

Course Title: Principles and Practices of Engineering Education		Course Code: 15ECRC701
L-T-P: 2-0-1	Credits: 3	Contact Hours: 3
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200
Teaching Hours: 40	Examination Duration: 3 hrs	
2. Learning Styles and The	dels and Technology Enhanced Learning tion	8 Hours 8 Hours 8 Hours 8 Hours 8 Hours
Text Books		I
Reference Books:		

	-		
Course Title: Data Structures using CCourse Code: 17EV		Course Code: 17EVE	EC701
L-T-P: 0-0-1 Credits: 1 Contact Hours: 2			
SA Marks: 80ESA Marks: 20Total Marks: 100			
Teaching Hours: 25	Examination Duration: 3 hrs		
structures, Pointers to structures Chapter 02:Stacks and Queues Definition, Representation and A applications of linear, circular, que Chapter 03:Lists Linked lists, singly, doubly, circul operations, applications – polyno Linked Queues Chapter 04:Trees	pplications of stack. Definitions, replications, multiple queues, priority queu ar lists, definitions, representations. omial addition, addition of long integen sals (recursive and iterative versions s, Trees and their applications	and bit fields, Files. resentation and le. Recursion Implementation of list ers. Linked stacks,	5 Hrs 5 Hrs 5 Hrs
Text Book			5 Hrs

- 4. Programming on stacks data structures
- 5. Programs on implementation of different queue data structures.
- 6. Programs on implementation of different types of Linked lists
- 7. Programs on Implementation of trees
- 8. Programs to implement different sorting techniques.
- 9. Programming on graph
- **10.** Programming on hashing tables
- 11. Design and implement stack queue data structures
- 12. Design and implement linked list data structures
- 13. project

Course Title: Analog and Digita	al Circuits	Course Code: 17EVEC702	
-T-P: 2-0-1	Credits: 3	Contact Hours: 4	
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200	
Teaching Hours:	Examination Duration: 3 h	rs	
MOSFET single-and multi-stage applications. <u>Digital Circuits</u> Combinational Circuits: Ac Sequential Circuits: Latches, Asynchronous counters. <u>Conventional control systems</u> criterion. <u>Tools: Simulink, MATLAB, Pr</u> <u>Reference Books:</u> 1. A.S. Sedra & K.C. Smith, Mid 2. Jacob Millman and Christos 3. John M Yarbrough, Digital Lo 4. David A. Bell, Electronic Dev 5. Grey, Hurst, Lewis and Meye 6. Charles H Roth, Jr; Fundame 7. Zvi Kohavi, Switching and Fi 8. Ogata, Modern Cont <u>Lab:</u>	s. Diode circuits: clipping, clamping, amplifiers, Feedback amplifier, Osci der, encoder & decoder, Flip Flops, Shift Registers, Desi : R-H Stability criterion, Root locus, oteus, Pspics, Cadence, LabView croelectronic Circuits, 5th Edition, O: Halkias, Integrated Electronics, McG ogic Applications and Design, Thoms ices and Circuits, 4th edition, PHI pre- r, Analysis and design of analog int entals of Logic Design, Thomson Lea	Ilator, Op-amp linear & non linear MUX& DEMUX, Comparator. ign of Synchronous counters and Bode plots and Nyquist stability 8 H Microcap, OrCAD Aford Univ. Press, 1999 Graw Hill, son Learning, 2001 ublication, 2007 egrated circuits, 4th edition.	łrs
 Implement the RLC circuit to Design an Amplifier using M4 To implement an amplifier wi impedance; output impedance Study of transformer-less Cla efficiency Design an amplifier for an un techniques to increase the in <u>Digital Circuits lab</u> Design and implement BCD Design and implement n bit r Design and implement Ring Design and implement 8 bit A 	DSFET and determine its gain, input th negative feedback & show the eff e & gain of the amplifier using MOS ass B push pull power amplifier and ity gain and high input impedance u put impedance and verify the same adder and Subtractor using 4 bit par nagnitude comparator using 4- bit ca and Johnson counter using shift reg	& output impedance. ect of negative feedback on input FET. determination of its conversion sing MOSFET. Suggest suitable allel adder omparators ister.	

Program: I Semester Master of Technology (VLSI Design & Embedded Systems)		Teaching
Course Title: Principle of Embedded Systems	Course Code: 17EVEC703	Hours

	-P: 0-0-2	Credits: 2	Contact Hours: 4 Hrs/week	
ISA	Marks: 80	ESA Marks: 20	Total Marks: 100	
Теа	ching Hours: 42 Hrs	Examination Duration: 3 hrs		
Intr Sys		of Embedded System, Major	Application Areas, Purpose of Embedded Systems, Design Metric and Optimizing the	06 Hrs
Core 805 ⁻		-processor fundamentals, up vs and programmer model, Mem	s uc, risc vs cisc, vonneumann vs Harvard, ory, Sensor and Actuators, Communication	08 Hrs
Add	3. Low Level program ressing Modes, Instructi Debugging ALP's	• •	e programming(ALP), Developing, Building,	08 Hrs
Cros		• •	rogramming, & debugging, Differences from meter passing and return types	02 Hrs
	5. On-Chip Periphera	s Study, Programming, and A	pplication:	
	s: Input/Output, Timers &	& Counters, UART, Interrupts		08 Hrs
Port	• • •			08 Hrs
Port LED Inter	6. External Interfaces DS, Switches(Momentary	& Counters, UART, Interrupts Study, Programming and App type, Toggle type), Seven Se rnal Multiplexing), LCD (8bit, 4b		08 Hrs 10 Hrs
Port LED Inter Key	6. External Interfaces OS, Switches(Momentary rnal Multiplexing & Exte	& Counters, UART, Interrupts Study, Programming and App type, Toggle type), Seven Se rnal Multiplexing), LCD (8bit, 4b	blications : gment Display: (Normal mode, BCD mode,	
Port LED Inter Key	6. External Interfaces OS, Switches(Momentary rnal Multiplexing & Exte pad Matrix, Stepper Mote t Books	& Counters, UART, Interrupts Study, Programming and App type, Toggle type), Seven Se rnal Multiplexing), LCD (8bit, 4b	blications : gment Display: (Normal mode, BCD mode,	
Port LED Inter Key Tex 1. 2.	6. External Interfaces DS, Switches(Momentary rnal Multiplexing & Exte pad Matrix, Stepper Mote t Books Introduction to Embedde	& Counters, UART, Interrupts Study, Programming and App type, Toggle type), Seven Se rnal Multiplexing), LCD (8bit, 4b pr, DC Motor ed Systems 1E by Shibu K V. 8051 Microcontroller Architecture	blications : gment Display: (Normal mode, BCD mode,	10 Hrs
Port LED Inter Key Tex 1. 2. 3.	6. External Interfaces DS, Switches(Momentary rnal Multiplexing & Exte pad Matrix, Stepper Mote t Books Introduction to Embedde Kenneth J. Ayala ; "The 1996 / Thomson Learnin Muhammad Ali Mazidi a	& Counters, UART, Interrupts Study, Programming and App r type, Toggle type), Seven Se rnal Multiplexing), LCD (8bit, 4b or, DC Motor ed Systems 1E by Shibu K V. 8051 Microcontroller Architecture g 2005	blications : gment Display: (Normal mode, BCD mode, oit, Busy flag, custom character generation), e, Programming & Applications" 2e, Penram In Rollin D. McKinlay; "The 8051 Microcontroller a	10 Hrs
LED Inter Key 1. 2. 3.	6. External Interfaces DS, Switches(Momentary rnal Multiplexing & Exte pad Matrix, Stepper Mote t Books Introduction to Embedde Kenneth J. Ayala ; "The 1996 / Thomson Learnin Muhammad Ali Mazidi a	& Counters, UART, Interrupts Study, Programming and App r type, Toggle type), Seven Se rnal Multiplexing), LCD (8bit, 4t br, DC Motor ed Systems 1E by Shibu K V. 8051 Microcontroller Architecture g 2005 nd Janice Gillespie Mazidi and F	blications : gment Display: (Normal mode, BCD mode, oit, Busy flag, custom character generation), e, Programming & Applications" 2e, Penram In Rollin D. McKinlay; "The 8051 Microcontroller a	10 Hrs
Port LED Inter Key Tex 1. 2. 3. Refe	6. External Interfaces OS, Switches(Momentary rnal Multiplexing & Exte pad Matrix, Stepper Moto t Books Introduction to Embedde Kenneth J. Ayala ; "The 1996 / Thomson Learnin Muhammad Ali Mazidi a Embedded Systems – u erences	& Counters, UART, Interrupts Study, Programming and App r type, Toggle type), Seven Se rnal Multiplexing), LCD (8bit, 4k br, DC Motor ed Systems 1E by Shibu K V. 8051 Microcontroller Architecture g 2005 nd Janice Gillespie Mazidi and F sing assembly and C "- PHI, 200	blications : gment Display: (Normal mode, BCD mode, oit, Busy flag, custom character generation), e, Programming & Applications" 2e, Penram In Rollin D. McKinlay; "The 8051 Microcontroller a	10 Hrs
Port LED Inter Key 1. 2. 3. Refe	6. External Interfaces DS, Switches(Momentary rnal Multiplexing & Exte pad Matrix, Stepper Mote t Books Introduction to Embedded Kenneth J. Ayala ; "The 1996 / Thomson Learnin Muhammad Ali Mazidi a Embedded Systems – u erences Embedded System Desi Sons, Inc.2002	& Counters, UART, Interrupts Study, Programming and App r type, Toggle type), Seven Se rnal Multiplexing), LCD (8bit, 4k br, DC Motor ed Systems 1E by Shibu K V. 8051 Microcontroller Architecture g 2005 nd Janice Gillespie Mazidi and F sing assembly and C "- PHI, 200	blications : gment Display: (Normal mode, BCD mode, bit, Busy flag, custom character generation), e, Programming & Applications" 2e, Penram In Rollin D. McKinlay; "The 8051 Microcontroller a 06 / Pearson, 2006 e Introduction – Frank Vahid, Tony Givargis, J	10 Hrs

3. Raj Kamal, "Microcontrollers: Architecture, Programming, Interfacing and System Design", Pearson Education, 2005

Frogram. i Semester Mas	ter of Technology (VLSI Desig	n & Embedded Systems)	Teaching
Course Title: RISC Archite	ectures	Course Code: 17EVEC705	Hours
L-T-P: 3-0-1	Credits: 4	Contact Hours: 3 Hrs/week	
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200	
Teaching Hours: 46 Hrs	Examination Duration:		
	, Architectural inheritance, Arch	itecture of ARM7TDMI, ARM programmers anization, ARM instruction execution.	06 Hrs
Program status register in The Thumb programmer m	n, Branch instruction, Load store struction, Conditional execution odel, ARM-Thumb interworking, e register load store instruct	e instruction, Software interrupt instruction, , Example programs, 16bit Instruction set- other branch instructions, Data processing ion, Stack operation, Software interrupt	06 Hrs
	ng:	tion sequence, the vector table, Exception eptions.	04 Hrs
Introduction, Interrupts, err handlers, Exception prioritie 4. Memory Hierarchy	ng: for conditions, processor excep es, Procedures for handling exce / Design:		04 Hrs 06 Hrs
Introduction, Interrupts, err handlers, Exception prioritie 4. Memory Hierarchy Cache basics, Miss rate an 5. Pipelining: Linear pipeline processor, techniques, Arithmetic pip	ng: for conditions, processor exceptes, Procedures for handling exceptes, Procedures for handling excepted / Design: d penalty, Cache Hierarchy, Mer Nonlinear pipeline processor, Ir eline design, Computer arithm	eptions.	
Introduction, Interrupts, err handlers, Exception prioritie 4. Memory Hierarchy Cache basics, Miss rate an 5. Pipelining: Linear pipeline processor, techniques, Arithmetic pip	ng: for conditions, processor exceptes, Procedures for handling exceptes, Procedures for handling excepted / Design: d penalty, Cache Hierarchy, Mer Nonlinear pipeline processor, Ir eline design, Computer arithm	eptions. mory Organizations, Memory Hierarchy. nstruction pipeline design, Branch handling	06 Hrs
Introduction, Interrupts, err handlers, Exception prioritie 4. Memory Hierarchy Cache basics, Miss rate an 5. Pipelining: Linear pipeline processor, techniques, Arithmetic pip Multifunctional arithmetic pi 6. Cortex M4 : Functional description, pr	ng: for conditions, processor exceptes, Procedures for handling exceptes, Procedures for handling excepted / Design: d penalty, Cache Hierarchy, Men Nonlinear pipeline processor, Ir eline design, Computer arithm peline.	eptions. mory Organizations, Memory Hierarchy. nstruction pipeline design, Branch handling	06 Hrs
Introduction, Interrupts, err handlers, Exception prioritie 4. Memory Hierarchy Cache basics, Miss rate an 5. Pipelining: Linear pipeline processor, techniques, Arithmetic pip Multifunctional arithmetic pi 6. Cortex M4 : Functional description, pr	ng: for conditions, processor exceptes, Procedures for handling exceptes, Procedures for handling excepted / Design: d penalty, Cache Hierarchy, Mer Nonlinear pipeline processor, Ir eline design, Computer arithm peline.	eptions. mory Organizations, Memory Hierarchy. nstruction pipeline design, Branch handling netic principles, Static arithmetic pipeline,	06 Hrs 08 Hrs
Introduction, Interrupts, err handlers, Exception prioritie 4. Memory Hierarchy Cache basics, Miss rate an 5. Pipelining: Linear pipeline processor, techniques, Arithmetic pip Multifunctional arithmetic pi 6. Cortex M4 : Functional description, pricontroller. 7. Multi-Core Archite Introduction to Intel Archite	ng: for conditions, processor exceptes, Procedures for handling exce / Design: d penalty, Cache Hierarchy, Mer Nonlinear pipeline processor, In eline design, Computer arithm peline. ogrammer's model, memory p	eptions. mory Organizations, Memory Hierarchy. Instruction pipeline design, Branch handling netic principles, Static arithmetic pipeline, protection unit, nested vectored interrupt	06 Hrs 08 Hrs
Introduction, Interrupts, err handlers, Exception prioritie 4. Memory Hierarchy Cache basics, Miss rate an 5. Pipelining: Linear pipeline processor, techniques, Arithmetic pip Multifunctional arithmetic pi 6. Cortex M4 : Functional description, pro- controller. 7. Multi-Core Archite Introduction to Intel Archite Intel Core 2 Duo Processor	ng: for conditions, processor exceptes, Procedures for handling exceptes, Procedures for handling excepted / Design: d penalty, Cache Hierarchy, Mer Nonlinear pipeline processor, In eline design, Computer arithm peline. ogrammer's model, memory p ectures : ecture, How an Intel Architecture	eptions. mory Organizations, Memory Hierarchy. Instruction pipeline design, Branch handling netic principles, Static arithmetic pipeline, protection unit, nested vectored interrupt e System works, Basic Components of the I/O Controller.	06 Hrs 08 Hrs 06 Hrs

- 1. "ARM System- on-Chip Architecture" by 'Steve Furber', LPE, Second Edition.
- 2. "ARM Assembly Language fundamentals and Techniques" by William Hohl, CRC press, 2009.
- 3. D. A. Patterson and J. L. Hennessey "Computer Organization and Design", Morgan , Kaufmann, 2002
- 4. H. Jonathan Chao and Bin Liu, "High performance switches & routers", Wiley Interscience, 2007.
- 5. Kai Hwang, "Advanced Computer Architecture TMH 1993
- 6. Web resources for Example Architectures of INTEL and Texas Instruments: http://download.intel.com/design/intarch/papers/321087.pdf

References

- 1. Kai Hwang, Faye A. Briggs, Computers Architecture and Parallel Processing MGH 1985
- 2. David E Culler, Jaswinder Pal Singh, Anoop Gupta "Parallel Computer Architecture", Harcourt Asia Pte Ltd 2000
- 3. Stalling W." Computer Organization and Architecture- Designing for performance" PHI,2005
- 4. D. Sima, T. Fountain, P.Kasuk," Advanced Computer Architecture-A Design Space Approach" Addisson Wesley, 1997.
- 5. M. J. Flynn,"Computer Architecture, Pipelined And Parallel Processing", Narosa Publications, 1998.

List of Experiments:

- 1. Write an ALP to verify data transfer w.r.t memory to achieve following
 - i. 8 bit data transfer
 - ii. 16 bit data transfer
 - iii. 32 bit data transfer
- 2. Write an ALP for Tables and lists to do following:
 - i. Add an entry to a list
- ii. Remove an element from the queue
- 3. Write an ALP to pass parameters to a subroutine.
 - i. Ascending order
 - ii. Descending order
- 4. Write a 'C' program & demonstrate an interfacing of Alphanumeric LCD 2X16 panel to LPC2148Microcontroller
- 5. Write a 'C' program & demonstrate concept of Interrupts interface to LPC2148 Microcontroller.
- 6. Write a 'C' program & demonstrate an interfacing of DAC to LPC2148 Microcontroller.
- 7. Write a 'C' program & demonstrate an interfacing of UART to LPC2148 Microcontroller.
- 8. Write a 'C' program & demonstrate an interfacing of ADC to LPC2148 Microcontroller.
- 9. Write a 'C' program & demonstrate an interfacing of RTC to LPC2148 and read time, date and year.
- 10. Write a 'C' program & demonstrate interface I2C to LPC2148
- 11. Develop a code for college bell system. (Use the following interfaces LCD, RTC and Buzzer).

Reference Books

- 1. "ARM System- on-Chip Architecture" by 'Steve Furber", LPE, Second Edition.
- 2. "Embedded Systems- Architecture, Programming and Design" by Raj Kamal, TMH
- Dr. K.V.K.K. Prasad, "Embedded/Real-time systems: concepts, Design & Programming", published by dreamtech press.

Manual

- 1. LPC2148 datasheet by NXP.
- 2. LPC2148 board manual by ALS, Bangalore.

Program: Digital Electronics		Teaching
Course Title: Electronic System Design	Course Code: 17EVEC707	Hours

A Marks:		
A marks.	Total Marks: 100	
amination Duration:		
evel specifications, Timing of m	icro architecture, Verification and test	05 Hrs
n, Signal Integrity		05 Hrs
ponent pre planning, PCB print	ing- 2 layer	05 Hrs
Functionality and performance check, Failure analysis, Validation and system integration		05 Hrs
		05 Hrs
ר ר ו	evel specifications, Timing of m n, Signal Integrity ponent pre planning, PCB print	evel specifications, Timing of micro architecture, Verification and test a, Signal Integrity aponent pre planning, PCB printing- 2 layer

References

1. A. S Sedra and KC Smith, Microelectronic circuits, Oxford, 1998.

2. G.L. Ginsberg, Printed Circuit Design, McGraw Hill, 1991.

Program: VLSI Design & Em	bedded Systems		
Course Title: Automotive El	ectronics	Course Code: 17EVE	EC708
L-T-P: 3-0-1	Credits: 4	Contact Hours: 5	
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200	
Teaching Hours: 40	Examination Duration: 3 hrs		
Chapter No. 1. Automotive F	Fundamentals Overview		8Hrs
classifications and specification electronics in the automobiles	Industry and Modern Automotiv ons need for electronics in automobiles Four Stroke Cycle, Engine Control, I Ignition Timing, Drive Train, Transmis	s, Application areas of gnition System, Spark	7Hrs
Chapter No. 2. Sensors and	Actuators		
Position (CKP) Sensor, Mag Ignition Timing Sensor, Hall (Manifold Absolute Pressure (Throttle Position Sensor (TPS), Engir netic Reluctance Position Sensor, E effect Position Sensor, Optical Cranks (MAP) Sensor Strain gauge, Engine r, Throttle angle sensor, Fuel Injec	ngine Speed Sensor, shaft Position Sensor, Coolant Temperature	
Chapter No. 3. Electronic E	ngine Control		F L Inc
Engine parameters, variables, Engine Performance terms, Electronic Fuel Control System, Electronic Ignition control, Idle sped control, EGR Control			5Hrs
•	on Control and Safety Systems		CLING
Cruise Control, Antilock Bra Steering, Traction Control, Ele	ake System (ABS), Electronic Stee ectronic Stability Program.	ering Control, Power	6Hrs
Chapter No:5. Automotive c	ommunication protocols		3Hrs
Overview of Automotive comn	nunication protocols : CAN, LIN .		
Warning, Collision Warning, A	Driver Assistance Systems (AD Automatic Cruise Control, Pedestrian nology and trends towards Autonomou	Protection, Headlights	5Hrs
	afety standards ISO26262 and Diag afety standard-ISO 26262, safety conc esign, validation.		6Hrs
	Basic wiring system and Multiplex wiri ments, Self-diagnostic system. Fault fi iagnostic.		
Text books:			l
	e Electrical and Electronic Systems, E	dward Arnold publicatio	on, 1995.
References:			
1. William T.M – Automo	tive Electronic Systems, Heiemann Lto	d., London ,1978.	
	omotive Embedded System Handbook		
3. BOSCH Automotive H	landbook, Wiley Publications, 8th Editi	on, 2011.	
 Co-Verification of har Publications, 2004. 	dware & software for ARM SoC Des	ign – Jason.R.Andrew	s, Newn
5. Hardware Software co	o-design of embedded systems. F.Bala	arin Kluwer Academic (Dublisher

5. Hardware Software co-design of embedded systems, F.Balarin, Kluwer Academic Oublishers, 1987.

Lab:

- 1. Demonstration of cut section modules: Engine, Transmission, Steering, Braking, Suspension Automobile dept.
- 2. Electronic engine control system: Injection and Ignition control system Transmission trainer modules
- 3. Modeling an engine Vehicle model simulation with Simulink using PI CONTROLLER
- 4. Basic gate logic simulation and modeling using Simulink and realization on the hardware platform.
- 5. Seat belt warning system simulation and modeling using Simulink and realization on the hardware platform. Vehicle speed control based on the gear input simulation and modeling using Simulink and realization on the hardware platform.
- 6. Throttle control modeling and simulation using Simulink and realization on the hardware platform.
- 7. Accelerator pedal interfacing software modeling and simulation using Simulink and realization on the hardware platform.
- 8. Develop matlab code for stepper motor control and convert it to Simulink model and port it to embedded hardware

Program: II Semester Mas	ster of Technology (VLSI Desi	gn & Embedded Systems)	Teaching
Course Title: Real Time E	mbedded System	Course Code: 17EVEC709	Hours
L-T-P: 3-0-1	Credits: 4	Contact Hours: 3 Hrs/week	
ISA Marks: 50+100	A Marks: 50+100 ESA Marks: 50 Total Marks: 200		
Teaching Hours: 45 Hrs	ing Hours: 45 Hrs Examination Duration:		
	U	NIT I	
Requirements- Processor	in a system, System Memories, RT, Watchdog Timers, Interr	esign Issue, Sample Systems, Hardware , System I/O, De-bouncing, Other Hardware upt Controllers). Device Drivers, Interrupt	12 Hrs
	ors: AEC-Q100 qualification, Q	orivva 32-bit Microcontrollers, MPC577XK asas RL78/D1x (Automotive Only)	10 Hrs
	UN	IIT II	
3. Real Time Operat	ing System:		
		s, full featured rtos, POSIX, buffering data, nals, deadlock, process stack management,	04 Hrs
4. Case Studies:			
Mucos/ VX Works Functior mailbox, queue.	ns – System level, task service,	time delay, memory allocation, semaphore,	06 Hrs
Example systems: Coding for Automatic chocolate vending machine using MUCOS & Coding for sending application layer byte streams on a TCP/IP Network using Vx Works.			
	UN	IT III	
5. Process of Embed	dded System Development:		
Development process, requirements engineering, design, implementation, integration & testing, packaging, configuration management, managing embedded system development, embedded system fiascos.			08 Hrs
6. Current trends, et	hical & environmental issues		
The students shall give se	eminars on current trends in th	he field of RTES, ethical, & environmental	05 Hrs

- 1. Philip. A. Laplante, "Real-Time Systems Design and Analysis- an Engineer's Handbook"- Second Edition, PHI Publications.
- 2. Rajkamal, "Embedded Systems: Architecture, Programming and Design", Tata McGraw Hill, New Delhi, 2003.
- 3. Dr. K.V.K K Prasad, "Embedded Real Time Systems: Concepts Design and Programming", Dreamtech Press New Delhi, 2003.

References

- 1. Joseph Yiu, "The Definitive guide to ARM CORTEX -M3 & CORTEX-M4 Processors", Elsevier, Newnes, 2014.
- 2. Steve Furber "ARM System -on Chip Architecture" Second Edition, Pearson Education
- 3. David E. Simon, "An Embedded software primer", Pearson Education, 1999..
- 4. David A. Evesham, "Developing real time systems A practical introduction", Galgotia Publications, 1990
- 5. William Hohl, "ARM Assembly Language Fundamentals & Techniques", CRC Press
- 6. C. M. Krishna, "Real Time Systems" MGH, 1997
- 7. Jane W.S. Liu, "Real-Time Systems", Pearson Education Inc., 2000

Course Code: 17EVEC710	Course Title: Advanced Digital Logic De	esign
L-T-P: 1-0-3	Credits: 4	
ISA Marks: 50+100	ESA Marks: 50	
Teaching Hrs: 40		
Chapter No. 1. Digital Integrated Circuits Moore's law, Technology Scaling, Die size g Challenges in digital design, Design metrics, Cost SoC ASIC Flow Vs SoC Flow, SoC Design Challe PMOS & NMOS Operation, CMOS Operation pri CMOS Inverter and characteristic curves, Dela dissipation in CMOS, CMOS Logic, Stick diagram Time, Timing Concepts.	of Integrated circuits, ASIC, Evolution of enges. Introduction to CMOS Technology, inciples, Characteristic curves of CMOS, ays in inverters, Buffer Design, Power	10 hrs
Chapter No. 2. Digital Building Blocks Basic Gates, Universal Gates, nand & nor Im converters, Priority encoder, multiplexer, dem schemes, Multiplexer, De-multiplexer, Pass Transi multi-purpose logical element. Asynchronous an registers. FSM Design, Mealy and Moore Modelli Concept	nultiplexer, Comparators, Parity check istor Logic, application of multiplexer as a id synchronous up-down counters, Shift	10 hrs
Chapter No. 3. Logic Design Using Verilog Evolution & importance of HDL, Introduction to Design Flow, Lexical Conventions, Data Types Comments, arrays in Verilog, Expressions, Operat , Delays , parameterized designs Procedura Assignment, looping, flow Control, Task, Function, for Verification, Basic test bench generation and Si	s Modules, Nets, Values, Data Types, ors, Operands, Arrays, memories, Strings al blocks, Blocking and Non-Blocking Synchronization, Event Simulation. Need	12 hrs
Chapter No. 4. Principles of RTL Design Verilog Coding Concepts, Verilog coding guide General Guidelines, Synthesizable Verilog Constru- Design Challenges, Clock Domain Crossing. Veri sequential logic	lines: Combinational, Sequential, FSM. ucts, Sensitivity List, Verilog Events, RTL	8 hrs
Chapter No. 5. Design and simulation of Architect Basic Building blocks design using Verilog H Subtractor, and Multiplier design, Data Integrity – Arbitration, FSM Design – overlapping and no machine design	IDL: Arithmetic Components – Adder, Parity Generation circuits, Control logic –	10 hrs
 Reference Books: 1. Digital Design by Morris Mano M, 4th Edition 2. Verilog HDL: A Guide to Digital Design and 3. Principles of VLSI RTL Design: A Practical NC Sim, CVER + GTKWave, VCSMX, Modern 	d Synthesis by Samir Palnitkar, 2nd Edition I Guide by Sapan Garg, 2011 Tools: 1. NC	

Course Code: 17EVEC711	Code: 17EVEC711 Course Title: Testing & IC Characterization		
L-T-P: 3-0-1	Credits: 4	Contact Hrs: 5 hrs/w	eek
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200	
Teaching Hrs: 40	Exam Duration: 03 hrs		rs
Content		Hrs	
CHAPTER NO. 1. VERIFICATION CONCEPTS Concepts of verification, importance of verification, Stimulus vs Verification, functional verification, test bench generation, functional verification approaches, typical verification flow, stimulus generation, direct testing, Coverage: Code and Functional coverage, coverage plan.			10 hrs
System Verilog constructs -	CHAPTER NO. 2. SYSTEM VERILOG – LANGUAGE CONSTRUCTS System Verilog constructs - Data types: two-state data, strings, arrays: queues, dynamic and associative arrays, Structs, enumerated types. Program blocks, module, interfaces,		
CHAPTER NO. 3. SYSTEM VERILOG – CLASSES & RANDOMIZATION SV Classes: Language evolution, Classes and objects, Class Variables and Methods, Class instantiation, Inheritance, and encapsulation, Polymorphism. Randomization: Directed Vs Random Testing. Randomization: Constraint Driven Randomization.		12 hrs	
CHAPTER NO. 4. SYSTEM VERILOG – ASSERTIONS & COVERAGE Assertions: Introduction to Assertion based verification, Immediate and concurrent assertions. Coverage driven verification : Motivation, Types of coverage, Cover Group, Cover Point, Cross Coverage, Concepts of Binning and event sampling.		8 hrs	
CHAPTER NO. 5. BUILDING TESTBENCH LAYERED TESTBENCH ARCHITECTURE. INTRODUCTION TO UNIVERSAL VERIFICATION METHODOLOGY, OVERVIEW OF UVM BASE CLASSES AND SIMULATION PHASES IN UVM AND UVM MACROS. UNIFIED MESSAGING IN UVM, UVM ENVIRONMENT STRUCTURE, CONNECTING DUT- VIRTUAL INTERFACE		10 hrs	
GUIDE TO LEARNIN 3. STEP-BY-STEP FUN	GORY J TUMBUSH - SYS G THE TESTBENCH LANC ICTIONAL VERIFICATION ITIS INC. SANTA CLARA, (TEMVERILOG FOR VERIFICATION GUAGE FEATURES - SPRINGER, 2 WITH SYSTEMVERILOG AND OVI CA SPRING 2008 TOOLS: 1. NC VE	2012 /I BY

Course Code:		Course Title:		Teaching Hrs: 40 Hrs	
17EVEE701		Image and Video Processing			
L-T	Г-Р: 2-0-1	Credits: 3	Credits: 3 Contact H		ĸ
IS/	A Marks: 50+100	Exam Duration: 3Hrs	ESA Marks: 50	Total Marks: 200	
1	Introduction : 2D systems, Mathematical Preliminaries- FT, Z-transform, Optical and Modulation Transfer Functions (OTF and MTF). Matrix theory, Image perception: Light, Luminance, Brightness, Contrast, MTF of the visual system, Visibility function, Monochrome Vision Models, Fidelity criteria, Color Representation, Color Vision Models, Temporal Properties of Vision.				2 hrs
2		age sampling and Quantization: 2D Sampling theory, Quantization, Optimal Quantizer, ompander and Visual Quantization.			2 hrs
3	Image Transforms	Image Transforms: 2D orthogonal and unitary transforms, DFT, DCT, Harr, KLT			4hrs
			, , ,		
4	-	nent: Histograms Modeling		s, Transform operations,	4hrs
4	Image Enhancer Multispectral Image Image Filtering a	nent: Histograms Modeling	g, Spatial operation servation Models, In	s, Transform operations, verse and Weiner filtering ,	4hrs 4hrs
	Image Enhancer Multispectral Image Image Filtering a Frequency Domain	nent: Histograms Modeling Enhancement, and Restoration: Image Obs	g, Spatial operation servation Models, In	· · · ·	
5	Image Enhancer Multispectral Image Image Filtering a Frequency Domain Basics of Video: A	nent : Histograms Modeling Enhancement, and Restoration: Image Obs Filters. Smoothing Splines an	g, Spatial operation servation Models, In d Interpolation.	verse and Weiner filtering,	4hrs
5 6 7	Image Enhancer Multispectral Image Image Filtering a Frequency Domain Basics of Video: A Two dimensional	ment: Histograms Modeling Enhancement, and Restoration: Image Obs Filters. Smoothing Splines an Analog Video, Digital Video	g, Spatial operation servation Models, In d Interpolation.	verse and Weiner filtering,	4hrs 2 hrs
5 6 7	Image Enhancer Multispectral Image Image Filtering a Frequency Domain Basics of Video: A Two dimensional methods. xt books	ment: Histograms Modeling Enhancement, and Restoration: Image Obs Filters. Smoothing Splines an Analog Video, Digital Video	g, Spatial operation servation Models, In d Interpolation.	verse and Weiner filtering , based methods, Bayesian	4hrs 2 hrs
5 6 7 Te	Image Enhancer Multispectral Image Image Filtering a Frequency Domain Basics of Video: A Two dimensional methods. xt books Jain, A.K., Fundamer	ment: Histograms Modeling Enhancement, and Restoration: Image Obs Filters. Smoothing Splines an Analog Video, Digital Video motion estimation: Optical	g, Spatial operation servation Models, In- d Interpolation.	verse and Weiner filtering , based methods, Bayesian n Education (Asia) 2013	4hrs 2 hrs
5 6 7 Te 1.	Image Enhancer Multispectral Image Image Filtering a Frequency Domain Basics of Video: A Two dimensional methods. xt books Jain, A.K., Fundamer A. Murat Tekalp, Digit	ment: Histograms Modeling Enhancement, and Restoration: Image Obs Filters. Smoothing Splines an Analog Video, Digital Video motion estimation: Optical ntals of Digital Image Processi	g, Spatial operation servation Models, In- d Interpolation.	verse and Weiner filtering , based methods, Bayesian n Education (Asia) 2013 Ltd.	4hrs 2 hrs
5 6 7 1. 2. 3.	Image Enhancer Multispectral Image Image Filtering a Frequency Domain Basics of Video: A Two dimensional methods. xt books Jain, A.K., Fundamer A. Murat Tekalp, Digit	ment: Histograms Modeling Enhancement, and Restoration: Image Obs Filters. Smoothing Splines an Analog Video, Digital Video motion estimation: Optical Intals of Digital Image Processi ital Video processing Pearson	g, Spatial operation servation Models, In- d Interpolation.	verse and Weiner filtering , based methods, Bayesian n Education (Asia) 2013 Ltd.	4hrs 2 hrs
5 6 7 1. 2. 3. Re	Image Enhancer Multispectral Image Image Filtering a Frequency Domain Basics of Video: A Two dimensional methods. xt books Jain, A.K., Fundamer A. Murat Tekalp, Digi Li and, Z. Drew, M.S. ferences books	ment: Histograms Modeling Enhancement, and Restoration: Image Obs Filters. Smoothing Splines an Analog Video, Digital Video motion estimation: Optical htals of Digital Image Processi ital Video processing Pearson Fundamentals of Multimedia, Woods, Richard E. and Eddi	g, Spatial operation eervation Models, In- d Interpolation.	verse and Weiner filtering , based methods, Bayesian n Education (Asia) 2013 Ltd. sia) Pte. Ltd,. 2010.	4hrs 2 hrs 7 hrs

Implementation:

Implementation assignments are designed using opencv/c++ to explore the concepts like

- 1. Image enhancement techniques
- 2. Image transforms.
- 3. Image restoration technique
- 4. Develop an image processing application to assist
 - a. ADAS
 - b. Agriculture
 - c. Defense
 - d. Health Care
 - e. Surveillance and Forensics
 - f. Remote sensing
- 5. Track an object in video
- 6. Optimal use of surveillance video

Progra	am: VLSI Design & Embe	dded Systems		
Course	e Title: Digital Control Sy	/stems	Course Code: 17EVEE	702
L-T-P:	2-0-1	Credits: 4	Contact Hours: 5	
ISA Ma	arks: 50+100	+100 ESA Marks: 50 Total Marks: 200		
Teach	ing Hours: 40	Examination Duration: 3 hours		
1.		ontrol: Introduction, Discrete time of sampling process, Data reconstru		4hrs
2.	<u> </u>	systems by pulse transfer function: 2 e transfer function , Pulse transfer flow graph.		3hrs
3.		ete systems: Transient and steady a prototype second order system.	v state responses, Time	5hrs
4.	Stability analysis of dis using bi-linear transformation	screte time systems: Jury stability ation.	test, Stability analysis	5hrs
5.	<u> </u>	a control systems: Root locus me locus based controller ,design u ot.		5hrs
6.		lesign :Design of digital control s es with deadbeat response design esponse.		6hrs
7.		del: Introduction to state variable m juation, state transition matrix, so		2hrs
8.		bility and stability of discrete ability, Lyapunov stability theorem.	-	5hrs
9.		Pole placement by state feedba erver, Reduced order observer.	ack, Set point tracking	5hrs
1. 2. 3.	K. Ogata, Discrete Time M. Gopal, Digital Control a	Systems, Oxford University Press, 2 Control Systems, Prentice Hall, 2/e, and State Variable Methods, Tata M ell and M. L. Workman, Digital Cont	1995. Icgraw Hill, 2/e, 2003.	<u> </u>

L-T-P: 2-0-1	Credits: 3	Contact Hrs:	
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200)
Teaching Hrs: 50		Exam Duration: 3	3 hrs
Chapter No. 1. Introduction IC design flo custom design and Gate array paradigms construction of memory elements.			15 hrs
Chapter No. 2. Standard cell library compo Types of standard cell elements. Logical a complex macros. Sequential elements and re Data path elements. Library size vs. usage in families. Layout of library elements – sing Management cells.	nd functional elements, gister files. (Flip flop an standard flows. Drive s	d latch design). trength and cell	17hrs
Chapter No. 3. Standard cell characterization Usage of standard cells by various tools. Info flow. Characterization parameters, setup and representation formats. (Gate level simulation DRC)	rmation needed at each nd runs across PVT o	corners. Library	18 hrs
References: Standard cell and memory library	documentation by Vendo	rs 90nm EDK libra	iry

Course Title: Low Power VLSI Circ	cuits Cou	rse Code: 17EVEE704	
L-T-P: 2-0-1	Credits: 4 Cont	Contact Hours:4 Total Marks: 200	
ISA Marks: 50+100	ESA Marks: 50 Tota		
Teaching Hours: 40	Examination Duration: 3 hours		
	design: Need for Low Power VLSI Chips, source gy impact on Low Power, dynamic power dissipa		6Hrs
2: Power analysis: Simulation Pow Probabilistic power analysis	er Analysis, Spice circuits simulator, gate level lo	gic simulator,	5Hrs
3: A new CMOS driver model for tranship drivers and transmission lines: a	nsient analysis and power dissipation analysis, lo branch and bound approach.	w power design of off-	5Hrs
4: Different levels of power optim	zation		7Hrs
Low Power Design; circuit Level, log	c Level, Low Power Architecture.		
5: Floor plan design with low power sequential circuits for low power	considerations, optimal drivers of high-speed low	power ics, retiming	5Hrs
	r Clock distribution, single driver versus distrince management,switching activity reduction, par		4Hrs
	jies for power reduction: Algorithm and analysis & optimization, architecture level estimated and the state of the state		8Hrs
Current trends Text Books			

2. Rabaey, Pedram, "Low power design methodologies" Kluwer Academic, 1997.

Reference Books:

- 1. A. Chandrakasan and R. Brodersen, "Low Power CMOS Design".
- Sung Mo Kang & Yosuf Leblebici, "CMOS Digital Integrated Circuits: Analysis and Design", TMH, 2003 (Third Edition).
- **3.** Laung-Terng Wang, Charles E. Stroud, Nur A. Touba, "System-on-chip Test Architectures", 2008.
- 4. Kaushik Roy, Sharat Prasad, "Low-Power CMOS VLSI Circuit Design" Wiley, 2000.

Pro	ogram: VLSI Design & Embedo	led Systems			
Со	urse Title: Analog and Mixed r	node VLSI Circuits	Course Code: 17EVEE705		
L-1	Г-Р: 2-0-1	Credits: 3	Contact Hours: 6		
IS/	A Marks: 50	ESA Marks: 50			
Те	aching Hours: 50	Examination Duration: 3 hours	Total Marks: 100		
1.	signal model, Common source		C small signal parameters from large iode load and current source load, uency response of amplifiers.	12 hrs	
2.	Current source/sink/mirror, M Cascode current source, Differe	-	Vidlar current source and Regulated	08 hrs	
3.	Op-Amp: CMOS Op-Amp, Com	pensation of Op-Amp,Design of two	o stage Op-Amp.	06 hrs	
4.	 Basic Current reference, and Voltage (Bandgap) reference circuits, OPAMP based references, Current mode bandgap reference. 			06 hrs	
5.		•	nparator architecture, non-idealities Sense amplifier, Current Mode	08 hrs	
6.	Data Converter Fundamentals,	DAC architectures and ADC archite	ectures	10 hrs	
Те	xt Books				
1.		perg, "CMOS Analog circuit Design"	•		
2. Po	ference Books	t Design, Layout and Simulation",	Prentice Hall of India, 2000		
1. 2. 3.	N. Weste and K. Eshranghian, J. Rabaey, Digital Integrated Ci	Principles of CMOS VLSI Design, A rcuits: A Design Perspective, Prent IOS Integrated Circuits' First Editior	ice Hall India, 1997		
La					
			sistive load, diode load and current sou	irce loa	
	2. Design and implement a Ca	•			
	3. Design and implement a Si	•			
	4. Design and implement a Di	-			
	5. Design and implement a O	-			
	 Design and implement a ba Design and implement a R- 				

Program: III Semester Mas	ster of Technology (VLSI De	esign & Embedded Systems)	Teaching
Course Title: Embedded S	Software Design	Course Code: 17EVEC801	Hours
L-T-P: 0-0-3	Credits: 3	Contact Hours: 6 Hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hours: 40 Hrs	Examination Duration:		
Introduction to OS, Introduc real time systems, and the Introduction to RTOS, key	future of embedded systems. characteristics of RTOS, its I tt switch, Scheduling types: F	stem- real time systems, characteristics of	08 Hrs
2. Tasks, Semaphore A task, its structure, A typica its structure, binary semaph tasks and multiple tasks, Si resource-access synchronia	es and Message Queues:: al finite state machine, Steps s nore, mutual exclusion (mutex ngle shared-resource-access zation. A message queue, its	showing the how FSM works. A semaphore,) semaphore, Synchronization between two synchronization, Recursive shared- structure, Message copying and memory use in FIFO or LIFO order, broadcasting	08 Hrs
RTX/free RTOS. Applications and Common		omparisons. Real time programming using led RTOS for Image Processing & Control oplications.	04 Hrs
4. Introduction to em	bedded linux:		
	hains in Émbedded Linux-GN	ectures and device driver model-Embedded IU Tool Chain (GCC,GDB, MAKE, GPROF &	02 Hrs
system operation-S		, grub-Root file system-Binaries required for erview-Writing applications in user space-GUI	02 Hrs
6. File system in Line	ux:		
INODE-Group Descriptor-I	Directories-Virtual File syste g the File systems-Mounting	ng the File system –Extended file systems- ms-Performing File system Maintenance - g and Un-mounting –Buffer cache-/proc file	08 Hrs
7. Program design a	nd Analysis :		
buffers, queues. Models of loading. Basic compilation optimization: Expression transformations, register al Program level performance	programs: data flow graph ar techniques: Statement transl simplification, dead cod location, scheduling, instructi analysis, software performand optimization of program siz	stream oriented programming and circular nd control flow graphs, Assembly, linking and lation, procedures, data structures. Program e elimination, procedure inlining, loop on selection, interpreters and JIT compilers. ance optimization, program level energy and ze. Program validation and testing: Clear box	08 Hrs

- 1. Qing Li with Caroline Yao, "Real-Time Concepts for Embedded Systems", Published by CMP Books, 2011
- 2. Dr. K.V.K.K. Prasad, "Embedded/Real-time systems: concepts, Design & Programming", published by dreamtech press .
- 3. "Embedded Systems- Architecture, Programming and Design" by Raj Kamal, TMH

References

- 1. Philip.A.Laplante, "Real Time System Design and Analysis", Prentice Hall of India, 3rd Edition, April 2004.
- 2. "Programming embedded systems" in C and C++ Micheal Barr orielly

List of Experiments:

- 1. Write a 'C' program & demonstrate concept of Task Scheduling.
- 2. Write a 'C' program & demonstrate concept of Semaphore.
- 3. Write a 'C' program & demonstrate concept of Mailbox.
- 4. Write a 'C' program & demonstrate concept of S/W Interrupts.
- 5. Write a 'C' program & demonstrate concept of interrupts.
- 6. Write a 'C' program & demonstrate concept of Inter Task Communication.

Reference Books

1. Dr. K.V.K.K. Prasad, "Embedded/Real-time systems: concepts, Design & Programming", published by dreamtech press.

Manual

1. LPC2148 datasheet by NXP.

LPC2148 board manual by ALS, Bangalore.

Course Code: 17EVEC802	Course Title: Advanced Digital logic Verification		
L-T-P: 1-0-3	Credits: 4	Contact Hrs: 6hrs/week	
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200	
Teaching Hrs: 50		Exam Duration: 3 hrs	
Chapter No. 1. Verification Concepts Concepts of verification, importance of verification, Stir bench generation, functional verification approaches, direct testing, Coverage: Code and Functional coverage	, typical verification flow, sti		10 hrs
Chapter No. 2. System Verilog – Language Constr System Verilog constructs - Data types: two-state associative arrays, Structs, enumerated types. Progra modports.	data, strings, arrays: queu	· · · · · · · · · · · · · · · · · · ·	10 hrs
Chapter No. 3. System Verilog – Classes & Randor SV Classes: Language evolution, Classes and ob instantiation, Inheritance, and encapsulation, Polymo Testing. Randomization: Constraint Driven Randomizat	ojects, Class Variables and orphism. Randomization: Dire		12 hrs
Chapter No. 4. System Verilog – Assertions & Coverage Assertions: Introduction to Assertion based verific Coverage driven verification : Motivation, Types of Coverage, Concepts of Binning and event sampling.	ation, Immediate and conc		8 hrs
Chapter No. 5. Building Testbench Layered testbench architecture. Introduction to Univer-	sal Verification Methodology,	Overview of UVM	10 hrs

	Classes and simulation phases in UVM and UVM macros. Unified messaging in UVM, UVM nment structure, Connecting DUT- Virtual Interface	
Refere	ences:	
1.	System Verilog LRM	
2.	Chris Spear, Gregory J Tumbush - SystemVerilog for verification - a guide to learning the testbench language features - Springer, 2012	
3.	Step-by-Step Functional Verification with SystemVerilog and OVM by Sasan Iman SiMantis Inc. Santa Clara, CA Spring 2008 Tools: 1. NC Verilog, NC Sim, VCSMX for System.	

	m: III Semester Mas	ster of Technology (VLSI Design	& Embedded Systems)	Teaching	
Course	Title: Internet of T	hings	Course Code: 17EVEE801	Hours	
L-T-P: 2	2-0-1	Credits: 3	Contact Hours: 5 Hrs/week		
ISA Ma	rks: 50+100	ESA Marks: 50	Total Marks: 200		
Teachir	ng Hours: 25 Hrs	Examination Duration:			
1	Introduction to In	nternet of Things (IoT)			
	Definition & Characteristics of IoT, Things in IoT, IoT protocols, IoT functional blocks, communication models and APIs.				
2	IoT Architecture				
	Enabling technologies: Sensors, Zigbee, Bluetooth, IoT ecosystem, Data Link protocols: IEEE 802.15.4e, IEEE 802.11.ah, DASH7, Low Power Wide Area Network (LoRaWAN).				
3	Network protoco	ls			
	Routing Protocol for Low-Power and Lossy Networks (RPL), cognitive RPL (CORPL), Channel- Aware Routing Protocol (CARP), Low power Wireless Personal Area Networks (LoWPAN).				
4	Application and Security protocols				
-	, apprication and	Security protocols			
•	Message Queue Advanced Messag	Telemetry Transport (MQTT), M	QTT for Sensor Networks, Secure MQTT nstrained Application Protocol (CoAP), OPC d Lossy Networks (RPL).		
5	Message Queue Advanced Messag UA, 6LoWPAN), F	Telemetry Transport (MQTT), M ge Queuing Protocol (AMQP), Co	nstrained Application Protocol (CoAP), OPC		
	Message Queue Advanced Messag UA, 6LoWPAN), F IoT Platforms De IoT Design Metho	Telemetry Transport (MQTT), M ge Queuing Protocol (AMQP), Con Routing Protocol for Low-Power and sign Methodology bodology, Case Study on IoT System	nstrained Application Protocol (CoAP), OPC	04 hrs	
	Message Queue Advanced Messag UA, 6LoWPAN), F IoT Platforms De IoT Design Metho blocks of an IoT	Telemetry Transport (MQTT), M ge Queuing Protocol (AMQP), Cor Routing Protocol for Low-Power and sign Methodology odology, Case Study on IoT System device, Raspberry Pi, interface	nstrained Application Protocol (CoAP), OPC d Lossy Networks (RPL). n for Weather Monitoring etc., Basic building	04 hrs	
5	Message Queue Advanced Message UA, 6LoWPAN), F IoT Platforms De IoT Design Metho blocks of an IoT Contiki, RIOT. Programming with	Telemetry Transport (MQTT), M ge Queuing Protocol (AMQP), Cor Routing Protocol for Low-Power and sign Methodology odology, Case Study on IoT System device, Raspberry Pi, interface	nstrained Application Protocol (CoAP), OPC d Lossy Networks (RPL). n for Weather Monitoring etc., Basic building (serial, SPI, I2C), IoT Operating Systems	04 hrs 04 hrs	
5	Message Queue Advanced Message UA, 6LoWPAN), F IoT Platforms De IoT Design Metho blocks of an IoT Contiki, RIOT. Programming with	Telemetry Transport (MQTT), M ge Queuing Protocol (AMQP), Con Routing Protocol for Low-Power and esign Methodology bodology, Case Study on IoT System device, Raspberry Pi, interface th Raspberry Pi	nstrained Application Protocol (CoAP), OPC d Lossy Networks (RPL). n for Weather Monitoring etc., Basic building (serial, SPI, I2C), IoT Operating Systems	04 hrs	

- 1. Arshdeep Bahga, Vijay Madisetti "Internet of Things (A Hands-on-Approach)" Universities Press- 2014.
- Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things: Key Applications and Protocols" John Wiley & Sons – 2012.

Reference Books:

1. Subhas Chandra Mukhopadhyay "Internet of Things Challenges and Opportunities" Springer- 2014.

Lab:

- 1. Programming with Raspberry Pi
- 2. Cloud service interface for data storage and retrieval
- 3. Performance analysis of Data link protocols, routing and application protocols
- 4. Open Ended Experiment with focus on data analytics and security

Course Code: 17EVEE802	Course Title: AUTOSAR		
L-T-P : 2-0-1	Credits: 3	Contact Hrs:	3 Hours
ISA Marks: 50	ESA Marks: 50	Total Marks:	100
Teaching Hrs: 40		Exam Duration: 3	
Content			Hrs
Unit - 1			
Chapter No. 1: AUTOSAR Fundamentals Evolution of AUTOSAR – Motivations and Objectives AU Packages, AUTOSAR Partnership, Goals of the partn AUTOSAR specification, AUTOSAR Current development ICC2, ICC3, and Drawbacks of AUTOSAR.	nership, Organization c	of the partnership,	8 hrs
Chapter No. 2: AUTOSAR layered Architecture AUTOSAR Basic software, Details on the various layers, (VFB) Concept Overview of AUTOSAR Methodology AUTOSAR Application Software Component (SW-C), T Time Environment (RTE): RTE Generation Process: Con HW Abstraction Layer, Partial Networking, Multicore, AUTOSAR E2E Overview, AUTOSAR XCP, Metamodel development process.	Tools and Technolog ypes of SW-componen tract Phase, Generation J1939 Overview, AL	ies for AUTOSAR ts AUTOSAR Run Phase, MCAL, IO JTOSAR Ethernet,	7 hrs
Unit - 2			
Chapter No. 3: Methodology of AUTOSAR and Commu CAN Communication, CAN FD, CAN in Automation, CAN	lape, Application Layer		10 hrs
inter ECU communication, Client-Server Communication Driver, Communication Manager (ComM), Overview o Manager			
Chapter No. 4: BSW Development and Integration			5 hrs
BSW Constituents: Memory layer, COM and Services layer, ECU abstraction, AUTOSAR, Operating system, Interfaces: Standard interface, AUTOSAR standardized interface, BSW-RTE interface,(AUTOSAR interface), BSW-ECU hardware interface, Complex device drivers and BSW module configuration, AUTOSAR Integration.			
Unit - 3			
Chapter No. Chapter 5: Infotainment Systems in Auton	nobiles		5 hrs
Infotainment Systems Fundamentals: Radio, Multimedia, Infotainment (IVI) systems, Use of operating systems XM/Sirrus, DAB/DMB, Software Defined Radio; Con Announcements, Spread Spectrum, d. Multimedia: Type Media management; Playback, Track Control, Meta Audio/Video Source Management, Navigation: Points Reckoning position, Traffic Info, GLONASS, GNSS, RTK, CD, DVD, CDDA, USB, SDCARD, Media Formats:MP3, W Design Patterns - Proxies, Adaptors, Interfaces, Singleton,	in IVI, GENIVI Alliand cepts of HD, radio, es of Media; Music, Vid idata, Playlists, Categ of Interests, Routes, GPS, and SBAS/GBAS, VMV, RealAudio/Video, 0	e, Tuner: AM/FM, Ensemble, Traffic leo, Podcasts, etc. ories, Trick play, Waypoints, Dead INS f. Media types:	
Chapter No. Chapter 6: Communication Systems in Au			5 hrs
Automotive & Consumer Electronic Communication Sys HFP, A2DP, PAN, PBAP, DUN, Concepts of MOST ne Ethernet, WiFi, WiFi Direct, MyWiFi and CAN, Mirror link,	etwork, DLNA, AVB, Co		

 Text Book (List of books as mentioned in the approved syllabus) 1. Ribbens, Understanding of Automotive electronics, 6th Edition, Elsevier, 2003 2. Denton.T, Automobile Electrical and Electronic Systems, Elsevier, 3rd Edition, 2004 3. Denton.T, Advanced automotive fault diagnosis, 2000 	
References	
1. Ronald K Jurgen, Automotive Electronics Handbook, 2nd Edition, McGraw-Hill, 1999	
2. James D Halderman, Automotive electricity and Electronics, PHI Publication, 2000	
3. Allan Bonnick, Automotive Computer Controlled Systems Diagnostic Tools and	
Techniques, Elsevier Science, 2001	
4. Nicholas Navet, Automotive Embedded System Handbook, 2009	

Course Code: 17EVEE803	Course Title: ASIC De	Course Title: ASIC Design		
L-T-P: 2-0-1	Credits: 4	Contact Hrs: 50 Total Marks: 200 Exam Duration: 3 hrs		
ISA Marks: 50+100	ESA Marks: 50			
Teaching Hrs: 50				
	Content		Hrs	
Chapter No. 1. Introduction to ASIC ASIC types, design flow, economics of ASIC			8 hrs	
Chapter No. 2. ASIC design library and Lo Transistor as register, transistor parasitic capa Sequential logic cells, I/O cell.	-	ements, Adders, Multiplier,	10 hrs	
Chapter No. 3. Logic Synthesis and Simul Logic synthesis, FSM synthesis, structural sim		y models	10 hrs	
Chapter No. 4. ASIC Construction Floor pl Physical Design, System Partitioning, Estimat		-	10 hrs	
Chapter No. 5. Floor planning and placem Floor planning tools, I/O and power planning, improvement, Time driven placement methods Routing, Special Routing, Circuit Extraction and	clock planning, placement algorithn s. Physical Design flow global Rout	•	12 hrs	
Text Books:				
1.M.J.S .Smith, - "Application - Specific Integr 2.Randall L Geiger, Phillip E. Allen, "Noel K.S			a", McGrav	
Hill International Company, 1990. References:			,	
 Hill International Company, 1990. References: 1. Jose E.France, Yannis Tsividis, "Design of processing", Prentice Hall, 1994. 		ecommunication and signal		
Hill International Company, 1990. References: 1. Jose E.France, Yannis Tsividis, "Design of J	is in Silicon", McGraw Hill, 1991.	, i i i i i i i i i i i i i i i i i i i		

Hrs
ıg 5
eate 2
8
ng,
10
5
forces, 4
leling), 6
f

Program: Digital Electronics			Teaching
Course Title: Machin	ne learning	Course Code: 17EVEC705	Hours
L-T-P: 3-0-1	Credits: 4	Contact Hours: 5 Hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	

Teaching Hours: 40 Hrs	Examination Duration: 3 hrs		
Chapter No. 1: Introduction	on		
	hine Learning? Applications of M nsupervised and Reinforcement	achine Learning, Types of Machine learning, Dataset formats, Basic	05 Hrs
Chapter No. 2: Supervise	d Learning		
squares error function, The	e Gradient descent algorithm, Appli	ingle and Multiple variables, Sum of cation, Logistic Regression, The cost assification using logistic regression,	10 Hrs
Chapter No. 3: Supervise	d Learning: Neural Network		
	dient checking, Back propagation	XOR, AND, OR using neural network. algorithm, Multi-class classification,	10 Hrs
Chapter No. 4: Unsupervi	sed Learning: Clustering		
Introduction, K means Clust	ering, Algorithm, Cost function, Appli	cation.	05Hrs
Chapter No. 5: Unsupervi	sed Learning: Dimensionality redu	uction	0511#0
Dimensionality reduction, P	CA- Principal Component Analysis. A	Applications, Clustering data and PCA.	05Hrs
Chapter No. 6: Machine L	earning System Design		
Evaluating a hypothesis, M classes. Building a Model.	odel selection, Bias and variance, e	rror analysis, error metrics for skewed	05 Hrs
Text Book (List of books as	mentioned in the approved syllabus)	
	ine Learning, 1, McGraw-Hill. , 1997		
	Pattern Recognition and Machine L	earning, 1, Springer, 2007	
References	Irew Na. Co-founder, Coursera: Adiu	nct Professor, Stanford University; forme	erly head of
	Brain https://www.coursera.org/learr		
2. Trevor Hastie, Robert T and Prediction, 2, Sprin		ments of Statistical Learning : Data Mini	ng, Inference
Implementation Assignment	s:		
1. Assignments are de	signed to explore the concepts like		
Supervise and	unsupervised learning,		
 Clustering, 			
Regression and	lestimation		
2. Motivate students to	o take up open challenges like Kaggl	e, walmart, ect	
3. To explore different	Machine Learning Tools/ Libraries.		

Program: Digital Electronics			
Course Title: Advanced Computer Architecture Course Code: 17EVEC80			
L-T-P-SS: 4-0-0	Credits: 4	Contact Hours: 4	
CIE Marks: 50	SEE Marks: 50	Self Study :	
Teaching Hours: 50	Examination Duration: 3 hours	Total Marks: 100	

1.	Parallel Computers Models: Introduction. State of Computing and classification of parallel Computers, Multiprocessors and multi computers. Multivector and SIMD Computers.	7 hrs
2.	Program properties : Conditions of Parallelism Data & resource Dependences, H/W & S/W parallelism, Program partitioning, Scheduling Grain size & latency, program flow Mechanisms.	6 hrs
3.	System Interconnect Architecture: Network Properties and routing, Static & dynamic interconnection networks, Multiprocessor system interconnects, Hierarchical bus systems, Crossbar switch, Multipart memory, Multistage & combining network.	5 hrs
4.	Advanced processors : Advanced processor technology, instruction-set architectures, CISC scalar processors, RISC scalar processors, Superscalar processors, VLIW architectures, VLIW architectures.	6 hrs
5.	Pipelining : Linear pipeline processor, Nonlinear pipeline processor, Instruction pipeline design, Branch handling techniques, Arithmetic pipeline design, Computer arithmetic principles, Static arithmetic pipeline, Multifunctional arithmetic pipeline	8 hrs
6.	Memory Hierarchy Design: Cache basics, Miss rate and penalty, Cache Hierarchy, Memory Organizations, Memory Hierarchy	6 hrs
7.	Multiprocessor Architecture and Programming: Symmetric shared memory architectures, Distributed shared memory architectures, Models of memory consistency, Cache coherence protocols (MSI, MESI and MOESI), Scalable cache coherence	6 hrs
8.	Scalable & multithreaded architecture : Latency Hiding Techniques, Principles of multithreading, Scalable multithreadeded architectures	2 hrs
9.	Introduction to Intel architectures Intel core Duo processor, CPU, Memory controller, I/O Controller	4 hrs

- 1. Kai Hwang, Faye A. Briggs, "Computers Architecture and Parallel Processing" MGH 1985
- 2. Kai Hwang, "Advanced Computer Architecture TMH 1993
- 3. D. Sima, T. Fountain, P.Kasuk," Advanced Computer Architecture-A Design Space Approach" Addisson Wesley, 1997.
- 4. M. J. Flynn,"Computer Architecture, Pipelined And Parallel Processing", Narosa Publications, 1998

Reference Books:

- 1. Neil D. A. Patterson and J. L. Hennessey "Computer Organization and Design", Morgan , Kaufmann, 2002
- 2. Stalling W. "Computer Organization and Architecture- Designing for performance", PHI,2005.
- **3.** D.E. Culler and J.P.Singh " Parallel Computer Architechure", Harcourt Asia PTE Ltd,2000

Program: Digital Electronics		
Course Title: System Simulation & Modeling		Course Code: 17EVEE 804
L-T-P-SS: 4-0-0	Credits: 4	Contact Hours: 4
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hours: 50	Examination Duration: 3 hours	

1.	Introduction: Simulation Examples (ch1 and ch2)	4 hrs	
2.	Statistical models: Discrete distribution and continuous distribution and empirical distribution(ch5)	4 hrs	
3.	Queuing models: Characteristics, steady state behavior of finite and infinite population models, network of queues. (ch6)	5 hrs	
4.	Random number generation, techniques and tests, random variate generation: Inverse transform techniques, direct transformation, convolution methods, acceptance and rejection techniques (ch7 and ch8).	8 hrs	
5.	Input modelling: Parameter estimation, goodness fit test, multivariate and time series input models (ch9).	9 hrs	
6.	Verification and Validation of Simulation models: Model building, calibration and validation (ch10).	10 hrs	
7.	Output analysis for single model: Types, stochastic nature of output data, measure of performance of output data and estimation, output analysis for terminating simulations, output analysis of steady state simulation.	10 hrs	
Text Books			
1.	"An .Jerry Banks, John S. Carson II, Barry L Nelson and David M. Nicol, "Discrete event system sir PHI, III edition 2005	mulation",	
2.	2. Averill M. Law and W. David Kelton, "Simulation modelling and Analysis", Tata McGra edition.2003	w-Hill, III	

Reference books

- 1. Raj Jain, The Art of Computer Systems Performance Evaluation, John Wiley and Sons, Inc., 1991.
- 2. Edward Lazowska, John Zahorjan, Scott Graham, and Kenneth Sevcik, Computer Systems Analysis Using Network Models, Prentice-Hall Inc., 1984.
- 3. Leonard Kleinrock, Queueing Systems Theory- Volume I, John Wiley and Sons, Inc., 1975.
- 4. Morris H. DeGroot and Mark J. Schervish, Probability and Statistics (Third Edition), Addision-Wesley, 2002

Program	m: VLSI Design & Testing			
Course	Title: System on Chip		Course Code: 17EVEC806	
L-T-P-S	SS: 4-0-0-0	Credits: 4	Contact Hours: 4	
CIE Ma	rks: 50	SEE Marks: 50	Total Marks: 100	
Teachir	ng Hours: 50	Examination Duration: 3 hours		
	1. Verification and Technology Options: Overview of verification, challenges in verification of SOC, Simulation technologies, Static technologies, Formal technologies, Physical verification and analysis, comparing verification options.			10 hrs
	2. Verification Methodology: Verification plans, Testbench creation, Testbench migration, Verification languages, Verification device test, System level verification, Verification IP Reuse, Verification approaches.			10 hrs
	. System level Verification: System design, System verification, Applying the system level testbench, System testbench migration, Bluetooth SOC.			10 hrs
	4. Static Netlist Verification: Netlist verification, Bluetooth SOC arbiter, Equivalence checking, Equivalence checking methodology, RTL to RTL verification, RTL to Gate level netlist verification, Gate level netlist to Gate level, Static timing verification and analysis.			10 hrs
	5. SOC Testing: Importance of system on chip testing, SOC test issues, FPGA Testing: Overview of FPGA, Testing approaches, BIST of programmable resources, Embedded processor based testing.		10 hrs	
Text Bo	ooks			
1.	Prakash Rashinkar, Peter Pa	aterson, Leena Singh, " SOC Verifica	ation –Methodology and Tec	hniques",

Springer 2000

2. Laung-Terng Wang, Charles E. Stroud, Nur A. Touba, "System-on-chip Test Architectures", 2008.

Reference books

- 1. J-M. Berge, O. Levia, J. Rouillard: Hardware/Software Co-Design and Co-Verification, Kluwer, 1997.
- 2. M. L. Bushnell and V. D. Agrawal, Essential of Electronics Testing for Digital, Memory and Mixed-Signal Circuits, Kluwer Academic Publishers, 2001.
- 3. Thomas Kropf, "Introduction to Formal Hardware Verification", Springer 1999.

Program: VLSI Design & Embe	dded Systems		
Course Title: Automotive Elect	ronics and Communication	Course Code: 19EVE	C701
L-T-P: 4-0-1	Credits: 5	Contact Hours: 5 hrs	;
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 50	Examination Duration: 3 hrs		
Chapter No: 1.Automotive Soverview	Systems, Design cycle and A	utomotive industry	9 hrs
automotive supply chain, global and interdisciplinary design. Intre- electronics in automobiles and automobiles, Introduction to po- braking fundamentals, Steering (ry, Vehicle functional domains a challenges. Role of technology in roduction to modern automotive d application areas of electronic ower train, Automotive transmiss Control, ,Overview of Hybrid Vehic ycles(V and A) , Components of E Electronics and cluster.	Automotive Electronics systems and need for c systems in modern sions system ,Vehicle les, ECU Design Cycle	
Chapter No: 2. Embedded s safety systems	ystem in Automotive Applica	tions & Automotive	10 hrs
Automotive grade microcontrollers: Architectural attributes relevant to automotive applications, Automotive grade processors ex: Renesas, Quorivva, and Infineon. EMS: Engine control functions, Fuel control, Electronic systems in Engines, Development of control algorithm for EMS, Look-up tables and maps, Need of maps, Procedure to generate maps, Fuel maps/tables, Ignition maps/tables, Engine calibration, Torque table, Dynamometer testing Safety Systems in Automobiles: Active and Passive safety systems: ABS, TCS, ESP, Brake assist, Airbag systems etc.			
Chapter No: 3. Automotive S	Sensors and Actuators		9 hrs
Sensor characteristics, Sensor response, Sensor error, Redundancy of sensors in ECUs, Avoiding redundancy, Smart Nodes, Examples of sensors: Accelerometer (knock sensors),wheel speed sensors, Engine speed sensor, Vehicle speed sensor, Throttle position sensor, Temperature sensor, Mass air flow (MAF) rate sensor, Exhaust gas oxygen concentration sensor, Throttle plate angular position sensor, Crankshaft angular position/RPM sensor, Manifold Absolute Pressure (MAP) sensor. Actuators: Engine Control Actuators, Solenoid actuator, Exhaust Gas Recirculation Actuator.			
Chapter No: 4. Automotive communication protocols			10 hrs
	nication protocols : need for comr ture, need for CAN in Automotive, C LIN , Flex Ray, MOST.		
Chapter No: 5. Advanced Dr safety standards	iver Assistance Systems (AD	AS) and Functional	7 hrs
•	stems (ADAS):Examples of assista	ance applications: Lane	

Departure Warning, Collision Warning, Automatic Cruise Control, Pedestrian Protection, Headlights Control, Connected Cars technology and trends towards Autonomous vehicles. Functional Safety: Need for safety standard-ISO 26262, safety concept, safety process for product life cycle, safety by design, validation.	
Chapter No: 6. Diagnostics	5 hrs
Fundamentals of Diagnostics: Basic wiring system and Multiplex wiring system, Preliminary checks and adjustments, Self-diagnostic system. Fault finding and corrective measures, Electronic transmission checks and Diagnosis, Diagnostic procedures and sequence, On board and off board diagnostics in Automobiles, OBDII, Concept of DTCs, DLC, MIL, Freeze Frames, History memory, Diagnostic tools, Diagnostic protocols: KWP2000 and UDS.	
Text books:	
 William B. Ribbens, Understanding Automotive Electronics, 6, Newnes Publications, Denton.T , Automobile Electrical and Electronic Systems, Edward Arnold , 1995 	, 2003
References:	
6. William T.M , Automotive Electronic Systems, Heiemann Ltd., London , 1978	
7. Nicholas Navet , Automotive Embedded System Handbook, CRC Press , 2009	
Lab:	
9. Demonstration of cut section modules: Engine, Transmission, Steering, Braking, Sus Automobile dept.	spension -
10. Electronic engine control system: Injection and Ignition control system Transmissi modules	on trainer
11. Modeling an engine Vehicle model simulation with Simulink using PI CONTROLLER	
12. Basic gate logic simulation and modeling using Simulink and realization on the hardware	eplatform.
13. Seat belt warning system simulation and modeling using Simulink and realization on the platform. Vehicle speed control based on the gear input simulation and modeling using and realization on the hardware platform.	
14. Throttle control modeling and simulation using Simulink and realization on the hardware	platform.
15. Accelerator pedal interfacing software modeling and simulation using Simulink and rea the hardware platform.	lization on
16. Develop matlab code for stepper motor control and convert it to Simulink model and embedded hardware	I port it to

Program: VLSI Design & Embedded S	ystems		
Course Title: AUTOSAR and Infotainment	nt	Course Code: 19EVE	E707
L-T-P : 2-0-1	Credits: 3	Contact Hrs: 4	
CIA Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 24	Exam Duration: 3 hrs		
Chapter No. 1: AUTOSAR Fundamentals Evolution of AUTOSAR – Motivations and Objectives AUTOSAR consortium – Stake holders – work Packages, AUTOSAR Partnership, Goals of the partnership, Organization of the partnership, AUTOSAR specification, AUTOSAR Current development status, BSW Conformance classes: ICC1, ICC2, ICC3, and Drawbacks of AUTOSAR.			4 hrs
Chapter No. 2: AUTOSAR layered Architecture AUTOSAR Basic software, Details on the various layers, Details on the stacks Virtual Function Bus (VFB) Concept Overview of AUTOSAR Methodology, Tools and Technologies for AUTOSAR AUTOSAR Application Software Component (SW-C), Types of			4 hrs

SW-components AUTOSAR Run Time Environment (RTE): RTE Generation Process: Contract Phase, Generation Phase, MCAL, IO HW Abstraction Layer, Partial Networking, Multicore, J1939 Overview, AUTOSAR Ethernet, AUTOSAR E2E Overview, AUTOSAR XCP, Metamodel, From the model to the process, Software development process.	
Unit - 2	
Chapter No. 3: Methodology of AUTOSAR and Communication in AUTOSAR CAN Communication, Application Layer and RTE, intra and inter ECU communication, Client-Server Communication, Sender-Receiver, Communication, CAN Driver, Communication Manager (ComM), Overview of Diagnostics Event and Communication Manager	4 hrs
Chapter No. 4: BSW Development and Integration	4 hrs
BSW Constituents: Memory layer, COM and Services layer, ECU abstraction, AUTOSAR, Operating system, Interfaces: Standard interface, AUTOSAR standardized interface, BSW-RTE interface, (AUTOSAR interface), BSW-ECU hardware interface, Complex device drivers and BSW module configuration, AUTOSAR Integration.	
Chapter No. Chapter 5: Infotainment Systems in Automobiles	4 hrs
Infotainment Systems Fundamentals: Radio, Multimedia, and Navigation: Introduction to In Vehicle Infotainment (IVI) systems, Use of operating systems in IVI, GENIVI Alliance, Tuner: AM/FM, XM/Sirrus, DAB/DMB, Software Defined Radio; Concepts of HD, radio, Ensemble, Traffic Announcements, Spread Spectrum, d. Multimedia: Types of Media; Music, Video, Podcasts, etc. Media management; Playback, Track Control, Metadata, Playlists, Categories, Trick play, Audio/Video Source Management, Navigation: Points of Interests, Routes, Waypoints, Dead Reckoning position, Traffic Info, GLONASS, GNSS, RTK, GPS, and SBAS/GBAS,INS f. Media types: CD, DVD, CDDA, USB, SDCARD, Media Formats:MP3, WMV, RealAudio/Video, QTP, Architecture – Design Patterns - Proxies, Adaptors, Interfaces, Singleton, Factory method	
Chapter No. Chapter 6: Communication Systems in Automobiles	4 hrs
Automotive & Consumer Electronic Communication Systems: Introduction to Bluetooth – Pairing, HFP, A2DP, PAN, PBAP, DUN, Concepts of MOST network, DLNA, AVB, Concepts of TCP/IP, Ethernet, WiFi, WiFi Direct, MyWiFi and CAN, Mirror link, Tethering	
Text Books (List of books as mentioned in the approved syllabus)	
Ronald K. Jurgen, Infotainment systems, 2007, SAE International, 2007	