,Calibration and Vibration Pickups, Jerk Pickups, Problems.	4hrs
Chapter No. 3. Force, Torque, and Shaft Power Measurement Standards and Calibration, Basic Methods of Force Measurement, Characteristics of Elastic Force Transducers, Torque measurement on Rotating shaft, Shaft Power Measurement (Dynamometers), Vibrating Wire Force Transducers, Problems.	4hrs
Unit – 2	1
Chapter No. 4. Pressure & Sound Measurement Standards and Calibration, Basic Methods of Pressure Measurement, Deadweight Gages and Manometers, Elastic Transducers, Vibrating-Cylinder and Other Resonant Transducers, Dynamic Testing of Pressure-Measuring Systems, High-Pressure Measurement, Low- Pressure Measurement, Sound Measurement, Problems.	7hrs
Chapter No. 5. Flow and Temperature Measurement Local Flow Velocity, Magnitude and Direction, Gross Volume Flow Rate, Standards and Calibration of Temperature Measurement, Thermal-Expansion methods, Thermoelectric Sensors, Electrical-Resistance Sensors, Junction Semiconductor Sensors, Digital Thermometers, Radiation Methods, Problems.	5hrs
Chapter No. 6.Manipulation, Transmission, and Recording of Data Bridge Circuits, Amplifiers, Filters, Integration and Differentiation, Problems	3hrs

Unit – 3	
Chapter No. 7. Data Transmission and Instrument Connectivity	5 hrs
Cable Transmission of Analog Voltage and Current Signals, Cable Transmission of Digital Data, Fiber-Optic Data Transmission, Radio Telemetry, Pneumatic Transmission, Synchro Position Repeater Systems, Slip Rings and Rotary Transformers, Instrument Connectivity, Data Storage with Delayed Playback, Problems.	
Chapter No. 8. Voltage-Indicating and Recording Devices	5 hrs
Standards and Calibration, Analog Voltmeters and Potentiometers, Electrical Instruments,	
Digital Voltmeters and Multimeters, Signal Generation, Electromechanical XT and XY	
Recorders, Thermal-Array Recorders and Data Acquisition Systems, Analog and Digital	
Cathod-Ray Oscilloscopes/Displays and Liquid-Crystal Flat-Panel Displays, Displays, Virtual	
Instruments, Magnetic Tape and Disk Recorders/Reproducers, Fiber Optic Sensors.	

Course Code: 15EARE402	Course Title: Advanced Microcontrollers		
L-T-P : 3-0-0	Credits: 3	Contact Hrs: 40	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40		Duration of ESA: 3	hours
	Content		Hrs
	Unit - 1		
1.0. Introduction to ARM and ARM Architecture: Background, ARM cortex series portfolio, ARM program model, Instruction Set Development, The Thumb-2 Technology and Instruction SetArchitectural features, R profile, M profile and A Profile, ARM Cortex-M3 Processor :Peripheral Interfacing, Exceptions and Interrupts, Cortex-M3 Programming, Low power modes, Hardware Features, Debug Support, Application development with Cortex M3/M4 controllers using standard peripheral libraries.			7
2.0 Controllers in embedded system design : Low power architectures, High performance capabilities, Microcontroller power saving strategies, Tradeoff between High Performance and low power capabilities for embedded systems. Power/Energy Profiling of Microcontroller/Embedded systems. Applications		8	
Unit - 2			
3.0 MSP430 series Microcontroller devices: Unique architectural features, block diagram, Low power DNA, Addressing modes, Instruction set, Power down modes ,MSP430 Interrupts and Low Power, Digital Input-Output, On chip peripherals, Timers: Block diagram, Timer Modes, Timer Interrupts, Low Power Down Modes, Watchdog Timer			8
4.0 MSP430 Peripherals: Analog to Digital Convertors (ADC), Performance measures, Signal to Noise Ratio, ADC Architectural Block diagram, Timing and Triggering options, Low power and Interrupt operation. Digital to Analog Convertors: Architectural Block Diagram and Operation, Comparator Architecture and Operation, Special Function Registers, Hardware Multiplier: Operation, Registers, Direct Memory Access Controller (DMA and DMA Transfer Modes, Applications.		7	
Unit - 3			
5.0 Power/ Energy profiling: Profiling power operation Dynamic Voltage and Fr for low power in embedded MCU designeripheral power, battery life.	of ARM Cortex & MSP430 fa equency Scaling ,CPU power r gns: MCU power consumptio	mily devices, Low- nodes , Optimizing n, standby power,	5
6.0 Case studies: ARM cortexM3/M4 & M for application like biomedical system des applications etc.	SP430 microcontroller based ign, machine health monitorin	real-time solutions g, Energy metering	5

Cours	Course Code: 15EARE403 Course Title: Machine Learning			
L-T-P:	3- 0- 0	Credits:3	Contact Hrs: 40	
ISA M	arks: 50	ESA Marks: 50	Total Marks: 100	
Total	Teaching Hrs.: 40		Duration of ESA: 3 hrs	
		UNIT-I		
No		Content		Hrs
1	 Chapter 1: Introduction Machine Learning Applications, Learning Associations, Designing of learning system, perspectives & issues in machine learning, Concept learning task, concept learning search, Find-S: Finding a maximally specific hypotheses, version spaces & candidate elimination algorithm, Remarks - version spaces & candidate elimination algorithm, inductive bias Chapter 1: Introduction 			5 hrs
 Chapter 2: Decision Tree learning Representation, decision tree algorithm, hypotheses space search in decision tree algorithm inductive bias in decision tree algorithm, issues in DTL, Bayesian decision theory classification. 			5hrs	
3.	 Chapter 3: Computational Learning theory Motivation, Estimating hypotheses accuracy, Basics of sampling theory, general approach for deriving confidence intervals, difference in error of two hypotheses, comparing learning algorithm. Probably learning an approximately correct hypothesis, sample complexity for finite hypnosis spaces, sample complexity for infinite hypothesis spaces, instance based learning-K nearest neighbor learning, locally weighted regression 			5 hrs
UNIT-II				1
4.	Chapter 4: Artificial neural ne Feed forward neural networks neural network, the sample co neural networks,SGD and bac	twork 5, Learning neural netw 5 omplexity of neural net <-propogation.	ork ,the expressive power of works, the runtime of learning	5hrs
5	Chapter 5: Clustering Linkage–Based clustering algo clusterings,spectral clustering,	rithms-means and othe , high level view of clus	er cost minimization tering	5 hrs

6	Chapter 6:Kernel methods & Graphical models Embeddings into feature spaces, the kernel trick, Multiple kernel learning, Kernel dimensionality reduction, Implementating soft SVM with kernels, Canonical Cases for Conditional Independence, Example Graphical Models, Naive Bayes' Classifier, Hidden Markov Model, Linear Regression, d-Separation Belief Propagation	5hrs
	UNIT-III	
7	Chapter 7:Reinforcement Learning The learning task,Q-learning,Nondeterministic rewards & actions, temporal difference learning, generalizing from examples, relationship to dynamic programming.	5 hrs
8	Chapter 8:Design and Analysis of Machine Learning Experiments Factors, Response, and Strategy of Experimentation, Response Surface Design, Randomization, Guidelines for Machine Learning Experiments, Cross-Validation and Re sampling Methods, Measuring Classifier Performance, Interval Estimation, Hypothesis Testing, Assessing a Classification Algorithm's Performance, Comparing Two Classification Algorithms, Comparison over Multiple Datasets.	5hrs

Course Code: 15EARE404		Course Title: Design of Autor	matic Machinery	ninery			
L-T-P-SS:3-0-0-0		Credits: 3	Contact Hrs: 40	0			
ISA N	ISA Marks: 50 ESA Marks: 50 Total Marks: 10						
Теас	Teaching Hrs: 40 Exam Duration:						
	U	NIT – I	1				
No	Con	tent		Hrs			
1	Chapter 1: Introduction and Steps to Automation What is Automation, AnAutomation design process, examples of automation, problems and project assignments? Justifying Automation Traditional Project Cost Justification for a Purchase, Traditional Costing Estimating for Building and Selling Automation, Win–Win Purchasing Philosophy, Maximum Profit Cost Estimating for Building and Selling Automation, Justifying Flexible Automation over Hard Automation Intellectual Property, Patents, and Trade Secrets.			6			
2	Chapter 2: The Automation Design Process System Specifications, Brainstorming, Machine Classification by Function, Machine Classification by Transfer Method, Machine Configuration Trade-offs Mechanisms Toolbox, TBBL Automation Project and Conclusions, Case Study Number 1: Case Opening, Case Study Number 2: Label Insertion and Printing, Case Study Number 3: Crossed Four- Bar BMC Unloader.			4			
3	 Chapter 3: Workstations Workstation Basics, Drive Mechanisms, Case Study Number 1: TBBL Workstation Design Case Study Number 2: Automated Screwdriver Workstation Design, Machine Design Safety. 		station Design, ine Design and	5			

Feeders

Feeders, Automatic Feeding and Orienting — Vibratory Feeders, Escapement Feeders, Vibratory Bowl Feeder, Centripetal Feeder, Flexible Feeders, Gravity Feed Tracks, Powered Feed Tracks, Escapements, Parts-Placing Mechanisms, Assembly Robots, Case Study Number 1: Dropping Cookies, Case Study Number 2: Feeding of TBBL Cases.

	UNIT – II	
4	Chapter 4: Conveyors Flat Belt Conveyors, Tabletop Chain Conveyor, Belt Conveyors, Static (Gravity) Conveyors, Powered Conveyors, Heavy Unit Load Handling Conveyors, Case Study Number 3: Donut Loader Machine.	3
5	Chapter 5: Single Station Manufacturing Cells Single station manned cells, single station automated cells, applications of single station cells, analysis of single station systems. Manual Assembly Lines Fundamentals of manual assembly lines, Analysis of single model assembly lines, Line balancing algorithms, Mixed model assembly lines, Workstation considerations, Other considerations in assembly line design, Alternative assembly systems. Automated Product Lines Fundamentals of automated product lines, applications of automated product lines, Analysis of transfer lines.	6
6	Chapter 6: Automated Assembly Systems Fundamentals of automated assembly systems, Quantitative analysis of assembly systems. Cellular Manufacturing Part families, part classification and coding, product flow analysis, cellular manufacturing, applications of group technology, quantitative analysis in cellular manufacturing. Flexible Manufacturing Systems	6

Introduction to flexible manufacturing system, flexible manufacturing systems components, flexible manufacturing systems applications and benefits, flexible manufacturing system planning and implementation issues, quantitative analysis of flexible manufacturing systems.

UNIT - III **Chapter 7: System Specifications** Expectations, Other Problems Beyond Specifications, Example 1: Bulk Mail Carrier (BMC) 7 5 Unloader, Specifications, Design Specifications, Comments, Request for Quote, Example 2: BMC Unloader Bid Award Package. **Chapter 8: Packaging Machines** 8 Liquid Filling Machines, Cartoning and Boxes, Labeling, Cases, Palletizing, FormingPouche, 5 Blister Packs and Bags. TEXT BOOKS: Stephen J. Derby., "Design of Automatic Machinery", 2005 1. Patrick M. McGuire, P.E., "Conveyors", CRC Press, 2010. 2.

REFERENCE:

3. Geoffrey Boothroyd., "Assembly Automation and Product Design", Taylor & Francis Group, CRC Press, 2005.

Course Code:15EARO401	e Code:15EARO401 CourseTitle:HomeandBuildingAutomation			
L-T-P:3-0-0	-0-0 Credits:3 ContactHrs:40			
ISAMarks:50	ESAMarks:50	TotalMarks:100		
TeachingHrs:50		ExamDuration:3hrs		
Cor	nten t		Hrs	
Un	iit- 1			
CHAPTERNO.1.INTRODUCTIONConceptandapplic omation, requirements and design considerations a efficiency of building automation system, architector	ationofBuildingManageme nditseffectonfunctional ureandcomponentsofBMS.	nt System (BMS) and Aut	5hrs	
CHAPTERNO.2.FIREALARMSYSTEMFUNDAMENTALS: What is Fire? Fire modes, History, Components, and Principles of Operation. FAS Components:Different fire sensors, smoke detectors and their types, Fire control panels, design considerations forthe FA system. Field Components, Panel Components, Applications. FAS Architectures: Types ofArchitectures,Examples.FASloops:Classificationofloops,Examples.FireStandards:FASDesignproce dureinbrief,NFPA72A,BS5839,ISConceptofIPenabledfire&alarmsystem,designaspects				
CHAPTER NO. 3. ACCESS CONTROL SYSTEM: Access Components, Access control systemDesign. CCTV: Camera: Operation & types, Camera Selection Criteria, Camera Applications, DVRBasedsystem,DVM,Networkdesign,Storagedesign.ComponentsofCCTVsystemlikecameras, typesoflapses typicaltypesofcables controllingsystem CCTVApplications; CCTVApplications				
Unit-2				
CHAPTER NO. 4. SECURITY SYSTEMS FUNDAMENTALS: Introduction to Security Systems, Concepts. Perimeter Intrusion: Concept, Components, Technology, Advanced Applications. Sec urity Design: Security system design for verticals. Concept of automation in access control system forsafety, Physical security systemwith components, RFIDenabled access control with components, Computer system access control – DAC, MAC, RBAC.				
CHAPTERNO.5.LIGHTING-CONTROLSYSTEMS Purposeoflighting-controlsystems,Basiccomponentsoflightingandlighting- controlsystems,Systemsbasedonstandardlighting- controlprotocols,Systemsbasedoncommonautomation protocols,Strategiesforenergymanagementandlightingcontrol				
CHAPTERNO.6.Processcontrol,PIDandadaptivecontrolw.r.t automationsystem Closedcontrolloops,Proportionalcontrol,Integralcontrol,Derivativecontrol,Proportional,integraland derivative functions, Tuning of PID control loops, Digital PID and direct digital control (DDC),Introductionto adaptive control				

Unit-3	
CHAPTERNO.7.BUILDINGMANAGEMENTSYSTEM:IBMS(HVAC,Fire&Security)project cycle,ProjectstepsBMS.Verticals:Advantages&ApplicationsofBMS,ExamplesIntegration:IBMSArchite cture, Normal&Emergencyoperation.Advantages ofBMS	5hrs
CHAPTERNO.8.PRACTICALAUTOMATIONSYSTEM: Designconsideration of Automationsystem, Rapsber ryPi, PLC, IoTbased systems.	5hrs

Semester: V	Laboratory Plan	FMTH0303-3.3 Year: 2018-19
Laboratory Title:	Project	Lab Code: 17EARW401
Total Hours: 30		Duration of Exam: 3 Hrs
Total ESA Marks:	5 0	Total ISA. Marks: 50
Lab. Plan Author:	Rakesh Tapaskar	Date: 29 /12/2018
Checked By: Arur	C Giriyapur	Date: 29 /12/2018

Prerequisites:

Subjects learnt up to VI semester.

Course Outcomes-CO

At the end of the course student will be able to:

- 1. Carry out market survey, do need analysis and identify suitable problems.
- 2. Write a project proposal which will involve developing a complete solution for the identified problem from the real world.
- 3. Apply the principles of engineering design to plan and manage the project.
- 4. Apply suitable design processes and develop the best possible solution.
- 5. Develop proof of concepts and models for verification.
- 6. Prepare production drawings, bill of materials and process plans.

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Program outcomes (PO)

Laboratory (Course) Title: Project Laboratory (Course) code: 15EARW401Semester: VIII Year: 2018-19

Course Outcomes (CO) / Program		1	2	3	4	5	6	7	8	9	10	11	12	13	14
	Outcomes (PO)														
1.	Carry out market survey, do need														
	analysis and identify suitable														
	problems.														
2.	Write a project proposal which will														
	involve developing a complete														
	solution for the identified problem														
	from the real world.														
3.	Apply the principles of engineering														
	design to plan and manage the														
	project.														
4.	Apply suitable design processes														
	and develop the best possible														
	solution.														
5.	Develop proof of concepts and														
	models for verification.														
6.	Prepare production drawings, bill														
	of materials and process plans.														

Degree of compliance L: Low M: Medium H: High

Design Process

Combination of V-model and project plan

Experiment wise plan

2. List of activities planned to meet the requirements of the syllabus

Week No	Activities	Deliverables	CIE Marks out
			of 50
1&2	Need analysis, Problem identification and market survey	Project proposal	10
3&4	Project management	Project plan, gantt chart, WBS, Budget	10
5,6,7&8	Engineering design	Component designs & Integration, Proof of concept, modeling and simulation (hardware and software)	20
9&10	Detailed design	Bill of materials, production drawings	10

Laboratory Plan

Semester: VIII	Year: 2019-20
Course Title: Internship - Training	Course Code: 18EARI493
Total Contact hrs: 50	Duration of ESA: 3 hrs
ISA Marks: 50	ESA Marks: 50

Prerequisites:

Course Outcomes (COs):

Upon completion of an internship, students will be able to demonstrate the following outcomes:

- 1. Gain knowledge to real-world challenges in an industry environment.
- 2. Engage in responsible conduct while working as an intern and allow decisions to be informed by a value-centered life.
- 3. Understanding an organization by proper insight into their structure, processes and functions.
- 4. Able to assimilate new technical knowledge, and integrate the same with the existing technical knowledge for industrial application.
- 5. Understanding of lifelong learning processes through critical reflection of internship experiences.
- 6. Enhance his/her verbal and written communication, and different modes of communication.

	Laboratory Plan	FMTH0303-3.1			
Semester: VIII		Year: 2019-20			
Laboratory Titl	e: Internship - Project	Lab. Code: 18EARW494			
Total Hours: 80)	Duration of Exam: 3 hrs			
Total ESA Mark	rs: 80	Total ISA. Marks: 20			

Preamble:

The aim of this project work is to enable students to develop their engineering skills and practice by coworking with industry mentors on an industry relevant problem.

Course Outcomes (COs)

At the end of the course, students will be able to:

- 1. Generate and evaluate different alternative solutions
- 2. Formulate a detailed solution plan to solve the given problem.
- 3. Identify and employ tools that help to arrive at solutions
- 4. Understand and adhere to various standards, legislation and regulations
- 5. Distribute the work load based on competences among team members and integrate the various components of the solution
- 6. Adhere to promised deliverable, including bill of material, production drawings, manufacturing of components, assembly, and so forth.

Course Content

Course Code: 16EARE403	Course Title: Machine learning and ROS		
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40		Exam Duration : 3 hours	

Content			
UNIT – 1			
Chapter 1:Introduction to Robot operating system ROS concepts, creating ROS packages writing a minimal ROS publisher, compiling ROS nodes, running ROS nodes, examining running minimal publisher node, scheduling node timing, writing a minimal ROS subscribercompiling and running minimal subscriber, minimal subscriber and publisher node summary writing ROS nodes more ROS tools: catkin simple, ROSlaunch, simplifying cmakelists.txt with catkin simple automating starting multiple nodes viewing output in a ROS console recording and playing back data with ROSbag.	5 hrs		
Chapter 2:Messages, Classes and Servers in ROS Defining custom messages, ROS services- service messages, ROS service nodes, manual interaction with ROS services, example ROS service client, running, example service and client, using C++ classes in ROS creating library modules in ROS, introduction to action servers and action clients- creating an action server package, defining custom action-server messages, designing an action client running the example code, introduction to parameter server.			
Chapter 3: Introduction to machine learning Introduction Machine Learning ,Well posed learning problem, Types of learning, supervised learning ,unsupervised learning and reinforcement learning, Learning Associations, Designing of learning system, perspectives & issues in machine learning, Concept learning task, concept learning search, Find-S: Finding a maximally specific hypotheses, version spaces & candidate elimination algorithm, Remarks - version spaces & candidate elimination algorithm, inductive bias.			
UNIT – 2			
Chapter 4: Computational learning theory and decision tree learning Motivation, Estimating hypotheses accuracy, Basics of sampling theory, general approach for deriving confidence intervals, comparing learning algorithm. Probably learning an approximately correct hypothesis, sample complexity for finite hypothesis spaces, sample complexity for infinite hypothesis spaces, instance based learning-K nearest neighbor	8hrs		

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge ______ DEPARTMENT OF AUTOMATION & ROBOTICS

learning, locally weighted regression, Representation, decision tree algorithm, hypotheses space search in decision tree algorithm inductive bias in decision tree algorithm, issues in DTL, Bayesian decision theory classification.

7hrs

Chapter 5:Kernel methods and Graphical models Embedding's into feature spaces, the kernel trick, Multiple kernel learning, Kernel dimensionality reduction Canonical Cases for Conditional Independence, Example Graphical Models, Naive Bayes' Classifier, Hidden Markov Model, Linear Regression, d-Separation Belief Propagation, Linkage–Based clustering algorithms-means and other cost minimization clustering.

UNIT – 3

UNIT – 3	
Chapter 6:Reinforcement Learning	5 hrs
The learning task,Q-learning,Nondeterministic rewards & actions, temporal difference learning, generalizing from examples, relationship to dynamic programming.	
Chapter 7: Artificial neural network	5hrs
Biological motivation, neural network representations, and appropriate problems for neural network learning, perceptron's, multilayer networks and the back propagation, algorithm, an illustrative example: face recognition	
	1

Course Content

CourseCode:17EARE301	Course Title: Artificial Intelligence For Autonomous Systems				
L-T-P:3-0-0	Credits:3	ContactHrs:40			
ISAMarks:50	ESAMarks:50	TotalMarks: 100			
TeachingHrs:40		ExamDuration:3hours			
Content Hours			Hours		
	UNIT-1				
Chapter1:IntroductiontoArtificialintelligenceand autonomoussystemsFoundationofartificialintelligence,roboticsandtheAlapproach,Semi- autonomouscontrol,SevenareasofAl,TheConceptofRationalityTheNatureofEnvironments, TheStructure of Agents,Problem-SolvingAgents,Searching forSolutions, UninformedSearchStrategies,InformedSearchStrategies,KnowledgerepresentationinAl,knowledge				5hrs 5hrs.	
Subsumptionarchitecture, Three-layerarchitecture, Pipelinearchitecture, HierarchicalParadigm- AttributesoftheHierarchicalParadigm, ReactiveParadigm- AttributesofReactiveParadigm, HybridDeliberative/ReactiveParadigm- AttributesofHybridParadigm, ArchitecturalAspects, ManagerialArchitectures- AutonomousRobotArchitecture(AuRA), SensorFusionEffects(SFX), State- HierarchyArchitectures, Model-					
Chapter 3: Biological Foundations of the Reactive Paradigm Agency and computational theory, Animal Behaviors, Reflexive behaviors , Coordination and Control of Behaviors, Innate releasing mechanisms, Concurrent behaviors, Perception nin Behaviors, Action- perception cycle, Two functions of perception Gibson: Ecological approach, Neisser: Two perceptual syst ems, Schema Theory, Behaviors and schema theory, Principles and Issues in Transferring Insights to Robo				5hrs	
UNIT–2					
Chapter4:Capturingintelligence- Designingareactiveimplementationwithcommonsensingtechniquesforroboticsperception Behaviors asObjects inDesigningaReactiveBehavioralSystem,CaseStudy:UnmannedGroundRoboticsCompetition,Assem blagesofBehaviors,Logicalsensors,BehavioralSensorFusion,DesigningaSensorSuite,ProprioceptiveS ensors,ProximitySensors,ComputerVision,RangefromVision,CaseStudy:Horsd'Oeuvres,Anyone?			8hrs		
Chapter5: Multi-agentsandnavigation inrobotics Heterogeneity,Control,Cooperation,EmergentSocialBehavior,TopologicalPathPlanning,RelationalM ethods,AssociativeMethods,CaseStudyofTopologicalNavigationwithaHybridArchitecture				7hrs	

UNIT–3		
Chapter6:LocalizationandMapMaking		
SonarSensorModel,Bayesian,Conditionalprobabilities,Conditionalprobabilities,UpdatingwithBayes'ru le,Dempster-		
ShaferTheory, Shaferbelieffunctions Belieffunction for sonar Dempster's rule of combination Weight of conflict metric, HIMM sonar model and Comparison of Methods, Example computations, Performance Errors due to observations from stationary robot, Tuning, Localization, Continuous localization and mapping, Feat ure-based localization Exploration, Frontier-based exploration, Generalized Voronoigraphmethods.		
Chapter7: Deeplearningandnaturallanguageprocessing	4hrs	
DeepLearningImprovementoftheDeepNeuralNetworkVanishingGradientOverfittingComputationalLo ad.Languagemodels, textclassification, information retrieval		