

FMTH0301/Rev.5.3

Laboratory Plan

B.E in EC 2018-2022

Laboratory Title: Mini Project	Lab. Code: 17EECW301
Total Hours: 60	Duration of ESA Hours: 3 Hours
ISA Marks: 50	ESA Marks: 50
Lab. Plan Author: Ujwala Patil, Rohit Kalyani	Date: 15-09-2020
Checked By: Dr.Nalini C lyer	Date: 15-09-2020

Prerequisites:

This mini project requires the student to have knowledge of courses like engineering physics, mathematics, analog electronics, signals and systems, HDL, communication and programming concepts up to IV semester level.

Theme:

Theme of the mini project is decided based on the courses that students have taken till IV sem. Focus includes improving programming skills likeC/C++/java/HDL and system level thinking. Students also need to build GUI for the selected project.

Course Outcomes (COs):

At the end of the course the student should be able to:

- 1. Analyze and record the requirements for the identified problem
- 2. Generate the design alternatives to meet desired functionality
- 3. Select the optimal design for further development
- Transform the fundamental knowledge gained in the curriculum to Model / Design / Develop prototype / system for component / system to meet the identified requirements.
- 5. Develop technical writing skills and presentation skills
- 6. Work in a team to meet project requirements.

KLE Society's KLE Technological University SCHOOL OF ELECTRONICS AND COMMUNICTION ENGINEERING

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Program Outcomes

Course Title:Mini Project						Semester:5 - Semester									
Course Code:17EECW301 Y					Year:2	020-2 ²	1								
Course Outcomes / Program Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PO13	PO14	PO15
1.Analyze and record the requirements for the identified problem		М								м					
2.Generate the design alternatives to meet desired functionality		М													
3.Select the optimal design for further development		м													
4. Transform the fundamental knowledge gained in the curriculum to Model / Design / Develop prototype / system for component / system to meet the identified requirements.			м	Μ	Μ			L				L	М		
5.Develop technical writing skills and presentation skills										N					
6.Work in a team to meet project requirements.									М		М				

Degree of compliance L: Low M: Medium H: High

Competency addressed in the Course and corresponding Performance Indicators

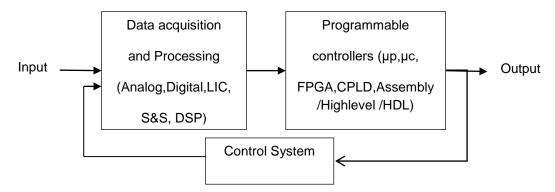
Competency: PO2.1	Demonstrate an ability to identify and characterize an engineering problem
PI Code: 2.1.1	Evaluate problem statements and identify objectives
Competency: PO2.2	Demonstrate an ability to formulate a solution plan and methodology for an engineering problem
PI Code: 2.2.4	Compare and contrast alternative solution processes to select the best process.
Competency: PO3.2	Demonstrate an ability to generate a diverse set of alternative design solutions
PI Code: 3.2.2	Build models, prototypes, etc., to develop diverse set of design solutions
Competency: PO3.4	Demonstrate an ability to advance an engineering design to defined end state
PI Code: 3.4.1	Refine a conceptual design into a detailed design within the existing constraints (of the resources)
Competency: PO4.3	Demonstrate an ability to critically analyze data to reach a valid conclusion
PI Code: 4.3.3	Represent data (in tabular and/or graphical forms) so as to facilitate analysis and explanation of the data, and drawing of conclusions
Competency: PO5.2	Demonstrate an ability to select and apply discipline specific tools, techniques and resources
PI Code: 5.2.2	Demonstrate proficiency in using EDA tools
Competency: PO8.2	Demonstrate an ability to apply the Code of Ethics
PI Code: 8.2.1	Identify tenets of the IEEE and ACM professional code of ethics
Competency: PO9.3	Demonstrate success in a team-based project
PI Code: 9.3.1	Present results as a team, with smooth integration of contributions from all individual efforts
Competency: PO10.1	Demonstrate an ability to comprehend technical literature and document project work.
PI Code:10.1.1	Read, understand and interpret technical and non-technical information
Competency: PO10.2	Demonstrate competence in listening, speaking, and presentation
PI Code: 10.2.2	Deliver effective oral presentations to technical and non-technical audiences
Competency: PO10.3	Demonstrate the ability to integrate different modes of communication.
PI Code: 10.3.1	Create engineering-standard figures, reports and drawings to complement writing and presentations

KLE Society's KLE Technological University SCHOOL OF ELECTRONICS AND COMMUNICTION ENGINEERING

Competency: PO10.3	Demonstrate the ability to integrate different modes of communication.
PI Code: 10.3.2	Use a variety of media effectively to convey a message in a document or a presentation
Competency: PO11.3	Demonstrate an ability to plan/manage an engineering activity within time and budget constraints
PI Code: 11.3.2	Use project management tools to schedule an engineering project so it is completed on time and on budget.
Competency: PO12.1	Demonstrate an ability to identify gaps in knowledge and a strategy to close these gaps.
PI Code: 12.1.2	Identify deficiencies or gaps in knowledge and demonstrate an ability to source information to close this gap
Competency: PO13.1	Demonstrate an ability to develop acompetency to identify the different hardwareand software components of a complex
PI Code: 13.1.2	Ability to identify the software components.
Competency: PO13.2	Demonstrate an ability to Identify and apply appropriate design principles for the development of hardware systems
PI Code: 13.2.1	Ability to identify design principles for the development of hardware systems
Competency: PO13.2	Demonstrate an ability to Identify and apply appropriate design principles for the development of hardware systems
PI Code: 13.2.2	Ability to use design principles for the development of hardware systems
Competency: PO13.3	Demonstrate an ability to Identify and apply appropriate design principles for the development of software systems
PI Code: 13.3.1	Ability to identify design principles for the development of software systems
Competency: PO13.3	Demonstrate an ability to Identify and apply appropriate design principles for the development of software systems
PI Code: 13.3.2	Ability to use design principles for the development of software systems

Review wise Plan

List of reviews planned to meet the requirements of the course.


Ca	tegory: Mini Project	Total Weightage: 50.00			
Review No	Evaluation criteria	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Timeline	
1	1. Conversions of given need statement into problem statement (engineering requirements) 2.Read, understand and interpret technical and non-technical information.	1.00	10.00	3 rd Week of COE	
	Learning Outcomes: The students should be able to 1. Convert of given need state (engineering requirements) 2. Perform market survey/Lite				
2	 Project Planning (Gantt chart) and WBS (Work Breakdown Structure) Functional block diagram (black box and white box), Morphological chart, Design specifications and Bill of Materials (BOM 	1.00	10.00	6 th week of COE	
	Learning Outcomes: The students should be able 1. Do project Planning (Gantt Breakdown Structure) 2. Write functional block diage Morphological chart, Design s Materials (BOM)	white box),			
3	Review 3 1. Detailed block diagram, algorithm and programming 2. Simulation and Implementation	1.00	15.00	9 th week of COE	
	Learning Outcomes: The students should be able 1. Develop detailed block diag programming 2. Simulation and Implementa	1			
4	Review 4 1.Testing and	1.00	15.00	14 th Week of COE	

Optimization 2.Analysis of results 3.Report		
Learning Outcomes: The students should be able 1. Testing and Optimization 2. Analysis of results	to:	
3. Report		

Guide lines for selection of a project:

- 1. The project needs to encompass the concepts leant in a subject/s studied in the previous four semesters, so that the student will learn to integrate, the knowledge base acquired to provide a solution to the identified need.
- 2. Project should be able to exhibit sensing, controlling and actuation sections.
- 3. The mini project essentially will comprise of two components:
 - The hardware design
 - The graphical user interface (GUI) for application and data analysis with report generation.

- 4. Student can select a project which leads to a product or model or prototype related to following areas (not limited to these areas).
 - Pulse and digital circuits: simulate the working of one or more circuits
 - Signals and systems: simulate the behavior of a system by considering different signals
 - Analog Electronic: simulate working of different devices
 - Control systems: simulate the behavior of a control system
 - Linear Integrated Circuits: simulate working of one or more circuits
 - Micro-controllers: simulate the ALU/control unit of microcontroller
- 5. Time plan: Effort to do the project should be between 120-150 Hrs per team, which includes self study of an individual member (80-100 Hrs) and team work (40-50hrs).
- 6. Learning overhead should be 20-25% of total project development time.

Evaluation Process

Continuous Internal Assessment (CIA) is carried out through reviews and there exist 2 Committee reviews and 4 Guide reviews

Role of review committee

- 1. Ensuring the right need At the beginning of the semester
- 2. Ensuring the match between identified need and proposed solution in the form of POC/Prototype

Role of the guide

- 1. Ensuring equal efforts of team members
- 2. Technical guidance
- 3. Ensuring project progress as per deadlines
- 4. Projection of projects in right platforms(Exhibitions, conferences, journals, patents)

Review schedule

Students will have a meeting with guide every week to update the progress and assessment will be carried on as per review schedule

Review No	Type of review	Marks allotted	Timeline
1	Committee	5	2 nd week of semester
2	Guide	5	3rd week of semester
3	Guide	10	7th week of semester
4	Guide	10	15th week of semester
5	Committee	15	13th week of semester
6	Guide	5	16th week of semester

Course Assessment Plan

Course Title: Mini ProjectCourse Code: 17EECW301								
Course outcomes (COs)	Weightage in Assessment Methods							
	assessment	Review 1	Review 2	Review 3	Review 4	ESA		
Analyze and record the requirements for the identified problem	20%	V				v		
Generate the design alternatives to meet desired functionality	13%		v			v		
Select the optimal design for further development	13%		V			v		
Transform the fundamental knowledge	30%			V	V	V		

gained in the curriculum to Model / Design / Develop prototype / system for component / system to meet the identified requirements.						
Develop technical writing skills and presentation skills	10%				٧	
Work in a team to meet project requirements.	14%		٧			
	Weightage	10%	20%	7.5%	12.5%	50%

Review 1 Assessment Rubrics

This assessment to be carried at the initial stage of project

Type of Assessment: Instructor Assessment

CO addressed: CO 1. Analyze and record the requirements for the identified problem

CO 4. Transform the fundamental knowledge gained in the curriculum to Model / Design / develop prototype / system for component / system to meet the identified requirements.

Targeted Graduate Attributes: GA 2, QA 8, QA 10 and QA 12

Competencies targeted : 2.1Demonstrate an ability to identify and characterize an engineering problem 2.2Demonstrate an ability to formulate a solution plan and methodology for an engineering problem 8.2Demonstrate an ability to apply the Code of Ethics

10.1Demonstrate an ability to comprehend technical literature and document project work.

12.1Demonstrate an ability to identify gaps in knowledge and a strategy to close these gaps.

PI addressed	Evaluation Parameters	Exemplary	Satisfactory	Developing	Unsatisfactory
2.1.1 Evaluate problem statements and identify objectives	Conversion of given need statement into problem statement (engineering requirements)	Able to clearly define the objectives, constraints, functions for the defined need statement and arrive at engineering requirements	Able to clearly define the objectives, constraints, functions for the defined need statement but needs to arrive at engineering requirements.	objectives, constraints, functions for the defined	Able to vaguely define the objectives, constraints, functions even after mentor intervention
2.2.4 Compare and contrast alternative solution processes to select the best process.	Identifying multiple solutions and selecting the best suited solution and justifications with support of technical literature	Developed alternate solutions and selection of optimal solution.	Developed alternate solutions but no evaluation.	Developed few (min 3) alternate solutions.	Not developed alternate solution.

8.2.1 Identify tenets of the IEEE and ACM professional code of ethics	Understanding of professional ethics Copy right, plagiarism	Understands thoroughly and planned to address	Understands and considered	Understands and not considered	Does not understands
10.1.1 Read, understand and interpret technical and non-technical information	Market survey/Literature Survey and Patent search	Able to identify related technical papers and patents and also able to compare with the requirement list.	Able to identify related technical papers and patentsand are not able to compare with the requirement list	Able to identifyrelated technical papers and patents and perform study only with mentors intervention	Not able to identifyrelated technical papers and patents and perform study even after mentors intervention
12.1.2 Identify deficiencies or gaps inknowledge and demonstrate an ability to source information to close this gap	Identify the gaps in research through literature survey	Able to identify the gaps and solution for the identified gaps	Able to identify the gaps but no solution	Able to identify the gaps with mentors intervention	Not able to identify gaps even with mentors intervention
Documents to be verified	d by Committee: 1. Studen	t project book 2. Papers/pa	tents 3. Report in the given t	emplate.	

Review 2 Assessment Rubrics

This assessment to be carried at the conceptual stage of project

Type of Assessment: Instructor Assessment

CO addressed: CO 2. Generate the design alternatives to meet desired functionality

CO 3. Select the optimal design for further development

CO6.Work in a team to meet project requirements

Targeted Graduate Attributes: GA 2, GA 5, GA 9, GA 1 and GA 11

Competencies targeted: 2.1Demonstrate an ability to identify and characterize an engineering problem

2.2Demonstrate an ability to formulate a solution plan and methodology for an engineering problem

5.2Demonstrate an ability to select and apply discipline specific tools, techniques and resources

9.3Demonstrate success in a team-based project

10.1Demonstrate an ability to comprehend technical literature and document project work.

11.3 Demonstrate an ability to plan/manage an engineering activity within time and budget constraints

PI addressed	Evaluation Parameters	Exemplary	Satisfactory	Developing	Unsatisfactory
2.1.2Evaluate problem statements and identify objectives	Specification and identification of input & output.	Inputs, outputs are identified and are according to specs	Input and output are identified but not according to specs.	Input and output are identified.	Input and output are not identified.
2.2.4 Compare and contrast alternative solution processes to select the best process.	Functional block diagram (black box and white box), Morphological chart, Design specifications and Bill of Materials (BOM)	Able to visualize the system holistically, identify inputs, outputs, draw functional flow diagrams, identify more than 3 means for each of the functions, make a choice of appropriate design variant and write design specifications, BOM	Able to visualize the system holistically, identify few of the inputs, outputs, draw functional flow diagrams, identify atleast 2 mean for each of the functions, make a choice of appropriate design variant and write design specifications, BOM very vaguely	Able to visualize the system holistically, identify few of the inputs, outputs, functional flow diagrams are not clear, identify only 1 mean for each of the functions, make a choice of appropriate design variant and write design specifications, BOM very vaguely	Though able to identify inputs and outputs of the system, functional flow diagrams are not clear, morphological chart, BOM are very vague

5.2.2 Demonstrate proficiency in using EDA tools	Simulation and Implementation	Able to demonstrate the proof of concept through simulation, bread board /PCB and show all the functionalities with analysis	Able to demonstrate the proof of concept through simulation, bread board /PCB with inadequate analysis	Able to demonstrate the proof of concept through simulation, bread board /PCB with partial analysis	Not able to demonstrate the proof of concept through simulation, bread board /PCB with no analysis
9.3.1 Present results as a team, with smooth integration of contributions from all individual efforts	Project planning (Gantt chart) and WBS (Work Breakdown Structure).	Leader identified, and work has been distributed properly.	Leader identified, but work is not distributed properly	Leader identified, but work is not started	Work distribution is not done.
10.1.2 Produce clear, well- constructed, and well-supported written engineering documents	Draft copy of first chapter of the report, "Introduction".	Done	Incomplete	Partial	Not done
11.3.2 Use project management tools to schedule an engineering project so it is completed on time and on budget.	Project Planning (Gantt chart) and WBS (Work Breakdown Structure)	Able to use Gantt Project tool and do planning realistically, create WBS and assign roles to each of the team member, maintain design book with regular updates	Able to use Gantt Project tool and do planning realistically WBS needs to be done clearly and design book contains few updates	Able to use Gantt Project tool but planning needs to be realistic, WBS needs to be done clearly and design book contains no recent updates	Attempt is made but not able to use Gantt project tool properly WBS is not done and design book is not maintained correctly.

Review 3 Assessment Rubrics

This assessment to be carried at the detail design and implementation stage of project

Type of Assessment: Instructor Assessment

CO addressed: CO 4 Transform the fundamental knowledge gained in the curriculum to Model / Design / develop prototype /

system for component / system to meet the identified requirements.

CO 5 Develop technical writing skills and presentation skills

Targeted Graduate Attributes: GA 3,GA 10 and GA 13

Competencies targeted: **3.2Demonstrate an ability to generate a diverse set of alternative design solutions 3.4 Demonstrate an ability to advance an engineering design to defined end state**

10.3Demonstrate the ability to integrate different modes of communication

13.2Demonstrate an ability to Identify and apply appropriate design principles for the development of hardware systems **13.3**Demonstrate an ability to Identify and apply appropriate design principles for the development of software systems

PI addressed	Evaluation Parameters	Exemplary	Satisfactory	Developing	Unsatisfactory
	Evaluation rarameters	Exemplary			
3.2.2 Build models,	Testing and Optimization	Able to test the system for all	Able to test the system for	Able to test the system for	Testing was not done
prototypes, etc to	5 1	possible test cases, validate	few of the test cases,	one/two of the test cases,	properly and
develop diverse set		the results for all test	validate the results for	validate the results for them.	optimization is not done.
of design solutions		conditions. Optimization is	them. Optimization is done	Optimization can be done	
		done in all possible ways	in few cases.		
3.4.1 Refine a	Detailed block diagram,	Able to take forward the	Able to take forward the	Able to take forward the	Not able to take forward
conceptual design	algorithm and	selected design variant and	selected design variant,	selected design variant,	the selected design
into a detailed	programming	select appropriate algorithm,		selection of appropriate	variant, has difficulty in
design within the		platform and programming	• • • •	algorithm, platform is done	selection of appropriate
existing constraints		concept.	programming concept but	but programming needs	algorithm, platform and
			improvisation required.	major changes	programming concept
10.3.1 Create	Draft a copy of project	Done	Incomplete	Partial	Not done
engineering-	report				
standard figures,	1				
reports and					

drawings to complement writing and presentations					
13.2.1Abilitytoidentifydesignprinciplesforthedevelopmentofhardwaresystems13.3.1Abilitytoidentifydesignprinciplesforthedevelopmentofof	Detailed block diagram with all specifications/algorithms.	Functional block diagram is done with proper interconnections ofblocks according to specs.	Functional block diagram is done with proper interconnections of block but not according to specs	Functional block diagram is done but improper interconnections of block.	Incomplete block diagram
software systems Documents to be verif	ied by Committee: 1. Stude	nt project book 2. Report in th	e given template.		

Review 4 Assessment Rubrics

This assessment to be carried at the testing and reporting stage of project

Type of Assessment: Instructor Assessment

CO addressed: CO 4 Transform the fundamental knowledge gained in the curriculum to Model / Design / develop prototype /

system for component / system to meet the identified requirements.

CO 5 Develop technical writing skills and presentation skills

CO 6Work in a team to meet project requirements

Targeted Graduate Attributes: GA 4, GA 10, GA 11, GA 13

Competencies targeted: 4.3 Demonstrate an ability to critically analyze data to reach a valid conclusion

10.2 Demonstrate competence in listening, speaking, and presentation

10.3 Demonstrate the ability to integrate different modes of communication.

11.3Demonstrate an ability to plan/manage an engineering activity within time and budget constraints within time and budget

constraints

13.2Demonstrate an ability to Identify and apply appropriate design principles for the development of hardware systems **13.3**Demonstrate an ability to Identify and apply appropriate design principles for the development of software systems

PI addressed	Evaluation Parameters	Exemplary	Satisfactory	Developing	Unsatisfactory
4.3.3 Represent data (in tabular and/or graphical forms) so as to facilitate analysis and explanation of the data, and drawing of conclusions	Analysis of results	Able to identify the correlation that exists between various variables in the system, represent the data suitably to reflect conclusions with justifications	in tabular form and graphical form and only obvious conclusions are	Though are able to collect data and represent data conclusions are very vague	Not able to draw conclusions from the obtained data.

10.2.2Deliver effective oral presentations to technical and non- technical audiences	Deliver effective oral presentation	Good presentation skills, clarity& language usage	The ppt is properly organized as per the recommended formatbut presentation was average	The ppt is not properly organized as per the recommended format and presentation was average	Presentation skills were below average
10.3.1 Create engineering- standard figures, report and drawings to complement writing and presentations	Report	Able to comprehend all the details along with figures, tables and references in the given format and produce report in LateX form establishing continuity between various chapters	Able to comprehend all the details however figures, tables and references to be added.	Able to produce report in LateX form but requires to add figures, tables and references appropriately	Not able to produce report in LateX form.
11.3.2Use project management tools to schedule an engineering project so it is completed on time and on budget.	Gantt chart and Budget for the project	Project is completed in time and is within the budget	Project is completed in time but exceeds the budget	Project is partially complete and exceeds the budget	Project is incomplete.
 13.2.2 Ability to use design principles for the development of hardware systems 13.3.2 Ability to use design principles for the development of software systems 	Implementation, demonstration and analysis of results.(Pre optimization and post optimization discussion)	Design is complete, with all functional blocks in working condition. Desired results are obtained and analyzed. ent project book 2. Report in th	Design is completed in line with the specifications required. Inadequate analysis.	Design of sub blocks is satisfactory, partial results but no analysis.	Design is incomplete in terms of specifications and sub-blocks. No results and no analysis

End Semester Assessment (ESA) includes submission of the project report, demonstration of the mini projects and Viva-voce conducted by the external and internal examiner. ESA carries 50% weight-age of total marks of mini project. The following assessment rubrics are followed to evaluate the student.

This assessment to be carried at the end of the semester by both internal and external faculty								
Type of Assessment: Instructor Assessment								
CO addressed: CO 4 Transform the fundamental knowledge gained in the curriculum to Model / Design / develop prototype /								
	system for component / system to meet the identified requirements.							
CO 5	CO 5 Develop technical writing skills and presentation skills							
CO 6	Work in a team to meet p	roject requirements.						
Targeted Graduate At	tributes: GA 3, GA 4, GA 9	,GA 10						
Competencies targete	Competencies targeted: 3.2Demonstrate an ability to generate a diverse set of alternative design solutions 4.3 Demonstrate an ability to critically analyze data to reach a valid conclusion 9.3 Demonstrate success in a team-based project 10.3 Demonstrate the ability to integrate different modes of communication.							
PI addressed	Evaluation Parameters	Exemplary	Satisfactory	Developing	Unsatisfactory			
3.2.2 Build models,	Functionality	Able to demonstrate fully	Able to demonstrate fully	Able to demonstrate partially	Able to demonstrate			
prototypes, etc to develop diverse set of design solutions	(40% weightage)	functional prototype/POC meeting all the identified objectives, constraints and functions	functional prototype/POC meeting few of the	functional prototype/POC meeting few of the identified objectives, constraints and functions	Able to demonstrate partially functional prototype/POC meeting one or two of the identified objectives, constraints and functions			

9.3.1 Present	Team Work			Able to present the work	Able to present the work
results as a team,	(20% weightage)	reflecting the integration of	but clear reflection of	reflecting only individual	which has inconsistency
with smooth	(g	contributions from individuals	individual contributions and	contributions but lacks	and it is clearly reflected.
integration of		and complementary skills	integration requires	coordination among team	
contributions from		possessed by team members	improvement.	members	
all individual efforts		are utilized.			
10.3.2 Use a variety	Design Communication	Able to communicate the	Able to communicate few of	Able to communicate but	Not able to communicate
of media effectively	(20% weightage)	various project phases in a	the project phases but	needs to improve	the essentials of project
to convey a	(g	clear way with in the	requires clarity and	presentation skills	deliverables in an
message in a		stipulated time connecting to	maintain continuity.		effective way.
document or a		identified objectives and			
presentation		functions in the given need			
		statement.			
Deliverables to be veri	ified by examiners: 1.Repo	rt 2. Prototype/POC			

Date: 15-09-2020

Coordinator School of Electronics and Communication Engineering