

Semester: III

							Mai	rks	
Course Code	Course Title	Category	L	Т	Р	Hrs	Credits	ISA	ESA
15EMAB201	Statistics And Integral Transforms	BS	4	0	0	4	4	50	50
15EMAB231	Calculus And Integral Transforms	ВЗ	4	0	0	4	4	50	50
18EARC201	Analog & Digital Electronic Circuits	ES	4	0	0	4	4	50	50
18EARC202	Kinematics Of Machinery	PSC	4	0	0	4	4	50	50
18EARC203	Data Structure Algorithm Design and Analysis	PSC	4	1	0	6	5	50	50
18EARC204	Mechanics Of Materials	ES	3	0	0	3	3	50	50
18EARC205	Manufacturing Technology	PSC	3	0	0	3	3	50	50
18EARP201	Analog & Digital Electronic Circuits Lab	PSC	0	0	1	2	1	50	50
18EARP202	Kinematics Of Machinery lab	PSC	0	0	1	2	1	80	20
18EARP203	Machine Drawing Lab	PSC	0	0	1	2	1	80	20
Total			22	1	3	30	26		

ISA: Internal Semester Assessment, ESA: End Semester Assessment, L: Lecture T: Tutorials,

						Mai	rks		
Course Code	Course Title	Category	L	Т	Р	Hrs	Credits	ISA	ESA
15EMAB206	Numerical Methods and Partial differential equations	BS	4	0	0	4	4	50	50
15EMAB241	Vector calculus and differential								
18EARC206	Machine Design	PSC	3	0	0	3	3	50	50
18EARC207	Control Systems	PSC	4	0	0	4	4	50	50
18EARC208	Microcontrollers Programming & Interfacing	PSC	4	0	0	4	4	50	50
18EARC209	Object Oriented Programming & DBMS	PSC	3	0	0	3	3	50	50
18EARC210	Robot analysis & design	PSC	4	0	0	4	4	50	50
16EARP205	Manufacturing Technology Lab	PSC	0	0	1	2	1	50	50
18EARP208	Microcontrollers Programming & Interfacing Lab	PSC	0	0	1	2	1	80	20
18EARP209	Object Oriented Programming & DBMS Lab	PSC	0	0	2	4	2	80	20
	Total				4		26		

Semester: IV

ISA: Internal Semester Assessment, ESA: End Semester Assessment, L: Lecture T: Tutorials,

								M	arks
Course Code	Course Title	Category	L	т	Р	Hrs	Credits		
			L		r	піз	Credits	ISA	ESA
17EARC301	Object Oriented Programing and Data base management systems	PSC	4	0	0	4	4	50	50
17EARC302	Programming Industrial Automation Systems	PSC	3	0	0	3	3	50	50
17EARC303	Mechatronics System Design	PSC	3	0	0	3	3	50	50
17EARC304	Measurement Systems	PSC	3	0	0	3	3	50	50
17EARC305	Machine Learning & ROS	PSC	3	0	0	3	3	50	50
17EARC306	Robot analysis & design	PSC	4	0	0	4	4	50	50
17EARP301	Object Oriented Programing and Data base management systems Lab	PSC	0	0	1	2	1	80	20
17EARP302	Programming Industrial Automation Systems Lab	PSC	0	0	1	2	1	80	20
17EARP303	Mechatronics & Measurement Lab	PSC	0	0	1	2	1	80	20
17EARW301	Mini project	PRJ	0	0	3	6	3	50	50
	Total				6	32	26		

Semester: V

ISA: Internal Semester Assessment, ESA: End Semester Assessment, L: Lecture T: Tutorials,

									arks
Course Code	Course Title	Category	L	Т	Р	Hrs	Credits		
			L	1	1	1115	Creuits	ISA	ESA
16EARC307	Real-time Embedded Systems	PSC	4	0	0	4	4	50	50
17EARC308	Hydraulics & Pneumatics	PSC	3	0	0	3	3	50	50
17EARE301	AI for Autonomous Robots	PSE	3	0	0	3	3	50	50
15EARE302	Computer Vision & Digital Image Processing	PSE	3	0	0	3	5	50	50
16EARE301	Power Electronics Motors & Drives	PSE	3	0	0	3		50	50
17EARE304	Digital System Design & FPGA programming	PSE	3	0	0	3	3	50	50
16EARP302	Hydraulics And Pneumatics Lab	PSC	0	0	1	2	1	80	20
17EARP306	Industrial Robotics Lab	PSC	0	0	1	2	1	80	20
16EARP307	Real Time Embedded Systems Lab	PSC	0	0	1	2	1	80	20
17EARW302	Minor project	PRJ	0	0	6	6	6	50	50
	PALR	HSC	3	0	0	3	3		
	Total			1	9		25		

Semester: VI

ISA: Internal Semester Assessment, ESA: End Semester Assessment, L: Lecture T: Tutorials,

Semester: VII

						Marks			
Course Code	Course Title	Category	L	т	Р	Hrs	Credits		
			L	1	r	пrs	Creuits	ISA	ESA
16EARC401	Industrial Data Networks	PSC	4	0	0	4	4	50	50
16EARE401	Measurement Systems	PSE	3	0	0	3	3	50	50
16EARE402	Advanced Microcontroller	PSE	3	0	0	3	3	50	50
16EARE403	Machine learning & ROS	PSE	3	0	0	3	3	50	50
	Open Elective	OE	3	0	0	3	3	50	50
15EHSN401	CIPE	HSC	3	0	0	3	0	50	50
	Total		23	0	0	19	16		

ISA: Internal Semester Assessment, ESA: End Semester Assessment, L: Lecture T: Tutorials,

Semester: VIII

						Marks			
Course Code	Course Title	Category	L	Т	Р	Hrs	Credits		
			Ľ			111.5	Creatis	ISA	ESA
15EARE404	Design of Automatic Machinery	PSE	3	0	0	3	3	50	50
XXX	Open Elective	OE	3	0	0	3	3	50	50
		OR							
17EARW401	Project	PRJ	0	0	14	14	14	50	50
18EARI493	Internship	IE	0	0	6	6	6	50	50
18EARW494	Industry Internship -Project Work	IEPRJ	0	0	14	14	14	50	50
	Total		6	0	20	0	20		

ISA: Internal Semester Assessment, ESA: End Semester Assessment, L: Lecture T: Tutorials,

	Course Content				
Course Code: 18EARC201	Course Title: Analog	and Digital Electronic Circuits			
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 50			
ISA Marks: 50	ESA Marks: 50	Total Marks: 100			
Teaching Hrs: 50		Duration of ESA: 3 hrs			
	Content		Hrs		
	Unit - 1	1			
1.0 Introduction of PN junctions and analog electronics Diode theory, forward and reverse biased junctions, reverse- bias breakdown, load line analysis, diode applications – limiters, clippers, clampers, voltage multipliers, half wave and full wave rectification, voltage regulators, voltage dividers, pull up, pull down, optocoupler, special purpose diodes – Zener diode, varactor, light emitting diodes, photodiodes. Network theorems and applications: KVL, KCL, Node Method, Loop Method, Superposition, Thevenin's Theorem and Norton's Theorem.					
2.0 Transistors Bipolar Junction Transistors and introduction to MOSFET: Operating point, Fixed bias circuits, Emitter stabilized biased circuits, Voltage divider biased, Bias stabilization, BJT transistor modeling, , Emitter follower, CB configuration, Collector feedback configuration, analysis of CE configuration using h- parameter model; Relationship between h-parameter model of CE,CC and CB configuration, Introduction to MOSFETs, MOSFET as a switch.					
3.0 Operational Amplifiers Op-Amp Basics, practical Op-Amp circuits, differential and Common mode operation, Inverting & Non-Inverting Amplifier, differential and cascade amplifier, Op-Amp applications: Voltage follower, Comparator, summing, integrator, differentiator, instrumentation amplifiers, Schmitt trigger, Op-amp based oscillators.					
	Unit - 2				
4.0 Number system and digital Decimal, binary, octal, hexaded codes, signed numbers, 1s and 2 Logical Operators, Logic Gates concepts, Universal Gates and Performance Characteristics and	cimal number system and s complement codes, Bina -Basic Gates, Other gates realization of other gates	ary arithmetic. s, Active high and Active low	6		

5.0 Boolean algebra and combinational logic circuits Binary logic functions, Boolean laws, truth tables, half adder, full adder, subtractor, associative and distributive properties, DE Morgan's theorems, realization of switching functions using logic gates. Switching equations, canonical logic forms, sum of product & product of sums, Karnaugh maps, two, three and four variable Karnaugh maps, simplification of expressions.	7
6.0 Design of combinational logic circuits and sequential logic Introduction to combinational circuits, code conversions, decoder, encoder, priority encoder, multiplexers as function generators, binary adder, subtractor, BCD adder, Binary comparator, arithmetic logic units. Sequential circuits, flip-flops, clocked and edge triggered flipflops, timing specifications, asynchronous and synchronous counters, counter design with state equations, Registers, serial in serial out shift registers, tristate register, timing considerations.	7
Unit - 3	i
7.0 Data conversions Introduction to data conversions, $R/2^nR$ DAC, $R/2R$, Flash, Digital ramp ADC, Successive approximation ADC, Slope (integrating) ADC, Delta-Sigma ($\Delta\Sigma$) ADC, Practical considerations of ADC circuits.	5
8.0 Digital integrated circuits Logic levels, propagation delay time, power dissipation fan-out and fan-in, noise margin, logic families and their characteristics TTL, LSTTL CMOS and ECL integrated circuits and their performance comparison, open collector and tristate gates and buffers.	4

Cour	se Code: 18EARC202	Course Title: Kinematics of	Machinery				
L-T-P	2: 4-0-0	Credits: 4	Contact Hrs.: 50)			
ISA N	Narks: 50	ESA Marks: 50 Total Marks: 100					
Teac	Feaching Hrs.: 50 Exam Duration						
	U	NIT – I					
No	Con	tent		Hrs			
1	Chapter No. 1. INTRODUCTION TO KINEMATICS The Subject of Kinematics and Dynamics of Machines, Kinematics and Dynamics as Part of the Design Process, Is It a Machine, a Mechanism, or a Structure?, Examples of Mechanisms; Terminology, Mobility of Mechanisms, Kinematic Inversion, Grashof's Law for a Four-Bar Linkage.						
2	Chapter No. 2. POSITION ANALYSIS Kinematic Requirements in Design, The Process of Kinematic Analysis, Kinematic Analysis						
3	Chapter No. 3. VELOCITY & ACCELERATION ANALYSIS Velocity Vector, Equations for Velocities, Applications to Simple Mechanisms, Applications to Compound Mechanisms. Acceleration Vector, Equations for Accelerations, Applications to Simple Mechanisms, Applications to Compound Mechanisms.						
	U	NIT - II					
4	Chapter No. 4. CAMS: DESIGN AND KINEMA Types of Cam, Types of Followers, Prescribed Graphical disk cam profile design, Pressure a profile design.	l follower motion, Follower ı		7			

_	Chapter No. 5. GEARS: KINEMATIC ANALYSIS AND SELECTION					
5	Types of gears, spur gear terminology, involute tooth profiles, spur gear kinematics, rack	7				
	and pinion kinematics, gear trains, idler gears, planetary gear trains.					
	Chapter No. 6. BELTS AND CHAIN DRIVES					
6	Types of Belt, Belt drive geometry, Belt drive kinematics, Types of Chains, Chain drive	6				
	geometry, Chain drive kinematics.	O				
	UNIT - III					
	Chapter No. 7. SCREW MECHANISMS					
7	Thread features, Thread forms, Ball screws, Lead Screw kinematics, Screw forces and	5				
	torques, Differential screws, Auger screws.					
	Chapter No. 8. STATIC FORCE ANALYSIS					
8	Forces ,Moments and Torques, Laws of Motion, Free-Body Diagrams, Drawing a Free-	5				
	Body Diagram, Characterizing Contact Forces, Static Equilibrium, Analysis of a Two-Force	5				
	Member, Sliding Friction Force.					

Course Code: 18EARC203	Course Title: Data structures ,Algorithm design and analysis					
L-T-P : 4-1-0	Credits: 4	Contact Hrs: 50				
ISA Marks: 50	ESA Marks: 50	Total Marks: 100				
Teaching Hrs: 50		Exam Duration: 03 hours				

Content	Hrs
Unit - 1	<u>.</u>
Chapter 1: GENERAL PROBLEM SOLVING CONCEPTS- Problem Solving in Everyday Life, Types of Problems, Problem Solving with Computers - Problem Definition, Solution Design & Refinement, Testing Strategy Development, Program Coding and Testing, Using the Problem Solving Method, Break-Out Diagrams, Difficulties with Problem Solving. How the Computer Stores Data, Functions-function prototypes, Operators, Expressions and Equations.	6 hrs
Chapter 2: DESIGN AND ANALYSIS OF ALGORITHMS -Algorithms and Their Representations, Modifying Algorithms, Review of Asymptotic Notations, Mathematical Analysis of Non-Recursive and Recursive Algorithms, Brute Force Approaches: Introduction, Selection Sort and Bubble Sort, Sequential Search and Brute Force String Matching , Divide and Conquer: General Method, Defective Chess Board, Binary Search, Merge Sort, Quick Sort and its performance.	7 hrs
Chapter 3: ARRAYS, STACKS & QUEUES: Arrays, Dynamically Allocated Arrays, , Polynomials, Sparse Matrices, Representation of Multidimensional Arrays, Structures and Unions, Stacks, Stacks Using Dynamic Arrays, Queues, Circular Queues, Evaluation of Expressions, Queues, Single- and Double-Ended Priority Queues.	7 hrs

Unit - 2	
Chapter 4: LINKED LISTS, TREES & GRAPHS: Singly Linked lists and Chains, Representing Chains in C, Linked Stacks and Queues, Polynomials, Additional List operations, Sparse Matrices, Doubly Linked Lists. Introduction, Binary Trees, Binary Tree Traversals, Graph representation, Adjacency matrix, Adjancey list, Application of graphs.	8 hrs
Chapter 5:DYNAMIC PROGRAMMING & GREEDY METHOD: Depth First Search and Breadth First Search, The General Method, Warshall's Algorithm, Floyd's Algorithm for the All-Pairs Shortest Paths Problem, Single-Source Shortest Paths, The Traveling Salesperson problem, Kruskal's algorithm, Huffman trees.	7 hrs
Unit - 3	

Chapter 6: INTRODUCTION TO C++: Overview of C++, Sample C++ program, Different 8 hrs data types, operators, expressions, and statements, arrays and strings, pointers & user defined types. Class Specification, Class Objects, Scope resolution operator, Access members, Defining member functions, Data hiding, Constructors, Destructors, Parameterized constructors,

Chapter 7:BASIC OOP CONCEPTS: Base Class, Inheritance and protected members, 7 hrs Protected base class inheritance, Inheriting multiple base classes, Virtual function, Calling a Virtual function through a base class reference, Virtual attribute is inherited, and Virtual functions are hierarchical, Pure virtual functions, Abstract classes, Using virtual functions.

Course Code: 18EARC204 Course Title: Mechanics of Materials				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 50		Exam Duration: 3	hrs	
Content				
Unit - 1				
Chapter No. 1.Stress & Strain				
Introduction, Normal Stress Under Axial Loading, Direct Shear Stress ,Bearing Stress, Stresses on Inclined Sections, Equality of Shear Stresses on Perpendicular Planes, Strain, Displacement, Deformation, and the Concept of Strain, Normal Strain, Shear Strain				
Chapter No. 2. Mechanical Properties of Materials				

 KLE TECH.
 KLE Technological

 Creating Value
 Creating Value

 Leveraging Knowledge
 DEPARTMENT OF AUTOMATION & ROBOTICS

The Tension Test, The Stress–Strain Diagram, Hooke's Law, Poisson's Ratio, Design Concepts,	
Types of Loads, Safety, Allowable Stress Design, Load and Resistance Factor Design	
Chapter No. 3.Axial Deformation	5 hrs
Introduction, Saint-Venant's Principle ,Deformations in Axially Loaded Bars ,Deformations in a	
System of Axially Loaded Bars, Statically Indeterminate Axially Loaded Members	
Unit - 2	
Chapter No. 4.Torsion	5 hrs
	5 11 5
Introduction, Torsional Shear Strain, Torsional Shear Stress, Stresses on Oblique Planes,	
Torsional Deformations, Torsion Sign Conventions, Power Transmission, Statically	
Indeterminate Torsion Members.	
Chapter No. 5. Equilibrium of Beams	5 hrs
Introduction, Shear and Moment in Beams, Graphical Method for Constructing Shear and	
Moment Diagrams, Discontinuity Functions to Represent Load, Shear, and Moment	
Chapter No. 6.Bending	5 hrs
	21112
Introduction, Flexural Strains, Normal Stresses in Beams, Analysis of Bending Stresses in Beams,	
Introductory Beam Design for Strength, Flexural Stresses in Beams of Two Materials, Bending	
Due to Eccentric Axial Load, Un symmetric Bending	
Unit - 3	
Chapter No. 7. Shear Stress in Beams	5 hrs
Introduction, Resultant Forces Produced by Bending Stresses, The Shear Stress Formula, The	
First Moment of Area Q, Shear Stresses in Beams of Rectangular Cross Section, Shear Stresses in	
Beams of Circular Cross Section.	
Chapter No. 8. Beam Deflections	5 hrs
Introduction, Moment-Curvature Relationship, The Differential Equation of the Elastic Curve,	
Deflections by Integration of a Moment Equation, Deflections by Integration of Shear-Force or	
Load Equations, Deflections Using Discontinuity Functions	

Course Code: 18EARC205	Course Title: Manufacturing Technology		
L-T-P: 4-0-0	Credits: 4 Contact Hrs: 50		
ISA Marks: 50	ESA Marks: 50 Total Marks: 100		
Teaching Hrs: 50	Exam Duration: 3 hrs		

Content	Hrs
Unit - 1	
Chapter No. 1. Turning , Shaping and Planing Machines Classification, constructional features of Lathe, Shaping Machine, Planing Machine. Driving mechanisms of Lathe, Shaping and Planing machines. Different operations on Lathe, Shaping Machine & Planing Machine. Cutting tools. Simple problems on machining time calculations.	7 hrs
Chapter No. 2. Milling Machines Classification, constructional features of milling machines. Types of milling cutters & milling cutter nomenclature. Milling processes, up milling and down milling concepts. Various milling operations. Indexing: Simple, compound, differential and angular indexing. Simple problems on simple and compound indexing	7 hrs
Chapter No. 3. Drilling & Grinding Machines Classification, constructional features of drilling machine & related operations. Types of drill & drill bit nomenclature, drill materials. Types of abrasives, Grain size, bonding process, grade and structure of grinding wheels, grinding wheel types. Classification, constructional features of grinding machines (Center less, cylindrical and surface grinding). Selection of grinding wheel, dressing and truing of grinding wheels. Analysis of the grinding process.	6 hrs
Unit - 2	
Chapter No. 4. CNC Machine Tools Introduction to CNC machines- Principles of operation. Axes of CNC machine-Coordinate systems. Elements of CNC machines, Basics of Manual part programming methods.	7 hrs
Chapter No. 5. Nontraditional Machining Need for nontraditional machining, principle, equipment & operation of Abrasive Jet Machining, Water Jet Machining, Electro-Chemical Machining, Electrical Discharge Machining, Wire EDM, Electron Beam Machining, Laser Beam Machining & Plasma Arc Machining	7 hrs
Chapter No. 6. Metrology and Inspection Definition, need of inspection, terminologies, methods of measurement. Standards of measurement-line standards, end standards & wavelength standards. Limits, fits & gauges-introduction, tolerances, limits of size, fit and tolerances, Limit gauges classification.	6 hrs

Unit - 3	
Chapter No. 7. Comparators and Angular Measurement Devices Characteristics of comparators, classification of comparators- Mechanical, Electrical & Pneumatic comparators. Introduction to angular measurement - Vernier & optical Bevel Protractor, sine bar, sine centre, angle gauges.	5 hrs
Chapter No. 8. Advanced Metrology Introduction & applications of: Co-ordinate Measuring Machine-important features of CMM, possible causes of errors in CMM, Performance, applications & advantages of CMM. Universal Measuring Machine- comparison of CMM & UMM, inspection on UMM. Precision instruments based on laser – principle- laser interferometer- application in linear, angular measurements	5 hrs

Laboratory Plan

Semester: 3

FMTH0303-3.1

Year: 2019-2020

Laboratory Title: Analog and Digital Electronic Circuits Lab	Lab. Code: 18EARP201
Total contact Hours: 28	Duration of ESA: 3 hours
Total ISA Marks: 80	Total ESA Marks: 20

Experiment wise Plan

List of experiments/jobs planned to meet the requirements of the course.

Category: Demonstration		Total Weightage: 10.00		No. of lab sessions: 2.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experi ment	Correlation of Experiment with the theory
01	Demonstration of lab equipments and components: CRO, Multimeter, Function Generator, Power supply- Active/Passive Components & Bread Board. Demonstration of Software – Multisim / Ultiboard.	1.00		
	Learning Objectives: The students should be able to: 1. Identify and demo knowledge of functioning and purposes of different components like Resistors, Inductors, capacitors, transistors etc. 2. Identify and demo knowledge of functioning and purposes of different Test and Measuring equipments such as Multimeters, Power Supplies, CROs and Function generators etc. 3. Simulate circuits using Multisim software.		UNIT I Chapter 1	
Category: Exercise Total Weightage: 5.00			No. of lab sessions:	

				1.00
2	Design and implementation of Rectifiers with and without filters.	1.00	5.00	
	Learning Objectives: The students should be able to: 1. Draw and understand the use of diodes in half wave without filter and with filter.	e and fullwave	rectifiers	UNIT I Chapter 2
	 Calculate the ripple and efficiency. Calculate the peak value of the output voltage of the rms input value. The process of AC to DC conversion 	e rectifiers give	en the	
3	Construction and implementation of linear voltage regulators and Zener diode as a voltage regulator	1.00	10.00	
	Learning Objectives: The students should be able to: 1. Build, modify, and test the regulator ability to maintain the output voltage constant. 2. Learn about control element, reference voltage, error detector and sample circuit.			UNIT I Chapter 1
	3. Study the Applications of the Zener diode as a volta	ge Regulators.		
4	Construction and implementation of voltage dividers and optocoupler.	2.00	5.00	
	Learning Objectives: The students should be able to: 1. Designing, building and analyzing real circuits.			UNIT II Chapter 5
	 Using this techniques to design a circuit for a high in Understand the design of optocoupler circuits in difference 	·	ions	
5	Verification of Superposition, Thevinen's and Network theorems.	2.00	5.00	
	Learning Objectives: The students should be able to:			UNIT II

	1. Explain and Learn circuit analysis using these theorems.				
	2. How to solve linear circuit problems and short circuit current.				
	3. Verifification of Network theorems using Multisim a	and Elvis Board	d		
Catego	Category: Structured Enquiry Total Weightage: 10.00				
6	Construction and implementation of Transistor biasing, Darlington amplifier and MOSFET as a switch.	2.00	10.00		
	Learning Objectives: The students should be able to: 1. Construction of transistors amplification circuit usin	ng Multisim.		UNIT II Chapter 4	
	2. Desugn and Implementation of transistor amplifier using NPN and PNP transistor.				
	 3. Understand and analyze the transistor biasing, transistor amplifier, and Darlington amplifier. 4. Design and construction of MOSFET as a switch. 				
7	Construction and implementation of Summing amplifier and schimitt trigger	2.00	10.00		
	Learning Objectives: The students should be able to: 1. Learn how to design and implement of a Summing amplifier and Schmitt trigger using opAmp.				
	2. Simulation of summing amplifier and Schmitt trigger circuit using Multisim software.				
8	Construction and implementation of verification of logic gates, and Adders/ Subtractor using logic gates	2.00	10.00		
	Learning Objectives: The students should be able to: 1. Learn to design and Implementation of the given boolean function using logic gates			UNIT II Chapter 6	
	2. Design and implementation of Adders and Subtractor				

	3. Learn how to design the adders and Subtractors using using Multisim software				
	4. A	Applications of Adders and Subtractors.			
9		sign and implementation of code convertors, coder, and decoder using logic gates	2.00	10.00	
	1.	rning Objectives: The students should be able to: Design and implementation of converters using logi Learn how to design and implementation of encode		ers	UNIT III Chapter 7
	3.	Learn how and where to use encoders and decoder	S		
10	Design an 8-bit ADC circuit that utilizes LEDs to indicate its binary output value. Use a reference voltage of 2.5V to 5 VDC.2.0010.00				
	 Learning Objectives: The students should be able to: 1. Learn how to design and implement 8 bit ADC circuit that to indicate its binary output values. 2. Understands why to use Analog to Digital converter. 				UNIT III Chapter 7
Category:	Viva	a, Journal and Attendance	Total Weight	age: 10	No. of lab sessions: 01
Expt./ Job No.		Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experi ment	Correlation of Experiment with the theory
09		Viva, Journal and Attendance	01	5	
	Learning Outcomes : The students should be able to: 1. Command of appropriate communication skills such as technical reports, viva and presentations through the lab.				

	2. Maintaining the punctuality to all the lab sessions.			
Category: Ope	en Ended Enquiry	Total Weight	age: 20	No. of lab sessions: 02
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experi ment	Correlation of Experiment with the theory
10	Project	02	20	
	Learning Outcomes : The students should be able to: 1. Carryout a project in a team. 2. Come up with PCB design using Ultiboard or Eag	gle.		

FMTH0303-3.1

Laboratory Plan

Semester :3

Year:2019-2020

Laboratory Title: Kinematics of Machinery	Lab. Code:18EARP202
Total Hours: 24	Duration of Exam:3 hrs
Total Exam Marks: 100	Total ISA. Marks: 80

Experiment wise Plan

List of experiments/jobs planned to meet the requirements of the course.

Category	: Demonstration	Total Weightage: 10.00		No. of lab sessions: 3.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	SolidWorks Motion	1.00		
	Learning Outcomes: The students should be able to: 1. Demonstrate the commands used 2. Demonstrate the use of advanced The students are asked to answer the 1. How do you start a SolidWorks Mo 2. How do you activate SolidWorks M 3. What types of motion analyses are	I mates and mechani following questions tion session? otion Add-In?	cal.	UNIT – I

Categor	y: Exercise	Total Weighta	age: 50.00	No. of lab sessions: 9.00
	5. How will the motion of a roller be d		·	
	included? 4. Calculate the velocity of the block a	t the bottom of the	ramp?	
	3. What will be the motion of the	block on the plan	e if friction is	
	2. Calculate the velocity of the block at the bottom of the ramp if we know its starting position?			
	1. What will be the motion of the friction?	block on the plane	if there is no	UNIT – I
	 Demonstration of sliding, and rig motion 2. Examine problems invo down inclined planes. The students are asked to answer the 	olving objects sliding	and/or rolling	
	Learning Outcomes: The students should be able to:			
	body rotations (using SolidWorks motion)			
3	the final position, direction and veloci Simulations of sliding, and rigid		5.00	
	The students should be able to: 1. Simulate and compare the result Graphically determine the combined		-	UNIT – I
	Learning Outcomes:			
2	Position, Velocity and Acceleration Analysis	1.00	5.00	
	6. What does SolidWorks Motion analysis calculate?			
	5. Why analysis is important?			
	4. What is analysis?			

Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	Motion simulation 4 bar linkage(Tracing the path generated by the points on the mechanisms)	1.00	5.00	
	Learning Outcomes: The students should be able to: 1. Simulate and apply motors to the giv asked to answer the following question of 4 bar linkage with respective to each following key figures of Motion Simu motors to simulate the movement. 3. Se	s Students simula other. This exercial lation in SolidWo	ate the motion cise shows the orks. 2. Apply	UNIT-I
2	Motion Analysis of a 4 bar mechanism (Using SolidWorks Motion)	1.00	5.00	
	Learning Outcomes: The students should be able to: 1. Simulation of 4 bar link mechanism 2 Plot angular acceleration and angular v able to: Use SolidWorks Motion Simulat on the assembly shown below. The a displacement of 45 degrees in 1 sec in 5 required to determine the angular veloc links as a function of time & Create a Tra	velocity The stude tion to perform n green link is give the clockwise dire ity and acceleratio	ents should be notion analysis en an angular ection and it is on of the other	UNIT-I
3	Modification of the geometry of 4 bar mechanism and its effect on kinematic properties (Using SolidWorks Motion)	1.00	5.00	
	Learning Outcomes: The students should be able to: 1. Modify the geometry of Link3 so that	the 4-Bar mecha	nism looks like	UNIT-I

	the one shown in the image below. Now ask them to use SolidWorks Motion to calculate the new torque required to drive this mechanism. Use the same uniform angular velocity input of 45 deg/sec. Will the new driving torque be higher or lower? Why?			
4	Motion analysis of a Slider Crank Mechanism	1.00	5.00	
	Learning Outcomes: The students should be able to: 1. Use SolidWorks Motion to simulate a slider crank mechanism. The goal of the students is to calculate the velocity and acceleration of the center of mass of the reciprocating part (using SolidWorks motion)			UNIT-I
5	Analysis of Torque and Power of a rotating drum	1.00	5.00	
	Learning Outcomes: The students should be able to: 1. Compute the torque and power analytically 2. Obtain the results in SolidWorks.			UNIT-I
6	MATLAB Simscape Multibody Link	2.00	10	UNIT-I
	Simscape [™] Multibody [™] Link is a CAD plug-in for exporting CAD assemblies from SolidWorks [°] , Autodesk Inventor [°] , and PTC [°] Creo [™] software. The plug-in generates an XML file detailing the structure and properties of your CAD assembly and 3-D geometry files for visualizing the various CAD parts. You can then import the files into Simscape Multibody software, which parses the XML data and automatically generates an equivalent multibody model.			UNIT-I
7	Simulation of CAM – Following mechanism	1.00	5.00	
	Learning Outcomes: The students should be able to: 1. Design and simulate the motion of motion 2. Applying motors to simula		-	UNIT-II

	time flow and frame rate.			
8	Gears: Motion study of spur gears & Planetary gear.	1.00	5.00	
	Learning Outcomes:			
	The students should be able to:			
	1. Import Standard Gears from Solid	Works toolbox.		UNIT-II
	2. Mesh and simulate the different Pinion and Planetary Gear).	types gears (Spur g	ear, Rack and	
9	Simulation of Belt and Chain Drive Mechanism.	2.00	5.00	
	Learning Outcomes:			
	The students should be able to:			UNIT-II
	1. Simulate the conveyor system us	ing belt and chain c	ommand using	
	SolidWorks Motion Study.			
Categor	SolidWorks Motion Study. y: Structured Enquiry	Total Weightage	: 10.00	No. of lab sessions: 2.00
Categor Expt./ Job No.	·	Total Weightage No. of Lab Session(s) per batch (estimate)	: 10.00 Marks / Experiment	sessions:
Expt./	y: Structured Enquiry	No. of Lab Session(s) per	Marks /	sessions: 2.00 Correlation of Experiment with the

simulate the effect of: • Forces • Springs • Dampers • Gravity • Contact
between components • Bushings

Semester: III

Year:2019-2020

Laboratory Title: Machine Drawing Lab	Lab Code: 18EARP203
Total Contact Hours: 24	Duration of ESA Exam:2 hrs
Total ISA Marks: 80	Total ESA Marks :20

Experiment wise plan

1. List of experiments/jobs planned to meet the requirements of the course.

	Category: Demonstration	Total	No. of lab sessions: 3
		Weightage: 10	
Expt./Job No.	Experiment/job Details	No. of Lab. Session/s per batch (estimate)	Marks/Experiment
	Title : Blueprint Reading	1	
	Learning outcomes		
 Explain the importance of information on blueprints. Explain the differences between assembly drawings and detail d Describe methods used to create and reproduce blueprints. Define and describe parts of a blueprint. Identify elements located within the title block of a detail drawir List methods of care and security of blueprints. Identify the standard lines used on blueprints. Explain the meaning and applications of standard lines on blueprint. Name the advantages and disadvantages of various projection ty Explain the concept of visualization. Requirement modeling 		nts. I drawing. n blueprints.	
2	Experiment/job Details	No. of Lab. Session	Marks/Experiment
-	Title: Geometric Dimensioning and Tolerancir	ng 1	5

	Learning outcomes				
	 Concepts of zero defects & on-target Tolerancing Drawing conventions used in GD&T for ANSI and ISO applications Limits, fits and datum systems Form control, orientation control, location control, run-out and profile control Comparison of ANSI and ISO GD&T practices How to standardize GD&T concepts 				
3	Experiment/job Details	No. of Lab. Session	Marks/Experiment		
	Title: Selecting cabinets, enclosures and other packaging systems for electronic products	1	5		
	 <i>Learning outcomes</i> Familiar with protection of equipment indicat by the IP code: 	ed			
	Experiment/job Details	No. of Lab. Session	Marks/Experiment		
	Title: Introduction to Solid Works [®] Interface	1			
4	 Learning outcomes Familiar with the Solid Works[®] user interface Understand the basic functionality of the Solid Works[®] software Create part modeling Become familiar with Microsoft Windows Become familiar with the Solid Works[®] user interface Develop an understanding of 3D modeling and recognition of an object in 3 Apply 2D sketch geometry, rectangle, circle, and dimensions Understand 3D features that add and remove geometry including Extruded Extruded Cut, Fillet and Shell 		on of an object in 3D space ons		
	Category: Exercise	Total Weightage: 60.00	No. of lab sessions: 7.00		

Expt./Job No.	Experiment/job Details	No. of Lab. Session/s per batch (estimate)	Marks/Experiment		
	Title: Part Modeling	3	30		
	Description: Solid Works [®] Essentials teaches you how to use the Solid Works [®] mechanical design automation software to build parametric models of parts and assemblies, and how to make drawings of those parts and assemblies.				
4	 Learning outcomes Using Solid Works[®] 2018 students should be able to execute 20 problems of various commands Reinforce the understanding of 3D features that add and remove geometry Apply 2D sketch geometry, rectangle, circle, and dimensions Understand 3D features that add and remove geometry including Revolve Sweep Apply 2D sketch tools such as ellipse, trim and centerline Create the Candlestick part Understand the 3D Loft feature created from multiple profiles sketched on different planes Create the Chisel part 				
Expt./Job No.	Experiment/job Details	No. of Lab. Session/s per batch (estimate)	Marks/Experiment		
	Title: Modeling & Assembly	2	15		
5	 Learning outcomes Should be able to assemble Knuckle joint, tailstock etc. Familiar with the mating commands in assembly module Develop an understanding of 3D assembly modeling by combining one part wi another part Apply 2D sketch tools to offset geometry and project geometry to the sketch plan 				
Expt./Job No.	Experiment/job Details	No. of Lab. Session/s per batch (estimate)	Marks/Experiment		
6	Title : Solid Works® Routing	1	10		

	 The Routing application is an add-in to the SOLIDWORKS Premium software. With Routing you can create a special type of subassembly that builds a path of pipes, tubes, electrical cables or ducts between components. When you insert certain components into an assembly, a route subassembly is created automatically. Unlike other types of subassemblies, you do not create a route assembly in its own window and then insert it as a component in the higher-level assembly. A route subassembly is made up of three types of entities: Components, which are fittings and connectors, including flanges, tees, electric connectors, and clips. Route parts, which include pipes, tubes, wires, cables, and ducts. Route feature, which includes a 3D sketch of the centerline of the route path. 				
Expt./Job No.	Pob No. of Lab. Session/s per batch (estimate) Marks/Ex				
	Title : Solid Works [®] Sustainability	1	5		
7	 Why Solid Works® Sustainability? As an engineer or product designer, you have the power to dramatically alter how a interact with our environment. The question is how. Many designers don't know at the life cycle assessment (LCA) process or how it could guide them to more sustainadesigns. Others may think the process is too complex and time-consuming, or is solelse's responsibility. Learning about designing for the environment now will put you ahead of the curve. With Solid Works® Sustainability, you'll have the built-in environmental intelligence make more informed decisions about what materials to use. You'll also ESA how re specific material sourcing, manufacturing, use, and disposal will affect your product cycle before manufacturing begins. 				
	Understand the basic concepts of sustainable design Measure the environmental impacts of various des manufacture location, and more on the various pa	sign choices, incluc	•		

Category: Open Ended	Total	No. of lab sessions:
	Weightage:	
	20.00	

	Experiment / Job Details	No. of Lab Sessions per batch (estimate)	Marks / Experiment
	Title : Project Work	2.00	20.00
8	Title : Project Work Learning Outcomes: The students should be able to: 1. The students should be able to: Reverse Engineering The process of duplicating a product, without the aid of drawings, documentareverse engineering. Reverse engineering can be system to 1. Identify the system's components and their in 2. Create representations of the system in anoth 3. Create the physical representation of that syst Tasks Involved: 1. Study the system components and their interr 2. Disassemble the given product 3. Take measurements with tolerance 4. Capture the surface details like texture, color, 5. Identify the material 6. Reproduce the same components using SolidV	in existing comp ation, or comput viewed as the p aterrelationships er form or a hig em elationships	onent, subassembly, or ter model is known as process of analyzing a
	7. Assemble all the components in SolidWorks		

Course Code: 18EARC206	Course Title: Machine Design

L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50		Duration of ESA: 3	3 hrs
Cont	tent		Hrs
Unit	t - 1		1
Chapter No. 1. THE DESIGN PROCESS			5
Introduction, Materials in Design, The E Evolution of Materials in Products, the Desig and Materials Data, Function, Material, Shap	gn Process, Types of	•	
Chapter No. 2. MATERIAL PROPERTY Exploring Material Properties, Modulus-den- strength chart, Maximum service temperature relative cost chart, and The strength-relative ENGINEERING MATERIALS, THEI SELECTION The Families of Engineering Materials, M Properties and Units.	sity chart Strength–d ure chart, Cost bar cost chart. R PROPERTIES	charts, The modulus-	5
Chapter No. 3. KINEMATICS OF GEARS AND GEAR DESIGN Spur Gear Geometry: Involute-Tooth Form, Interference Between Mating Spur Gear Teeth, Devising Gear Trains, Forces, Torque And Power In Gearing, Gear Manufacture, Gear Quality, Allowable Stress Numbers, Stresses In Gear Teeth, Selection Of Gear Material Based On Bending Stress, Design Of Spur Gears, Power-Transmitting Capacity, Practical Considerations For Gears And Interfaces With Other Elements. Forces and stresses on helical gear teeth, design of helical gears, bearing forces on shafts carrying bevel gears, bending moments on shafts carrying bevel gears, design of bevel gears for pitting resistance, forces, friction, and efficiency in worm gear sets, stress in worm gear teeth, surface durability of worm gear drives.		5	
Unit	t - 2		+
Chapter No. 4. KEYS, COUPLINGS, SEA Materials for keys, stress analysis to determ elements to shafts, couplings, universal joint location, types of seals, seal materials, shaft	ine key length, othe ts, retaining rings an	r methods of fastening d other means of axial	5

by machine elements, stress concentrations in shafts, design stresses for shafts, shafts in bending and torsion only, shaft design example, recommended basic sizes for shafts,

 KLE TECH.
 KLE Technological

 Creating Value
 Creating Value

 Leveraging Knowledge
 Creating Value

 DEPARTMENT OF AUTOMATION & ROBOTICS

shaft rigidity and dynamic considerations, flexible shafts **Chapter No. 5. LINEAR MOTION ELEMENTS, SPRINGS, FASTNERS** 5 Power screws, ball screws, application considerations for power screws and ball screws, bolt materials and strength, externally applied force on a bolted joint, thread stripping strength, other means of fastening and joining. Kinds of springs, helical compression springs, stresses and deflection for helical compression springs, analysis of spring characteristics, design of helical compression springs, helical torsion springs, improving spring performance by shot peening, spring manufacturing. **Chapter No. 6. CLUTCHES AND BRAKES** 5 Descriptions of clutches and brakes, types of friction clutches and brakes, performance parameters, time required accelerating a load, inertia of a system referred to the clutch shaft speed, effective inertia for bodies moving linearly, energy absorption: heatdissipation requirements, response time, friction materials and coefficient of friction, plate-type clutch or brake. Unit - 3 Chapter No. 7. BEARINGS: ROLLING CONTACT & SURFACE CONTACT 5 Types of rolling contact bearings, thrust bearings, mounted bearings, bearing materials, load/life relationship, design life, bearing selection: radial loads only, bearing selection: radial and thrust loads combined, mourning of bearings, tapered roller bearings, practical considerations in the application of bearings, importance of oil film thickness in bearings, life prediction under varying loads. Chapter No. 8. MACHINE FRAMES, BOLTED CONNECTIONS AND 5 WELDED JOINTS Machine frames and structures, recommended deflection limits, design to resist bending, design of members to resist torsion, eccentrically loaded bolted joints, types of joints, types of welds, size of weld, method of treating weld as a line, welded joints.

Course Code: 18EARC207	Course Title: Control	Course Title: Control Systems	
L-T-P : 4-0-0	Credits: 5	Contact Hrs: 50	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50		Exam Duration: 3 Hrs	

Content	Hrs
Unit - 1	
Chapter No. 1. Introduction to Control Systems Introduction to Control Systems, Classification of Dynamic Systems, Closed Loop Control System with Feedback, Mathematical Preliminaries – Complex Variables, Laplace Transform.	4
Chapter No. 2. System Modeling in Frequency domain Standard Inputs, Free and Forced Response, Transfer Function, Poles and Zeros, Response to various Inputs, Effect of Poles, Notion of Bounded Input Bounded Output (BIBO) stability, Block diagram reduction and signal flow graphs	8
Chapter No. 3. Time Response Effect of Zeros, Closed Loop Transfer Function, Dynamic Performance Specification, First Order Systems, Second Order Systems, Unit Step Response of Underdamped Second Order Systems, Concepts of Rise Time, Peak Time, Maximum Peak Overshoot and Settling Time, Steady state errors and error constants	8
Unit - 2	
Chapter No. 4. Controllers Controllers – Proportional (P), Integral (I) and Derivative (D) Blocks, Examples of PID controller design, Problems	4
Chapter No. 5: Stability Analysis Routh's Stability Criterion, Use in Control Design, Incorporation of Performance Specifications in Controller Design, Analysis of Steady State Errors, Root Locus and its Application in Control Design.	8

8

Chapter No. 6 : Frequency Domain Analysis Stability analysis, Bode plot, Nyquist Stability Criterion, Relative Stability – Gain and Phase Margins.

Unit - 3	
Chapter No. 7 : Design Via Frequency Response Control System Design via Frequency Response – Lead, Lag and Lag-Lead Compensation	5
Chapter No. 8: Case Studies Plants for Pressure Control, Electromechanical Plants, Modeling and design of Inverted Pendulum, Modeling and design of Aircraft.	5

Cours	e Code: 18EARC208	Course Title: Microcontrollers Programming & Interfacing		
L-T-P-	SS: 4-0-0-0	Credits:4	Credits:4 Contact Hrs: 4	
ISA M	larks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ning Hrs: 50		Exam Duration: 100	
		Unit I		
No	Content			Hrs
1	Chapter 1: Introduction to Microcontroller Introduction To Microprocessor and Microcontroller: History and Evolution, types of microprocessors, Difference between Microprocessors and Microcontrollers. CPU architectures: RISC/CISC and Harvard/Von-Neumann, Overview of PIC Microcontroller family, Introduction to different microcontroller families (8051, ATMEL/AVR, and ARM).			5 Hrs
2	Chapter 2: PIC Microcont	ter 2: PIC Microcontroller Architecture and assembly language program		
2	Architecture and pin func	tions, Registers and Instruc	tions, Data formats and	7 Hrs

		1
	directives, Introduction to assembly language programming, Program counter and	
	program ROM space. Branch, Call and Time delay loop: Branch instructions and	
	looping, Call instruction and stack, Time delay instructions and pipeline. Timing	
	diagrams.	-
	Chapter 3: I/O Port programming	
	I/O port programming, I/O bit manipulation programming, Arithmetic, logic	
3	instructions and programs: Arithmetic instructions, Signed number concepts and	
	arithmetic operations, logic and compare instructions, rotate instructions and data	
	serialization, BCD and ASCII conversion.	8 Hr
	Unit II	
	Chapter 4: PIC and AVR programming in C	
4	Data types and time delays in C, I/O programming, logic operations, data serialization,	
-	program ROM allocation, Program ROM allocation inC18, State diagrams, Timing	
	diagrams in-depth.	5 Hr
	Chapter 5: Timer and Serial port programming	
5	Programming TIMERS 0 and 1, counter programming, Programming TIMER0 and 1 in C,	
	Basics of serial communications, PIC18 connection to RS232, PIC18 serial port	
	programming in assembly and C	8 Hr
	Chapter 6: Interrupt programming in Assembly and C	
	Polling Vs interrupts, PIC18 Interrupts, Programming timer interrupts, programming	
6	external hardware interrupts, programming the serial communication interrupt, PortB	
	change interrupts. ADC, DAC and sensor interfacing: ADC characteristics, ADC	
	programming in the PIC18, DAC interfacing, sensor interfacing and signal interfacing.	7 Hr
		7 П
	Unit – III	. .
	Chapter 7: Introduction to the STMicroelectronics Line of Microcontrollers	
	STM Nucleo Boards, STM32CubeMX Application: Pinout Tab, MCU Alternative	
7	Functions, Integrated Peripheral (IP) Tree Pane, Creating a Project using CubeMX, ARM	
	Cortex Microcontroller Software Interface Standard, Memory-Mapped Peripherals,	5 Hr
	Core Memory Addresses, Peripheral Memory Addresses, HAL_GPIO Module	
	Chapter 8: Interrupts and Timers:	
8	Interrupts, NVIC Specifications, Interrupt Process, External Interrupts, Interrupt	
-	Demonstration, STM Timer Peripherals STM Timer Configuration, Update Event	5 Hr
	Calculation, Polled or Non-interrupt Blink LED Timer Demonstration, Test Run:	וח כ

Interrupt-Driven Blink LED Timer Demonstration, Test Run: Multi-rate Interrupt-Driven Blink LED Timer Demonstration

Course Code: 18EARC209	Course Title: Object Oriented Programming and Database Management Systems		
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hrs: 40		Exam Duration: 2 hrs	

Content	Hrs
UNIT I	J
Chapter 1. Introduction to Software Development Lifecycle	4
Software Development Lifecycle, SDLC Models, Agile Software Development, Requirement Engineering, System Modelling, Architecture Design, Design and Implementation, Software Testing, Software Evolution	
Chapter 2. Introduction to Object-Oriented Programming - I	7

 KLE TECH.
 KLE Technological

 Creating Value
 Creating Value

 Leveraging Knowledge
 DEPARTMENT OF AUTOMATION & ROBOTICS

Structure vs. Class, Components of a Class, Encapsulation, Access Specifiers, Member Functions, Instance of a Class, Default Constructors, Destructors, Accessing Data Fields, Constructors with Parameters, Static Class Members - Data Members and Member Functions, Scope Resolution Operator, Nested Classes, Local Classes, Passing Objects to Functions, Return Objects, Object Assignment, Friend Function, Operator Overloading, Function Overloading, Copy Constructors	
Chapter 3. UML Diagram	4
UML Walkthrough, Class Diagram, Use Case Diagram, State Chart Diagram, Activity Diagram, Sequence Diagram	
UNIT II	
Chapter 4. Introduction to Object-Oriented Programming – II	7
Inheritance, Derived Class, Calling the Base Class Constructor, Overriding Member Functions, Polymorphism, Class Inheritance Hierarchies, Revisiting Class Diagrams, Abstract Classes, Run-Time Information, Early vs. Late Binding, Virtual Base Classes, Multiple Inheritance, Interfaces	
Chapter 5. Entity Relationship (ER) Model	8
High-Level Conceptual Data Models for Database Design, Entity Types, Entity Sets, Attributes and Keys, Relationship Types, Relationship Sets, Roles and Structural Constraints, Weak Entity Types, Relationship Types of Degree Higher than Two, ER Notations, Informal Design Guidelines for Relation Schemas, Functional Dependencies, Normal Forms Based on Primary Keys, First Normal Form (1NF), Second Normal Form (2NF) and Third Normal Form (3NF), Boyce-Codd Normal Form (BCNF)	
UNIT III	
Chapter 6. Database Management System	5
Introduction, Characteristics of Database Approach, Actors on the Scene, Workers Behind the Scene, Advantages and Disadvantages of using DBMS Approach, Data models, Schemas and Instances, Three-Schema Architecture and Data Independence, Database Languages and Interfaces, Database System Environment	
Chapter 7. Cloud Computing	5
Introduction to Cloud Computing, Virtualization Concepts, Main Players, Types of Cloud – Public, Private and Hybrid, Cloud Services – CaaS, SaaS, PaaS, and IaaS, Service Level Agreement, Cloud Security, Cloud Computing at Enterprise Systems Level, Hybrid Cloud	

Options

Cour	rse Code: 18EARC210	Course Title: Robo	t Analysis & Desig	n
L-T-F	L-T-P: 4-0-0 Credits: 4 Contact Hrs: 50			
ISA Marks: 50 ESA Marks: 50 Total Marks: 100				
Teaching Hrs: 50 Duration of ESA:				3 Hrs
		IIT – I		
No	Con	tent		Hrs
1	 Introduction to Robotics and Applications Introduction, Classifications of Robots, Robot Components, Robot Degrees of Freedom, Robot Joints, Robot Coordinates, Robot Reference Frames, Programming Modes, Robot Characteristics, Robot Workspace, Robot Languages, and Robot Applications. Representing Position and Orientation Coordinate frames, representing Pose in 2-Dimensions, representing Pose in 3-Dimensions, representing Orientation in 3-Dimensions, orthonormal Rotation Matrix , three-Angle Representations, combining Translation and Orientation. 			
2	Position Analysis of Serial Manipulators Describing a Robot Arm, Link Parameters and Link Coordinate systems, Homogeneous transformation Matrices, Denavit-Hartenberg, Forward Kinematics, Inverse Kinematics, A 2-Link Robot, A 6-Axis Robot.			8
3	Jacobian Analysis of Serial Manipulators Different Kinematics of rigid body, Different Kinematics of serial manipulators, screw coordinates and screw systems, Manipulator Jacobian Matrix, conventional Jacobian, Screw-Based Jacobian, and Transformations of screw coordinates. Relationship Between Two Methods, condition number, singularity analysis.			6
	UN	IIT - II		
4	Statics and Dynamics of Serial Manipulators Types of gears/ motor/ drives/ encoders, Motion controller (Motion control software),Statics of Serial Manipulators, Transformations of Forces and Moments, mass properties, momentum, transformation of inertia matrix, kinetic energy. Newton-Euler Laws, Recursive Newton-Euler Formulation			6
5	Trajectory planning Path versus Trajectory, Joint-Space versus Cartesian-Space Descriptions, Basics of Trajectory Planning, Joint-Space Trajectory Planning, Third-Order Polynomial Trajectory Planning, Fifth-Order Polynomial Trajectory Planning, Linear Segments			7

	with Parabolic Blends, Linear Segments with Parabolic Blends and Via Points,	
	Higher-Order Trajectories, Other Trajectories, Cartesian-Space Trajectories,	
	Continuous Trajectory Recording.	
	:Wrist Mechanisms	
6	Introduction, Bevel-Gear Wrist Mechanisms, structure representation of	7
	mechanisms, structure characteristics of epicyclic Gear Drives, Kinematics of	
	Robotic Wrist Mechanisms, and static force analysis.	
	UNIT - III	
	Tendon-Driven Manipulators	
7	Introduction, classification of Tendon-Driven Manipulators, Planar Schematic	5
	Representation, Kinematics of Tendon-Driven Manipulators, Static Force	5
	Analysis, Feasible Structure Matrices, Redundant forces resolution.	
	Robot End-Effectors	
8	Classification of End-Effectors, Drive system for Grippers, Mechanical Grippers,	F
	Magnetic Grippers, Vacuum Grippers, Adhesive Grippers, Hooks, Scoops and	5
	Special gripper, Advanced grippers, Gripper Force Analysis & gripper design.	

Laboratory Course Plan: B E in A&R

Semester: 4th SemesterYear:2019-2020Laboratory Title: Manufacturing & Metrology labLab. Code: 16EARP205Total Hours: 24Duration of ESA Hours: 3ISA Marks: 80ESA Marks: 20

Experiment wise Plan

List of experiments/jobs planned to meet the requirements of the course.

Category	Category: Demonstration		Total Weightage: 20		No. of lab sessions: 5
Expt./ Job No.	Experii	ment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1.			4	15	
	Material Removal Operations(Lathe)415Learning Objectives: The students should be able to: 1. Perform various operations like Facing, Turning, drilling, boring on a work piece using Lathe machine.2. Perform operations like drilling of holes on a given work material using Drilling Machine.3. Perform surface milling operation on a given slab of metal.4. Demonstrate grinding operation on a given metal cube to achieve predefined dimensions.5. Demonstrate arc welding process6. Demonstrate sheet metal cutting operations- Shearing ,Bending operations, drilling & riveting process		Unit I, II & III		

2.	Measurement	1	5	
	Learning Objectives: The students should be able to: 1. Extract the dimensions of the given part using (CMM) 2. Compare the dimensions of the given part between conventional machine & CMM			Unit III
Category:	Exercise	Total Weightage:	50	No. of lab sessions: 7
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
3	Measurement for Linear and angular dimensions	1	10	
	 Learning Objectives: The students should be able to: Select proper instruments for measurement Calculate least count of instrument Take reading using the instrument, Collection / recording of data, Interpret the observation, results Measure dimensions of the given component using vernier caliper & micrometer Measure unknown angle of a component using Sine bar and slip gauges 			Unit II & III
4	Sheet metal	3	20	
	 Learning Objectives: The students should be able to: 1. Demonstrate how to use tools and equipment safely 2. Mark & cut the sheet metal as per the drawing 3. Construct common sheet metal seams 4. Construct a sheet metal product (outer casing). 			
5	Fabricate the Parts for Table Clamping Device	3	20	

Learnir	ng Objectives:			Unit I,II,III
The s	tudents should be able	e to:		
1.	To machine a given r dimensions.	aw metal sheet to a	actual	
2.	Perform drilling operation	ations at suitable lo	cations.	
3.	Mark the work piece I	before going for ma	nufacture.	
4. Taking measurements at every step of operations				
using vernier calipers.				
5.	Perform welding oper	ration on hinges to	achieve	
	perfect right angle.			
6.	Fill machining time ca	alculation chart.		
7.	Performing threading	on a circular bar to	a given	
	pitch.			
8.	Fill operation chart ar	nd inspections repo	rts	

Laboratory Course Plan: B E in A&R

Semester: 4 th Semester	Year:2020-21		
Laboratory Title: Microcontroller Lab	Lab. Code: 18EARP208		
Total Hours: 28	Duration of SEE Hours: 2		
SEE Marks: 20	CIE Marks: 80		

Experiment wise Plan

List of experiments/jobs planned to meet the requirements of the course.

	Category: Demonstration Total Weightage:20 No. o	of lab sessio	ns: 2		
Expt./ Job No.	Experiment/job Details	No. of Lab. Session/s per batch (estimate)	Marks/ Experim ent	Mark s obtai ned	Correlation of Experiment with the theory
1	Compare Architectures of different microcontrollers w.r.t to time response, frequency response, delay, process time etc. Write a program to demonstrate the blinking of LED in PIC16F877A and Arduino board.	1	5		Chap1
	 Learning Objectives : The students should be able to: Study the data sheets and make a comparative study of the Architectures, resources, tools and applications of different microcontroller Compare and contrast different microcontrollers. Connect microcontroller to LED and blink LED with proper delay. Apply suitable method or logic to solve given problem. 				

	Pre-lab:	
	<i>i.</i> Download the data sheets of PIC16F877a, ATMEGA328, 8051 microcontrollers from the following websites	
	 http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller-ATmega48A- 48PA-88A-88PA-168A-168PA-328-328P_datasheet_Complete.pdf http://ww1.microchip.com/downloads/en/DeviceDoc/39582b.pdf http://ww1.microchip.com/downloads/en/devicedoc/41159d.pdf http://www.atmel.com/images/doc8161.pdf http://www.farnell.com/datasheets/46220.pdf http://www.nxp.com/documents/data_sheet/LPC2921_23_25.pdf 	
	 Draw the architectural layout of the following microcontrollers with pin out diagrams. a. PIC16F877a b. ATMEGA328 	
	c. 8051	
	 <i>Make a comparative study and fill up the table 1 given in lab manual.</i> <i>Download the application notes.</i> 	
	v. Prepare flowcharts and develop the code to demonstrate the use of the microcontroller as a	
	simple digital output device.	
	vi. Study Proteus 8 Professional vii. Study different ports and understand the basic LED program	
	In lab:	
	 <i>i.</i> Must be able to explain difference between various types of Microcontrollers and its architectures. <i>ii.</i> Setup the hardware platform and deploy the code on the hardware. <i>iii.</i> If any errors debug the code until it works. <i>iv.</i> Make a note of the number and types of errors. <i>v.</i> Simulate LED blink program on Proteus 8 Professional 	
	Post-lab:	
	Analyze the cause for errors and make a note.	
2	Write a program to demonstrate a counting machine which count from15Chap2	
	0000 to 9999 and display on 7 segment LED display using PIC16F877A	
	and Arduino board.	
	Learning Objectives :	
	The students should be able to:	
	1. Use 7Segment LED for counting numbers.	
	2. Use appropriate logic or method for counting.	
	Pre-lab	
	 i. Study the application notes of Arduino and PIC16F877a ii. Study advantages and disadvantages of Arduino and PIC16F877a microcontrollers iii. Understand 7segment LED. iv. Prepare flowcharts and develop the code to demonstrate the use of the microcontroller as a 	

 KLE TECH.
 KLE Technological

 Creating Value
 Creating Value

 Leveraging Knowledge
 Creating Value

 DEPARTMENT OF AUTOMATION & ROBOTICS

<i>i</i> .	Analyze the cause for errors and make a note.					
Post-la	υ					
Vi.	Make a note of the number and types of errors.					
<i>V.</i>	Setup the hardware platform and deploy the code on the hardw	vare.				
iv.	Simulate LCD display in Proteus.					
iii.	If any errors debug the code until it works.					
ii.	Execute the code and note the output.					
i.	Write program for both Arduino and PIC					
In-lab						
iii. iv.	Analyze the driver required for LCD.					
	simple digital input and output device. Study what is 16*2 LCD and how it works.					
ii.	Prepare flowcharts and develop the code to demonstrate the			ller as a		
i.	Study the application notes of Arduino and PIC for interfacing LI	M35 and LC	D.			
Pre-lab	,					
2.	Write function to read values from LM35 and display it on LCD.					
1.	Connect LM35, LCD and microcontroller.					
The stu	idents should be able to:					
Learnin	ng Objectives :					
using P	IC16F877A and Arduino board.					
	and display the temperature in degree Celsius on LCD display					
	a program to read the values from the temperature sensor	1	5	Chap2,3		
Analyze	e the cause for errors and make a note					
i.	Record the results and experience you got in lab					
1 031 10						
vi. Post-la	Execute the code and note the output.					
V.						
iv.						
iii.	Make a note of the number and types of errors.					
ii.	If any errors debug the code until it works.					
<i>i.</i>	Write program for both Arduino and PIC					
In-lab						
<i>V</i> .	Study different segments of LED					

	List do	wn different types	of LCDs and	l sensors.					
4	open t	the locker. Dev CD to secure the	elop an ap	plication Usir	ord protection to og a 4*3 keypad assword	1	5		Chap2,3
	Learnin	ng Objectives :							
	The stu	idents should be c	ıble to:						
	1. 2. Pre-lab	Connect Keypad, Write logic to re			ıpad.				
	i. ii. iii. iv.		erts and deve out and outp nt types of k	elop the code a out device. reypads	PIC for interfacing key to demonstrate the u	•		ler as a	
	In-lab								
	i. .:	Write programs							
	ii. iii.	Execute the code		•					
	iv. v. vi. Post-la		he number a Proteus	and types of err	ors. e code on the hardwar	re			
	i. List dov				anuai al world.(eg. In Securit	ty applicatic	ins)		
	Catego	ory: Exercises		Total Weig	htage: 20		No. of	lab sessi	ons:4
Expt./ Job No.			Experiment/	job Details		No. of Lab. Session/s per batch (estimate)	Marks/ Experim ent	Marks obtain ed	Correlatio of Experimen with the theory
5	ultras	onic Sensors and	display the	distance in t	of an object using erms of centimeters nematic and develop		5		Chapter 4

 KLE TECH.
 KLE Technological

 Creating Value
 Creating Value

 Leveraging Knowledge
 Creating Value

 DEPARTMENT OF AUTOMATION & ROBOTICS

	the flo	owchart and the code to perform the required operation.				
	Learnin	ng Objectives :				
	The stu	dents should be able to:				
	1.	Connect Ultrasonic Distance Sensor and microcontroller				
	2.	Logic to find distance in CM and Meters.				
	Pre-lab					
	 i. Study the application notes of Arduino and PIC for interfacing Ultrasonic Sensors. ii. Understand different types of sensors. iii. List the advantages and disadvantages of different sensors. 					
	iv. Prepare flowchart and develop the code to demonstrate the use of the microcontroller as a simple analog input sensor and convertor.					
	In-lab					
	i. Write programs for both arduino and PIC					
	<i>ii.</i> Execute the code and note the output.					
	iii. If any errors debug the code until it works.					
	iv. Make a note of the number and types of errors					
	v. Setup the hardware platform and deploy the code on the hardware.					
	Post-la	b				
	i. ii.	Record the results and experience in manual Try interfacing at least two other sensors and note down the r	eadings.			
	List rea	l world applications of sensors.				
6	Write	a program to control the speed and direction of DC, stepper and	1	5		Chapter 4,5
	servo	motors.				
	Learnin	ng Objectives :	<u> </u>		1	
	The stu	idents should be able to:				
	1.	Understand the connections from microcontroller to DC motor us	ing drives.			
	2. Discuss how motor driver helps in controlling the speed on a DC motor.					
	Pre-lab	:				
	 i. Study the application notes of Arduino and PIC for interfacing DC motor. ii. Study the working principle of DC motor. i. Study in detail about different types of DC motors and list out them ii. List advantages and disadvantages of DC motors iii. List the applications in the real world 					
	In lab:					
	i.	Write programs for both Arduino and PIC				

	ii. Simulate in Proteusiii. Demonstrate the hardware for both Arduino and PIC.					
	Post-lab					
	<i>i.</i> Record the results and experience in manual<i>ii.</i> Measure the speed of the DC motor w.r.t voltage.					
7	Design and develop an interconnected connection of controllers to15	Chapter 4,5				
	communicate and transfer data between them. Use Bluetooth module					
	controller.					
	Learning Objectives :					
	The students should be able to:					
	<i>i.</i> Establish connection between different controllers and transfer the data.					
	Pre-lab:					
	i. Get familiar with Bluetooth module					
	ii. Sketch circuit diagram on paper.					
	In lab:					
	i. Design circuit.					
	<i>ii.</i> Simulate in Proteus <i>iii.</i> Demonstrate the hardware for both Arduino and PIC.					
	iii. Demonstrate the hardware for both Arduino and PIC. Post-lab					
	Post-lab					
	<i>i.</i> Record the results and experience in manual					
	ii. Measure the speed of the stepper motor w.r.t step angle.					
8	Design and develop an IOT (Internet of Things) system to collect data	Chap 6				
	from NPK or pH sensor and store the data in the cloud. Use Wi-Fi-					
	module and controller.					
	Learning Objectives :					
	The students should be able to:					
	3. Develop an IOT system that must be able to record and store the data on cloud.					
	Pre-lab:					
	i. Get familiar with IOT and Wi-Fi module.					
	In lab:					
	<i>i.</i> Wire-up the circuit and place the sensor in the farm field/garden and collect the data .					
	ii. Store the collected data on cloud for analysis.iii. Demonstrate the hardware for STM MCU.					

	Post-lab							
	iii.	Record the results and	experience in manual					
	Category: Structured Enquiry Total Weightage: 20 No. of lab				essions:4			
Expt./J ob No.		Experiment/job Det	tails	No. of Lab. Session/s per batch (estimate)	Marks/Expe riment	Marks obtained	Correlation of Experiment with the theory	
9	Write Tin	ner and interrupt program	s on STM MCU.	1	10		Chapter 6,7	
	Learning	Objectives :						
	The stude	ents should be able to:						
	i. ii.	Differentiate between p Control the flow of prog						
	Pre-lab:							
	 <i>i.</i> Understand types of timers and interrupts <i>ii.</i> Applications and working principles of timers and interrupts. 							
	In lab:							
	<i>i.</i> Simulate the working of timers and interrupts							
	ii.	Demonstrate the hardw	are for STM.					
	Post-lab							
	iii. iv.	Record the results and Measure the speed of t		step angle.				
10		an applications using STM g the existing trained mod	•	1	10		Chapter 6,7	
	Learning Objectives :							
	The students should be able to:							
	i. Demonstrate the knowledge of data analysis.							
	Pre-lab:							
	<i>i.</i> Understand different trained modules that can be used on STM MCU.							
	In lab:							
	i.	Analyze and predict dat	ta for the selected trair	ned module.				

	Post-lab i. Record the res	ne hardware for STM MCU. ults and experience in manual				
Expt./ Job No.	Category: Open Ended	Total Weightage	e: 20 No. of Lab. Slots per batch (estimate)	Marks/Expe riment	No. of lab se Marks obtained	ession:2 Correlation of Experiment with the theory
11	Develop an IOT system usin module to suggest the crop considering weather foreca Learning Objectives :	-	2	20		Chapter 1 to 7
	The students should be able 1. Identify the problem 2. Apply the knowled		nd programmin	g.		

FMTH0303-3.1

Semester: IV

Year: 2019-20

Laboratory Title: Object-Oriented Programming and Database Management Systems Lab	<i>Lab. Code</i> : 18EARP209
Total Hours: 52	Duration of Exam: 2 hrs
Total Exam Marks: 100	Total ISA. Marks: 80

Experiment-wise plan

2. List of experiments/jobs planned to meet the requirements of the course.

Catego	ory: Demonstration	Total Weightage: 10	No. of lab sessions: 9				
Learning Outcomes:							
The students should be able to:							
1.	1. Demonstrate how to compile, debug and run a program in.NET environment.						
2.	2. Write programs using class, inheritance, and other fundamentals of OOP.						
3.	Design and model using UML diagr	ams.					

Expt./Job No.	Experiment/job Details	No. of Lab. Session/s per batch (estimate)	Marks/ Experiment	Correlation of Experiment with the theory
1	Visual Studio IDE, Hello World Project, Project Properties, Programming, Compiling, Debugging, Input, Output and Formatted Output, Number Types, String, Arrays, Variable Definition, Assignments, Constants, Namespace	1	1	
2	<i>if</i> Statement, <i>switch</i> Statement, Nested <i>if</i> and <i>switch</i> Statements, ? Alternative, <i>while</i> Loop, <i>for</i> Loop, <i>do</i> Loop, Nested Loops, Predefined Functions, Functions, Return Values, Arguments, Parameters, Debugging, Default Function Arguments, Procedures, Friend Function, Inline Function, Variable Scope, Global Variable, Program Styles	1	1	
3	Pointers, Pointer Variables, Pointer Operators, Pointer Expressions, Array of Pointers, Pointers to Functions, Structures, Structure Members, Structure Assignments, Passing Structures to Functions, Structure Pointers	1	1	
4	Structure vs. Class, Components of a Class, Encapsulation, Access Specifiers, Member Functions, Instance of a Class, Default Constructors, Destructors, Accessing Data Fields	1	1	Introduction to Object- Oriented Programming I
5	Passing Objects to Functions, Return Objects, Object Assignment, Friend Function	1	1	Introduction to Object- Oriented Programming I
6	UML Class Diagram, Use Case Diagram, State Chart Diagram, Activity Diagram, Sequence Diagram	1	1	UML Diagram
7	Abstract Classes, Multiple Inheritance, Interfaces	1	1	Introduction to Object- Oriented Programming II
8	File Handling, MVC, User Interface	1	2	
9	Connecting Database through C++ Programs	1	1	
Category: E	Exercise Total Weighta	age: 30	No. of lab	sessions: 10
Learning O The studen	utcomes: Its should be able to:			

- 1. Design and model using ER models.
- 2. Write programs using class, inheritance, and other fundamentals of OOP.

- 3. Write SQL statements concerning data manipulation using retrieving, inserting, updating, and deleting commands.
- 4. Write packages/procedure for manipulating data and triggers to enhance data retrieval.
- 5. Design and model ER models for different scenarios.
- 6. Construct a database schema with data manipulation SQL statement, a proper procedure in place, and create triggers for fast data retrieval.

Expt./Job No.	Experiment/job Details	No. of Lab. Session/s per batch (estimate)	Marks/ Experiment	Correlation of Experiment with the theory
01	Exception Handling, Lists, Queues, Stack	1	3	
02	Constructors with Parameters, Static Class Members - Data Members and Member Functions, Scope Resolution Operator, Nested Classes, Local Classes	1	3	Introduction to Object- Oriented Programming - I
03	Function Overloading, Operator Overloading, Copy Constructors	1	3	Introduction to Object- Oriented Programming - I
04	Inheritance, Derived Class, Calling the Base Class Constructor	1	3	Introduction to Object- Oriented Programming - II
05	Overriding Member Functions, Polymorphism	1	3	Introduction to Object- Oriented Programming - II
06	Class Inheritance Hierarchies	1	3	Introduction to Object- Oriented Programming - II
07	ER Diagram	1	3	Entity Relationship (ER) Model
08	DDL (Data Definition Language), like CREATE, DROP, ALTER, TRUNCATE and RENAME commands, DML (Data Manipulation Language), like SELECT, INSERT, UPDATE and DELETE commands	1	3	Database Management System
09	DML (Data Manipulation Language), like SELECT, INSERT, UPDATE and DELETE commands, and TCL (Transaction Control Language), like COMMIT and ROLLBACK commands	1	3	Database Management System
10	Database Performance, Indexing, Views, Procedure	1	3	Database Management System

Category: S	tructured Enquiry Total Weig	ghtage: 20	No	No. of lab sessions: 2				
Learning Ou	itcomes:							
The student	ts should be able to:							
The student								
Expt./Job No.	Experiment/job Details		o. of Lab. ssion/s per	Marks/	Correlation of Experiment			
NO.			tch (estimate)	Experiment	with the			
					theory			
1	Implement an application that utilizes previously learnt		2	10				
1	concepts to replicate an automation system using classe	es	2	10				
	Implement a database schema that utilizes previously le	arnt						
2	concepts to capture the data to and from an automation	n	2	10				
	system							
Category: C	pen Ended Total Weightage: 2	20	No. of lab	sessions: 2				
Learning Ou	itcomes:							
The student	ts should be able to:							
1. Use	the OOP concepts to implement the project.							
2. Use	database concept to implement the project							
3. Sele	ect the appropriate tool/software to implement	the projec	ct.					
4. Wri	te a technical report using a predefined templa	te.						
5. Pre	sent the technical report of the implemented p	roject.						
6. Der	nonstrate the learning experiences of working i	n a team.						
Expt./Job	Experiment/job Details	-	o. of Lab. Slots	Marks/	Correlation			
No.		-	r batch stimate)	Experiment	of			
				Lypenment	Experiment			
					with the			
					theory			
1	Implement an open-ended project using C++/DB concep	ots for	2	20				
	an automation application							

Course Code: 17EARC301	Course Title: Object Oriented Programming and Database Management Systems		
L-T-P: 4-0-0	Credits: 3	Contact Hrs: 50	
ISA Marks: 50	ESA Marks: 50	Total Marks: 50	
Teaching Hrs: 50		Exam Duration: 3 hrs	

Content	Hrs
Unit - I	
Chapter 1 Introduction to Software Development Lifecycle and Unified Modeling	6
Language: Software Development Lifecycle, SDLC Models, Requirement Modeling	
Framework, Computer Communication Methods	
Unified Modeling Language (UML): UML Building Blocks, UML Diagrams - Class Diagram,	
Object Diagram, Component Diagram, UML Modeling Types, UML Basic Notations, UML-	

SysML, Using the Tools, Testing the Solution, Coding the Solution, Case Studies -	
Modeling the Sequence Diagram for the Plant Operation, Modeling the Control Strategy	
Action	
Action	
Chapter 2 Data Modeling using the ER Model: Using High-Level Conceptual Data	6
Models for Database Design, An Example Database Application, Entity Types, Entity Sets,	
Attributes and Keys, Relationship Types, Relationship Sets, Roles and Structural	
Constraints, Weak Entity Types, Refining the ER Design, Relationship Types of Degree	
Higher than Two, ER Diagrams, Naming Conventions and Design Issues	
Chapter 3 Introduction to Object-Oriented Programming - I: Introduction to .NET	8
Environment, The Java Virtual Machine, Variables and Data Types, Conditional and	
Looping Constructs, Arrays, Fields and Methods, Constructors, Overloading Methods,	
Garbage Collection, Nested Classes, Simple Inheritance, Multilevel Inheritance,	
Overriding, Overloading, Defining Interfaces, Implementing Interfaces, Polymorphism,	
Abstract Classes, Access Control, Access Modifiers, Access Protection	
Unit - II	
Chapter 4 Object-Oriented Programming - II: Final Classes, Final Variables and Methods,	4
Finalizer Method: finalise (), Exception Handling, Fundamentals of Exception Handling,	-
Exception Types, Constructors and Methods in Throwable Class, Java's Built-in	
Exceptions, Unchecked and Checked Exception, Creating Your Own Exception Sub- Classes	
Classes	
Chapter 5 Object-Oriented Programming - III: Features of Python Variables, Operators	10
and Branching, Core elements of Programs - Bindings, Strings, Input/Output, IDEs,	
Control Flow and Iteration, Functions - Decomposition and Abstraction, Functions and	
Scope, Keyword Arguments, Specifications, Lists, Tuples, Sets, Mutation, Aliasing,	
Cloning, Functions as Objects, Dictionaries, Example with a Dictionary, Fibonacci and	
Dictionaries, Global Variables, Classes and Inheritance: Object-Oriented Programming,	
Class Instances, Methods Classes, Examples, Hierarchies	
Chapter 6 Introduction to Database Management Systems: Introduction to DBMS with	6
an example, Characteristics of Database Approach, Actors on and Behind the Scene,	
Advantages and Disadvantages of using DBMS, Data models, Schemas and Instances,	
Three-Schema Architecture and Data Independence, Database Languages and	
Interfaces, Database System Environment	
Unit - III	
	-
Chapter 7 Relational Data Model and SQL: Relational Model Concepts, Relational	5
Model Constraints and Relational Database Schemas, Update Operations, Transactions	

and Dealing with Constraint Violations, SQL Data Definition and Data Types, Specifying Basic Constraints in SQL, Schema Change Statements in SQL, Insert, Delete and Update Statements in SQL, Specifying Constraints as Assertion and Trigger, Indexing Techniques, Views in SQL, Basic Queries in SQL, More Complex SQL Queries, Informal Design Guidelines for Relation Schemas, Functional Dependencies, Normal Forms Based on Primary Keys, General Definitions of Second and Third Normal Forms, Boyce-Codd Normal Form

Chapter 8 Object-Relational Databases and Semantic Modeling Approach: Overview of5Object Database Concepts, Object-Relational Features: Object Database Extensions to5SQL, The ODMG Object Model and the Object Definition Language ODL, Object5Database Conceptual Design, The Object Query Language OQL, Semantic Introduction to5Databases, Semantic Modeling, Semantic Binary Schemas, Schema Quality Criteria,5Subschemas and User views, Transaction Processing Concepts5

Course Code: 17EARC302	Course Title: Programming Indus	strial Automation Systems
L-T-P-: 3-0-0	Credits: 3	Contact Hrs: 40
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40		Exam Duration: 3 hrs

Content	Hrs
Unit - 1	
Chapter No. 01. Programmable logic controllers(PLC) & its building blocks Internal architecture of Programmable Logic Controllers systems, Input/ Output devices, Memory Organization, I/O processing, Signal conditioning, Remote connections, Networks, Processor Scan cycle, Error Checking and Diagnostics.	4 hrs
Chapter No. 02. The IEC 61131 , IEC61499 standards & Ladder , FB, IL, SFC and ST programming IEC 61131-3: Building Blocks , Goals , benefits, , Programming Languages of IEC 61131-3, Ladder diagrams, Analogy with Boolean Algebra and Binary Logic , Function blocks, Instruction lists, Sequential function charts, State chart modelling, Structured text programming with example programs for each, IEC 61499 models: models ,concepts and industrial examples like Temperature control system, Conveyor test station	6 hrs
Chapter No. 03.Advanced PLC functions PLC Sequencer, Shift registers, Program / Flow Control Instructions, Arithmetic Instructions, Data handling Instructions like FIFO, FAL, ONS, Data Transfer Instructions PLC MOVE, PLC Matrix functions, Network Communication Instructions, Analog PLC operation, PID control of continuous processes.	5 hrs
Unit - 2	ł
Chapter No. 04.Designing systems, PLC Start-up & Maintenance PLC Core application development, Development Cycle, Safe systems, Commissioning, Fault finding, PLC System Layout, Power Requirements and Safety Circuitry, Noise, Heat, and Voltage Considerations,, I/O Installation, System wiring strategies, and Precautions ,Safety Standards like NEMA & NEC, Electrical wiring diagrams PLC Start-Up and Checking Procedures, PLC System Maintenance & Troubleshooting	7 hrs
Chapter No. 05. PC based Automation, SCADA	8 hrs

 KLE TECH.
 KLE Technological

 Creating Value
 Creating Value

 Leveraging Knowledge
 DEPARTMENT OF AUTOMATION & ROBOTICS

Technologies and advantages of PC based Automation, Programmable Automation	
Controller systems (PACs) for Industrial control, Comparison of PLC with PAC Supervisory	
Digital Control and Data Acquisition (SCADA) system & Distributed Control Systems(DCS):	
SCADA Hardware and software ,Open SCADA protocols like DNP3 and IEC60870,	
Unit - 3	I
Chapter No. 06. DCS & Field Bus	5 hrs
Overview of DCS, Network Standards: Device net, CAN bus, Control Net, Profibus, Sercos,	
EtherCAT, Ethernet Powerlink, Comparison of each of them with other network standard.	
Chapter No. 07. System Selection Guidelines & Commissioning	5 hrs
PLC Selection process , estimation of program memory and time requirements, PLC Sizes	
and Scope of applications, Special I/O modules, Electrical relay diagram symbols, Fail Safe	
Design, IEC 61508/61511 safety standards, Process modeling, Programming for large	
systems ,Control system documentation & Commissioning	

Course Code: 17EARC303	Course Title: Mechat	tronics System Design	
L-T-P : 4-0-0	Credits: 4	Contact Hrs: 50 hou	rs
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50 hours		Exam Duration: 3 Hr	S
Conte	ent		Hrs
Unit	- I		
1. Introduction to Mechatronics Systems and Introduction to Mechatronic Systems and Design Micromechanics and Process Engineering, Conf Distribution of Mechanical and Electronic Fun Electronics, Ways of Information Processing Preprocessing, Design Procedures for Mechatron	, Mechatronic systems inement of Mechatron ctions, Integration F , Multi-level Control S	nic Systems , Functions, orms of Processes and	8
2. Modeling of Processes Theoretical and Experimental Modeling, Classifi with Lumped and Distributed Parameters, Mech Bars, Springs, Dampers, Mechanical Systems wit Analogies between Mechanical and Electrical Newton's Laws of Kinetics, Translational and d'Alembert's Principle, Lagrange's Equations, Pro-	nanical System model h Friction , Backlash , I Systems, Dynamics c l Rotational Motion, P	, Mechanical Elements : Electrical System model, of Mechanical Systems,	12
Unit	- 11		
3. Electrical Drives Types of Electrical Drives, Electromagnets, Dire Behavior, Special Types of DC Motors, Alterna Synchronous Motors, Single-phase Motors, Con cage Motors, Power Electronics Circuits, Interna Electrical Motor Sizing and Selection Procedu Motion Profile, Load Torque Calculation, Motor Profile, DC Motor Parameter Estimation, Proc	iting Current Motors (Inmutator Motors (Univ Illy or Externally Comm Ire, Electric Motor (Shaft Torque Calculation)	AC), Induction Motors, versal Motors), Squirrel- nutated Electro-motors, Operational Conditions, on, Load Torque–Speed	10

Actuators.	
4. Model based Design of Systems & Identification	10
Introduction to model based design ,Basic block diagrams, Model-based Methods of Control, Supervision and Fault Diagnosis, Intelligent Systems, Non-linear Control and Fault Detection , Model-based Compensation of Non-linearities, Modeling and Fault Diagnosis , Examples for the Design of Mechatronic Systems using UML and SysML, Identification Methods , classification of Identification Methods ,Test Signals , Closed-loop Identification , Type of Application, Parameter Estimation for Discrete Time-varying Systems, Non-linear Processes, Problems.	
Unit - III	
5. Recent trends in Mechatronics System Design process	5
Mechatronics systems contributing to economic growth, Changes in technological processes and products, Tools and methods in mechatronics system design and development, Use of Artificial Neural Networks and Fuzzy-logic Models, Fields of application, Future Mechatronics systems.	
6. Case studies	5
Dynamic Models of a Electromagnetic actuator, Control Prototyping and Hardware-in-the-loop Simulation, Rapid Control Prototyping for Engine Control, Hardware-in-the-loop Simulation for Industrial Robot , Process control system, etc, UML/ SysML and State chart modeling for each	

Course Code: 17EARC304	Course Title: Measuremen	t Systems
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40 hours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40		Duration of ESA: 3 Hrs

Content	Hrs
Unit – I	1

 KLE TECH.
 KLE Technological

 Creating Value
 Creating Value

 Leveraging Knowledge
 DEPARTMENT OF AUTOMATION & ROBOTICS

Chapter No. 1. Introduction to Measurement Systems Need for study of Measurement Systems, Classification of Types of Measurement Applications, Computer-Aided Machines and Processes, Functional Elements of an Instrument , Active and Passive Transducers , Analog And Digital Modes of Operation , Null and Deflection Methods , Input-Output Configuration of Instruments and Measurement Systems, Static Characteristics and Static Calibration, Dynamic Characteristics.	5 hrs
Chapter No. 2. Sensors and Signal conditioning Sensor characterization, Relations between physical quantities, Sensor Classification, Specifications, Error reduction techniques, Loading errors, Signal conditioning processes, The operational amplifier, Filtering, Wheatstone bridge, Pulse modulation.	5 hrs
Chapter No. 3. Motion Measurement Fundamental Standards, Relative Displacement: Translation and Rotational, Relative Velocity: Translation and Rotational, Relative-Acceleration Measurements, Displacement Pickups, Velocity Pickups, Acceleration Pickups, Calibration and Vibration Pickups, Jerk Pickups.	5 hrs
Unit – II	
Chapter No. 4. Force, Torque, and Shaft Power Measurement Standards and Calibration, Basic Methods of Force Measurement, Characteristics of Elastic Force Transducers, Torque measurement on Rotating shaft, Shaft Power Measurement (Dynamometers), Vibrating Wire Force Transducers.	5 hrs
Chapter No. 5. Pressure & Sound Measurement Standards and Calibration, Basic Methods of Pressure Measurement, Deadweight Gages and Manometers, Elastic Transducers, Vibrating-Cylinder and Other Resonant Transducers, Dynamic Testing of Pressure-Measuring Systems, High-Pressure Measurement, Low- Pressure Measurement, Sound Measurement.	5 hrs
Chapter No. 6. Flow and Temperature Measurement Local Flow Velocity, Magnitude and Direction, Gross Volume Flow Rate, Standards and Calibration of Temperature Measurement, Thermal-Expansion methods, Thermoelectric Sensors, Electrical-Resistance Sensors, Junction Semiconductor Sensors, Digital Thermometers, Radiation Methods.	5 hrs
Unit – III	
Chapter No.7. Data Acquisition Systems Data conversion devices, Signal sampling and aliasing, Sampling theorem, Quantization, Encoding, Digital to analog conversion methods, Analog to digital conversion methods, Sample & Hold circuit, Flash ADC, Successive approximation ADC, Dual slope ADC, Sigma Delta ADC, Multiplexers.	5 hrs
Chapter No. 8. Transmission and Recording of Data Cable Transmission of Analog Voltage and Current Signals, Cable Transmission of Digital Data, Fiber-Optic Data Transmission, Analog Voltmeters and Potentiometers, Electrical	

Instruments, Digital Voltmeters and Multimeters, Signal Generation, Electromechanical XT 5 hrs and XY Recorders, Fiber Optic Sensors.

Course Code: 17EARC305	Course Title: Machine learning	and ROS
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40		Exam Duration : 3 hours

Content Hours

UNIT – 1				
Chapter 1:Introduction to Robot operating system ROS concepts, creating ROS packages writing a minimal ROS publisher, compiling ROS nodes, running ROS nodes, examining running minimal publisher node, scheduling node timing, writing a minimal ROS subscriber compiling and running minimal subscriber, minimal subscriber and publisher node summary writing ROS nodes more ROS tools: catkin simple, ROSlaunch, simplifying cmakelists.txt with catkin simple automating starting multiple nodes viewing output in a ROS console recording and playing back data with ROSbag.	5 hrs			
Chapter 2:Messages, Classes and Servers in ROS Defining custom messages, ROS services- service messages, ROS service nodes, manual interaction with ROS services, example ROS service client, running, example service and client, using C++ classes in ROS creating library modules in ROS, introduction to action servers and action clients- creating an action server package, defining custom action-server messages, designing an action client running the example code, introduction to parameter server.	5 hrs			
Chapter 3 : Introduction to machine learning Introduction Machine Learning ,Well posed learning problem, Types of learning, supervised learning ,unsupervised learning and reinforcement learning, Learning Associations, Designing of learning system, perspectives & issues in machine learning, Concept learning task, concept learning search, Find-S: Finding a maximally specific hypotheses, version spaces & candidate elimination algorithm, Remarks - version spaces & candidate elimination algorithm, inductive bias.	5 hrs			
UNIT – 2				
Chapter 4: Computational learning theory and decision tree learning Motivation, Estimating hypotheses accuracy, Basics of sampling theory, general approach for deriving confidence intervals, comparing learning algorithm. Probably learning an approximately correct hypothesis, sample complexity for finite hypothesis spaces, instance based learning-K nearest neighbor learning, locally weighted regression, Representation, decision tree algorithm, hypotheses space search in decision tree algorithm inductive bias in decision tree algorithm, issues in DTL, Bayesian decision theory classification.	8 hrs			
Chapter 5:Kernel methods and Graphical models Embedding's into feature spaces, the kernel trick, Multiple kernel learning, Kernel dimensionality reduction Canonical Cases for Conditional Independence, Example Graphical Models, Naive Bayes' Classifier, Hidden Markov Model, Linear Regression, d-Separation Belief Propagation, Linkage–Based clustering algorithms- means and other cost minimization clustering.	7 hrs			

UNIT – 3	_
Chapter 6:Reinforcement Learning The learning task,Q-learning,Nondeterministic rewards & actions, temporal difference learning, generalizing from examples, relationship to dynamic programming.	5 hrs
Chapter 7: Artificial neural network Biological motivation, neural network representations, and appropriate problems for neural network learning, perceptron's, multilayer networks and the back propagation, algorithm, an illustrative example: face recognition	5 hrs

Course Code: 17EARC306	Course Title: Robot Analysis & Design		
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 50	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	

Теас	Teaching Hrs: 50 Exam Duration:			: 3 Hrs	
UNIT – I					
No					
1	Chapter 1:Introduction to Robotics and Applications Introduction, Classifications of Robots, Robot Components, Robot Degrees of Freedom, Robot Joints, Robot Coordinates, Robot Reference Frames, Programming Modes, Robot Characteristics, Robot Workspace, Robot Languages, and Robot Applications.				
2	 ² Chapter 2: Position Analysis of Serial Manipulators ² Describing a Robot Arm, Link Parameters and Link Coordinate systems, Homogeneous transformation Matrices, Denavit-Hartenberg, Forward Kinematics, Inverse Kinematics, A 2-Link Robot, A 6-Axis Robot. 				
3	 Chapter 3: Jacobian Analysis of Serial Manipulators Different Kinematics of rigid body, Different Kinematics of serial manipulators, screw coordinates and screw systems, Manipulator Jacobian Matrix, conventional Jacobian, Screw-Based Jacobian, and Transformations of screw coordinates. Relationship Between Two Methods, condition number, singularity analysis. 				
		IIT - II			
4	Chapter 4: Statics and Dynamics of Ser Types of gears/ motor/ drives/ encode software), Statics of Serial Manipulators, mass properties, momentum, transform Newton-Euler Laws, Recursive Newton-Eu	ers , Motion controller (M Transformations of Forces a nation of inertia matrix, k	and Moments,	6	
5	with Parabolic Blends, Linear Segments with Parabolic Blends and Via Points, Higher-Order Trajectories, Other Trajectories, Cartesian-Space Trajectories, Continuous Trajectory Recording.				
6	mechanisms, structure characteristics of Robotic Wrist Mechanisms, and static force	of epicyclic Gear Drives,	esentation of Kinematics of	7	

7	Chapter 7: Tendon-Driven Manipulators Introduction, classification of Tendon-Driven Manipulators, Planar Schematic Representation, Kinematics of Tendon-Driven Manipulators, Static Force Analysis, Feasible Structure Matrices, Redundant forces resolution.	5
8	Chapter 8: Robot End-Effectors Classification of End-Effectors, Drive system for Grippers, Mechanical Grippers, Magnetic Grippers, Vacuum Grippers, Adhesive Grippers, Hooks, Scoops and Special gripper, Advanced grippers, Gripper Force Analysis & gripper design.	

FMTH0303-3.1

Semester: V

Year: 2019-20

Laboratory Title: Object-Oriented Programming and Database	Lab. Code: 17EARP301

Management Systems Lab	
Total Hours: 24	Duration of Exam: 2 hrs
Total Exam Marks: 100	Total ISA. Marks: 80

Experiment-wise plan

3. List of experiments/jobs planned to meet the requirements of the course.

Category: D	emonstration	Total Weightage: 35	No.	of lab session	s: 7
Learning Ou	itcomes:				
The student	s should be able to:				
4. Des	ign and model using U	ML diagrams and ER models			
5. Der	nonstrate how to com	pile and run a program in JAN	/A, Python, and	d .NET environ	nment.
6. Wri	te programs using clas	s, inheritance, and other fun	damentals of (DOP.	
	te SQL statements con nmands.	ncerning data manipulation	using retrievin	g, inserting, ι	updating, and deleting
8. Wri	te packages/procedur	e for manipulating data and	triggers to enh	ance data ret	rieval.
Expt./Job No.	Function	ant/ick Dataila	No. of Lab. Session/s per batch	Marks/	Correlation of Experiment with the
NO.	Experim	ent/job Details	(estimate)	Experiment	theory
1		to tool, use case, creating nce diagram, and state	1	5	Introduction to Software Development
					Lifecycle and Unified Modeling Language
2	Creating ER models or relationship and attr	•	1	5	Data Modeling using the ER Model
3	Write programs in Ja concept of OOP like a overloading, and exc	arrays, strings, functions,	1	5	Introduction to Object-Oriented Programming - I
4	Write programs in JA concept of a generic	-	1	5	Object-Oriented

of generic classes, inheritance, interface, and package. 1 5 Programming - 6 Write SQL statements related to data manipulation, like insert, delete, and update. 1 5 Relational Dat Model and SQL 7 Write statements to create views, procedures, 1 5 Relational Dat Model and SQL		interface, and package.			Programming - II
manipulation, like insert, delete, and update. 1 5 Model and SQ. 7 Write statements to create views, procedures, packages, and indexing for fast retrieval. 1 5 Relational Dat Model and SQ. Category: Exercises Total Weightage: 20 No. of lab sessions: 2 Learning Outcomes: The students should be able to: 1 Design and model using UML diagrams. 2 Implement classes in JAVA or .NET environment. 3. Compile and build JAR/DLL files. 4 Design and mode ER models for different scenarios. 5 5. Construct a database schema with data manipulation SQL statement, a proper procedure in place, and create triggers for fast data retrieval. No. of Lab. Marks/Exp Correlation of Experiment/job Details No. Expt./Job Experiment/job Details No. of Lab. Marks/Exp Correlation of Experiment with the theory 1 Develop a class diagram concerning sensor, actuators and controls, implement these classes, and build JAR/DLL files. 1 10 Introduction to Object-Oriente Programming - Development Lifecycle and Unit Modeling Langua 1 Develop a class diagram concerning sensor, actuators and controls, implement these classes, and build JAR/DLL files. 1 10 Introduction to Ob	5	of generic classes, inheritance, interface, and	1	5	Object-Oriented Programming - III
Image: second	6		1	5	Relational Data Model and SQL
Learning Outcomes: The students should be able to: 1. Design and model using UML diagrams. 2. Implement classes in JAVA or .NET environment. 3. Compile and build JAR/DLL files. 4. Design and mode ER models for different scenarios. 5. Construct a database schema with data manipulation SQL statement, a proper procedure in place, and create triggers for fast data retrieval. Expt./Job Experiment/job Details No. Experiment/job Details No. Experiment/job Details No. Introduction to feature I Develop a class diagram concerning sensor, actuators and controls, implement these classes, and build JAR/DLL files. 1 1 1 10 Introduction to Object-Oriente Programming - Object-Oriente	7		1	5	Relational Data Model and SQL
The students should be able to: 1. Design and model using UML diagrams. 2. Implement classes in JAVA or .NET environment. 3. Compile and build JAR/DLL files. 4. Design and mode ER models for different scenarios. 5. Construct a database schema with data manipulation SQL statement, a proper procedure in place, and create triggers for fast data retrieval. Expt./Job Experiment/job Details No. No. of Lab. Session/s per batch (estimate) Marks/Exp eriment Correlation of Experiment with the theory 1 Develop a class diagram concerning sensor, actuators and controls, implement these classes, and build JAR/DLL files. 1 10 Introduction to Object-Oriente Programming - Object-Oriente	Category: E	xercises Total Weightage: 20	No.	of lab session	s: 2
 Design and model using UML diagrams. Implement classes in JAVA or .NET environment. Compile and build JAR/DLL files. Design and mode ER models for different scenarios. Construct a database schema with data manipulation SQL statement, a proper procedure in place, and create triggers for fast data retrieval. Expt./Job Experiment/job Details No. of Lab. Session/s per batch (estimate) Develop a class diagram concerning sensor, actuators and controls, implement these classes, and build JAR/DLL files. Development Lifecycle and Unity Modeling Langue Introduction to Object-Oriente Programming - Object-Oriente 	Learning Οι	itcomes:			
 Implement classes in JAVA or .NET environment. Compile and build JAR/DLL files. Design and mode ER models for different scenarios. Construct a database schema with data manipulation SQL statement, a proper procedure in place, and create triggers for fast data retrieval. Expt./Job Experiment/job Details No. of Lab. Session/s per batch (estimate) Develop a class diagram concerning sensor, actuators and controls, implement these classes, and build JAR/DLL files. Develop time. 1 Develop time. Develop and controls, implement these classes, and build JAR/DLL files. 1 10 Introduction to Object-Oriente Programming - Object-Oriente 	The student	ts should be able to:			
No. Session/s per batch (estimate) eriment Experiment with the theory 1 Develop a class diagram concerning sensor, actuators and controls, implement these classes, and build JAR/DLL files. Introduction to Software 1 Develop a class diagram concerning sensor, actuators and controls, implement these classes, and build JAR/DLL files. Introduction to Software 1 Develop a class diagram concerning sensor, actuators and controls, implement these classes, and build JAR/DLL files. Introduction to Software 1 10 Introduction to Object-Oriente 1 10 Introduction to Object-Oriente	2. Imp	olement classes in JAVA or .NET environment.			
actuators and controls, implement these classes, and build JAR/DLL files.	5. Con	ign and mode ER models for different scenarios. Instruct a database schema with data manipulation	n SQL statemen	t, a proper pro	cedure in place, and
Object-Oriente	5. Con crea Expt./Job	ign and mode ER models for different scenarios. Instruct a database schema with data manipulation ate triggers for fast data retrieval.	No. of Lab. Session/s per batch	Marks/Exp	Correlation of Experiment with

6.	Develop an ER model and construct a database				a Modeling
	schema for a given manufacturing scenario.			using	the ER Model
		1	10		ational Data
				Mo	del and SQL
				Rela	ational Data
					del and SQL
Category: S	tructured Enquiry Total Weight	age: 25	No. of I	lab session	s: 2
Learning Ou	tcomes:				
The student	s should be able to:				
4. Des	ign, develop and implement application utilizing p	reviously develo	oped JAR/D	LL files.	
5. Stor	e data from the application into the database.				
6. Des	ign, development and implement the user interfac	e for visualizati	on of data j	from the do	atabase.
Expt./Job No.	Experiment/job Details	No. of Lab. Session/s pe	Mar	ks/	Correlation of Experiment
NU.		batch (estim	_	eriment	with the
					theory
1.	Implement a project which utilizes previously				
	generated JAR/DLL files and database schema to				
	store data from automation devices and control	2		25	
	the actuators. Additionally, proper checks have to				
	be implemented and with necessary visualization				
Category: O	pen Ended Total Weightage: 20	No. of lab se	essions: 2		
Learning Ou	tcomes:				
The student	s should be able to:				
7. Use	the OOP concepts to implement the project.				
	database concept to implement the project				
9. Select the appropriate tool/software to implement the project.					
10. Write a technical report using a predefined template.					
11. Pres	ent the technical report of the implemented project	ct.			
12. Den	nonstrate the learning experiences of working in a	team.			
Expt./Job	Experiment/job Details	No. of Lab. S	Slots Ma	rks/	Correlation
No.		per batch (estimate)	Evn	eriment	of
		,,			Experiment with the

				theory
1.	Implement a project using C++/Java/python/DB concepts, for automation and robotics applications.	2	20	

Laboratory Course Plan: B E in A&R 2019-20

Laboratory Title: Programming Industrial Automation Systems Lab	Lab Code: 17EARP302
Total Hours: 28	Duration of ESA Hours: 2

Experiment wise Plan

Category	: Demonstration	Total Weightage: 20.00		No. of lab sessions: 4.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	Introduction to Safety guidelines & PLC and system wiring: Demo programs on Logic gates, switches and Pushbuttons.	1.00	5.00	UNIT I
	Learning Outcomes: The students should be abl 1. appreciate the guidelines and I/O devices and follow th PLC system elements	to be followed whi	-	UNIT
2	Programming the PLC Via Ladder logic and structured text in TwinCAT Demo Programs on ALU ,Counter and timing functions	1.00	5.00	
	Learning Outcomes:	L		UNIT I

	The students should be abl	o to:			
	The students should be abl				
	1. Identify the different inpu				
	configuration for interfacing	System elements			
	2. Solve the problems on inte	erfacing by using Po	anasonic PLC,		
	sensors and different types o	f actuators through	n ladder logic,		
	Function block and Structure	d Text programmin	g		
3	Demo on Electro	1.00	5.00		
5		1.00	5.00		
	Pneumatics : A. Time-				
	dependent control of a				
	double-acting cylinder with				
	switch-on delay B.				
	Sequential control of 2				
	double-acting cylinders				
	with impulse valves in				
	Automation studio.				
	Learning Outcomes:			UNIT I	
	Learning Outcomes.				
	The students should be abl	e to:			
	A Circulate Di Charles start				
	1. Simulate PLC logic using li				
	problems on ON - OFF contro				
	a conveyor with planned intervals				
4	Burglar Alarm: Consider	1.00	5.00		
	the design of a burglar				
	alarm for a house. When				
	activated an alarm and				
	lights will be activated to				
	encourage the unwanted				
	-				
	guest to leave. This alarm be activated if an				
	unauthorized intruder is				
	detected by window				
	sensor and a motion				
	detector. The window				
	sensor is effectively a loop				
	of wire that is a piece of				

	thin metal foil that encircles the window. If the window is broken, the foil breaks breaking the conductor. This behaves like a normally closed switch. The motion sensor is designed so that when a person is detected the output will go on. As with any alarm an activate/deactivate switch is also needed.			
	Learning Outcomes: The students should be abl 1. Implement PLC logic solut elements based on stated ca control strategy , Counting It planned intervals	ion to drive electro se study problems (ems on ON - OFF	UNIT I
Category	: Exercise	Total Weightage:	20.00	No. of lab sessions: 5.00
Category Expt./ Job No.		Total Weightage: No. of Lab Session(s) per batch (estimate)	20.00 Marks / Experiment	No. of lab sessions: 5.00 Correlation of Experiment with the theory

	this motor control task.			
	Learning Outcomes:			UNIT II and III
	The students should be abl			
	1. Solve problems based on gand function blocks	given case studies i	ising ladder logic	
6	Sequential Logic Control using SCADA	1.00	4.00	
	Learning Outcomes:			
	The students should be abl	e to:		
	1. Implement PLC control log DC motor/stepper motor usin indicators			
7	Develop a PLC program that will control a miniature set of traffic lights. These lights will go through a normal sequence, but will have pedestrian cross walk buttons that will activate a cross walk signal when pressed. When done the student should understand the design and implementation of time dependent control circuits.	1.00	4.00	
	Learning Outcomes:			
	The students should be abl	e to:		
	1. simulate exercises using R diagram, function block and	-	-	

	given case studies			
8	To explore PID control: Write simple programs to read and output analog voltages from the PLC and perform PID control of a motor speed. Demonstrate it on TwinCAT.	1.00	4.00	
	Learning Outcomes:			
	The students should be able	e to:		
	1.			
9	Process controlled system in TwinCAT: A PLC- controlled system operates as follows. If the Start button is pressed, MV1 will be opened and dye starts to fill the tank. At the same time mixing-motor begins to run. As the level of the dye passes TBL2 and reaches to TBL1, MV1 will be closed and mixing- motor will stop. Then MV2 will be opened and dye begins to run out of the container. After the level of the dye reaches to the below of TBL2, MV2 will be closed. This process is repeated for two (2) times, then the system will stop. We can observe the stopping of the system with the lamp and the	1.00	4.00	

1	buzzer. After the system			
	stops, buzzer will continue			
	to run for 2 sec and then it			
	stops. But the lamp			
	continues to light until the			
	reset button is pressed.			
	When the reset button is			
	pressed, the system will be			
	ready to begin the same			
	process again. Construct a			
	LAD for this system.			
	Learning Outcomes:			
	The students should be abl	e to:		
	1. Solve case study problems	s using Rexroth PLC	hardware	
	interfaced with sensors, actu	ators and process i	ndicators.indent:-	
	.25in;mso-list:10 level1 lfo1'>1. simulate exercises using Rexroth			
	PLC software using ladder die	agram, function blo	ock and structured	
	text programming for the giv	ven case studies		
Category	: Structured Enquiry	Total Weightage:	10.00	No. of lab sessions: 2.00
Expt./	Experiment / Job Details	No. of Lab	Marks /	Correlation of Experiment
Job No.	, · · · , · · · · · ·	Session(s) per	Experiment	with the theory
		batch		
		(
1		(estimate)		
10			10.00	
10	To study Distributed	(estimate) 2.00	10.00	
10	Control System(DCS)		10.00	
10	Control System(DCS) programming using		10.00	
10	Control System(DCS) programming using Function Block Diagram		10.00	
10	Control System(DCS) programming using		10.00	
10	Control System(DCS) programming using Function Block Diagram		10.00	UNIT III
10	Control System(DCS) programming using Function Block Diagram method	2.00	10.00	UNIT III
10	Control System(DCS) programming using Function Block Diagram method Learning Outcomes:	2.00	10.00	UNIT III

Category: Open Ended		Total Weightage: 10.00		No. of lab sessions: 2.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
11	Exploring PLC Serial communication using Ethernet	2.00	10.00	
	Learning Outcomes:			UNIT III

Semester: V

Year: 2019-20

Laboratory Title: Mechatronics & Measurements Lab	Lab. Code: 17EARP303
Total Hours: 24	Duration of Exam: 3 hrs

Experiment wise Plan

Category: Demonstration		Total Weightage: 10.00		No. of lab sessions: 2.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	Demo of Quanser Mechatronics Sensor kit, DC Motor Control Trainer module, Inverted Pendulum Trainer module with NI ELVIS Platform	1.00	5.00	Unit-1, Unit II
2	Data Acquisition process using DAQ card from NI using LABVIEW with strain guage load cell	1.00	5.00	
Category	: Exercise	Total Weightage	: 20.00	No. of lab sessions: 3.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
3	Sensor characterization using sensor modules, namely, Accelerometer, Ultrasonic sensor,	1.00	5.00	Unit I & Unit II

	Temperature sensor, Strain gauge			
4	Sensor fusion of IMU and compass	1.00	5.00	
5	Development of a Data acquisition system , DAQ hardware as an embedded system	1.00	10.00	
Category	Structured Enquiry	Total Weightage	: 45.00	No. of lab sessions: 5.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
6	System identification of DC motor	2.00	15.00	Unit – 1, Unit - 2 and Unit - 3
7	Hardware in Loop model for a stated problem using Speed goat / Controller/ Processor and MATLAB2018A	1.00	15.00	
8	Develop a plant model using Inverted pendulum in MATLAB and analyze its performance characteristics	2.00	15.00	
Category	: Open Ended	Total Weightage	: 5.00	No. of lab sessions: 2.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
9	Design and develop a Haptic kit for physically challenged people	2.00	5.00	Unit – 1, Unit - 2 and Unit - 3

FMTH0303-3.1

Semester: V

Year: 2019-2020

Laboratory Title: Mini project	Lab. Code: 17EARW301
Total Hours: 30	Duration of Exam: 2 hrs

Experiment wise plan

List of activities planned to meet the requirements of the syllabus

Week No	Activities	Deliverables	ISA Marks
			out of 50

1&2	Need analysis, Identification of problem statement, Engineering Design process	Problem statement, Project plan, Process plan	10
3&4	Product development	Component designs & Integration, Modeling and simulation	10
5,6,7&8	Rapid prototyping, Testing and validation	Prototype (hardware and software)	20
9&10	Reporting	Test reports and Conclusion	10

Course Code: 16EARC307	Code: 16EARC307 Course Title: Real Time Embedded Systems		
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 50	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50		Exam Duration: 3 hrs	s
Con	ntent		Hrs
Un	it - 1		
1.0 Introduction to System Structures and Re System Structures types, Real-time system studies, namely, Process control system, Av Care Computing, Modern car, Digital Fligh Quality attributes, Challenges and charact Design, Embedded System Design Process embedded system, Embedded firmware, dis diagram representation of systems, Embedded Unit, GPS Moving Map, Automatic Choco State machine(FSM), Unified Modeling Lan	ns & basics, Classif ionics system, Multim t control system, Emb eristics of Embedde , Core and Supportin scussion on real-time led design cycle-case plate Vending Machine	ication, Example case edia systems, Intensive edded system purpose, d Computing System ng components of the case studies and block study- Engine Control e (ACVM) using Finite	6
2.0 Target Architectures : ARM Cortex M3 Introduction to embedded computing with ex of ARM Cortex M3, Nested Vector Interr Cortex M3. Exceptions Programming. Protection. Debug Architecture. Digital S Generic Array (FPGA).Examples to de programmable features. A case study on th control system	processors & its Progr xamples and arm proce upt Controller. Intern Advanced Programmi ignal Processor (DSP emonstrate each of	camming essors, The architecture rupt behavior of ARM ing Features. Memory), Field Programmable its architectural and	7
3.0 Real-Time Kernels and Operating Syster Introduction to Real-Time Kernels, Tasks, key characteristics of RTOS, its kernel, con services, context switch, Task scheduling, Multiprocessing and multitasking, Multi-T timing diagrams, examples for each,Sch scheduling, Round-robin and preemptive sc shortest job first scheduling, Device drivers of the scheduling technique, objects, cont drivers, Case study on Mars Pathfinder miss	process and threads, aponents in RTOS ker Task communication Threading, Hyper-threa- heduling types: Pree- heduling. First come f and selection of an RT text switching, synchr	nel, objects, scheduler, n and synchronization, ading, State diagrams, emptive priority-based first served scheduling, OS. Examples for each	7
	it - 2		ł
4.0 Inter-task Communication in RTOS Tasks, Semaphores and Message Queues: machine, Steps showing the how FSM	A task, its structure,	• -	

semaphore, mutual exclusion (MUTEX) semaphore, Synchronization between two tasks and multiple tasks, Single shared-resource-access synchronization, Recursive sharedresource-access synchronization. A message queue, its structure, Message copying and memory use for sending and receiving messages, Sending messages in FIFO or LIFO order, broadcasting messages., Demonstration of each of the objects of Inter-process communication, namely, semaphore, Message Queue, MUTEX, Mailbox, etc. Case-study on Magnetic Resonance Imaging(MRI)

5.0 Tasks and Task Management

RTOS - task creation and Management, task scheduling, kernel services, inter-taskcommunication, Micro C/OS-II- task creation and Management, task scheduling, kernel services, inter-task-communication, Demo on Task creation and management functions.Casestudies on Industrial Robot, Weapons Defence System, Adaptive Cruise control

6.0 Handling Deadlocks

Sharing Resources, Deadlock Model- Necessary Conditions, A Graph-Theoretic Tool—
The Resource Allocation Graph, Handling Deadlocks, Deadlock Prevention, Deadlock
Avoidance, Deadlock Detection, Demonstration on Handling of deadlocks, identification
through a casestudy, The Dynamic Dining Philosopher problem.

Unit - 3

7.0 Performance Analysis and Optimization
 Performance or Efficiency Measures, Complexity Analysis—A High-Level Measure, The Methodology, Analyzing Code, algorithms, Response Time, Time Loading, Memory Loading, Evaluating Performance, Performance Optimization, optimizing for Power Consumption. Demonstration of concepts of Performance Analysis and Optimization through a case-study.

8.0 Wired and Wireless Protocols used in Real-Time Embedded System:
Bus communication protocol (USB, I2C, SPI), Wireless and mobile system protocol (Bluetooth, 802.11 and its variants, ZigBee), Examples of block diagrams to explain the working of each protocol for a specified application.

Text Books:

- 1. James K. Peckol, "Embedded Systems A Contemporary Design Tool," Wiley student edition
- 2. Joseph Yiu " The Definitive Guide to the ARM Cortex–M3"
- 3. Silberschatz, Galvin, and Gagne, "Operating system concepts," 8th edition, WILEY Publication.

References:

- 1. Shibu K V, "Introduction to Embedded Systems Tata McGraw Hill, New Delhi, 6th reprint 2012.
- 2. Raj Kamal," Embedded Systems," McGraw-Hill Education
- 3. Steve Furber, "ARM System-on-Chip Architecture" LPE, Second Edition.

Course Code: 17EARC308	Course Title: Hydraulics and Pneumatics	
L-T-P : : 3-0-0	Credits: 3	Contact Hrs: 40 hours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40 hours		Exam Duration: 3 Hrs

Content	Hrs
Unit - 1	
Chapter No. 1. Introduction to Hydraulic Power and Hydraulic Pumps	5hrs
Pascal's law, Structure of Hydraulic Control System. The Source of Hydraulic Power: Pumps Pumping theory, pump classification, gear pumps, vane pumps, piston pumps, Variable displacement pumps, pump performance, pump selection. Problems on determining the pump flow rate, pump efficiency and pump power.	
Chapter No. 2. Hydraulic Actuators: Cylinders and Motors	5hrs

 KLE TECH.
 KLE Technological

 Creating Value
 Creating Value

 Leveraging Knowledge
 Creating Value

 DEPARTMENT OF AUTOMATION & ROBOTICS

Linear Hydraulic Actuators (cylinders), Mechanics of Hydraulic Cylinder loading, Hydraulic Rotary Actuators, Gear motors, vane motors, piston motors, Hydraulic Motor Performance. Problems on determining motor speed, torque, power ,motor efficiency and Mechanics of Hydraulic Cylinder loading.	
Chapter No. 3. Hydraulic Valves	5hrs
Hydraulic Valves: Directional Control Valves- classification of directional control valves, direction control valves actuating devices, Symbolic representation as per ISO 1219 and ISO 5599, pressure control valves, flow control valves- classification of flow control valves, proportional control valves, and servo valves.	
Unit - 2	
Chapter No. 4. Hydraulic Circuit Design and Analysis	5hrs
Control of single acting and double acting Hydraulic Cylinder, regenerative circuit, pump unloading circuit, Double pump Hydraulic system, Counter Balance Valve application, Hydraulic cylinder sequencing circuits. Locked cylinder using pilot check valve, cylinder synchronizing circuits, Speed control of hydraulic cylinder: Meter-in circuit, Meter-out circuit and Bleed-off circuit, speed control of hydraulic motors. Ancillary Hydraulic Devices: Reservoirs, Accumulators, Pressure Intensifiers, Sealing Devices.	
Chapter No. 5. Pneumatic Systems	5hrs
Structure of Pneumatic control system, Choice of working medium, characteristics of compressed air, Pneumatic Actuators: Types of Linear Actuators or Pneumatic cylinders, Cylinder mountings, Cylinder seals, End cushioning in pneumatic cylinders. Pneumatic Control Valves: Direction control valve- types of direction control valves, ISO designation of direction control valves, Non return valves, methods of actuation of pneumatic directional control valves, Flow control valves, and Pressure control valves.	
Chapter No. 6. Pneumatic Circuit Design	5hrs
Direct and indirect control of single acting cylinder, control of single acting cylinder using "or" valve, control of single acting cylinder using "and" valve, control of single acting cylinder using "not" valve. Direct control of a double acting cylinder, Indirect control of double acting cylinder using memory valve, Supply air throttling and exhaust air throttling, Various methods of checking end position of a cylinder, Pressure dependent controls and Time dependent controls.	
Unit - 3	

5 hrs

5 hrs

Chapter No. 7. Hydraulic Control Systems

Servo Control, Valve servo systems: Valve lap, mechanical feedback, systems response, electro hydraulic servo valves, system response and stability, Pump servo systems, Proportional valves: Force control, force position control, spool position control, proportional pressure control, two stage proportional valves, proportional flow control, electrical control of proportional valve, Proportional versus Servo valves, Applications of proportional control valves.

Chapter No. 8. Electro Pneumatics

Basic electrical devices- Manually actuated push button switches, Limit switches, Pressure switches, Solenoids, Relays, Timers, Temperature switches, Direct and indirect control of single acting cylinders using electro pneumatics, Direct and indirect control of double acting cylinders using electro- pneumatics, Control of double acting cylinder OR logic (Parallel circuit), Control of double acting cylinder AND logic.

Text Books (List of books as mentioned in the approved syllabus)

- 1. Anthony Esposito, Fluid Power with Applications, 6th Edition, Pearson, 2003.
- 2. Michael J. Pinches and John G. Ashby, Power Hydraulics, Prentice-Hall, 1989.

References

- 1. Herbert E. Merritt, Hydraulic Control Systems, John Wiley & Sons, 1967.
- 2. Peter J Chapple, Principles of Hydraulic System Design, 1st Edition ,Cox moor Publishing Company, 2003.
- 3. S. R. Majumdar, Oil Hydraulic Systems, Tata McGraw Hill publishing Company Ltd, 2001.

Course Code:17EARE301	CourseTitle:Artificialintelligenceforautonomoussystems	
L-T-P:3-0-0	Credits:3	ContactHrs:40
ISAMarks:50	ESAMarks:50	TotalMarks:100
TeachingHrs:40		ExamDuration:3hours

Content	Hours
UNIT–1	
Chapter1:IntroductiontoArtificialintelligenceandautonomoussystems Foundation of artificialintelligence, robotics andtheAI approach,Semi-autonomouscontrol,SevenareasofAI,TheConceptofRationalityTheNatureofEnvironments, The Structure of Agents, Problem-Solving Agents, Searching for Solutions, UninformedSearch Strategies,Informed Search Strategies,Knowledge representationinAI,knowledgebasedagents,propositionallogic,predicatecalculus,inferenc erules	5hrs
Chapter2:Roboticsoftwarearchitectures Subsumptionarchitecture,Three-layerarchitecture,Pipelinearchitecture,Hierarchical Paradigm- Attributes of the Hierarchical Paradigm, Reactive Paradigm-Attributes of Reactive Paradigm,HybridDeliberative/Reactive Paradigm- AttributesofHybridParadigm,Architectural Aspects,Managerial Architectures- AutonomousRobotArchitecture(AuRA),SensorFusionEffects(SFX),State-Hierarchy Architectures, Model-Oriented Architectures, Interleaving Deliberation and ReactiveControl.	5hrs.
Chapter 3: Biological Foundations of the Reactive ParadigmAgency and computational theory, Animal Behaviors, Reflexive behaviors, Coordination and Control of Behaviors, Innate releasing mechanisms, Concurrent behaviors, Perceptionin Beha viors, Action-perception cycle, Two functions of perception Gibson: Ecological approach , Neisser: Two perceptual systems , Schema Theory, Behaviors and schema theory, Principles and Issues in Transferring Insights to Robots	5hrs

UNIT–2	
Chapter 4:Capturing intelligence - Designing a reactive implementation withcommonsensingtechniquesforroboticsperception BehaviorsasObjectsinOOP,StepsinDesigningaReactiveBehavioralSystem,CaseStudy:Un mannedGroundRoboticsCompetition,Assemblagesof Behaviors,Logical sensors, Behavioral Sensor Fusion, Designing a Sensor Suite, ProprioceptiveSensors,ProximitySensors,ComputerVision,RangefromVision,CaseStudy :Hors	8hrs
d'Oeuvres,Anyone? Chapter5:Multi-agentsandnavigationinrobotics Heterogeneity,Control,Cooperation,EmergentSocialBehavior,TopologicalPathPlanning, RelationalMethods,AssociativeMethods,CaseStudyofTopologicalNavigationwithaHybri dArchitecture	

UNIT–3	
Chapter6:LocalizationandMapMaking	6hrs
SonarSensorModel,Bayesian,Conditionalprobabilities,Conditionalprobabilities,Updatin g with Bayes'rule ,Dempster-ShaferTheory ,Shafer belief functions Belieffunction for sonarDempster's rule of combinationWeight of conflict metric,HIMMsonarmodelandComparisonofMethods,Examplecomputations,Performanc eErrors due toobservations from stationary robot ,Tuning ,Localization,Continuouslocalizationandmapping,Feature- basedlocalizationExploration,Frontier- basedexploration,GeneralizedVoronoigraphmethods.	
Chapter7:Deeplearningandnaturallanguageprocessing	
DeepLearning ImprovementoftheDeepNeural NetworkVanishing	
Gradient Over fitting Computational Load. Language models, text classification, information retrieval	

TextBook(Listofbooksasmentionedintheapprovedsyllabus)

- 1. Stuart J. Russell and PeterNorvig"Artificial Intelligence, A Modern Approach"ThirdEdition, PearsonEducation, Inc. 2010
- 2. RobinR.Murphy"IntroductiontoAIRobotics",Secondedition,TheMITPressCambri dge,Massachusetts,2000

References

- 1. ElaineRich,KevinKnight:"ArtificialIntelligence",3 Edition,TataMcGrawHill, 2009,ISBN-10:0070087709
- 2. Sebastian Thrun,WolframBurgard,DieterFox, "Probabilistic Robotics"MITPress;IntelligentRoboticsandAutonomousAgentsseries edition,2005

Course Code: 15EARE302	Course Title: Computer vision and digital image processing	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40		Exam Duration : 3 hours

Content	Hours
UNIT – 1	
CHAPTER 1: FUNDAMENTALS OF COMPUTER VISION AND DIGITAL IMAGE PROCESSING	6 hrs
Introduction to computer vision system, Geometric Camera Models- Pinhole Perspective, Cameras with Lenses, the Human Eye, Intrinsic and Extrinsic Parameters, Geometric Camera Calibration. Digital image processing system, application of computer vision and digital image processing. Design of machine vision system.	
CHAPTER 2:LIGHT AND SHADING, COLOR	6 hrs
Modeling Pixel Brightness, Reflection at Surfaces, Sources and Their Effects, the Lambertian+SpecularModel, Inference from Shading, Radiometric Calibration and High Dynamic Range Images, the Shape of specularities, Inferring Lightness and Illumination, Color- Human Color Perception, The Physics of color, representing Color, Inference from Color Finding specularities Using Color Shadow removal, usingColor Constancy: Surface Color from Image Color.	
CHAPTER 3: IMAGE FORMATION AND PROCESSING	5 hrs
Image Acquisition – Sampling and Quantization- Pixel Relationships, image enhancement Spatial Domain Gray level Transformations Histogram Processing Spatial Filtering –Smoothing and Sharpening, Introduction to the Fourier Transform and the Frequency Domain, DFT, FFT.	
UNIT – 2	

 KLE TECH.
 KLE Technological

 Creating Value
 Creating Value

 Leveraging Knowledge
 Creating Value

 DEPARTMENT OF AUTOMATION & ROBOTICS

CHAPTER 4:IMAGE SEGMENTATION AND FEATURE ANALYSI	6hrs
Detection of Discontinuities – Edge Operators – Edge Linking and Boundary Detection –Thresholding – Region Based Segmentation, A Model of the Image Degradation/Restoration Process, Noise Models, Restoration in the Presence of Noise Only–Spatial Filtering, Periodic Noise Reduction by Frequency Domain Filtering	
CHAPTER 5: COLOR IMAGE PROCESSING AND IMAGE COMPRESSION	6hrs
Color Fundamentals, Color Models, Pseudo color Image Processing, Basics of Full- Color Image Processing Color Transformations, Smoothing and Sharpening, Color Segmentation, Noise in Color Images Color Image Compression, Image Compression-Fundamentals, Image Compression Models, Elements of Information Theory, Error-Free Compression, Lossy Compression	
UNIT – 3	
CHAPTER 6: MORPHOLOGICAL PROCESSING Dilation and Erosion, Opening and Closing, The Hit-or-Miss Transformation, Some Basic Morphological Algorithms.	6hrs
CHAPTER 7: RECOGNITION ANDBAYESIAN MODELING Object detection, Face recognition. Instance recognition, Category recognition, Context and scene understanding, Recognition databases and test sets, Prior models and Bayesian inference. Gradient descent and simulated annealing, Graph cuts, Markov random fields	5 hrs

Text Book (List of books as mentioned in the approved syllabus)

- 1. David A. Forsyth and Jean Ponce- Computer vision A modern approach, 2nd Edition, Pearson publication, 2003.
- 2. Rafael C. Gonzalez and Richard E. Woods- Digital ImageProcessing-2nd Edition, Prentice Hall publication,2002

Reference book

1. Richard Szeliski , Computer Vision: Algorithms and Applications, Springerpublication, 2010

Course Code: 16EARE301	Course Title: Power Electronics, Motors & Drives		
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50		Exam Duration: 3 hrs	
Cor	ntent		Hrs
Un	it - 1		
CHAPTER NO. 1.INTRODUCTION TO PE Electronics, Applications of Power Electronics, Effects, Characteristics and Specifications of S system: Mechanical loads, electric motors, power	Types of Power Electron witches. Basic componen	nic Circuits, Peripheral ts of an Electric drive	7 hrs
CHAPTER NO. 2.POWER DIODES, BJT, MC Characteristics, Reverse Recovery Characteristics Switched RL Load. power BJT, structure of B. MOSFET and IGBT, comparison of power Rectifiers, Single-Phase Full-Wave Rectifier with a Highly Inductive Load.	s, Power Diode Types, Fre JT, MOSFET and IGBT, devices. Introduction, Si	wewheeling Diodes with characteristics of BJT, ingle-Phase Full-Wave	7 hrs
CHAPTER NO. 3.THYRISTORS AND COMM Introduction, Principle of Operation of SCR, Static A model of SCR, Gate Characteristics of SCR, Firi Mechanism, Turn-Off. Natural and Forced Commutati Resistance Firing Circuit, Resistance capacitance firing	Anode-Cathode Characteristic ng circuits for SCRs, Turr ion – Class A and Class B ty	n-On Methods, Turn-Off	6 hrs
Uni	it - 2		
CHAPTER NO. 4. STATIC SWITCHES AND POWER SUPPLIES Single phase ac static switches, three phase ac static switches, three phase reversing switches, Solid state relays, Design of static switches, DC power supplies, DC Switched Mode DC power supplies, bidirectional power supplies, Switched Mode AC power supplies.			7 hrs
CHAPTER NO. 5. DC-DC CONVERTERS - Intro analysis with RL load, principle of step-up op		*	7 hrs

 KLE TECH.
 KLE Technological

 Creating Value
 Creating Value

 Leveraging Knowledge
 Creating Value

 DEPARTMENT OF AUTOMATION & ROBOTICS

Performance parameters, Converter classification, Switching mode regulators: Buck regulator, Boost regulator, Buck-Boost Regulators. **CHAPTER NO. 6. POWER ELECTRONICS FOR MOTOR AND DRIVE APPLICATIONS** 6 hrs DC and AC motor control, Single phase SCR drive, Three phase SCR drive, Reversible SCR drive, Speed control of DC motor, chopper-controlled DC drives, Microprocessor-Controlled DC drives, AC motor characteristics, speed control methods of induction motor, commutator less DC motor and Electronic commutation. **Unit - 3 CHAPTER NO. 7. STEPPER MOTOR** 5 hrs Principle of Stepper motor, Classification of Stepper motor, Principle of variable reluctant stepper motor, Principle of Permanent magnet stepper motor, Principle of hybrid stepper motor, driver for stepper motor, Applications of Stepper motor. **CHAPTER NO. 8. DRIVES FOR INDUSTRIAL APPLICATIONS** 5 hrs Rolling mill drives, cement mill drives, electric traction drives, textile mill drives and machine tool drives.

Text Book: (List of books as mentioned in the approved syllabus)

- 1. Gopal K Dubey, Fundamental of electric drives, Second, Narosa publication, 2005
- 2. P.S Bhimbhra, Power Electronics, Fourth, Khanna , 2007
- 3. Mohammed A Sharkawi, Fundamental of electric drives, Fourth, Brooks/Cole, 2000
- 4. Robert Boylestead and Louis Nashelsky "Electronic Devices and Circuit Theory, Eleventh edition, Pearson Publications
- 5. Rashid M H, Power Electronics Circuits, devices and applications, Second, PHI, 2000
- 6. P.C Sen, Power Electronics, Tata McGraw Hill, Ninth Edition.

References

- 1. P.S Bhimbhra, Power Electronics, Fourth, Khanna, 2007
- 2. Mohammed A Sharkawi, Fundamental of electric drives, Fourth, Brooks/Cole, 2000

Course Code: 17EARE304	Course Title: Digital System Design and FPGA programming	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 50
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50		Exam Duration: 3 hrs

Content	Hrs
Unit – 1	1
Chapter No. 1. Review of Logic Design Fundamentals: Combinational logic, Boolean algebra and algebraic Simplification Karnaugh maps, designing with NAND and NOR gates, hazards in combinational circuits, flip-flops and latches, Mealy sequential circuit design, design of a Moore sequential circuit, equivalent states and reduction of state tables, sequential circuit timing, tristate logic and busses. Advanced Design Issues: Meta-stability, Noise Margins, Power, Fan-out, TimingConsiderations, Brief overview of programmable logic devices, simple programmable logic devices (SPLDs), complex programmable logic devices (CPLDs), field-programmable gate arrays (FPGAs),	9 hrs

Chapter No. 2. Introduction to State Machine Charts and Microprogramming: State machine(SM) charts, derivation of SM charts, realization of SM charts, implementation of the dice game, microprogramming,: Design Examples	6 hrs
Unit – 2	
Chapter No. 3. Designing with Field Programmable Gate Arrays: Implementing functions in FPGAs, implementing functions using Shannon's decomposition, carry chains in FPGAs, cascade chains in FPGAs, examples of logic blocks in commercial FPGAs, dedicated memory in FPGAs, dedicated multipliers in FPGAs, cost of programmability, FPGAs and One-Hot state assignment	7 hrs
Chapter No. 4. Modeling and design with HDL Basic Concepts, Dataflow Descriptions, Behavioral Descriptions, Structural Descriptions, Design examples, Timing and Delays, BCD to 7-Segment Display Decoder, BCD Adder, 32-Bit Adders, Traffic Light Controller, Shift- and-Add Multiplier, Array Multiplier. Introduction to Verilog and VHDL: Data Types, Modeling Concepts, Task and Functions, Specify Block and Timing Checks, Architecture study of popular FPGA families	8 hrs
Unit – 3	
Chapter No. 5. Testing and Verification What is Verification, what is a Test bench, The Importance of Verification, Convergence Model, What Is Being Verified, Functional Verification Approaches, Testing Versus Verification, Design and Verification Reuse, Cost of Verification	5 hrs
 Chapter No. 6 Case studies on FPGA technologies in Automation and Robotics applications Robotic Car from Georgia Institute of Technology Robotic Controller: ASIC versus FPGA Expanding a robot's life: Low power object recognition via FPGA-based DCNN deployment IV. EPGA-powered parallel, pipelined vision algorithms 	5 hrs

Text Books (List of books as mentioned in the approved syllabus)

- 1. Charles Roth, Digital Systems Design using VHDL, 2/e, Cengage Learning, 2012.
- 2. Samir Palnitkar, Verilog HDL, 2/e, Pearson Education, 2013.
- 3. Charles Roth, Digital Systems Design using Verilog, Cengage Learning, 2014

References

1. John F. Wakerly, Digital Design Principles and Practices, 4/e, Pearson Education, 2013.

2. Michael Ciletti, Advanced Digital Design using Verilog HDL, 2/e, Prentice Hall Publications, 2012.

3. J. Bhasker, System Verilog HDL Primer, B.S. Publications, 2012.

4. J. Bhasker, Verilog Synthesis Primer, B. S. Publications, 2011.

Semester: 6th Semester

Year: 2019-2020

Laboratory Title: Hydraulics And Pneumatics Lab	Lab. Code: 16EARP302
Total Hours: 24	Duration of ESA Hours: 3

Experiment wise Plan

Category	Demonstration	Total Weightage:	Category: Demonstration Total Weightage: 25.00	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	To study hydraulic pump, its characteristics and calculate the hydraulic power	1.00	4.00	
	Learning Objectives: The students should be able to 1. Differentiate between 2. Plot and infer characte	types of pumps.	Pump.	Unit - I
2	 A. To study concepts of Meter-in and Meter-out circuits using Single-rod cylinder and 4/2 DCV B.To study the application of different center configuration of 4/3 DCV. (Tandem and closed centre) 	1.00	8.00	
	 Learning Objectives: The students should be able to 1. Identify hydraulic cy control valves. 2. Explain meter-in and control the speed of meter in/out throttle. 3. Demonstrate how a by a 4/3 directional variable (blocked and circulation) 	linders and varic d meter-out circu a single acting c hydraulic cylinder alve with different	uits used to ylinder using is controlled	Unit II
3	In a machining station, a hydraulic rotary drive is to swivel a drum from the horizontal to the vertical position after a welding process. The movement is to	1.00	4.00	

	be performed by a hydraulic motor. Despite varying loads, the motor speed must remain constant.			
	Learning Objectives: The students should be able to 1. Discuss the operating 2. Explain how a 4/3 dir implement clockwise of the hydraulic motor	features of a hydra ectional valves ca and counter-clock	n be used to	Unit - II
4	On a machine tool the velocity of a feed cylinder is to be increased and thus the cycle time of the system shortened without changing the pump flow. The advance velocity (extending time of the hydraulic cylinder) is to be adjustable independently of the load.	1.00	4.00	
	Learning Objectives: The students should be able to 1. Understand and recor 2. Calculate the velocity	d the table of the t	ravel times	Unit – I
5	In a fixture, a tool is to be moved by means of a hydraulic cylinder into and out of the machining area. In the event of a hydraulic pump failure, the tool must be extended by means of stored energy.	1.00	5.00	
	Learning Objectives: The students should be able to):		Unit - II

	1. Understand the work	ng of hydraulic acc	umulator.	
Category	Category: Exercise		24.00	No. of lab sessions: 4.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch	Marks / Experiment	Correlation of Experiment with the theory
6	 A. Study of indirect control of a double-acting cylinder with a pneumatically operated 5/2 directional control valve. B. To study position dependent control of a double acting cylinder using mechanical limit switches. 		6.00	
	 Demonstrate how a double acting cylinder 	 The students should be able to: 1. Demonstrate how a 5/2 DCV can be used control a double acting cylinder. 2. Identify switches and push buttons and use them to 		Unit - II
7	 A. Study of Speed Control of Single Acting Cylinder - Slow Speed Extension and Rapid Retraction. B. Stop control, double-acting cylinder with 5/3 directional control valve, tensile load 	1.00	6.00	
	Learning Objectives: The students should be able to 1. Explain how the spee		ng cylinder is	Unit - I

	 controlled using a quick-exhaust valve. 2. Explain the use of a 5/3 directional control valve with closed mid-position for stopping a double-acting cylinder. 			
8	The sequential control with two hydraulic drives.	1.00	6.00	
	Learning Objectives: The students should be able to 1. Explain how the seque cylinders.	ning Objectives: students should be able to: 1. Explain how the sequencing occurs between multiple		
9	Control of hydraulic circuit using logic gates, timers and counters.	1.00	6.00	
	Learning Objectives: The students should be able to: 1. Identify different logic gates 2. Demonstrate circuit using timers and counters.			Unit - III
Category	Structured Enquiry	Total Weightage:	14.00	No. of lab sessions: 2.00
Category Expt./ Job No.	Structured Enquiry Experiment / Job Details	Total Weightage: No. of Lab Session(s) per batch	14.00 Marks / Experiment	No. of lab sessions: 2.00 Correlation of Experiment with the theory
Expt./		No. of Lab Session(s) per batch	Marks /	Correlation of Experiment
Expt./ Job No.	Experiment / Job Details Hydraulic feed drive with electrical control and	No. of Lab Session(s) per batch 1.00	Marks / Experiment 7.00	Correlation of Experiment

	developing sequential diagrams and pneumatic circuit diagrams. Learning Objectives: The students should be able to 1. Use double acting cyl control valves and pu circuit diagram for pneumatic drives.	inders, appropriat ush buttons and c	construct the	Unit - II
Category	: Open Ended	Total Weightage:	7.00	No. of lab sessions: 1.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch	Marks / Experiment	Correlation of Experiment with the theory
12	A double-acting cylinder is used to press together glued components. Upon pressing a push-button, the clamping cylinder is to extend and trip the roller valve. Once the fully extended position of the cylinder has been reached and sufficient clamping force has been developed, the cylinder is to retract to the initial position. Develop a control circuit using a pressure sequence valve.	1.00	7.00	
	valve. Learning Objectives: The students should be able to: 1. Construct a control circuit using a pressure sequence valve for a given application.			Unit - I, II and III

Laboratory Plan Laboratory Course Plan: B.E in A&R

-		
Spr	neste	r' / l
JUI	neste	

*Year: 2019-*2020

La	boratory Title: Industrial Robotics Lab	Lab. Code: 17EARP306
Tot	tal Hours: 28	Duration of Exam: 3 hrs.

Experiment wise Plan

Category: Exercise	Total Weightage: 70.00	No. of lab
--------------------	------------------------	------------

				sessions: 8.00	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory	
1	Matlab Introduction	1.00	10		
	Millions of engineers and scienti analyze and design the systems world. The matrix-based MATLAH natural way to express comp graphics make it easy to visualize desktop environment invites exp discovery. These MATLAB tools a tested and designed to work togeth MATLAB helps you take your idea run your analyses on larger data s clouds. MATLAB code can be ir enabling you to deploy algorithm enterprise, and production systems Topics: 1. Basic commands 2. Vectors and Matrices 3. Importing Data 4. Plotting Data Technically speaking, MATLAB is it is a tool with which you can find mathematics. Robotic developers want to analyze data, produce a control systems. MATLAB, and its open source re popular with some robotic engi developing control systems. Programming for a robot require governs robot behavior. Modeling understand how the controlle environment perception, mobility, a	and products tran and products tran and gain insights from perimentation, exp and capabilities are her. as beyond the deslects, and scale up to the grated with other as and applications and applications and applications advanced graphs latives, such as Or ineers for analyzing es designing the or and simulation ber r interacts with	Inspression of the second seco	UNIT – I	
	Why MATLAB is the Most Used Programming Language in Robotics?				

	 MATLAB is highly useful in designing the entire robotic system. It is widely used in the robotics industry as it is deeply rooted in the foundation and development of robots. It is a simulation tool whereby you can provide your algorithm or design and it simulates the result. On the other hand, simulation helps engineers to refine the system design and eliminate errors before developing hardware prototypes. 					
2	Robo	tics Toolbox	1	.00	10	
	The Toolbox has always provided many functions that are useful for the study and simulation of classical arm-type robotics, for example such things as kinematics, dynamics, and trajectory generation.					
	The toolbox contains functions and classes to represent orientation and pose in 2D and 3D (SO (2), SE (2), SO (3), SE (3)) as matrices, quaternions, twists, triple angles, and matrix exponentials. The Toolbox also provides functions for manipulating and converting between data types such as vectors, homogeneous transformations and unit-quaternions which are necessary to represent 3-dimensional position and orientation.				UNIT – T	
3	Robo	Analyzer		2.00	20	
	Explaining the concepts in a course on Robotics typically requires a 3D model of a serial-robot/manipulator, either in the form of a physical robot or a virtual robot in software environment, for a better understanding. With the experience of handling Robotics courses and the feedback received so far, we have come up with a list of Virtual Experiments using RoboAnalyzer. List of Virtual Experiments using RoboAnalyzer			UNIT-I & II		
	SIPractical Assignments using No.Topics Covered					
	1 Introduction to RoboAnalyzer Usage of RoboAnalyzer					
	2 Virtual Models of Industrial Robots Industrial Robots					

						1
	3 Understanding coordinate frames and transformations		DH Parameters, Robot			
	transformations		Geometry			
	4 Forward kinematics of robots		Robot Kinematic Analysis			
	5	5 Inverse kinematics of robots		Robot Kinematic Analysis		
	6 '		Robot Kinematic Analysis			
	7 Case Study: Workspace Analysis of a 6 axis robot		Workspace Analysis			
	8	Inverse and Forward dynamics of r	obots	Robot Dyn	amics	
	9	Creating robot joint trajectories		Trajectory	Planning	
4 In	ntroc	duction to ABB Robotstudio		1.00	5.00	
W Ro Sy Th Th Ro re	 for robot systems. ABB's simulation and offline programming software, RobotStudio, allows robot programming to be done on a PC in the office without shutting down production. RobotStudio provides the tools to increase the profitability of your robot system by letting you perform tasks such as training, programming, and optimization without disturbing production. This provides numerous benefits including: Risk reduction Quicker start-up Shorter change-over Increased productivity RobotStudio is built on the ABB VirtualController, an exact copy of the real software that runs your robots in production. This allows very 				UNIT-I & II	
	realistic simulations to be performed, using real robot programs and configuration files identical to those used on the shop floor.					
	Simulation/Offline Programming 2.00 15.00 (Robotstudio)					

Topics to be covered: 1. Create mechanism 2. AutoPath UNIT-I&II 3. Set Task Frame 4. Collision control 5. Reachability 6. Create MultiMove System from Layout 6 10 Online Programming 1.00 To perform a particular action, robots are programmed either by guiding or by off-line programming. Most of the industrial robots are programmed by guiding a robot from point to point through the phases of an operation, with each point stored in the robotic control system. Robots receive instructions through computer commands and this is referred to as manipulator level off-line programming. Usage of UNIT-I & II off-line programming involves higher-level languages, in which robotic actions are defined by tasks or objectives. Robotic programmers must have knowledge on different types of programming languages as switching from computers to robots is not the smooth transition that many developers/programmers may think. **Total Weightage: 20.00** No. of lab **Category: Structured Enquiry** sessions: 1.00 Expt./ **Experiment / Job Details** No. of Lab Marks / **Correlation of** Job No. Session(s) per Experiment Experiment batch (estimate) with the theory 7 Project UNIT-I & II 20.00 1 Students should form a team of 4 in

numbers and select a problem or need statement in industrial robotics area. The project should consists of following requirements: Minimum 3 to 6 DOF robot arm DH Parameters Students are free to choose the software to complete the project		

Laboratory	Plan
------------	------

FMTH0303-3.1

Semester: VI

Year: 2019-20

Laboratory Title: Real Time Embedded Systems Lab	Lab. Code: 16EARP305
Total Hours: 28	Duration of ESA Exam: 3hrs

LIST OF EXERCISES & ISA COMPUTATION

SI. No	EXPERIMENTS	MAX MAR KS
1	Demo on Energia IDE and TM4C1294NCPDT, TIVA C series microcontroller board & Solving problems on Data Acquisition for Bio Medical / Process control/Industrial control application	05
2	Demo on Code Composer Studio(CCS) and TIVA C series TM4C1294NCPDT microcontroller board and problem solving on ADC,TIMERS,INTERRUPTS	05
3	Demo on LABVIEW on multitasking to implement Semaphores, Queue Demo on Introduction to Keil uvision 4 problem solving	05
4	Demo on Raspberry Pi Programming and peripheral programming	05
5	Exercises on basic RTOS program, RTX Kernel using peripherals like RTC, TIMERS, UART, SEMAPHORES	10
6	Exercises on implementing scheduling algorithms like Preemptive /Round Robin / Interrupts/ and Multitasking operations in RTX Kernel of Keil uvision 4.	10
7	Structured Query : Implementing Communication Protocols like I2C / SPI / UART /CAN / ETHERNET with Energia /CCS & TM4C1294 TIVA board	10
8	Study of real-time sensor data visualization in computational tool and triggering of power electronics devices.	05
9	Synopsis for ESA Project, Attendance & Timely Submission of document	05

	TOTAL ISA MARKS	80
ESA	Design using state machine architecture or Unified Modeling Language and implement solution for a real world problem using IOT technology for applications related Smart Home, Energy Management, Smart Grid, Smart Agriculture, Wearable Device, Smart Health Care, Connected Car, Smart Machine involving Inter-process communication, Resource sharing and an effective scheduling technique satisfying real time constraints.	20
	TOTAL MARKS	100

Laboratory Plan FMTH0303-3.1 VI

Semester:

Year: 2019-20

Laboratory Title: Minor Project	Lab. Code: 17EARW302
Total Hours: 30	Duration of Exam: 3 Hrs

At the end of the course student will be able to:

- 1. Apply the principles of engineering design to plan and manage the project.
- 2. Gather the requirements, do functional analysis and develop specifications for a machine controller from the identified problem statement.
- 3. Develop alternative designs and choose the most suitable design for implementation.
- 4. Apply principles of mechatronics system design for hardware and software co-design as per standards (VDI 2206 & VDI 2221).
- 5. Develop elaborate validation and verification plans for each phase of the process.
- 6. Design control and signal conditioning circuits including schematics and wiring diagrams as per standards (IEC standards).
- 7. Build the Virtual prototype and validate using hardware-in-loop simulation and softwarein-loop simulation.
- 8. Prototype the controller, deploy the software & Interface the controller to the machine.
- 9. Test, evaluate and improve the system.
- 10. Prepare technical report.

Course Code: 16EARC401	Course Title: Industri	Course Title: Industrial Data Networks	
L-T-P : 4-0-0	Credits: 4	Contact Hrs: 50	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50		Exam Duration: 3 hrs	

Content	Hrs
Unit I	
Chapter No. 1. DATA NETWORK FUNDAMENTALS AND INDUSTRIAL ETHERNET	8
Modern Instrumentation and Control Systems, Open Systems Interconnection (OSI) Model, Concepts of Parallelization, Sequential, Framing, Bit Encoding, Media Access Control, Error Correction, Time Division, Bit Rate, and Baud Rate, EIA-232, EIA-485, Fiber Optics Overview, Circuit Switching and Packet Switching, Network Topologies, Ethernet, Ethernet Topology, 10 Mbps Ethernet, 1 Gigabit Ethernet, Internetwork Connections Devices (Repeaters, Bridges, Hubs, Switches, Routers and Gateways)	
Chapter No. 2. TCP/IP	7
IP Version 4 (IPv4), IP Version 6 (IPv6), Address Resolution Protocol (ARP), Internet Control Message Protocol (ICMP), IP Routing, Transmission Control Protocol (TCP), User Datagram Protocol (UDP)	
Chapter No. 3. MODBUS	5
MODBUS: Protocol Structure, Function Codes	
Unit II	
Chapter No. 4. FIELDBUS, PROFIBUS AND AS-INTERFACE	7
FIELDBUS: Physical Layer, Data Link Layer and Application Layer of FOUNDATION Fieldbus	
PROFIBUS: PROFIBUS DP (Decentralized Periphery), PROFIBUS DP Communication	

Protocol, Application Profiles, PROFIBUS PA (Process Automation)	
AS-Interface: AS-Interface, Physical Layer, Data Link and Application Layer of the AS- Interface	
Chapter No. 5. ETHERCAT, ETHERNET POWERLINK AND SERCOS III	8
ETHERCAT: Architecture Model, Protocol, Topology, Distributed Clocks, Device Profiles, EtherCAT Master, EtherCAT Slave	
Ethernet POWERLINK: Slot Communication Network Management, Physical Layer, Data Link Layer, Transport and Application Layer of Ethernet POWERLINK, Ethernet POWERLINK Addressing, Frame Structures	
SERCOS III:OSI Layers of SERCOS III, Communication Cycle, Protocol Structure, Topology, Communication Network Infrastructure	
Chapter No. 6. HART, BLUETOOTH AND OPC	5
HART: HART Protocol, Physical Layer, Data Link Layer and Application Layer of HART.	
BLUETOOTH: Protocol Stack, Topologies, Generic Data Transport Architecture, Basic	
Rate/Enhanced Data Rate (BR/EDR) Radio Operation, Low Energy (LE) Operation, Operational Procedures and Modes, Profiles	
OPC: Enterprise Integration, Manufacturing Execution Systems (MES), Process Analysis, Process Modeling, Data Modeling, Data Flow Diagrams (DFDs), Communication Patterns, Data Collection Technologies, OPC (OLE for Process Control)	
Unit III	
Chapter No. 7. CAN, CAN FD AND DEVICENET	5
CAN: Physical Layer, Data Link Layer and Application Layer of CAN, Protocol, Bus Arbitration, Frames, Bit Stuffing, Bit Synchronization, Bit Timing	
CAN FD: Physical Layer, Data Link Layer and Application Layer of CAN FD, Protocol, Frames	
DEVICENET: Physical Layer, Data Link Layer, Network and Transport Layers, and Application Layer of DeviceNet	

5

Chapter No. 8. FLEXRAY AND MOST

FLEXRAY: Topologies, Protocol, Media Access Control (Communication Cycle), Frame Format, Clock Synchronization

MOST: OSI Layers for MOST, Data Frame, Timing Master, Timing Slave, MOST Devices

Course Code: 16EARE401	Course Title: Measurement Systems	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40 hours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40		Duration of ESA: 3 Hrs

Content	Hrs
Unit – I	
Chapter No. 1. Introduction to Measurement Systems	
Need for study of Measurement Systems, Classification of Types of Measurement	

Instrument , Active and Passive Transducers , Analog And Digital Modes of Operation , Null and Deflection Methods , Input-Output Configuration of Instruments and Measurement Systems, Static Characteristics and Static Calibration, Dynamic Characteristics. Chapter No. 2. Sensors and Signal conditioning Sensor characterization, Relations between physical quantities, Sensor Classification, Specifications, Error reduction techniques, Loading errors, Signal conditioning processes, The operational amplifier, Filtering, Wheatstone bridge, Pulse modulation. Chapter No. 3. Motion Measurement Fundamental Standards, Relative Displacement: Translation and Rotational, Relative Velocity: Translation and Rotational, Relative-Acceleration Measurements, Displacement Pickups, Velocity Pickups, Acceleration Pickups, Calibration and Vibration Pickups, Jerk Pickups. Unit – II Chapter No. 4. Force, Torque, and Shaft Power Measurement Standards and Calibration, Basic Methods of Force Measurement, Characteristics of Elastic Force Transducers, Torque measurement on Rotating shaft, Shaft Power Measurement (Dynamometers), Vibrating Wire Force Transducers. Chapter No. 5. Pressure & Sound Measurement Standards and Calibration, Basic Methods of Pressure Measurement, Deadweight Gages and Manometers, Elastic Transducers, Vibrating-Cylinder and Other Resonant Transducers, Dynamic Testing of Pressure-Measuring Systems, High-Pressure Measurement, Low- Pressure Measurement, Sound Measurement. Chapter No. 6. Flow and Temperature Measurement Local Flow Velocity, Magnitude and Direction, Gross Volume Flow Rate, Standards and Calibration of Temperature Measurement, Thermal-Expansion methods, Thermoelectric Sensors, Electrical-Resistance Sensors, Junction Semiconductor Sensors, Digital Thermometers, Radiation Methods. Unit – III Chapter No. 7. Data Acquisition Systems Data conversion devices, Signal sampling and aliasing, Sampling theorem, Quantization,		
Sensor characterization, Relations between physical quantities, Sensor Classification, Specifications, Error reduction techniques, Loading errors, Signal conditioning processes, The operational amplifier, Filtering, Wheatstone bridge, Pulse modulation. Chapter No. 3. Motion Measurement Fundamental Standards, Relative Displacement: Translation and Rotational, Relative Velocity: Translation and Rotational, Relative-Acceleration Measurements, Displacement Pickups, Velocity Pickups, Acceleration Pickups, Calibration and Vibration Pickups, Jerk Pickups. Unit – II Chapter No. 4. Force, Torque, and Shaft Power Measurement Standards and Calibration, Basic Methods of Force Measurement, Characteristics of Elastic Force Transducers, Torque measurement on Rotating shaft, Shaft Power Measurement (Dynamometers), Vibrating Wire Force Transducers. Chapter No. 5. Pressure & Sound Measurement Standards and Calibration, Basic Methods of Pressure Measurement, Deadweight Gages and Manometers, Elastic Transducers, Vibrating-Cylinder and Other Resonant Transducers, Dynamic Testing of Pressure-Measurement Local Flow Velocity, Magnitude and Direction, Gross Volume Flow Rate, Standards and Calibration of Temperature Measurement. Chapter No. 6. Flow and Temperature Measurement Local Flow Velocity, Magnitude and Direction, Gross Volume Flow Rate, Standards and Calibration of Temperature Measurement, Thermal-Expansion methods, Thermoelectric Sensors, Electrical-Resistance Sensors, Junction Semiconductor Sensors, Digital Thermometers, Radiation Methods. Unit – III Chapter No.7. Data Acquisition Systems Data conversion devices, Signal sampling and aliasing, Sampling theorem, Quantization, Encoding, Digital to analog conversion methods, Analog to digital conversion methods, Sample & Hold circuit, Flash ADC, Successive approximation ADC, Dual slope ADC, Sigma Delta ADC, Multiplexers.	Transducers , Analog And D on Methods , Input-Output (es of n of
Fundamental Standards, Relative Displacement: Translation and Rotational, Relative Velocity: Translation and Rotational, Relative-Acceleration Measurements, Displacement Pickups, Velocity Pickups, Acceleration Pickups, Calibration and Vibration Pickups, Jerk Pickups. Unit – II Chapter No. 4. Force, Torque, and Shaft Power Measurement Standards and Calibration, Basic Methods of Force Measurement, Characteristics of Elastic Force Transducers, Torque measurement on Rotating shaft, Shaft Power Measurement (Dynamometers), Vibrating Wire Force Transducers. Chapter No. 5. Pressure & Sound Measurement Standards and Calibration, Basic Methods of Pressure Measurement, Deadweight Gages and Manometers, Elastic Transducers, Vibrating-Cylinder and Other Resonant Transducers, Dynamic Testing of Pressure-Measuring Systems, High-Pressure Measurement, Low- Pressure Measurement, Sound Measurement Local Flow Velocity, Magnitude and Direction, Gross Volume Flow Rate, Standards and Calibration of Temperature Measurement, Thermal-Expansion methods, Thermoelectric Sensors, Electrical-Resistance Sensors, Junction Semiconductor Sensors, Digital Thermometers, Radiation Methods. Unit – III Chapter No.7. Data Acquisition Systems Data conversion devices, Signal sampling and aliasing, Sampling theorem, Quantization, Encoding, Digital to analog conversion methods, Analog to digital conversion methods, Sample & Hold circuit, Flash ADC, Successive approximation ADC, Dual slope ADC, Sigma Delta ADC, Multiplexers.	petween physical quantities, Ser ques, Loading errors, Signal cond	
Chapter No. 4. Force, Torque, and Shaft Power Measurement Standards and Calibration, Basic Methods of Force Measurement, Characteristics of Elastic Force Transducers, Torque measurement on Rotating shaft, Shaft Power Measurement (Dynamometers), Vibrating Wire Force Transducers. Chapter No. 5. Pressure & Sound Measurement Standards and Calibration, Basic Methods of Pressure Measurement, Deadweight Gages and Manometers, Elastic Transducers, Vibrating-Cylinder and Other Resonant Transducers, Dynamic Testing of Pressure-Measuring Systems, High-Pressure Measurement, Low- Pressure Measurement, Sound Measurement Local Flow Velocity, Magnitude and Direction, Gross Volume Flow Rate, Standards and Calibration of Temperature Measurement, Thermal-Expansion methods, Thermoelectric Sensors, Electrical-Resistance Sensors, Junction Semiconductor Sensors, Digital Thermometers, Radiation Methods. Unit – III Chapter No.7. Data Acquisition Systems Data conversion devices, Signal sampling and aliasing, Sampling theorem, Quantization, Encoding, Digital to analog conversion methods, Analog to digital conversion methods, Sample & Hold circuit, Flash ADC, Successive approximation ADC, Dual slope ADC, Sigma Delta ADC, Multiplexers.	Displacement: Translation and R Relative-Acceleration Measureme	ement 5 hrs
Standards and Calibration, Basic Methods of Force Measurement, Characteristics of Elastic Force Transducers, Torque measurement on Rotating shaft, Shaft Power Measurement (Dynamometers), Vibrating Wire Force Transducers. Chapter No. 5. Pressure & Sound Measurement Standards and Calibration, Basic Methods of Pressure Measurement, Deadweight Gages and Manometers, Elastic Transducers, Vibrating-Cylinder and Other Resonant Transducers, Dynamic Testing of Pressure-Measuring Systems, High-Pressure Measurement, Low- Pressure Measurement, Sound Measurement Local Flow Velocity, Magnitude and Direction, Gross Volume Flow Rate, Standards and Calibration of Temperature Measurement, Thermal-Expansion methods, Thermoelectric Sensors, Electrical-Resistance Sensors, Junction Semiconductor Sensors, Digital Thermometers, Radiation Methods. Unit – III Chapter No.7. Data Acquisition Systems Data conversion devices, Signal sampling and aliasing, Sampling theorem, Quantization, Encoding, Digital to analog conversion methods, Analog to digital conversion methods, Sample & Hold circuit, Flash ADC, Successive approximation ADC, Dual slope ADC, Sigma Delta ADC, Multiplexers.	Unit – II	I
Standards and Calibration, Basic Methods of Pressure Measurement, Deadweight Gages and Manometers, Elastic Transducers, Vibrating-Cylinder and Other Resonant Transducers, Dynamic Testing of Pressure-Measuring Systems, High-Pressure Measurement, Low- Pressure Measurement, Sound Measurement. Chapter No. 6. Flow and Temperature Measurement Local Flow Velocity, Magnitude and Direction, Gross Volume Flow Rate, Standards and Calibration of Temperature Measurement, Thermal-Expansion methods, Thermoelectric Sensors, Electrical-Resistance Sensors, Junction Semiconductor Sensors, Digital Thermometers, Radiation Methods. Unit – III Chapter No.7. Data Acquisition Systems Data conversion devices, Signal sampling and aliasing, Sampling theorem, Quantization, Encoding, Digital to analog conversion methods, Analog to digital conversion methods, Sample & Hold circuit, Flash ADC, Successive approximation ADC, Dual slope ADC, Sigma Delta ADC, Multiplexers.	nods of Force Measurement, Chara ment on Rotating shaft, Shaft Por	
Local Flow Velocity, Magnitude and Direction, Gross Volume Flow Rate, Standards and Calibration of Temperature Measurement, Thermal-Expansion methods, Thermoelectric Sensors, Electrical-Resistance Sensors, Junction Semiconductor Sensors, Digital Thermometers, Radiation Methods. Unit – III Chapter No.7. Data Acquisition Systems Data conversion devices, Signal sampling and aliasing, Sampling theorem, Quantization, Encoding, Digital to analog conversion methods, Analog to digital conversion methods, Sample & Hold circuit, Flash ADC, Successive approximation ADC, Dual slope ADC, Sigma Delta ADC, Multiplexers.	thods of Pressure Measurement, I , Vibrating-Cylinder and Other Reso uring Systems, High-Pressure M	ucers, 5 hrs
Chapter No.7. Data Acquisition Systems Data conversion devices, Signal sampling and aliasing, Sampling theorem, Quantization, Encoding, Digital to analog conversion methods, Analog to digital conversion methods, Sample & Hold circuit, Flash ADC, Successive approximation ADC, Dual slope ADC, Sigma Delta ADC, Multiplexers.	Direction, Gross Volume Flow Ra ment, Thermal-Expansion metho	lectric 5 hrs
Data conversion devices, Signal sampling and aliasing, Sampling theorem, Quantization, Encoding, Digital to analog conversion methods, Analog to digital conversion methods, Sample & Hold circuit, Flash ADC, Successive approximation ADC, Dual slope ADC, Sigma Delta ADC, Multiplexers.	Unit – III	I
Chanter No. 8. Transmission and Recording of Data	pling and aliasing, Sampling theo on methods, Analog to digital co	thods, 5 hrs
Cable Transmission of Analog Voltage and Current Signals, Cable Transmission of Digital	-	Digital

Data, Fiber-Optic Data Transmission, Analog Voltmeters and Potentiometers, Electrical	5 hrs
Instruments, Digital Voltmeters and Multimeters, Signal Generation, Electromechanical XT	
and XY Recorders, Fiber Optic Sensors.	

Course Code: 16EARE402	Course Title: Advanced Microcontrollers		
L-T-P : 3-0-0	Credits: 3 Contact Hrs: 3		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40	0 Exam Duration: 3h		h
Content		Hrs	
Unit - 1			
Unit - 1 1.0. Introduction to ARM and ARM Architecture: Background, ARM cortex series portfolio, ARM program model, Instruction Set Development, The Thumb-2 Technology and Instruction Set Architectural features, R profile, M profile and A Profile, ARM Cortex-M3 Processor :Peripheral Interfacing, Exceptions and Interrupts, Cortex-M3 Programming, Low power modes, Hardware Features, Debug Support, Application development with Cortex M3/M4 controllers using standard		7	

peripheral libraries.	
2.0 Controllers in embedded system design : Low power architectures, High performance capabilities, Microcontroller power saving strategies, Tradeoff between High Performance and low power capabilities for embedded systems. Power/Energy Profiling of Microcontroller/ Embedded systems, Applications	8
Unit - 2	
3.0 MSP430 series Microcontroller devices: Unique architectural features, block diagram, Low power DNA, Addressing modes, Instruction set, Power down modes, MSP430 Interrupts and Low Power, Digital Input-Output, On chip peripherals, Timers: Block diagram, Timer Modes, Timer Interrupts, Low Power Down Modes, Watchdog Timer	8
4.0 MSP430 Peripherals: Analog to Digital Convertors (ADC), Performance measures, Signal to Noise Ratio, ADC Architectural Block diagram, Timing and Triggering options, Low power and Interrupt operation. Digital to Analog Convertors: Architectural Block Diagram and Operation, Comparator Architecture and Operation, Special Function Registers, Hardware Multiplier: Operation, Registers, Direct Memory Access Controller (DMA and DMA Transfer Modes, Applications.	7
Unit - 3	
5.0 Power/ Energy profiling: Profiling of ARM Cortex & MSP430 family devices, Low-power operation Dynamic Voltage and Frequency Scaling ,CPU power modes , Optimizing for low power in embedded MCU designs: MCU power consumption, standby power, peripheral power, battery life.	5
6.0 Case studies: ARM cortexM3/M4 & MSP430 microcontroller based real-time solutions for application like biomedical system design, machine health monitoring, Energy metering applications etc.	5

Course Code: 16EARE403	Course Title: Machine learning and ROS	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40		Exam Duration : 3 hours

Content	Hours
UNIT – 1	1
Chapter 1:Introduction to Robot operating system ROS concepts, creating ROS packages writing a minimal ROS publisher, compiling	5 hrs

 KLE TECH.
 KLE Technological

 Creating Value
 Creating Value

 Leveraging Knowledge
 Creating Value

 DEPARTMENT OF AUTOMATION & ROBOTICS

ROS nodes, running ROS nodes, examining running minimal publisher node, scheduling node timing, writing a minimal ROS subscriber compiling and running minimal subscriber, minimal subscriber and publisher node summary writing ROS nodes more ROS tools: catkin simple, ROSlaunch, simplifying cmakelists.txt with catkin simple automating starting multiple nodes viewing output in a ROS console recording and playing back data with ROSbag.	
Chapter 2:Messages, Classes and Servers in ROS Defining custom messages, ROS services- service messages, ROS service nodes, manual interaction with ROS services, example ROS service client, running, example service and client, using C++ classes in ROS creating library modules in ROS, introduction to action servers and action clients- creating an action server package, defining custom action-server messages, designing an action client running the example code, introduction to parameter server.	5 hrs
Chapter 3: Introduction to machine learning Introduction Machine Learning ,Well posed learning problem, Types of learning, supervised learning ,unsupervised learning and reinforcement learning, Learning Associations, Designing of learning system, perspectives & issues in machine learning, Concept learning task, concept learning search, Find-S: Finding a maximally specific hypotheses, version spaces & candidate elimination algorithm, Remarks - version spaces & candidate elimination algorithm, inductive bias.	5 hrs
UNIT – 2	
Chapter 4: Computational learning theory and decision tree learning Motivation, Estimating hypotheses accuracy, Basics of sampling theory, general approach for deriving confidence intervals, comparing learning algorithm. Probably learning an approximately correct hypothesis, sample complexity for finite hypothesis spaces, sample complexity for infinite hypothesis spaces, instance based learning-K nearest neighbor learning, locally weighted regression, Representation, decision tree algorithm, hypotheses space search in decision tree algorithm inductive bias in decision tree algorithm, issues in DTL, Bayesian decision theory classification.	8 hrs
Chapter 5:Kernel methods and Graphical models Embedding's into feature spaces, the kernel trick, Multiple kernel learning, Kernel dimensionality reduction Canonical Cases for Conditional Independence, Example Graphical Models, Naive Bayes' Classifier, Hidden Markov Model, Linear Regression, d-Separation Belief Propagation, Linkage–Based clustering algorithms-means and other cost minimization clustering.	7 hrs
UNIT – 3	

Chapter 6:Reinforcement Learning The learning task,Q-learning,Nondeterministic rewards & actions, temporal difference learning, generalizing from examples, relationship to dynamic programming.	5 hrs
Chapter 7: Artificial neural network Biological motivation, neural network representations, and appropriate problems for neural network learning, perceptron's, multilayer networks and the back propagation, algorithm, an illustrative example: face recognition	5 hrs

Course Code: 15EARE404	Course Title: Design of Automatic Machinery	
L-T-P-SS: 3-0-0-0	Credits: 3	Contact Hrs: 40
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40		Exam Duration: 3 Hrs
UNIT – I		

No	Content	Hrs
	Chapter 1:	
	Introduction and Steps to Automation What is Automation, An Automation design process, examples of automation, problems and project assignments?	
1	Justifying Automation	6
	Traditional Project Cost Justification for a Purchase, Traditional Costing Estimating for Building and Selling Automation, Win–Win Purchasing Philosophy, Maximum Profit Cost Estimating for Building and Selling Automation, Justifying Flexible Automation over Hard Automation Intellectual Property, Patents, and Trade Secrets.	
	Chapter 2:	
	The Automation Design Process	
2	System Specifications, Brainstorming, Machine Classification by Function, Machine Classification by Transfer Method, Machine Configuration Trade-offs Mechanisms Toolbox, TBBL Automation Project and Conclusions, Case Study Number 1: Case Opening, Case Study Number 2: Label Insertion and Printing, Case Study Number 3: Crossed Four-Bar BMC Unloader.	4
	Chapter 3:	
	Workstations	
3	Workstation Basics, Drive Mechanisms, Case Study Number 1: TBBL Workstation Design, Case Study Number 2: Automated Screwdriver Workstation Design, Machine Design and Safety.	5
	Feeders	
	Feeders, Automatic Feeding and Orienting — Vibratory Feeders, Escapement Feeders, Vibratory Bowl Feeder, Centripetal Feeder, Flexible Feeders, Gravity Feed Tracks, Powered Feed Tracks, Escapements, Parts-Placing Mechanisms, Assembly Robots, Case Study Number 1: Dropping Cookies, Case Study Number	

 KLE TECH.
 KLE Technological

 Creating Value
 Creating Value

 Leveraging Knowledge
 Creating Value

 DEPARTMENT OF AUTOMATION & ROBOTICS

	2: Feeding of TBBL Cases.	
	UNIT – II	I
4	Chapter 4: Conveyors Flat Belt Conveyors, Tabletop Chain Conveyor, Belt Conveyors, Static (Gravity) Conveyors, Powered Conveyors, Heavy Unit Load Handling Conveyors, Case Study Number 3: Donut Loader Machine.	3
5	Chapter 5: Single Station Manufacturing Cells Single station manned cells, single station automated cells, applications of single station cells, analysis of single station systems. Manual Assembly Lines Fundamentals of manual assembly lines, Analysis of single model assembly lines, Line balancing algorithms, Mixed model assembly lines, Workstation considerations, Other considerations in assembly line design, Alternative assembly systems. Automated Product Lines Fundamentals of automated product lines, applications of automated product lines, Analysis of transfer lines.	6
6	Chapter 6: Automated Assembly Systems Fundamentals of automated assembly systems, Quantitative analysis of assembly systems. Cellular Manufacturing Part families, part classification and coding, product flow analysis, cellular manufacturing, applications of group technology, quantitative analysis in cellular manufacturing.	6

	Flexible Manufacturing Systems Introduction to flexible manufacturing system, flexible manufacturing systems components, flexible manufacturing systems applications and benefits, flexible manufacturing system planning and implementation issues, quantitative analysis of flexible manufacturing systems.	
	UNIT - III	
7	Chapter 7: System Specifications Expectations, Other Problems Beyond Specifications, Example 1: Bulk Mail Carrier (BMC) Unloader, Specifications, Design Specifications, Comments, Request for Quote, Example 2: BMC Unloader Bid Award Package.	5
8	Chapter 8: Packaging Machines Liquid Filling Machines, Cartoning and Boxes, Labeling, Cases, Palletizing, Forming Pouche, Blister Packs and Bags.	5

Laboratory Plan

Semester:

VIII

FMTH0303-3.1

Year: 2019-20

Laboratory Title: Project	Lab Code: 17EARW401
Total Hours: 30	Duration of Exam: 3 Hrs
Total ESA Marks: 50	Total ISA. Marks: 50

Course Outcomes-CO

At the end of the course student will be able to:

- 1. Carry out market survey, do need analysis and identify suitable problems.
- 2. Write a project proposal, which will involve developing a complete solution for the identified problem from the real world.
- 3. Apply the principles of engineering design to plan and manage the project.
- 4. Apply suitable design processes and develop the best possible solution.
- 5. Develop proof of concepts and models for verification.
- 6. Prepare production drawings, bill of materials and process plans.

Evaluation Scheme

Students Assessment through ISA (50%) + ESA (50%)

Assessment	Weightage in Marks
ISA	50
ESA	50
Total	100

Laboratory Plan

Semester: VIIIYear: 2019-20Course Title: Internship - TrainingCourse Code: 18EARI493Total Contact hrs: 50Duration of ESA: 3 hrsISA Marks: 50ESA Marks: 50

Course Outcomes (COs):

Upon completion of an internship, students will be able to demonstrate the following outcomes:

- 1. Gain knowledge to real-world challenges in an industry environment.
- 2. Engage in responsible conduct while working as an intern and allow decisions to be informed by a value-centered life.
- 3. Understanding an organization by proper insight into their structure, processes and functions.
- 4. Able to assimilate new technical knowledge, and integrate the same with the existing technical knowledge for industrial application.
- 5. Understanding of lifelong learning processes through critical reflection of internship experiences.
- 6. Enhance his/her verbal and written communication, and different modes of communication.

Assessment	Weightage in Marks
ISA	50
ESA	50
Total	100

7. Evaluation Scheme

Laboratory Plan

FMTH0303-3.1

Semester: VIII

Year: 2019-20

Laboratory Title: Internship - Project	Lab. Code: 18EARW494
Total Hours: 80	Duration of Exam: 3 hrs
Total ESA Marks: 80	Total ISA. Marks: 20

Course Outcomes (COs)

At the end of the course, students will be able to:

- 1. Generate and evaluate different alternative solutions
- 2. Formulate a detailed solution plan to solve the given problem.
- 3. Identify and employ tools that help to arrive at solutions
- 4. Understand and adhere to various standards, legislation and regulations
- 5. Distribute the work load based on competences among team members and integrate the various components of the solution
- 6. Adhere to promised deliverable, including bill of material, production drawings, manufacturing of components, assembly, and so forth.

Evaluation Scheme

Students Assessment through ISA (50%) + ESA (50%)

Assessment	Weightage in Marks
ISA	50
ESA	50
Total	100