

FMTH0303 - 3.1

Laboratory Plan

Laboratory Course Plan: BE in EC 2018-2022

Laboratory Title: Analog Electronic Circuits Lab	Lab. Code: 15EECP202
Total Hours: 24	Duration of ESA Hours: 2hrs
ISA Marks:80	ESA Marks:20
Lab. Plan Author: Mrs.ShraddhaHiremath	Date: 04-06-2019
Shruti M, R.V.Hangal	
Checked By: Dr. Nalini C lyer	Date: 07-06-2019

Course Outcomes (COs):

At the end of the course the student should be able to:

- 1. Design clipper and clamper circuits for the given specifications by choosing appropriate electronic deviceand Verify the functionality of circuits using simulator tool.
- 2. Design an application circuit using BJT/MOSFET for a given specifications and implement the circuit to determine the performance parameters such as region of operation, Gain, BW, I/P and O/P impedance and Verify the functionality of circuits using simulator tool.
- 3. Determine the power efficiency of a push-pull amplifier experimentally and Verify the functionality of circuits using simulator tool.
- 4. Design and build the regulated power supply for a given specifications.

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Program Outcomes

Course Title: Analog Electronic Circuits Lab	Semester:3 - Semester
Course Code:15EECP202	Year: 2019-20

Course Outcomes / Program Outcomes	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Design clipper and clamper circuits for the given specifications by choosing appropriate electronic device and Verify the functionality of circuits using simulator tool				×	L					L					
Design an application circuit using BJT/MOSFET for a given specifications and implement the circuit to determine the performance parameters such as region of operation, Gain, BW, I/P and O/P impedance and Verify the functionality of circuits using simulator tool				Þ	L					L					

Determine the power efficiency of a push-pull amplifier experimentallyand Verify the functionality of circuits using simulator tool			М	L			L			
Design and build the regulated power supply for a given specifications		Μ	Μ			L	L	L		

Degree of compliance L: Low M: Medium H: High

Competency addressed in the Course and corresponding Performance Indicators

Competency: PO3.4	Demonstrate an ability to advance an engineering design to defined end state
PI Code: PO3.4.1	Refine a conceptual design into a detailed within the existing constraints (of the resources)
Competency: PO4.1	Demonstrate their ability to conduct investigations of technical issues consistent with their level of knowledge and understanding
PI Code: PO4.1.1	Define a problem for purposes of investigation, its scope and importance
Competency: PO4.2	Demonstrate their ability to design experiments to solve open ended problems
PI Code: PO4.2.1	Ability to identify the constraints and assumptions for the experiments/open ended problems.
PI Code: PO4.2.2	Develop and design experimental approach, specify appropriate equipment and procedures, implement these procedures, and interpret the resulting data to characterize an engineering material, component, or system.
Competency: PO5.1	Demonstrate an ability to identify/ create modern engineering tools, techniques and resources
PI Code: PO5.1.1	Identify modern engineering tools, techniques and resources for engineering activities
Competency: PO9.3	Demonstrate success in a team-based project
PI Code: PO9.3.1	Present results as a team, with smooth integration of contributions from all individual efforts
Competency:	Demonstrate an ability to comprehend technical literature and document

PO10.1	project work.
PI Code: PO10.1.2	Produce clear, well-constructed, and well-supported written engineering documents
Competency: PO10.2	Demonstrate competence in listening, speaking, and presentation.
PI Code: PO10.2.2	Deliver effective oral presentations to technical and non-technical audiences
Competency: PO12.3	Demonstrate an ability to identify and access sources for new information.
PI Code: PO12.3.1	Demonstrate an ability to source and comprehend technical literature and other credible sources of information

Experiment wise Plan

List of experiments/jobs planned to meet the requirements of the course.

Category	y: Demonstration	Total Weight ag	e: 0.00	No. of lab sessions: 1.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	Study of multimeters, power supplies, function generators, Oscilloscopes; Identification of various components and devices, e.g. resistors, capacitors,diodes,transistors	1.00	0.00	
	 Learning Outcomes: The students should be able 1. Identify & use different ci also the equipments to be use 	[/] devices and nts.	Introduction	
Category	y: <mark>Exercise</mark>	Total Weight age: 48.00		No. of lab sessions: 7.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory

1	Title:Design& analyzeDiodeClipping(single/doubleended)circuits.	1.00	8.00	Diode applications
	 Learning Outcomes: The students should be able 1. To illustrate the effect of a on clipping action of the diode 2. To illustrate the function of 1. Positive clipping 2. Negative clipping 3. Two way clipping 			
2	Design & analyze Positive and Negative Clamping circuits	1.00	8.00	Diode applications
	 Learning Outcomes: The students should be able 1. To illustrate the effect of do 2. To illustrate the function of 1. Positive clamping 2. Negative clamping 			

3	Study of BJT as a Switch	1.00	5.00	BJT applications
	 Learning Outcomes: The students should be able 1. Understand the operation and analyze basic digital gate 			
4	Study the input and output characteristics of MOSFET	1.00	8.00	MOSFET
	 Learning Outcomes: The students should be able 1. Explain the concept of thro 2. To determine the drain MOSFET and realize the important statements 			
5	To study the basic current mirror circuit	1.00	8.00	MOSFET
	 Learning Outcomes: The students should be able 1. To determine the constar mirror circuit with BJT/MOSFE 	using current		
6	MOSFET as a Switch	1.00	5.00	MOSFET
	□Learning Outcomes: □The students should be able 1. To explain the VGS voltag			

	2. To illustrate the effect of va			
7	Study of transformer-less Class B push pull power amplifier and determination of its conversion efficiency	1.00	6.00	POWER AMPLIFIER
	 Learning Outcomes: The students should be able 1. Design class B push conversion efficiency. 2. Differentiate between S amplifiers 3. Explain cross-over distorti how it is overcome. 			
Categor	y: Structured Enquiry	Total Weight ag	e: 20.00	No. of lab sessions: 2.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	To determine the frequency response of RC Coupled single stage BJT	1.00	10.00	BJT Applications

	 Learning Outcomes: The students should be able 1. Determine the performant Amplifiers using BJT. a. Single stage RC coupled at 			
2	Design an Amplifier using MOSFET and determine its gain, input & output impedance	1.00	10.00	MOSFET
	 Learning Outcomes: The students should be able Determine the performan Amplifiers using MOSFET. a .Single stage CS amplifier u 	the following		
Category	y: <mark>Open Ended</mark>	Total Weight ag	e: 12.00	No. of lab sessions: 1.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	Design a regulated power supply for the given specifications	1.00	12.00	DIODE/BJT/MOSFET

 Learning Outcomes: The students should be able to: To determine the efficiency of the fixed regulated power 	
supply	

2. Materials and Resources Required:

Books/References:

- i. "Integrated Electronics", by Jacob Millman and Christos Halkias, McGraw Hill,
- ii. "Microelectronic Circuits", by A.S. Sedra& K.C. Smith, 5th Edition, Oxford Univ. Press, 1999.
- iii. "Electronic Devices and Circuits" by David A. Bell, 4thedition, PHI publication 2007.
- iv. "Analysis and design of analog integrated circuits," by Grey, Hurst, Lewis and Meyer, 4thedition.
- v. Device data sheets.
- vi. KLETECH Electronics and Communication Engineering Department 2019-20Analog Electronics Lab manual.

3. Evaluation:

Students Assessment through ISA (80%) + ESA (20%)

In Semester Assessment (80%)	Assessment	Weight age in Marks
	Based on the performance of student during regular	50

	laboratory hours+ Quiz.	
	Based on the journal written for the above set of experiments.	10
	Based on the performance in laboratory test conducted after the completion of all the above experiments.	20
End Semester Assessment (20%)	Write up & viva	08
	Conduction and Result	12
	Total	100

Date:

Head of School

Evaluation Criteria of the Laboratory:

Analog Electronics Circuits Lab Rubrics

III Semester

2019-20

Exercise Experiments							
Assessment Factor	PI	Max.	Evaluation	Good	Average	Poor	
		Marks	Parameters	(100 %)	(50 %)	(0 %)	
Problem Definition	4.1.1	2	Concept	Well defined	Partial	Lack of concept	
			illustration	problem with clear	understanding of	clarification and no	
			(1M)	understanding of	the problem and	design	
				concepts	incomplete design.		
			Apprehend	Interpretation of	Partial knowledge	Mis-interpretation of	
			specifications,	assumptions and	of assumptions and	assumptions and	
			assumptions and	constraints for a	constraints.	constraints, lack of	
			constraints for a	given problem.		understanding.	
			given problem				
Conceptualization,			(1M)				
Development and	4.2.2	3	Experimental setup	Arrive at an	Arrive at a solution	Unable to realize the	
Debugging of the			(1M)	optimized	with instructors	circuit.	
designed circuit				solution.	intervention		
			Testing of	Ability to	Partial knowledge	Not able to illustrate	
			components,	demonstrate the	to test devices and	the working of all the	
			devices and	working condition	components.	components, devices	

			equipments	of all the		and equipments.
			(1M)	components,		
				devices and		
				equipments		
			Troubleshooting	Ability to connect	Ability to connect.	Not able to connect
			the circuit.	the circuit. fault	but no trouble	the circuit.
			(1 M)	finding by tracing	shoots analysis.	
			()	the circuit and	j	
				analyzing the		
				results.		
Analysis of the	4.3.3	1	Analysis of results	Ability to Draw	Ability to tabulate	Not able to tabulate
obtained data			(1M)	conclusions by	the readings but no	the readings from the
				accurate	analysis	performed
				measurement of	5	experiment
				parameters		1
Modern Engineering	5.1.1	1	Simulating the	Able to	Able to simulate	Unable to
tools			circuit using	performsimulation	but no results.	performsimulation
			suitable EDA tool.	of the given circuit		using EDA tools
			(1M)	and obtain the		Ũ
				results.		

Journal and observation book	10.1.2	1	Well constructed document (1M)	Able to represent observations, clearly states the conclusion.	Able to represent only few observations with deviations from appropriate results.	Unable to represent observations.

Structured Experiments							
Assessment Factor	PI	Max.	Evaluation	Good	Average	Poor	
		Marks	Parameters	(100 %)	(50 %)	(0 %)	
Problem Definition	4.1.1	1	Concept	Well defined problem	Partial	Lack of concept	
			illustration	with clear	understanding of	clarification	
			(1M)	understanding of	the concepts.		
				concepts.			
Problem analysis	4.2.1	1	Understanding the	Ability to assess the	Partial assessment	Lack of ability to	
Defining constraints			problem by	constraints and	of constraints and	define constraints	
and assumptions			defining	assumptions to build	assumptions	and assumptions	
			constraints and	design parameters			
			assumptions				
			(1M)				
		4	Apprehend	Interpretation of	Partial knowledge	Mis-interpretation	

		1	1	1	1	
			specifications,	assumptions and	of assumptions and	of assumptions and
			assumptions and	constraints for a given	constraints.	constraints, lack of
			constraints for a	problem		understanding(0M)
			given problem			
Design			(1M)			
conceptualization	4.2.2		Experimental setup	Arrive at an optimized	Arrive at a	Unable to realize
and development of			(1M)	solution.	solution with	the circuit.
experimental					instructors	
Approach					intervention	
			Design of the	Obtain the expressions	Arrive at only few	Not able to design
			circuit	and arrive at optimum	design parameters	the parameter of the
			(1M)	design of the circuit	of the circuit	circuit.
			Testing of	Ability to demonstrate	Ability to test	Not able to
			components,	the working condition	equipments alone	illustrate the
			devices and	of all the components,		working of all the
			equipments	devices and		components,
				equipments.		devices and
						equipments
			Troubleshooting	Ability to connect the	Ability to connect,	Not able to connect
			the circuit.	circuit, fault finding by	no trouble shoot	the circuit
			(1M)	tracing the circuit.	analysis	
Analysis of the	4.3.3	1	Analysis of results	Ability to Draw	Ability to tabulate	Not able to tabulate
obtained data			(1M)	conclusions by	the readings but no	the readings from
				accurate measurement	analysis	the performed
				of parameters		experiment

Unable to
performsimulation
using EDA tools
Unable to present
the obtained partial
results
Unable to represent
observations.
Unable to arrive at
the solution.
_

Open Ended Experiments							
Assessment Factor	PI	Max.	Evaluation	Good	Average	Poor	
		Marks	Parameters	(100 %)	(50 %)	(0 %)	
Problem Definition	4.1.1	1	Concept	Well defined problem	Partial	Lack of concept	
			illustration	with clear	understanding of	clarification	
			(1 M)	understanding of	the concepts.		
				concepts.	-		
Problem analysis	4.2.1	1	Understanding the	Ability to assess the	Partial assessment	Lack of ability to	
Defining constraints			problem by	constraints and	of constraints and	define constraints	
and assumptions			defining	assumptions to build	assumptions	and assumptions	
_			constraints and	design parameters			
			assumptions				
			(1 M)				
			Apprehend	Interpretation of	Partial knowledge	Mis-interpretation	
			specifications,	assumptions and	of assumptions and	of assumptions and	
			assumptions and	constraints for a given	constraints.	constraints, lack of	
			constraints for a	problem		understanding(0M)	
			given problem	-			
Design		4	(1M)				
conceptualization	4.2.2	4	Experimental setup	Arrive at an optimized	Arrive at a	Unable to realize	
and development of			(1M)	solution.	solution with	the circuit.	
experimental					instructors		
Approach					intervention		
			Design of the	Obtain the expressions	Arrive at only few	Not able to design	
			circuit	and arrive at optimum	design parameters	the parameter of the	

			(1M)	design of the circuit	of the circuit	circuit.
			Testing of	Ability to demonstrate	Ability to test	Not able to
			components,	the working condition	equipments alone	illustrate the
			devices and	of all the components,		working of all the
			equipments	devices and		components,
			(0.5M)	equipments.		devices and
						equipments
			Troubleshooting	Ability to connect the	Ability to connect,	Not able to connect
			the circuit.	circuit, fault finding by	no trouble shoot	the circuit
			(0.5M)	tracing the circuit.	analysis	
Analysis of the	4.3.3	2	Analysis of results	Ability to Draw	Ability to tabulate	Not able to tabulate
obtained data			(2M)	conclusions by	the readings but no	the readings from
				accurate measurement	analysis	the performed
				of parameters		experiment
Modern	5.1.1	1	Simulating the	Able to	Able to simulate	Unable to
Engineering tools			circuit using	performsimulation of	circuit but no	performsimulation
			suitable EDA tool	the given circuit and	results	using EDA tools
			(1M)	obtain the results		
Team Presentation	9.3.1	0.5	Effective	Ability to effectively	Able to produce	Unable to present
			communication by	present the results by	the results but not	the obtained partial
			the means of	demonstration.	effectively	results
			demonstration and		demonstrate the	
			oral presentation		same.	
			(0.5M)			
Journal and	10.1.2	0.5	Well constructed	Able to represent	Able to represent	Unable to represent

observation book			document	observations, clearly	only few	observations.
			(0.5M)	states the conclusion in	observations with	
				specified time.	deviations from	
					appropriate results.	
Oral Presentation	10.2.2	1	Well presented	Able to effectively	Able to represent	Not able to present
			using presentation	present the obtained	the results but not	the results
			tools	results with proper	communicate	
			(1M)	inference making use	effectively	
				of PPT		
Source and	12.3.1	1	Referring	Able to refer the	Able to design	Unable to arrive at
comprehendtechnic			datasheets	datasheet for	circuit as per given	the solution.
al literature			(1M)	understanding the	specifications with	
				limitations of devices	instructors	
				and design circuit as	intervention	
				per given		
				specifications.		

Open Ended Experiment - A sample report

Design a fixed DC voltage adaptor with output voltage 5V,-5V,3V.

Team members:

- 1. Sanobar Mateen 186 (01fe18bec156)
 - 2. Sakshi.D 181 (01fe18bec149)
 - 3. Prince Kumar 153 (01fe18bec119)
- 4. Rajnish Pandey 163 (01fe18bec130)

<u>AIM:</u>

Design a DC voltage regulator.

OBJECTIVE:

Design a fixed DC voltage regulator(5V,-5V and 3V) with short circuit protection.

SPECIFICATIONS:

Output voltage: 5V, -5V,3V

Current: 1A

COMPONENTS USED:

SL NO.	COMPONENTS	SPECIFICATIONS	QUANTITY
1	Transformer	12-0-12	1
2	Diodes	Max. forward current 15mA	4
3	LM317	37V,1.5A	1
4	7905	-5V,1.5A	1
5	7805	5.2V,1.5A	1
6	Capacitor	2200µF,1000µF,10µF	4
7	Resistor	150Ω,220Ω,1ΚΩ	4
8	LED's		6
9	6V relay	Voltage:250V AC/30V DC Max. current:5A AC/DC	2

THEORETICAL BACKGROUND:

The four diodes are used to form bridge rectifier. The two terminals of secondary winding of transformer are connected to the bridge rectifier to have pulsating DC. Ground is taken from the secondary winding of transformer. One 1000µF capacitor is connected between the positive

output of bridge rectifier with respect to ground. Another2000µF capacitor is connected between the negative output of the bridge rectifier with respect to ground. The capacitors are called as filter capacitors. LM7805 is used for positive voltage and LM7905 is used for negative voltage to have +5 and -5 voltages. Whereas, LM317T is an adjustable 3-terminal positive voltage regulator capable of supplying different DC voltage output other than the fixed voltage power it also has current limiting and thermal shut down capabilities which makes it short circuit proof and ideal for any low voltage. The output voltage of the LM317T is determined by ratio of the two feedback resistors R5 and R6 which form a potential divider network across the output terminal.

CIRCUIT DIAGRAM:

SHORT CIRCUIT PROTECTION:

DESIGN:

Step 1: The selection of regulator IC

The selection of a regulator IC depends on output voltage. In our case, we are designing for the 5V output voltage; we will select the LM7805 linear regulator IC. In the design process, the next thing is, we need to know the voltage, current and power ratings of the selected regulator IC. This is done by using the datasheet of the regulator IC.

The datasheet of 7805 also prescribes to use a 0.1μ F capacitor at the output side to avoid transient changes in the voltages due to changes in load. And a 0.1μ F at the input side of the regulator to avoid ripples if the filtering is far away from the regulator.

Step 2: The selection of transformer

We got to know, the minimum input to our selected regulator IC is 7V .So, we need a transformer to step down the main AC to at least this value.But, between the regulator and secondary side of the transformer, there is a diode bridge rectifier too. The rectifier has its own voltage drop across it i.e. 1.4V.

Step 3: The selection of diodes for bridge

You see in the circuit diagram, the rectifier circuit is made by arranging diodes in some pattern. To make rectifier we need to select proper diodes for it. When selecting a diode for the bridge circuit. Keep in mind the output load current, and maximum peak secondary voltage of the transformer i-e 9V in our case.

We selected IN4001 diode because it has the current rating of 1A more than our desire rating, and peak reverse voltage of 50V. Peak reverse voltage is the voltage a diode can sustain when it is reverse biased.

Step 4: The Selection of capacitor and calculations

Things that are supposed to be considered while selecting a proper capacitor filter are, its voltage, power rating, and capacitance value. The voltage rating is calculated from the secondary voltage of a transformer.

Rule of thumb is, the capacitor voltage rating must be at least 20% more than the secondary voltage. So, if the secondary voltage is 13 V (Peak value for 9V), then your capacitor voltage rating must be at least 50V.

To find the proper value of capacitance,

$$C = Io/2\pi f V$$

Where,

In our case

 $C = \frac{1}{2\pi * 50 * 5}$

=6.366X10^-4

The same procedure is followed for -5V and 3V.

Step5: Design of resistors for LM317

The voltage across the feedback resistor R1 is a constant 1.25V reference voltage, V_{ref} produced between the "output" and "adjustment" terminal. The adjustment terminal current is a constant current of 100uA. Since the reference voltage across resistor R1 is constant, a constant current i will flow through the other resistor R2, resulting in an output voltage of:

Then whatever current flows through resistor R1 also flows through resistor R2 (ignoring the very small adjustment terminal current), with the sum of the voltage drops across R1 and R2 being equal to the output voltage, Vout. Obviously the input voltage, VIN must be at least 2.5 volts greater than the required output voltage to power the regulator.

Also, the LM317T has very good load regulation providing that the minimum load current is greater than 10mA. So to maintain a constant reference voltage of 1.25V, the minimum value of feedback resistor R1 needs to be 1.25V/10mA = 120 Ohm and this value can range anywhere from 120 ohms to 1,000 ohms with typical values of R1 being about 220Ω 's to 240Ω 's for good stability.

NATURE OF GRAPH:

BREADBOARD PICTURE:

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubbali 580031. Karnataka (India) Tel : +91 - 836 - 2378250 Fax : +91 - 836 - 2374985. <u>www.kletech.ac.in</u>/ece

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubbali 580031. Karnataka (India) Tel : +91 - 836 - 2378250 Fax : +91 - 836 - 2374985. <u>www.kletech.ac.in</u>/ece

CONCLUSION:

The experimental setup for fixed DC voltage adaptor is configured and verified for voltages 5V, -5V,3V with current of 1A.

PCB:

