

FIRST SEMESTER B E PROGRAM 2016-17 Electrical Science Stream Syllabi Content

Program: UG					
Course Code: 16EEEF101 Course Title: Basic Electrical Engineering					
L-T-P-SS: 3-0-0	3-0-0 Credits:4 Contact Hrs: 50				
CIE Marks: 50	SEE Marks: 50	Total Marks: 100			
Teaching Hrs: 3		Exam Duration: 3 hour	S		
	Unit I				
Chapter No. 1: Overview of Specialization, scope & rol economy, environment, Sou opportunities for electrical challenges.	e, impact of Electrical rces of generation, sust	ainability, challenges and	02 hrs		
Chapter No. 2 : D.C. and Ma Ohm's law, Kirchhoff's laws, constant current and voltage so reluctance and inductance, sim	network analysis by Max ource, nodal analysis, ser	ies magnetic circuits, mmf,	08 hrs		
Chapter No. 3. Actuators			05 hrs		
Electromagnetic principles, classification of Electric motors, DC motors-shunt, series, PMDC motors – Speed Control, Stepper Motors, BLDC motors, Characteristics and applications, selection of motors for various applications					
	Unit II				
Chapter No. 4 : Single phase Introduction to AC circuits and concept of average and effe sinusoidally varying voltage quantities, analysis with phaso in AC circuits, parallel RLC C (no-load phasor diagram).	theory of generation of si- ective (rms) values, for and current, phasor re r diagrams of RLC circu	rm factor, peak factor of presentation of alternating its, power and power factor	10 hrs		
Chapter No. 5: Three Phase	Systems		5 hrs		
Necessity and advantages of the relationship between line and		1	-		

power in balanced three phase circuits and power measurement using two watt meters, three phase induction motor, numericals	
Unit III	
Chapter No. 6. Batteries: Basics of lead acid batteries, Lithium Ion Battery, Battery storage capacity, Coulomb efficiency, Numerical of high and low charging rates, Battery sizing.	05 hrs
Chapter No. 7: Electrical Wiring, Safety and protection Types of wires and cables for internal wiring, Types of switches and Circuits, Types of wiring, Safety precautions and rules in handling electrical appliances, Electric shock, first aid for electrical shocks, Importance of grounding and earthing, Methods for earthing, Fuses, MCB, ELCB and Relays	05 hrs

Text Books

- 1. Hughes, Electrical & Electronic Technology, 8th edition, Pearson Education
- 2. David G Alciatore and Michel B Histand, Introduciton to Mechatronics and Measurement Systems, 3rd edition 2005, Tata McGraw Hill Education Private Limited, New Delhi.
- 3. Gilbert M Masters, Renewable and efficient Electrical Power systems, Published by John Wiley & Sons 2004 edition

Reference Books

- 1. D C Kulshreshtha, Basic Electrical Engineering, Mc Graw Hill Publications
- 2. Vincent Del Toro, Electrical Engineering Fundamentals, 2nd edition Prentice Hall India

Course Content (Electrical Sciences)L-T-P: 3-0-0Course Code: 15EEEF101L-T-P: 3-0-0Course Title: Basic Electrical EngineeringCIE : 50Teaching Hours: 40SEE : 50

Unit I	
Chapter No. 1: Overview of Electrical Engineering Specialization, scope & role, impact of Electrical Engineering on national economy, environment, Sources of generation, sustainability, challenges and opportunities for electrical engineers, electrical engineering marvels, future challenges.	02 hrs
Chapter No. 2 : D.C. Circuits Ohm's law, Kirchhoff's laws, Analysis of series, parallel and series- parallel circuits excited by independent voltage sources, network analysis by Maxwell's circulating currents, constant current and voltage source, nodal analysis.	05 hrs
Chapter No. 3 : Single phase AC Circuits Introduction to AC circuits and theory of generation of sinusoidal alternating voltage, concept of average and effective (rms) values, form factor, peak factor of sinusoidally varying voltage and current, phasor representation of alternating quantities, analysis with phasor diagrams of R, L, C, RL, RC and RLC circuits, power in an AC circuits, and simple numerical problems	08 hrs
Unit II	
Chapter No. 4: Three Phase Systems Necessity and advantages of three phase systems, generation of three phase e.m.f.s, relationship between line and phase values of balanced star and delta connections, power in balanced three phase circuits, numerical problems	7 hrs
Chapter No. 5: Electrical Wiring, Safety and protection Service mains, Meter board and distribution board, types of wires and cables, Types of wiring, Types of connectors and switches, two and three way control of lamp, control circuit in domestic installation. Safety precautions and rules in handling electrical appliances, Electric shock, first aid for electrical shocks, importance of grounding and earthing, methods for earthing, Fuses, MCB and Relays.	8 hrs
Unit III	
Chapter No. 6 : Introduction to Electrical Machines Principles of DC Motors: PMDC Motor, stepper motor, single phase transformer, Three phase induction Motors, applications, Simple Numericals on transformers and three phase induction motors.	05 hrs
Chapter No. 7: Illumination Types of lamps, fixtures and reflectors, Illumination schemes for domestic, industrial and commercial premises, lumen requirement for different categories	05 hrs

Text Books

- 1. Hughes, Electrical & Electronic Technology, 8th edition, Pearson Education
- 2. P C Sen, Principals of Electrical Machines and Power Electronics, 2nd edition, Wiley Publications
- 3. Vincent Del Toro, Electrical Engineering Fundamentals, 2nd edition Prentice Hall India
- 4. Robert Helm, Illumination Engg for energy efficient luminous environments

Earlier known as B. V. B. College of Engineering & Technology

Reference Books

- 1. D C Kulshreshtha, Basic Electrical Engineering, Mc Graw Hill Publications
- 2. David G Alciatore and Michel B Histand, Introduciton to Mechatronics and Measurement Systems, 3rd edition 2005, Tata McGraw Hill Education Private Limited, New Delhi.

FIRST SEMESTER B E PROGRAM 2016-17 Electrical Science Stream Syllabi Content

Course	Code:	Course Title: Engineering Physics lab				
16EPH	P101					
L-T-P: 0-0-1		Credits : 1 Contact Hrs.: 02 Hrs./W				
CIE Ma	arks: 80	SEE Ma	rks: 20	Total Marks: 100		
Teachin	ng Hrs.: 24			Examination Duration: 3 Hrs.		
		Experi	ments			
1.	Four probe method					
2.	V-I characteristics of p-n junction diode					
3.	Zener diode characteristics					
4.	Hysteresis loss					
5.	Transistor characteristics					
6.	Measurement of dielectric constant					
7.	Resonance frequency of LCR circuits					
8.	Study of frequency response of passive components					
9.	Calibration of the	rmocouple				
10.	Calibration of electrical meters					

Cour 15EF	se Code: PHP101	Course Title: Engineering Physics lab (Electrical Sciences)					
L-T-F	P-SS: 0-0-1-0	Credits : 1		Contact Hrs: 02 Hrs/Week			
CIE	Marks: 80	SEE N	/larks: 20	Total Marks: 100			
Teac	hing Hrs: 24 Hrs			Examination Duration: 3 Hrs			
		Experim	ents				
1.	Study of Lissajou	is figuires using C	athode ray	y Oscilloscope			
2.	Self inductance a	nd resistance of a	coil				
3.	Hysteresis Loop	for a ferromagneti	c material	(M-B curve)			
4.	Electromagnetic	induction					
5.	Magnetic field along the axis of a coil (Biot-Savart Law) Study of Hall effect (Lorentz Force)						
6.	Charging and discharging of a capacitor						
7.	Four probe method to determine the energy gap and electrical restivity of given semiconductor material.						
8.	V-I characteristics of p-n junction diode						
9.	V-I characteristics of zener diode						
10.	Rectifier circuits with and without filter (Half wave, Full wave &Bridge)						
11.	Zener diode as ve	Zener diode as voltage regulator					
12.	V-I characteristic	-I characteristics of BJT.					
13.	Resonance in LC	R circuit					

FIRST SEMESTER B E PROGRAM 2016-17 Mechanical Science Stream Syllabi Content

Course Content					
Course Code: 15ECRP101 Course Title: Engineering Exploration					
L-T-P: 0-0-3	Credits: 3 Contact Hrs: 78				
CIE Marks: 80	SEE Marks: 20	Total Marks: 100			
Teaching Hrs: 78		SEE Exam Duration: 3 hrs			

No	Content	Sessions
1	Introduction to Engineering and Engineering Study	1
2	Role of Analysis in Engineering, Analysis Methodology	2
3	Data Analysis Graphing	2
4	Basics of Engineering Design, Multidisciplinary Nature of Engineering Design	5
5	Project Management	1
6	Sustainability in Engineering	2
7	Ethics	1
8	Modeling, Simulation and Data Acquisition using Software Tool	1
9	Platform based development : Arduino	3
9	Course Project	3
DC		

Reference Books:

- Engineering Fundamentals & Problem Solving by Arvid Eide, Roland Jenison, Larry Northup, Steven, Mc GrawHill Higher Education, 6th Edition (2011)
- 2. Engineering Exploration (Edited Book, 2008) by Pearson Publication

Evaluation Scheme

Chapter No	Name	Weightage in percentage
1	Introduction to Engineering and Engineering Study	-
2	Role of Analysis in Engineering	
3	Analysis Methodology	10
4	Data Analysis Graphing	10

Earlier known as B. V. B. College of Engineering & Technology

Basics of Engineering Design		
5	Multidisciplinary Nature of Engineering Design	20
6	Project Management	5
7	Sustainability in Engineering	10
8	Ethics	5
9	Modelling, Simulation and Data Acquisition using Software Tool	-
10	Platform Based Development: Arduino	-
10	Course Project	40

FIRST SEMESTER B E PROGRAM 2016-17 Electrical Science Stream Syllabi Content

Program: UG					
L-T-P-SS: 0-1-1 Credits:2		Title: Social Innovation			
		Credits:2			Hrs: 40
		SEE Mar			arks: 100
Feaching Hrs: 3				Exam D	uration: 1.5 hours
Module	Тор	bics	Assigni	nents	Tools
KNOWLEDGE & TOOLS	 Induction to Social Innovation: Awakening social consciousness Engineering& Social innovation Site Visits Course Overview 		 Read the handout on "The Process of Social Innovation" by Geoff Mulgan Submit report on field visit 		 Special Lectures Field visit Review course objectives and syllabus through PPT Behavioral Blocks to Innovation Questionnaire
	• Course	Overview			Case review
	2. Social In and Lead	novation dership	Report o social inr created t engineer innovato	novations by s/social	 Video session & discussion on applications of engineering in social field
	3. Idea Ge	eneration		rough s and	Literature surveyField visits
	4.Identifyin Issues & wo formation	-	 One pag literature Justificat Campus activity 	ion	 Focused Group Discussions on local challenges observed & Idea pitching Experience sharing by senior students

Earlier known as B. V. B. College of Engineering & Technology

KNOWLEDGE & TOOLS	5.Issues Based Problem Solving Tree	•	Designing Issue Based Problem Solving Tree for issue identified	•	Case study
	6. Project Proposals	•	Present the project proposal	•	Case study Report template
	7.Team Analysis	•	Carryout & present SWOT analysis for individual & the team	•	Case study/ Videos
	8.Stakeholder Analysis	•	Prepare & present stakeholder analysis for group project	•	Stakeholder engagement activity
	9. Innovative Budgeting and Fundraising	•	Preparing budget and fundraising report for group project	•	Presentation on fundraising techniques applied for the project
	10. Experiential Sessions	•	Brief write up	•	Special lecture
	11.Experiential Sessions	•	Brief write up	•	Special lecture
DEVELOPMENT	12. Innovative Resource Management	•	Classroom Activity	•	Structure building games
	13. Calculative Risk Management	•	Classroom Activity	•	Risk Management games
IT SESSIONS	14.Exposure to IT Skills- session 1 and session 2	•	IT assignments	• • •	PPT Movie Maker Web Designing & Hosting Internet Basics

4

CULTUR Statements

いいたなななななないでものできたとうと

K. L. E. TECH

Technological K. L. E. Technological University, Hubli. University DEPARTMENT OF FRESHMAN ENGINEERING PROGRAM

ISECRP101

Experiment wise Plan

Engineering Exploration

List of experiments/jobs planned to meet the requirements of the course. A CONTRACTOR OF THE OWNER

Category	Exercise	Total Weightage	80	No. of lab sessions: 18		
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory		
1	Introduction to Engineering and Engineering Study	2				
	Learning Outcomes: The students should be able 1. Explain the importance of world 2. List the roles of an engine 3. Describe common engine Specialisations 4. Differentiate between lear college	engineering profest er in the engineerin ering disciplines an	g workplace d their			
2 a	Role of Analysis in Engineering	1				
	Learning Outcomes: The students should be able to: 1. Explain the importance of analysis in engineering 2. Characterize an engineering problem by defining the inputs, output, stating assumptions and uncertainties 3. Prioritize the identified attributes for analysis					
2 b	Analysis Methodology	1	10			
	Learning Outcomes: The students should be abi 1. Write a mathematical more applicability and required acc 2.: Interpret the model of the engineering principles	del of a system in te curacy				
3	Data Analysis and Graphing	2	10	-		
	Learning Outcomes: The students should be ab 1. Explain the significance of 2. Choose appropriate proc represent a dataset 3. Interpret and analyse dat 4. Establish the relationship parameters of raw data to re	of Data Analysis edures, tools and te a quantitatively and between the physi	l/or graphically cal			
		2	T			

6

K. L. E. TECH K. L. E. TECH K. L. E. Technological University, Hubli. DEPARTMENT OF FRESHMAN ENGINEERING PROGRAM

	(and						
	4 b		Multidisciplinary Nature of Engineering Design	3		10	
			Learning Outcomes: The students should be a 1. Identify multi-disciplina 2. Construct proposed sin systems	ry facet of des	sign cal / mec	hatronic	
ſ	5		Project Management	1		5	
		203	Learning Outcomes: The students should be a 1. Illustrate the importance 2. Plan project using releva thecklist, timeline and Gant 3. Prepare project report fo	of team work ant project ma t chart	inageme	nt tools like	
6	1	_	iven standards ustainability in Engineering	2		10	
	Learning Outcomes: The students should be able to: 1. Explain that role of engineers is vital in sustainable Engineering Design 2. Analyse an engineering situation based on the three main pillars of sustainable development: Society, Environment and Economy 3. Discriminate engineered products based on their life cycle assessment 4. Draw inferences out of carbon footprint calculations in day						
7		to d Ethi	lay life ics	1	5		
		Th 1. D 2. E 3. E 4. A	arning Outcomes: e students should be able lefine the terms: etiquette, xplain the need for ethics xplain moral theories nalyse the situation for eth	law, morais a în engineerin	g protes		
}	I A	Acqui		4	20		
			ning Outcomes: students should be able to scribe the significance of	o: Modelling, Si	mulatior	n, Data	

K. L. E. TECH

Technological K. L. E. Technological University, Hubli. University DEPARTMENT OF FRESHMAN ENGINEERING PROGRAM

KLE TECH.

Creating Value Leveraging Knowledge

Acquisition & Analysis

2. Build Virtual Instrument for an application 3. Use looping, timing and formula node concepts

appropriately for an application

Build a system by interfacing a sensor/transducer

References:

- 1. Engineering Fundamentals & Problem Solving by Arvid Eide, Roland Jenison, Larry Northup, Steven, Mc GrawHill Higher Education, 6th Edition (2011)
- 2. Engineering Exploration (Edited Book, 2008) by Pearson custom Publishing

	Evaluation Scheme		Weightage in
Chapter	Name	Sessions	
No			percentage
1	Introduction to Engineering and Engineering Study	3 hrs	
2	Role of Analysis in Engineering	3 hrs	10
. 2	Analysis Methodology	3 hrs	
4	Data Analysis Graphing	6 hrs	10
	Basics of Engineering Design	6 hrs	20
. 5	Multidisciplinary Nature of Engineering Design	6 hrs	
	Review	3hrs	
6	Project Management	3 hrs	5
7	Sustainability in Engineering	3 hrs	10
8	Ethics	6 hrs	5
9	Modelling, Simulation, Data Acquisition & Analysis using	12 hrs	20
	Software Tool		
10	Course Project	24 hrs	20

Date: 7 - 1 - 15

CEER Director

4

Earlier known as B. V. B. College of Engineering & Technology

FIRST SEMESTER B E PROGRAM 2016-17 Electrical Science Stream Syllabi Content

Program: UG					
Course Code: 15EHS	SP101	Course 7	fitle: Social In	novation	
L-T-P-SS: 0-1-1		Credits:2	2	Contact	Hrs: 40
CIE Marks: 50		SEE Ma	rks: 50	Total M	arks: 100
Teaching Hrs: 3				Exam D	uration: 1.5 hours
Module	Topie	cs	Assignm	ents	Tools
KNOWLEDGE & TOOLS	 Induction Innovation Awakenin conscious Engineeri innovatio Site Visits Course Ov Social Inno and Leader 	: ng social ng& Social n verview vation	 Read the h on "The Pr Social Inno by Geoff M Submit rep field visit Report on t innovations by enginee innovators 	wo social	 Special Lectures Field visit Review course objectives and syllabus through PPT Behavioral Blocks to Innovation Questionnaire Case review Video session & discussion on applications of engineering in social
	3. Idea Gen	eration	One page v on idea ger about socia through lite and observ	nerated I issues ratures	field Literature survey Field visits
	4.Identifying L Issues & work formation	team	 One page r literature re Justification Campus activity 	view	 Focused Group Discussions on local challenges observed & Idea pitching Experience sharing by senior students
	5.Issues Based Solving Tree	l Problem	 Designing I Based Prot Solving Tre issue identi 	e for	Case study

. . .

۰,

KNOWLEDGE & TOOLS	6. Project Proposals		sent the project	•	Case study Report template
	7.Team Analysis	SW	ryout & present OT analysis for vidual & the n	•	Case study/ Videos
	8.Stakeholder Analysis	stak	pare & present xeholder analysis group project	•	Stakeholder engagement activity
	9. Innovative Budgeting and Fundraising	and	paring budget fundraising ort for group ect	•	Presentation on fundraising techniques applied for the project
	10. Experiential Sessions	• Brie	f write up	•	Special lecture
	11.Experiential Sessions	• Brie	f write up	•	Special lecture
DEVELOPMENT	12. Innovative Resource Management	Class	ssroom Activity	•	Structure building games
	13. Calculative Risk Management	Class	ssroom Activity	•	Risk Management games
IT SESSIONS	14.Exposure to IT Skills- session 1 and session 2	• IT a	ssignments	• • •	PPT Movie Maker Web Designing & Hosting Internet Basics

Course Code: 15EHSP101

L-T-P: 0-1-1

Credits: 2

Course Title: Social Innovation Contact Hrs: 3 hrs/week

Module	Topics	Assignments	Tools
	 Induction to Social Innovation: Awakening social consciousness Engineering& Social innovation Site Visits Course Overview 	 Read the handout on "The Process of Social Innovation" by Geoff Mulgan Submit report on field visit 	 s Special Lectures Field visit Review course objectives and syllabus through PPT Behavioral Blocks to Innovation Questionnaire Case review
<i>S</i>	2. Social Innovation and Leadership	Report on two social innovations created by engineers/social innovators	 Video session & discussion on applications of engineering in social field
& T00L	3. Idea Generation	• One page write up on idea generated about social issues through literatures and observation	Literature surveyField visits
KNOWLEDGE & TOOLS	4.Identifying Local Issues & work team formation	 One page report on literature review Justification Campus activity 	 Focused Group Discussions on local challenges observed & Idea pitching Experience sharing by senior students
	5.Issues Based Problem Solving Tree	Designing Issue Based Problem Solving Tree for issue identified	Case study
2	6. Project Proposals	Present the project proposal	Case studyReport template
	7.Team Analysis	 Carryout & present SWOT analysis for individual & the team 	Case study/ Videos
	8.Stakeholder Analysis	Prepare & present stakeholder analysis for group project	Stakeholder engagement activity
a	 Innovative Budgeting and Fundraising 	 Preparing budget and fundraising report for group project 	 Presentation on fundraising techniques applied for the project
	0. Experiential Sessions	Brief write up	Special lecture
1	1.Experiential Sessions	Brief write up	Special lecture
	2. Innovative Resource Janagement	Classroom Activity	Structure building games
1: M	3. Calculative Risk lanagement	Classroom Activity	Risk Management games

:

KLE TECH. KLE TECH. Leveraging Knowledge							
IT	14.Exposure to IT Skills-	IT assignments	 Presentation Skills Movie Maker Web Designing &				
SESSIONS	session 1 and session 2		Hosting Internet Basics				

• 81 ···· . - ...

Cand no.

14

Monitoring: Faculty will maintain individual student dairy and assess the performance on weekly basis.

١

÷

æ

and the second of the second s

.

FIRST SEMESTER B E PROGRAM 2018-19

<u>Syllabi Content</u> (New Title) (Common course)							
Program: UG							
Course Title: Single Varia	Course Title:Single Variable CalculusCourse Code: 18EMAB10						
L-T-P: 4-1-0	Credits: 05	Contact Hours: 72					
CIE Marks: 50	SEE Marks: 50	Total Marks: 100					
Teaching Hours: 06	Examination Duration: 3hrs						
	Unit I						
1. Functions, Graphs and Mo	odels	07					
hours							
Functions, types of functions, tr	ansformations and models (Linear, ex	ponential, trigonometric).					
MATLAB: Graphing functions,	Domain-Range and Interpreting the m	odels					
2. Calculus of functions and	models	13					
hours							
	nits- graph, Continuity and discontir	•					
	n using Bisection Method and Newtor	-					
	a rate of change, All the rules of deriv						
	vature and Radius of Curvature, Inde	terminate forms, L- Hospital's rule-					
Examples	•						
MATLAB: optimization problen							
2 Infinite Contra	Unit II						
	3. Infinite Series 06						
hours							
•	ies, Tests of convergence – p-series	•					
radius of convergence, Taylor's	and Maclaurin's series, Applications of	of Taylor's and Maclaurin's series					

MATLAB: Convergence of series

4. Integral calculus

hours

Tracing of standard curves in Cartesian form ,Parametric form and Polar form; Beta and gamma function, relation between them, evaluation of integrals using Beta and gamma functions; Applications to find arc length, Area, Volume and surface area (Cartesian, parametric and polar curves). Approximate integration-Trapezoidal rule, Simpson's 1/3 rule

MATLAB: problems on arc length, area, volume and surface area

Unit III

5. Ordinary differential equations of first order

hours

(a) Introduction to Initial Value problems. Linear and Bernoulli's equations, Exact equations and reducible to exact form, Numerical solution to Initial Value problems-Euler's method, Modified Euler's method and Runge-Kutta method

(b) Applications of first order differential equations-Orthogonal trajectories growth and decay problems, mixture problems, Electrical circuits, falling bodies.

MATLAB: Solve differential equations

Text Books

1. Early Transcendentals Calculus- James Stewart, Thomson Books, 7ed 2010.

Reference Books:

- 1. Calculus Single and Multivariable, Hughues-Hallett Gleason, Wiley India Ed, 4ed, 2009.
- 2. Thomas Calculus, George B Thomas, Pearson India, 12ed, 2010

10

FIRST SEMESTER B E PROGRAM 2017-18

Syllabi Content

(Old Title) (Common course)

	(Old Title) (Common course)						
Progr	Program: UG						
Cours	se Title: <mark>Analytical Geo</mark>	ometry and Calculus	Course Code: 15EMAB101				
L-T-P	P: 5-0-0	Credits: 05	Contact Hours: 60				
CIE N	Aarks: 50	SEE Marks: 50	Total Marks: 100				
Teach	ing Hours: 05	Examination Duration: 3hrs					
		Unit I					
2.	Functions and Graph	5	05				
	hours						
	Trigonometric Function	ns, Exponential Functions and I	Logarithmic Functions				
3.	Limits and continuity	-	-				
	10 hours Limit of a fur	nction, Infinite limits- graph, Cor	itinuity and discontinuity,				
	Intermediate value theo	prem statement, Roots of the equa	ation using Bisection Method				
	and Newton- Raphson	Method					
4.	Derivatives and appli	cations	10				
	hours						
	Definition and Interpret	tation of derivates as a rate of cha	inge, All the rules of derivatives				
	(List only), Maxima, Minima, What does f' and f'' say about f , Curvature and						
	Radius of Curvature, In	determinate forms – L'Hospital'	s rule				
		Unit II					
5.	Infinite Series		10				
	hours Definition, Con-	vergence of series, Tests of conv	vergence – p-series, comparison				
	test, ratio test Represent	ntation of a function as a power	series, radius of convergence,				
	Taylor's and Maclaurin	n's series, Applications of Taylo	r's and Maclaurin's series				
6.	. Integral calculus 1						
	hours Tracing	of standard curves in Cartesian f	form ,Parametric form and Polar				
	form; Beta and gamma	a function, relation between ther	n, evaluation of integrals using				
	Beta and gamma funct	ions; Applications to find arc ler	ngth, Area, Volume and surface				
	area (Cartesian, param	etric and polar curves). Approx	timate integration- Trapezoidal				
	rule, Simpson's 1/3 rule	2.					

Unit III

7. Vectors and Geometry of space

(5+5)

hours (a) Three dimensional Coordinate system, Vectors in space, position vector, Direction cosines, Direction angles and planes, angle between planes.

(b) Equations of line, coplanar lines, skew lines, surfaces. Cylindrical and spherical coordinates, curves in 3-d spaces

Text Books

1. Early Transcendental Calculus- James Stewart, Thomson Books, 5e 2007

Reference Books:

- Calculus Single and Multivariable, Hughues- Hallett Gleason, Wiley India Ed, 4ed, 2009.
- 4. Calculus I, Jerrold Marsden and Alan Weinstein, Springer-Verlag, 2e, 1986.
- 5. Calculus II, Jerrold Marsden and Alan Weinstein, Springer-Verlag, 2e,1986.
- 6. Calculus III, Jerrold Marsden and Alan Weinstein, Springer-Verlag, 2e,1986.

SECOND SEMESTER B E PROGRAM 2018-19

Syllabi Content

(New Title) (Common course)

Progra	am: UG							
Cours	e Title: <mark>Multivariable c</mark> a	alculus	Course Code: 18EMAB102					
L-T-P:	4-1-0	Credits: 05	Contact Hours: 72					
ISA Ma	arks: 50	ESA Marks: 50	Total Marks: 100					
Teach	ing Hours: 06	Examination Duration: 3hrs.						
	Unit I							
1.	Partial differentiation		12 hour s					
	Function of several varia	bles, Partial derivatives, Level curv	es, Chain rule, Errors and					
	Approximations. Extreme	value problems. Lagrange's multipli	ers.					
2.	Double integrals		08 hours					
	Double integrals- Rectang	gular and polar coordinates, Change	e the order of integration. Change					
	of variables, Jacobian. Ap	pplication of double integrals						
	MATLAB: optimization pr	oblems, application of double integr	als					
		Unit II						
3.	Triple integrals		07					
	hours							
	Triple integrals, Cartesiar	, change to Cylindrical and Spherica	al coordinates Application of Triple					
	integrals							
4.	Calculus of Vector Field	s	13 hours					
	Vector fields, Gradient an	d directional derivatives. Line and S	Surface integrals. Independence of					
	path and potential functio	ns. Green's theorem, Divergence of	vector field, Divergence theorem,					
	Curl of vector field. Stoke	s theorem.						
	MATLAB: application of	Triple integrals, Vector calculus prob	lems					
		Unit III						
5.	Differential equations of	higher orders	(5+5)					
	hours (a) Linear dif	ferential equations of second and hi	gher order with constant					
	coeffilSAnts The method	of Variation of parameters. Initial an	d boundary value problems.					
	(b) Applications of second	l order differential equations-Newtor	n's 2 nd law, electrical circuits,					
	Simple Harmonic motion.	Series solution of differential equati	ons. Validity of Series solution of					
	Differential equations.							

MATLAB: application of differential equations

Text Books :

1. Early Transcendental Calculus- James Stewart, Thomson Books, 7ed 2010

Reference Books:

- 1. Calculus Single and Multivariable, Hughues-Hallett Gleason, Wiley India Ed, 4ed, 2009.
- 2. Thomas Calculus, George B Thomas, Pearson India, 12ed, 2010

<u>SECOND SEMESTER B E PROGRAM 2017-18</u> <u>Syllabi Content</u> (Common course)

Progra	am: UG					
Cours	e Title: Multivariate ca	lculus and differential	Course Code: 15EMAB102			
	equations					
L-T-P	: 5-0-0	Credits: 05	Contact Hours: 60			
CIE M	Iarks: 50	SEE Marks: 50	Total Marks: 100			
Teachi	ing Hours: 05	Examination Duration: 3hrs				
		Unit I				
6.	Partial differentiation		12			
	hours Function of sever	al variables, Partial derivatives, I	Level curves, Chain rule, Errors			
	and Approximat	ions. Extreme value problems. L	agrange's multipliers.			
7.	Multiple integrals		13			
	hours Double integrals	- Rectangular and polar coordinate	ates, Change the order of			
	integration. Change of	variables, Jacobian. Triple integ	rals- Cartesian, Cylindrical and			
	Spherical coordinates A	pplication of multiple integrals				
		Unit II				
8.	Calculus of Vector Fie	lds	13			
	hours Vector fields, Gradient and directional derivatives. Line and Surface integrals.					
	Independence of path a	nd potential functions. Green's	theorem, Divergence of vector			
	field, Divergence theore	em, Curl of vector field. Stokes t	heorem.			
9.	Differential equations	of first order	12			
	hours Introduction to I	nitial Value problems. Linear an	nd Bernoulli's equations, Exact			
	equations and reducible	to exact form, Applications of f	irst order differential equations-			
	Orthogonal trajectories	, growth and decay problems,	, mixture problems, Electrical			
		Approximate solution to Initial V	alue problems-Euler's method,			
	Modified Euler's metho	d and Runge-Kutta method.				
	Unit III					
10.	10. Differential equations of higher orders (5+5)					
	hours (a) Linear different	ntial equations of second and high	gher order with constant			
	coefficients The method	l of Variation of parameters. Init	ial and boundary value			
	problems.		Applications of second order			
	differential equations-N	ewton's 2 nd law, electrical circuit	ts, Simple Harmonic motion.			

Series solution of differential equations. Validity of Series solution of Differential equations.

Text Books :

1. Early Transcendental Calculus- James Stewart, Thomson Books, 5e 2007

Reference Books:

- **3.** Calculus Single and Multivariable, Hughues-Hallett Gleason, Wiley India Ed, 4ed, 2009.
- 4. Calculus I, Jerrold Marsden and Alan Weinstein, Springer-Verlag, 2e, 1986.
- 5. Calculus II, Jerrold Marsden and Alan Weinstein, Springer-Verlag, 2e,1986.
- 6. Calculus III, Jerrold Marsden and Alan Weinstein, Springer-Verlag, 2e,1986.

FIRST SEMESTER B E PROGRAM 2018-19 Electrical Science Stream Syllabi Content

Program: UG		
Course Code: 18EEEF101	Course Title: Basi	c Electrical Engineering
L-T-P: 3-0-0	Credits: 3	Contact: 40 Hrs.
CIA Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching : 40 Hrs.		Exam Duration: 3 Hrs.

Chapte r No.	Unit-I	Hour s
1	Overview of Electrical Engineering Specialization, scope & role, impact of Electrical Engineering on national economy, environment, Sources of generation, sustainability, challenges and opportunities for electrical engineers, electrical engineering marvels, future challenges.	02
2	DC Circuits Voltage and current sources, Kirchoff's current and voltage laws, loop and nodal analysis of simple circuits with dc excitation. Time-domain analysis of first-order RL and RC circuits.	05
3	AC Circuits Representation of sinusoidal waveforms, peak and rms values, phasor representation, real power, reactive power, apparent power, power factor. Analysis of single-phase series and parallel R-L-C ac circuits. Three-phase balanced circuits, voltage and current relations in star and delta connections. power measurement using two watt meters	08
	Unit-II	
4	Electrical Actuators Electromagnetic principles, Solenoid, Relays, classification of Electric motors, DC motors-shunt, series, compound, separately excited, PMDC motors –Speed Control, Stepper Motors, BLDC motors, three phase induction motor, Characteristics and applications, selection of motors for various applications.	9
5	Power Electronics (Text1, chapter 45) Introductory, Thyristor, Some thyristor circuits, Limitations to thyristor operation, The thyristor in practice, The fully controlled AC/DC converter,	6

	AC/DC inversion, Switching devices in inverters, Three-phase rectifier networks, The three-phase fully controlled converter, Inverter-fed induction motors, Soft-starting induction motors, DC to DC conversion switched-mode power	
	Unit-III	
6	Electrical Wiring, Safety and protection(Ref :Text3-page 1 to 10) Types of wires and cables for internal wiring, Types of switches and Circuits, Types of wiring, Safety precautions and rules in handling electrical appliances, Electric shock, first aid for electrical shocks, Importance of grounding and earthing, Methods for earthing, Fuses, MCB, ELCB and Relays, Lockout and Tagout, Electrical Codes and Standards.	05
7	Batteries: Basics of lead acid batteries, Lithium Ion Battery , Battery storage capacity, Coulomb efficiency, Numerical of high and low charging rates, Battery sizing. Numericals.	05

Text	Text Books		
1	Hughes, Electrical & Electronic Technology, 8th , Pearson Education, 2001		
2	P C Sen, Principals of Electrical Machines and Power Electronics, 2nd, Wiley Publications		
3	Gilbert M Masters, Renewable and efficient Electrical Power systems, Published by John Wiley & Sons 2004 edition		
4	Frank D. Petruzella, Electric Motors and Control Systems, McGraw Hill Education Private Limited 2009 Edition		
Refe	rence Books:		
1	D C Kulshreshtha, Basic Electrical Engineering, Mc Graw Hill Publications		
2	David G Alciatore and Michel B Histand, Introduction to Mechatronics and Measurement Systems, 3rd, Tata McGraw Hill Education Private Limited, New Delhi., 2005		
3	Vincent Del Toro, Electrical Engineering Fundamentals, 2 nd edition Prentice Hall India		

FIRST SEMESTER B E PROGRAM 2017-18 Electrical Science Stream Syllabi Content

CONTENT

Program: UG		
Course Code: 16EEEF101	Course Title: Basic	Electrical Engineering
L-T-P-SS: 3-0-0	Credits:4	Contact Hrs: 50
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hrs: 3		Exam Duration: 3 hours
	Unit I	

Unit I	
Chapter No. 1: Overview of Electrical Engineering Specialization, scope & role, impact of Electrical Engineering on national economy, environment, Sources of generation, sustainability, challenges and opportunities for electrical engineers, electrical engineering marvels, future challenges.	02 hrs
Chapter No. 2 : D.C. and Magnetic Circuits Ohm's law, Kirchhoff's laws, network analysis by Maxwell's circulating currents, constant current and voltage source, nodal analysis, series magnetic circuits, mmf, reluctance and inductance, simple problems and analogy	08 hrs
Chapter No. 3. Actuators Electromagnetic principles, classification of Electric motors, DC motors-shunt, series, PMDC motors – Speed Control, Stepper Motors, BLDC motors, Characteristics and applications, selection of motors for various applications	05 hrs
Unit II	
Chapter No. 4 : Single phase AC Circuits Introduction to AC circuits and theory of generation of sinusoidal alternating voltage, concept of average and effective (rms) values, form factor, peak factor of sinusoidally varying voltage and current, phasor representation of alternating quantities, analysis with phasor diagrams of RLC circuits, power and power factor in AC circuits, parallel RLC Circuits and numerical. Introduction to Transformers (no-load phasor diagram).	10 hrs
Chapter No. 5: Three Phase Systems Necessity and advantages of three phase systems, generation of three phase e.m.f.s, relationship between line and phase values of balanced star and delta connections,	5 hrs

power in balanced three phase circuits and power measurement using two watt meters, three phase induction motor, numericals	
Unit III	
Chapter No. 6. Batteries: Basics of lead acid batteries, Lithium Ion Battery , Battery storage capacity, Coulomb efficiency, Numerical of high and low charging rates, Battery sizing.	05 hrs
Chapter No. 7: Electrical Wiring, Safety and protection Types of wires and cables for internal wiring, Types of switches and Circuits, Types of wiring, Safety precautions and rules in handling electrical appliances, Electric shock, first aid for electrical shocks, Importance of grounding and earthing, Methods for earthing, Fuses, MCB, ELCB and Relays	05 hrs

Text Books

- 1. Hughes, Electrical & Electronic Technology, 8th edition, Pearson Education
- 2. David G Alciatore and Michel B Histand, Introduciton to Mechatronics and Measurement Systems, 3rd edition 2005, Tata McGraw Hill Education Private Limited, New Delhi.
- 3. Gilbert M Masters, Renewable and efficient Electrical Power systems, Published by John Wiley & Sons 2004 edition

Reference Books

- 1. D C Kulshreshtha, Basic Electrical Engineering, Mc Graw Hill Publications
- 2. Vincent Del Toro, Electrical Engineering Fundamentals, 2nd edition Prentice Hall India

SECOND SEMESTER B E PROGRAM 2018-19 Mechanical Science Stream Syllabi Content

Program: UG		
Course Code: 18EEEF102	se Code: 18EEF102 Course Title: Basic Electric	
L-T-P: 3-0-0	Credits: 3	Contact Hrs.: 40
CIA Marks: 50	ESA Marks: 50 Total Mar	
Teaching:40 Hrs	Hrs Exam Duration: 3 Hrs	

Chapter No.	Unit-I	Hrs
1	Overview of Electrical Engineering	02
1	Specialization, scope & role, impact of Electrical Engineering on national economy,	
	environment, Sources of generation, sustainability, challenges and opportunities for electrical	
	engineers, electrical engineering marvels, future challenges.	
2	DC Circuits	05
	Voltage and current sources, Kirchoff's current and voltage laws, loop and nodal analysis of	
	simple circuits with dc excitation. Time-domain analysis of first-order RL and RC circuits.	
3	AC Circuits	08
	Representation of sinusoidal waveforms, peak and rms values, phasor representation, real	
	power, reactive power, apparent power, power factor. Analysis of single-phase series and	
	parallel R-L-C ac circuits. Three-phase balanced circuits, voltage and current relations in star	
	and delta connections. power measurement using two watt meters	
	Unit-II	
4	Electrical Actuators	9
	Electromagnetic principles, Solenoid, Relays, classification of Electric motors, DC motors-	
	shunt, series, compound, separately excited, PMDC motors - Speed Control, Stepper Motors,	
	BLDC motors, three phase induction motor, Characteristics and applications, selection of	
	motors for various applications.	
5	Power Electronics (Text1, chapter 45)	6
	Introductory, Thyristor, Some thyristor circuits, Limitations to thyristor operation, The	
	thyristor in practice, The fully controlled AC/DC converter, AC/DC inversion, Switching	
	devices in inverters, Three-phase rectifier networks, The three-phase fully controlled	
	converter, Inverter-fed induction motors, Soft-starting induction motors, DC to DC conversion	
	switched-mode power	
	Unit-III	

6	Electrical Wiring, Safety and protection(ref :Text3-page 1 to 10)	05
	Types of wires and cables for internal wiring, Types of switches and Circuits, Types of wiring,	
	Safety precautions and rules in handling electrical appliances, Electric shock, first aid for	
	electrical shocks, Importance of grounding and earthing, Methods for earthing, Fuses, MCB,	
	ELCB and Relays, Lockout and Tagout, Electrical Codes and Standards.	
7	Batteries:	05
	Basics of lead acid batteries, Lithium Ion Battery, Battery storage capacity, Coulomb	
	effiISAncy, Numerical of high and low charging rates, Battery sizing. Numericals	

Te	Text Books			
1	Hughes, Electrical & Electronic Technology, 8th , Pearson Education, 2001			
2	P C Sen, Principals of Electrical Machines and Power Electronics, 2nd, Wiley Publications			
3	Gilbert M Masters, Renewable and effiISAnt Electrical Power systems, Published by John Wiley & Sons 2004 edition			
4	Frank D. Petruzella, Electric Motors and Control Systems, McGraw Hill Education Private Limited 2009 Edition			
Re	ference Books:			
1	D C Kulshreshtha, Basic Electrical Engineering, Mc Graw Hill Publications			
2	David G Alciatore and Michel B Histand, Introduction to Mechatronics and Measurement Systems, 3rd, Tata McGraw Hill Education Private Limited, New Delhi., 2005			
3	Vincent Del Toro, Electrical Engineering Fundamentals, 2 nd edition Prentice Hall India			

Earlier known as B. V. B. College of Engineering & Technology

SECOND SEMESTER B E PROGRAM 2017-18

Mechanical Science Stream Syllabi Content

Course Code: 16EEEF102	Course Title: <mark>Basic</mark>	Electrical Engineering	Ş
L-T-P-SS: 3-0-0	Credits: 3	Contact Hrs/Weel	k: 3
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 50	Exam Duration: 3	iours	
	Unit I		
Chapter No. 1: Overview of H Specialization, scope & role, economy, environment, Source opportunities for electrical eng challenges.	impact of Electrical Enges of generation, sustaina gineers, electrical engine	bility, challenges and	02 hrs.
Chapter No. 2 : D.C. and Network Theorems Ohm's law, Kirchhoff's laws, Analysis of series, parallel and series- parallel circuits excited by independent voltage sources, network analysis by Maxwell's circulating currents, constant current and voltage source, nodal analysis, Thevenin's Theorem, Norton's Theorem.			8 hrs.
Chapter No. 3. Actuators Electromagnetic principles, cla shunt, series, PMDC motors – 3 motors, Characteristics and app applications	Speed Control, Stepper M	lotors, BLDC	5 hrs.
	Unit II		
Chapter No. 5 : Single phase AC Circuits Introduction to AC circuits and theory of generation of sinusoidal alternating voltage, concept of average and effective (rms) values, phasor representation of alternating quantities, analysis with phasor diagrams of RLC circuits, power and power factor in AC circuits, parallel RLC Circuits and numericals, transformers.			10 hrs.
Chapter No. 6. Three Phase S	•		
Necessity and advantages of the e.m.f.s, relationship between lin connections, power in balanced motor, numerical	ne and phase values of ba	lanced star and delta	05 hrs.
	Unit III		

Chapter No. 6: Batteries Basics of lead acid batteries, Lithium Ion Battery, Battery storage capacity, Coulomb efficiency, high and low charging rates, Battery sizing, numericals.	05 hrs.
Chapter No. 7: Electrical Wiring, Safety and protection Types of wires and cables for internal wiring, Types of switches and Circuits, Types of wiring, Safety precautions and rules in handling electrical appliances, Electric shock, first aid for electrical shocks, Importance of grounding and earthing, Methods for earthing, Fuses, MCB, ELCB, and Relay	us nre

Text Books

- 1. Hughes, Electrical & Electronic Technology, 8th edition, Pearson Education
- 2. David G Alciatore and Michel B Histand, Introduciton to Mechatronics and Measurement Systems, 3rd edition 2005, Tata McGraw Hill Education Private Limited, New Delhi.
- 3. Gilbert M Masters, Renewable and efficient Electrical Power systems, Published by John Wiley & Sons 2004 edition

Reference Books

- 1. D C Kulshreshtha, Basic Electrical Engineering, Mc Graw Hill Publications
- 2. Vincent Del Toro, Electrical Engineering Fundamentals, 2nd edition Prentice Hall India

FIRST SEMESTER B E PROGRAM 2018-19 Mechanical Science Stream Syllabi Content

Program: UG			
Course Title: Basic Electronics Course Code: 18EECF102			Teaching
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4Hrs/week	Hours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 50 Hrs.	Examination		
	Duration: 3 Hrs.		
	of Mechatronics, Mechatic turing, Mechatic and Dechatronics and Dechatroni	Engineering ronics and Design Innovation, Education; Typical Mechatronics	03
Chapter 2: Semiconductor	r Devices and Applications	3:	
PN junction diode, charac	teristics and parameters, c	liode approximations, half wave tifier capacitor filter, Zener diode,	10
Chapter 3: Operational A	mplifiers:		
Ideal op-amp characteristics, op-amp applications: Comparator, Inverting amplifier, Non- inverting amplifier, Voltage follower, Integration, Differentiation, Adder, Subtractor and numerical as applicable.			08
	Unit II		
Chapter 4: Digital Logic:			
Digital Number system: Binary & Hexadecimal number systems, Conversion, BCD Number system, Gray code, Data word representation, Binary Arithmetic, Boolean Algebra, Logic gates, Combinational & Sequential circuits, Adders, Flip-Flops, Registers, Counters, Multiplexer.			
Introduction to Digital Electronics (Text-2):			13
Introduction, Switching and Logic Levels using circuits, Digital Waveform (Sections 9.1to 9.3).Number system: Binary, Octal Decimal and Hexadecimal, Inter Conversion, BCD Number system, Gray code, Data word representation, Binary Arithmetic, Boolean Algebra: Laws, rules & theorems of Boolean algebra, Sum of products form (SOP), products of sum form (POS) of Boolean functions. Study of Karnaugh Maps (K-maps) for 2, 3 & 4 variables only. Logic gates, Adders, Encoder, Decoder, Multiplexer and Demultiplexer. Combinational & Sequential circuits, Latches and Flip-Flops(SR, JK, D, T),			

switch	action, Classification of sensors and transducers, Contact type – Mechanical es, Non-contact type - proximity sensors & Hall sensors, principle of working of ensors,Future Challenges	06
	Unit – III	
Chapt	er 6: Signal Conditioning:	06
	g & Digital signals, Digital to Analog Conversion, R-2R DAC, Analog to Digital rsion, SAR ADC, Data Acquisition.	
Chapt	er 7: Case Studies of Mechatronic Systems:	0.4
Automatic Camera, Drilling Machine, Bar code reader.		04
<i>Text B</i> 1.	ook David A Bell, "Electronic devices and Circuits", PHI New Delhi, 2004.	
2.	Morris Mano, "Digital logic and Computer design" 21st Indian print Prentice Hall 2000.	India,
	W.Bolton, "Mechatronics - Electronic Control Systems in Mechanical and Electric Engineering", 3 rd edition Pearson Education, 2005.	
4.	David Bradley and David W., "Mechatronics in Action", 2nd edition, Springer, 20	010
Refere	nces	
1.	David G Alciatore, Michael B Histand, "Introduction to Mechatronics and Measur Systems", TMH 3 rd edition, 2007.	rement
2.	K.A Krishnamurthy and M.R.Raghuveer, "Electrical, Electronics and Computer E for Scientist and Engineers", Second Edition New Age International Publishers, W Eastern, 2001.	0 0
3.	P. Malvino, "Electronic Principles" Sixth edition Tata McGraw Hill, 1999.	
4.	Floyd, "Digital fundamentals" Third Edition Prentice Hall India, 2001	
5.	BoylesteadNashelsky, "Electronic devices & Circuit theory" Sixth Edition Prentic	e Hall
5.	India, 2000. RamakantGayekawad "Operational Amplifiers & applications" 3 rd Edition, PHI, 2	

06 Hrs

FIRST SEMESTER B E PROGRAM 2017-18 Mechanical Science Stream Svllabi Content

Course code: 15EECF101	Course Title: Basic Electronics			
L-T-P: 4-0-0	Credits: 4 Contact Hrs.: 4	Contact Hrs.: 4		
CIE Marks: 50	SEE Marks: 50Total Marks: 100Exam Duration: 3 hrs			
Teaching Hrs: 50			7	
1. Introduction to Me	chatronics:		I	
	Definition & overview of Mechatronics, Introduction to microprocessor based control. Mechatronics approach, examples of Mechatronics systems.			
PN junction diode, or rectifier, full wave b	 Semiconductor Devices and Applications: PN junction diode, characteristics and parameters, diode approximations, Half wave rectifier, full wave bridge rectifier, full wave bridge rectifier capacitor filter, Zener diode, Voltage regulator design. BJT, Darlington Pair, JFET, MOSFET, UJT, SCR, Triac, IGBT. 			
	cteristics, op-amp applic Voltage follower, Integ	ations: Comparator, Inverting amplifier, Non ration, Differentiation, Adder, Subtractor and	08 Hrs	
	Unit	- 11		

4. Digital Logic:

Digital Number system Binary & Hexadecimal number systems, Conversion, BCD Number system, Gray code, Data word representation, Binary Arithmetic, Boolean Algebra, Logic gates, Combinational & Sequential circuits, Adders, Flip-Flops, Registers, Counters, Multiplexer.	13 Hrs	
5. Sensors and Transducers : Introduction Classification of sensors and transducers Contact ture Machanical		1

Introduction, Classification of sensors and transducers, Contact type – Mechanical switches, Non-contact type - proximity sensors & Hall sensors, principle of working of light sensors.

Unit – III

	6. Signal Conditioning:	
	Analog & Digital signals, Digital to Analog Conversion, R-2R DAC, Analog to Digital	06 Hrs
	Conversion, SAR ADC, Data Acquisition.	
ſ	7. Case Studies of Mechatronics Systems:	04 Hrs
	Automatic Camera, Drilling Machine, Bar code reader.	071115

Text Book

- 1. David G Alciatore, Michael B Histand, "Introduction to Mechatronics and Measurement Systems", TMH 3rd edition, 2007.
- 2. David A Bell, "Electronic devices and Circuits", PHI New Delhi, 2004.

3. W.Bolton, "Mechatronics - Electronic Control Systems in Mechanical and Electrical Engineering", 3rd edition Pearson Education, 2005.

References

- 1. N.P.Mahalik, "Mechatronics Principles, Concepts and Applications", Tata McGraw-Hill, 2011.
- 2. K.A Krishnamurthy and M.R.Raghuveer, "Electrical, Electronics and Computer Engineering for Scientist and Engineers", Second Edition New Age International Publishers, Wiley Eastern, 2001.
- 3. P. Malvino, "Electronic Principles" Sixth edition Tata McGraw Hill, 1999.
- 4. George Kennedy, "Electronic Communication Systems" Fourth Edition Tata McGraw Hill, 2000.
- 5. Morris Mano, "Digital logic and Computer design" 21st Indian print Prentice Hall India, 2000.
- 6. Floyd, "Digital fundamentals" Third Edition Prentice Hall India, 2001.
- 7. Boylestead Nashelsky, "Electronic devices & Circuit theory" Sixth Edition Prentice Hall India, 2000.
- 8. Ramakant Gayekawad "Operational Amplifiers & applications" 3rd Edition, PHI, 2000.

SECOND SEMESTER B E PROGRAM 2018-19 Electrical Science Stream Syllabi Content

Program: UG			
Course Title: Basic Electronics Course Code: 18EECF101			Course Code: 18EECF101
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4 Hrs./week	
ISA Marks: 50		ESA Marks: 50	Total Marks: 100
Teaching Hours: 50Hrs.		Examination Duration: 3 Hrs	

Unit 1	Hours
Chapter 1: Trends in Electronic Industries: Introduction, Roadmap of electronic sector, scope and opportunities in various segments of electronics (i.e., Consumer, Telecom, IT, Defense, Industrial, Medical and Automobiles), Government and private sectors, Growth profile of Electronic industries, Standards and PoliISAs, Electronic System Components.	03
Chapter 2: Basic Components, Devices and Applications: Diode: PN junction characteristics; modeling as a circuit element, ideal and practical diode. AC to DC converter: Half wave and full wave rectifier (centre tap and bridge), capacitor filter and its analysis, numerical examples. Zener diode and its applications (Voltage reference and voltage regulator). Realization of simple logic gates like AND and OR gates.	10
Chapter 3: Transistor: BJT, transistor voltages and currents, Signal amplifier (Fixed bias, Collector base bias, Voltage divider bias, CE configuration). DC load line. Voltage, current and power gains. Transistor as a switch: NOT Gate, Basic (DTL) NAND gate. Transistor as a Small Signal Amplifier (Single Stage and Two Stage RC-coupled Amplifier).	07
Unit 2	
Chapter 4: Digital Logic: Number systems: Decimal, Binary, Octal and Hexadecimal number systems, Conversions, Binary Operations-Addition and subtraction in binary number systems. Logic gates: Realization of simple logic functions using basic gates (AND, OR, NOT), Realization using universal gates (NAND, NOR). Boolean algebra: Theorems and postulates, DeMorgan's Theorems , simplification of logical expressions, Karnaugh Maps, Use of Karnaugh Maps to Minimize Boolean Expressions (2 Variables, 3 Variables and 4 Variables), Design of Half Adder and Full Adder, Parallel Adder using full adders.	14
Chapter 5: Operational Amplifier: OPAMP characteristics (ideal and practical), Linear and non-linear applications: Inverting amplifier, Non inverting amplifier, Voltage follower, Integration, Differentiation, Adder, Subtractor, ZCD and Comparator.	06

Earlier known as B. V. B. College of Engineering & Technology

Unit 3	
Chapter 6: Communication Systems: Basic block diagram of communication system, types of modulation. Amplitude modulation: Time-Domain description, Frequency-Domain description. Generation of AM wave: square law modulator. Detection of AM waves: envelope detector. Double side band suppressed carrier modulation (DSBSC), Generation of DSBSC wave : balanced modulator, Super heterodyne principle.	07
Chapter 7: Linear Power Supply, UPS & CRO: Working principle of linear power supply, UPS and CRO. Measurement of amplitude, frequency and phase of a given signal.	03

Text Book

- 1. David A Bell, Electronic devices and Circuits, PHI New Delhi, 2004
- 2. K.A Krishnamurthy and M.R.Raghuveer, Electrical, Electronics and Computer Engineering for SISAntist and Engineers, 2, New Age International Publishers, 2001
- 3. A.P. Malvino, Electronic Principles, Tata McGraw Hill, 1999

References

- 1. George Kennedy, Electronic Communication Systems, Tata McGraw Hill, 2000
- 2. Morris Mano, Digital logic and Computer design, 21st Indian print Prentice Hall India, 2000
- 3. Floyd, Digital fundamentals, 3, Prentice Hall India, 2001
- 4. BoylesteadNashelsky, Electronic devices & Circuit theory, Prentice Hall India, 2000
- 5. RamakantGaikawad, Operational Amplifiers & applications, PHI, 2000

SECOND SEMESTER B E PROGRAM 2017-18 Electrical Science Stream Syllabi Content

Course Code: 15EECF102	Course Title: Basic Electronics	
L-T-P: 0-0-3	Credits: 3	Contact Hrs.: 6
CIE Marks: 80	SEE Marks: 20	Total Marks: 100
Teaching Hrs: 78	Exam Duration: 3 hrs	

<u>Unit - I</u>	
1. Trends in Electronic Industries: Introduction, Roadmap of electronic sector, scope and opportunities in various segments of electronics (i.e., Consumer, Telecom, IT, Defense, Industrial, Medical and Automobiles), Government and private sectors, Growth profile of Electronic industries, Standards and Policies, Electronic System Components.	3 hour
2. Basic components, devices and Applications: Diode: PN junction characteristics; forward conduction, reverse breakdown, temperature dependence, modeling as a circuit element, approximations. AC to DC converter: Half wave and full wave rectifier (centre tap and bridge), capacitor filter and its approximate analysis, numerical examples as applicable. Zener diode and its applications (Voltage reference and voltage regulator). Common anode and common cathode connections, Simple logic gates : AND , OR	11 hou
3. Transistor: BJT, transistor voltages and currents, Signal amplifier (Fixed bias, CE configuration). DC load line. Voltage, current and power gains. Transistor asa switch: NOT Gate, Basic (DTL) NAND gate	6 hou
<u>Unit-II</u>	
4. Digital Logic: Number systems: Decimal, Binary, Octal and Hexadecimal number systems, Conversions, Addition and subtraction in binary number systems. Logic gates: Realization of simple logic functions using basic gates (AND, OR, NOT), Realization using universal gates (NAND, NOR). Boolean algebra: Theorems and postulates, DeMorgan's Theorems, simplification of logical expressions, Design of Half Adder and Full Adder, Parallel Adder using full adders.	10 H
5. Operational Amplifier: OPAMP characteristics (ideal and practical). Concept of	
positive and negative feedback (At zero frequency). Linear and non-linear	8 hou

applications: Inverting amplifier, Non inverting amplifier, Voltage follower,	
Integration, Differentiation, Adder, Subtractor, ZCD and Comparator.	
<u>Unit-III</u>	
6. Communication Systems: Basic block diagram of communication system, concept of multiplexing, modulation. Different modulation techniques: AM, FM, their comparison	6 hours
 Receivers & CRO: Super heterodyne receivers (block schematic) Block diagramof CRO, Block diagram of CRT, measurement of amplitude, frequency and phase of a given signal. 	6 hours

Text Books:

- David A Bell, "Electronic devices and Circuits", PHI New Delhi, 2004.
- K.A Krishnamurthy and M.R.Raghuveer, "Electrical, Electronics and Computer Engineering for Scientist and Engineers", Second Edition New Age International Publishers, Wiley Eastern, 2001.
- A. P. Malvino, "Electronic Principles" Sixth edition Tata McGraw Hill, 1999.

Reference Books:

- George Kennedy, "Electronic Communication Systems" Fourth Edition Tata McGraw Hill, 2000.
- Morris Mano, "Digital logic and Computer design" 21st Indian print Prentice HallIndia, 2000.
- Floyd, "Digital fundamentals" Third Edition Prentice HallIndia, 2001.
- BoylesteadNashelsky, "Electronic devices & Circuit theory" Sixth Edition Prentice HallIndia, 2000.
- RamakantGaikawad "Operational Amplifiers & applications" 3rd Edition, PHI, 2000.

SECOND SEMESTER B E PROGRAM 2018-19 Electrical Science Stream Syllabi Content (New Course)

Program: UG				
Course Title: Problem Solving with Data Structures Course Code: 18ECSP102				
L-T-P: 0-0-3	Credits: 3	Contact: 6 Hrs/week		
ISA Marks: 80	ESA Marks: 20	Total Marks: 100		
Teaching : 78 Hrs	Exam Duration: 3 Hrs			

1	Pointers, Structures and Files	
	Recap of basics: Pointers ,Structures; Self-referential structures, dynamic	
	memory management Files – File manipulation programs	12 hrs.
2	Stacks and Recursion	
	Stack: Definition, Operations, Stack ADT Implementation of stack operations. Applications of stack.	
	Recursion- Need for Recursion and problems on Recursion.	16 hrs.
3	Queues	
	Queue: Definitions of Linear, Circular queues, Queue ADT Linear and	
	circular queue operations Definition and working of Priority queue, Double	
	ended queue; Applications of queues.	16 hrs.
4	Lists	
	Concept of lists and dynamic memory management lists, definitions and	
	representations: singly, doubly, circular lists. Dynamic Implementation of	
	lists and its operations, Applications of linked lists	18 hrs.
5	Binary trees	16 hrs.

Binary Tree: Definition, Terminology and representation, Tree Traversals both recursive and iterative. Binary Search Tree and its applications.

Text Books

- 1. Data Structures with C -- Seymour Lipschutz, Schaum's Outline Series
- 2. Data Structures Using C and C++ -- Langsam and Tanenbaum, PHI Publication
- 3. Data Structures Through C -- Yashavant P Kanetkar, BPB Publication

Reference Books:

- 1. Data Structures, Algorithms and Applications In C++ -- Satraj Sahani
- 2. Data Structures and Algorithms Made Easy Narshiman Karumunchi, Career Monk

Program: Bachelor of Engineering			
Course Title: Data Structures and Algorithms Course Code: 17ECSC204			
L-T-P: 4-1-0	Credits: 5	Contact Hrs: 5 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 62 hrs	Exam Duration: 3 hrs		

Unit –	I	
1	Introduction to Data Structures and Algorithm Analysis	
	Primitive Data structures in C, Custom Data Types, Arrays, Recursive	
	Definitions, Recursive Functions, Towers of Hanoi, Backtracking, Recursion Vs.	
	Iteration, Model, Running Time Calculations, Space and Time Complexities,	
	Order of an Algorithm	10 hrs
2	Lists, Stacks, Queues	
	Abstract Data Types, Lists, Stacks, Queues, Applications	10 hrs
3	Hashing	
	General Idea, Hash Function, Collision Resolution Techniques, Applications in	
	Number Theory	05 hrs
Unit –	П	
4	Trees	
	Introduction to graphs, Trees, Binary Search trees, AVL Trees, Tree Traversals,	
	Applications	08 hrs
5	Sorting	
	Sorting, Bubble sort, Selection Sort, Insertion Sort, Merge Sort, Quick Sort,	
	Heap Sort.	08 hrs
6	Graphs and Graph Algorithms	
	Graphs, Topological sort, Shortest Path Algorithms, Minimum Spanning Tree	09 hrs
Unit –	Ш	
7	Graph Algorithms Continued	
	Greedy algorithms, DFS, BFS, Application of Graph algorithms	06 hrs
8	File Structures and Storage Management	
	Files, Random and Direct access, Storage Management with Fixed and Variable	
	Blocks	06 hrs
Text B	ooks:	
1.	Mark Allen Weiss, "Data Structures and Algorithm Analysis in C", Second	Edition,
	Pearson Education, 2010	
Refere	nce Books:	
1.	Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullman, "Data Structures and Algo	rithms",
	1 st Edition, Addison Wesley Publication, 1983.	
1.	Aron M. Tenenbaum, et. al, "Data Structures using C", PHI, 2006.	
2.	Levitin A., "Introduction to the Design and Analysis of Algorithms", 2 nd Edition,	Pearson

Education, 2008.

Scheme for Semester End Examination (SEE)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
Π	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
Ш	Q.No7	7	Solve Any 1 out of 2
m	Q.No8	8	Solve Any 1 Out of 2

Program: Bachelor of Engineering			
Course Title: Engineering Design Practice [Part B] Course Code: 17ECSP202			
[Part A – Central Level]		Course Code. 17ECSI 202	
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3 hrs/week	
ISA Marks: 40	ESA Marks: 0	Total Marks: 40	
Teaching Hrs: 39 hrs	Exam Duration: 3 hrs		

Experiments	Lab assignments/experiment
Phase 1 (Plannig)	Introduction to Eclipse –IDE
	Requirement modeling :
	 Identifying use cases and actors
	• Apply UML notations to draw use case diagram
Phase 2 (Conceptual	Behaviour Modeling using DFD
Design)	List behavior of system/sub-system
	• List states, tasks and their dependencies
	Illustrate DFD :
	 Identify data flow and processes of a system
	 Draw data flow diagrams for system/sub-system
	Draw system diagram to show interaction of all domain
	components
	(Draw state and sequence diagram for identified tasks)
Phase 3(System Design)	Software Architectures:
	 List components of architecture
	List type of architectures
	Choose appropriate architecture for given system
Phase 4 (Detail Design)	UI Design using GUI wireframe:
	 Design function prototyping for event diagrams(DFD)
	 Identify user interface components
	 Choose appropriate property of component
	• Use wireframe to design a user interface

Text books:

1. Ian Somerville, Software Engineering, 9th, Pearson Ed, 2015

2. Clive L Dym and Patrick Little, "Engineering Design: A Project Based Introduction", John

Wiley & Sons Reference books:

- 1. Roger S. Pressman, Software Engineering: A Practitioners Approach, 7th, McGraw, 2007
- 2. Shari Lawrence Pfleeger and Joanne M. Atlee, Software Engineering Theory and Practice, 3rd, Pearson Ed, 2006
- 3. Jalote, P, An Integrated Approach to Software Engineering, 3rd, Narosa Pub, 2005

Program: Bachelor of Engineering		
Course Title: Data Structure and Algorithms Lab Course Code: 17ECSP20		
L-T-P: 0-0-2	Credits: 2	Contact Hrs: 4 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs:56 hrs	Exam Duration: 3 Hrs	

Tentative plan of lab implementation

Week No	Lab Assignments
1	
2	03 Programming Assignments on C language Features
3	
4	01 Assignment on List and Stack
5	01 Assignment on List and Queue
6	
7	02 Assignments on Applications of List
8	01 Assignment on Trees
9	01 Assignment on Introduction to Algorithms
10	01 Assignment on Sorting technique and efficiency analysis
11	
12	03 Assignments on Search or Graph algorithms
13	
14	Open Ended Experiment

Program: Bachelor of Engineering		
Course Title: Data Structure and Algorithms Lab Course Code: 17ECSP2		
L-T-P: 0-0-2	Credits: 2	Contact Hrs: 4 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs:56 hrs	Exam Duration: 3 Hrs	

Tentative plan of lab implementation

Week No	Lab Assignments
1	
2	03 Programming Assignments on C language Features
3	
4	01 Assignment on List and Stack
5	01 Assignment on List and Queue
6	
7	02 Assignments on Applications of List
8	01 Assignment on Trees
9	01 Assignment on Introduction to Algorithms
10	01 Assignment on Sorting technique and efficiency analysis
11	
12	03 Assignments on Search or Graph algorithms
13	
14	Open Ended Experiment

Program: Bachelor of Engineering		
Course Title: Engineering Design Practice [Part B]		Course Code: 17ECSP202
[Part A – Central Level]		Course Code. 17ECSI 202
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3 hrs/week
ISA Marks: 40	ESA Marks: 0	Total Marks: 40
Teaching Hrs: 39 hrs	Exam Duration: 3 hrs	

Experiments	Lab assignments/experiment
Phase 1 (Plannig)	Introduction to Eclipse –IDE
	Requirement modeling :
	Identifying use cases and actors
	• Apply UML notations to draw use case diagram
Phase 2 (Conceptual	Behaviour Modeling using DFD
Design)	• List behavior of system/sub-system
	List states, tasks and their dependencies
	Illustrate DFD :
	• Identify data flow and processes of a system
	• Draw data flow diagrams for system/sub-system
	 Draw system diagram to show interaction of all domain components
	(Draw state and sequence diagram for identified tasks)
Phase 3(System Design)	Software Architectures:
	List components of architecture
	List type of architectures
	Choose appropriate architecture for given system
Phase 4 (Detail Design)	UI Design using GUI wireframe:
	• Design function prototyping for event diagrams(DFD)
	Identify user interface components
	Choose appropriate property of component
	• Use wireframe to design a user interface
Text books:	

Text books:

3. Ian Somerville, Software Engineering, 9th, Pearson Ed, 2015

4. Clive L Dym and Patrick Little, "Engineering Design: A Project Based Introduction", John Wiley & Sons

Reference books:

- 4. Roger S. Pressman, Software Engineering: A Practitioners Approach, 7th, McGraw, 2007
- 5. Shari Lawrence Pfleeger and Joanne M. Atlee, Software Engineering Theory and Practice, 3rd, Pearson Ed, 2006

6. Jalote, P, An Integrated Approach to Software Engineering, 3rd, Narosa Pub, 2005

ſ

٦

Program: Bachelor of Engineering				
Course Title: Data Mining & Analysis Course Code: 18ECSC3				
L-T-P: 3-0-1	Credits: 4	Contact Hrs: 5 hrs/week		
ISA Marks: 80	ESA Marks: 20	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 3hrs			

Unit –	Ι		
1	Data Pre-Preprocessing		
	Introduction to data mining, Data Warehouse and OLAP Technology for		
	Data mining: Data Warehouse, Multidimensional Data Model, Data		
	Warehouse Architecture, Major tasks in data preprocessing- data		
	reduction, data transformation and data Discretization, data cleaning and		
	data integration.	08 hrs	
2	Frequent Pattern Mining		
	Frequent item sets and association rules; Item set mining algorithms;		
	Generating association rules; Summarizing item sets: maximal and		
	closed frequent item sets; Interesting patterns: pattern evaluation		
	methods;	08 hrs	
Unit –	II		
3	Classification Techniques		
	Probabilistic classification: naïve Bayes classifier, K-nearest neighbours;		
	Decision tree classifier: decision tree induction, tree pruning; Model evaluation		
	and selection: metrics, cross validation, random sampling, ROC curves;	08 hrs	
4	Cluster Analysis		
	Cluster Analysis- Partitioning methods, Hierarchical Methods, Density based	00.1	
Unit –	methods, Outlier Detection.	08 hrs	
5	Advanced Mining Techniques		
	Popular data pre-processing techniques: One hot encoding, stacking; Techniques		
	to improve classification accuracy: ensemble methods, random forests,		
	XGBoosting; Bias-variance trade-off; Post processing: Visualization and		
	Interpretation;	08 hrs	
Text H			
1		pts and	
	Techniques, 3rd edition, Morgan Kaufmann, 2012.		
	ence Books:		
1	Ian H. Witten, Eibe Frank, Mark A. Hall and Christopher J. Pal, Data	Mining:	

Practical Machine Learning Tools and Techniques, Morgan Kaufmann; 4th edition, 2016.

- 2. Pang-Ning, Michael Steinbach and Vipin Kumar, Introduction to Data Mining, Pearson, International edition, 2013.
- 3. Mohammed J. Zaki and Wagner Meira, Jr., Data Mining and Analysis: Fundamental Concepts and Algorithms, Cambridge University Press, 2014.
- 4. M. H. Dunham, Data Mining: Introductory and Advanced Topics, Pearson Education, 1st edition, 2006.

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 3 out of 4
Π	Q.No4, Q.No5, Q.No6	3, 4,5	Solve Any 3 out of 4
ш	Lab exam	6	Lab exam evaluation

Program: Bachelor of Engineering		
Course Title: Embedded Intelligent Systems		Course Code: 18ECSE302
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 6hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs: 60	Exam Duration: 3 hrs	

1	Basics of embedded systems Linux Application Programming, System V IPC, . Linux Kernel Internals and Architecture, Kernel Core, Linux Device Driver Programming, Interrupts & Timers, Sample shell script, application program, driver source build and execute	10 hrs
2	Heterogeneous computing Basics of heterogeneous computing with various hardware architectures designed for specific type of tasks, Advanced heterogeneous computing with a. Introduction to Parallel programming b.GPU programming (OpenCL) c. Open standards for heterogeneous computing (Openvx), Basic OpenCL examples - Coding, compilation and execution	12 hrs
3	ML Frameworks lab with the target device Caffe, tensorflow, TF Lite machine learning frameworks & architecture ,Model parsing, feature support and flexibility ,Supported layers , advantages and disadvantages with each of these frameworks, Android NN architecture overview , Full stack compilation and execution on embedded device	16 hrs
4	Model Development and Optimization Significance of on device AI ,Quantization , pruning, weight sharing, Distillation ,Various pre-trained networks and design considerations to choose a particular pre-trained model ,Federated Learning , Flexible Inferencing	8 hrs
6	Android Anatomy Android Architecture ,Linux Kernel , Binder , HAL Native Libraries , Android Runtime, Dalvik Application framework , Applications, IPC	8 hrs

Program: Bachelor of Engineering			
Course Title: Algorithmic Problem Solving Course Code: 17ECSE309			
L-T-P: 0-0-6	Credits: 6	Contact Hrs: 74	
ISA Marks: 70	ESA Marks: 30	Total Marks: 100	
Teaching Hrs: 74	Exam Duration: 2 to 3 days		

Course Content

Unit – 1	
Chapter 0: Building Blocks	06 hrs
Understanding coding platforms and tools, Data Structures and Algorithms	
revisited	
Chapter 1: Strategies and Performance	06 hrs
Warm up problems, Parsing and Formatting text, Code performance analysis and	
tools	
Chapter 2: Advanced Data Structures	10 hrs
Matrix, Grids, Trees and variants, Lists, Skip lists, Hash, Trie and variants	
Chapter 3: Dynamic Programming	08 hrs
Memory functions, Optimization problems	
Unit – 2	
Chapter 4: Graph algorithms	25 hrs
Traversal Algorithms, Shortest Path Algorithms, Spanning Tree Algorithms and	
variants	
Chapter 5: Introduction to Computational Geometry	05 hrs
Points, Line Segments, Polygons and Basics of Geometric Problems	
Unit – 3	
Chapter 6: Problem Solving	14 hrs
Assortment of problems and techniques.	

Text Book

1. Levitin A., "Introduction to the Design and Analysis of Algorithms", Third Edition, Pearson Education, 2017.

2. Levitin A, Levitin M, "Algorithmic Puzzles", First Edition, Oxford University Press, 2011.

3. Online Coding Platforms

References

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, "Introduction to Algorithms", Third Edition, MIT Press, 2010.

Program: Bachelor of Engineering			
Course Title: Natural Language Processing Course Code: 18ECSE403			
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 04 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 30	Exam Duration: 3 hrs		

	Unit –I	
1	Introduction to NLP and Deep Learning Introduction to Natural Language Processing, Applications of Natural Language Processing, Word2vec introduction, Word2vec objective function gradients	05 hrs
2	Dependency Parsing, Recurrent Neural Networks Dependency Grammar, Neural dependency parsing, Recurrent Neural Networks and Language Models, Vanishing Gradients, Fancy RNNs	07 hrs
	Unit –II	
3	Machine Translation, Seq2Seq and AttentionMachine Translation, Seq2Seq and Attention, Advanced Attention	06 hrs
4	Transformer Networks , Coreference Resolution, Memory Networks Transformer Networks and CNNs, Tree Recursive Neural Networks and Constituency Parsing , Advanced Architectures and Memory Networks	06 hrs
	Unit –III	
5	Reinforcement LearningReinforcement Learning for NLP, Semi-supervised Learning for NLP, Future ofNLP Models, Multi-task Learning and QA Systems	06 hrs
	 Books: Yoav Goldberg. A Primer on Neural Network Models for Natural Language Proc 2016. 	cessing,
Refer	rence Books:	
	Dan Jurafsky and James H. Martin. Speech and Language Processing (3rd ed. draft).	

Ian Goodfellow, YoshuaBengio, and Aaron Courville. Deep Learning. MIT Press.

Scheme for End Semester Assessment(ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2 out of 3
III	Q.No7	6	Solve Any 1 out of 2
111	Q.No8		Solve Any 1 out of 2

Program: Bachelor of Engineering			
Course Title: Fuzzy Set The	eory	Course Code: 19ECSE402	
L-T-P: 3-0-0 Credits: 3		Contact Hrs: 3hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks:100	
Teaching Hrs: 40	Exam Duration: 3hrs		

Unit	-I				
1	Introduction : Introduction to Fuzzy Logic, Fuzzy Membership Functions, Operations on Fuzzy Sets	8hrs			
2	2 Fuzzy Measures: Fuzzy Relations,Fuzzy Proposition,Fuzzy Implications,Fuzzy Inferences				
Unit	-II				
3	Fuzzy Relations and Fuzzy Graphs : Fuzzy Relations, Compositions of Fuzzy Relations, Properties of the Min-Max Composition, DefuzzificatinTechniques,Lambda-cut method, Weighted average method, Maxima methods, Centroid methods, Output of a Fuzzy System	8 hrs			
4	Uncertainty Modeling: Application-oriented Modeling of Uncertainty, Causes of Uncertainty, Uncertainty Methods, Possibility Theory	8hrs			
Unit					
5	Fuzzy Data Bases and Queries: Introduction, Fuzzy Relational Databases, Fuzzy Queries in Crisp Databases	4 hrs			
6 Fuzzy Sets and Expert Systems: Introduction to Expert Systems, Uncertainty Modeling in Expert Systems, Applications 4					
Text	Books:				
	 H. J. Zimmermann ., Fuzzy Set Theory-and Its Applications, Fourth Ed Springer Science Business Media, LLC , 2001 	ition, 4th Ed.,			
	 Chander Mohan, An Introduction to Fuzzy Set Theory and Fuzzy Logic,2nd ed. Vivo Books pvt ltd, 2015 				
Refe	Reference Books:				
1.	1. Timothy J. Ross, Fuzzy Logic With Engineering Applications, 3ed., 2010, A John Wiley and Sons, Ltd., Publication				
2.	 Kumar S. Ray,Soft Computing and Its Applications: Fuzzy Reasoning and Fuzzy Control, 1st Edition, Apple Academic Press 2014 				
3.	Ahmed M. Ibrahim, Fuzzy Logic for Embedded Systems Applications, 2004.	Elesvier Press,			

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2

Department of Computer Science & Engineering

III	Q.No7	5	Solve Any 1
111	Q.No8	6	Solve Ally I

Program: Bachelor of Engineering				
Course Title: Wireless Ad Hoc and Sensor Networks Course Code: 18ECSE406				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3hrs/week		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hrs: 40 hrs	Exam Duration: 3 hrs			

Unit –	I	
1	Introduction: Fundamentals of wireless communication technology, Characteristics of wireless channel, Multiple Access Techniques, IEEE802.11 Standards, Bluetooth, Cellular Concept, Cellular Architecture.	07 hrs
2	Ad hoc Networks: Introduction, Issues in Ad hoc wireless networks, Ad hoc	
	wireless internet.	04 hrs
3	MAC Protocols: Introduction, Issues in Designing MAC protocol, Design goals,	
	Classification, Contention Based Protocols with Reservation Mechanisms.	
	Contention-Based MAC Protocols with Scheduling Mechanism.	05 hrs
Unit –		
4	Routing Protocols: Introduction, Issues in designing a routing protocol,	
	classification, Table drive routing protocol, On-demand routing protocol, Hybrid	
	routing protocol, Hierarchical routing protocols, Power aware routing protocols.	06 hrs
5	Energy Management: Introduction, Need for Energy Management,	
	Classification, Battery Management Scheme, Transmission Power Management	
	Schemes, System Management Scheme.	05 hrs
6	Sensor Networks: Introduction, Architecture, Data Dissemination, Data	
	Gathering, MAC Protocols (schedule based protocols).	05 hrs
Unit –	III	
7	Routing Protocols for Sensor Networks: Routing Characteristics,	
	Routing Strategies, LEACH, SPIN.	04 hrs
8	Sensor Network Applications: Case Study: Traffic Control, Health Care, Green	
	House Monitoring.	04 hrs
Text E	Books:	04 11 5
1.		Pearson
2.	 KazemSohraby, Daniel Minoli, TaiebZnati, "Wireless Sensor Networks: Tech Protocols, and Applications", John Wiley and Sons, 2007. 	nnology,
1.		
2.	 C.K. Toh, "Adhoc Mobile Wireless Networks", Protocols and Systems, Prent PTR, 2002. 	ice-Hall

Department of Computer Science & Engineering

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
ш	Q.No7	7	Solve Any 1 out of 2
111	Q.No8	8	Solve Ally I out of Z

Program: Bachelor of Engineering			
Course Title: Advanced Parallel Computing Course Code: 18ECSE408			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3 hrs		

Unit –	I	
1	Introduction and History	
	GPUs as Parallel Computers; Architecture of a Modem GPU; Parallel	
	Programming Languages and Models; Overarching Goals; Evolution of Graphics	
	Pipelines; The Era of Fixed- Function ; Graphics Pipelines; Evolution of	
	Programmable Real-Time Graphics; Unified Graphics and Computing	
	Processors; GPGPU; An Intermediate Step; GPU Computing; Scalable GPUs	
	Recent Developments; Future Trends.	07 hrs
2	Introduction to CUDA	
	Data Parallelism; CUDA Program Structure; A Matrix-Matrix Multiplication	
	Example; Device Memories and Data Transfer; Kernel Functions and Threading;	
	Function declarations; Kernel launch; Predefined variables; Runtime API.CUDA	
	Thread Organization; Using block Id x and thread Id x ; Synchronization and	
	Transparent Scalability; Thread Assignment ; Thread Scheduling and Latency	
	Tolerance.	09 hrs
Unit –	Π	
3	CUDA Memories	
	Importance of Memory Access Efficiency; CUDA Device Memory Types; A	
	Strategy for Reducing Global Memory Traffic; Memory as a Limiting Factor to	
	Parallelism; Global Memory Bandwidth; Dynamic Partitioning of SM Resources;	
	Data Perfetching; Instruction Mix; Thread Granularity; Measured Performance.	07 hrs
4	Introduction to OPENCL	
	Introduction to OPENCL; Background; Data Parallelism Model; Device	
	Architecture; Kernel Functions; Device Management and Kernel Launch;	
	Electrostatic Potential Map in OpenCL.	09 hrs
Unit –	Ш	
5.	Case Study	
	Concepts of Game Design, Applications like Matrix multiplication, MRI	
	reconstruction Molecular Visualization and Gaming.	04 hrs
6.	Parallel Programming and Computational Thinking	
	Goals of Parallel Programming, Problem Decomposition, Algorithm Selection,	
	Computational Thinking.	04 hrs

Text Books:

2. David B. Kirk, Wen-mei W. Hwu, "Programming Massively Parallel Processors: A Hands on Approach", Morgan Kaufmann/Elsevier India reprint, 2010.

Reference Books:

1. Benedict R Gaster, Lee Howes, David Kaeli, Perhaad Mistry and Dana Schaa, "Heterogeneous Computing with OpenCl", Morgan Kaufmann/Elsevier reprint, 2012.

Scheme for End Semester Assessment(ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3
ш	Q.No7	5	Solve Any 1 out of 2
111	Q.No8	6	Solve Ally 1 Out of 2

Program: Bachelor of Engineering			
Course Title: Software Architecture and Design ThinkingCourse Code: 18ECSE410			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3hrs/week	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3 hrs		

Unit –	Ι	
1	Chapter No. 1 What Is Software Architecture?	
	What Software Architecture Is and What It Isn't ,Architectural Structures and	
	Views, Architectural Patterns, What Makes a "Good" Architecture?	
		5 hrs
2	Chapter No. 2 Why Is Software Architecture Important?	6hrs
	Inhibiting or Enabling a System's Quality Attributes, Reasoning About and	
	Managing Change, Predicting System Qualities, Enhancing Communication	
	among Stakeholders, Carrying Early Design Decisions, Defining Constraints on	
	an Implementation, Influencing the Organizational Structure, Enabling	
	Evolutionary Prototyping, Improving Cost and Schedule Estimates, Supplying a	
	Transferable, Reusable Model, Allowing Incorporation of Independently	
	Developed Components, Restricting the Vocabulary of Design Alternatives,	
	Providing a Basis for Training	
3	Chapter No. 3 The Many Contexts of Software Architecture	5 hrs
	Architecture in a Technical Context, Architecture in a Project Life-Cycle	
	Context, Architecture in a Business Context, Architecture in a Professional	
	Context, Stakeholders, How Is Architecture Influenced?, What Do Architectures	
	Influence?	
Unit –	П	
4	Chapter No. 4. Understanding Quality Attributes	
	Architecture and Requirements, Functionality, Quality Attribute Considerations,	
	Specifying Quality Attribute Requirements, Achieving Quality Attributes	5 hrs
-	through Tactics, Guiding Quality Design Decisions	
5	Chapter No. 5. Quality Attributes Tactics for Availability, Tactics for Interoperability, Tactics for Modifiability,	6hrs
	Tactics for Performance, Tactics for Security, Tactics for Testability, Tactics for	
	Usability,	
6	Chapter No. 6. Architectural Tactics and Patterns	5 hrs
	Architectural Patterns, Overview of the Patterns Catalog, Relationships between	
	Tactics and Patterns, Using Tactics Together	
Unit –		
5.	Chapter No. 7 Architecture and Requirements	
	Gathering ASRs from Requirements Documents, Gathering ASRs by	
	Interviewing Stakeholders, Gathering ASRs by Understanding the Business Goals, Capturing ASRs in a Utility Tree, Tying the Methods Together	4 hrs
6.	Chapter No. 8 Designing an Architecture, Implementation, Testing and	
	EvaluationDesigning:	1 hrs
	······································	4 hrs

Design Strategy, The Attribute-Driven Design Method, The Steps of ADD, Implementation, and Testing:Architecture and Implementation, Architecture and Testing, Evaluation:Evaluation Factors, The Architecture Tradeoff Analysis Method, Lightweight Architecture Evaluation

Text Books:

1. Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practice (3rd Edition), Addison-Wesley Professional; 3 edition

Reference Books:

Scheme for End Semester Assessment(ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3
ш	Q.No7	5	Solve Any 1 out of 2
111	Q.No8	6	Solve Ally I out of 2

Course Title: Model Thinking	Course Code: 18ECSE411	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 30
CIA Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hrs: 40		Exam Duration: 3 hrs

Content	40 Hrs
Unit – 1	
1. Why Model Model Thinking - The need, Advantages and disadvantages, Segregation/Peer Effects, Case study	4 hrs
2. Modeling People, Tipping Points & Economic Growth Rational models, Behavioral models, Rule based models, Percolation Models, Growth and its kinds	6 hrs
3. Special Topics Standing ovation model, Game of Life, Lyapunov Functions: Equilibrium, A cycle, Randomness or complexity, Coordination and culture. Urn models, Polya process, paths and networks, Prisoners' Dilemma, Collective Action & Mechanism Design	6 hrs
Unit – 2	
4. Randomness and Learning Models Luck as randomness, Random Walks & Colonel Blotto, Replicator Dynamics, Fisher's fundamental theorem, Prediction and the Many Model Thinker	8 hrs
5. Model Checking and Modelling Concurrent Systems Model Checking, Characteristics of Model Checking, Transition Systems, Parallelism and Communication, The State Space Explosion	8 hrs
Unit – 3	
6. Linear-Time Properties Linear-Time behavior, Safety Properties and Invariants, Liveness Properties, Fairness	4 hrs
7. Regular Properties Automata on Finite Words, Model-Checking Regular Safety Properties, Automata on Infinite Words, Model Checking with omega-regular properties	4 hrs

Text Books

- 1. Scott E Page, The Model Thinker, Basic Books Publication, 2018
- 2. ChristelBaier and Joost-Pieter Katoen, Principles of Model Checking (Representation and Mind Series), The MIT Press, 2008

References

1. Model Thinking Coursera online course from Michigan University.

Program: Bachelor of Engineering			
Course Title Scripting Languages Lab Course Code: 18ECSP201			
L-T-P: 0-0-2	Credits: 2	Contact Hrs: 4hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hrs: 30	Exam Duration: 3 hrs		

1	Introduction to UNIX Utilities	
	Architecture, Commands, File Attributes, vi Editor, Process, Simple Filter, File	
	System, Handling Files and Basic File Attributes.	06hrs
2	UNIX shell Scripting	
	Shell Basics, Shell Environment, Shell Script Programming Concepts,	
	Decision Structures, Looping Structures, and Command line arguments, Functions	
	and Arrays, Regular Expression & Filters, Processes.	06hrs
3	Python Scripting	
	Python: Types, Variables, and Simple I/O, Branching and Looping, String	
	Manipulation, Numbers, Lists and Dictionaries, Regular Expressions, Functions,	
	Files and Exceptions, Programming using numpy and scipy libraries.	12hrs
4	System Administration	
	Common administrative tasks, creating and mounting file system, File system	
	management, managing users and group accounts, monitoring system	
	performance, accessing system information, backup and restore files,	
	reconfiguration hardware with kudzu, installing and removing packages.	06 hrs

Tentative plan of lab implementation

Expt./ Job No.	Lab assignments/experiment	No. of Lab. Slots per batch (estimate)
1-2	Introduction to UNIX Utilities	02
3-4	Shell Script	03
5-10	Python programming	05
11-12	System Administration	02

Text Books

- 1. Sumitabha Das, UNIX Concepts and Applications", 4th Edition, McGraw-Hill, 2017.
- 2. Mark Lutz, "Programming Python", 4th Edition, O'Reilly, 2010.

Reference Books

- 1. Noah Gift, Jeremy Jones, Python for Unix and Linux System Administration, 2008.
- 2. <u>RytisSileika</u>m, Pro Python System Administration, 2nd Edition, 2014
- Michael Dawson, Python Programing for the Absolute Beginner, Premier Press, 3rd Edition 2010.

Program: Bachelor of Engineering		
Course Title: Computer Organization and Architecture Course Code: 18ECSC201		
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 04 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50	Exam Duration: 3hrs	

	Unit –I	
1	Fundamentals of Digital Logic Combinational Circuits: Adders, Mux, De-Mux, Sequential Circuits : Flip-Flops (SR, JK & D), Counters : Synchronous and Asynchronous Counter, Addition and Subtraction of Signed Numbers. Design of Fast Adders. Multiplication of Signed and Unsigned Numbers. Fast Multiplication. Integer Division. Floating-Point Numbers and Operations	12hrs
2	Computer System Basic operational concepts. Bus structures. Fundamental concepts: Instruction Execution, Hardware Components Control Signals. Hardwired Control CISC- Style Processors. Accessing i/o devices. Interrupts. Bus Structure/Operation, Arbitration.	08hrs
	Unit –II	
4	The Memory System Basic Concepts. Semiconductor RAM Memories. Read-only Memories. Direct Memory Access. Memory Hierarchy. Cache Memories. Virtual Memory.	08 hrs
5	Architecture The State of Computing, Elements of Modern Computers, Evolution of computing Architecture, System Attributes to Performance. Multiprocessors and Multi computer: Shared-Memory Multiprocessor, Distributed-Memory Multicomputer. Multi vector and SIMD computers: Vector Supercomputers, SIMD Supercomputers, CISC Scalar Processor, RISC Scalar Processor, SPARC processor, Superscalar and Vector Processor, VLIW Architecture.	12 hrs
	Unit –III	
7	Introduction to Pipelining Basic Concepts. Pipeline Organization. Pipelining Issues: Data Dependencies, Memory Delays, And Branch Delays: Unconditional branches and Resource Limitations.	05 hrs
8	Advanced features in Pipelining Performance Evaluation: Effects of stalls and penalties, Number of pipeline stages. Superscalar Operation: Branch and data dependency, out-of- order execution, execution completion, dispatch operation,	05 hrs
Text I	Books:	
1 2 3 Refer	Hamacher C., Vranesic Z., and Zaky S., Computer Organization, 5ed., McGraw Hill,2002)3.
101010		

- 1. John P. Hayes. Computer Architecture and Organization, 3rd Edition, McGraw Hill
- 2. V Rajaraman, C Murthy. Parallel Computers Architecture and programming, PHI 2000.
- 3. M. Morris Mano and C. R. Kime "Logic and Computer Design Fundamentals" 2nd Edition, Updated Publishers Pearson Education 2005.
- Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss, "Digital Systems Principles and Applications" 10th Edition, PHI/Pearson Education, 2007.

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
Π	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2 out of 3
ш	Q.No7	5	Solve Any 1 out of 2
	Q.No8	6	~~~~

Scheme for End Semester Assessment (ESA)

Program: Bachelor of Engineering			
Course Title: Object Oriented Programming with C++ Course Code: 18ECSC			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3hrs		

Unit –	Ι	
1	Chapter No. 1: Introduction: Introduction to object oriented programming.	
	Characteristics of object oriented languages, Programming Basics, arrays,	
	Functions in C++ (parameter passing techniques.)	4 hrs
2	Chapter No. 2: Classes and Objects: Introduction to Classes and Objects,	
	encapsulation visibility modifiers, constructor and its types, nested classes, String	
	class. UML diagrams to describe classes and relationships.	6 hrs
3	Chapter No. 3:Inheritance: Introduction, types of Inheritance, constructors,	
	Abstract class, Aggregation: classes within classes	6 hrs
	Unit –II	
4	Chapter No. 4:Virtual Functions and Polymorphism: Virtual functions, Friend functions, static functions, The 'this' pointer	6 hrs
5	Chapter No. 5:Templates and Exception Handling: Function and class	
	templates.Introduction to exceptions, Throwing an Exception, Try Block,	
	Exception Handler (Catching an Exception), Multiple exceptions. Exceptions	
	with arguments	6hrs
6	Chapter No. 6:Design Patterns: Creational, Structural and Behavioural design	
	patterns.	4 hrs
Unit –	III	1
7	Chapter No. 7:Streams and Files: Stream classes, File I/O with streams.	
8	Charten No. 9-64an dand Tanalata I through a stainer shares Commercial	4 hrs
0	Chapter No. 8:Standard Template Library: container classes: Sequence and	
	Associative Containers	4 hrs
Textbo 1.		ation,
Refere	ence Books	
1.	Lippman S B, Lajorie J, Moo B E, C++ Primer, 5ed, Addison Wesley, 2013.	
2.	Herbert Schildt: The Complete Reference C++, 4th Edition, Tata McGraw Hill	

Program: Bachelor of Engineering		
Course Title: Operating System Principles and		Course Code:
Programming		18ECSC202
L-T-P: 4-0-1	Credits: 5	Contact Hrs:
L-1-F. 4-V-1	4+2hrs/week	4+2hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 74	Exam Duration: 3 hrs	

Unit	-I	
1	Chapter No. 1. Introduction and Systems structures	04
	Operating system definition; Operating System operations; Modules of OS ,Overview of UNIX Operating System,UNIX APIs	hrs + 02 hrs (lab)
2	Chapter No. 2. Process Management Process concept; Process scheduling; Operations on processes; Inter-process communication (Pipes and FIFOs). Threads, Process Scheduling: Basic concepts; Scheduling criteria; Scheduling algorithms. Process management using UNIX APIs: Process Management Functions, User IDs and Group IDs, Creating process, parent child relationship.	10 hrs + 08 hrs (lab)
3 Unit	Chapter No. 3. Process Synchronization Synchronization: The Critical section problem; Peterson's solution; Semaphores, Classical problems of synchronization, Process synchronization UNIX APIs.	06 hrs + 02 hrs (lab)
4	Chapter No. 4. Deadlocks	06
7	Deadlocks: System model; Deadlock characterization; Methods	hrs + 02

Department of Computer Science & Engineering

	for handling deadlocks; Deadlock prevention; Deadlock	hrs
	avoidance; Deadlock detection and recovery from deadlock.	(lab)
5	Chapter 5 : File management	07
		hrs
	File concepts, Directory structure, File Types, File systems, File	+ 04
	Attributes, Inodes in UNIX, UNIX Kernel Support for Files, Directory Files, Hard and symbolic names. General File APIs: File	+ 04 hrs
	and record lock API, Symbolic file API	(lab)
		(100)
6	Chapter No. 6. Memory Management	07
	Memory Management Strategies: Background; Swapping;	hrs
	Contiguous memory allocation; Paging; Segmentation. Virtual	+ 02
	Memory Management: Background; Demand paging; Page	hrs (Iab)
	replacement.	(lab)
Unit		I
7	Chapter No. 7. Secondary Storage Management	5hrs
	Mass storage structures; Disk structure; Disk attachment; Disk	
	scheduling; Disk management.	
8	Chapter No. 8. Case study	5hrs
	Architecture of Mobile OS - IntroductionOverall Architecture,	
	Linux Kernel, various components, Network OS, Applications.	
Text	Books	
	1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne: Operating	
	System Principles, 9th edition, Wiley-India, 2006.	
	2. W. Richard Stevens, Stephen A. Rago, "Advanced Programming in	n the
	UNIX Environment", 3rd Edition, Addison Wesley Professional, 20	13
Refe	erences	

- William Stallings,"Operating System Internals and Design Principles", 5th edition, Pearson Education, Asia, 2005
- 2. Gary Nutt," Operating System"3rd edition, Pearson Education, 2004
- Terrence Chan, "Unix System Programming Using C++", 1 ed., Prentice Hall India, 2007
- 4. Marc J. Rochkind, "Advanced Unix Programming", 2nd Edition, Pearson Education, 2005.

urse Code: 18ECSC206	Course Title: Microcontroller Programming& Interfacing			
T-P-SS: 3-0-1	Credits: 4	Contact Hrs: 3+2	+2 hrs	
A Marks: 50	Marks: 50 ESA Marks: 50 Total Marks: 100)	
aching Hrs: 40		Exam Duration: 3	3 hrs	
	Content		Hrs	
	Unit – I		1	
Chapter No. 1.The 8051 Architect Introduction, 8051 Microcontroller External memory,		ports & circuits,	04 hrs	
Chapter No. 2. Assembly Program Introduction, addressing modes, Ext Moves / Indexed Addressing mode, assembler directives, example progr Logical Operations, Rotate and Swa Operations: Flags, Incrementing and Multiplication and Division, Decime CALL Program range, Jumps, Call	ernal Data Moves, Code Me PUSH and POP opcodes, D rams. Byte level logical Ope op Operations, Example Prog d Decrementing, Addition, S al Arithmetic, Example Prog	ata exchanges, rations, Bit level grams. Arithmetic ubtraction, grams. The JUMP and	12hrs +08 hrs (Lab)	
	Unit – II		I	
Chapter No. 3. Timer/Counter & Serial Port Programming. C Data Types and Time delay computation in 8051 Counters and Timers, Programming 8051 Timers/counters in different modes, Basics of Serial Communication, RS232 standards, 8051 connection to RS232, 8051 serial port Programming.		12 hrs		
Chapter No. 4. Interrupts Program 8051 Interrupts, Programming Time interrupts, Programming the Serial 0 8051, Interrupt programming.	er Interrupts, Programming e		04 hrs	
			4 hrs	
	Unit – III			
Chapter No. 5. Interfacing to Peri Interfacing 8051 to LEDs, DIP switt LCD, Keypad, DAC, ADC, Stepper	ches, BCD Decoder display,	, 7 Segment Display,	08hrs +12 Hr (Lab)	

Text Books (List of books as mentioned in the approved syllabus)

- 3. Ayala.K.J, "The 8051 Microcontroller", 3rd., CENGAGELearning, 2007.
- 4. Mazidi.M.A, Mazidi.J.G and McKinlay.R.D, "The 8051 Microcontroller and Embedded Systemsusing Assembly and C", 2ed, PHI 2006/Pearson, 2006.

References

- Ayala.K.J., Gadre D.V., "The 8051 Microcontroller & Embedded Systems using Assembly and C", 1ed., CENGAGE Learning, 2010
- 2. V. Udayashankara, M.S. Mallikarajunaswamy, "8051 Microcontroller Hardware, Software and Applications", 1ed., Tata McGraw Hill, 2009.

UNIT	8 Questions to be set of 20 Marks Each	Chapter	Instructions
		Numbers	
Ι	Q.No1, Q.No2, Q.No3	1 & 2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	3 &4	Solve Any 2 out of 3
ш	Q.No7	5	Solve Any 1 out of 2
111	Q.No8	5	Solve Any 1 out of 2

	Q.No8	5	
--	-------	---	--

Program: Bachelor of Engineering					
Course Title: Object Orient	Course Title: Object Oriented Programming with Course Code:				
C++ Lab		18ECSP203			
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3			
L-1-1. 0-0-1. 3	Cicuits. 1.5	hrs/week			
ISA Marks: 80	ESA Marks: 20	Total Marks: 100			
Teaching Hrs: 39	Exam Duration: 3hrs				

UNIT	8 Questions to be set of	f 20 Marks Each	Chapter Number		Instructions
Ι	Q.No1, Q.No2, Q.No	03	1 &	2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No	06	3 &4	4	Solve Any 2 out of 3
ш	Q.No7		5		Solve Any 1 out of 2
111	Q.No8		5		Solve Ally 1 Out of 2
Program: Bachelor of Engineering					
Course Title: Object Oriented Programming with Course Code:					Course Code:
C++ La	ıb				18ECSP203
I T D.	0.0.1.5	On liter 1 5		Contact Hrs: 3	
L-T-P: 0-0-1.5		Credits: 1.5		hrs	/week
ISA Marks: 80		ESA Marks: 20		Tot	al Marks: 100
Teaching Hrs: 39		Exam Duration: 3	3hrs		

Experiments	Lab assignments/experiment		
2-Demonstration	Introduction to Code Blocks IDE (Integrated Development		
	Environment), C++ programming basics.		
4-Exercise	Classes and objects, Inheritance, Polymorphism, Templates and		
	Exceptions Handling		
2-Structured	Classes and objects, Inheritance, Polymorphism, Templates and		
Enquiry Exceptions Handling			
1-Open Ended	ed Data types, Classes and Objects, Inheritance polymorphism,		
	Exception Handling. Design patterns		

Text Book:

1. Robert Lafore, "Object oriented programming in C++", 4thEdition, Pearson education.

Reference Books:

- 1. Lippman S B, Lajorie J, Moo B E, C++ Primer, 5ed, Addison Wesley, 2013.
- 2. Herbert Schildt: The Complete Reference C++, 4th Edition, Tata McGraw Hill
 - 1.

<u>Evaluation</u> :

Students Assessment Through CIE (80%) + SEE (20%)

	Assessment	Weightage in Marks
Continuous Internal	Exercises	40
Evaluation (80%)	Structured Enquiry	20
	Open Ended Experiment	20
Semester End Examination	Structured Enquiry	20
(20%)	Total	100

Program: Bachelor of Engineering				
Course Title: Computer Net	works - I	Course Code: 19ECSC302		
L-T-P: 3-1-0	Credits: 4	Contact Hrs: 5hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 3			
	hrs.			

	Unit –I	
1	Introduction Internet, The Network Edge and Core, Protocol Layer and Service Models: OSI and TCP/IP, Networks Attacks, History of Computer Network and Internet.	8 hrs
2	Application Layer Principles of Network Applications , HTTP , SMTP, DNS,DHCP	8 hrs
	Unit –II	
3	Transport-Layer ServicesIntroduction, Connectionless Transport, Principles of Reliable Data TransferProtocol, Connection-Oriented and Connectionless Transport, Principle ofCongestion Control, TCP Congestion Control.	8 hrs
4	Network Layer: Data plane Introduction to Data and Control Plane, Virtual Circuit and Datagram Networks, Internet Protocol: Datagram Format, Fragmentation, IP Addressing Unit –III	8 hrs
5	Network Layer: Data plane NAT, IPv6, Software Defined Network(SDN)	4 hrs
6	Network Layer: Control Plane and Network Management SDN Control Plane, Network Management and SNMP	4 hrs
	 Books J. F. Kurose, K. W. Ross, Computer Networking: A Top-Down Approach, 7th E Pearson Education, 2017. 	dition,

Reference Books:

1. Peterson, Larry L, Computer networks : A Systems Approach, 5th Edition, The Morgan Kaufmann series in networking, 2012

2. Behrouz A. Forouzan , TCP/IP protocol suite, 4th , McGraw Hill, 2010.

_	Computer Networks-I Tutorial				
Sl. No	Exercise	No of Slots (2 hrs)			
1	Demonstration of n/w commands and tools.	2			
2	Demonstration of socket programming- Connection oriented/Connectionless.	2			
3	Application layer protocol implementation - FTP, Mail server, HTTP.	3			
4	Demonstration of NS3 / Qualnet tools.	1			
5	Performance analysis of TCP, UDP and SCTP.	1			
6	Exercise on congestion control techniques.	1			

7	Exercise on flow control techniques.			1
8	Design of network topology with IP addressing scheme.			2
Scheme f	Scheme for End Semester Assessment (ESA)			
UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instruction	ıs
Ι	Q.No1, Q.No2, Q.No3	1,2	Solve Any	2
Π	0.No4, 0.No5, 0.No6	3.4	Solve Any	2

II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
III	Q.No7	5	Solve Any 1
	Q.No8	6	~ • · · · · · · · · · · · · · · · · · ·

Prog	ram: Bachelor of Enginee	ering	·	
Cours	Course Title: JAVA Programming Course Code: 19ECSP301			
L-T-F	L-T-P:1-0-1.5 Credits: 2.5 Contact Hrs: 4 Hrs/week			
ISA N	ISA Marks: 80 ESA Marks: 20 Total Marks: 100			
Teach	Teaching Hrs: 52 Exam Duration: 3hrs			
Unit	-I			
1	JAVA Language Fund Strings, classes and obje	lamentals: Java Features, Prog ects	gramming basics, Arrays and	4 Hrs
2	Inheritance: Introducti	on, types of inheritance, static	and dynamic polymorphism.	2 Hrs
Unit	–II			
3	Interfaces and Exception Handling: Introduction, Create and implement interfaces, Exception handling,			2 Hrs
4	Generics and Collections Frame work: Introduction to generic programming, Collections: Interfaces: List, Set, Queue Classes: ArrayList, LinkedList and HashSet, Map			2 Hrs
Unit	-III			•
5	Lambda Expressions: operations on collection	Functional programming, Functi	ctional interface, Bulk	2hrs
6	6 Java Database Connectivity (JDBC): Introduction, Drivers, Interfaces and classes to develop data base applications, case study			2 Hrs
Text	Books:			
	1. JAVA The Complete	Reference, Herbert Schildt, 10	th Ed, 2017, McGraw-Hill	
	Reference Book			
1. Kathy Sierra and Bert Bates, Head First Java: A Brain-Friendly Guide, 2nd Edition, O'Reilly Media				
2	2. Introduction to Java Programming, Liang Y D, Pearson, 11th Edition			

Program: Bachelor of Engineering			
Course Title: Computer Net	Course Code: 19ECSC303		
L-T-P: 2-0-1.5	Credits: 3.5	Contact Hrs: 5hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 30	Exam Duration: 3 hrs		

	Unit –I	
1	Network Layer Address Mapping, Error Reporting, Multicasting: IGMP Group Management, IGMP Messages, Message Format, and IGMP Operation.	06hrs
2	Network Layer- Routing Delivery, Forwarding Techniques and Process, Routing Table, Unicast Routing Protocols, Intra and Inter-domain Routing, Distance Vector Routing, Link State Routing, Path Vector Routing, Routing protocols: Unicast, Multicast, and Broadcast Applications.	06hrs
	Unit –II	
3	Data Link Layer Error Detection and Correction, Forward Error Correction Versus Retransmission, Coding, Modular Arithmetic, Block coding: Error Detection, Error Correction, Hamming Distance, Minimum Hamming Distance, Cyclic Redundancy Check,Checksum, Framing.	06hrs
4	Switched Local Area Networks Ethernet, Link-Layer Switches, Virtual Local Area Networks (VLANs),Multiprotocol Label Switching (MPLS), Data Center Networking, Multiple Access: Aloha , Slotted Aloha, CSMA, CSMA/CD, CSMA/CA.	06hrs
	Unit –III	•
5	Wireless Networks Wireless Links and Network Characteristics, 802.11 Wireless LANs, Architecture, MAC Protocol, Frame, Mobility, Personal Area Networks: Bluetooth and Zigbee.	03hrs
6	Cellular Networks and Mobility Management Cellular Networks and Internet Access, Mobility, Mobile IP, Managing Mobility in Cellular Network.	03hrs
Text	Books	
	 J. F. Kurose, K. W. Ross, Computer Networking: A Top-Down Approach, 7th Ed Pearson Education, 2017. Behrouz A. Forouzan, TCP/IP protocol suite, 4th, McGraw Hill, 2010. 	dition,
Refer	ence Books:	
	 Peterson, Larry L, Computer Networks: A Systems Approach, 5th Edition, The N Kaufmann series in networking, 2012. 	Aorgan
	2. Dimitri P. Bertsekas and Robert G. Gallager, Data Networks (2nd Edition), PHI, 2	.009.

List of Experiments

S.No	Experiments	Number of lab Slots (3 hrs)
1.	Demonstration of SDN testbed.	1
2.	Traffic measurement and traffic volume control using the POX controller.	1
3.	Implementation of load balancing/routing technique.	1
4.	Demonstration of Junos.	1
5.	Configuration and analysis of VLAN.	1
6	Configuration and analysis of STP, MPLS and VPN.	1
7.	Configuration and analysis of OSPF and BGP routing protocols.	2
8	Performance analysis of routing metrics.	1
9.	Experimental analysis of the Handover Procedure in a WiFi Network.	1
1	Performance analysis of IEEE 802.11 MAC protocols.	1
1	Network application development using Mojo access points.	2

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
Π	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
Ш	Q.No7	5	Solve Any 1
m	Q.No8	6	Solve my 1

Program: Bachelor of Engineering			
Course Title: Semantic Web		Course Code:19ECSE303	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 03 hrs		

Unit	t-I	
1	Introduction to Semantics History of the Web, Limitations, Vision of Semantic Web, Principles, Data Integration Across Web, Data Modeling Methods, Semantic Relationships, Metadata, Perpetual Data	4 hrs
2	Expressing Meaning Triple Store, Merging Graphs, Querying: Case Study	4 hrs
3	Using Semantic Data Query Language, Feed Forward Inference, Searching for Connections, Linked Data, Freebase	8 hrs
Unit	-II	
4	Working with Semantics RDF—The Basis of the Semantic Web, OWL, Metadata with RDF, Metadata Taxonomies, Ontology	8 hrs
5	Reasoning and Social Web Reasoning types: Approximate Reasoning and Bounded Reasoning, Social Semantic Web, Semantic Crawlers	8 hrs
Unit	t –III	
6	Semantic Modeling Semantic Modeling, Semantic Web Applications, Logic for Semantic Web, Case Studies: Dr. Watson, Yahoo! SearchMonkey	8 hrs
Tex	t Books	
Refe	 Grigoris Antoniou, Paul Groth, Frank van Harmelen and Rinke Hoekstra, A Sen Primer, MIT Press; 3rd edition, 2012. Toby Segaran, Colin Evans, and Jamie Taylor, Programming the Semantic V Flexible Applications with Graph Data, O'Reilly Media; 2 edition, July 2009. 	
	1. Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, Foundations of Sem Technologies, Chapman and Hall; 1st edition, 2009.	antic Web
	2. Dean Allemang, and James Hendler, Semantic Web for the Working Ontologis Modeling in RDFS and OWL, Morgan Kaufmann; 2nd edition, 2011.	t, Effective
	3. John Hebeler, Matthew Fisher, Ryan Blace, Andrew Perez-Lopez, and M (Foreword), Semantic Web Programming, Wiley Publishers, 1 edition 2009.	Mike Dean
	eme for End Semester Assessment (ESA)	
TIN	UT 9 Occastions to be set of 20 Months Food Chanton Instructions	

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
------	--	--------------------	--------------

Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2
III	Q.No7	6	Salva Any 1
111	Q.No8	6	Solve Any 1

Course Title: Block Chain Technology		Course ode:19ECSE301	
L-T-P: 2-0-1 Credits: 3		Contact Hrs: 3hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3 hrs		

	Unit –I	
1	Introduction	
	Overview of Blockchain, History: Digital Money to Distributed Ledgers, Design	
	Primitives: Protocols, Security, Consensus, Permissions, Privacy	08 hrs
2	Blockchain Architecture and Design	
	Crypto primitives- Hash, Signature, Hashchain to Blockchain, basic consensus	
	mechanisms, Requirements for the consensus protocols, Proof of Work, Proof of	
	State, Scalability issues of consensus protocols	08 hrs
	Unit –II	
3	Blockchain Contracts	
	Financial Services, Crowdfunding, Bitcoin Prediction Markets, Smart Property,	
	Smart Contracts, Blockchain Development Platforms and APIs, Blockchain	
	Ecosystem: Decentralized Storage, Communication, and Computation	08 hrs
4	Etherium	
	Etherium transactions, accounts, smart contracts, smart contract development,	
	Solidity basics, basic contracts, distributed storage, Etherium scaling	08 hrs
	Unit –III	
5	Blockchain Applications	
	Blockchain in Financial Software and Systems: Settlements, KYC,	
	InsuranceBlockchain for Government: Digital identity, land records and other kinds	
	of record keeping between government entities, public distribution system social	
	welfare systems	08hrs
Text	Books:	
	1. Melanie Swan, "Blockchain: Blueprint for New Economy", 1st Edition, O'Reill	v Media.
	2014.	<i>j</i> ,
Refe	rence Books:	
1. Aı	shdeepBhaga, Vijay Madisetti, "Blockchain Applications: A Hands-On Approach",	

 ArshdeepBhaga, Vijay Madisetti, "Blockchain Applications: A Hands-On Approach", Paperback– January 31, 2017

Scheme for End Semester Assessment (ESA) UNIT 8 Questions to be set of 20 Marks Chapter Numbers Instructions Each Ι Q.No.-1, Q.No.-2, Q.No.-3 1,2 Solve Any 2 Q.No.-4, Q.No.-5, Q.No.-6 Solve Any 2 Π 3,4 5 Q.No.-7, 8 III Solve Any 1

Course Title: The ARM Architecture		Coursecode:19ECSE302	
L-T-P: 2-1-0 Credits: 3		Contact Hrs: 3hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 30	Exam Duration: 3 hrs		

	Unit –I	
1	ARM Embedded Systems and Processor FundamentalsThe RISC Design Philosophy , The ARM Design Philosophy, Embedded SystemHardware, Embedded System Software, Registers, Current Program Status Register,Pipeline, Exceptions, Interrupts, and the Vector Table, Core Extensions,Architecture Revisions, ARM Processor Families	06 hrs
2	Introduction to the ARM Instruction Set & Assembly Programming Data Processing Instructions, Branch Instructions, Load-Store Instructions, Software Interrupt Instruction, Program Status Register Instructions, Loading Constants, ARMv5E Extensions, Conditional Execution, Thumb instruction set.	06 hrs
	Unit –II	
3	Efficient C Programming Overview of C Compilers and Optimization, Basic C Data Types, C Looping Structures, Register Allocation, Function Calls, Pointer Aliasing, Structure Arrangement, Bit-fields, Unaligned Data and Endianness, Division.	06 hrs
4	Writing and Optimizing ARM Assembly Code Writing Assembly Code, Profiling and Cycle Counting, Instruction Scheduling, Register Allocation, Conditional Execution, Looping Constructs, Bit Manipulation, Efficient Switches, Handling Unaligned Data.	06 hrs
	Unit –III	T
5	Introduction to LPC-2148 controller Input output Ports, Pin select registers, Input output select registers, direction control and control registers, Introduction to interfacing standards	03 hrs
6	ARM Interfacing ARM interfacing to peripherals like LED, LCD, Seven segments, Motors, Converters, Keypad.	03 hrs

Text Books

1. Andrew N.Sloss et al, ARM System Developer's Guide- Designing and Optimizing System Software

Reference Books:

1.Marilyn Wolf, Computers as Components: Principles of embedded computing system design, Morgan Ka, 2012

2.Steve Furber, ARM System-on-chip Architecture, 2, Pearson, 2000

Tutorial Plan

Expt./	assignments/experiment	No. of Lab.
Job No.		Slots per batch
		(estimate)
1	ALP on arithmetic instructions set	01
2	ALP on logical instructions set	01
3	ALP on loop and branch instructions	01
4	Interface LED and Seven segments to ARM for displaying message.	01
5	Interface LCD to ARM for displaying message.	01
6	Interface Keypad to read the characters	01
7	Rotate DC and stepper motor for variable speed and direction	01
8	Interface DAC to ARM controller	01

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2 out of 3
Π	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3
III	Q.No7, 8	5	Solve Any 1 out of 2

Program: Bachelor of Engineering			
Course Title: Discrete Mathematical Structures		Course Code: 19ECSC202	
L-T-P: 3-1-0	Credits: 3	Contact Hrs: 3hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3 hrs		

Unit –	Ι	
1	Logic and Proofs: Propositional Logic, Propositional Equivalences, Predicates and	
	Quantifiers, Rules of Inference. Introduction to Proofs, Mathematical Induction and	
	Well-Ordering	8hrs
2	Functions and Relations: Types of sets, Functions, Relations, Equivalence	
	relations partial ordering (Poset), HasseDiagram, Counting	8hrs
Unit –	II	
3	Recurrence Relations: Introduction, Applications of Recurrence Relations,	
	Solving Recurrence Relations, Formulating Recurrence relations, Generating Functions, Inclusion–Exclusion, Applications of Inclusion–Exclusion	8 hrs
4	Groups: Binary Operations, Semi groups, Products and Quotients of Semi Groups,	
	Groups, Product and Quotients of Groups	8 hrs
Unit –	Ш	
5	Cryptography: Cryptography and Modular Arithmetic, Introduction to	
	Cryptography, Private Key Cryptography, Public-key Cryptosystems. Arithmetic	
	modulo n, Cryptography using multiplication mod n	4hrs
6	RSA Cryptosystem: The RSA Cryptosystem; RSA Encryption, RSA Decryption,	
	RSA as a Public Key System, Cryptographic Protocols	4 hrs
Text B	looks:	
1.	Rosen K.H., Discrete Mathematics and its Applications with Combinatorics and gra theory, 7th Ed, Tata Mc-GrawHill Publications, 2012	iph
Refere	ence Books:	

- 1. Kolman, Busby and Ross, Discrete Mathematical Structures, 5Ed., PHI, 2004
- 2. Grimaldi R.P. and Ramana B.V, Discrete and Combinatorial Mathematics- An Applied Introduction, 5Ed., Pearson Education, 2007

Sl.No	Topic	Number of slots
1	Logic and Proofs	3
2	Functions and Relations	2
3	Recurrence Relations	3
4	Group	2
5	Cryptography	2

Tentative tutorial Plan

6	RSA Cryptosystem	1	

Scheme for Semester End Examination (ESA)

UNI T	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
ш	Q.No7	5	Solve Any 1
	Q.No8	6	20110 I III J I

Program: Bachelor of Engineering			
Course Title: Principles of Compiler Design		Course Code:19ECSC203	
L-T-P: 3-1-0	Credits: 3	Contact Hrs: 03 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 03 hrs		

Unit	-I	
1	Introduction to compilers:	
	Brief History Of Compilers, Translation Process, Major Data Structures In	
	Compilers, Chomsky Hierarchy, Lexical Analysis: Scanning Process, Regular	
	Expressions For Tokens, Lexical Errors, ApplicationsOf Regular Expressions.	06hrs
2	Finite Automata:	
	Introduction: Language, Automata, From Regular Expressions To Deterministic	
	Finite Automata (DFA): C-Nondeterministic Finite Automata (C-NFA), NFA,	
	DFA, DFA Optimization, Finite Automata As Recognizer, Implementation Of	
	Finite Automata	06hrs
3	Introduction to Syntax Analysis:	
	Introduction To Grammars, Context-Free Grammars (Cfgs), Ambiguity In	
	Grammars And Languages, Role Of Parsing.	04 hrs
Unit	-II	
4	Top Down Parsing:	
	Introduction, Left Recursion, Left Factoring, LL (1) Parsing, FIRST And	
	FOLLOW Sets, Error Recovery In Top Down Parsing.	08 hrs
5	Bottom up Parsing:	
	Introduction, SLR (1) Parsing, General LR (1) And LALR (1) Parsing, Error	
	Recovery In Bottom Up Parsing.	08 hrs
Unit	-III	
6	Semantic Analysis:	
	Attributes And Attributes Grammars, Algorithm For Attribute Computation,	
	Symbol Table, Data Types And Data Checking.	04 hrs
7	Intermediate Code Generation:	
	Intermediate Code And Data Structure For Code Generation, Code Generation Of	
	Data Structure References, Code Generation Of Control Statements.	04 hrs

Text Book:

- 1. Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D Ullman, Compilers Principles, Techniques and Tools, 2nd Edition, Pearson, 2011.
- Kenneth C Louden: Compiler Construction Principles & Practice, Cengage Learning, 1997.

References:

- 1. Andrew W Apple, Modern Compiler Implementation in C, Cambridge University Press, 1999.
- 2. Charles N. Fischer, Richard J. leBlanc, Jr, Crafting a Compiler with C, Pearson, 2011.
- 3. Peter Linz, An Introduction to formal languages and Automata, IV edition, Narosa, 2016.
- 4. Basavaraj S Anami, Karibasappa K.G, Formal Languages and Automata Theory, First, Wiley India, 2011.

Tutorial tentative plan

Expt/Job	Brief description of experiments	No of slots
No		1 slot = 2 hrs
1	Regular expressions.	01
2	NFA, DFA and DFA optimization.	02
3	Regular and Context free grammars.	01
4	Top down parsing.	01
5	Bottom up parsing.	02
6	Implementation of lexical & syntax analyzer using LEX	02
	and YACC tools.	
7	Design of CFG for validating Natural languages and	02
	implement the same.	

	8 Questions to be set of 20 Marks	Chapter	Instructions
	Each	Numbers	
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4 ,5	Solve Any 2
Ш	Q.No7	6	Solve Any 1
	Q.No8	7	501/01/mj 1

Course Content

Program: Bachelor of Engineering			
Course Title: Senior Design Project Course Code: 20ECSW401			
L-T-P: 0-0-6	Credits: 6	Contact Hrs: 3 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 39	Exam Duration: 3hrs		

Seventh semester senior design project theme: Usage of Design Principles in building the solution.

SDP aims to design and develop a solution using software design principles:- design patterns (creational, behavioral & structural), User experience (UX) design and API (application programming interface) that are generally followed in industries.

Project domains:

Networking	Data Engineering	System Engineering
 Internet of Things Cloud Computing SDN(Software Defined Network) SNA(Social Network Analysis) 	 Data Analytics Data Processing: Image and video processing Computer Vision and Graphics NLP(Natural Language Processing) 	 Parallel Computing HPC(High Performance Computing) Parallel system design

Student Evaluation Matrix:

Project will have 3 internal reviews as follows:

Continuous internal Evaluation	Review Expectation
Review-1	Literature Survey, Problem Analysis and Problem formulation
Review-2	Requirements, Design, design principles adopted in modules/components and Algorithms.
Review-3	Implementation and Testing.

Sl.No	Expectation	Marks

1	 Write up Problem Statement and Objectives. System design with brief description. Concluding remarks. 	05
2	Presentation: Prepare minimum of 15-18 slides of presentation with consultation of your respective guides.	05
3	Demo (Complete execution of the project with results) and Viva voce.	30
4.	Project Report.	10

Cours	e Code: 16ECSE705	Course Title: Compil	er Design	
L-T-P	: 3-1-0	Credits:4	Contact Hrs: 5hrs/week	
ISA N	Iarks: 50	ESA Marks: 100	Total Marks: 100	
Teach	ing Hrs: 42		Exam Duration: 03	
No		Content		Hrs
1	Introduction Why compilers, Programs	Related to compilers, Transl	ation process, Major Data structure in	
	compiler, Bootstrapping an	nd porting.		06
2		process, Regular Expression fications of Tokens, Recogni	s, Finite Automata, From regular tion of Tokens	06
	Syntax Analysis:			
3	Parsing process, context fr	ee grammars, parse tree ,amb	iguity.	
	Top-down Parsing: Recur	sive descent parsing, LL(1) p	arsing	07
4	Bottom-up Parsing Overview of Bottom-up Pa	ursing, Simple LR Parser(SL	R(1),	06
5	More powerful parsers: I	LR(1),LALR(1) parsing		06
6	Semantic Analysis Attributes and Attributes g types and Data checking	rammars, Algorithm for attri	bute computation, Symbol table, data	06
	Code Generation			
7		ata structure for code gene tion of control statements an	ration, Code generation of data structure	05

1. Kenneth C Louden: Compiler Construction Principles & Practice, Cengage Learning, 1997

2. Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D Ullman: Compilers - Principles, Techniques and Tools, 2nd Edition, Pearson, 2007.

References:

- 1. Andrew W Apple: Modern Compiler Implementation in C, Cambridge University Press, 1997
- 2. Charles N. Fischer, Richard J. leBlanc, Jr.: Crafting a Compiler with C, Pearson, 1991.
- 3. Peter Linz: An Introduction to formal languages and Automata, IV edn, Narosa, 2009.

Cour	se Code: 16ECSE707	Course Title: Cryptog	raphy and Network Security	
L-T-]	P: 3-0-0	Credits: 3	Contact Hrs: 42	
ISA I	Marks: 50	ESA Marks: 50	Total Marks: 100	
Teac	hing Hrs: 3		Exam Duration: 3 hrs	
Ch. No		Content		Hrs
	Network Security Overview			
	Common Attacks and Defense	Mechanisms: Eavesdroppin	ng, Cryptanalysis Password	
	Pilfering, Identity Spoofing, But	fer-Overflow Exploitations,	Repudiation, Intrusion, Traffic	
1	Analysis, Denial of Service Atta	cks, Marvelous Software. A	ttacker Profiles: Hackers, Script	05
	Kiddies, Cyber Spies, VICIOUS	Employees, Cyber Terrorist	s, Hypothetical Attackers. Basic	
	Security Model.			
	Data Encryption Algorithms			
	Data Encryption Algorithm D	esign Criteria: ASCII Code,	XOR Encryption, Criteria of Data	
	Encryptions, implementation Cr	iteria. Data Encryption Star	ndard : Feistel's Cipher Scheme,	
	DES Subkeys, DES Substitution	Boxes, DES Encryption, D	ES Decryption and Correctness	
	Proof., DES Security Strength.	Multiple DES. Advanced Er	cryption Standard: AES Basic	
2	Structures., AES S-Boxes 60, A	ES-128 Round Keys , Add R	ound Keys Substitute-Byt, Shift-	07
	Ro, Mix-Colum, AES-128 Encr	yption, AES-128 Decryption	and Correctness Proof, Galois	07
	Fields, Construction of the AES	S-Box and Its Inverse, AES	Security Strength. Standard	
	Block-Cipher Modes of Opera	tions: Electronic-Codebook	Mode, Cipher-Block-Chaining	
	Mode, Cipher-Feedback Mode (Dutput-Feedback Mode, Cour	nter Mode. Stream Ciphers: RC4	
	Stream Cipher, RC4 Security W	eaknesses. Key Generations	5.	
	Public-Key Cryptography and	Key Management		
	Concepts of Public-Key Crypt	ography, Elementary Conc	epts and Theorems In Number	
	Theory: Modular Arithmetic an	d Congruence Re1attons, Mo	odular Inverse. Diffie-Hellman Key	
3	Exchange, Key Exchange Proto	col, Man-in-the-Middle Atta	acks , Elgamal PKC. RSA	05
	Cryptosystem : RSA Key Pairs	, Encryptions, and Decryption	ns, RSA Parameter Attacks RSA	
	Challenge Numbers. Key Distri	butions and Management:	Master Keys and Session Keys,	
	Public-Key Certificates CA Net	works, Key Rings.		
	Data Authentication			
	Cryptographic Hash Function	s: Design Criteria of Cryptog	graphic Hash F Unctions, Quest for	
4	Cryptographic Hash Functions,	Basic Structure of Standard I	Hash Functions, SHA-512,	07
	WHIRLPOOL , Cryptographic	c Checksums: Exclusive-OR	Cryptographic Checksums,	
	Design Criteria of MAC Algorit	hms, Data Authentication A	lgorithm. HMAC : Design Criteria	

	of HMAC, HMAC Algorithm, Offset Codebook Mode of Operations: Basic Operations,	
	OCB Encryption and Tag Generation, OCB Decryption and Tag Verification. Birthday	
	Attacks: Complexity Upper Bound of Breaking Strong Collision, Resistance, Set Intersection	
	Attack. Digital Signature Standard, Dual Signatures and Electronic Transactions: Dual	
	Signature Applications, Dual Signatures and Electronic Transactions, Blind Signatures and	
	Electronic Cash: RSA Blind Signatures, Electronic Cash.	
	Network Security Protocols in Practice	
	Crypto Placements in Networks: Crypto Placement at the Application Layer, Crypto	
	Placement at the Transport Layer, Crypto Placement at the Network Layer, Crypto Placement	
_	at the Data-Link Layer, Hardware versus Software Implementations of, Cryptographic	
5	Algorithms. Public-Key Infrastructure: X.509 Public-Key Infrastructure, X.509 Certificate	06
	Formats, IPsec: A Security Protocol at the Network Layer: Security Association,	
	Application Modes and Security Associations, AH Format, ESP Format Secret Key	
	Determination and Distribution.	
	Security Protocols at Transport and Application Layers	
	SSL Handshake Protocol , SSL Record Protocol. PGP and SIMIME: Email Security	
6	Protocols: Basic Email Security Mechanisms. PGP, S/MIME. Kerberos' An Authentication	04
	Protocol: Basic Ideas , Smgle-Realm Kerberos , Multiple-Realm Kerberos , SSH: Security	
	Protocols for Remote Logins .	
	Wireless Network Security -1:	
	Wireless Communications and 802 11 WLAN Standards: WLAN Architecture, 802.11	
	Essentials Wireless Security Vulnerabilities. WEP: Device Authentication and Access Control,	
7	Data Integrity Check LLC Frame Encryption, Security Flaws of WEP. WPA: Device	04
-	Authentication and Access Controls, TKIP Key Generations, TKIP Message Integrity Code,	
	TKIP Key Mixing, WPA Encryption and Decryption, WPA Security Strength and	
	Weaknesses.	
	Wireless Network Security -2 :	
	IEEE 802.11i/WPA2: Key Generations 230, CCMP Encryptions and MIC 802.11i Security	
8	Strength and Weaknesses, Bluetooth Security: Piconets, Secure Pairings SAFER+ Block	04
Ū	Ciphers, Bluetooth Algorithms E_1 , E_{2l} , and E_{22} , Bluetooth Authentication, A PIN Cracking	•••
	Attack, Bluetooth Secure Simple Pairing. Wireless Mesh Network Security.	
Text	Book:	
	L'annual (NL transler Theorem 1 Describer 2) Carine and Utahan Utahan Education 2000	
1	. Jiewang, "Network Security Theory and Practices", Springer Higher Higher Education, 2009	
1 Refe	<i>rences:</i> . William Stallings, Cryptography and Network Security Principles And Practices, 5 th Edition,	
1 Refe 1	rences:	

Course	Code: 16ECSC711	Course Title: Distributed an	d Cloud Co	mputing
L-T-P:	4-0-0	Credits: 4	Contact H	rs: 4
ISA Ma	arks: 50	ESA Marks: 50	Total Marl	ks: 100
Teachin	ng Hrs: 55		Exam Dur	ation: 3 hrs
	Content			Hrs
Scalabl	er No. 1: Distributed System Models and Ena e Computing over the Internet, Technologies for Distributed and Cloud Computing, Softwar buds.	for Network-Based System		6 hrs
Implem Virtual	er No. 2: Virtual Machines and Virtualization nentation Levels of Virtualization, Virtualizati ization of CPU, Memory, and I/O Devic ement, Virtualization for Data-center Automatio	ion Structures/Tools and M ces, Virtual Clusters and	echanisms,	8 hrs
Cloud	er No. 3: Cloud Platform Architecture over V Computing and Service Models, Architectural I Cloud Platforms.		ege Clouds,	8 hrs
Feature	er No. 4: Cloud Programming and Software I as of Cloud and Grid Platforms, Parallel and mming Support of Google App Engine, Emergin	Distributed Programming	0	10 hrs
PoliISA schedul control manage combin queuing Schedu	er No. 5: Cloud Resource Management and S As and mechanisms for resource management, ling on a cloud, Stability of a two-level reso based on dynamic thresholds, Coordination ers, A utility-based model for cloud-based aatorial auctions for cloud resources, Scheduling g, Start-time fair queuing, Borrowed virtual time ling MapReduce applications subject to deadlin tion scaling.	Applications of control the purce allocation architecture, of specialized autonomic p l web services. Resource g algorithms for computing c e, Cloud scheduling subject to	, Feedback erformance bundling; louds. Fair deadlines,	12 hrs
Chapte Cloud assessn shared	er No. 6: Cloud Security security risks, Security; the top concern for nent, Trust, Operating system security, Security images, Security risks posed by a management of the TCB, A trusted virtual machine monitor.	of virtualization. Security risk	ks posed by	11 hrs
2. Refere	Kai Hwang, Geoffrey C. Fox, Jack J. Dong Processing to the Internet of Things", Morgan I Dan C. Marinescu "Cloud Computing Theory a nce Books: Rajkumar Buyya, Christian Vecchiola, S.Thar	Kaufman, Elsevier- 2012. and Practice", Morgan Kaufm	an, Elsevier	-2013.
2.	Education (India) Pvt. Limited, 2013. Anthony T. Velte, Toby J. Velte, Robert Elser Hill, 2010.	peter: Cloud Computing, A	Practical Ap	proach, McGraw

Course Code: 16ECSC713	Course Title: Softwar	re Testing	
L-T-P :3-0-0	Credits: 4	Contact	Hrs: 4 hrs/week
ISA Marks: 50	ESA Marks: 50	Total M	arks: 100
Teaching Hrs: 42		Exam D	uration: 3 hrs
Cont	ent		Hrs
Chapter No. 1. Principles of Testing Context of testing in producing software: Abou Doctrine, A test time, The cat and the saint, T convoy and the rags, The police man on the bu Automation syndrome, Putting it all together.	est the test first, The pesticide	e paradox, The	3 hrs
Chapter No. 2. Software Development Life O Phases of Software Project: Requirements Development or coding, Testing, Developm assurance, and Quality Control, Testing, Ver represent different phases: Life cycle Models Application Development models, Spiral or Ite various life cycle models, References.	gathering and analysis, Plan ment and Maintenance, Qu ification and validation, Pro- s, Waterfall model, Prototypi	ality, Quality cess model to ng and Rapid	5 hrs
Chapter No. 3. Defect Testing White Box Testing: What is white box testing, S analysis tools: Structural testing, Unit /code f Code complexity testing, Black Box Testing: testing?, When to do black box testing?, How testing, Positive and negative testing, Boundary participating , State based or graphic ba documentation testing, Domain testing.	Yundamental testing, Code co What is black box testing?, V to do black box testing?, Requ value analysis, Decision table	verage testing, Why black box irement based s, Equivalence	5 hrs
Chapter No. 4. Regression Testing What is regression testing?, Types of regressi How to do regression testing?, Performir Understanding the criteria for selecting th Methodology for selecting test cases, Reset Concludes the results of regression testing, Best	ng an initial "smoke" or e test cases, Classifying th ting the test cases for regre	"sanity" test, ne test cases, ession testing,	4 hrs
Chapter No. 5. Unit Testing & Integration T What is integration testing?, Types of integration integration, Bi-directional integration, System Integration testing as a phase of testing, Sc scenarios, Defect bash, Choosing the frequency product build, Communicating the object of de action and Fixing issues, Optimizing the effort i	n testing, Top-down integration integration, Choosing integration enario testing, System scenar and duration of defect bash, fect bash, Setting up monitori	ation method, ios, Use case Selecting right	5 hrs
Chapter No. 6. System and Acceptance Testi System Testing overview: Why is System testi testing, Functional system testing, Design/A testing, Development testing, Beta testing, Cer Non – Function testing, Setting up the config Balancing key resources, Scalability test Interoperability testing, Acceptance testing, A acceptance testing, Executing acceptance test testing model.	ng done?, Functional versus N Architecture verification, Bus tification, Standards and testin uration, Coming up with entr ing, Reliability testing, S Acceptance criteria, Selecting	siness vertical ag compliance, y/exit criteria, tress testing, test cases for	5 hrs
Chapter No. 7. Performance Testing Introduction, Factors governing performance te Collecting requirements, Writing test cases, Au performance test cases, Analyzing the perfo	atomating performance test ca	ses, Executing	5 hrs

Performance bench marking, Capacity planning, Tools for performance testing, Processes for performance testing, Challenges, Problems and Exercises.	
Chapter No. 8. Test Planning, Management and Execution Introduction, Test planning, Preparing a test plan, Scope management – deciding features to be tested / not tested, Deciding test approach/strategy, Setting up criteria for testing, Identifying responsibilities, Staffing, and Training needs, Identifying resource requirements, Identifying test deliverables, Testing tasks – Size and effort estimation, Activity breakdown and scheduling, Communication management, Risk management: Test management, Choice of standards, Test infrastructure management, Test people management, Integration with product release, Test process, Putting together and base lining a test plan, Test case specifications, Update of traceability matrix, Identifying possible candidates for automation, Developing and base lining test cases. Executing test cases and keeping traceability matrix current, Collecting and analyzing matrix	5 hrs
Chapter No. 9. Reporting and Software Test Automation Preparing test summary report, Recommending product release criteria: Test reporting, Recommending product release, Best practices, Process related best practices, People related best practices, Technology related best practices, What is Test automation?, Terms used in automation, Skills needed for automation, What to automate?, Scope of automation-Identifying the types of testing amenable to automation, Automating areas less prone to change, Automate tests that pertain to standards, Management aspects in automation, Design and architecture for automation.	5 hrs
Text Book:	
1. Desikan Srinivasan and Gopalswamy, Ramesh, Software Testing- Principles and	
Practices, Published by Person Education, 2 nd edition, Pearson Education, 2007.	
References:	
1. Edward Kit, Software Testing in the Real World Improving the Process, Published	
by Person Education, 1995.	
2. Ron, Patton, Software Testing, 2 nd edition Person Education, 2004.	
3. Marnie, Hutcheson L., Software Testing Fundamentals, Wiley India, 2003.	
4. Roger S. Pressman, Software Engineering A Practitioners Approach, 5 th edition	
McGraw Hill.	

Cours	e Code: 16ECSE715	Course Title: Applied Par	allel Computing	
L-T-F	P: 3-1-0	Credits: 4	Contact Hrs:5 hrs/week	
ISA N	/larks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ing Hrs: 42 hrs		Exam Duration: 3 hrs	
1	Introduction and Histo	ry		
	GPUs as Parallel Comp	outers; Architecture of a Moo	dem GPU; Parallel Programming Languages	
	and Models; Overarchin	ng Goals; Evolution of Grap	phics Pipelines; The Era of Fixed- Function;	
	Graphics Pipelines; Ev	olution of Programmable H	Real-Time Graphics; Unified Graphics and	
	Computing Processors;	GPGPU; An Intermediate St	ep; GPU Computing; Scalable GPUs Recent	
	Developments; Future T	rends		05 Hrs
2	Introduction to CUDA			
	Data Parallelism; CUD	A Program Structure; A Ma	atrix-Matrix Multiplication Example; Device	
	Memories and Data Tr	ansfer; Kernel Functions an	d Threading; Function declarations; Kernel	
	launch; Predefined varia	ables; Runtime API.CUDA	Thread Organization; Using block Id x and	
	thread Id x ; Synchro	onization and Transparent	Scalability; Thread Assignment ; Thread	
	Scheduling and Latency	Tolerance		07 Hrs
3	CUDA Memories, Perf	ormance Considerations an	nd Floating Point Considerations	
	Importance of Memory	Access EffiISAncy; CUD	A Device Memory Types; A Strategy for	
	Reducing Global Memo	ry Traffic; Memory as a Lir	niting Factor to Parallelism; Global Memory	
	Bandwidth; Dynamic P	artitioning of SM Resources	; Data Prefetching; Instruction Mix; Thread	
	Granularity; Measured	Performance; More on thr	ead execution, Global memory bandwidth,	
	dynamic partitioning of	SM resources, Floating point	format, Arithmetic Accuracy and rounding	07 Hrs
4	Floating Point Conside	rations		
	Floating-Point Format,	Normalized Representation	of M, Excess Encoding of E, Representable	
	Numbers, Special Bit I	Patterns and Precision, Arit	hmetic Accuracy and Rounding, Algorithm	
	Considerations			05 Hrs
5	Introduction to OPEN	CL		
l	Introduction to OPENC	CL; Background; Data Paral	llelism Model; Device Architecture; Kernel	
	Functions; Device Mana	gement and Kernel Launch;	Electrostatic Potential Map in OpenCL;	05 Hrs
6	Parallel Programming	and Computational Thinki	ng	
	Goals of Parallel Progr	amming, Problem Decompo	osition, Algorithm Selection, Computational	
	Thinking			03 Hrs
7	Introduction to Embed	ded GPU Computing		
	Architecture, Programm	ing Model, Programs, Config	guration etc.	05 Hrs
8	Case Study /Projects			
	Concepts of Game Desig	gn, Applications like Matrix	multiplication, MRI reconstruction Molecular	
l	Visualization and Gamin	ng		05 Hrs

Text book:

 Programming Massively Parallel Processors: A Hands on Approach; David B. Kirk, Wen-mei W. Hwu; Morgan Kaufmann /Elsevier India reprint 2010

Reference Books:

1. Heterogeneous Computing with OpenCL, by Benedict R. Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry & Dana Schaa; Morgan Kaufmann 2011

Course Code: 16ECSE716	Code: 16ECSE716 Course Title: Internet of Things		
L-T-P-SS: 3-1-0	Credits: 3	Contac	rt Hrs: 40
ISA Marks: 50	ESA Marks: 50	Total N	Marks: 100
Teaching Hrs: 42		Exam 1	Duration: 3 h
(Content		Hrs
Chapter No 1. Introduction to Internet of T Definition & Characteristics of IoT, Physic of IoT: IoT functional blocks, communicat	al Design of IoT: IoT protocols, Lo	gical Design	4 hrs
Chapter No 2. IoT Enabling Technologies Wireless Sensor Networks, Cloud Computi Protocols, Embedded Systems, IoT Levels		ation	6 hrs
Chapter No 3. Domain specific IoTs Home Automation ,Cities, Environment ,E ,Health and Lifestyle	nergy, Retail, Logistics, Agriculture	e, Industry	6 hrs
Chapter No 4. IoT Platforms Design Meth IoT Design Methodology, Case Study on I			4 hrs
Chapter No 5. IoT systems – Logical desig Introduction to Python, Data types, data str packages, file handling, data/time operation HTTPLib, URLLib, SMTPLib.	ructures, Control of flow, functions a		6 hrs
Image, Accessing the Webcam	emplary device: Rasyberry Pi, interl Python.	lifying an	6 hrs
Chapter No 7. IoT Physical Servers & Clo Introduction to Cloud Storage models and for IoT, Cloud for IoT, Python web applica	communication APIs ,Webserver -		5 hrs

Text Book (List of books as mentioned in the approved syllabus)

1. Internet of Things - A Hands-on Approach, Arshdeep Bahga and Vijay Madisetti, Universities Press, 2015, ISBN: 9788173719547

References

1. Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD), 2014, ISBN: 9789350239759

Course Code: 16ECSC801		Course Title: Data Mining and Business Analytics		
L-T-P: 4-0-0		Credits: 4	Contact Hrs:4 hrs/week	
ISA Marks: 50		ESA Marks: 50	Total Marks: 100	
Teac	ching Hrs: 50 hrs		Exam Duration: 3 hrs	
1	Introduction to Data Mining			
	Fundamentals of data mining, Data mining Functionalities, Classification of Data Mining			
	Systems, Major issues in Data Mining, Data Warehouse and OLAP Technology for Data mining:			
	Data Warehouse, Multidimensional Data Model, Data Warehouse Architecture.			06 hrs
2	Association Rule Mining			
	Mining Frequent Patterns, Ass	sociations: Basic Conc	epts. EffilSAnt and Scalable Frequent	
	Mining Frequent Patterns, Associations: Basic Concepts, EffiISAnt and Scalable Frequent Itemset Mining methods (Apriori Algoithm, improving effiISAncy of Apriori, Mining frequent			
	Itemsets without Candidate generation, using vertical data formats). Mining various kinds of			
	association rules, from association analysis to Correlation analysis.			06hrs
3	Analytical Characterization & Statistical Measures: Analytical Characterization: Analysis of			04 hrs
	Attribute Relevance, Mining Descriptive Statistical Measures in Large Databases			
4.	Classification and Prediction			
	Classification, Prediction, Classification by Decision tree Induction, Bayesian classification,			
	Associative classification, Prediction: Linear Regression, non-linear regression.			
5	Cluster Analysis			
	Types of data in cluster analysis, Categorization of major clustering methods, Classical			
	Partitioning methods : k-Means and k-Medoids.			
6	Graph Mining & Social Network Analysis			
	Graph mining: Methods for Mining Frequent Subgraphs, Mining Variant and Constrained			
	substructure patterns,			
	•	networks, Characteristic	cs of Social Networks,Link Mining,	08 hrs
7	Mining on Social networks Business Analytical Modeling			
	Analytical Modeling by Factor a	and Cluster Analysis,		05 hrs
	Analytical Modeling by Logistic		minant Analysis.	05 1118
8	Segmentation of Target Marke		aling such as DEM (Decensy	
	Segmentation of primary target r Frequency Monetary) analysis	-	harket based on large databases using	
			automatic Interaction Detection) and	05hrs
	other Classification and Regressi	on Trees.		USHIS

Text Book

- 1. Jiawei Han and MichelineKamber, Data Mining: Concepts and Techniques, Second Edition, Elsevier.
- 2. <u>Purba Halady Ra</u>o, Business Analytics: An Application Focus, PHI, New Delhi, 2013.

References

- 1. Michael Berry and Gordon Linoff, Data Mining Techniques, Wiley Publishing, 2004.
- 2. Kimball and Ross, The Data Warehouse Toolkit, Second Edition, John Wiley & Sons, 2002.
- 3. T. Davenport, "Competing on Analytics," Harvard Business Review (Decision Making), January 2006.

Co	urse Code: 16ECSE803	Course Title: Image a	nd Video Processing	
L-T-P: 3-1-0		Credits: 4	Contact Hrs: 3 hrs/week	
ISA Marks: 50		ESA Marks: 50	Total Marks: 100	
Te	Teaching Hrs: 42 hrs Exam Duration: 3 hrs			
1	Introductions 2D systems Mathemat	ical malimination Fou	mion Transform 7 Transform Ontical	
1	Introduction: 2D systems, Mathematical preliminaries – Fourier Transform, Z Transform, Optical & Modulation transfer function, Matrix theory, Random signals, Discrete Random fields, Spectral			
		ix theory, Kandom sign	als, Discrete Random fields, Spectral	05 have
•	density function.			05 hrs
2	Image Perception: Light, Luminance	C		
	function, Monochrome vision models,	•		
	Color coordinate systems, Color diffe	rence measures, Color	vision model, Temporal properties of	
	vision.			05 hrs
3	Image Sampling and Quantization: Introduction, 2D sampling theory, Limitations in sampling			
	&reconstruction, Quantization, Optimal quantizer, Compander, Visual quantization.			
4	Image Transforms: Introduction, 2D	orthogonal & unitary tra	ansforms, Properties of unitary	
	transforms, DFT, DCT, DST, Hadamard, Haar, Slant, KLT, SVD transform.			
5	Image Enhancement: Point operations, Histogram modeling, spatial operations, Transform			
	operations, Multi-spectral image enhar	icement, false color and	Pseudo-color, Color Image	
	enhancement.			
	Image Filtering & Restoration: Image observation models, Inverse & Wiener filtering, Fourier			
	Domain filters, Smoothing splines and interpolation, Least squares filters, generalized inverse, SVD			
	and Iterative methods, Maximum entropy restoration, Bayesian methods, Coordinate transformation			
	& geometric correction, Blind de-conv			07 hrs
6	Image Analysis & Computer Vision:		on, Transform features, Edge	
-	detection, Boundary Extraction, Boundary representation, Region representation, Moment			
	representation, Structure, Shape feature		•	
	segmentation, Classification Techniqu		o	05 hrs
	segmentation, enustrication recimiqu			<i></i> 1115
_			<u> </u>	
7	-		of video signals, Analog video, Digital	
	video, Color models in video, Video C	ompression Techniques	— H.261, H.263, MPEG I, MPEG 2,	
	MPEG 4, MPEG 7 and beyond, .			05 hrs

8	Video Segmentation and Tracking : Scene change detection, Spatiotemporal change detection,	
	Motion segmentation, Motion tracking , Motion tracking in video : Rigid object tracking and	
	articulated object tracking	05 hrs

Text Book

- A. K. Jain, "Fundamentals of Digital Image Processing," Pearson Education (Asia) Pte. Ltd./Prentice Hall of India, 2004.
- 2. Alan C Bovik "Essential Guide to Video Processing", AP Elsevier publication, 2009

References:

- 1. Z. Li and M.S. Drew, "Fundamentals of Multimedia," Pearson Education (Asia) Pte. Ltd., 2004.
- R. C. Gonzalez and R. E. Woods, "Digital Image Processing," 2nd edition, Pearson Education(Asia) Pte. Ltd/Prentice Hall of India, 2004.
- 3. M. Tekalp, "Digital Video Processing," Prentice Hall, USA, 1995.

Course Code: 16ECSE804	Course Title: Wireles	Course Title: Wireless Networks		
L-T-P: 3-1-0	Credits: 4	Contact	Hrs: 3	
ISA Marks: 50	ESA Marks: 50	Total N	larks: 100	
Teaching Hrs: 42		Exam I	Duration: 3 hrs	
С	ontent		Hrs	
Chapter No.1 Introduction.			6 hrs	
Fundamentals of Wireless Communication 7 Channel. Modulation Techniques. Multiple 2 Control. Fundamentals of WLANs. IEEE 80 Bluetooth. HomeRF.	Access Techniques. Voice Coding.	Error		
Chapter No. 2: Wireless WANS AND MA	ANS.		8 hrs	
Introduction. The Cellular Concept. Cellular Wireless in Local Loop. Wireless ATM. IEE Internet, Mobile IP. TCP in Wireless Domai Hoc Wireless Networks. Issues in Ad Hoc W	EE 802.16 Standard. HIPERACCES n. WAP. Optimizing Web Over W	SS. Wireless		
Chapter No. 3: MAC Protocols for Ad He	oc Wireless Networks.		8 hrs	
Introduction. Issues in Designing a MAC Pro Goals of a MAC Protocol for Ad Hoc Wirele Protocols. Contention-Based Protocols. Con Mechanisms. Contention-Based MAC Proto	ess Networks. Classifications of M tention-Based Protocols with Rese	AC rvation		
Chapter No. 4: Routing Protocols for Ad	Hoc Wireless Networks.		8hrs	
Introduction. Issues in Designing a Routing Classifications of Routing Protocols. Table- Protocols. Hybrid Routing Protocols. Routin Mechanisms. Hierarchical Routing Protocols	Driven Routing Protocols. On-Den g Protocols with EffiISAnt Flooding	nand Routing		
Chapter No.5: Transport Layer and Sec Networks.	urity Protocols for Ad Hoc Wire	less	8 hrs	
Introduction. Issues in Designing a Transport Networks. Design Goals of a Transport Laye Classification of Transport Layer Solutions. Transport Layer Protocols for Ad Hoc Wirel Networks. Network Security Requirements. Network Security Attacks. Key Managemen Networks.	er Protocol for Ad Hoc Wireless Net TCP Over Ad Hoc Wireless Networks. Security in Ad Hoc Issues and Challenges in Security	etworks. orks. Other Wireless Provisioning.		
Chapter No. 6. Quality of Service in Ad H	Ioc Wireless Networks.		4 hrs	
Introduction. Issues and Challenges in Provi Classifications of QoS Solutions. MAC Laye				

Frameworks for Ad Hoc Wireless Networks.

Text Book:

C. Siva Ram Murthy, B.S. Manoj, "Ad Hoc Wireless Networks: Architectures and Protocols", Prentice Hall. 2012.

References:

- 1. Clint smith, Daniel Collins, "Wireless networks", 3rd Edition, Mc Graw Hill Publication 2014.
- 2. Jim Geier, "Designing and Deploying 802.11n Wireless Networks" Cisco Press.2010.

Prog	ram: Master of Technology				
Course Title: Applied Mathematics Course Code: 18ECS		Course Code: 18ECSC7	01		
L-T-P: 3-0-1		Credits: 4	Contact Hrs: 3 hrs/week	5	
ISA N	Marks: 50	ESA Marks: 50	Total Marks: 100		
Teach	hing Hrs: 42	Exam Duration: 3 hrs			
1					
T	Introduction to Statistics				
	Statistical Thinking, Collecting data, Statistical Modeling Framework, Measure of Central				
	Tendency and Variance, Importance of Data symmetry and Display, Graphical and Tabular				
	Display.				
2	Discrete Random Variable	es and Probability Distribution			
	Discrete Random variable	s, Probability distributions a	nd Probability mass function,		
	Cumulative distribution func	ction, Mean and Variance of a di	iscrete random variable, Discrete		
		Uniform distribution, Binomial distribution, Geometric distribution, Poisson distribution,			
	Applications.			07 hrs	
3	Continuous Random Varia	bles and Probability Distributi	ions		
	Continuous random variabl	es, Probability distributions an	d probability density functions,		
	cumulative distribution fun-	cumulative distribution functions, Mean and Variance of a continuous random variable,			
	Uniform distribution, Norma	al Distribution, Normal approxi	mation to Binomial and Poisson		
	distribution, Exponential distribution.				
4	Testing of Hypothesis				
	Estimation theory, Hypothesis testing, Inference on the mean of population (variance known				
	and unknown) Inference on the variance of a normal population, Inference on a population				
	proportion, Testing for Goodness of fit, Inference for a difference in Means(variances				
	known), Inference for a difference in means of two normal distributions (variances unknown),				
	Inference on the Variances of two normal populations, Inference on two population proportions.				
-	proportions.			08 hrs	
5	Simple Linear Regression and Correlation				
	Simple Linear Regression, Properties of Least square Estimators and Estimation of Variances,				
		Transformations to a Straight line, Correlation, Multiple linear regression model, Least square			
	Estimation of parameters, Matrix approach to multiple linear regression, Properties of least square estimators and estimation of variance.				
	square estimators and estima	uon of variance.		06 hrs	
6	Queuing Theory 1 :				
	Basics of queuing models, Model I (M /M/ 1): (∞ /FIFO), Single Server with Infinite				
	Capacity, Model II (M/M/s):	$(\infty/FIFO)$, Multiple Server with	Infinite Capacity	05 hrs	
7	Queuing Theory 2:				
	Model III (M/M/1): (k/FIFO)), Single Server with Finite Capa	acity, Model IV (M/M/s):		
	(k/FIFO), Multiple Server with	ith Finite Conscitu		1	

Text Books:

References:

- 1. Douglas C Montgomery, George C Runger, Applied Statistics for Engineers, 2nd Edition, John Wiley and Sons, ISBN-0-471-170027-5.
- 2. Richard I Levin, David S Rubin, Statistics for Management, 6th Edition, Prentice Hall India.
- 3. Willian W Hines, Douglas C Montgomery, Probability and Statistics in Engineering, 2nd Edition, John Wiley and Sons.
- 4. V. Sundarapandian, Probability, Statistics and Queuing theory, PHI, 2009.
- 5. Arnold Oral Allen, Probability, statistics, and queuing theory: with computer science applications, Gulf Professional Publishing, Edition: 2 ,28-Aug-1990

Program: Master of Technology		
Course Title: Internet Of Things		Course Code: 18ECSC702
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 42	Exam Duration: 3 hrs	

1	Introduction to Internet of Things (IoT):	
1	Definition & Characteristics of IoT, Physical Design of IoT: IoT protocols, Logical Design	
	of IoT: IoT functional blocks, communication models and APIs.	04 hrs
2	IoT Enabling Technologies:	
4	Wireless Sensor Networks, Cloud Computing, Big Data Analytics, Communication	
	Protocols, Embedded Systems, IoT Levels and Deployment Templates.	06 hrs
3	Domain specific IoTs:	
5	Home Automation, Cities, Environment, Energy, Retail, Logistics, Agriculture, Industry,	
	Health and Lifestyle.	06 hrs
4	IoT Platforms Design Methodology:	00 1115
-	IoT Design Methodology, Case Study on IoT System for Weather Monitoring.	04 hrs
5	IoT systems – Logical design using Python:	•••
3	Introduction to Python, Data types, data structures, Control of flow, functions modules,	
	packages, file handling, data/time operations, classes, Python packages - JSON, XML,	
	HTTPLib, URLLib, SMTPLib.	06 hrs
6	IoT Physical Devices and Endpoints:	
U	Basic building blocks of an IoT device, Exemplary device: Rasyberry Pi, interface (serial,	
	SPI, I2C), Programming Rasyberry Pi with Python.	06 hrs
7	IoT Physical Servers & Cloud Offerings:	
,	Introduction to Cloud Storage models and communication APIs, Webserver – Web server	
	for IoT, Cloud for IoT, Python web application framework, Designing a RESTful web API	05 hrs
8	Case Studies Illustrating IoT Design:	
0	Home Automation-smart lighting, home intrusion detection, Cities-smart parking.	05 hrs
Text B		
1.		Drogg
1.	2015, ISBN: 9788173719547	11088,
	2013, ISBIN. 7/001/3/1734/	
Refere	ences:	

1. Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD), 2014, ISBN: 9789350239759

Program: Master of Technology		
Course Title: Computer Networks		Course Code: 18ECSC704
L-T-P: 3-0-1	Credits: 4	Contact Hrs: 5 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 42	Exam Duration: 3 hrs	

1	Fundamental Concepts of computer Networks	
	Basic Definitions in Data Networks, Applications, Requirements, Network Architecture,	
	Packet Size and Optimizations, Performance.	04 hrs
2	Data Link Layer	
	Perspectives on Connecting, Encoding (NRZ, NRZI, Manchester, 4B/5B), Framing, Error	
	Detection, Reliable Transmission, Ethernet and Multiple Access Networks	08 hrs
3	The Network Layer: Data Plane	
	Overview of Network Layer, Router Architecture, The Internet Protocol (IP): IPv4,	
	Addressing, IPv6, Generalized Forwarding and SDN	08 hrs
4	The Network Layer: Control Plane	
	Introduction, Routing Algorithms, Intra-AS Routing in the Internet: OSPF, Routing Among	
	the ISPs: BGP, The SDN Control Plane, ICMP: The Internet Control Message Protocol,	
	Multicast, Multiprotocol Label Switching (MPLS)	08 hrs
5	Transport Layer	
	Introduction and Transport-Layer Services, Multiplexing and De-multiplexing,	
	connectionless Transport: UDP, Connection-Oriented Transport: TCP, Principles of	
	Congestion Control, TCP Congestion Control	08 hrs
6	Application Layer	
	Principles of Network Applications, The Web and HTTP, Electronic Mail in the Internet,	
	DNS-The Internet's Directory Service, Peer-to-Peer Applications, Video Streaming and	
	Content Distribution Networks	06 hrs
Text Bo	oks:	
1.	J. F. Kurose and K. W. Ross, , Computer Networking, A Top-Down Approach, 7th Ed, , Pearso	on, 2017

2. Larry L Peterson & Bruce S Davien, Computer Networks A System Approach, 5th Ed , Morgan Kaufmann (Elsevier), 2011

References:

- 1. Nader F. Mir, Computer and Communication Networks, 2nd Edition, Pearson Prentice-Hall, 2015
- 2. Behrouz Forouzan, Data Communications and Networking, 5th Ed, McGraw Hill, 2012.
- 3. A S Tanenbaum, D J Wetherall, Computer Networks, 5th Ed., Prentice-Hall, 2010.

Program: Master of Technology		
Course Title: Distributed and Cloud Computing		Course Code: 18ECSC710
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 42	Exam Duration: 3 hrs	

2 3 4	Scalable Computing over the Internet, Technologies for Network-Based Systems, System Models for Distributed and Cloud Computing Virtual Machines and Virtualization of Clusters Implementation Levels of Virtualization, Virtualization Structures/Tools and Mechanisms, Virtualization of CPU, Memory, and I/O Devices, Virtual Clusters and Resources Management. Cloud Platform Architecture over Virtualized Data Centers Cloud Computing and Service Models, Architectural Design of Compute and Storage Clouds, Public Cloud Platforms. Cloud Programming and Software Environments	04 hrs 06 hrs 06 hrs
3	Virtual Machines and Virtualization of Clusters Implementation Levels of Virtualization, Virtualization Structures/Tools and Mechanisms, Virtualization of CPU, Memory, and I/O Devices, Virtual Clusters and Resources Management. Cloud Platform Architecture over Virtualized Data Centers Cloud Computing and Service Models, Architectural Design of Compute and Storage Clouds, Public Cloud Platforms.	06 hrs
3	Implementation Levels of Virtualization, Virtualization Structures/Tools and Mechanisms, Virtualization of CPU, Memory, and I/O Devices, Virtual Clusters and Resources Management. Cloud Platform Architecture over Virtualized Data Centers Cloud Computing and Service Models, Architectural Design of Compute and Storage Clouds, Public Cloud Platforms.	
_	Virtualization of CPU, Memory, and I/O Devices, Virtual Clusters and Resources Management. Cloud Platform Architecture over Virtualized Data Centers Cloud Computing and Service Models, Architectural Design of Compute and Storage Clouds, Public Cloud Platforms.	
	Management. Cloud Platform Architecture over Virtualized Data Centers Cloud Computing and Service Models, Architectural Design of Compute and Storage Clouds, Public Cloud Platforms.	
_	Cloud Platform Architecture over Virtualized Data Centers Cloud Computing and Service Models, Architectural Design of Compute and Storage Clouds, Public Cloud Platforms.	
_	Cloud Computing and Service Models, Architectural Design of Compute and Storage Clouds, Public Cloud Platforms.	06 hrs
4	Clouds, Public Cloud Platforms.	06 hrs
4		06 hrs
4	Cloud Programming and Software Environments	
	Challenges and Opportunities in cloud application, architectural styles, workflows: co-	
	ordination of multiple activities, MapReduce programming model.	06 hrs
5	Cloud Resource Management	
	Policies and mechanisms for resource management, Applications of control theory to task	
	scheduling on a cloud, Stability of a two-level resource allocation architecture, Feedback	
	control based on dynamic thresholds, Coordination of specialized autonomic performance	
	managers.	08 hrs
6	Cloud Resource Scheduling	
	Resource bundling; combinatorial auctions for cloud resources, Scheduling algorithms for	
	computing clouds. Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud	0.63
	scheduling subject to deadlines, Scheduling Map Reduce applications subject to deadlines.	06 hrs
7	Cloud Security	
	Cloud security risks, Security; the top concern for cloud users, Privacy; privacy impact	
	assessment, Trust, Operating system security, Security of virtualization, Security risks	
	posed by shared images, Security risks posed by a management OS, Xoar - breaking the	0(1
l	monolithic design of the TCB, A trusted virtual machine monitor.	06 hrs
Text Bo		
	1. Kai Hwang, Geoffrey C. Fox, Jack J. Dongarra, Distributed and Cloud Computing from Par	allel
	Processing to the Internet of Things, 1, Elsevier, 2012	
2.	Dan C. Marinescu, Cloud Computing Theory and Practice, 1, Elsevier, 2013	

- 1. RajkumarBuyya, Christian Vecchiola, S.ThamaraiSelvi , Mastering Cloud Computing, 1, McGraw Hil, 2013
- 2. 2. Anthony T. Velte, Toby J. Velte, Robert Elsenpeter, Cloud Computing, A Practical Approach, 1, McGraw Hil, 2010

Program: Master of Technology		
Course Title: Machine Learning		Course Code: 18ECSC711
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 42	Exam Duration: 3 hrs	

1	Introduction & Data Pre-Preprocessing	
	Introduction to data mining, Introduction to Machine Learning, Applications of Machine	
	Learning, Major tasks in data preprocessing - data reduction, data transformation and data	
	Discretization, data cleaning and data integration.	08 hrs
2	Mining Frequent Patterns, Associations and Correlations: Concepts and Methods	
	Basic Concepts, Efficient and Scalable Frequent Item set Mining Methods, finding	
	interesting Patterns, Pattern Evaluation Methods, Applications of frequent pattern and	
	associations, Advanced Frequent Pattern Mining- Frequent Pattern and Association	
	Mining: A Road Map, Mining Various Kinds of Association Rules. Pattern Mining in	
	Multilevel, Multidimensional Space.	07 hrs
3	Supervised Learning: Classification	
	Model Evaluation and Selection, Techniques to Improve Classification Accuracy:	
	ensemble Methods; Bayesian belief networks, Introduction to perceptron learning, Back	
	propagation algorithm.	08 hrs
4	Unsupervised Learning: Cluster Analysis	
	Partitioning methods, Hierarchical Methods, Density based methods, Outlier Detection.	07 hrs
5	Regression Analysis	
	ANOVA, Linear Discriminant Analysis, Support Vector Machines	06 hrs
6	Reinforcement Learning	
	Introduction to Reinforcement Learning (RL), Sequential Decision Problems, Passive RL,	
	Active RL, Generalization in RL, Applications of RL	06 hrs
Text B	ooks:	•
1.	Jiawei Han, MichelineKamber, and Jian Pei, Data Mining: Concepts and Techniques, 3rd	, Morgan
		, 0

1. Jiawei Han, MichelineKamber, and Jian Pei, Data Mining: Concepts and Techniques, 3rd, Morgan Kaufmann, 2011

2. Pang-Ning, Michael Steinbach, Vipin Kumar, Introduction to Data Mining, Pearson Education, 2007

References:

1. Ian H. Witten, Eibe Frank, Mark A. Hall, Data Mining - Practical Machine Learning Tools and Techniques, 3rd, Elsevier Inc, 2011.

2. M. H. Dunham, "Data Mining: Introductory and Advanced Topics", Pearson Education. 2008.

Program: Master of Technology		
Course Title: Software Engineering		Course Code: 18ECSC712
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 42	Exam Duration: 3 hrs	

	Content	Hrs
1	Introduction to Software Engineering	4 hrs
	Introduction to Software Engineering and A Generic view of process	
2	Process Models	6 hrs
	Prescriptive Models, The waterfall model, Incremental process models, Evolutionary	
	process models, Specialized process models, The Unified process. Agile view of process.	
3	Requirements engineering :Requirements Engineering tasks, Initiating Requirements	5 hrs
	Engineering Process Eliciting Requirements, Elicitation Work Products ,Developing Use-	
	Cases, Analysis Model, Negotiating Requirements and Validating requirements.	
4	Design Engineering	4 hrs
	Design within the context of SE, Design process and design quality, Design concepts, The	
	design Model, Pattern based software design, Architectural design: Software Architecture,	
	Data design, Architectural styles and patterns, Architectural design,	
5	Overview of object-oriented concepts	6 hrs
	Unified Modeling Language (UML). Class Model, State Model and Interaction Models:	
	Use case, sequence and activity diagrams.	
6	Object Oriented System Design	7 hrs
	Reuse Plan, Breaking a system into sub-systems and organizing. Allocation of sub-systems	
	to hardware and software. High Level Class Design: Design Optimization, Adjustment of	
	Inheritance and Organizing a class design.	
7	Testing Strategies: A strategic approach to software testing, Test strategies for	5 hrs
	conventional software, validation testing, system testing. Testing tactics: White box testing,	
	basis path testing, control structure testing, black box testing, testing for specialized	
	environments, architectures and applications.	
8	Project Management and Metrics: Management spectrum, The people, product, process,	5 hrs
	metrics in the process and project domains, soft ware measurements, metrics for software	
	quality. Project Estimation: Observations on estimation, the project planning process,	
	software scope and feasibility, resources, software project estimation, Decomposition	
	techniques, empirical estimation models	
Refer	rences:	
1.		Hill
	International Edition, 2009	
2	. Blaha M, Rumbaugh, Object Oriented Modeling and Design with UML, Second, Pearson, 200)8
2.		

- 3. Ian Sommerville, Software Engineering, Seventh Edition, Pearson education, 2004.
 - Ali Bahrami, Object Oriented System Development using U M Languages, Mc-Grawhill, 2008

Program: Master of Technology		
Course Title: Image and Video Processing		Course Code: 18ECSC713
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 42	Exam Duration: 3 hrs	

1	Fundamentals of Image processing and Image Transforms: Basic steps of Image	
	processing system sampling and quantization of an Image - Basic relationship between	
	pixels. Image Transforms: 2 D Discrete Fourier Transform, Discrete Cosine Transform	
	(DCT), Discrete Wavelet transforms.	07 hrs
2	Image Enhancement: Spatial Domain methods: Histogram Processing, Fundamentals of	
	Spatial Filtering, Smoothing Spatial filters, Sharpening Spatial filters. Frequency Domain	
	methods: Basics of filtering in frequency domain, image smoothing, image sharpening,	
	selective filtering.	08 hrs
3	Image Analysis: Spatial feature extraction, Transform features, Edge detection Boundary	
	Extraction, Boundary representation, Region representation, Moment representation,	
	Structure, Shape features, Texture, Scene matching & detection, Image segmentation and	
	Classification Techniques.	08 hrs
4	Basics of Video Processing: Analog video, Digital Video, Time varying Image Formation	
	models : 3D motion models, Geometric Image formation, Photometric Image formation,	
	sampling of video signals, filtering operations	07 hrs
5	2-D Motion Estimation: Optical flow, pixel based motion estimation, Block matching	
	algorithm, Mesh based motion Estimation, global Motion Estimation, Region based motion	
	estimation, multi resolution motion estimation.	06 hrs
6	Video Segmentation and Tracking : Change detection, Spatiotemporal change detection,	
	Motion segmentation, Motion tracking in video : Rigid object tracking and articulated object tracking	06 hrs
Text B		00 1115
	R. C. Gonzalez and R. E. Woods, "Digital Image Processing," 3 rd edition, Pearson Education(Asia) Pte.
	Ltd/Prentice Hall of India, 2009.	,
2	M. Takala "Digital Video Bracessing" 2nd adition Brantico Hall USA 2015	

2. M. Tekalp, "Digital Video Processing", 2nd edition, Prentice Hall, USA, 2015.

References:

- 1. Anil K. Jain, "Fundamentals of Digital Image Processing," Pearson Education (Asia) Pte. Ltd./Prentice Hall of India, 2004.
- 2. Alan C Bovik "Essential Guide to Video Processing", AP Elsevier publication, 2009
- 3. Z. Li and M.S. Drew, "Fundamentals of Multimedia," Pearson Education (Asia) Pte. Ltd., 2004.

Program: Master of Technology		
Course Title: Cryptography and Network Security		Course Code: 18ECSC714
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 42	Exam Duration: 3 hrs	

1	Network Security Overview	
	Computer Security Principles, The OSI Security architecture: Security attacks, services and	
	mechanisms, A model for Network Security, Classical Encryption techniques: Substitution	
	ciphers- Caesar, Monoalphabetic, Playfair and Hill ciphers, Substitution ciphers,	
	Taxonomy of Cryptography and Cryptanalysis.	08 hrs
2	Data Encryption Algorithms	
	Traditional block cipher structure, Data Encryption Standard, DES example, strength of	
	DES, Multiple DES, block cipher design prinicples, Advanced Encryption Standard, block-	001
	cipher modes of operation, Stream Ciphers: RC4 and A5/1.	08 hrs
3	Public-Key Cryptography and Key Management	
	Elementary Concepts and Theorems In Number Theory, principles of public-key	
	cryptosystems, The RSA algorithm, Diffie-Hellman Key Exchange, Elliptic curve	
	arithmetic, Elliptic key cryptography, Key Distributions and Management, X.509	00 1
	certificates, public key infrastructure	08 hrs
4	Data Authentication	
	Cryptographic Hash Functions: applications and requirements, Hash functions based on	
	cipher block chaining, Secure Hash algorithm, SHA3, Message authentication codes:	06 hrs
_	requirements and functions, HMAC, Digital Signatures, and Digital Signature Standard.	UO III'S
5	Application, Transport and Network layer Security	
	Web security considerations, Pretty Good Privacy and S/MIME, Secure Sockets Layer,	
	HTTPs, Kerberos, SSH, DomainKeys Identified Mail (DKIM), IPSec overview,	06 hrs
-	Encapsulating security payload, combining security associations, Internet key exchange	00 1115
6	Wireless Network Security	
	Wireless security threats and measures, mobile device security, IEEE 802.11 WLAN	
	Standard, IEEE 802.11i Wireless Lan Security: Services and phases of operation, WPA and	06 hrs
Text E	WPA2	00 11 5

 William Stallings, Cryptography and Network Security Principles And Practices, 6th Edition, Pearson, 2014.

References:

- 2. Behrouz A. Forouzan, "Cryptography and Network Security", 6th Edition, Tata McGraw-Hill, 2014.
- 3. Mark Stamp, "Information Security: Principles and Practices", 2nd Edition, John Wiley and Sons, 2011.

Expt./Job No.	Brief description about the experiment/job	No. of Lab. Slots
1.	Demo and practice on Crypto Library	1
2.	Implementation of symmetric key algorithm	1
	algorithms	
3.	Implementation of asymmetric key algorithm	2
	algorithms, Hash algorithms	
4.	Web Security using SSL certificates	1

Lab Plan

School of Computer Science and Engineering

5.	Secure access to resources to Kerberos	2
6.	Web server security using CAPTCHA	1
7.	Implemenetation of access Control	1
8.	Configuring Firewall, IDS	1

Program: Master of Technology		
Course Title: Embedded Systems		Course Code: 18ECSE715
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 42	Exam Duration: 3 hrs	

1	The 8051 Architecture	
	Introduction, 8051 Microcontroller hardware, input/output pins, ports & circuits, External	
	memory.	06 hrs
2	Addressing modes and operations of 8051	
	Introduction, addressing modes, external data Moves. Code Memory Read Only Data	
	Moves / Indexed Addressing mode, PUSH and POP opcodes, Data exchanges, example	
	programs. Byte level logical Operations, Bit level Logical Operations, Rotate and Swap	
	Operations, Example Programs. Arithmetic Operations: Flags, Incrementing and	
	Decrementing, Addition, Subtraction, Multiplication and Division, Decimal Arithmetic,	0.63
	Example Programs.	06 hrs
3	Jump and Call Instructions	
	The JUMP and CALL Program range, jump calls and Subroutines, Example programs	04 hrs
4	8051 Programming in C	
	Data Types and Time delays in 8051C, I/O Programming, Logic operations, Data	
	Conversion programs, Data serialization.	04 hrs
5	8051 Timer/Counter Programming in Assembly and C	
	Programming 8051 Timers, Counter Programming, Programming Timer 0 and Timer1 in	0.4.1
	8051.	04 hrs
6	8051 Serial Port Programming in Assembly and C	
	Basics of Serial Communication, 8051 connection to RS232, 8051 serial port Programming	041
	in Assembly, 8051 serial port Programming in C.	04 hrs
7	8051 Interrupts Programming in Assembly and C	
	8051 Interrupts, Programming Timer Interrupts, Programming external hardware interrupts,	
	Programming the Serial Communication Interrupts, Interrupt Priority in the 8051, Interrupt	04 hrs
0	programming in assembly and C.	04 III'S
8	8051 Interfacing techniques using ATMEGA32 microcontroller	
	Interfacing 8051 to LEDs, DIP switches, BCD Decoder display, 7 Segment Display, Timers	05 hrs
9	hyperterminal (Serial Communication)	03 11 5
9	8051 Interfacing to peripheral devices using ARM microcontroller	
	Interfacing 8051 to LCD, Keypad, DAC, parallel and serial ADC, Stepper Motor and DC	05hrs
m ()	Motor	03115
	Books:	
3		ram
	International, 2006	
4	. Mazidi.M.A, Mazidi.J.G and McKinlay.R.D, "The 8051 Microcontroller and Embedded Syste	ms- usin

4. Mazidi.M.A, Mazidi.J.G and McKinlay.R.D, "The 8051 Microcontroller and Embedded Systems- using Assembly and C", 2ed, PHI 2006/Pearson, 2006

References:

3. Hall.D.V, "Microprocessors and Interfacing", Revised 2ed., TMH,2006

Program: Master of Technology		
Course Title: Computer Graphics and Vision		Course Code: 18ECSE716
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 42	Exam Duration: 3 hrs	

1	Basic Raster Graphics Algorithms for Drawing 2d Primitives.	
	Overview, Scan Converting Lines, Scan Converting Circles, Filling Rectangles. Filling	
	Polygons, Filling Ellipse Arcs, Pattern Filling, Thick Primitives, Line Style and Pen Style.	08 hrs
2	Clipping in a Raster World.	00 111 5
2	Clipping Lines, Clipping Circles and Ellipses, Clipping Polygons. Antialiasing	04 hrs
3	Texture Mapping: The Basics	04 11 5
0	Loading Textures, Using the Color Buffer, Updating Textures, Mapping Textures to	
	Geometry ,Texture Matrix , A Simple 2D Example ,Texture Environment ,Texture	
	Parameters, Basic Filtering, Texture Wrap, Mipmapping, Texture Objects: Managing	
	Multiple Textures	05 hrs
4	Geometric Objects and Transformations	
	Frames in OpenGL. Modeling a Colored Cube, Affine Transformations, Translation,	
	Rotation, and Scaling, Transformations in Homogeneous Coordinates, Concatenation of	
	Transformations, OpenGL Transformation Matrices	06 hrs
5	Viewing	
	Classical and Computer Viewing, Viewing with a Computer, Positioning of the Camera	
	Simple Projections, Projections in OpenGL, Interactive Mesh Displays, Parallel- Projection	
	Matrices, Perspective-Projection Matrices, Projections and Shadows	05 hrs
6	Representing Curves	
	Polygon Meshes, Parametric Cubic Curves: Hermit curves, Bezier curves, B-Splines	04 hrs
7	Introduction to Computer Vision	
	Fundamentals of image formation, camera imaging geometry, feature detection and	
	matching, multiview geometry including stereo, motion estimation and tracking, and	
	classification.	05 hrs
8	Basic methods for applications	
	Finding known models in images, depth recovery from stereo, camera calibration, image	
	stabilization, automated alignment (e.g. panoramas), tracking and recognition	05 hrs
Text B		05 11 5
	Computer Graphics: Principles and Practice, James D. Foley, Andries van Dam, Steven K. Fe	einer.
	John F. Hughes ,2nd Edition, Pearson Education, 2008	- 7
5.	Interactive Computer Graphics - A Top-Down Approach Using OpenGL (5/e), Edward Ange Edition Pearson Education, 2009.	1, 5th
6.	Computer Vision: Algorithms and Applications, Richard Szeliski, springer 2010	
Refere	nces:	
	Computer Graphics using OpenGL, F. S. Hill Jr. and S. M. Kelley, 3rd Edition, Pearson Educ 2009	cation,

Computer Graphics with OpenGL ,D. D. Hearn and M. P. Baker, 3rd Edition
 Dictionary of Computer Vision and Image Processing, Fisher,2nd edition,Weily,2014

Program: Master of Technology		
Course Title: Parallel Computing		Course Code: 18ECSE802
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 42	Exam Duration: 3 hrs	

1	Introduction and History	
	GPUs as Parallel Computers; Architecture of a Modem GPU; Parallel Programming	
	Languages and Models; Overarching Goals; Evolution of Graphics Pipelines; The	
	Era of Fixed- Function; Graphics Pipelines; Evolution of Programmable Real-Time	
	Graphics; Unified Graphics and Computing Processors; GPGPU; An Intermediate	051
-	Step; GPU Computing; Scalable GPUs Recent Developments; Future Trends	05 hrs
2	Introduction to CUDA	
	Data Parallelism; CUDA Program Structure; A Matrix-Matrix Multiplication	
	Example; Device Memories and Data Transfer; Kernel Functions and Threading; Function declarations; Kernel launch; Predefined variables; Runtime API.CUDA	
	Thread Organization; Using block Id x and thread Id x ; Synchronization and	
	Transparent Scalability; Thread Assignment ; Thread Scheduling and Latency	
	Tolerance	07 hrs
3	CUDA Memories, Performance Considerations and Floating Point	
	Considerations	
	Importance of Memory Access Efficiency; CUDA Device Memory Types; A	
	Strategy for Reducing Global Memory Traffic; Memory as a Limiting Factor to	
	Parallelism; Global Memory Bandwidth; Dynamic Partitioning of SM Resources;	
	Data Prefetching; Instruction Mix; Thread Granularity; Measured Performance;	
	More on thread execution, Global memory bandwidth, dynamic partitioning of SM	07 1
	resources, Floating point format, Arithmetic Accuracy and rounding	07 hrs
4	Floating Point Considerations	
	Floating-Point Format, Normalized Representation of M, Excess Encoding of E,	
	Representable Numbers, Special Bit Patterns and Precision, Arithmetic Accuracy and Rounding, Algorithm Considerations	06 hrs
5	Introduction to OPENCL	00 11 5
3	Introduction to OPENCL; Background; Data Parallelism, Model; Device, Architecture,	
	Kernel Functions, Device Management and Kernel Launch; Electrostatic Potential	
	Map in OpenCL;	06 hrs
6	Parallel Programming and Computational Thinking	
	Goals of Parallel Programming, Problem Decomposition, Algorithm Selection,	
	Computational Thinking	02 hrs
7	Introduction to Embedded GPU Computing	
	Architecture, Programming Model, Programs, Configuration etc.	04 hrs
8	Case Study /Projects	0 7 III 5
	Concepts of Game Design, Applications like Matrix multiplication, MRI reconstruction Molecular Visualization and Gaming	05 hrs
		0.5 11 5

Text Books:

1. Programming Massively Parallel Processors: A Hands on Approach; David B. Kirk, Wen- mei W. Hwu; Morgan Kaufmann /Elsevier India reprint 2010

References:

1. Heterogeneous Computing with OpenCL, by Benedict R. Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry & Dana Schaa; Morgan Kaufmann 2011

Program: Master of Technology		
Course Title: Social Network Analysis		Course Code: 18ECSE803
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 42	Exam Duration: 3 hrs	

1	Introduction: Aspects of Networks, Network Datasets: An Overview.	
	Strong and Weak Ties : Triadic Closure, The Strength of Weak Ties, Tie Strength and	
	Network Structure in Large-Scale Data, Tie Strength, Social Media, and Passive	
	Engagement, Closure, Structural Holes, and Social Capital	06 hrs
2	Networks in Surrounding Contexts : Homophily , Mechanisms Underlying Homophily:	
	Selection and Social Influence, Tracking Link Formation in On-Line Data, Spatial	
	Model of Segregation	06 hrs
3	Positive and Negative Relationships :Structural Balance Characterizing the Structure of	
	Balanced Networks, Applications of Structural Balance A Weaker Form of Structural	
	Balance, Advanced Material: Generalizing the Definition of Structural Balance	06 hrs
4	Link Analysis and Web Search : Searching the Web: The Problem of Ranking , Link	
	Analysis using Hubs and Authorities, PageRank, Applying Link Analysis in Modern	
	Web Search, Applications beyond the Web, Spectral Analysis, Random Walks, and Web	
	Search .	06 hrs
5	Cascading Behavior in Networks : Diffusion in Networks , Modeling Diffusion through	
	a Network, Cascades and Clusters, Diffusion, Thresholds, and the Role of Weak Ties,	
	Extensions of the Basic Cascade Model, Knowledge, Thresholds, and Collective Action,	
	The Cascade Capacity .	
		06 hrs
6	Power Laws and Rich-Get-Richer Phenomena : Popularity as a Network Phenomenon,	
	Power Laws, Rich-Get-Richer Models, The Unpredictability of Rich-Get-Richer Effects,	
	The Long Tail, The Effect of Search Tools and Recommendation Systems, Advanced	
	Material: Analysis of Rich-Get-Richer Processes .	06 hrs
7	The Small-World Phenomenon : Six Degrees of Separation, Structure and Randomness,	
	Decentralized Search, Modeling the Process of Decentralized Search, Empirical Analysis	
	and Generalized Models, Core-Periphery Structures and Difficulties in Decentralized	
	Search, Analysis of Decentralized Search	06 hrs
Text l	Books:	
1	Networks, Crowds and Markets by David Fasley and Ion Kleinberg, Cambridge University F	Proce

1. Networks, Crowds and Markets by David Easley and Jon Kleinberg, Cambridge University Press, 2010

2. Social and Economic Networks by Matthew O. Jackson, Princeton University Press, 2010.

References:

1. Peter R. Monge, Noshir S. Contractor, Theories of communication networks. Oxford University Press, 2003.

2. Duncan Watts. Six degrees: the science of a connected age. Norton, 2004.

3. Stanley Wasserman, Katherine Faust. Social network analysis: methods and applications. Cambridge University Press, 1994.

Program: Master of Technology				
Course Title: Wireless and Mol	Course Code: 18ECSE804			
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 42	Exam Duration: 3 hrs			

1		T
1	Introduction: Characteristics of Cellular Systems, Fundamentals of Cellular Systems,	
	Cellular System Infrastructure, Satellite Systems, Network Protocols, Ad Hoc Networks,	04 hrs
-	Sensor Networks, Wireless LANs, MANs and PANs	04 1115
2	Mobile Radio Propagation : Introduction, Types of Radio Waves, Propagation,	
	Mechanisms, Free Space Propagation, Land Propagation, Path Loss, Slow Fading, Fast	
	Fading, Statistical Characteristics of Envelope, Characteristics of Instantaneous	
	Amplitude, Doppler Effect, Delay Spread, Intersymbol Interference, Coherence and width	06 hrs
-	Cochannel Interference	UO IIIS
3	Cellular Concept : Introduction, Cell Area. Signal Strength and Cell Parameters,	
	Capacity of a Cell, Frequency Reuse, How to Form a Cluster, Cochannel interference,	07 hrs
	Cell Splitting, Cell Sectoring	07 nrs
4	Traffic Channel Allocation : Introduction, Static Allocation versus Dynamic Allocation	
	, Fixed Channel Allocation (FCA), Simple Borrowing Schemes, Complex Borrowing	
	Schemes, Dynamic Channel Allocation (DCA), Centralized Dynamic Channel	
	Allocation Schemes, Distributed Dynamic Channel Allocation Schemes, Hybrid	
	Channel Allocation (HCA), Hybrid Channel Allocation (HCA) Schemes, Flexible Traffic	
	Channel Allocation Schemes, Allocation in Specialized System Structure, Channel	
	Allocation in One-Dimensional Systems, Reuse Partitioning–Based Channel Allocation,	04 hrs
_	Overlapped Cells–Based Channel Allocation	04 111 5
5	Mobile Communication Systems: Introduction, Cellular System Infrastructure,	
	Registration, Handoff Parameters and Underlying Support, Parameters Influencing	
	Handoff, Handoff Underlying Support, Roaming Support, Home Agents, Foreign	06 hrs
6	Agents, and Mobile IP, Rerouting in Backbone Routers, Multicasting. Mobile network and transport layer: Mobile IP Packet delivery-Tunneling-Reverse	00 11 5
0		
	tunneling, IPV6-Dynamic host routing protocol, Traditional TCP-Congestion control-	
	classical TCP-Snooping Mobile TCP, Transaction oriented TCP-TCP over 2.5/3G	
	Wireless Networks,	07 hrs
7	Emerging wireless technologies:	
	Femtocell Network : Introduction, Technical Features, Challenges Push-to-Talk (PTT)	
	Technology for SMS : PTT Network Technology, PTT in iDEN Cellular Networks, PTT	
	in Non-iDEN Cellular Networks: PoC	
	Multicast in Wireless Networks : Recent Advances in Multicast over Mobile IP, Reliable	
	Wireless Multicast Protocols, Broadcasting, Multicasting, and Geocasting in Ad	
	HocNetworks	04 hrs
Toyt	Books:	

Text Books:

1. Dharma PrakashAgrawal, Qing –An Zeng, "Introduction to wireless and mobile systems", Cengage Learning, 2014.

2. Roy Blake, "Wireless communication technology", Cengage Learning, sixth Indian reprint 2013.

3. Singal T.L., "Wireless communication", Tata McGraw Hill Education private limited, 2011.

References:

- 1. Wireless telecommunications systems and networks by Gray J.Mullet, CengageLearning,Reprint 2014.
- 2. UpenaDalal, "Wireless communication" Oxford University press, first edition 2009.
- 3. MartynMallick, "Mobile and Wireless Design Essentials", Wiley Dreamtech India Pvt. Ltd., 2004.
- 4. Jochen Schiller, "Mobile Communications", Addision Wesley, 2nd Edition, 2011.

B. V. B. College of Engineering & Technology

Change summary between 2015-16 and 2016-17 admitted batches (i.e. 2015 to 19 batch 2016 to 20 batch)

Program: III Semester Bachelo	or of Engineering (Electronics & Comm	nunication Engineering)	
Course Title: Digital Circuits		Course Code: 17EECC203	
L-T-P: 3-0-0 Credits: 3		Contact Hours: 3Hrs/week	Teaching
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	Hours
Teaching Hours: 42 Hrs	Examination Duration: 3 Hrs		
	Unit-I		03
Chapter No. 1. Logic Families			05
Logic levels, output switching t	imes, fan-in and fan-out, comparison	of logic families	
maps-3,4 variables, Incomple	ogic, canonical forms, Generation of etely specified functions(Don't care	switching equations from truth tables, Karnaugh terms),Simplifying Maxterm equations, Quine- re terms, Reduced Prime Implicant Tables.	07
	• •	tiplexers- Using multiplexers as Boolean function ad carry adders, Binary comparators.	08
	Unit-II		
Latch, The gated D Latch, The	s, A SR Latch, Application of SR Latch, Master-Slave Flip-Flops (Pulse-Trigger Triggered Flip- Flop: The Positive Edg	, A Switch De bouncer, The SR Latch, The gated SR red Flip-Flops): The Master-Slave SR Flip-Flops, The ge-Triggered D Flip-Flop, Negative-Edge Triggered D	08
Chapter No. 5. Analysis of Seq	uential Circuits		
	of a Synchronous Mod-n Counter us	counters, Ring and Johnson Counters, Design of a sing clocked JK Flip-Flops Design of a Synchronous	08
	Unit-III		
-	-	State Machine notations, Synchronous Sequential	04

B. V. B. College of Engineering & Technology

Text Books		
1. Donald I	D Givone, Digital Principles and Design, Tata McGraw Hill Edition,2002	
2. John M	Yarbrough, Digital Logic Applications and Design, Thomson Learning,2001	
3. A Anand	Kumar, Fundamentals of digital circuits, PHI,2003	
References		
1. Charles	H Roth, Fundamentals of Logic Design, Thomson Learning, 2004 2.Zvi	
Kohavi	, Switching and Finite Automata Theory, 2nd, TMH	
2R.D. Su	dhaker Samuel, Logic Design, Sanguine Technical Publishers, 2005	
3R P Jaii	n, Modern Digital Electronics, 2nd, Tata McGraw Hill , 2000	

Earlier known as B. V. B. College of Engineering & Technology

Program: III Semester B	Bachelor of Engineering (Electronics & Cor	nmunication Engineering)	
Course Title: Engineerir	ng Design	Course Code: 17EECF201	Teaching
L-T-P: 0-0-3 Credits: 3		Contact Hours: 03 Hrs/week	Hours
ISA Marks: 80	SA Marks: 80 ESA Marks: 20 Total Marks: 100		Hours
Teaching Hours:	Examination Duration: 2 Hrs		
	PART A		
Planning Introduction to Enginee Specifications	ring Design, Problem Definition, Design at	tributes Gantt Chart, Design Objectives, Design	02
Conceptual Design Functional Analysis, Cor	ncept generation, Concept Evaluation		03
System Level Design Product Architecture, C	onfiguration Design, Parametric Design		03
Detail Design			03
Sub-system Design, Des	ign Verification		
	PART B		
OrCAD Functional simulation or	f basic Analog and Digital application circu	its using OrCAD eCAD tool	01
Schematic Capture of th	ne reference design using using OrCAD eCA	AD tool.	01
Layout Design of the ref	ference design using using OrCAD eCAD to	ol.	01
Creation of Symbols/Ce	ll/Part		01
LabVIEW Introduction to LabVIEV	V and functional simulation of basic Analo	g and Digital application circuits in LabVIEW	01
Functional Simulation o	f the circuit for selected problem stateme	nt	01
Co-simulation of the cire	cuit for selected problem statement.		01

Earlier known as B. V. B. College of Engineering & Technology

	chelor of Engineering (Electronics & Com		Teachig	
Course Title: Linear Integ		Course Code:17EECC205	Hours	
L-T-P: 3-0-0 Credits: 3		Contact Hours: 3Hrs/week	_	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 40Hrs	Examination Duration: 3 Hrs		Hrs	
	U	nit I		
Chapter No 1. OPAMP ch	aracteristics			
Ideal and non-ideal OPAN Large signal bandwidth.	IP terminal characteristics, Input and out	out impedance, output Offset voltage, Small signal and	04	
Chapter No 2. OPAMP w	ith Feedback			
		edback on Bandwidth, Input and Output impedances, sion Property under linear mode operation.	04	
Chapter No 3. Basic OPAI	MP architecture		0	
		gain, CMRR, 5-pack differential amplifier with design, y and Compensation, Bandwidth and frequency		
	Unit II			
Chapter No 4. Current Mi	rrors			
Current Mirror circuits an current Mirrors, Current s		edance, voltage swing), Widlar, Cascode and Wilson	0	
Chapter No 5. Linear app	lications of OPAMP			
DC and AC Amplifier,	Summing, Scaling and Averaging am , Differentiator,Voltage sources, current High pass filters. V to I and I to V converte	nplifiers (Inverting, Non-inverting and Differential sources and current sinks, Active Filters –First and ers.	80	
	Unit III			
			01	

Earlier known as B. V. B. College of Engineering & Technology

Text Book

1. Behzad Razavi, Fundamentals of microelectronics , 2ndedition.

- 2. Phillip E. Allen, Douglas R. Holberg, CMOS Analog CircuitDesign.
- 3. Ramakant A. Gayakwad, Op Amps and Linear IntegratedCircuits.

References

- 1. A.S. Sedra& K.C. Smith, MicroelectronicCircuits,
- 2. Sergio Franco, Design with Operational Amplifiers and Analog IntegratedCircuits.
- 3. David A. Bell, Operational Amplifiers and LinearIC's.
- 4. B. Razavi, Design of Analog CMOS Integrated Circuits McGraw-Hill, 2001

Earlier known as B. V. B. College of Engineering & Technology

Course Title: Product Realization Course Code:			17EECF203	
Total Contact Credits: 2 Duration of (0-0-2)		Duration of SI	EE Credits: -	
ISA Marks: 80		ESA Marks: 2	0	
Week #	Particulars		Template #	Venue
Week 1	Introduction to Prototyping			Studio Engagement
and	> Defining-			
Week 2	Specifications, Part Drawings, Assembly Drav Layout, Wireframe , Pseudocode, BOM, Pro Fabrication and Test Plan Validation			
	> IOT Workshop			
Week 3	 Identifying sub-assemblies (minimum of 3) 			Makers Space/
	Selection of materials for all the parts and joining technique	ues		
Week 4	Process plan			
	Identifying the proper machines and tools required for prototyping.	-		
	Preparing of raw materials for prototyping.			
	Plan and procure the bought out parts.			
Week 5	> Fabricate the parts for sub assembly 1			
Week 6	Fabricate the parts for sub assembly 2			
Week 7	Fabricate the parts for sub assembly 3			
Week 8	Assemble the sub assemblies and check for interference a functionality	and		
Week 9	Test the functional prototype using proper identified test	methods.		

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi 580031. Karnataka (India) Tel. : +91 - 836 - 2378123 Fax : +91 - 836 - 2374985. www.kletech.ac.in

Earlier known as B. V. B. College of Engineering & Technology

Week 10	 Analyse the test results System modification 	
Week 11	 Final concluding review Product catalogue 	Studio/ Makers Space

References

1. Pahl, G., Beitz, W., Feldhusen, J. and Grote ; "Engineering Design-A Systematic Approach" by, K.-H- Springer; 3rd ed. 2007

Earlier known as B. V. B. College of Engineering & Technology

Course Title: Embedded Intelligent Systems	Course Title: Embedded Intelligent Systems	
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 6hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs: 60	Exam Duration: 3 hrs	

	Unit - I	
1	Basics of embedded systems	
	Linux Application Programming, System V IPC, . Linux Kernel Internals and Architecture , Kernel Core , Linux Device Driver Programming, Interrupts & Timers , Sample shell script, application program, driver source build and execute	10 hrs
2	Heterogeneous computing	
	Basics of heterogeneous computing with various hardware architectures designed for specific type of tasks, Advanced heterogeneous computing with a. Introduction to Parallel programming b.GPU programming (OpenCL). Open standards for heterogeneous computing (Openvx), Basic OpenCL examples - Coding, compilation and execution	12 hrs
	Unit - II	
3	ML Frameworks with the target device	16 hrs
	Caffe, tensorflow, TF Lite machine learning frameworks & architecture ,Model parsing, feature support and flexibility ,Supported layers , advantages and disadvantages with each of these frameworks, Android NN architecture overview , Full stack compilation and execution on embedded device	
4	Model Development and Optimization	8 hrs
	Significance of on device AI ,Quantization , pruning, weight sharing, Distillation ,Various pre-trained networks and design considerations to choose a particular pre-trained model ,Federated Learning , Flexible Inferencing	
	Unit - III	
5	Android Anatomy	8 hrs
	Android Architecture ,Linux Kernel , Binder , HAL Native Libraries , Android Runtime, Dalvik Application framework , Applications, IPC	
Text Bo	oks	
1. 2.	Linux System Programming , by Robert Love , Copyright © 2007 O'Reilly Media Heterogeneous Computing with OpenCL, 2nd Edition by Dana Schaa, Perhaad Mistry, David R. Kaeli, Lee Howes, Ben , Publisher: Morgan Kaufmann	edict Gast
Refere	nce Books:	
1.	Deep Learning, MIT Press book, Goodfellow, Bengio, and Courville's	
2.	Beginning Android , by Wei-Meng Lee , Publisher: Wrox , O'Reilly Media	

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi 580031. Karnataka (India) Tel. : +91 - 836 - 2378123 Fax : +91 - 836 - 2374985. www.kletech.ac.in

Earlier known as B. V. B. College of Engineering & Technology

Scheme for End Semester Assessment (ESA)

UNIT	Experiments to be set of 10 Marks Each	Chapter Numbers	Instructions
1	Project Examination	1,2,3,4,5	Project implementation and demonstration 20 marks

Earlier known as B. V. B. College of Engineering & Technology

Course Code: 19EECE416	Course Title: Biosensor	
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 72
ISA Marks: 00	ESA Marks: 100	Total Marks: 100
Teaching Hrs: 72		Exam Duration: 3 hrs

Content	Hrs	
Unit - 1		
Chapter No. 1. Basic Introduction to sensors Introduction to sensors: fundamental characteristics such as Sensitivity, linearity, repeatability, hysteresis, drift. Sensing Principles: optical sensors, electrochemical sensors, micromechanical sensors, surface Plasmon sensors, colorimetric Sensors, acoustic sensors	5 hrs	
Chapter No. 2. Active Electrical Transducers Thermoelectric transducers, thermoelectric phenomenon, common thermocouple systems, piezoelectric transducers, piezoelectric phenomenon piezoelectric materials, piezoelectric force transducers, piezoelectric strain, piezoelectric torque transducers, piezoelectric pressure transducers, piezoelectric acceleration transducers. Magnetostrictive transducers Magnetostrictive force transducers, Magnetostrictive acceleration transducers, Magnetostrictive torsion transducers, Hall Effect transducers, and application of Hall transducer. Electromechanical transducers-Tachometers, variable reluctance tachometers Electrodynamic vibration transducers, Electromagnetic pressure electromagnetic flowmeter. Photoelectric transducers- photoelectric phenomenon, photoelectric transducers, Photo volatile transducers, Photo emissive transducers. Electrochemical transducers- basics of electrode potentials, reference electrodes, indicator electrodes, measurement of PH, measurement of bioelectric signals.	10 hrs	
Unit - 2		
Chapter No. 3. Passive electrical transducer Introduction, Resistive transducers- resistance thermometers, hot wire resistance transducers, Resistive displacement transducer, Resistive strain transducer, resistive pressure transducer, resistive optical radiation transducers. Inductive transducers-Inductive thickness transducers, Inductive displacement transducers, Movable core-type Inductive transducers, eddy current type Inductive transducers. Capacitive transducers-Capacitive thickness transducers, capacitive displacement transducers, capacitive moisture transducers Substrate and Wafers, Active Substrate Materials, Silicon as Substrate Material, Silicon Compounds, Silicon Piezo resistors, Gallium Arsenide, Quartz, Piezoelectric Crystals, Polymers, Packaging Materials.		
Chapter No. 4. Microfabrication Technology Design of process flow for device fabrication for application in biology and medicine: Introduction to the Clean room and contaminants, Wafer cleaning processes (DI water, RCA, metallic impurities, etc.), Substrate materials: Silicon,	10 hrs	

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi 580031. Karnataka (India) Tel. : +91 - 836 - 2378123 Fax : +91 - 836 - 2374985. www.kletech.ac.in

B. V. B. College of Engineering & Technology

Earlier known as

polymer and PCB, Thermal oxidation: Wet and dry oxidation, thin film deposition techniques: PVD- DC and RF Magnetron Sputtering, thermal evaporation, e-beam evaporation, LPCVD, PLD.

Types of masks: Hard and soft Lithography, Lithography – UV Photolithography, Soft lithography, additive manufacturing. Mask design and fabrication – Photo resists and mechanical mask such as stencils. Types of etching-Wet etching- anisotropic and Isotropic and dry etching RIE and DRIE. Device fabrication and inspection in the clean room.

Unit - 3		
Chapter No. 5. Biosensors	5 hrs	
Introduction: Biosensors and its applications in health care, agriculture, drug discovery and environmental monitoring. Devices for biology and medicine: Microfluidic channels, flow cytometry/ sorting, microchip using electrophoresis, force measurement with cantilevers, micro engineered devices for medical therapeutics, blood pressure sensors, devices for drug delivery, and devices for minimally invasive surgery.		
Chapter No. 6. Biological components for detection Enzymes, antigen-antibody reaction, biochemical detection of analysts, organelles, whole cell, receptors, DNA probe, pesticide detection, sensors for pollutant gases. Surface chemistry: Immobilization of biorecognition element,		
Antigen-Antibody functionalization, and assay labels including radioisotopes, fluorophores, dyes.		

Text Books (List of books as mentioned in the approved syllabus):

- 1. Fundamentals of Microfabrication and Nanotechnology by Marc J. Madou, 3rd edition. Taylor and Francis group.
- 2. Transducers and Instrumentation D.V.S. Murthy, 2nd Edn, PHI Ltd, 2010.
- 3. A.P.F. Turner, I. Karube & G.S. Wilson: Biosensors: Fundamentals & Applications, Oxford University Press, Oxford, 1987.

References:

- 1. Ernest O. Doeblin : Measurement Systems, Application and Design, McGraw-Hill, 1985.
- 2. Richard S.C. Cobbold : Transducers for Biomedical Measurements: Principles and Applications, John Wiley & Sons, 1974
- 3. John G. Webster (ed.) : Medical Instrumentation Application and Design; Houghton Mifflin Co., Boston, 1992.
- 4. Stephen D. Senturia : "Micro system Design", Kluwer Academic Publishers, 2001

Earlier known as B. V. B. College of Engineering & Technology

Course Code: 19EECE402	Course Title: Information Theory and Coding	
L-T-P-SS: 2-0-1	Credits: 3 Contact Hrs: 40	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40		Exam Duration: 3 hrs

Content	Hrs
Unit - 1	L
Chapter No. Chapter 1:Information Theory: Information Theory: Introduction, Measure of information, Average information content of symbols in long independent sequences, Average information content of symbols in long dependent sequences. Mark-off statistical model for information source, Entropy and information rate of mark-off source	7 hrs
Chapter No. Chapter 2: Source Coding: Encoding of the source output, Shannon's encoding algorithm. Communication Channels, Discrete communication channels, Continuous channels. Source coding theorem,, Huffman coding	8 hrs
Unit - 2	
Chapter No. Chapter 3: Channel coding Discrete memory less Channels, Mutual information, Channel Capacity Channel coding theorem, Differential entropy and mutual information for continuous ensembles, Channel capacity Theorem.	4 hrs
Chapter No. Chapter 4: Introduction to Error Control Coding: Introduction, Types of errors, examples, Types of codes Linear Block Codes: Matrix description, Error detection and correction, Standard arrays and table look up for decoding.	7 hrs
Chapter No. Chapter 5: Binary Cycle Codes Algebraic structures of cyclic codes, Encoding using an (n-k) bit shift register, Syndrome calculation.	4 hrs
Unit - 3	•
Chapter No. Chapter 6: BCH codes RS codes Golay codes, Shortened cyclic codes, Burst error correcting codes. Burst and Random Error correcting codes. Convolution Codes, Time domain approach. Transform domain approach. Systematic Convolution codes	10 hrs

Text Book (List of books as mentioned in the approved syllabus)

1. K. Sam Shanmugam, Digital and analog communication systems, John Wiley, 1996

2. Simon Haykin, Digital communication, John Wiley, 2003

References

1. Ranjan Bose, ITC and Cryptography, TMH(reprint 2007), 2002

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi 580031. Karnataka (India) Tel. : +91 - 836 - 2378123 Fax : +91 - 836 - 2374985. www.kletech.ac.in

2. Glover and Grant, Digital Communications , 2, Pearson, 2008

3. D Ganesh Rao, K N Haribhat, Digital Communications, Sanguine, 2009

Earlier known as B. V. B. College of Engineering & Technology

Course Title: CMOS ASIC Design Course code: 18EECE420				
L-T- P: 0-0-3	Credits: 03	Contact Hrs: 06hrs/week		
CIE Marks: 100	SEE Marks: 00	Total Marks: 100		
Teaching Hrs: 16hrs Lab Hrs: 24 hrs				
Chapter No. 1. Introduction: Design of combinational and sequential standard cells. Verilog for representing gate level netlists.	logic gates in CMOS. La	yout and characterization of	8 hrs	
Chapter No. 2. Timing Analysis: Sequential circuit timing and static timing analysis. Cell and net delays and cross-talk. Rationale and implementation of scan chains for testing standard-cell based logic circuits. Timing Verification: Setup Timing Check, Hold Timing Check, Timing across Clock Domains				
Chapter No. 3: Physical design Physical design of standard-cell based CMOS ASICs: scan insertion, placement, and clock tree synthesis and routing. Netlist transformations at each step of the physical design process. Net parasitic and parasitic extraction. Use of PLLs for clock generation and de-skew.				
Chapter No. 4. Standard Data formats: Standard data formats for representing technology and design: LEF, Liberty, SDC, DEF and SPEF. Clock gating and power gating for reduction of device power consumption. Design for reliability: electro- migration, wire self heat and ESD checks and fixes.				
Chapter No. 5. Packaging An overview of package design and implementation and system level tir	ning.		4 hrs	
Reference Books:				
1. The Design & Analysis of VLSI Circuits, L. A. Glassey & D. W. Dobbepahl, Addison Wesley Pub Co. 1985.				
2. H. Bhatnagar, Advanced ASIC Chip Synthesis Using Synopsys Design Compiler Physical Compiler and PrimeTime, 2nd e 2001.				
 Static Timing Analysis for Nanometer Designs A Practical Approach, J. Bhasker • Rakesh Chadha, Springer Science+B Media, LLC 2009 				
Tools: Cadence Innovous, Encounter				

B. V. B. College of Engineering & Technology

Earlier known as

Course Title: Physical Design-Analog	Course code: 18EECE419		
L-T- P: 0-0-3	Credits: 03	Contact Hrs: 06hrs/week	
CIE Marks: 100	SEE Marks: 00	Total Marks: 100	
Teaching Hrs: 16hrs Lab Hrs: 24 hrs			
Chapter No 1. Standard cell Layout creation Layout Practice Sessions (DRC/LVS Dirty layout), Understanding verification errors, Error debugging skills, Hands on experience of using layout editor, Quality of the layout, Half DRC rules, Mega module creation.			
Chapter No 2. Analog layout Importance of performance in Analog layout, Importance of floor planning and placement, Attributes need to be taken care during routing stage, Introduction to DRC, LVS, Density and RCX.			
Chapter No 3. Matching and Guard rings, Matching: Introduction to mismatch concepts, Causes for mismatch, Types of mismatch, Rules for matching, Activities. Guard ring : What is guard ring, Usage of guard ring			
Chapter No 4. Reliability issues Introduction to failure mechanism, Causes of reliability issues, Process enhancement techniques and Layout considerations to reduce reliability issues			
Chapter No 5. Physical design of amplifier and buffer Applying the studied concepts and doing layout, Prioritising the constraints given, Quality checks, Buddy reviews and implementations, Documentation			
Reference: The Art of Analog Layout – Alan Hastings CMOS IC layout – Dan Clien IC Layout Basics – Chris saint and Judy saint			

B. V. B. College of Engineering & Technology

Earlier known as

rse Code: 19EECE322 / 19EECE422 Course Title: Introduction to Deep Learning			
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 42		Exam Duration: 3 hrs	
	Content		Hrs
	Unit - 1		
Chapter 1: Introduction to Deep Learning: What is Deep Learning?, Applications of deep learning, D Neural Networks, Supervised Learning with Neural Netwo shallow neural networks, Deep neural networks. Introduc tensorflow.	orks, Logistic regression as a neur	al network, Computation graph,	8 hrs
Chapter 2: Hyper-Parameter Tuning, Regularization and Basics of Hyper-parameters, Regularization, Need for reg gradient descent, exponentially weighted averages and it optimization algorithm, The problem of localminima, wei network, Fitting Batch norm into a network, Softmax reg	ularization, dropout regularizatio is biascorrection, Gradient descer ght initialization in neural networ	nt with decay, Adam's	8 hrs
	Unit - 2		
Chapter 3: Convolutional Neural Networks Introduction to Computer Vision and Image Processing, 2 One layer of a convolution network, ReLu and pooling, Ex Inception Networks, Transfer learning, Data Augmentatio detection, Convolutional implementation of sliding windous using YOLO, One shot learning, Face recognition algorithm	ample of aConvNet, Classic CNN n, Residual networks, Object Loca ows, YOLO algorithm, Car detectio	Networks, ResNet architecture, alization, Landmark and object	12 hrs
Chapter 4: Recurrent Neural Networks Backpropogation through time, RNN model, Types of RNI Bidirectional RNN, Deep RNN, basics of NLP and Concept			04 hrs
	Unit - 3		•
Chapter 5: Unsupervised Deep Learning Concepts of Unsupervised deep learning, RBM (Restricted encoders, collaborative filtering with RBM, Deep belief no		ncoders, structure of Auto	10 hrs

Change summary between 2016-17 and 2018-19 admitted batches (i.e. 2016 to 20 batch 2017 to 21 batch)

Laboratory Title: C Programming (for Diploma)	Lab. Code: 18EECF204
Total Hours: 20	Duration of Exam: 02
ESA Marks: 20	Total ISA. Marks: 80

Experiment wise plan

1. List of experiments/jobs planned to meet the requirements of the course.

Expt./Job No.	Experiment/job Details	No. of Lab. Session/s per batch (estimate)	Marks/Experiment
1.	1. Write a C program to perform addition , subtraction , multiplication and division of two numbers .		8.00
2.	Write a C program to i) Identify greater number between two numbers using C program. ii) To check a given number is Even or Odd .	01	8.00
3.	Write a C program to i) To find the roots of a quadratic equation. ii) Find the factorial of given number.	01	8.00
4.	Write a C program to i) To find the sum of n natural numbers. ii) Print the sum of 1 + 3 + 5 + 7 + + n	01	8.00
5.	Write a C program to i) Print the pattern . * * * * * * * * * * * * * * *	01	8.00
	ii) Print the pattern 1		
	12		

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi 580031. Karnataka (India) Tel. : +91 - 836 - 2378123 Fax : +91 - 836 - 2374985. www.kletech.ac.in

Earlier known as B. V. B. College of Engineering & Technology

	123		
	1234		
	12345		
6.	Write a C program to	01	8.00
	To test whether the given character is Vowel or not. (using switch case)		
7.	Write a C program to	01	8.00
	To accept 10 numbers and make the average of the numbers using		
	one dimensional array.		
0		01	
8.	Write a C program to	01	8.00
	Find out square of a number using function.		
9	Write a C program to	01	8.00
	To find the summation of three numbers using function.		
10	Write a C program to	01	8.00
	Find out addition of two matrices.		

1. Materials and Resources Required:

Text Book

1. Programming in ANSI C, E Balagurusamy

B. V. B. College of Engineering & Technology

Earlier known as

Program: IV Semester Bachelor of Engineering (Electronics & Communication Engineering)					
Cours	Course Title: Data Structures Application Lab Course Code: 18EECC210				
L-T-P: 0-0-2 ISA Marks: 80				Hours	
Teach	ning + Lab. Hours: 48 Hrs	Examination Duration:2 Hrs			
1.	Hashing Hash, Hash function, Hash Table, Collision resolution techniques, Hashing Applications				
2.	Trees Computer representation, Tree properties, Binary Tree properties, Binary search trees properties and implementation, Tree traversals, AVL tree, 2-3 Tree				
3.	Graphs Computer representation, Adjacency List, Adjacency Matrix, Graph properties, Graph traversals				

<u>Book</u>

1. Data Structures A Psedocode Approach with C, Richard F. Gilberg & Behrouz A. Forouzan, second edition, CENGAGE Learning.

2. Data Structures Using C. Author, Aaron M. Tenenbaum. Publisher, Pearson Education.

Earlier known as B. V. B. College of Engineering & Technology

Course Code: 19EECC302	Course Title: OOPS using C++	
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 42
ISA: Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs: 42		Exam Duration:

Content	Hrs
Unit - 1	
Chapter 1: Fundamental concepts of object oriented programming: Introduction to object oriented programming, Programming Basics (keywords, identifiers, variables, operators, classes, objects),Arrays and Strings Functions/ methods (parameter passing techniques),	04 hrs
Chapter 2: OOPs Concepts: Overview of OOPs Principles, Introduction to classes & objects ,Creation & destruction of objects, Data Members, Member Functions , Constructor & Destructor , Static class member, Friend class and functions, Namespace	08hrs
Unit - 2	
Chapter 3: Inheritance: Introduction and benefits, Abstract class, Aggregation: classes within classes Access Specifier, Base and Derived class Constructors, Types of Inheritance. Function overriding	8 hrs
Chapter 4: Polymorphism: Virtual functions, Friend functions, static functions, this pointer	6 hrs
Unit - 3	
Chapter 5: Exception Handling: Introduction to Exception, Benefits of Exception handling, Try and catch block, Throw statement, Pre-defined exceptions in C++,Writing custom Exception class	8 hrs
Chapter 6: I/O Streams: C++ Class Hierarchy, File Stream, Text File Handling, Binary File Handling Error handling during file operations, Overloading << and >> operators	6 hrs

Earlier known as B. V. B. College of Engineering & Technology

Book	<s references:<="" th=""><th></th></s>	
Text	Book	
1.	Robert Lafore, "Object oriented programming in C++", 4th Edition, Pearson education, 2009.	
Refe	rences	
1.	Lippman S B, Lajorie J, Moo B E, C++ Primer, 5ed, Addison Wesley, 2013.	
2.	Herbert Schildt: The Complete Reference C++, 4th Edition, Tata McGraw Hill	

Change summary between 2018-19 and 2019-20 admitted batches (i.e. 2017 to 21 batch 2018 to 22 batch)

_	nelor of Engineering (Electronics & Co		
Course Title: Signals and Sy	ystems	Course Code: 19EECC202	Teaching
L-T-P: 4-0-0	P: 4-0-0 Credits: 4 Contact Hours: 4Hrs/week		Hours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	Hours
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		
		Unit I	
deterministic and random variable, dependent varial sinusoidal, complex expon- (homogeneity ,superposition, linearity and Chapter No. 02 : LTI Syster Impulse response represer	nd systems, classification of signals, signals, even and odd signals, energy ole, time scaling, multiplication, tim ential), Systems Interconnections(serio d time invariance, stability, memory, ca m Representation	convolution sum and convolution integral. Differential	10
	Unit II		
Chapter No. 03:Fourier re Introduction, Discrete time (derivation of transform ex	Fourier series (derivation of series ex	cluded) and their properties. Discrete Fourier transform	10
Chapter No. 04:Applicatio	ns of Fourier transform		
	sponse of LTI systems, Fourier transfo time signals. Sampling of continuous ti	rm representation of periodic signals, Fourier transform me signals.	10
	Unit III		
		nsforms: Inverse z-transforms (Partial Fraction method,	10
Text Book (List of books as	mentioned in the approved syllabus)	I	
1. Simon Haykin and E	Barry Van Veen , Signals and Systems, S	econd, John Wiley & Sons,2002	
2. Alan V Oppenheim	Alan S Willsky and S. Hamid Nawab , S,	ignals and Systems, Second, PHI public,1997	
References			
1. H. P Hsu, R. Ranjan,	Signals and Systems , TMH, 2006		

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi 580031. Karnataka (India) Tel.: +91 - 836 - 2378123 Fax: +91 - 836 - 2374985. www.kletech.ac.in

2. GaneshRaoandSatishTunga,,SignalsandSystems,SanguineT,2004

3. M.J.Roberts, Fundamentals of Signals and Systems, first Edition, TMH

Change summary between 2018-19 and 2019-20 admitted batches (i.e. 2018 to 22 batch 2019 to 23 batch)

Laboratory Title: Senior Design Project	Lab. Code:20EECW401
Credit : 0-0-6	Duration of exam: 2 hours
Total Hours: 70 hours/week	
Total Exam Marks: 100	ISA Marks: 50

Application Areas are,

- Smart City
- Connected Cars
- Home Automation
- Health care
- Smart energy
- Automation of Agriculture

Guide lines for selection of a project:

- The project needs to encompass the concepts learnt in the previous semesters, so that the student will learn to integrate, the knowledge base acquired to provide a solution to the defined problem statement of the project work.
- Student can select a project which leads to a product or model or prototype.
- Time plan: Effort to do the project should be between 60-70Hrs per team, which includes self-study of an individual member (80-100 Hrs) and team work (40-50hrs).
- Learning overhead should be 20-25% of total project development time.

Criteria for group formation:

- 3-4 students in a team.
- Role of teammates: Team lead and members.

Allocation of Guides and Mentors for the projects:

Every Project batch will be allocated with one faculty.

Details of the project batches:

- Number of faculty members: 50
- Number of students:3-4 students in a team.

Role of a Guide

The primary responsibility of the guide is to help students to understand the meaning and need of various stages in the implementation of the project. At every stage of the project development, guide should help towards its successful completion as per the predefined standards.

How student should carry out a project:

- Define the problem.
- Specify the requirements.
- Specify the design in the understandable form (Block Diagram, Flowchart, Algorithm, etc).
- Analyze the design and identify hardware and software componentsseparately.
- Select appropriate simulation tool and development board for the design.
- Implement the design.
- Optimize the design and generate the results.
- Result representation and analysis.
- Prepare a document and presentation.

Report Writing

- The format for report writing should be downloaded from ftp://10.3.0.3/projects
- The report needs to be shown to guide and committee for each review.

•

Evaluation Scheme

- Internal semester assessment (ISA)
- Evaluation is done based on the evaluation rubrics given in Table 1
- Project shall be reviewed and evaluated by the concerned Guide for 50% of the marks.
- Project shall be evaluated by the review committeefor 50% of the marks.

Course Title: Advanced Processor Architectures Course Code: 15EVEC704		Course Code: 15EVEC704	
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4	
CIE Marks: 50	SEE Marks: 50	Self Study :	
Teaching Hours: 50 Examination Duration: 3 hours Total Marks: 100		-	
Chapter 1: Recapitulate ARM	system: ARM registers, Pipeline, Inter	upts	
Exceptions, Vector table.		8 hours	
Text 1 (2.1,2.2,2.3,2.4,9.1,9.2,9	.3,9.4),Text 2(chapter 2,chapter 11), Te	xt 3(2.3,4.1,4.2,4.3)	
	set review: Data processing instruction instruction, Program Status Register inst		
Chapter 3: Thumb instruction pranch instructions, Data proce	n set review: Thumb register usage, A essing instructions, Single register load structions software interrupt instructions.		
Chapter 4: ARM Caches: The	memory hierarchy and Cache memory ushing cache memory, Cleaning cache		
Chapter 5: ARM MPU, MM Demonstration of MPU system		al memory works, Details of ARM	
specification, A typical AMBA AMBA AHB operation, Basic tr	,AXI: Overview of the AMBA specif -based microcontroller, Terminology, ansfer, Transfer type, Split and retry, S decoder, AMBA APB, APB specification tional features.	Bus interconnection, Overview of olit transfers, AHB bus slave, AHB	
M4, Memory technology, mem	rdware-Essentials: ARM 7,ARM 9,ARM ory types : Embedded RAM, DRAM te es, DDR3 memory, Error correction coo	chnology, SDRAM, Generations of	
	ntials: Boot Mode Selection & PIN M artup.S overview, U-Boot Architecture		
Chapter 9: Operating Systen LTIB, Open Embedded, Platforr	n -Key practical concepts, Part 1: Lir m Builder.	ux OS Boot Flow, Build Systems: 4 hours	
Driver Models, Linux: A Simple driver, Common Driver & Kerne		r driver, Flow of a network device	
Chapter 11: Board bring up o digital bring up, Analog section	:oncepts: Power system bring up, High bring up.	speed digital bring up, Low speed 4 hours	
Text Books 1. Andrew N.Sloss, Dominic Sy 2. William Hohl, "ARM Assemb	mes, Chris Wright, "ARM System Devel ly Language fundamentals and Techniq On-Chip Architecture", LPE second edit	ues", CRC press 2009.	

Г

Program: VLSI Design & Embedded Systems			
Course Title: Principles and Practices of Engineering Education		Course Code: 15ECRC701	
L-T-P: 2-0-1 Credits: 3		Contact Hours: 3	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40	Examination Duration: 3 hrs		
1. Fundamental Principles of Teaching and Learning		8 Hou	
2. Learning Styles and Theories			irs
3. Instructional Design Models and Technology Enhanced Learning			Irs
4. Assessment and Evaluation			irs
5. Engineering Learning Modules			irs

Program: VLSI Design & Embedded Systems			
Course Title: Data Structures u	ising C	Course Code: 17EVEC701	
L-T-P: 0-0-1	Credits: 1 Contact Hours: 2		
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hours: 25	Examination Duration: 3 hrs		
 Chapter 01:C language features Pointers revisited, Strings, Structures – Basics, Structures and functions, Arrays of structures, Pointers to structures, Self Referential Structures, Unions and bit fields, Files. Chapter 02:Stacks and Queues Definition, Representation and Applications of stack. Definitions, representation and applications of linear, circular, queues, multiple queues, priority queue. Recursion Chapter 03:Lists Linked lists, singly, doubly, circular lists, definitions, representations. Implementation of list operations, applications – polynomial addition, addition of long integers. Linked stacks, Linked Queues Chapter 04:Trees Binary trees – Definitions, traversals (recursive and iterative versions), Building and searching, Threaded Binary trees, Trees and their applications Exchange sorts, Selection and tree sorts, Merge and radix sorts 			5 Hrs 5 Hrs 5 Hrs 5 Hrs 5 Hrs
 Text Book Aaron M. Tenenbaum, et al, Data Structures using C, II Edition, PHI, 2006 Horowitz, Sahani, Anderson-Feed, Fundamentals of Data Structures in C, II Edition, University, 2008 References E Balaguruswamy, The ANSI C programming Language, II Edition, PHI, 2010 Yashavant Kanetkar, Data Structures through C, II Edition, BPB public, 2010 Richard F. Gilberg, Behrouz A. Forouzan , Data Structures: A Pseudocode Approach With C, II Edition, Course Tec, 2009 			
 Programs on Pointer concepts. Programs on string handling functions, structures union And bit-files. Programming on files Programming on stacks data structures Programs on implementation of different queue data structures. Programs on implementation of different types of Linked lists Programs on Implementation of trees Programs to implement different sorting techniques. Programming on graph 			

- Programming on hashing tables
 Design and implement stack queue data structures
 Design and implement linked list data structures
- **13.** Project

Program: VLSI Design & Embedded	a bystems		
Course Title: Analog and Digital Circuits Course Code: 17EVEC7		/02	
L-T-P: 2-0-1	Credits: 3	Contact Hours: 4	
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200	
Teaching Hours:	Examination Duration: 3 hrs		
Applications of theorems. RLC Circuits Combinational circuits and Seque Case study Devices: Diodes, MOSFETs. Di MOSFET single-and multi-stage ampl applications. Digital Circuits Combinational Circuits: Adder, Sequential Circuits: Latches, Flip Asynchronous counters. Conventional control systems: R-F criterion. Tools: Simulink, MATLAB, Proteus Reference Books: 1. A.S. Sedra & K.C. Smith, Microele 2. Jacob Millman and Christos Halki 3. John M Yarbrough, Digital Logic A 4. David A. Bell, Electronic Devices 3 5. Grey, Hurst, Lewis and Meyer, Ar 6. Charles H Roth, Jr; Fundamentals 7. Zvi Kohavi, Switching and Finite A 8. Ogata, Modern Control T Lab: Malog Electronics Lab 1. Study & analyze Diode Clipping a 2. Implement the RLC circuit to stud 3. Design an Amplifier using MOSFE 4. To implement an amplifier with ne impedance; output impedance & g 5. Study of transformer-less Class B efficiency 6. Design an amplifier for an unity ga techniques to increase the input in Digital Circuits Iab 1. Design and implement BCD adde	ential circuits ode circuits: clipping, clamping, re lifiers, Feedback amplifier, Oscilla encoder & decoder, Flops, Shift Registers, Design H Stability criterion, Root locus, Bo s, Pspics, Cadence, LabView, M ectronic Circuits, 5th Edition, Oxforas, Integrated Electronics, McGra Applications and Design, Thomso and Circuits, 4th edition, PHI pub halysis and design of analog integ s of Logic Design, Thomson Learn Automata Theory, 2ed, TMH heory, 4th ed, PHI.	ectifier. Design of BJT and ator, Op-amp linear & non linear MUX& DEMUX, Comparator. n of Synchronous counters and ode plots and Nyquist stability <u><i>Microcap, OrCAD</i> ord Univ. Press, 1999 aw Hill, on Learning, 2001 dication, 2007 grated circuits, 4th edition. ning, 2004. ed) circuits. & output impedance. ct of negative feedback on input ET. etermination of its conversion ng MOSFET. Suggest suitable lel adder</u>	
 Design and implement n bit magnitude comparator using 4- bit comparators Design and implement Ring and Johnson counter using shift register. Design and implement 8 bit ALU. 			
4. Design and implement 8 bit ALU.	sering erint region		

Program: VLSI Design & Embedded Systems		
Course Title: Principle of Embedded Systems	Course Code: 17EVEC703	Hours

	Credits: 2	Contact Hours: 4 Hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hours: 42 Hrs	Examination Duration: 3 h	rs 🛛	
	of Embedded System, Maj	or Application Areas, Purpose of Embedded ed Systems, Design Metric and Optimizing the	06 Hrs
2. Typical Embedded Systems: Core of Embedded System-processor fundamentals, up vs uc, risc vs cisc, vonneumann vs Harvard, 8051 controller architecture and programmer model, Memory, Sensor and Actuators, Communication Network, Embedded Firmware			08 Hrs
3. Low Level program Addressing Modes, Instruct and Debugging ALP's		age programming(ALP), Developing, Building,	08 Hrs
4. Middle Level Progr	• •	programming & debugging Differences from	02 Hrs
Cross Compiler, Embedded C language implementation, programming, & debugging, Differences from ANSI-C, Memory Models, Use of directives, Functions, Parameter passing and return types			
5. On-Chip Periphera	Is Study, Programming, and		00 11-2
	i		08 Hrs
Ports: Input/Output, Timers	Is Study, Programming, and	Application:	08 Hrs
Ports: Input/Output, Timers 6. External Interfaces LEDS, Switches(Momentary	Is Study, Programming, and & Counters, UART, Interrupts Study, Programming and A / type, Toggle type), Seven S rnal Multiplexing), LCD (8bit,	Application:	08 Hrs 10 Hrs
Ports: Input/Output, Timers 6. External Interfaces LEDS, Switches(Momentary Internal Multiplexing & External	Is Study, Programming, and & Counters, UART, Interrupts Study, Programming and A / type, Toggle type), Seven S rnal Multiplexing), LCD (8bit,	Application: pplications : segment Display: (Normal mode, BCD mode,	
Ports: Input/Output, Timers 6. External Interfaces LEDS, Switches(Momentary Internal Multiplexing & Exte Keypad Matrix, Stepper Mot Text Books	Is Study, Programming, and & Counters, UART, Interrupts Study, Programming and A / type, Toggle type), Seven S rnal Multiplexing), LCD (8bit,	Application: pplications : segment Display: (Normal mode, BCD mode,	
Ports: Input/Output, Timers 6. External Interfaces LEDS, Switches(Momentary Internal Multiplexing & Exter Keypad Matrix, Stepper Mot Text Books 1. Introduction to Embedde	Is Study, Programming, and & Counters, UART, Interrupts S Study, Programming and A / type, Toggle type), Seven S rnal Multiplexing), LCD (8bit, 4 or, DC Motor ed Systems 1E by Shibu K V. 8051 Microcontroller Architectu	Application: pplications : segment Display: (Normal mode, BCD mode,	10 Hrs
 Ports: Input/Output, Timers 6. External Interfaces LEDS, Switches(Momentary Internal Multiplexing & Exter Keypad Matrix, Stepper Mot Text Books 1. Introduction to Embedded 2. Kenneth J. Ayala ; "The 1996 / Thomson Learning 3. Muhammad Ali Mazidi a 	Is Study, Programming, and & Counters, UART, Interrupts S Study, Programming and A / type, Toggle type), Seven S rnal Multiplexing), LCD (8bit, or, DC Motor ed Systems 1E by Shibu K V. 8051 Microcontroller Architectung 2005	Application: pplications : Segment Display: (Normal mode, BCD mode, 4bit, Busy flag, custom character generation), ure, Programming & Applications" 2e, Penram In Rollin D. McKinlay; "The 8051 Microcontroller a	10 Hrs
 Ports: Input/Output, Timers 6. External Interfaces LEDS, Switches(Momentary Internal Multiplexing & Exter Keypad Matrix, Stepper Mot Text Books 1. Introduction to Embedded 2. Kenneth J. Ayala ; "The 1996 / Thomson Learning 3. Muhammad Ali Mazidi a 	Is Study, Programming, and & Counters, UART, Interrupts Study, Programming and A / type, Toggle type), Seven S rnal Multiplexing), LCD (8bit, or, DC Motor ed Systems 1E by Shibu K V. 8051 Microcontroller Architectung 2005 nd Janice Gillespie Mazidi and	Application: pplications : Segment Display: (Normal mode, BCD mode, 4bit, Busy flag, custom character generation), ure, Programming & Applications" 2e, Penram In Rollin D. McKinlay; "The 8051 Microcontroller a	10 Hrs
 Ports: Input/Output, Timers 6. External Interfaces LEDS, Switches(Momentary Internal Multiplexing & External Multiplexing &	Is Study, Programming, and & Counters, UART, Interrupts S Study, Programming and A (7 type, Toggle type), Seven S rnal Multiplexing), LCD (8bit, 4 or, DC Motor ed Systems 1E by Shibu K V. 8051 Microcontroller Architectu ing 2005 nd Janice Gillespie Mazidi and sing assembly and C "- PHI, 20	Application: pplications : Segment Display: (Normal mode, BCD mode, 4bit, Busy flag, custom character generation), ure, Programming & Applications" 2e, Penram In Rollin D. McKinlay; "The 8051 Microcontroller a	10 Hrs aternational,

3. Raj Kamal, "Microcontrollers: Architecture, Programming, Interfacing and System Design", Pearson Education, 2005

Program: VLSI Design & Embedded Systems		Teaching	
Course Title: CMOS VLS	Design	Course Code: 17EVEC704	Hours
L-T-P: 3-0-1	Credits: 4	Contact Hours: 6 Hrs/week	
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200	
Teaching Hours: 50 Hrs	Examination Duration: 3 hrs		
Chapter No. 1. Introduction to VLSI and IC fabrication technology VLSI Design Flow, Semiconductor Technology - An Overview, Czochralski method of growing Silicon, Introduction to Unit Processes (Oxidation, Diffusion, Deposition, Ion-implantation), Basic CMOS technology - Silicon gate process, n-Well process, p-Well process, Twin-tub Process, Oxide isolation. FinFET device, The root cause of short channel effects in twenty-first century MOSFETS, The thin body		15 hrs	

MOSFET concept, The FinFET and a new scaling path for MOSFETs, Ultra thin body FET, Recent trends in fabrication technology.	
Chapter No. 2. DC Analysis of CMOS logic gates DC transfer characteristics of CMOS inverter, Beta Ratio Effects, Noise Margin, MOS capacitance models.	05 hrs
Chapter No. 3. Transient Analysis of CMOS logic gates Transient Analysis of CMOS Inverter, NAND, NOR and Complex Logic Gates, Gate Design for Transient Performance, Switch-level RC Delay Models, Delay Estimation, Elmore Delay Model, Power Dissipation of CMOS Inverter, Transmission Gates & Pass Transistors, Tristate Inverter.	08 hrs
Chapter No. 4. Designing High-Speed CMOS Logic Networks Stick Diagrams, Euler Path, Layout design rules, DRC, Circuit extraction, Latch up – Triggering Prevention, Gate Delays, Driving Large Capacitive Loads, Delay Minimization in an Inverter Cascade, Logical effort, BiCMOS Drivers.	12 hrs
Chapter No. 5. Combinational CMOS Circuit Design Pseudo nMOS, Clocked CMOS, Dynamic CMOS Logic Circuits, Dual-rail Logic Networks: CVSL, CPL.	05 hrs
Chapter No. 6. Sequential CMOS Circuit Design Sequencing static circuits, Circuit design of latches and flip-flops, Clocking- clock generation, clock distribution.	05 hrs
 Text Books John P. Uyemura, Introduction to VLSI Circuits and Systems, 1, Wiley, 2007 Neil Weste, David Harris & Ayan Banerjee, CMOS VLSI Design, 3, Pearson Ed, 2005 Sung-Mo Kang & Yusuf Leblebici, CMOS Digital Integrated Circuits: Analysis and Design, 3, Tata 2007 	McGraw,
References	
 FinFET Modeling for IC Simulation and Design: Using the BSIM-CMG Standard By Yogesh Singh Chauhan, Darsen Duane Lu, Vanugopalan Sriramkumar, Sourabh Khandelwal Duarte, Navid Payvadosi, Ai Niknejad, Chenming Hu, Elsevier Publication, 2015 Wayne, Wolf, Modern VLSI design: System on Silicon, 3, Pearson Ed, 2005 Douglas A Pucknell and Kamran Eshraghian, Basic VLSI Design, 3, PHI, 2005 Phillip. E. Allen, Douglas R. Holberg, CMOS Analog circuit Design, 1, Oxford Uni, 2002 	, Juan Pablo
 Lab: Introduction to Cadence EDA tool. Static and Dynamic Characteristic of CMOS inverter. Layout of CMOS Inverter (DRC,LVS) Static and Dynamic Characteristic of CMOS NAND2 and NOR2 Layout of NAND2, NOR2, XOR2 gates (DRC, LVS). Design a Phase Detector using D-FF Design complex combinational circuits and analyze the performance using Cadence tool. 	

Program: VLSI Design & E	Embedded Systems		Teaching
Course Title: RISC Archite	ectures	Course Code: 17EVEC705	Hours
L-T-P: 3-0-1	Credits: 4	Contact Hours: 3 Hrs/week	
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200	
Teaching Hours: 46 Hrs	Examination Duration:		
		ure of ARM7TDMI, ARM programmers tion, ARM instruction execution.	06 Hrs
Program status register ins The Thumb programmer mo	, Branch instruction, Load store ins struction, Conditional execution, Ex- odel, ARM-Thumb interworking, othe e register load store instruction,	truction, Software interrupt instruction, ample programs, 16bit Instruction set- er branch instructions, Data processing Stack operation, Software interrupt	06 Hrs
3. Exception Handlin			
	or conditions, processor exception es, Procedures for handling exception	sequence, the vector table, Exception ns.	04 Hrs
4. Memory Hierarchy	Design:		
Cache basics, Miss rate and	d penalty, Cache Hierarchy, Memory	Organizations, Memory Hierarchy.	06 Hrs
5. Pipelining:			
	eline design, Computer arithmetic	ction pipeline design, Branch handling principles, Static arithmetic pipeline,	08 Hrs
6. Cortex M4 :			
	ogrammer's model, memory prote	ction unit, nested vectored interrupt	06 Hrs
Functional description, pro		ction unit, nested vectored interrupt	06 Hrs
Functional description, pro controller. 7. Multi-Core Archite Introduction to Intel Archite	ctures :	stem works, Basic Components of the	06 Hrs 07 Hrs
Functional description, pro controller. 7. Multi-Core Archite Introduction to Intel Archite Intel Core 2 Duo Processor:	ctures : cture, How an Intel Architecture Sy	stem works, Basic Components of the Controller.	

Text Books

- 1. "ARM System- on-Chip Architecture" by 'Steve Furber', LPE, Second Edition.
- 2. "ARM Assembly Language fundamentals and Techniques" by William Hohl, CRC press, 2009.
- 3. D. A. Patterson and J. L. Hennessey "Computer Organization and Design", Morgan , Kaufmann, 2002
- 4. H. Jonathan Chao and Bin Liu, "High performance switches & routers", Wiley Interscience, 2007.
- 5. Kai Hwang, "Advanced Computer Architecture TMH 1993
- 6. Web resources for Example Architectures of INTEL and Texas Instruments: http://download.intel.com/design/intarch/papers/321087.pdf

References

- 1. Kai Hwang, Faye A. Briggs, Computers Architecture and Parallel Processing MGH 1985
- 2. David E Culler, Jaswinder Pal Singh, Anoop Gupta "Parallel Computer Architecture", Harcourt Asia Pte Ltd 2000
- 3. Stalling W." Computer Organization and Architecture- Designing for performance" PHI,2005
- 4. D. Sima, T. Fountain, P.Kasuk," Advanced Computer Architecture-A Design Space Approach" Addisson Wesley, 1997.
- 5. M. J. Flynn,"Computer Architecture, Pipelined And Parallel Processing", Narosa Publications, 1998.

List of Experiments:

- 1. Write an ALP to verify data transfer w.r.t memory to achieve following
 - i. 8 bit data transfer
 - ii. 16 bit data transfer
 - iii. 32 bit data transfer
- 2. Write an ALP for Tables and lists to do following:
 - i. Add an entry to a list
- ii. Remove an element from the queue
- 3. Write an ALP to pass parameters to a subroutine.
 - i. Ascending order
 - ii. Descending order
- 4. Write a 'C' program & demonstrate an interfacing of Alphanumeric LCD 2X16 panel to LPC2148Microcontroller
- 5. Write a 'C' program & demonstrate concept of Interrupts interface to LPC2148 Microcontroller.
- 6. Write a 'C' program & demonstrate an interfacing of DAC to LPC2148 Microcontroller.
- 7. Write a 'C' program & demonstrate an interfacing of UART to LPC2148 Microcontroller.
- 8. Write a 'C' program & demonstrate an interfacing of ADC to LPC2148 Microcontroller.
- 9. Write a 'C' program & demonstrate an interfacing of RTC to LPC2148 and read time, date and year.
- 10. Write a 'C' program & demonstrate interface I2C to LPC2148
- 11. Develop a code for college bell system. (Use the following interfaces LCD, RTC and Buzzer).

Reference Books

- 1. "ARM System- on-Chip Architecture" by 'Steve Furber", LPE, Second Edition.
- 2. "Embedded Systems- Architecture, Programming and Design" by Raj Kamal, TMH
- 3. Dr. K.V.K.K. Prasad, "Embedded/Real-time systems: concepts, Design & Programming", published by dreamtech press.

Manual

- 1. LPC2148 datasheet by NXP.
- 2. LPC2148 board manual by ALS, Bangalore.

Program: VLSI Design & Embedded Systems			
Course Title: IC Fabrication Technology Course Code: 17EVEC706			
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3	

ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 40	Examination Duration: 3 hours			
1. Crystal growth, wafer preparation, epitaxy and oxidation Electronic Grade Silicon, Czochralski crystal growing, Silicon Shaping, processing considerations, Vapor phase Epitaxy, Molecular Beam Epitaxy, Silicon on Insulators, Epitaxial Evaluation, Growth Mechanism and kinetics, Thin Oxides, Oxidation Techniques and Systems, Oxide properties, Redistribution of Dopants at interface, Oxidation of Poly Silicon, Oxidation inducted Defects.				
2. Lithography and relative plas Optical Lithography, Electron Lithograp	sma etching ohy, X-Ray Lithography, Ion Lithography anism, reactive Plasma Etching techniq		10 Hrs	
dimensional Diffusion Equations – Aton Implant equipment. Annealing Shallow Patterning. 4. Process simulation and VLSI Ion implantation – Diffusion and oxida Technology – CMOS IC Technology – N	ma assisted Deposition, Models of Dinic Diffusion Mechanism – Measuremen junctions – High energy implantation – process integration ation – Epitaxy – Lithography – Etchin MOS Memory IC technology - Bipolar IC ques and Packaging of VLSI Devices	t techniques – Range theory- - Physical vapor deposition – g and Deposition- NMOS IC	10 Hrs 10Hrs	
Analytical Beams – Beam Specimen interactions - Chemical methods – Package types – packaging design considerations – VLSI assembly technology – Package fabrication technology.				
Modeling", Prentice Hall India.2000 3. Wai Kai Chen, "VLSI Technology" 4. C.Y. Chang and S.M.Sze (Ed), ULS	al, Peter B. Griffin, "Silicon VLSI Technol).	Inc, 1996.	nd	

Program: VLSI Design & Embedded Systems			Teaching
Course Title: Electronic System Design Course Code: 17EDEC707			Hours
L-T-P: 0-0-3	Credits: 3	Contact Hours:6 Hrs/week	
ISA Marks: 100	ESA Marks:	Total Marks: 100	
Teaching Hours: 25 Hrs	Examination Duration:		
To level specifications, Block level specifications, Timing of micro architecture, Verification and test plan, Schematic capture			
Simulation, Advanced simulation, Signal Integrity			
PCB layout- Floor planning, component pre planning, PCB printing- 2 layer			05 Hrs
Functionality and performar	nce check, Failure analysis, Valida	ation and system integration	05 Hrs
System Analysis			05 Hrs

References

- 1. A. S Sedra and KC Smith, Microelectronic circuits, Oxford, 1998.
- 2. G.L. Ginsberg, Printed Circuit Design, McGraw Hill, 1991.

Course Title: Automotive Electr	onics	Course Code: 17EVEC708	
L-T-P: 3-0-1	Credits: 4	Contact Hours: 5	
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200	
Teaching Hours: 40	Examination Duration: 3 hrs		
Chapter No. 1. Automotive Fund	amentals Overview		8Hrs
specifications need for electronics	try and Modern Automotive Syster in automobiles, Application areas rol, Ignition System, Spark plug, Brakes, Steering System.	of electronics in the automobiles	7Hrs
Chapter No. 2. Sensors and Act	uators		/Hrs
(CKP) Sensor, Magnetic Reluctan Hall effect Position Sensor, Optic	ottle Position Sensor (TPS), Eng ice Position Sensor, Engine Speed al Crankshaft Position Sensor, M iolant Temperature (ECT) Sensor ition Actuator	d Sensor, Ignition Timing Sensor, anifold Absolute Pressure (MAP)	
Chapter No. 3. Electronic Engin	e Control		
Engine parameters, variables, Enginetria parameters, variables, Enginetria lignition control, Idle sped control,	gine Performance terms, Electronic	c Fuel Control System, Electronic	5Hrs
Chapter No. 4. Vehicle Motion (Control and Safety Systems		51115
Cruise Control, Antilock Brake Sy Control, Electronic Stability Progra	vstem (ABS), Electronic Steering (am.	Control, Power Steering, Traction	
Chapter No:5. Automotive comr	nunication protocols		6Hrs
Overview of Automotive community	cation protocols : CAN, LIN .		01.1#-
	r Assistance Systems (ADAS) La trol, Pedestrian Protection, Heac tonomous vehicles.		3Hrs 5Hrs
	ty standards ISO26262 and Diag standard-ISO 26262, safety conce ion.		6Hrs
	sic wiring system and Multiplex wiri system. Fault finding and corrective		

1. Denton.T – Automobile Electrical and Electronic Systems, Edward Arnold publication, 1995.

References:

- 1. William T.M Automotive Electronic Systems, Heiemann Ltd., London ,1978.
- 2. Nicholas Navet Automotive Embedded System Handbook, CRC Press, 2009.
- 3. BOSCH Automotive Handbook, Wiley Publications, 8th Edition, 2011.
- 4. Co-Verification of hardware & software for ARM SoC Design Jason.R.Andrews, Newnes Publications, 2004.
- 5. Hardware Software co-design of embedded systems, F.Balarin, Kluwer Academic Oublishers, 1987.

Lab:

- 1. Demonstration of cut section modules: Engine, Transmission, Steering, Braking, Suspension Automobile dept.
- 2. Electronic engine control system: Injection and Ignition control system Transmission trainer modules
- 3. Modeling an engine Vehicle model simulation with Simulink using PI CONTROLLER
- 4. Basic gate logic simulation and modeling using Simulink and realization on the hardware platform.
- 5. Seat belt warning system simulation and modeling using Simulink and realization on the hardware platform. Vehicle speed control based on the gear input simulation and modeling using Simulink and realization on the hardware platform.
- 6. Throttle control modeling and simulation using Simulink and realization on the hardware platform.
- 7. Accelerator pedal interfacing software modeling and simulation using Simulink and realization on the hardware platform.
- 8. Develop matlab code for stepper motor control and convert it to Simulink model and port it to embedded hardware

Program: VLSI Design & E	Embedded Systems		Teaching
Course Title: Real Time E	mbedded Systems	Course Code: 17EVEC709	Hours
L-T-P: 3-0-1	Credits: 4	Contact Hours: 3 Hrs/week	
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200	
Teaching Hours: 45 Hrs	Examination Duration:		
	UNIT I		
Requirements- Processor in	n a system, System Memories, Sys RT, Watchdog Timers, Interrupt	n Issue, Sample Systems, Hardware stem I/O, De-bouncing, Other Hardware Controllers). Device Drivers, Interrupt	12 Hrs
		a 32-bit Microcontrollers, MPC577XK RL78/D1x (Automotive Only)	10 Hrs
	UNIT II	I	
3. Real Time Operation	ng System:		
		I featured rtos, POSIX, buffering data, deadlock, process stack management,	04 Hrs
4. Case Studies:			
Mucos/ VX Works Function mailbox, queue.	s – System level, task service, time	e delay, memory allocation, semaphore,	06 Hrs
	for Automatic chocolate vending te streams on a TCP/IP Network us	machine using MUCOS & Coding for sing Vx Works.	
	UNIT II	l	
5. Process of Embed	Ided System Development:		
	irements engineering, design, implanagement, managing embedded s	ementation, integration & testing, ystem development, embedded system	08 Hrs
6. Current trends, et	hical & environmental issues		
The students shall give se issues.	eminars on current trends in the fi	eld of RTES, ethical, & environmental	05 Hrs

Text Books

- 1. Philip. A. Laplante, "Real-Time Systems Design and Analysis- an Engineer's Handbook"- Second Edition, PHI Publications.
- 2. Rajkamal, "Embedded Systems: Architecture, Programming and Design", Tata McGraw Hill, New Delhi, 2003.
- 3. Dr. K.V.K K Prasad, "Embedded Real Time Systems: Concepts Design and Programming", Dreamtech Press New Delhi, 2003.

References

- 1. Joseph Yiu, "The Definitive guide to ARM CORTEX -M3 & CORTEX-M4 Processors", Elsevier, Newnes, 2014.
- 2. Steve Furber "ARM System -on Chip Architecture" Second Edition, Pearson Education
- 3. David E. Simon, "An Embedded software primer", Pearson Education, 1999..
- 4. David A. Evesham, "Developing real time systems A practical introduction", Galgotia Publications, 1990
- 5. William Hohl, "ARM Assembly Language Fundamentals & Techniques", CRC Press
- 6. C. M. Krishna, "Real Time Systems" MGH, 1997
- 7. Jane W.S. Liu, "Real-Time Systems", Pearson Education Inc., 2000

Program: VLSI Design & Embedded Systems		
Course Code: 17EVEC710	Course Title: Advanced Digital Logic Design	
L-T-P: 1-0-3	Credits: 4	
ISA Marks: 50+100	ESA Marks: 50	
Teaching Hrs: 40		
Chapter No. 1. Digital Integrated Circuits Moore's law, Technology Scaling, Die size grow digital design, Design metrics, Cost of Integrated SoC Flow, SoC Design Challenges. Introduction to CMOS Operation principles, Characteristic curve curves, Delays in inverters, Buffer Design, Power of and Layout diagrams. Setup time, Hold Time, Timir	circuits, ASIC, Evolution of SoC ASIC Flow Vs o CMOS Technology, PMOS & NMOS Operation, es of CMOS, CMOS Inverter and characteristic lissipation in CMOS, CMOS Logic, Stick diagrams	10 hrs
Chapter No. 2. Digital Building Blocks Basic Gates, Universal Gates, nand & nor Imple Priority encoder, multiplexer, demultiplexer, Comp multiplexer, Pass Transistor Logic, application of Asynchronous and synchronous up-down counters Modelling, Adder & Multiplier concepts, Memory Co	barators, Parity check schemes, Multiplexer, De- multiplexer as a multi-purpose logical element. s, Shift registers. FSM Design, Mealy and Moore	10 hrs
Chapter No. 3. Logic Design Using Verilog Evolution & importance of HDL, Introduction to Ve Lexical Conventions, Data Types Modules, Nets, N Expressions, Operators, Operands, Arrays, mem Procedural blocks, Blocking and Non-Blocking As Synchronization, Event Simulation. Need for Verific	/alues, Data Types, Comments, arrays in Verilog, ories, Strings, Delays, parameterized designs ssignment, looping, flow Control, Task, Function,	12 hrs
Chapter No. 4. Principles of RTL Design Verilog Coding Concepts, Verilog coding guide Guidelines, Synthesizable Verilog Constructs, Challenges, Clock Domain Crossing. Verilog mode	Sensitivity List, Verilog Events, RTL Design	8 hrs
Chapter No. 5. Design and simulation of Architect Basic Building blocks design using Verilog HDL: Multiplier design, Data Integrity – Parity Generation – overlapping and non-overlapping Mealy and Moo	Arithmetic Components – Adder, Subtractor, and n circuits, Control logic – Arbitration, FSM Design	10 hrs
Reference Books:		
 Digital Design by Morris Mano M, 4th Edition Verilog HDL: A Guide to Digital Design and Principles of VLSI RTL Design: A Practical CVER + GTKWave, VCSMX, Modelsim for 	l Synthesis by Samir Palnitkar, 2nd Edition Guide by Sapan Garg, 2011 Tools: 1. NC Verilog, N	C Sim,

Program: VLSI Design & En	nbedded Systems			
Course Code: 17EVEC711	Course Title: Testing & IC C	haracterization		
L-T-P: 3-0-1	Credits: 4	Contact	Hrs: 5 hrs/week	
ISA Marks: 50+100	ESA Marks: 50	Total Ma	Total Marks: 200	
Teaching Hrs: 40		Exam Du	ration: 03 hrs	
	Content			Hrs
CHAPTER NO. 1. VERIFICA	TION CONCEPTS			10 hrs
bench generation, functional	rtance of verification, Stimulus verification approaches, typic e and Functional coverage, cov	al verification flow		
CHAPTER NO. 2. SYSTEM \	/ERILOG – LANGUAGE CON	STRUCTS		10 hrs
System Verilog constructs - Data types: two-state data, strings, arrays: queues, dynamic and associative arrays, Structs, enumerated types. Program blocks, module, interfaces, clocking blocks, modports.				
CHAPTER NO. 3. SYSTEM \	/ERILOG – CLASSES & RANI	OOMIZATION		12 hrs
	olution, Classes and objects, d encapsulation, Polymorphisr straint Driven Randomization.			12 113
CHAPTER NO. 4. SYSTEM \	/ERILOG – ASSERTIONS & C	OVERAGE		8 hrs
	Assertion based verification, : Motivation, Types of cover ng and event sampling.			00
METHODOLOGY, OVERVIE	RCHITECTURE. INTRODUCT W OF UVM BASE CLASSES FIED MESSAGING IN UVM	S AND SIMULATIO	ON PHASES IN UVM	10 hrs
LEARNING THE TES 3. STEP-BY-STEP FUN	.RM GORY J TUMBUSH - SYSTEN TBENCH LANGUAGE FEATU ICTIONAL VERIFICATION WIT TA CLARA, CA SPRING 2008	RES - SPRINGER, H SYSTEMVERILO	2012 DG AND OVM BY SAS	AN IMAN

COL	irse Code:	Course Title:		Teaching Hrs: 40 Hrs	
17EVEE701 L-T-P: 2-0-1 ISA Marks: 50+100		Image and Video Processi	ing		
		Credits: 3		Contact Hrs: 4 Hrs/weel	ĸ
		Exam Duration: 3Hrs ESA Marks: 50		Total Marks: 200	
1	Introduction : 2D systems, Mathematical Preliminaries- FT, Z-transform, Optical and Modulation Transfer Functions (OTF and MTF). Matrix theory, Image perception: Light, Luminance, Brightness, Contrast, MTF of the visual system, Visibility function, Monochrome Vision Models, Fidelity criteria, Color Representation, Color Vision Models, Temporal Properties of Vision.				2 hrs
2	Image sampling and Quantization: 2D Sampling theory, Quantization, Optimal Quantizer, Compander and Visual Quantization.				2 hrs
3	Image Transforms:	2D orthogonal and unitary transforms, DFT, DCT, Harr, KLT			
4	Image Enhancement: Histograms Modeling, Spatial operations, Transform operations, Multispectral Image Enhancement,				
	•	· · ·	g, Spatial operations,	Transform operations,	4hrs
	Multispectral Image	· · ·	ervation Models, Inve	Transform operations, rse and Weiner filtering ,	4hrs 4hrs
5	Multispectral Image Image Filtering an Frequency Domain	Enhancement, nd Restoration: Image Obs	ervation Models, Inve		
5	Multispectral Image Image Filtering an Frequency Domain Basics of Video: An	Enhancement, nd Restoration: Image Obs Filters. Smoothing Splines and	ervation Models, Inve d Interpolation.	rse and Weiner filtering,	4hrs
5 6 7	Multispectral Image Image Filtering an Frequency Domain Basics of Video: An Two dimensional	Enhancement, nd Restoration: Image Obs Filters. Smoothing Splines and nalog Video, Digital Video	ervation Models, Inve d Interpolation.	rse and Weiner filtering,	4hrs 2 hrs
5 6 7 Te>	Multispectral Image Image Filtering an Frequency Domain Basics of Video: An Two dimensional methods.	Enhancement, nd Restoration: Image Obs Filters. Smoothing Splines and nalog Video, Digital Video	ervation Models, Inve d Interpolation. flow methods, Block b	rse and Weiner filtering , pased methods, Bayesian	4hrs 2 hrs
5 6 7 Te) 1.	Multispectral Image Image Filtering an Frequency Domain I Basics of Video: An Two dimensional methods. tt books Jain, A.K., Fundamen	Enhancement, nd Restoration: Image Obs Filters. Smoothing Splines and nalog Video, Digital Video motion estimation: Optical	ervation Models, Inve d Interpolation. flow methods, Block to ng, 3 rd Edision, Pearson	rse and Weiner filtering , based methods, Bayesian Education (Asia) 2013	4hrs 2 hrs
5 6 7 Te) 1. 2.	Multispectral Image Image Filtering an Frequency Domain I Basics of Video: An Two dimensional methods. t books Jain, A.K., Fundamen A. Murat Tekalp, Digit	Enhancement, nd Restoration: Image Obs Filters. Smoothing Splines and nalog Video, Digital Video motion estimation: Optical tals of Digital Image Processi	ervation Models, Inve d Interpolation. flow methods, Block to ng, 3 rd Edision, Pearson Education (Asia) Pte. Lt	rse and Weiner filtering , based methods, Bayesian Education (Asia) 2013 d.	4hrs 2 hrs
5 6 7 Te> 1. 2. 3.	Multispectral Image Image Filtering an Frequency Domain I Basics of Video: An Two dimensional methods. t books Jain, A.K., Fundamen A. Murat Tekalp, Digit	Enhancement, nd Restoration: Image Obs Filters. Smoothing Splines and halog Video, Digital Video motion estimation: Optical tals of Digital Image Processi al Video processing Pearson	ervation Models, Inve d Interpolation. flow methods, Block to ng, 3 rd Edision, Pearson Education (Asia) Pte. Lt	rse and Weiner filtering , based methods, Bayesian Education (Asia) 2013 d.	4hrs 2 hrs
5 6 7 1. 2. 3. Ref	Multispectral Image Image Filtering an Frequency Domain I Basics of Video: An Two dimensional methods. t books Jain, A.K., Fundamen A. Murat Tekalp, Digit Li and, Z. Drew, M.S. erences books	Enhancement, nd Restoration: Image Obs Filters. Smoothing Splines and nalog Video, Digital Video motion estimation: Optical tals of Digital Image Processi al Video processing Pearson Fundamentals of Multimedia, Woods, Richard E. and Eddi	ervation Models, Inve d Interpolation. flow methods, Block b ng, 3 rd Edision, Pearson Education (Asia) Pte. Lt Pearson Education (Asi	rse and Weiner filtering , based methods, Bayesian Education (Asia) 2013 d. a) Pte. Ltd,. 2010.	4hrs 2 hrs 7 hrs

Implementation:

Implementation assignments are designed using opencv/c++ to explore the concepts like

- 1. Image enhancement techniques
- 2. Image transforms.
- 3. Image restoration technique
- 4. Develop an image processing application to assist
 - a. ADAS
 - b. Agriculture
 - c. Defense
 - d. Health Care
 - e. Surveillance and Forensics
 - f. Remote sensing
- 5. Track an object in video
- 6. Optimal use of surveillance video

Cours	e Title: Digital Control	Systems		Course Code: 17EVEE702			
L-T-P:	2-0-1	Credits: 4		Contact Hours: 5			
SA Ma	arks: 50+100	ESA Marks: 50	ESA Marks: 50 To		Total Marks: 200		
Teach	ing Hours: 40	Examination Duration: hours	3				
1.	-	control: Introduction, Discrete ti process, Data reconstruction.	me sy	vstem representation, Mathematical	4hrs		
2.	-			Z-transform, Mapping of Z-plane to closed loop system, Sampled signal	3hrs		
3.	•	crete systems: Transient and ype second order system.	stead	y state responses, Time response	5hrs		
4.	Stability analysis of d transformation.	iscrete time systems: Jury stab	lity te	est, Stability analysis using bi-linear	5hrs		
5.	• •	2		thod, Controller design using root Nyquist stability criteria, Bode plot.	5hrs		
6.	•			systems with deadbeat response, data control systems with deadbeat	6hrs		
7.		model: Introduction to state van, state transition matrix, solution		e model, Various canonical forms, screte state equation.	2hrs		
8.	Controllability, observoid observability, Lyapund		state	space models: Controllability and	5hrs		
9.	State feedback design order observer, Reduct	• •	dback	, Set point tracking controller, Full	5hrs		
Refer	ences:				1		
		ol Systems, Oxford University P					
2.	•	e Control Systems, Prentice Ha					
3.		ol and State Variable Methods, ⊺ well and M. L. Workman, Digita		v			

Program: VLSI Design & Embedded Systems		
Course Code: 17EVEE703	Course Title: Standard Cell Design and Layout	

Total Marks: 200		
Exam Duration: 3 hrs		
ments vs. custom design and memory elements.	15 hrs	
nitives and complex macros. a path elements. Library size of library elements – single	17hrs	
 height, double height cells. Power Management cells. Chapter No. 3. Standard cell characterization Usage of standard cells by various tools. Information needed at each stage of design flow. Characterization parameters, setup and runs across PVT corners. Library representation formats. (Gate level simulation, synthesis, timing, layout, timing, LVS, DRC) 		
n a c	nents vs. custom design and nemory elements. itives and complex macros. path elements. Library size of library elements – single	

Program: VLSI Design & Embedded	Systems			
Course Title: Low Power VLSI Circui	ts	Course Code: 17EVEE704		
L-T-P: 2-0-1	Credits: 4	Contact Hours:4		
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200		
Teaching Hours: 40	Examination Duration: 3 hours			
1: Introduction to low power VLSI design: Need for Low Power VLSI Chips, sources of power dissipation. Device and Technology impact on Low Power, dynamic power dissipation in CMOS. Power Estimation.				
2: Power analysis: Simulation Power Analysis, Spice circuits simulator, gate level logic simulator, Probabilistic power analysis			5Hrs	
3: A new CMOS driver model for transi chip drivers and transmission lines: a b	ent analysis and power dissipation analy ranch and bound approach.	vsis, low power design of off-	5Hrs	
4: Different levels of power optimization		7Hrs		
Low Power Design; circuit Level, logic Level, Low Power Architecture.				
5: Floor plan design with low power considerations, optimal drivers of high-speed low power ics, retiming sequential circuits for low power			5Hrs	
	Clock distribution, single driver versus e management,switching activity reductio		4Hrs	
•	s for power reduction: Algorithm nalysis & optimization, architecture leve		8Hrs	
Text Books				
1. Gary K. Yeap, "Practical Low F	Power Digital VLSI Design", KAP, 2002.			
2. Rabaey, Pedram, "Low power	design methodologies" Kluwer Academic	, 1997.		
Reference Books:				

1. A. Chandrakasan and R. Brodersen, "Low Power CMOS Design".

2. Sung - Mo Kang & Yosuf Leblebici, "CMOS Digital Integrated Circuits: Analysis and Design", TMH, 2003

(Third Edition).

- **3.** Laung-Terng Wang, Charles E. Stroud, Nur A. Touba, "System-on-chip Test Architectures", 2008.
- 4. Kaushik Roy, Sharat Prasad, "Low-Power CMOS VLSI Circuit Design" Wiley, 2000.

Pro	ogram: VLSI Design & Embedd	ed Systems		
Со	urse Title: Analog and Mixed m	node VLSI Circuits	Course Code: 17EVEE705	
L-T	-P: 2-0-1	Credits: 3	Contact Hours: 6	
ISA	Marks: 50	ESA Marks: 50		
Теа	aching Hours: 50	Examination Duration: 3 hours	Total Marks: 100	
1.	signal model, Common source	ircuits, MOS transistor DC and AC si amplifier with resistive load, diod amplifier, Cascode amplifier, Frequer	e load and current source load,	12 hrs
2.	Current source/sink/mirror, Ma Cascode current source, Differe	atching, Wilson current source, Wid ntial amplifier.	lar current source and Regulated	08 hrs
3.	Op-Amp: CMOS Op-Amp, Comp	ensation of Op-Amp,Design of two st	age Op-Amp.	06 hrs
 Basic Current reference, and Voltage (Bandgap) reference circuits, OPAMP based references, Current mode bandgap reference. 			06 hrs	
5.	C	mple and Hold circuit, Basic Compa ideration), Dynamic comparator, S	-	08 hrs
6.		DAC architectures and ADC architectu	ires	10 hrs
	xt Books			
1. 2.		erg, "CMOS Analog circuit Design" Ox Design, Layout and Simulation", Pre	•	
Re	ference Books			
1. 2. 3.	J. Rabaey, Digital Integrated Cir	Principles of CMOS VLSI Design, Add cuits: A Design Perspective, Prentice OS Integrated Circuits' First Edition M	Hall India, 1997	
Lal	b:			
	1. Design and implement Com	mon source MOS amplifier with resist	tive load, diode load and current sou	urce load
	2. Design and implement a Ca			
	3. Design and implement a Sir	-		
	4. Design and implement a Dif	-		
	5. Design and implement a Op	•		
	6. Design and implement a bas			
	7. Design and implement a R-2	2R DAC		

Program: VLSI Design & E	Embedded Systems		Teaching
Course Title: Embedded S	Software Design	Course Code: 17EVEC801	Hours
L-T-P: 0-0-3	Credits: 3	Contact Hours: 6 Hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hours: 40 Hrs	Examination Duration:		
Introduction to OS, Introduc real time systems, and the Introduction to RTOS, key	future of embedded systems. characteristics of RTOS, its kern kt switch, Scheduling types: Pree	n- real time systems, characteristics of el, components in RTOS kernel, objects, mptive priority-based scheduling, Round-	08 Hrs
A task, its structure, A typic its structure, binary semaph tasks and multiple tasks, Si resource-access synchronia	nore, mutual exclusion (mutex) ser ngle shared-resource-access syn	cture, Message copying and memory use	08 Hrs
RTX/free RTOS. Applications and Common		parisons. Real time programming using RTOS for Image Processing & Control sations.	04 Hrs
4. Introduction to em	bedded linux:		
	hains in Émbedded Linux-GNU T	res and device driver model-Embedded ool Chain (GCC,GDB, MAKE, GPROF &	02 Hrs
system operation-S		ub-Root file system-Binaries required for ew-Writing applications in user space-GUI	02 Hrs
6. File system in Line	ux:		
INODE-Group Descriptor-I	Directories-Virtual File systems-f g the File systems-Mounting an	he File system –Extended file systems- Performing File system Maintenance - Ind Un-mounting –Buffer cache-/proc file	08 Hrs
7. Program design a	nd Analysis :		
buffers, queues. Models of loading. Basic compilation optimization: Expression transformations, register al Program level performance	programs: data flow graph and co techniques: Statement translation simplification, dead code of location, scheduling, instruction s analysis, software performance and optimization of program size. F	am oriented programming and circular ontrol flow graphs, Assembly, linking and n, procedures, data structures. Program elimination, procedure inlining, loop selection, interpreters and JIT compilers. optimization, program level energy and Program validation and testing: Clear box	08 Hrs

Text Books

- 1. Qing Li with Caroline Yao, "Real-Time Concepts for Embedded Systems", Published by CMP Books, 2011
- 2. Dr. K.V.K.K. Prasad, "Embedded/Real-time systems: concepts, Design & Programming", published by dreamtech press .
- 3. "Embedded Systems- Architecture, Programming and Design" by Raj Kamal, TMH

References

- 1. Philip.A.Laplante, "Real Time System Design and Analysis", Prentice Hall of India, 3rd Edition, April 2004.
- 2. "Programming embedded systems" in C and C++ Micheal Barr orielly

List of Experiments:

- 1. Write a 'C' program & demonstrate concept of Task Scheduling.
- 2. Write a 'C' program & demonstrate concept of Semaphore.
- 3. Write a 'C' program & demonstrate concept of Mailbox.
- 4. Write a 'C' program & demonstrate concept of S/W Interrupts.
- 5. Write a 'C' program & demonstrate concept of interrupts.
- 6. Write a 'C' program & demonstrate concept of Inter Task Communication.

Reference Books

1. Dr. K.V.K.K. Prasad, "Embedded/Real-time systems: concepts, Design & Programming", published by dreamtech press.

Manual

1. LPC2148 datasheet by NXP.

LPC2148 board manual by ALS, Bangalore.

Program: VLSI Design & Embedded Systems			
Course Code: 17EVEC802	Course Title: Advanced Digital logic Verificat		on
L-T-P: 1-0-3	Credits: 4	Contact Hrs: 6hrs/	week
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200	
Teaching Hrs: 50		Exam Duration: 3 I	nrs
Chapter No. 1. Verification Concepts Concepts of verification, importance of verification, Stir bench generation, functional verification approaches direct testing, Coverage: Code and Functional coverage	, typical verification flow, sti		10 hrs
Chapter No. 2. System Verilog – Language Constr System Verilog constructs - Data types: two-state associative arrays, Structs, enumerated types. Progra modports.	data, strings, arrays: queu	•	10 hrs
Chapter No. 3. System Verilog – Classes & Randon SV Classes: Language evolution, Classes and ob instantiation, Inheritance, and encapsulation, Polymo Testing. Randomization: Constraint Driven Randomizat	ojects, Class Variables and orphism. Randomization: Dire		12 hrs
Chapter No. 4. System Verilog – Assertions & Cov Assertions: Introduction to Assertion based verific Coverage driven verification : Motivation, Types of Coverage, Concepts of Binning and event sampling.	ation, Immediate and conc		8 hrs

Layere Base (ter No. 5. Building Testbench ad testbench architecture. Introduction to Universal Verification Methodology, Overview of UVM Classes and simulation phases in UVM and UVM macros. Unified messaging in UVM, UVM Inment structure, Connecting DUT- Virtual Interface	10 hrs
Refere	ences:	
1.	System Verilog LRM	
2. Chris Spear, Gregory J Tumbush - SystemVerilog for verification - a guide to learning the		
	testbench language features - Springer, 2012	
3. Step-by-Step Functional Verification with SystemVerilog and OVM by Sasan Iman SiMantis		
	Inc. Santa Clara, CA Spring 2008 Tools: 1. NC Verilog, NC Sim, VCSMX for System.	

Prog	ram: VLSI Design & I	Embedded Systems		Teaching
Cours	e Title: Internet of T	hings	Course Code: 17EVEE801	Hours
L-T-P:	: 2-0-1	Credits: 3	Contact Hours: 5 Hrs/week	
ISA M	arks: 50+100	ESA Marks: 50	Total Marks: 200	
Teach	ning Hours: 25 Hrs	Examination Duration:		
1	Introduction to Ir	nternet of Things (IoT)		
	Definition & Cha communication m		oT, IoT protocols, IoT functional blo	cks, 04 hrs
2	IoT Architecture			
		ogies: Sensors, Zigbee, Bluetooth, 302.11.ah, DASH7, Low Power Wid	IoT ecosystem, Data Link protocols: IE e Area Network (LoRaWAN).	EEE 04 hrs
3	Network protoco	ls		
			s (RPL), cognitive RPL (CORPL), Chan Personal Area Networks (LoWPAN).	nel- 04 hrs
4	Application and	Application and Security protocols		
	Advanced Messag		QTT for Sensor Networks, Secure MQ strained Application Protocol (CoAP), C Lossy Networks (RPL).	
5	IoT Platforms De	IoT Platforms Design Methodology		
			for Weather Monitoring etc., Basic build serial, SPI, I2C), IoT Operating Syste	
6	Programming wi	th Raspberry Pi		
	XML, JSON, SOA	P and REST-based approach, Web	Socket protocol.	04 hrs
7	IoT prototyping			
		example applications: Case studies e, Health with emphasis on data an	s on Home automation, Cities, Environm alytics and security.	ent, 06 hrs
Text E	Books:			
1.	Arshdeep Bahga, V	ijay Madisetti "Internet of Things (A	Hands-on-Approach)" Universities Press	s- 2014.
2.	Olivier Hersent, Dav	vid Boswarthick, Omar Elloumi, "The	e Internet of Things: Key Applications an	d Protocols"

John Wiley & Sons – 2012.

Reference Books:

1. Subhas Chandra Mukhopadhyay "Internet of Things Challenges and Opportunities" Springer- 2014.

Lab:

- 1. Programming with Raspberry Pi
- 2. Cloud service interface for data storage and retrieval
- 3. Performance analysis of Data link protocols, routing and application protocols
- 4. Open Ended Experiment with focus on data analytics and security

Program: VLSI Design & Embedded Systems			
Course Code: 17EDEE802	Course Title: AUTOSAR		
L-T-P : 2-0-1	Credits: 3 Contact Hrs: 3		3 Hours
ISA Marks: 50	ESA Marks: 50	Total Marks:	100
Teaching Hrs: 40		Exam Duratio	on: 3
Content			Hrs
Unit – 1			
Chapter No. 1: AUTOSAR Fundamentals Evolution of AUTOSAR – Motivations and Objectives AU Packages, AUTOSAR Partnership, Goals of the partn AUTOSAR specification, AUTOSAR Current development ICC2, ICC3, and Drawbacks of AUTOSAR.	nership, Organization of the	partnership,	8 hrs
Chapter No. 2: AUTOSAR layered Architecture AUTOSAR Basic software, Details on the various layers, (VFB) Concept Overview of AUTOSAR Methodology, AUTOSAR Application Software Component (SW-C), T Time Environment (RTE): RTE Generation Process: Con HW Abstraction Layer, Partial Networking, Multicore, AUTOSAR E2E Overview, AUTOSAR XCP, Metamodel development process.	Tools and Technologies fo ypes of SW-components AU tract Phase, Generation Phas J1939 Overview, AUTOSA	r AUTOSAR TOSAR Run e, MCAL, IO ،R Ethernet,	7 hrs
Unit – 2			
Chapter No. 3: Methodology of AUTOSAR and Communication, CAN FD, CAN in Automation, CAN inter ECU communication, Client-Server Communication Driver, Communication Manager (ComM), Overview of Manager	ape, Application Layer and R ⁻ , Sender-Receiver, Commun	ication, CAN	10 hrs
Chapter No. 4: BSW Development and Integration			5 hrs
BSW Constituents: Memory layer, COM and Services lay system, Interfaces: Standard interface, AUTOSA interface,(AUTOSAR interface), BSW-ECU hardware int module configuration, AUTOSAR Integration.	R standardized interface,	BŚW-RTE	
Unit – 3			
Chapter No. Chapter 5: Infotainment Systems in Auton Infotainment Systems Fundamentals: Radio, Multimedia, Infotainment (IVI) systems, Use of operating systems XM/Sirrus, DAB/DMB, Software Defined Radio; Con Announcements, Spread Spectrum, d. Multimedia: Type Media management; Playback, Track Control, Meta Audio/Video Source Management, Navigation: Points Reckoning position, Traffic Info, GLONASS, GNSS, RTK, CD, DVD, CDDA, USB, SDCARD, Media Formats:MP3, W Design Patterns - Proxies, Adaptors, Interfaces, Singleton,	and Navigation: Introduction in IVI, GENIVI Alliance, Tu cepts of HD, radio, Enser s of Media; Music, Video, P data, Playlists, Categories, of Interests, Routes, Wayp GPS, and SBAS/GBAS,INS f. /MV, RealAudio/Video, QTP, A	ner: AM/FM, nble, Traffic odcasts, etc. Trick play, points, Dead Media types:	5 hrs
Chapter No. Chapter 6: Communication Systems in Au Automotive & Consumer Electronic Communication Sys HFP, A2DP, PAN, PBAP, DUN, Concepts of MOST ne Ethernet, WiFi, WiFi Direct, MyWiFi and CAN, Mirror link, T	tems: Introduction to Bluetoo etwork, DLNA, AVB, Concept		5 hrs

 Text Book (List of books as mentioned in the approved syllabus) 1. Ribbens, Understanding of Automotive electronics, 6th Edition, Elsevier, 2003 2. Denton.T, Automobile Electrical and Electronic Systems, Elsevier, 3rd Edition, 2004 3. Denton.T, Advanced automotive fault diagnosis, 2000 	
References	
1. Ronald K Jurgen, Automotive Electronics Handbook, 2nd Edition, McGraw-Hill, 1999	
2. James D Halderman, Automotive electricity and Electronics, PHI Publication, 2000	
3. Allan Bonnick, Automotive Computer Controlled Systems Diagnostic Tools and Techniques, Elsevier Science, 2001	
4. Nicholas Navet, Automotive Embedded System Handbook, 2009	

Program: VLSI Design & Embedded Systems			
Course Code: 17EVEE803	Course Title: ASIC D	esign	
L-T-P: 2-0-1	Credits: 4	Contact Hrs: 50	
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200	
Teaching Hrs: 50		Exam Duration: 3 h	irs
Co	ontent		Hrs
Chapter No. 1. Introduction to ASIC ASIC types, design flow, economics of ASIC			8 hrs
Chapter No. 2. ASIC design library and Logic cell Transistor as register, transistor parasitic capacitance Sequential logic cells, I/O cell.		lements, Adders, Multiplier,	10 hrs
Chapter No. 3. Logic Synthesis and Simulation Logic synthesis, FSM synthesis, structural simulation	n, static timing analysis, del	ay models	10 hrs
Chapter No. 4. ASIC Construction Floor planning Physical Design, System Partitioning, Estimating AS		•	10 hrs
Chapter No. 5. Floor planning and placement an Floor planning tools, I/O and power planning, clock p improvement, Time driven placement methods. Phys Routing, Special Routing, Circuit Extraction and DRO	blanning, placement algorith sical Design flow global Rou		12 hrs
Text Books:			
 M.J.S .Smith, - "Application - Specific Integrated C Randall L Geiger, Phillip E. Allen, "Noel K.Strader, Hill International Company, 1990. References: 		-	", McGraw
1. Jose E.France, Yannis Tsividis, "Design of Analog processing", Prentice Hall, 1994.	I-Digital VLSI Circuits for Te	lecommunication and signal	
 Andrew Brown, - "VLSI Circuits and Systems in Si S.D. Brown, R.J. Francis, J. Rox, Z.G. Uranesic, "I 1992. 		rrays"- Kluwer Academic Pu	blishers,
4. Mohammed Ismail and Terri Fiez, "Analog VLSI Si 5. S. Y. Kung, H. J. Whilo House, T. Kailath, "VLSI a	•	u	

Cours	e Code: 17EVEE804	Course Title: MEMS		
L-T-P:	2-0-1	Credits: 3	Contact Hrs: 40	
ISA M	arks: 50+100	ESA Marks: 50	Total Marks: 200	
Teach	ing Hrs: 40		Exam Duration: 3 hrs	
No		Content		Hrs
1	Introduction to Micro-sensors	liniaturization, Applications, Wo	rking principles of Microsystems: /IEMS with Micro-actuators – Airbag	ł
2	these structures	,	Mechanical, electrical), How to create erred material, Silicon compounds,	
	Diffusion, Deposition, Etching	Surface and LIGA processes). I g, Photolithography	Jnit processes in VLSI, Oxidation,	
3	• •	•	acitive sensing techniques, Modeling, erical problem for each technique.	1
4	Case studies – MEMS resol	nator, PZR accelerometer (Com	mercial)	
5	Scaling laws in miniaturiza EM forces, Electricity, Numer		scaling in geometry, electrostatic forces,	,
6	Modeling: Modeling technic Mechanical Modeling, MEMS MEMS as Inductor, Capacito	S CAD tools.	Electrical modeling (Lumped modeling),	
Text E	Book:			
MEM	S and Microsystems – Design a	and Manufacture" <i>, Tai-Ran Hsu</i>	, TMH Edition	
Roford	ences:			

Program: VLSI Design & Embedded Systems		Teaching	
Course Title: Machine learning Course Code: 18EVEC708		Hours	
L-T-P: 3-0-1	Credits: 4	Contact Hours: 5 Hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40 Hrs	Examination Duration: 3 hrs		
Chapter No. 1: Introducti	on		
Introduction What is Machine Learning? Applications of Machine Learning, Types of Machine Learning: Supervised, Unsupervised and Reinforcement learning, Dataset formats, Basic terminologies.		05 Hrs	

Chapter No. 2: Supervised Learning	
Linear Regression, Logistic Regression Linear Regression: Single and Multiple variables, Sum of squares error function, The Gradient descent algorithm, Application, Logistic Regression, The cost function, Classification using logistic regression, one-vs-all classification using logistic regression, Regularization.	10 Hrs
Chapter No. 3: Supervised Learning: Neural Network	
Introduction to perception learning, Implementing simple gates XOR, AND, OR using neural network. Model representation, Gradient checking, Back propagation algorithm, Multi-class classification, Application- classifying digits, SVM.	10 Hrs
Chapter No. 4: Unsupervised Learning: Clustering	
Introduction, K means Clustering, Algorithm, Cost function, Application.	05Hrs
Chapter No. 5: Unsupervised Learning: Dimensionality reduction	0511=0
Dimensionality reduction, PCA- Principal Component Analysis. Applications, Clustering data and PCA.	05Hrs
Chapter No. 6: Machine Learning System Design	-
Evaluating a hypothesis, Model selection, Bias and variance, error analysis, error metrics for skewed classes. Building a Model.	05 Hrs
Text Book (List of books as mentioned in the approved syllabus)	
1. Tom Mitchell, Machine Learning, 1, McGraw-Hill., 1997	
2. Christopher Bishop, Pattern Recognition and Machine Learning, 1, Springer, 2007	
References	
 Video lectures by : Andrew Ng, Co-founder, Coursera; Adjunct Professor, Stanford University; formerl Baidu Al Group/Google Brain https://www.coursera.org/learn/machine-learning# 	y head of
 Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning : Data Mining and Prediction, 2, Springer, 2009 	, Inference
Implementation Assignments:	
1. Assignments are designed to explore the concepts like	
Supervise and unsupervised learning,	
Clustering,	
Regression and estimation	
2. Motivate students to take up open challenges like Kaggle, walmart, ect	

Program: VLSI Design & Embedded Systems		Teaching Hours	
Course Title: Advanced Computer Architecture & Course Code: 17EDEC801 Programming			
L-T-P: 2-0-1	Credits: 3	Contact Hours: 4 Hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40 Hrs	Examination Duration: 3 hrs		
Immediates and more cor	nplex addressing modes, Parallelis	Computer, ARM Addressing for 32-Bit and Instructions: Synchronization,	
Translating and Starting a F	Program.		05

Chapter 2: Arithmetic for Computers	
Addition and Subtraction, Multiplication, Division, Floating Point, Parallelism and Computer Architecture: Associativity.	05
Chapter 3: The Processor:	10
Introduction, Logic Design Conventions, Building a Datapath , A Simple Implementation Scheme, An overview of pipelining, Pipelined datapath and control, Data Hazards: Forwarding versus Stalling, Control hazards, Exceptions , Parallelism and advanced instruction level parallelism, Real Stuff: AMD opteron pipeline, Advance Topic: an introduction to describe and model a pipeline and more pipelining illustrations.	10
Chapter 4: Large and Fast: Exploiting Memory Hierarchy	10
Introduction, The Basics of Caches, Measuring and Improving Cache Performance, Virtual Memory	
A Common Framework for Memory Hierarchies, Virtual machines, using a finite state machine to control a simple cache, Parallelism and memory hierarchy: cache coherence ,Advanced material: Implementing cache controllers, Real Stuff: AMD Opteron & Intel Nehalem Memory hierarchies	
Chapter 5: Storage, Networks, and Other Peripherals	10
Introduction, Dependability, Reliability and Availability, Disk Storage, Flash storage, Connecting Processors, Memory, and I/O Devices, Interfacing I/O Devices to the Processor, Memory and Operating System, I/O Performance Measures: Examples from Disk and File Systems, Designing an I/O System, Parallelism and I/O: Redundant arrays of inexpensive disks, Real Stuff: Sun firwe x4150 server, Advanced topics: Networks	
Chapter 6: Multicores, Multiprocessors and Clusters	
Introduction, Difficulty of creating parallel processing programs, Shared memory multiprocessors	
Clusters and other message passing multiprocessors,Hardware multithreading,SISD, MIMD, SIMD, SPMD, and vector,Introduction to graphics processing units,Introduction to multiprocessor network topologies, Multiprocessor benchmarks, Roofline : A simple performance model, Real Stuff: Benchmarking four multicores using the roofline model.	10
Text Books:	
1. Computer Organization and Design, The hardware/Software interface, ARM edition- David A. Patters	son, John
L.Hennessy. 4 th edition,MK publishers,2009	
Reference Books:	
1. Computer Architecture and Organization- John P. Hayes, 3rd edition, McGraw-Hill, 1998	

Program: VLSI Design & Embedded Systems				
Course Title: System Simulation & Modeling		Course Code: 17EDEE804		
L-T-P: 2-0-1	Credits: 3	Contact Hours: 4		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hours: 26	Examination Duration: 3 hours			

1.	Introduction: Simulation Examples	2 hrs		
2.	Statistical models: Discrete distribution and continuous distribution and empirical distribution(ch5)	2 hrs		
3.	Queuing models: Characteristics, steady state behavior of finite and infinite population models, network of queues. (ch6)			
4.	4. Random number generation, techniques and tests, random variate generation: Inverse transform techniques, direct transformation, convolution methods, acceptance and rejection techniques (ch7 and ch8).			
5.	5. Input modeling: Parameter estimation, goodness fit test, multivariate and time series input models (ch9).			
6.	5. Verification and Validation of Simulation models: Model building, calibration and validation (ch10).			
7.	Output analysis for single model: Types, stochastic nature of output data, measure of performance of output data and estimation, output analysis for terminating simulations, output analysis of steady state simulation.	5 hrs		
Text Books				
1.	 "An .Jerry Banks, John S. Carson II, Barry L Nelson and David M. Nicol, "Discrete event system simulation", PHI, III edition 2005 			
2.	2.Averill M. Law and W. David Kelton, "Simulation modelling and Analysis", Tata McGravedition.2003	w-Hill, III		

Reference books

- 1. Raj Jain, The Art of Computer Systems Performance Evaluation, John Wiley and Sons, Inc., 1991.
- 2. Edward Lazowska, John Zahorjan, Scott Graham, and Kenneth Sevcik, Computer Systems Analysis Using Network Models, Prentice-Hall Inc., 1984.
- 3. Leonard Kleinrock, Queueing Systems Theory- Volume I, John Wiley and Sons, Inc., 1975.
- 4. Morris H. DeGroot and Mark J. Schervish, Probability and Statistics (Third Edition), Addision-Wesley, 2002

Progra	m: VLSI Design & Embedded	Systems		
Course Title: System on Chip		Course Code: 19EVEE702		
L-T-P-SS: 4-0-0-0 CIE Marks: 50		Credits: 4 SEE Marks: 50	Contact Hours: 4 Total Marks: 100	
1.		Options: Overview of verification, chall tic technologies, Formal technologies noptions.		10 hrs
2.	•••	Verification plans, Testbench creat ation device test, System level verifica		10 hrs
3.		stem level Verification: System design, System verification, Applying the system level 10 hrs tbench, System testbench migration, Bluetooth SOC.		10 hrs
4.	Oracle Netline Meriline from Miller and Frankrike Directory, 000 and the Enclosed and the			10 hrs
5.		system on chip testing, SOC test issues, ST of programmable resources, Embedo		10 hrs
Text Bo	ooks			
1.	Prakash Rashinkar, Peter Pa	aterson, Leena Singh, " SOC Verifica	ation –Methodology and Tec	hniques",

Springer 2000

2. Laung-Terng Wang, Charles E. Stroud, Nur A. Touba, "System-on-chip Test Architectures", 2008.

Reference books

- 1. J-M. Berge, O. Levia, J. Rouillard: Hardware/Software Co-Design and Co-Verification, Kluwer, 1997.
- 2. M. L. Bushnell and V. D. Agrawal, Essential of Electronics Testing for Digital, Memory and Mixed-Signal Circuits, Kluwer Academic Publishers, 2001.
- 3. Thomas Kropf, "Introduction to Formal Hardware Verification", Springer 1999.

Program: VLSI Design & Embedded Systems					
Course Title: Automotive Electronics and Communication Course Code: 19E		Course Code: 19EVEC701	EVEC701		
L-T-P: 4-0-1	Credits: 5	Contact Hours: 5 hrs			
ISA Marks: 50	ESA Marks: 50	Total Marks: 100			
Teaching Hours: 50	Examination Duration: 3 hrs				
Chapter No: 1.Automotive S	ystems, Design cycle and Aut	omotive industry overview	9 hrs		
Overview of Automotive industry, Vehicle functional domains and their requirements, automotive supply chain, global challenges. Role of technology in Automotive Electronics and interdisciplinary design. Introduction to modern automotive systems and need for electronics in automobiles and application areas of electronic systems in modern automobiles, Introduction to power train, Automotive transmissions system ,Vehicle braking fundamentals, Steering Control, ,Overview of Hybrid Vehicles, ECU Design Cycle : Types of model development cycles(V and A) , Components of ECU, Examples of ECU on Chassis, Infotainment, Body Electronics and cluster.					
Chapter No: 2. Embedded system in Automotive Applications & Automotive safety			10 hrs		
systems Automotive grade microcontrollers: Architectural attributes relevant to automotive applications, Automotive grade processors ex: Renesas, Quorivva, and Infineon. EMS: Engine control functions, Fuel control, Electronic systems in Engines, Development of control algorithm for EMS, Look-up tables and maps, Need of maps, Procedure to generate maps, Fuel maps/tables, Ignition maps/tables, Engine calibration, Torque table, Dynamometer testing Safety Systems in Automobiles: Active and Passive safety systems: ABS, TCS, ESP, Brake assist, Airbag systems etc.					
Chapter No: 3. Automotive Sensors and Actuators			9 hrs		
Sensor characteristics, Sensor response, Sensor error, Redundancy of sensors in ECUs, Avoiding redundancy, Smart Nodes, Examples of sensors: Accelerometer (knock sensors), wheel speed sensors, Engine speed sensor, Vehicle speed sensor, Throttle position sensor, Temperature sensor, Mass air flow (MAF) rate sensor, Exhaust gas oxygen concentration sensor, Throttle plate angular position sensor, Crankshaft angular position/RPM sensor, Manifold Absolute Pressure (MAP) sensor. Actuators: Engine Control Actuators, Solenoid actuator, Exhaust Gas Recirculation Actuator.					
Chapter No: 4. Automotive communication protocols			10 hrs		
Overview of Automotive communication protocols : need for communication in Automotive, overview of vehicle network architecture, need for CAN in Automotive, CAN Bus logic ,CAN frame formats, CAN bus fault confinement, LIN , Flex Ray, MOST.					
Chapter No: 5. Advanced Driver Assistance Systems (ADAS) and Functional safety standards			7 hrs		
Advanced Driver Assistance Systems (ADAS):Examples of assistance applications: Lane Departure Warning, Collision Warning, Automatic Cruise Control, Pedestrian Protection, Headlights Control, Connected Cars technology and trends towards Autonomous vehicles. Functional Safety: Need for safety standard-ISO 26262, safety concept, safety process for product life cycle, safety by design, validation.					
Chapter No: 6. Diagnostics			5 hrs		
Fundamentals of Diagnostics: Basic wiring system and Multiplex wiring system, Preliminary checks					

and adjustments, Self-diagnostic system. Fault finding and corrective measures, Electronic transmission checks and Diagnosis, Diagnostic procedures and sequence, On board and off board diagnostics in Automobiles, OBDII, Concept of DTCs, DLC, MIL, Freeze Frames, History memory, Diagnostic tools, Diagnostic protocols: KWP2000 and UDS.

Text books:

- 2. William B. Ribbens, Understanding Automotive Electronics, 6, Newnes Publications, 2003
- 3. Denton.T, Automobile Electrical and Electronic Systems, Edward Arnold, 1995

References:

- 6. William T.M , Automotive Electronic Systems, Heiemann Ltd., London , 1978
- 7. Nicholas Navet, Automotive Embedded System Handbook, CRC Press, 2009

Lab:

- 9. Demonstration of cut section modules: Engine, Transmission, Steering, Braking, Suspension Automobile dept.
- 10. Electronic engine control system: Injection and Ignition control system Transmission trainer modules
- 11. Modeling an engine Vehicle model simulation with Simulink using PI CONTROLLER
- 12. Basic gate logic simulation and modeling using Simulink and realization on the hardware platform.
- 13. Seat belt warning system simulation and modeling using Simulink and realization on the hardware platform. Vehicle speed control based on the gear input simulation and modeling using Simulink and realization on the hardware platform.
- 14. Throttle control modeling and simulation using Simulink and realization on the hardware platform.
- 15. Accelerator pedal interfacing software modeling and simulation using Simulink and realization on the hardware platform.
- 16. Develop matlab code for stepper motor control and convert it to Simulink model and port it to embedded hardware

Program: VLSI Design & Embedded Systems			
Course Title: AUTOSAR and Infotainment Course Code: 19EVEE707			
L-T-P : 2-0-1 Credits: 3 Contact Hrs: 4			
CIA Marks: 50 SEE Marks: 50 Total Marks: 100		Total Marks: 100	
Teaching Hrs: 24	Exam Duration: 3 hrs		
Chapter No. 1: AUTOSAR Fundame	ntals		4 hrs
Evolution of AUTOSAR – Motivations and Objectives AUTOSAR consortium – Stake holders – work Packages, AUTOSAR Partnership, Goals of the partnership, Organization of the partnership, AUTOSAR specification, AUTOSAR Current development status, BSW Conformance classes: ICC1, ICC2, ICC3, and Drawbacks of AUTOSAR.			
Chapter No. 2: AUTOSAR layered Architecture			4 hrs
AUTOSAR Basic software, Details on the various layers, Details on the stacks Virtual Function Bus (VFB) Concept Overview of AUTOSAR Methodology, Tools and Technologies for AUTOSAR AUTOSAR Application Software Component (SW-C), Types of SW-components AUTOSAR Run Time Environment (RTE): RTE Generation Process: Contract Phase, Generation Phase, MCAL, IO HW Abstraction Layer, Partial Networking, Multicore, J1939 Overview, AUTOSAR Ethernet, AUTOSAR E2E Overview, AUTOSAR XCP, Metamodel, From the model to the process, Software development process.			
	Unit - 2		
Chapter No. 3: Methodology of AUTOSAR and Communication in AUTOSAR		4 hrs	
CAN Communication, Application Layer Communication, Sender-Receiver, Com Overview of Diagnostics Event and Comm	munication, CAN Driver, (

Chapter No. 4: BSW Development and Integration BSW Constituents: Memory layer, COM and Services layer, ECU abstraction, AUTOSAR, Operating system, Interfaces: Standard interface, AUTOSAR standardized interface, BSW-RTE interface,(AUTOSAR interface), BSW-ECU hardware interface, Complex device drivers and BSW module configuration, AUTOSAR Integration.	4 hrs
Chapter No. Chapter 5: Infotainment Systems in Automobiles	4 hrs
Infotainment Systems Fundamentals: Radio, Multimedia, and Navigation: Introduction to In Vehicle Infotainment (IVI) systems, Use of operating systems in IVI, GENIVI Alliance, Tuner: AM/FM, XM/Sirrus, DAB/DMB, Software Defined Radio; Concepts of HD, radio, Ensemble, Traffic Announcements, Spread Spectrum, d. Multimedia: Types of Media; Music, Video, Podcasts, etc. Media management; Playback, Track Control, Metadata, Playlists, Categories, Trick play, Audio/Video Source Management, Navigation: Points of Interests, Routes, Waypoints, Dead Reckoning position, Traffic Info, GLONASS, GNSS, RTK, GPS, and SBAS/GBAS,INS f. Media types: CD, DVD, CDDA, USB, SDCARD, Media Formats:MP3, WMV, RealAudio/Video, QTP, Architecture – Design Patterns - Proxies, Adaptors, Interfaces, Singleton, Factory method	
Chapter No. Chapter 6: Communication Systems in Automobiles	4 hrs
Automotive & Consumer Electronic Communication Systems: Introduction to Bluetooth – Pairing, HFP, A2DP, PAN, PBAP, DUN, Concepts of MOST network, DLNA, AVB, Concepts of TCP/IP, Ethernet, WiFi, WiFi Direct, MyWiFi and CAN, Mirror link, Tethering	
Text Books (List of books as mentioned in the approved syllabus) Ronald K. Jurgen, Infotainment systems, 2007, SAE International, 2007	
······································	

Program: Digital Electronics		
Course Title: Principles and Practic	ces of Engineering Education	Course Code: 15ECRC701
L-T-P: 2-0-1	Credits: 3	Contact Hours: 3
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 3 hrs	
 Fundamental Principles of Tead Learning Styles and Theories Instructional Design Models an Assessment and Evaluation Engineering Learning Modules 	ching and Learning d Technology Enhanced Learning	8 Hours 8 Hours 8 Hours 8 Hours 8 Hours 8 Hours

Progra	m: Digital Electronics			
Course	e Title: Fault diagnoses and te	sting for VLSI circuits	Course Code: 15EDEC708	
L-T-P:	4-0-0	Credits: 4	Contact Hours: 4	
CIE Ma	arks: 50	SEE Marks: 50	Total Marks: 100	
Teachi	ng Hours: 50	Examination Duration: 3 hours		
1.	Threshold Logic:Introduction,	Synthesis of threshold networks.		5 hrs
2.		iagnosis:Different types of Faults, Faul ments, Different approaches used in faul m, Quadded Logic.		15 hrs
3.	(FSM) used in Machine de	nd Transformation of Sequential Ma sign, Capabilities & Limitations of fin mization, Simplification of incompletely s	nite state machines, State	10hrs
4.	Structure of Sequential Mach	nines:		
	Dependency, Input Independe	rtitions, The Lattice of Closed Partition ence and Autonomous Clocks, Covers formation Flow in Sequential Machines, N	and Generation of Closed	10 hrs
5.	State-Identification And Faul	t-Detection		
	of Diagnosable Machines, Sec	riments, Machine Identification, Fault-De cond Algorithm for the Design of Fault-D chines, Which have no Distinguishing Sec	etection Experiments, Fault-	10 hrs
Text B	ooks			I
1.	Khohavi ZVI Switching and Fin	ite Automata Theory, 2ed., TMH, 1999,		
Refere	nce Books:			
2.	Samuel Lee Digital Circuits & L	₋ogic Design, PHI, 1990		

Program: Digital Electronics			
Course Title: Real Time Embedded System lab Course Code: 15EDEP706			
L-T-P: 0-0-1	Credits: 1	Contact Hours: 2	
CIE Marks: 80	SEE Marks: 20	Total Marks: 100	
Lab Hours: 20	Examination Duration: 3 hours		

Experiments

- I Advanced Embedded Systems
- 1. Use any EDA (Electronic Design Automation) tool to learn the Embedded Hardware Design and for PCB design.
- 2. Familiarize the different entities for the circuit diagram design.
- 3. Familiarize with the layout design tool, building blocks, component placement, routings, design rule checking etc.
- II Embedded Programming Concepts (RTOS)
- 4. Create "n" number of child threads. Each thread prints the message "I"m in thread number …" and sleeps for 50 ms and then quits. The main thread waits for complete execution of all the child threads and then quits. Compile and execute in Linux.
- 5. Implement the multithread application satisfying the following :

i.Two child threads are crated with normal priority.

ii. Thread 1 receives and prints its priority and sleeps for 50ms and then quits.

iii.Thread 2 prints the priority of the thread 1 and rises its priority to above normal and retrieves the new priority of thread 1, prints it and then quits.

iv The main thread waits for the child thread to complete its job and quits.

- 6. Implement the usage of anonymous pipe with 512 bytes for data sharing between parent and child processes using handle inheritance mechanism.
- 7. Test the program below using multithread application-

i.The main thread creates a child thread with default stack size and name Child_Thread".

ii. The main thread sends user defined messages and the message "WM_QUIT" randomly to the child thread.

iii. The child thread processes the message posted by the main thread and quits when it receives the "WM_QUIT" message.

iv. The main thread checks the termination of the child thread and quits when the child thread complete its execution.

v. The main thread continues sending the random messages to the child thread till the "WM_QUIT" message is sent to child thread.

vi. The messaging mechanism between the main thread and child thread is synchronous.

Program: Digital Electroni	cs		
Course Title: Data Structu	re using C	Course Code: 17EDEC701	
L-T-P: 0-0-1	Credits: Audit	Contact Hours: 2	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hours: 25	Examination Duration: -		
		nctions, Arrays of structures, Pointers to	5 Hrs
Chapter 02:Stacks and Qu Definition, Representation a	ieues	representation and applications of linear,	5 Hrs
Chapter 03:Lists			5 Hrs
	circular lists, definitions, representation dition, addition of long integers. Link	ons. Implementation of list operations, ed stacks, Linked Queues	

Chapter 04:Trees	E Lino
Chapter 04:Trees	5 Hrs
Binary trees – Definitions, traversals (recursive and iterative versions), Building and searching, Threaded	
Binary trees, Trees and their applications	
Exchange sorts, Selection and tree sorts, Merge and radix sorts	5 Hrs
Text Book	
1. Aaron M. Tenenbaum, et al, Data Structures using C, II Edition, PHI, 2006	
 Horowitz, Sahani, Anderson-Feed, Fundamentals of Data Structures in C, II Edition, University, 2008 	
References	
1. E Balaguruswamy, The ANSI C programming Language, II Edition, PHI, 2010	
2. Yashavant Kanetkar, Data Structures through C, II Edition, BPB public, 2010	
3. Richard F. Gilberg, Behrouz A. Forouzan, Data Structures: A Pseudocode Approach With C, II	
Edition, Course Tec, 2009	
Lab:	
1. Programs on Pointer concepts.	
2. Programs on string handling functions, structures union And bit-files.	
3. Programming on files	
4. Programming on stacks data structures	
5. Programs on implementation of different queue data structures.	
6. Programs on implementation of different types of Linked lists	
7. Programs on Implementation of trees	
8. Programs to implement different sorting techniques.	
9. Programming on graph	
10. Programming on hashing tables	
11. Design and implement stack queue data structures	
12. Design and implement linked list data structures	
13. project	

Course Title: Analog and Digital Cir	cuits	Course Code: 17EDEC70)2
L-T-P: 2-0-1 Credits: 3 Contact Hours: 4			
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200	
Teaching Hours: 24	Examination Duration: -		
MOSFET single-and multi-stage ampl applications.	ntial circuits ode circuits: clipping, clamping, rectifier. De fiers, Feedback amplifier, Oscillator, Op-a		8 Hrs
<u>Digital Circuits</u> Combinational Circuits: Adder,	encoder & decoder, MUX&	DEMUX, Comparator.	8 Hrs
Combinational Circuits: Adder,	encoder & decoder, MUX& Flops, Shift Registers, Design of Syr	- ,	8 Hrs
Combinational Circuits: Adder, Sequential Circuits: Latches, Flip Asynchronous counters.		chronous counters and	8 Hrs 8 Hrs

Reference Books:

- 1. A.S. Sedra & K.C. Smith, Microelectronic Circuits, 5th Edition, Oxford Univ. Press, 1999
- 2. Jacob Millman and Christos Halkias, Integrated Electronics, McGraw Hill,
- 3. John M Yarbrough, Digital Logic Applications and Design, Thomson Learning, 2001
- 4. David A. Bell, Electronic Devices and Circuits, 4th edition, PHI publication, 2007
- 5. Grey, Hurst, Lewis and Meyer, Analysis and design of analog integrated circuits, 4th edition.
- 6. Charles H Roth, Jr; Fundamentals of Logic Design, Thomson Learning, 2004.
- 7. Zvi Kohavi, Switching and Finite Automata Theory, 2ed, TMH

Ogata, Modern Control Theory, 4th ed, PHI.

Lab: Analog Electronics Lab

8.

- 1. Study & analyze Diode Clipping and Clamping (single/double ended) circuits.
- 2. Implement the RLC circuit to study the transient response.
- 3. Design an Amplifier using MOSFÉT and determine its gain, input & output impedance.
- 4. To implement an amplifier with negative feedback & show the effect of negative feedback on input impedance; output impedance & gain of the amplifier using MOSFET.
- 5. Study of transformer-less Class B push pull power amplifier and determination of its conversion efficiency
- 6. Design an amplifier for an unity gain and high input impedance using MOSFET. Suggest suitable techniques to increase the input impedance and verify the same.

Digital Circuits lab

- 1. Design and implement BCD adder and Subtractor using 4 bit parallel adder
- 2. Design and implement n bit magnitude comparator using 4- bit comparators
- 3. Design and implement Ring and Johnson counter using shift register.
- 4. Design and implement 8 bit ALU.

Tools: Simulink, Proteus, Pspics, Cadence, LabView, Microcap, OrCAD, MATLAB.

Program: I Semester Master of Technology (Digital Electronics)		Teaching	
Course Title: Principles of Embedded Systems Course Code: 17EDEC703		Hours	
L-T-P: 0-0-2	Credits: 2	Contact Hours: 4 Hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hours: 42 Hrs	Examination Duration:		
	of Embedded System, Major	Application Areas, Purpose of Embedded Systems, Design Metric and Optimizing the	06 Hrs
	-processor fundamentals, up vs and programmer model, Memo	uc, risc vs cisc, vonneumann vs Harvard, bry, Sensor and Actuators, Communication	08 Hrs
3. Low Level program	nming Concepts:		
Addressing Modes, Instruct and Debugging ALP's	ion Set and Assembly Languag	e programming(ALP), Developing, Building,	08 Hrs
4. Middle Level Prog	amming Concepts:		
	C language implementation, pr se of directives, Functions, Parar	ogramming, & debugging, Differences from meter passing and return types	02 Hrs

Po	5. On-Chip Peripherals Study, Programming, and Application: rts: Input/Output, Timers & Counters, UART, Interrupts	08 Hrs	
	6. External Interfaces Study, Programming and Applications :		
Int	DS, Switches(Momentary type, Toggle type), Seven Segment Display: (Normal mode, BCD mode, ernal Multiplexing & External Multiplexing), LCD (8bit, 4bit, Busy flag, custom character generation), ypad Matrix, Stepper Motor, DC Motor	10 Hrs	
Те	xt Books		
1.	Introduction to Embedded Systems 1E by Shibu K V.		
2.	 Kenneth J. Ayala ; "The 8051 Microcontroller Architecture, Programming & Applications" 2e, Penram International, 1996 / Thomson Learning 2005 		
3.	 Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinlay; "The 8051 Microcontroller and Embedded Systems – using assembly and C "- PHI, 2006 / Pearson, 2006 		
Re	ferences		
1.	Embedded System Design: A Unified Hardware/Software Introduction – Frank Vahid, Tony Givargis, J Sons, Inc.2002	ohn Wiley &	
2.	Predko ; "Programming and Customizing the 8051 Microcontroller" –, TMH		
3.	Raj Kamal, "Microcontrollers: Architecture, Programming, Interfacing and System Design", Pearson Ec 2005	lucation,	

Program: Digital Electroni	cs		Teaching
Course Title: Fundamentals of signal processing Course Code: 17EDEC704		Hours	
L-T-P: 3-0-1	Credits: 4	Contact Hours: 5 Hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40 Hrs	Examination Duration: 3 hrs		
Chapter No. 1. Introduction		asia aparation on signala, elementary	08 Hrs
-	Interconnection of operation, proper	asic operation on signals, elementary ties of systems.	00 115
Chapter No. 2. Time-Dom	ain representation for LTI systems		
Convolution, Impulse response represent	•	and convolution integral. Properties of	08 Hrs
Chapter No. 3. Discrete F	ourier Transforms		
signals. DFT as a linear tra- filtering, overlap-save and computation of the DFT (i.e	ansformation, its relationship with o overlap-add method. Fast-Fourier	ng and reconstruction of discrete time ther transforms. use of DFT in linear Transform (FFT) need for efficient prithm for the computation of DFT and s. Composite FFT.	08 Hrs
Chapter No. 4. Design of	digital filters		
Design of digital filters: Considerations and Characteristics of practical digital filters. Design of digital filters: symmetric and anti symmetric FIR filters, design of linear phase FIR filters using windowing method- Rectangular, Hamming, Hanning, Bartlet and Kaiser windows. Design of linear phase FIR filters using frequency sampling technique.		08Hrs	
Chapter No. 5. Design of	IIR filters from analog filters		
0	o 11	erivative, Impulse invariance method, og Filters: Butterworth and Chebyshev	08Hrs

filters. Frequency transformation in the digital domain

Text Books

- 1. Simon Haykin and Barry Van Veen, Signals and Systems, second, John Wiley & Sons, 2002
- Proakis & Monalakis, Digital signal processing Principles Algorithms & Applications, 4th Edition, PHI, New Delhi, 2007

References

 Alan V. Oppenheim, Alan S Willsky and S. Hamid Nawab, Signals and Systems, second, Pearson Education Asia, 1997

Implementation Assignments:

- 1. Implementation assignments are designed using Python. Ex:
 - Generate different elementary signals and perform mathematical operations on them.
 - Calculate N point DFT and find the cost of computation, justify the use of FFT algorithms to calculate DFT.
 - Design Filters (FIR/IIR) for given specifications.
- 2. Explore the feature of SDR to build signal processing applications like,
 - o Noise cancellation
 - Audio file editing

Program: I Semester Master of Technology (Digital Electronics)		Teaching	
Course Title: RISC Archite	ectures	Course Code: 17EDEC706	Hours
L-T-P: 3-0-1	Credits: 4	Contact Hours: 3 Hrs/week	
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200	
Teaching Hours: 46 Hrs	Examination Duration:		
		ure of ARM7TDMI, ARM programmers tion, ARM instruction execution.	06 Hrs
2. 32 bit Instruction set: Data processing instruction, Branch instruction, Load store instruction, Software interrupt instruction, Program status register instruction, Conditional execution, Example programs, 16bit Instruction set- The Thumb programmer model, ARM-Thumb interworking, other branch instructions, Data processing instructions, Single/Multiple register load store instruction, Stack operation, Software interrupt instructions, example programs.			06 Hrs
3. Exception Handling: Introduction, Interrupts, error conditions, processor exception sequence, the vector table, Exception handlers, Exception priorities, Procedures for handling exceptions.		04 Hrs	
4. Memory Hierarchy Design: Cache basics, Miss rate and penalty, Cache Hierarchy, Memory Organizations, Memory Hierarchy.		06 Hrs	
5. Pipelining: Linear pipeline processor, Nonlinear pipeline processor, Instruction pipeline design, Branch handling techniques, Arithmetic pipeline design, Computer arithmetic principles, Static arithmetic pipeline, Multifunctional arithmetic pipeline.		08 Hrs	
6. Cortex M4 : Functional description, pro	ogrammer's model, memory prote	ction unit, nested vectored interrupt	06 Hrs

controller.	
7. Multi-Core Architectures :	
Introduction to Intel Architecture, How an Intel Architecture System works, Basic Components of the Intel Core 2 Duo Processor: The CPU, Memory Controller, I/O Controller.	07 Hrs
8. Current Trends in Intel Architectures and Applications : Seminar on current trends in Intel Architectures	03 Hrs

Text Books

- 1. "ARM System- on-Chip Architecture" by 'Steve Furber', LPE, Second Edition.
- 2. "ARM Assembly Language fundamentals and Techniques" by William Hohl, CRC press, 2009.
- 3. D. A. Patterson and J. L. Hennessey "Computer Organization and Design", Morgan , Kaufmann, 2002
- 4. H. Jonathan Chao and Bin Liu, "High performance switches & routers", Wiley Interscience, 2007.
- 5. Kai Hwang, "Advanced Computer Architecture TMH 1993
- 6. Web resources for Example Architectures of INTEL and Texas Instruments: http://download.intel.com/design/intarch/papers/321087.pdf

References

- 1. Kai Hwang, Faye A. Briggs, Computers Architecture and Parallel Processing MGH 1985
- 2. David E Culler, Jaswinder Pal Singh, Anoop Gupta "Parallel Computer Architecture", Harcourt Asia Pte Ltd 2000
- 3. Stalling W." Computer Organization and Architecture- Designing for performance" PHI,2005
- 4. D. Sima, T. Fountain, P.Kasuk," Advanced Computer Architecture-A Design Space Approach" Addisson Wesley, 1997.
- 5. M. J. Flynn,"Computer Architecture, Pipelined And Parallel Processing", Narosa Publications, 1998.

List of Experiments:

- 1. Write an ALP to verify data transfer w.r.t memory to achieve following
 - i. 8 bit data transfer
 - ii. 16 bit data transfer
 - iii. 32 bit data transfer
- 2. Write an ALP for Tables and lists to do following:
 - i. Add an entry to a list
- ii. Remove an element from the queue
- 3. Write an ALP to pass parameters to a subroutine.
 - i. Ascending order
 - ii. Descending order
- 4. Write a 'C' program & demonstrate an interfacing of Alphanumeric LCD 2X16 panel to LPC2148Microcontroller
- 5. Write a 'C' program & demonstrate concept of Interrupts interface to LPC2148 Microcontroller.
- 6. Write a 'C' program & demonstrate an interfacing of DAC to LPC2148 Microcontroller.
- 7. Write a 'C' program & demonstrate an interfacing of UART to LPC2148 Microcontroller.
- 8. Write a 'C' program & demonstrate an interfacing of ADC to LPC2148 Microcontroller.
- 9. Write a 'C' program & demonstrate an interfacing of RTC to LPC2148 and read time, date and year.
- 10. Write a 'C' program & demonstrate interface I2C to LPC2148
- 11. Develop a code for college bell system. (Use the following interfaces LCD, RTC and Buzzer).

Reference Books

- 1. "ARM System- on-Chip Architecture" by 'Steve Furber", LPE, Second Edition.
- 2. "Embedded Systems- Architecture, Programming and Design" by Raj Kamal, TMH
- Dr. K.V.K.K. Prasad, "Embedded/Real-time systems: concepts, Design & Programming", published by dreamtech press.

Manual

- 1. LPC2148 datasheet by NXP.
- 2. LPC2148 board manual by ALS, Bangalore.

Program: I Semester Master of Technology (Digital Electronics)		Teaching
Course Title: Machine learning	Course Code: 17EDEC705	Hours

L-T-P: 3-0-1	Credits: 4	Contact Hours: 5 Hrs/week		
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200		
Teaching Hours: 40 Hrs	Examination Duration: 3 hrs	3		
Chapter No. 1: Introduction	on			
	e	of Machine Learning, Types of Machine nent learning, Dataset formats, Basic	05 Hrs	
Chapter No. 2: Supervise	d Learning			
squares error function, The	e Gradient descent algorithm,	on: Single and Multiple variables, Sum of Application, Logistic Regression, The cost all classification using logistic regression,	10 Hrs	
Chapter No. 3: Supervise	d Learning: Neural Network			
	dient checking, Back propag	ates XOR, AND, OR using neural network. ation algorithm, Multi-class classification,	10 Hrs	
Chapter No. 4: Unsupervi	sed Learning: Clustering			
Introduction, K means Clustering, Algorithm, Cost function, Application.			05Hrs	
Chapter No. 5: Unsupervi	sed Learning: Dimensionality	reduction	0511	
Dimensionality reduction, PCA- Principal Component Analysis. Applications, Clustering data and PCA.			05Hrs	
Chapter No. 6: Machine L	earning System Design			
Evaluating a hypothesis, Model selection, Bias and variance, error analysis, error metrics for skewed classes. Building a Model.			05 Hrs	
Text Book (List of books as	mentioned in the approved syll	labus)		
	ine Learning, 1, McGraw-Hill.,			
 Christopher Bishop, References 	Pattern Recognition and Mach	ine Learning, 1, Springer, 2007		
		e Elements of Statistical Learning : Data Minir	ng, Inference	
Implementation Assignment	Implementation Assignments:			
1. Assignments are de	signed to explore the concepts	like		
 Supervise and u 	Insupervised learning,			
 Clustering, 				
 Regression and 	estimation			
2. Motivate students to	2. Motivate students to take up open challenges like Kaggle, walmart, ect			

Program: Digital Electronics			Teaching
Course Title: Electron	ic System Design	Course Code: 17EDEC707	Hours
L-T-P: 0-0-3	Credits: 3	Contact Hours:6 Hrs/week	
ISA Marks: 100	ESA Marks:	Total Marks: 100	

Teaching Hours: 25 Hrs	Examination Duration:		
To level specifications, Blo plan, Schematic capture	ck level specifications, Timing of m	icro architecture, Verification and test	05 Hrs
Simulation, Advanced simu	lation, Signal Integrity		05 Hrs
PCB layout- Floor planning,	component pre planning, PCB print	ing- 2 layer	05 Hrs
Functionality and performar	nce check, Failure analysis, Validatic	n and system integration	05 Hrs
System Analysis			05 Hrs

- 1. A. S Sedra and KC Smith, Microelectronic circuits, Oxford, 1998.
- 2. G.L. Ginsberg, Printed Circuit Design, McGraw Hill, 1991.

Program: Digital Electronics			
Course Title: Automotive Electronics Course Code: 17EDE			EC708
L-T-P: 3-0-1	L-T-P: 3-0-1 Credits: 4 Contact Hours: 5		
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200	
Teaching Hours: 40	Examination Duration: 3 hrs		
Chapter No. 1. Automotive Fun	damentals Overview		8Hrs
Introduction to Automotive Industry and Modern Automotive Systems Vehicle classifications and specifications need for electronics in automobiles, Application areas of electronics in the automobiles Four Stroke Cycle, Engine Control, Ignition System, Spark plug, Spark pulse generation, Ignition Timing, Drive Train, Transmission, Brakes, Steering System.			7Hrs
Chapter No. 2. Sensors and Ac	tuators		
Oxygen (O2/EGO) Sensors, Throttle Position Sensor (TPS), Engine Crankshaft Angular Position (CKP) Sensor, Magnetic Reluctance Position Sensor, Engine Speed Sensor, Ignition Timing Sensor, Hall effect Position Sensor, Optical Crankshaft Position Sensor, Manifold Absolute Pressure (MAP) Sensor Strain gauge, Engine Coolant Temperature (ECT) Sensor, Knock Sensor, Throttle angle sensor, Fuel Injector Actuator, Ignition Actuator			
Chapter No. 3. Electronic Engine Control			
Engine parameters, variables, Engine Performance terms, Electronic Fuel Control System, Electronic Ignition control, Idle sped control, EGR Control			5Hrs
Chapter No. 4. Vehicle Motion	•••		
Cruise Control, Antilock Brake System (ABS), Electronic Steering Control, Power Steering, Traction Control, Electronic Stability Program.			6Hrs
Chapter No:5. Automotive communication protocols		3Hrs	
Overview of Automotive communication protocols : CAN, LIN.			
Chapter No. 6. Advanced Driver Assistance Systems (ADAS) Lane Departure Warning, Collision Warning, Automatic Cruise Control, Pedestrian Protection, Headlights Control, Connected Cars technology and trends towards Autonomous vehicles.			5Hrs
	ety standards ISO26262 and Diag y standard-ISO 26262, safety conce n, validation.		6Hrs

Pre	Fundamentals of Diagnostics: Basic wiring system and Multiplex wiring system, Preliminary checks and adjustments, Self-diagnostic system. Fault finding and corrective measures, OBD & off board diagnostic.				
Те	ext books:				
	1. Denton.T – Automobile Electrical and Electronic Systems, Edward Arnold publication, 1995.				
Re	ferences:				
	1. William T.M – Automotive Electronic Systems, Heiemann Ltd., London ,1978.				
	2. Nicholas Navet – Automotive Embedded System Handbook, CRC Press, 2009.				
	3. BOSCH Automotive Handbook, Wiley Publications, 8th Edition, 2011.				
	4. Co-Verification of hardware & software for ARM SoC Design – Jason.R.Andrews, Newnes Publications, 2004.				
	5. Hardware Software co-design of embedded systems, F.Balarin, Kluwer Academic Oublishers, 1987.				
Lal	b:				
1.	Demonstration of cut section modules: Engine, Transmission, Steering, Braking, Suspension - Automobile dept.				
2.	2. Electronic engine control system: Injection and Ignition control system Transmission trainer modules				
3.	Modeling an engine Vehicle model simulation with Simulink using PI CONTROLLER				
4.	Basic gate logic simulation and modeling using Simulink and realization on the hardware platform.				
5.	Seat belt warning system simulation and modeling using Simulink and realization on the hardware platform.				

- Seat bett warning system simulation and modeling using Simulink and realization on the hardware platform. Vehicle speed control based on the gear input simulation and modeling using Simulink and realization on the hardware platform.
- 6. Throttle control modeling and simulation using Simulink and realization on the hardware platform.
- 7. Accelerator pedal interfacing software modeling and simulation using Simulink and realization on the hardware platform.
- 8. Develop matlab code for stepper motor control and convert it to Simulink model and port it to embedded hardware

	irse Code:	Course Title:		Teaching Hrs: 40 Hrs	
17E	DEC710	Multimedia and Signal Pr	rocessing		
L-T	-P: 3-0-1	Credits: 4		Contact Hrs: 5 Hrs/week	
ISA	Marks: 50+100	Exam Duration: 3Hrs	ESA Marks: 50	Total Marks: 200	
1	Introduction to I	Multimedia:			02Hrs
	Multimedia and H	lyper media, WWW, overview	of multimedia software t	ools.	02015
2	•	age representation: , Popular file formats.		Graphics /	02Hrs
3	Fundamental co Types of video si	ncepts in video: gnals, analog video, digital vid	leo.		06Hrs
4	Basics of digital audio: Digitization of sound, MIDI, Quantization and transmission of audio.			05Hrs	
5	•	ession algorithms: length coding, variable length ompression.	coding, dictionary based	d coding, arithmetic coding,	05Hrs
6		sion algorithms: ortion measures, quantizatior ed zero tree of wavelet coeffic	•	velet based coding, wavelet	06Hrs
7	Image compress JPEG standard, T standard.	s ion standards: The JPEG2000 standard, The	JPEG-LS standard, Bi lo	The evel image compression	06Hrs
8		mpression techniques: on based on motion compensa	ation, H.261 .	Overview,	08Hrs

References books

- 1. Ralf Steinmetz & Kalra Nahrstedt, "Multimedia: Computing, Communication & Applications", Pearson Education, 2004
- 2. K R Rao, Zoran S Bojkovic, Dragord A Milovanvic, Pearson education, "Multimedia communication systems: Techniques, Standards, & Networks", Second Indian reprint, 2004.

Course Code: 17EDEC711	le: 17EDEC711 Course Title: Data Communication		
L-T-P: 3-0-1	Credits: 4	Contact Hrs: 5 hrs/week	
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200	
Teaching Hrs: 40		Exam Duration: 03 hrs	-
	Content		Hrs
Chapter No. 1. Computer Networks and the Internet			06hrs
What is Internet? The Network Edge, the network Core, delay -loss-throughput in packet switched			

networks. Protocol layers (OSI layers) and their service models.	
Chapter No. 2. Application Layer Principles of network applications, the web and HTTP, DHCP, file transfer-FTP, electronic mail in the internet, DNS, peer-to-peer applications.	10hrs
Chapter No. 3. Transport Layer Introduction and transport-layer services-relationship between transport and network layers - overview of the transport layer in the internet, multiplexing and de multiplexing, connectionless transport: UDP, principles of reliable data transfer, connection oriented transport TCP, TCP congestion control.	08hrs
Chapter No. 4. Network layer Introduction, virtual circuit and datagram networks, what's inside router? The Internet protocol (IP): forwarding and addressing in the internet, routing algorithms, routing in the internet, broadcast and multi cast routing.	08hrs
Chapter No. 5. The link layer: Links, Access networks, and LANs Introduction to the link layer, error-detection and correction techniques, multiple access links and protocols, switched local area networks, link virtualization: A network as a link layer, data center networking.	08hrs
Text Book (List of books as mentioned in the approved syllabus) 1. Kurose & Ross, Computer Networking A Top-Down Approach, 6 th editionPEARSON, 2013.	
 References 1. Larry L. Peterson & Bruce S. Davie, Computer Networks: A Systems Approach, 4th edition, Elsevie 2. Behrouz A. Forouzan, Data Communication and Networking, 4th edition, TMG, 2002 	ər, 2004
Lab: 1. Introduction to Hardware components and Ethernet LAN set up. 2. Introduction to socket programming 3. Implementation of FTP 4. Implementation of error control techniques. 5. Implementation of flow control ARQs 6. Introduction to Network operating system. 7. Subnet design 8. VLAN setup 9. OSPF and RIP configuration and performance analysis 10. eBGP and iBGP configuration and performance analysis	
Text Book Kurose & Ross, Computer Networking A Top-Down Approach, 6th editionPEARSON, 2013. 	
References	

	urse Code:	Course Title:		Teaching Hrs: 40 Hrs	
17	EDEE701	Image and Video Processi	ng		
L-T-P: 2-0-1		Credits: 3		Contact Hrs: 4 Hrs/weel	(
ISA	A Marks: 50+100	Marks: 50+100Exam Duration: 3HrsESA Marks: 50Total Marks: 100			
1	Transfer Function Contrast, MTF of	Introduction : 2D systems, Mathematical Preliminaries- FT, Z-transform, Optical and Modulation Transfer Functions (OTF and MTF). Matrix theory, Image perception: Light, Luminance, Brightness, Contrast, MTF of the visual system, Visibility function, Monochrome Vision Models, Fidelity criteria, Color Representation, Color Vision Models, Temporal Properties of Vision.			2 hrs
2		J and Quantization: 2D Sa /isual Quantization.	mpling theory, Quant	zation, Optimal Quantizer,	2 hrs
3	Image Transform	ns: 2D orthogonal and unitary t	ransforms, DFT, DCT, I	Harr, KLT	4hrs
4	Image Enhancement : Histograms Modeling, Spatial operations, Transform operations, Multispectral Image Enhancement,			4hrs	
5	Image Filtering and Restoration: Image Observation Models, Inverse and Weiner filtering, 4hrs Frequency Domain Filters. Smoothing Splines and Interpolation.			4hrs	
6	Basics of Video:	Analog Video, Digital Video			2 hrs
7	Two dimensiona methods.	al motion estimation: Optica	I flow methods, Block	based methods, Bayesian	7 hrs
То	xt books				I
16				n Education (Asia) 2012	
1.	Jain, A.K., Fundam	entals of Digital Image Process	ing, 3 rd Edision, Pearso	IT Education (Asia) 2015	
1.		entals of Digital Image Process gital Video processing Pearsor			
1. 2.	A. Murat Tekalp, Di	0 0	n Education (Asia) Pte.	Ltd.	
1. 2. 3.	A. Murat Tekalp, Di	gital Video processing Pearson	n Education (Asia) Pte.	Ltd.	
1. 2. 3.	A. Murat Tekalp, Di Li and, Z. Drew, M. ferences books	gital Video processing Pearson S. Fundamentals of Multimedia C., Woods, Richard E. and Edd	n Education (Asia) Pte. , Pearson Education (A	Ltd. sia) Pte. Ltd,. 2010.	b, Pearsor

Program: Digital Electronics			
Course Title: Digital Control Systems Course Code: 17EDEE702			
L-T-P: 2-0-1	Credits: 4	Contact Hours: 5	
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40	Examination Duration: 3 hours		

1.	Introduction to digital control: Introduction, Discrete time system representation, Mathematical modeling of sampling process, Data reconstruction.	4hrs
2.	Modeling discrete-time systems by pulse transfer function: Z-transform, Mapping of Z-plane to z- plane, Pulse transfer function, Pulse transfer function of closed loop system, Sampled signal flow graph.	3hrs
3.	Time response of discrete systems: Transient and steady state responses, Time response parameters of a prototype second order system.	5hrs
4.	Stability analysis of discrete time systems: Jury stability test, Stability analysis using bi-linear transformation.	
5.	Design of sampled data control systems: Root locus method, Controller design using root locus, Root locus based controller ,design using MATLAB, Nyquist stability criteria, Bode plot.	5hrs
6.	Deadbeat response design :Design of digital control systems with deadbeat response, Practical issues with deadbeat response design, Sampled data control systems with deadbeat response.	5hrs
7.	Discrete state space model: Introduction to state variable model, Various canonical forms, Characteristic equation, state transition matrix, solution to discrete state equation.	6hrs
8.	Controllability, observability and stability of discrete state space models: Controllability and observability, Lyapunov stability theorem.	2hrs
9.	State feedback design: Pole placement by state feedback, Set point tracking controller, Full order observer, Reduced order observer.	
		5hrs
		5hrs
Refer	ences:	I
1.	B. C. Kuo, Digital Control Systems, Oxford University Press, 2/e, Indian Edition, 2007.	
	K. Ogata, Discrete Time Control Systems, Prentice Hall, 2/e, 1995.	
3.	M. Gopal, Digital Control and State Variable Methods, Tata Mcgraw Hill, 2/e, 2003.	
4.	G. F. Franklin, J. D. Powell and M. L. Workman, Digital Control of Dynamic Systems,	

Program: Digital Electronics			
Course Title: Multi Sensor Data Fusion		Course Code: 17EDEE703	
L-T-P: 2-0-1	Credits: 4	Contact Hours: 5	
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40	Examination Duration: 3 hours		

Chapter 1: Fundamentals of Multi-sensor data Fusion system	
Multi sensor data fusion strategies, formal framework, catastrophic fusion, Smart sensor, logical sensor, interface file system, sensor observation, sensor characteristics, sensor-sensor properties, Fusion node, simple fusion network, network topology.	08 hours
Chapter 2: Sensor modeling	
Mathematical modeling, Baye's Theorem, sensor modeling, sensor data normalization, Neural network approach.	06 hours
Chapter 3: State – Estimation techniques	
State-space approach: State-space representation, Time response of homogeneous systems: Kalman filtering: practical aspects of Kalman filtering, Applications	06 hours
Chapter 4: Representation	
Spatial-temporal transformation, geographical information system, common representation format, subspace methods, multiple training sets.	06 hours
Chapter 5: Spatial alignment	
Image registration, resample/interpolation, pair wise transformation, image fusion, mosaic image.	06 hours
Chapter 6: Temporal alignment & Semantic alignment	
Dynamic time warping, dynamic programming, video compression, assignment matrix for semantic alignment, clustering algorithms	06 hours
Chapter 7: Data fusion:	
Bayesian Interface, Bayesian analysis, probability model, Posteriori distribution, Model selection, computation.	06 hours
Chapter 8: Sensor management:	00 h a.una
Hierarchical classification, sensor management techniques.	06 hours
Text Books:	
1. H.B.Mitchell, "Multi Sensor Data Fusion, An Introduction" Springer, 2007.	
2. David L. Hall, Mathematical techniques in Multisensor data fusion, Artech House, Boston.	
3. Madan Gopal, Digital control and state variables methods 2 nd edition, PHI	
4. Pattern Recognition and Machine Learning" by Christopher M. Bishop	

Program: III Semester Master of Technology (Digital Electronics)			
Course Title: Embedded S	Course Title: Embedded Software Design Course Code: 17EDEC801		
L-T-P: 0-0-3	Credits: 3	Contact Hours: 6 Hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hours: 40 Hrs	Examination Duration:		

 Introduction To Real-Time Operating Systems: Introduction to OS, Introduction to real time embedded system- real time systems, characteristics of real time systems, and the future of embedded systems. Introduction to RTOS, key characteristics of RTOS, its kernel, components in RTOS kernel, objects, scheduler, services, context switch, Scheduling types: Preemptive priority-based scheduling, Round- robin and preemptive scheduling. 	08 Hrs
2. Tasks, Semaphores and Message Queues:: A task, its structure, A typical finite state machine, Steps showing the how FSM works. A semaphore, its structure, binary semaphore, mutual exclusion (mutex) semaphore, Synchronization between two tasks and multiple tasks, Single shared-resource-access synchronization, Recursive shared-resource-access synchronization. A message queue, its structure, Message copying and memory use for sending and receiving messages, Sending messages in FIFO or LIFO order, broadcasting messages.	08 Hrs
3. Typical RTOSs:	
Study of VX works, RT Linux and Android OS and comparisons. Real time programming using RTX/free RTOS.	04 Hrs
Applications and Common Design Problems: Embedded RTOS for Image Processing & Control Systems, and common problems encountered in these applications.	
4. Introduction to embedded linux:	
Embedded Linux overview: Development-Kernel architectures and device driver model-Embedded development issues-Tool chains in Embedded Linux-GNU Tool Chain (GCC,GDB, MAKE, GPROF & GCONV)- Linux Boot process	02 Hrs
 Boot sequence-System loading, sys linux, Lilo, grub-Root file system-Binaries required for system operation-Shared and static Libraries overview-Writing applications in user space-GUI environments for embedded Linux system 	02 Hrs
6. File system in Linux:	
File system Hierarchy-File system Navigation -Managing the File system –Extended file systems- INODE-Group Descriptor-Directories-Virtual File systems-Performing File system Maintenance - Locating Files –Registering the File systems-Mounting and Un-mounting –Buffer cache-/proc file systems-Device special files	08 Hrs
7. Program design and Analysis :	
Components of Embedded system: State machines; stream oriented programming and circular buffers, queues. Models of programs: data flow graph and control flow graphs, Assembly, linking and loading. Basic compilation techniques: Statement translation, procedures, data structures. Program optimization: Expression simplification, dead code elimination, procedure inlining, loop transformations, register allocation, scheduling, instruction selection, interpreters and JIT compilers. Program level performance analysis, software performance optimization, program level energy and power analysis, analysis and optimization of program size. Program validation and testing: Clear box testing, black box testing, evaluating function tests.	08 Hrs

Text Books

- 1. Qing Li with Caroline Yao, "Real-Time Concepts for Embedded Systems", Published by CMP Books, 2011
- 2. Dr. K.V.K.K. Prasad, "Embedded/Real-time systems: concepts, Design & Programming", published by dreamtech press .
- 3. "Embedded Systems- Architecture, Programming and Design" by Raj Kamal, TMH

References

- 1. Philip.A.Laplante, "Real Time System Design and Analysis", Prentice Hall of India, 3rd Edition, April 2004.
- 2. "Programming embedded systems" in C and C++ Micheal Barr orielly

List of Experiments:

- 1. Write a 'C' program & demonstrate concept of Task Scheduling.
- 2. Write a 'C' program & demonstrate concept of Semaphore.
- 3. Write a 'C' program & demonstrate concept of Mailbox.
- 4. Write a 'C' program & demonstrate concept of S/W Interrupts.
- 5. Write a 'C' program & demonstrate concept of interrupts.
- 6. Write a 'C' program & demonstrate concept of Inter Task Communication.

Reference Books

1. Dr. K.V.K.K. Prasad, "Embedded/Real-time systems: concepts, Design & Programming", published by dreamtech press.

Manual

1. LPC2148 datasheet by NXP.

LPC2148 board manual by ALS, Bangalore.

Program: Digital Electronics			
Course Title: Automotive Communication Course Code: 17EDEC802			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3	
CIA Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3 hrs		
	Content		Hrs
Chapter No. 1: Controller Area Network Introduction to CAN, Basic Concepts, Message Transfer, Frame Types, Message Validation, Error Handling, Fault Confinement, Bit Timing Requirements, Increasing Can Oscillator Tolerance, Protocol Modifications.			15 hrs
Chapter No. 2: Local Interconnect Network Overview of LIN protocol, LIN Workflow ,LIN Physical Layer ,LIN Communication, Synchronization of the LIN nodes, LIN Message & Scheduling, Message Types, Status & Network Management, Introduction to LIN slave diagnostics , Introduction to LIN slave configuration.			5 hrs
Chapter No. 3: Flexray Communication protocol Introduction to Fleray, Basic Concepts, Message Transfer, Static and dynamic data transmission, Flexray BUS, FlexRay controller states, Frame Types, Message Validation, Error Handling, Fault Confinement, Bit Timing Requirements, Fault tolerant and time triggered services implemented in hardware.			5 hrs
Chapter No. 4: Media oriented system transport protocol Technology background, MOST25, MOST50, MOST150, MOST topology, different masters in MOST			5 hrs

network, control channel, synchronous channel, asynchronous channel, MOST application frame work, addressing scheme, frame formats,	
Chapter No. Chapter 5: Keyword 2000 protocol Overview of KWP protocol, KWP Workflow, Physical topology, message structure, frame format,	5 hrs
Chapter No. Chapter 6: SENT, I2C, SPI and UART Overview about SENT, I2C, SPI and UART, frame formats, application of I2C, SPI, SENT and UART in automotive.	5 hrs
Text Books (List of books as mentioned in the approved syllabus) Ronald K. Jurgen, Infotainment systems, 2007, SAE International, 2007	

-		ster of Technology (Digital Electro	,	Teaching Hours
			nours	
L-T-P: 2-0-1 Credits: 3 Contact Hours: 5 Hrs/week				
ISA Ma	rks: 50+100	ESA Marks: 50	Total Marks: 200	
Teachir	ng Hours: 25 Hrs	Examination Duration:		
1	Introduction to In	nternet of Things (IoT)		
	Definition & Cha communication m		T, IoT protocols, IoT functional block	s, 04 hrs
2	IoT Architecture			
		ogies: Sensors, Zigbee, Bluetooth, 302.11.ah, DASH7, Low Power Wide	IoT ecosystem, Data Link protocols: IEE Area Network (LoRaWAN).	E 04 hrs
3	Network protocols			
			(RPL), cognitive RPL (CORPL), Channe Personal Area Networks (LoWPAN).	el- 04 hrs
4	Application and Security protocols			
	Advanced Messa		TT for Sensor Networks, Secure MQT strained Application Protocol (CoAP), OP Lossy Networks (RPL).	
5	IoT Platforms Design Methodology			
			for Weather Monitoring etc., Basic buildir serial, SPI, I2C), IoT Operating System	
6	Programming with Raspberry Pi			
	XML, JSON, SOA	P and REST-based approach, Web	Socket protocol.	04 hrs
7	IoT prototyping			

- 1. Arshdeep Bahga, Vijay Madisetti "Internet of Things (A Hands-on-Approach)" Universities Press- 2014.
- 2. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things: Key Applications and Protocols"

John Wiley & Sons – 2012.

Reference Books:

1. Subhas Chandra Mukhopadhyay "Internet of Things Challenges and Opportunities" Springer- 2014.

Lab:

- 1. Programming with Raspberry Pi
- 2. Cloud service interface for data storage and retrieval
- 3. Performance analysis of Data link protocols, routing and application protocols
- 4. Open Ended Experiment with focus on data analytics and security

Course Code: 17EDEE802	Course Title: AUTOSAR		
L-T-P : 2-0-1	Credits: 3	Contact Hrs: 3 Hours	
ISA Marks: 50	ESA Marks: 50	Total Marks:	100
Teaching Hrs: 40		Exam Duratio	on: 3
Content			Hrs
Unit - 1			
Chapter No. 1: AUTOSAR Fundamentals Evolution of AUTOSAR – Motivations and Objectives AUTOSAR consortium – Stake holders – work Packages, AUTOSAR Partnership, Goals of the partnership, Organization of the partnership, AUTOSAR specification, AUTOSAR Current development status, BSW Conformance classes: ICC1, ICC2, ICC3, and Drawbacks of AUTOSAR.			
Chapter No. 2: AUTOSAR layered Architecture			7 hrs
AUTOSAR Basic software, Details on the various layers, Details on the stacks Virtual Function Bus (VFB) Concept Overview of AUTOSAR Methodology, Tools and Technologies for AUTOSAR AUTOSAR Application Software Component (SW-C), Types of SW-components AUTOSAR Run Time Environment (RTE): RTE Generation Process: Contract Phase, Generation Phase, MCAL, IO HW Abstraction Layer, Partial Networking, Multicore, J1939 Overview, AUTOSAR Ethernet, AUTOSAR E2E Overview, AUTOSAR XCP, Metamodel, From the model to the process, Software development process.			
Unit - 2			
Chapter No. 3: Methodology of AUTOSAR and Communication in AUTOSAR CAN Communication, CAN FD, CAN in Automation, CANape, Application Layer and RTE, intra and inter ECU communication, Client-Server Communication, Sender-Receiver, Communication, CAN Driver, Communication Manager (ComM), Overview of Diagnostics Event and Communication Manager			10 hrs
Chapter No. 4: BSW Development and Integration BSW Constituents: Memory layer, COM and Services layer, ECU abstraction, AUTOSAR, Operating system, Interfaces: Standard interface, AUTOSAR standardized interface, BSW-RTE interface,(AUTOSAR interface), BSW-ECU hardware interface, Complex device drivers and BSW module configuration, AUTOSAR Integration.			5 hrs
Unit - 3			
Chapter No. Chapter 5: Infotainment Systems in Automobiles Infotainment Systems Fundamentals: Radio, Multimedia, and Navigation: Introduction to In Vehicle			5 hrs

Infotainment (IVI) systems, Use of operating systems in IVI, GENIVI Alliance, Tuner: AM/FM, XM/Sirrus, DAB/DMB, Software Defined Radio; Concepts of HD, radio, Ensemble, Traffic Announcements, Spread Spectrum, d. Multimedia: Types of Media; Music, Video, Podcasts, etc. Media management; Playback, Track Control, Metadata, Playlists, Categories, Trick play, Audio/Video Source Management, Navigation: Points of Interests, Routes, Waypoints, Dead Reckoning position, Traffic Info, GLONASS, GNSS, RTK, GPS, and SBAS/GBAS, INS f. Media types: CD, DVD, CDDA, USB, SDCARD, Media Formats:MP3, WMV, RealAudio/Video, QTP, Architecture – Design Patterns - Proxies, Adaptors, Interfaces, Singleton, Factory method	
Chapter No. Chapter 6: Communication Systems in Automobiles	5 hrs
Automotive & Consumer Electronic Communication Systems: Introduction to Bluetooth – Pairing, HFP, A2DP, PAN, PBAP, DUN, Concepts of MOST network, DLNA, AVB, Concepts of TCP/IP, Ethernet, WiFi, WiFi Direct, MyWiFi and CAN, Mirror link, Tethering	
Text Book (List of books as mentioned in the approved syllabus)	
1. Ribbens, Understanding of Automotive electronics, 6th Edition, Elsevier, 2003	
2. Denton.T, Automobile Electrical and Electronic Systems, Elsevier, 3rd Edition, 2004	
3. Denton.T, Advanced automotive fault diagnosis, 2000	
References	
1. Ronald K Jurgen, Automotive Electronics Handbook, 2nd Edition, McGraw-Hill, 1999	
2. James D Halderman, Automotive electricity and Electronics, PHI Publication, 2000	
3. Allan Bonnick, Automotive Computer Controlled Systems Diagnostic Tools and Techniques, Elsevier Science, 2001	
4. Nicholas Navet, Automotive Embedded System Handbook, 2009	

Program: III Semester Mas	ster of Technology (Digital Electro	onics)	Те	eaching
Course Title: Multirate Signal Processing Course Code: 17EDEE803				
L-T-P: 2-0-1 Credits: 3 Contact Hours: 5 Hrs/week			0	04 hrs
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 25 Hrs	Examination Duration: 3 hrs			
Chapter No. 1. Introduction	on	·		
	d systems, classification of signals Interconnection of operation, prope	s, basic operation on signals, element rties of systems.	ary	08 Hrs
Chapter No. 2. Time-Doma	ain representation for LTI systems	5		
Convolution, Impulse response representation, convolution sum and convolution integral. Properties of impulse response representation.				08Hrs
Chapter No. 3. Discrete F	ourier Transforms			
Discrete Fourier Transforms (DFT): Frequency domain sampling and reconstruction of discrete time signals. DFT as a linear transformation, its relationship with other transforms. use of DFT in linear filtering, overlap-save and overlap-add method. Fast-Fourier-Transform (FFT) need for efficient computation of the DFT (i.e. FFT algorithms). Radix-2 FFT algorithm for the computation of DFT and IDFT: decimation-in-time and decimation-in-frequency algorithms. Composite FFT.			ng, the	08 Hrs
Chapter No. 4. Design of	digital filters			
Design of digital filters: Considerations and Characteristics of practical digital filters. Design of digital filters: symmetric and anti symmetric FIR filters, design of linear phase FIR filters using windowing method-Rectangular, Hamming, Hanning, Bartlet and Kaiser windows. Design of linear phase FIR filters using frequency sampling technique.			od-	08Hrs

Chapter No. 5. Design of IIR filters from analog filters	
Design of IIR filters from analog filters: Approximation of derivative, Impulse invariance method, bilinea transformation. Characteristics of commonly used Analog Filters: Butterworth and Chebyshev filters Frequency transformation in the digital domain	001113
Text Books	
3. Simon Haykin and Barry Van Veen, Signals and Systems, second, John Wiley & Sons, 2002	
 Proakis & Monalakis, Digital signal processing Principles Algorithms & Applications, 4th Edition, PHI, N 2007 	lew Delhi,
References	
 Alan V. Oppenheim, Alan S Willsky and S. Hamid Nawab, Signals and Systems, second, Pearson Edu 1997 	ucation Asia,
Implementation Assignments:	
3. Implementation assignments are designed using Python. Ex:	
 Generate different elementary signals and perform mathematical operations on them. 	
- Coloulate N point DET and find the east of computation justify the use of EET algorithms	

- Calculate N point DFT and find the cost of computation, justify the use of FFT algorithms to calculate DFT.
- Design Filters (FIR/IIR) for given specifications.
- 4. Explore the feature of SDR to build signal processing applications like,
 - $\circ \quad \text{Noise cancellation} \quad$
 - Audio file editing

Program: Digital Electron	cs		Teaching
Course Title: Advanced Computer Architecture & Course Code: 17EDEC801 Programming			Hours
L-T-P: 2-0-1	Credits: 3	Contact Hours: 4 Hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40 Hrs	Examination Duration: 3 hrs		
	nplex addressing modes, Parallelis	Computer, ARM Addressing for 32-Bit sm and Instructions: Synchronization,	05
Chapter 2: Arithmetic for Addition and Subtraction Architecture: Associativity.	· · · · · · · · · · · · · · · · · · ·	Point, Parallelism and Computer	05
overview of pipelining, Pip Control hazards, Exception	Conventions, Building a Datapath , a elined datapath and control, Data s , Parallelism and advanced instruct	A Simple Implementation Scheme, An Hazards: Forwarding versus Stalling, tion level parallelism, Real Stuff: AMD d model a pipeline and more pipelining	10

Chapter 4: Large and Fast: Exploiting Memory Hierarchy	10
Introduction, The Basics of Caches , Measuring and Improving Cache Performance, Virtual Memory	
A Common Framework for Memory Hierarchies, Virtual machines, using a finite state machine to control a simple cache, Parallelism and memory hierarchy: cache coherence ,Advanced material: Implementing cache controllers, Real Stuff: AMD Opteron & Intel Nehalem Memory hierarchies	
Chapter 5: Storage, Networks, and Other Peripherals	10
Introduction , Dependability, Reliability and Availability, Disk Storage, Flash storage, Connecting Processors, Memory, and I/O Devices, Interfacing I/O Devices to the Processor, Memory and Operating System, I/O Performance Measures: Examples from Disk and File Systems, Designing an I/O System, Parallelism and I/O: Redundant arrays of inexpensive disks, Real Stuff: Sun firwe x4150 server, Advanced topics: Networks	
Chapter 6: Multicores, Multiprocessors and Clusters	
Introduction, Difficulty of creating parallel processing programs, Shared memory multiprocessors	
Clusters and other message passing multiprocessors,Hardware multithreading,SISD, MIMD, SIMD, SPMD, and vector,Introduction to graphics processing units,Introduction to multiprocessor network topologies, Multiprocessor benchmarks, Roofline : A simple performance model, Real Stuff: Benchmarking four multicores using the roofline model.	
Text Books:	
1. Computer Organization and Design, The hardware/Software interface, ARM edition- David A. Patter	son, John
L.Hennessy. 4 th edition,MK publishers,2009	
Reference Books:	
1. Computer Architecture and Organization- John P. Hayes, 3rd edition, McGraw-Hill, 1998	

Program: Digital Electronics				
Course Title: AUTOSAR and Infotainment Systems		Course Code: 17EDEE801		
L-T-P : 2-0-1				
CIA Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hrs: 24	Exam Duration: 3 hrs			
Chapter No. 1: AUTOSAR Fundamentals Evolution of AUTOSAR – Motivations and Objectives AUTOSAR consortium – Stake holders – work Packages, AUTOSAR Partnership, Goals of the partnership, Organization of the partnership, AUTOSAR specification, AUTOSAR Current development status, BSW Conformance classes: ICC1, ICC2, ICC3, and Drawbacks of AUTOSAR.			4 hrs	
Chapter No. 2: AUTOSAR layered Architecture AUTOSAR Basic software, Details on the various layers, Details on the stacks Virtual Function Bus (VFB) Concept Overview of AUTOSAR Methodology, Tools and Technologies for AUTOSAR AUTOSAR Application Software Component (SW-C), Types of SW-components AUTOSAR Run Time Environment (RTE): RTE Generation Process: Contract Phase, Generation Phase, MCAL, IO HW Abstraction Layer, Partial Networking, Multicore, J1939 Overview, AUTOSAR Ethernet, AUTOSAR E2E Overview, AUTOSAR XCP, Metamodel, From the model to the process, Software development process.			4 hrs	
Unit - 2				
Chapter No. 3: Methodology of AUTOSAR and Communication in AUTOSAR			4 hrs	

CAN Communication, Application Layer and RTE, intra and inter ECU communication, Client-Server Communication, Sender-Receiver, Communication, CAN Driver, Communication Manager (ComM), Overview of Diagnostics Event and Communication Manager	
Chapter No. 4: BSW Development and Integration	4 hrs
BSW Constituents: Memory layer, COM and Services layer, ECU abstraction, AUTOSAR, Operating system, Interfaces: Standard interface, AUTOSAR standardized interface, BSW-RTE interface,(AUTOSAR interface), BSW-ECU hardware interface, Complex device drivers and BSW module configuration, AUTOSAR Integration.	
Chapter No. Chapter 5: Infotainment Systems in Automobiles	4 hrs
Infotainment Systems Fundamentals: Radio, Multimedia, and Navigation: Introduction to In Vehicle Infotainment (IVI) systems, Use of operating systems in IVI, GENIVI Alliance, Tuner: AM/FM, XM/Sirrus, DAB/DMB, Software Defined Radio; Concepts of HD, radio, Ensemble, Traffic Announcements, Spread Spectrum, d. Multimedia: Types of Media; Music, Video, Podcasts, etc. Media management; Playback, Track Control, Metadata, Playlists, Categories, Trick play, Audio/Video Source Management, Navigation: Points of Interests, Routes, Waypoints, Dead Reckoning position, Traffic Info, GLONASS, GNSS, RTK, GPS, and SBAS/GBAS,INS f. Media types: CD, DVD, CDDA, USB, SDCARD, Media Formats:MP3, WMV, RealAudio/Video, QTP, Architecture – Design Patterns - Proxies, Adaptors, Interfaces, Singleton, Factory method	
Chapter No. Chapter 6: Communication Systems in Automobiles	4 hrs
Automotive & Consumer Electronic Communication Systems: Introduction to Bluetooth – Pairing, HFP, A2DP, PAN, PBAP, DUN, Concepts of MOST network, DLNA, AVB, Concepts of TCP/IP, Ethernet, WiFi, WiFi Direct, MyWiFi and CAN, Mirror link, Tethering	
Text Books 1. Ronald K. Jurgen, Infotainment systems, 2007, SAE International, 2007	

Program: Digital Electronic	5			
Course Title: Automotive Electronics and Communication Cou		Course	urse Code: 19EDEC701	
L-T-P: 4-0-1	Credits: 5 Cor		Hours: 5 hrs	
ISA Marks: 50	ESA Marks: 50 Total Marks		arks: 100	
Teaching Hours: 50	Examination Duration: 3 hrs			
Chapter No: 1.Automotiv overview	e Systems, Design cycle and Automotive in	ndustry	9 hrs	
automotive supply chain, glob and interdisciplinary design. electronics in automobiles automobiles, Introduction to braking fundamentals, Steering	ustry, Vehicle functional domains and their requi bal challenges. Role of technology in Automotive El Introduction to modern automotive systems and and application areas of electronic systems in power train, Automotive transmissions system ng Control, ,Overview of Hybrid Vehicles, ECU Desi at cycles(V and A), Components of ECU, Examples by Electronics and cluster.	ectronics need for modern ,Vehicle gn Cycle		
Chapter No: 2. Embedded system in Automotive Applications & Automotive safety systems			10 hrs	
Automotive grade microcontrollers: Architectural attributes relevant to automotive applications, Automotive grade processors ex: Renesas, Quorivva, and Infineon. EMS: Engine control functions, Fuel control, Electronic systems in Engines, Development of control algorithm for EMS, Look-up tables and maps, Need of maps, Procedure to generate maps, Fuel maps/tables, Ignition maps/tables, Engine calibration, Torque table, Dynamometer testing Safety Systems in Automobiles: Active and Passive safety systems:		on. EMS: oment of edure to ue table,		

ABS, TCS, ESP, Brake assist, Airbag systems etc.		
Chapter No: 3. Automotive Sensors and Actuators	9 hrs	
Sensor characteristics, Sensor response, Sensor error, Redundancy of sensors in ECUs, Avoiding redundancy, Smart Nodes, Examples of sensors: Accelerometer (knock sensors),wheel speed sensors, Engine speed sensor, Vehicle speed sensor, Throttle position sensor, Temperature sensor, Mass air flow (MAF) rate sensor, Exhaust gas oxygen concentration sensor, Throttle plate angular position sensor, Crankshaft angular position/RPM sensor, Manifold Absolute Pressure (MAP) sensor. Actuators: Engine Control Actuators, Solenoid actuator, Exhaust Gas Recirculation Actuator.		
Chapter No: 4. Automotive communication protocols	10 hrs	
Overview of Automotive communication protocols : need for communication in Automotive, overview of vehicle network architecture, need for CAN in Automotive, CAN Bus logic ,CAN frame formats, CAN bus fault confinement, LIN , Flex Ray, MOST.		
Chapter No: 5. Advanced Driver Assistance Systems (ADAS) and Functional safety standards	7 hrs	
Advanced Driver Assistance Systems (ADAS):Examples of assistance applications: Lane Departure Warning, Collision Warning, Automatic Cruise Control, Pedestrian Protection, Headlights Control, Connected Cars technology and trends towards Autonomous vehicles. Functional Safety: Need for safety standard-ISO 26262, safety concept, safety process for product life cycle, safety by design, validation.		
Chapter No: 6. Diagnostics	5 hrs	
Fundamentals of Diagnostics: Basic wiring system and Multiplex wiring system, Preliminary checks and adjustments, Self-diagnostic system. Fault finding and corrective measures, Electronic transmission checks and Diagnosis, Diagnostic procedures and sequence, On board and off board diagnostics in Automobiles, OBDII, Concept of DTCs, DLC, MIL, Freeze Frames, History memory, Diagnostic tools, Diagnostic protocols: KWP2000 and UDS.		
Text books:		
 William B. Ribbens, Understanding Automotive Electronics, 6, Newnes Publications Denton.T , Automobile Electrical and Electronic Systems, Edward Arnold , 1995 	s, 2003	
References:		
 William T.M , Automotive Electronic Systems, Heiemann Ltd., London , 1978 Nicholas Navet , Automotive Embedded System Handbook, CRC Press , 2009 		
Lab:		
9. Demonstration of cut section modules: Engine, Transmission , Steering, Braking, Suspe	ension - Automobile dept.	
10. Electronic engine control system: Injection and Ignition control system Transmission trainer modules		
11. Modeling an engine Vehicle model simulation with Simulink using PI CONTROLLER		
12. Basic gate logic simulation and modeling using Simulink and realization on the hardware platform.		
13. Seat belt warning system simulation and modeling using Simulink and realization Vehicle speed control based on the gear input simulation and modeling using Simu hardware platform.		

- 14. Throttle control modeling and simulation using Simulink and realization on the hardware platform.
- 15. Accelerator pedal interfacing software modeling and simulation using Simulink and realization on the hardware platform.
- 16. Develop matlab code for stepper motor control and convert it to Simulink model and port it to embedded hardware

Course Code: 17EPMC701		Course Title: Manufacturing Systems and	
		Automation	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40 hrs		Exam Duration: 3 hrs	

Introduction: Production system facilities, Manufacturing support systems, Automation in production system, Automation principles and strategies, Manufacturing operations, Basic elements of an automated system, Advanced automation functions, Levels of automation.

Material handling and identification technology: Considerations in material handling system design, 10 principles of material handling, Automated guided vehicle systems, Conveyor systems, Analysis of material transport system, Automated storage systems, Engineering analysis of storage system. Components of manufacturing systems, Single station automated cells, Applications and analysis of single station cells.

Flexible manufacturing systems: FMS components, FMS application and benefits, Quantitative analysis of flexible manufacturing systems.

Industrial control systems: Sensors, Actuators, Drives and other control system components. Electro-hydraulic and Electro-pneumatics in manufacturing automations

Machine vision systems: Importance of machine vision system in manufacturing automation.

Role of microcontrollers in manufacturing automation system: Microcontroller architecture, interfacing sensors and actuators with microcontroller for industrial automation, Microcontroller programming.

PLCs in manufacturing automation: Application of programmable logic controllers in manufacturing automation, PLC basic and advanced ladder logic programming using RsLogix and CoDeSys format, Usage of timers, counters, sequencing, and interlocking, latching, master control relay for developing programs for manufacturing automation. Temperature control, valve sequencing, conveyor belt control, control of a process etc

SCADA for Automation: Elements of SCADA, Benefits of SCADA, Applications, Types of SCADA systems, Features and functions of SCADA, Building applications using SCADA for manufacturing automation.

- 1. Grover M.P., "Automation, Production Systems and Computer Integrated Manufacturing", Pearson Education Asia.
- 2. Grover M.P., Weiss M. M., Nagel R.N. and Odrey N.G., "Industrial Robotics, Technology, Programming and Applications", Mc Graw Hill Book Publications.
- 3. Krishna Kant, "Computer Based Industrial Control" PHI.
- 4. W. Bolton, "Programmable Logic Controllers" Fifth Edition, Elsevier
- 5. Vijay R. Jadhav, "Programmable Logic Controller", Second Edition, Khanna Publishers.

Course Code: 17EPMC702		Course Title: CNC Machining Technology and
		Additive Manufacturing
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4 hrs/week
ISA Marks: 50	ESA Marks: 50	0 Total Marks: 100
Teaching Hrs: 50 hrs		Exam Duration: 3 hrs

Structure of CNC Machine Tools: Evolution of CNC Technology, CNC and DNC concept, classification of CNC Machines – turning centre, machining centre-features and applications, Automatic tool changers and Multiple pallet system, types of control systems, CNC controllers, characteristics, interpolators. CNC Machine building, structural details, configuration and design, guide ways –Friction, Anti friction and other types of guide ways, elements used to convert the rotary motion to a linear motion – Screw and nut, recirculating ball screw, rack and pinion, spindle assembly, torque transmission elements – gears, timing belts, flexible couplings, Bearings. Swarf removal and safety considerations

Drives and Tooling Systems: Spindle drives – DC shunt motor, 3 phase AC induction motor, feed drives – stepper motor, servo principle, DC and AC servomotors, Open loop and closed loop control, Tooling requirements for turning and machining centres, Qualified, semi qualified and preset tooling, coolant fed tooling system, work holding devices for rotating and fixed work parts, modular fixtures.

Feedback systems and Adaptive Control: Axis measuring system, Adaptive control with constraints (ACC), Adaptive control with optimization (ACO), Geometric adaptive control (GAC), Variable gain AC systems-stability problem, estimator algorithm, variable gain algorithm,

CNC Programming: G & M Codes, tool length compensation, cutter radius and tool nose radius compensation, do loops, subroutines, canned cycles, mirror image, parametric programming, machining cycles, programming for machining centre and turning centre, generation of CNC codes from CAM packages. Basics of APT

Additive manufacturing (AM) processes: AM based rapid prototyping (RP) Systems like Stereo-lithography, Fused Deposition Modeling (FDM), Selective Laser Sintering (SLS), Laminated Object Manufacturing (LOM), 3-D Printing, and LENS etc.

Role of additive manufacturing and rapid prototyping in product design and development: Solid modeling techniques for additive manufacturing with comparison, advantages and disadvantages, Process planning for rapid prototyping, STL file generation, Slicing and various slicing, procedures.

Accuracy issues in additive manufacturing: Properties of metallic and nonmetallic additive manufactured surfaces, Stress induced in additive manufacturing (AM) processes. Surface roughness problem in rapid prototyping, Part deposition orientation and issues like accuracy, surface finish, build time, support structure, cost etc.

- 1. Radhakrishnan P "Computer Numerical Control Machines", New Central Book Agency.
- 2. Rao P.N., "CAD/CAM", Tata McGraw-Hill Publishing Company Limited, New Delhi.
- 3. Pabla, B.S. & Adithan, M. "CNC Machines", New Age Publishers, New Delhi.
- 4. Warren. S. Seames, "Computer Numerical Control: Concepts and Programming", 4th edition, Delmar Thomson Learning Inc.
- 5. James Madison, "CNC Machining Hand Book", Industrial Press Inc.
- 6. Peter Smid, "CNC Programming Hand book", Industrial Press Inc., 2000
- 7. Chua, C.K., Leong, K.F., "Rapid Prototyping: Principles and Applications in Manufacturing", John Wiley and Sons Inc.
- 8. Hopkinson, N., Hague, R.J.M. and Dickens, P.M., "Rapid Manufacturing and Industrial Revolution for the Digital Age", John Wiley and Sons Ltd, Chichester.
- 9. Gebhardt, A., "Rapid Prototyping", Hanser Gardner Publications, Inc., Cincinnati.
- 10. Noorani, R., "Rapid Prototyping: Principles and Applications", John Wiley & Sons, Inc., New Jersey.

Course Code: 17EPMC703		Course Title: Operations Management
L-T-P: 3-1-0	Credits: 4	Contact Hrs: 5 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40 hrs	Tutorial Hrs: 24 hrs	Exam Duration: 3 hrs

Overview of Operations Management: Functional sub systems of organizations, Systems concept of production, Types of production systems, Productivity, Strategic management.

Product Design and Analysis: New product development, Process Planning and Design, Value analysis and Value Engineering, Standardization, Simplification, Make or Buy decisions, Ergonomic considerations in Product design.

Capacity Planning and Investment Decisions: Capacity planning and strategies, Investment formulas and comparisons of alternatives.

Forecasting: Nature and use of forecasting, Measures of Forecasting, Factors affecting forecasting, Types and models of forecasting

Facility Location and Layout: Factors influencing plant location, location evaluation methods, Different types of lay outs for operations and production, arrangement of facilities within the department, CRAFT, ALDEP, CORELAP etc.

Aggregate Planning and Master Production Scheduling: Nature of aggregate planning, Methods of aggregate planning, Approaches to aggregate planning –graphical, empirical and optimization, Development of MPS, MRP-I and MRP-II.

Inventory Analysis and Control: ABC inventory systems, Inventory models, EOQ models for purchased and manufactured parts, lot sizing techniques.

Scheduling and Controlling: Objectives in scheduling, Major steps involved, Information systems linkages in production planning and control, Production control in repetitive, batch / flow shop and job shop scheduling environment - SPT, EDD, WMFT.

Project Planning and Management: Phases of project planning, Evolution of network planning techniques - Critical Path Method (CPM) and Project Evolution and Review Technique (PERT), Crashing of project network, Project scheduling with constrained resources –Graphical Evolution and Review Technique (GERT), Project monitoring, Line balance.

References

- 1. Vollman.T.E., "Manufacturing Planning & Control Systems", McGraw-Hill.
- Dilworth. B. James., "Operations Management Design, Planning and Control for Manufacturing and services", McGraw Hill Inc., New Delhi.
- 3. Bedworth D.D., "Integrated production control systems: management, analysis,design", John Wiley & sons, New York
- 4. Panneerselvam. R., "Production and Operations Management", Prentice Hall. gement

Tutorial Exercises:

Forecasting, Facility location and layout, Aggregate Planning and MPS, Inventory Control, Scheduling and Controlling, Project Planning and Management

Course Code: 17EPMC704		Course Title: World Class Manufacturing
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50 hrs		Exam Duration: 3 hrs

World-Class Manufacturing (WCM): Manufacturing Excellence and Competitiveness, Meaning of World-class, Competing in World markets, WCM Techniques, Review of frameworks for WCM, Justification of WCM, Case studies.

Lean Manufacturing: Elements of Lean manufacturing: Stability, Standardized work, Just in time, Jidoka, Hoshin Planning, The culture of lean, Implementation of Lean manufacturing: Implementation framework for the Lean manufacturing, DEMAIC process, Case studies.

Total Productive Maintenance (TPM): An overview of various maintenance systems, Evolution of TPM, Productivity and TP, OEE, TPM and TQC, Small Group Activities, Pillars of TQM, Kobsu-Kaizen (Continuous Improvement), Jishu-Hozen (Autonomous maintenance), Planned Maintenance System, Skill upgrade training, Initial control (Equipment Life cycle management), Hinshitsu-Hozen (Quality Maintenance), Office TPM, Total safety management, Implementation, 5s,Case studies,

Total Quality Management (TQM): Understanding quality, Evolution of TQM, Framework for TQM, Commitment and leadership, Customer satisfaction, Employee involvement, Continuous process improvement, Supplier partnership, Performance, measures, Formulation and implementation of TQM

Concurrent engineering, Design Failure Mode Effects Analysis (DFMEA) and Process Failure Mode Effects Analysis (PFMEA), Manufacturing Quality in Supply Chain Management, Manufacturing Quality and its importance in Product Life Cycle, Case studies

- 1. Todd J., "World Class Manufacturing", McGraw Hill, London.
- Schonberger R.J., "World Class Manufacturing The Lesson of Simplicity", Free Press.
- Marcus, A. A., "Management Strategy: Achieving Sustained Competitive Advantage", New York: McGraw-Hill/Irwin.
- 4. Voss C.A., "Manufacturing Strategy: Process and Content", Chapman & Hall, London.
- 5. Pascal D., "Lean production simplified", 2nd Edition, Productivity Press.
- 6. Nakajima S., "Introduction to Total Productive Maintenance", Productivity Press.
- 7. Besterfield D. H., et al., "Total Quality Management", Pearson Education.
- 8. Mohanty R.P. and Deshmukh S: G., "Advanced Operations Management", Pearson Education.

I Sem M.Tech. (Production Management)

Curriculum Content

Course Code: 17EPME701		Course Title: Intelligent Manufacturing Systems	
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4 hrs/week	
ISA Marks: 50	ESA Marks:	50 Total Marks: 100	
Teaching Hrs: 50 hrs		Exam Duration: 3 hrs	

Introduction: Computer Integrated Manufacturing Systems Structure and functional areas of CIM system, -CAD, CAPP, CAM, CAQC, ASRS, Manufacturing Communication Systems -MAP/TOP, OSI Model, Data Redundancy, Top-down and Bottom-up Approach, Volume of Information, Intelligent Manufacturing System Components, System Architecture and Data Flow, System Operation.

Components of Knowledge Based Systems: Basic Components of Knowledge Based Systems, Knowledge Representation, Comparison of Knowledge Representation Schemes, Interference Engine, Knowledge Acquisition.

Machine Learning: Concept of Artificial Intelligence, Conceptual Learning, Artificial Neural Networks -Biological Neuron, Artificial Neuron, Types of Neural Networks, Applications in Manufacturing

Automated Process Planning: Variant Approach, Generative Approach, Expert Systems for Process Planning, Feature Recognition, Phases of Process Planning. Knowledge Based System for Equipment Selection (KBSES), Manufacturing System Design. Equipment Selection Problem, Modeling the Manufacturing Equipment Selection Problem, Problem Solving Approach in KBSES, Structure of the KRSES

Group Technology: Models and Algorithms Visual Method, Coding Method, Cluster Analysis Method, Matrix Formation - Similarity Coefficient Method, Sorting-based Algorithms, Bond Energy Algorithm, Cost Based method, Cluster Identification Method, Extended CI Method. Knowledge Based Group Technology, Group Technology in Automated Manufacturing System. Structure of Knowledge based system for group technology (KBSCIT) —Data Base, Knowledge Base, Clustering Algorithm.

- 1. Andrew Kusiak, "Intelligent Manufacturing Systems", Prentice Hall.
- 2. Yagna Narayana, "Artificial Neural Networks", PHI.
- 3. Groover M.P, "Automation, Production Systems and CIM", PHI.
- 4. Simon Hhaykin, "Neural networks: A comprehensive foundation", PHI.
- 5. James A Freeman & David M S Kapura, "Neural Networks", Pearson Education.
- 6. Jacek M. Zurada, "Introduction to Artificial Neural Systems", JAICO Publishing House.

I Sem M.Tech. (Production Management)

Curriculum Content

Course Code: 17EPMI	E702 Course Title: Design	n for Manufacture and Assembly
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50 hrs		Exam Duration: 3 hrs

Tolerance Analysis: Introduction – Concepts, definitions and relationships of tolerancing – Matching design tolerances with appropriate manufacturing process – manufacturing process capability metrics – Worst care, statistical tolerance Analysis – Linear and Non-Linear Analysis – Sensitivity Analysis – Taguchi's Approach to tolerance design.

Tolerance Allocation: Tolerance synthesis – Computer Aided tolerancing – Traditional cost based analysis – Taguchi's quality loss function – Application of the Quadratic loss function to Tolerancing – Principles of selective Assembly.

GD&T: Fundamentals of geometric dimensioning and tolerancing – Rules and concepts of GD&T – Form controls – Datum systems – Orientation controls – Tolerance of position – Concentricity and symmetry controls – Run out controls – Profile controls.

Tolerance Charting: Nature of the tolerance buildup – structure and setup of the tolerance chart – piece part sketches for tolerance charts – Arithmetic ground rules for tolerance charts – Determination of Required balance dimensions – Determination of Mean working Dimensions – Automatic tolerance charting – Tolerance charting of Angular surfaces.

Manufacturing Guidelines: DFM guidelines for casting, weldment design – Formed metal components – Turned parts – Milled, Drilled parts – Non metallic parts – Computer Aided DFM software – Boothroyd and Dewhurst method of DFMA – DCS – Vis/VSA – 3D Dimensional control – Statistical tolerance Analysis Software –Applications.

- 1. M. Creveling, "Tolerance Design A handbook for Developing Optimal Specifications", Addison Wesley.
- 2. James D. Meadows, "Geometric Dimensioning and Tolerancing., Marcel Dekker Inc..
- 3. Alex Krulikowski, "Fundamentals GD&T.", Delmar Thomson Learning.
- 4. James G. Bralla"Handbook of Product Design for Manufacturing", McGraw Hill.

I Sem M.Tech. (Production Management)

Curriculum Content

Course Code: 17EPME703		Course	Title: Design and Analysis of Experiments
L-T-P: 4-0-0	Credits: 4		Contact Hrs: 4 hrs/week
ISA Marks: 50	ESA Marks	: 50	Total Marks: 100
Teaching Hrs: 50 hrs			Exam Duration: 3 hrs

Overview: Taguchi's approach to quality and quality loss function, noise factors and average quality loss, exploiting non linearity, classification of parameters

Analysis of variance: No-Way ANOVA, One-Way ANOVA, Two-Way ANOVA and Three-Way ANOVA

Two Level Experiments: Two factor factorial design, model adequacy checking and estimating model parameters, 2^2 full factorial design, 2^3 full factorial design, 2^k full factorial design and Two level fractional factorial design, General 2^{k-p} fractional factorial design.

Steps in Robust Design: Identification of process and its main function, Noise factors and testing conditions, Control factors and their levels, Matrix experiment and data analysis plan, Conducting the experiment and data analysis, Verifying experiment and future plan.

Signal to Noise Ratios: Comparison of the quality of two process conditions, Relationship between Signal to Noise Ratio and quality loss after adjustment, Identification of a scaling factor, Signal to Noise Ratios for static problems, Signal to Noise Ratios for dynamic problems, Analysis of ordered categorical data.

Taguchi inner and outer arrays, orthogonal arrays and fractional factorial designs, Parameter design and tolerance design, Analysis of inner/outer array experiment, Alternative inner/outer orthogonal array experiments.

Constructing orthogonal arrays, Dummy level technique, Compound factor method, Linear graphs and Interaction assignment, Modification of linear graphs, Column merging method, Branching design.

- 1. Montgomery, D. C., "Design and Analysis of Experiments", John Wiley & Sons.
- 2. Khuri A. I. and Cornell J. A. "Response Surfaces: Designs and Analyses, Marcel Dekker, Inc., New York.
- 3. Myers R. H., Montogomery, D. C. and Anderson-Cook C. M. "Response Surface Methodology: Process and Product Optimization Using Designed Experiments", John Wiley & sons, Inc., New York.
- 4. Mason R. L., Gunst, R. F., Hess J. L., "Statistical design and Analysis of Experiments With Applications to Engineering and SISAnce", John Wiley & sons, Inc., New York.
- 5. Phadke M. S., "Quality Engineering using Robust Design", Prentice Hall PTR Englewood Cliffs, New Jersy.
- 6. Ross P. J., "Taguchi Techniques for Quality Engineering", McGraw -Hill International.

Course Code: 17EPMI	E 704	Course Title: Finite Element Analysis
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50 hrs		Exam Duration: 3 hrs

Introduction: Introduction to FEA, General FEM procedure, Approximate solutions of differential equations: FDM method, W-R technique, collocation least square sub-domain and Galerkin method Numerical integration, Gauss Quadrature in 2-D and 3-D, Structure of FEA program, Pre and Post processor, commercially available, standard packages, and desirable features of FEA packages, Principal of minimum total potential, elements of variational calculus, minimization of functional, Rayleigh-Ritz method, Formulation of elemental matrix equation, and assembly concepts.

One Dimensional FEM: Coordinate system: Global, local, natural coordinate system, Shape functions: Polynomial shape functions, Natural co-ordinate and coordinate transformation, Linear quadratic and cubic elements, Shape functions using Lagrange polynomials. Convergence and compatibility requirement of shape functions, One dimensional field problems: structural analysis (step-bar, taper-bar), Structural analysis with temperature effect, Thermal analysis.

Two Dimensional FEM: Trusses, Thermal effects in truss members, Beams, Two dimensional finite elements formulations, Three noded triangular element, Four-noded rectangular element, Four-noded quadrilateral element, derivation of shape functions: natural coordinates, triangular elements, and quadrilateral elements, Six-noded triangular elements, Eight-noded quadrilateral elements, Nine noded quadrilateral element, Strain displacement matrix for CST element.

Three dimensional elements: Tetrahedron, Rectangular prism (brick), Arbitrary hexahedron, Three Dimensional polynomial shape functions, Natural co-ordinates in 3D, Three dimensional Truss(space trusses), Introduction to material models: Introduction to plasticity (Von-Mises Plasticity), Hyper –elasticity. Generating and using experimental data to model material behaviour, Errors in FEA, sources of errors, method of elimination, Patch test.

Applications of FEA in Manufacturing: FE analysis of Metal casting, Analysis of metal forming- Sheet metal stamping, Analysis of Machining using standard FE analysis packages

- 1. Reddy J. N., "Introduction to Finite Element Method", McGraw-Hill.
- 2. Rao S.S, "Finite Element Method in Engineering", Academic Press, Elsevier.
- 3. Desai and Abel, "Introduction to the finite element method: A numerical method for engineering analysis", CBS.
- 4. Chandrupatla R T and Belegundu A D, "Introduction to Finite Elements in Engineering", PHI.
- 5. David Hutton, "Fundamentals of Finite Element Analysis", McGraw-Hill.
- 6. Buchanan, G R., Finite Element Analysis, Adapted by: R Rudramoorthy, The McGraw-Hill, Indian Adapted Edition, Schaum's Outlines.

I Sem M.Tech. (Production Management)

Curriculum Content

 Course Code: 17EPMP701

 L-T-P: 0-0-1
 Credit: 1

 CIE Marks: 80
 SEE Marks: 20

 Practical Hrs: 24 hrs
 Yes

Course Title: Automation Lab Contact Hrs: 2hrs/week Total Marks: 100

Laboratory Exercises:

- Non controller based applications
- Controller based applications
- Programming PLC system for small applications using CodeSys and RsLogix software
- Interfacing PLC system for analyzing industrial applications
- Building programs for manufacturing automation processes
- Building and analyzing circuits using electro hydraulics and electro pneumatics system.

 Course Code: 17EPMP702

 L-T-P: 0-0-1
 Credit: 1

 CIE Marks: 80
 SEE Marks: 20

 Practical Hrs: 24 hrs
 SEE Marks: 20

Course Title: Machining Lab Contact Hrs: 2hrs/week Total Marks: 100

Laboratory Exercises:

- CNC programming practices on machining centers and WEDM.
- CAD/CAM integration with CNC machine tool.
- Practices in 3D printing.
- Machinability studies in turning, drilling, milling and non-traditional machining.
- Open ended experiments on
 - \checkmark Parametric analysis in traditional/non-traditional machining for a work tool combination,
 - ✓ CNC Programming

I Sem M.Tech. (Production Management)
Curriculum Content

Course Code: 17EPMV	V701	Course Title: Mini Project I
L-T-P: 0-0-3	Credit: 1	Contact Hrs: 6hrs/week
CIE Marks: 80	SEE Marks: 20	Total Marks: 100
Practical Hrs: 72 hrs		

Mini Project I: The Guide shall define the problem statement for the Project work. The student shall execute the Project within during the 1st semester. The student who has opted Mini Project I shall opt automation theme to carry out their work.

Course Code: 17EPMC	2705	Course Title: Data Analytics
L-T-P: 3-1-0	Credits: 4	Contact Hrs: 5 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40 hrs	Tutorial Hrs: 24 hrs	Exam Duration: 3 hrs

Statistical Data Analysis: Data and Statistics- Review of Basic Statistical Measures-Probability Distributions-Testing of Hypotheses-Non Parametric Tests

Data Analysis I: Introduction – Basic concepts – Uni-variate, Bi-variate and Multivariate techniques – Types of multivariate techniques – Classification of multivariate techniques – Guidelines for multivariate analysis and interpretation – Approaches to multivariate model building.

Data Analysis II: Simple and Multiple Linear Regression Analysis – Introduction – Basic concepts – Multiple linear regression model – Least square estimation – Inferences from the estimated regression function – Validation of the model.

Factor Analysis: Definition – Objectives – Approaches to factor analysis – methods of estimation – Factor rotation – Factor scores - Sum of variance explained – interpretation of results. Canonical Correlation Analysis - Objectives – Canonical variates and canonical correlation – Interpretation of variates and correlations

Data Analysis III: Multiple Discriminant Analysis - Basic concepts – Separation and classification of two populations - Evaluating classification functions – Validation of the model. Cluster Analysis – Definitions – Objectives – Similarity of measures – Hierarchical and Non – Hierarchical clustering methods – Interpretation and validation of the model.

Data Analysis IV: Conjoint Analysis – Definitions – Basic concepts – Attributes – Preferences – Ranking of Preferences – Output of Conjoint measurements – Utility -Interpretation. Multi Dimensional Scaling – Definitions – Objectives – Basic concepts – Scaling techniques – Attribute and Non-Attributes based MDS Techniques – Interpretation and Validation of models. Advanced Techniques – Structural Equation modeling.

- 1. Joseph F Hair, Rolph E Anderson, Ronald L. Tatham & William C. Black, "Multivariate Data Analysis", Pearson Education, New Delhi.
- 2. Richard A Johnson and Dean W. Wichern, "Applied Multivariate Statistical Analysis", Prentice Hall, New Delhi.
- 3. David R Anderson, Dennis J Sweeney and Thomas A Williams, "Statistics for Business and Economics", Thompson, Singapore.

Course Code: 17EPM	C706	Course Title: Enterprise Resource
		Planning
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40 hrs		Exam Duration: 3 hrs

ERP as Integrated Management Information System: Evolution of ERP, Benefits of ERP,ERP versus Traditional Information Systems, Business Process Reengineering, Need and challenges.

Management concerns about BPR: BPR to build business Model for ERP, ERP & Competitive advantage, Basic Constituents of ERP, Selection criteria for ERP Packages.

Procurement process for ERP Package, ERP packages – PEOPLE SOFT, SAP-R/3, BAAN IV, MFG/PRO, IFS/AVALON, ORACLE-FINANCIAL, Survey of Indian ERP Packages regarding their Coverage, performance and cost

ERP Implementation: Issues, Role of Consultants, Vendors, Users, Need for training, customization. ERP implementation methodology and post implementation issues and options,

Supply Chain Management: Types of SCM, Potential benefits of SCM, Possible obstacles, Application systems supporting SCM – engineering, Product Data Management, Sales, Procurement, Production, MRP, Distribution, ERP case studies in HRM, finance, production, product database, materials, sales & distribution.

- 1. Leon Alexis, "Enterprise Resource Planning", Tata McGraw Hill, New Delhi.
- 2. Garg V. K. and Venkatakrishna N. K., "Enterprise Resource Planning: Concepts and Practices", PHI, New Delhi.
- 3. Sadagopan S., "Enterprise Resource Planning: A Managerial Perspective", Tata McGraw Hill, New Delhi.
- 4. Brady, "Enterprise Resource Planning", Thomson Learning.

Course Code: 17EPN	AC707	Course Title: Manufacturing Systems
		Simulation
L-T-P: 3-0-0	Credits: 4	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40 hrs	1	Exam Duration: 3 hrs

Principles of Modeling & Simulation: Basic Simulation Modeling, Systems – discrete and continuous systems, general systems theory, models of systems- variety of modeling approach, concept of simulation, simulation as a decision making tool, types of simulation, Principle of computer modeling- Monte Carlo simulation, Nature of computer modeling, limitations of simulation, area of application.

Random Number Generation: Random variables and their properties, Properties of random numbers, generation of Pseudo random numbers, techniques for generating random numbers, Various tests for random numbers-frequency test and test for Autocorrelation,

Random Variate Generation: Different techniques to generate random Variate: Inverse transform technique,-exponential, Normal, uniform, Weibull, direct transformation technique for normal and log normal distribution, convolution method and acceptance rejection techniques-Poisson distribution, **Statistical Techniques:** Comparison of two system designs, Comparison of several system designs – Bonferroni approaches to multiple comparisons for selecting best fit, for screening

Design and Evaluation of Simulation Experiments: Problem formulation, data collection and reduction, time flow mechanism, key variables, logic flow charts, starting condition, run size, experimental design consideration, output analysis, verification and validation of simulation models. **Simulation Languages:** Comparison and selection of simulation languages, study of any one simulation language.

Discrete Event Simulation: Concepts in discrete –event simulation, development of simulation models for queuing systems, production systems, inventory systems, maintenance and replacement systems, investment analysis and network, Programming for discrete event simulation, Case studies.

- 1. Jerry Banks and John S Carson, Barry L Nelson, David M Nicol, "Discrete event system simulation", Prentice Hall, India.
- 2. Khoshnevi. B., "Discrete system simulation", McGraw Hill International.
- 3. Ronald G Askin and Charles R Standridge , "Modeling and analysis of manufacturing systems", John Wiley & Sons.
- 4. Gordon G, "System Simulation", Prentice Hall, India..
- 5. Thomas J Schriber., "Simulation using GPSS", John Wiley & Sons.
- 6. Shannon, R.E., "System Simulation The art and science", Prentice Hall, India.
- 7. Averill Law & David M.Kelton, "Simulation, Modeling and Analysis", TMH.

Course Code: 17EPME	705	Course Title: Flexible Manufacturing Systems
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50 hrs		Exam Duration: 3 hrs

Overview of FMS: Definition of an FMS-need for FMS, types and configuration, types of flexibilities and performance measures, Economic justification of FMS. Development and implementation of FMS- planning phases, integration, system configuration, FMS Layouts, Simulation

Automated Material Handling and Storage: Functions – types - analysis of material handling systems, primary and secondary material handling systems-conveyors, Automated Guided Vehicles-working principle, types, traffic control of AGVs. Role of robots in material handling, Automated storage systems- storage system performance – AS/RS-carousel storage system, WIP storage systems, interfacing handling and storage with manufacturing.

Computer control of FMS: Planning, scheduling and computer control of FMS, Hierarchy of computer control, supervisory computer. DNC system- communication between DNC computer and machine control unit features of DNC systems.

Computer Software, Simulation and Data base: System issues, types of software – specification and selection- trends-application of simulation and its software, Manufacturing Data systems- planning FMS data base, Modeling of FMS- analytical, heuristics, queuing, simulation and petrinets modeling techniques.

Scheduling of FMS: Scheduling of operations on a single machine- two machine flow shop scheduling, two machine job shop scheduling, - three machine flow shop scheduling scheduling, 'n' operations on 'n' machines, knowledge based scheduling, scheduling rules, tool management of FMS, material handling system schedule.

- 1. Jha. N.K., "Hand Book of Flexible Manufacturing Systems", Academic Press Inc.
- 2. Raouf, A. and Ben-Daya, M., Editors, "Flexible manufacturing systems: recent development", Elsevier Science.
- 3. Parish.D.J., "Flexible Manufacturing", Butter worth-Heinemann Ltd.
- 4. Groover. M. P., "Automation production systems and computer integrated manufacturing", PHI.
- 5. Taiichi Ohno, "Toyota production system: beyond large-scale production", Productivity Press (India) Pvt. Ltd.
- 6. Parrish D. J., "Flexible Manufacturing", Butter worth, Heinemann, Ltd., Oxford.
- 7. Luggen W. W., "Flexible Manufacturing Cells & Systems", Prentice Hall, Englewood Cliffs.
- 8. Shivanand H K., "Flexible Manufacturing System", Dhanpat Rai Publications, New Delhi.

Course Code: 17EPME	E 706 Cou	urse Title: Sensors for Intelligent Manufacturing
		and Condition Monitoring
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4 hrs/week
ISA Marks: 50	ESA Marks: 5	50 Total Marks: 100
Teaching Hrs: 50 hrs		Exam Duration: 3 hrs

Introduction: Role of sensors in manufacturing automation – operation principles of different sensors - electrical, optical, acoustic, pneumatic, magnetic, photo -electric, electro-optical, vision, proximity.

Sensors in Manufacturing: Industrial sensors - Temperature sensors- Semiconductor absorption sensors, Non-contact sensors, Pyrometers, Pressure sensors-piezoelectric circuit, strain gauges, fiber optic pressure sensors, displacement sensors for robotic applications, Manufacturing of industrial sensors – Semiconductors, Fiber optics sensors and their principles and applications.

Sensors in CNC machine tools: Linear and Angular position sensors, Velocity sensors, Principles and applications. Sensors in Robots-Position sensors, encoder and revolvers, potentiometers, range proximity touch – torque sensors, Machine vision, Smart sensors

Condition monitoring of manufacturing systems: Principles, Sensors for monitoring force, Vibration and Noise, selection of sensors and monitoring techniques.

Acoustic Emission: Principles of Acoustic emission sensors, Concepts of pattern recognition, applications of Acoustic emission, on line monitoring of tool wear using Acoustic emission.

Automatic identification techniques for shop floor control, optical character and machine vision sensors, smart / intelligent sensors, integrated sensors, Robot sensors, Micro sensors, Nano sensors

- 1. Jacob Fraden "Handbook of Modern Sensors physics, designs and applications" Springer-Verlag New York.
- 2. Sabrie Salomon, "Sensors and control systems in manufacturing", McGraw Hill Int. Edition.
- 3. Julian W. Gardner, "Micro sensor MEMS and Smart Devices", John Wiley & Sons.
- 4. Randy Frank, "Understanding smart sensors", Artech House, USA, 2011.
- 5. Julian W. Gardner, "Micro sensor principles and applications", John Wiley & sons.

Course Code: 17EPME	707	Course Title: Advanced Precision Engineering
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50 hrs		Exam Duration: 3 hrs

Concept of Measurement methods, Experimental Test plan, Calibration, Static and Dynamic characteristics of signals, Measurement system behavior, Probability and Statistics, Density functions, Infinite and finite statistics, Chi-squared distribution, Regression analysis, Data outlier detection, Uncertainty Analysis, Measurement errors, Design-stage uncertainty analysis, error sources, Bias and precision errors, error propagation, single and multiple measurement, uncertainty analysis, Surface roughness measurement, Stylus instruments (Mechanical and Electrical), Sources of error, Optical instruments (Profiling and Parametric techniques), Data acquisition and filtering, Amplitude and texture parameters, Coordinate Measuring Machines: Coordinate metrology, Configuration of CMM, Hardware components, Control system for CMM, Operating sequence, Measurement program, Automated inspection, Principles, Methods of online, offline, distributed and flexible inspections, Machine vision, Image Acquisition & digitization, Image processing & Analysis, interpretation, applications

References:

- Figliola R. S. and Beasley, D. E., "Theory and Design for Mechanical Measurements", Third edition, John Wiley & Sons Inc.
- 2. Thomas Tom R., "Rough Surfaces 2 ed", Imperial College Press, London.
- 3. Hooken Rabert and Pereira P. H., "Coordinate Measuring Machines and Systems", CRC press.
- 4. Groover M.P., "Automation, Production Systems and Computer Integrated Manufacturing", PHI.

Reference Books:

Ambrose, S., Bridges, M., DiPietro, M., Lovett, M., & Norman, M. (2010) How learning works: 7 Research-Based principles for smart teaching. San Francisco: Jossey-Bass.

Suggested Web Resources:

https://cft.vanderbilt.edu/guides-sub-pages/blooms-taxonomy/ http://educationaltechnology.net/instructional-design/ https://www.nwea.org/blog/2014/33-digital-tools-advancing-formative-assessmentclassroom/ http://oedb.org/ilibrarian/101-web-20-teaching-tools/

Course Code: 17EPM	P703	Course Title: ERP Lab
L-T-P: 0-0-1	Credit: 1	Contact Hrs: 2hrs/week
CIE Marks: 80	SEE Marks: 20	Total Marks: 100
Practical Hrs: 24 hrs		

- Introduction and selection criteria for ERP Packages, Survey of Indian ERP Packages
- Production Planning and Execution Module: Exercises on production planning, machine scheduling, Material Requirement Planning, track daily production progress, production forecasting & actual production reporting with case studies.
- Supply Chain Management Module: Exercises on Management of flow of products from manufacturer to consumer & consumer to manufacturer, demand & supply management, sales returns & replacing process, shipping & transportation tracking with case studies.
- Finance & Accounting module: Exercises on Track of all account related transactions like expenditures, Balance sheet, account ledgers, budgeting, bank statements, payment receipts, tax management with case studies.
- Human Resource Module:- Exercises on Efficient management of human resources, employee information, track employee records like performance reviews, designations, job descriptions, skill matrix, time & attendance tracking. Payroll System, payment repots, travel Expenses & Reimbursement tracking. with case studies.

 Course Code: 17EPMP704

 L-T-P: 0-0-1
 Credit: 1

 CIE Marks: 80
 SEE Marks: 20

 Practical Hrs: 24 hrs
 SEE Marks: 20

Course Title: Simulation Lab Contact Hrs: 2hrs/week Total Marks: 100

Laboratory Exercises:

Development of simulation models for the following systems

- Queuing and Inventory systems, manufacturing system and service operations.
- Maintenance and replacement systems
- Job shop with material handling and FMS
- Exercises on real life problems using discrete event systems simulation software on product, process and FMS layouts.

II Sem M.Tech. (Production Management) Curriculum Content		
Course Code: 17EPM	W702	Course Title: Mini Project II
L-T-P: 0-0-3	Credit: 1	Contact Hrs: 6hrs/week
CIE Marks: 80	SEE Marks: 20	Total Marks: 100
Practical Hrs: 72 hrs		

Mini Project II: The Guide shall define the problem statement for the Project work. The student shall execute the Project within during the 2nd semester. The student who has opted Mini Project II shall opt automation theme to carry out their work.

Course Code: 18EPM	C701	Course Title: PLM Fundamentals
L-T-P: 2-0-0	Credits: 2	Contact Hrs: 2 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 30 hrs		Exam Duration: 3 hrs

Introduction to Product Lifecycle Management (PLM): PLM Overview, Background for PLM, Scope, Components/Elements of PLM, PLM Grid, PLM Paradigm - Concepts, Consequences and Corollaries, Strategic Benefits, Operational Benefits, Spread of PLM, Overcoming Problems, Enabling Opportunities, Challenges.

The PLM Environment: Issues in the Traditional Environment, Product Data Issues, A Complex Changing Environment-Change, Interconnections, Changes Driving PLM, Product Pains-Aerospace, Automotive and Other Products, Product Opportunities - Globalization Opportunity, Technology Opportunity, Social/Environmental Opportunity, Human Resource Opportunity.

Product Lifecycle Management System: Product Data or Product Information, System Architecture, Information Models and Product Structure, Information Model, Product Information Data Model, Product Model, Reasons for the Deployment of PLM Systems.

PLM in Different Verticals: Functionality of the Systems, Use of PLM Systems in Different Organizational Verticals, Product Development and Engineering, Production, After Sales, Sales and Marketing, Sub-Contracting, Sourcing and Procurement, Different Ways to Integrate PLM Systems, System Roles - ERP, CAD.

Project/Program Management in PLM Environment: Characteristics of Projects, People in Projects, Project Phases, Project Management Knowledge Area, Project Management Tools and Templates, The Importance of Project Management in PLM, Project reality in a Typical Company, Project Management Activities in PLM Initiatives, Pitfalls of Project Management, Top Management Role with Project Management.

- 1. Stark John, "Product Lifecycle Management: 21st Century Paradigm for Product Realization", Springer, Third Edition, 2015
- 2. Antti Saakasvuori, Anselmi Immonen, "Product Lifecycle Management" Springer, 1st Edition, 2003.
- 3. Grieves Michael, "Product Lifecycle Management Driving the Next generation of LeanThinking", McGraw-Hill, 2006.

Course Code: 18EPMC	2702	Course Title: Engineering Data Management
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40 hrs		Exam Duration: 3 hrs

Introduction and Overview of Embedded Product Design: Background, Related Research and Research Problems, Structure of the Report, Design for Manufacture, Design of Embedded Products, Technical Design Disciplines and Document Management, Software Design, Electronics Design, Software-Hardware Co-Design, Mechanical design, Concurrent Engineering, Design Data Management, DFA and DFMA.

PDM Systems and Data Exchange: Product Data Management (PDM), State-of-the-art trends of PDM, Data Formats and Translators in Data Exchange, STEP (Standard for the Exchange of Product Model Data), CDIF (Case Data Interchange Format), SGML (Standard Generalized Markup Language).

PDM and SCM: PDM and Product Life Cycle, PDM Systems – Common Functionality, Product Structure and Document Management, System Architecture, Version Management, Configuration Selection, Concurrent Development, Build Management, Release Management, Workspace Management, Change Management.

Requirements of Design Data Management: Requirements for the Embedded Product's Design Data Management, Data Management, Process and Life-Cycle Management, Data Capture & Distribution, Support for Working Methods, Requirements for Enterprise-Level Design Data Management, Design Data Management Levels, The Design Data Management Features of Design Tools, Team-Level Design Data Management, Team-Level Design Data Management.

Analysis of Needs and Solutions: Comparison of Principles, Comparison of Key Functionalities, Requirements and Needs, Analysis, Different Scenarios in an Integrated Environment, Possible Integrations, Examples of integrations.

Product Data in PLM Environment: Relevance of Product Data in PLM, Product Data Across the Lifecycle, Tools to Represent Product Data, Data model diagrams, Reality in a Typical Company-Issues, Challenges and Objectives, Product Data Activities in the PLM Initiative-Product Data Improvement.

- 1. Jukka Kaariainen, Pekka Savolainen, Jorma Taramaa & Kari Leppala, "Product Data Management (PDM) Design, exchange and integration viewpoints", VTT- Technical research centre of Finland, 2000.
- Rodger Burden "PDM: Product Data Management" Volume 1, Resource Publishing, 2003.
- 3. Annita Persson Dahlqvist et.al "PDM and SCM similarities and differences", The Association of Swedish Engineering Industries, 2001.

Course Code: 18EPMC	2703	Course Title: Product Design and Development
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40 hrs		Exam Duration: 3 hrs

Introduction: Characteristics of successful product development, duration and cost of product development, Challenges of product development.

Development Process and Organizations: Generic development process, concept development – Front-end process, adapting the generic product development process **Identifying Customer Needs:** Defining scope, gathering data from customers, establishing relative importance of needs etc.

Establishing Product Specifications: Target specifications & refining specifications **Concept Generation:** Five step methodology of concept generation.

Concept selection: Structured methodology for selecting a concept using selection matrix & ranking of concepts.

Product Architecture: Meaning & implication of product architecture.

Industrial Design: Meaning of ID, & its impact, Aesthetic & Ergonomic considerations, ID process

Design for Manufacturing: DFM meaning, DFM Methodology.

Value Engineering and Product Design: Definition of value. Value analysis job plan, creativity etc.

- 1. Karl T Ulrich and Steven D Eppinger, 'Product design and development', Tata McGraw Hill Publication.
- 2. A. K. Chitale and R. C. Gupta, 'Product Design and Manufacturing', Prentice Hall India.
- 3. Bralla, James G., Handbook of Product Design for Manufacturing, McGraw Hill Publications.

Course Code: 18EPMC704		Course Title: Enterprise Resource Planning - I
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40 hrs		Exam Duration: 3 hrs

Introduction to ERP: Need for ERP, Characteristics and components of ERP, Suppliers of ERP, Integrated Management Information, Seamless Integration and Functional information system, Marketing, Accounting and Financial Management, Supply Chain Management, Resource Management, Integrated Data Model.

Business Functions and Business Processes: Functional Areas of Operation, Business Processes, A process view of business, Functional Areas and Business process of very small business. Marketing and Sales, Supply Chain Management, Accounting and Finance, Human Resources, Functional Area Information System

Business Process Reengineering: Need for reengineering, Reengineering Model, BPR Guiding principles, Business process reengineering and performance improvement, Enablers of BPR in Manufacturing, Collaborative Manufacturing, Intelligent manufacturing, Production Planning. BPR Implementation

Financial & Accounting Management: Differences between Financial accounting, Cost accounting and Management accounting, Basic finance – Concept of Cost Centre accounting, Cost – Volume – Profit Analysis, Cash Flow Analysis

Role of ERP in Purchasing: Features of purchase module, ERP Purchase System; Role of ERP in Sales and Distribution, Sub-Modules of the Sales and Distribution Module: Master data management, Order management, Warehouse management, Shipping and transportation, Billing and sales support, foreign trade, Integration of Sales and Distribution Module with Other Modules

Inventory Management: ERP inventory management system, Importance of Web ERP in Inventory Management, ERP Inventory Management Module and Sub-Modules of the ERP Inventory Management Module, Bill of Material, Safety stock, Lot number/Batch number, Inventory valuation methods

Material Requirement Planning: Product structure and Bill of Materials (BOM), MRP concept, MRP calculations, Lot sizing in MRP, capacity requirement planning, MRP-II, MRP Exercises

Production and Supply Chain Management Information Systems: Role of ERP in CAD/CAM, MRP, Closed Loop MRP, MRP-II, Manufacturing and Production Planning Module of an ERP System, Distribution Requirements Planning (DRP); ERP Approach to Production Planning, MRP to ERP.

- 1. Ellen Monk , Bret wagner "Concepts in Enterprise Resource planning" Third Edition Course Technology.
- 2. R.Radha Krishnan "Business Process Reengineering PHI, New Delhi.
- 3. Garg V. K. and Venkatakrishna N. K., "Enterprise Resource Planning: Concepts and Practices", PHI, New Delhi.
- 4. Sadagopan S., "Enterprise Resource Planning: A Managerial Perspective", Tata McGraw Hill, New Delhi.

5. Pauline Weetman, "Financial and Management Accounting: An Introduction", Pearson Education Limited, 2015.

I Sem M.Tech. (Production Management) Curriculum Content

Course Code: 18EPMI	E 701	Course	Title: Design for Additive Manufacturing
L-T-P:3-0-0	Credits: 4		Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks	50	Total Marks: 100
Teaching Hrs: 40 hrs			Exam Duration: 3 hrs

Overview of Design for Additive Manufacturing (AM):How to design for AM? Challenges & opportunities, Design process, mechanical properties, performance of materials used in AM, process driven & designer driven shape, methods, Additive manufacturing principles & processes.

Drivers for AM: Material efficiency, flow optimization, integration of functions, mass customization, lead time, automated manufacturing, Limitations, Available material, accuracy of the technology, price of the industrial machines, certification of materials and processes, surface finish(supports, post processing), part dimensions.

DFMA Principles for AM: Maximum Part size, Faces requiring support, minimum wall thickness & rigidity, Minimum feature size & manufacturing quality, Typical geometries, DFX rules for additive manufacturing. cost considerations.

Topology Optimization for AM: Introduction to topology optimization, Topology optimization process, characteristics, link with AM potentials & Challenges, Current developments.

Accuracy Issues in AM: Properties of metallic and nonmetallic additive manufactured surfaces, Stress induced in additive manufacturing (AM) processes. Surface roughness problem in rapid prototyping, Part deposition orientation and issues like accuracy, surface finish, build time, support structure, cost etc

- 1. Ian Gibson, David W. Rosen, Brent Stucker, "Additive manufacturing technologies: rapid prototyping to direct digital manufacturing", Springer, 2010.
- 2. Andreas Gebhardt, "Understanding additive manufacturing: rapid prototyping, rapid tooling, rapid manufacturing", Hanser Publishers, 2011.
- Christoph Klahn, Bastian Leutenecker, Mirko Meboldt, "Design for Additive Manufacturing – Supporting the Substitution of Components in Series Products", Procedia CIRP 21 2014, 24th CIRP design conference
- Rosen, D.W., 2007. "Design for additive manufacturing: A method to explore unexplored regions of the design space". In Proceedings of the 18th Annual Solid Freeform Fabrication Symposium.

I Sem M.Tech. (Production Management)

Curriculum Content

Course Code: 18EPME702		Course Title: Industrial Robotics
L-T-P:3-0-0	Credits: 4	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40 hrs	5	Exam Duration: 3 hrs

Robot fundamentals: History of robotics, Advantages & Applications of robots, Robot characteristics. Classification and structure of robotic systems, PTP and continuous path systems, JIRA and RIA, Robot components, Robot anatomy (configurations, Robot motions), Work volume, drive systems

Robot kinematics: Matrix representation, Homogeneous transformation matrices, Representation of transformations, Inverse transformation matrices, forward and inverse kinematics of robots, D-H representation of forward kinematic equations, degeneracy and dexterity

Differential motions and velocities: Differential relationships, Jocobian, differential motions of a frame, calculation of Jacobian, inverse jacobian

Dynamic Analysis and forces : Langrangian mechanics, Effective moments of inertia, Dynamic equations of multiple DOF robots, Static force analysis, Transformation of forces and moments between coordinate frames

Robot control systems: Components, Basic control system concepts and models, Controllers, control system analysis, robot actuation and feedback components

Actuators and Sensors: Characteristics of actuating systems, different types of actuators, sensor characteristics, different types of sensors

Robot Programming: Methods (lead through, textual language), program as a path in space, speed control, motion interpolation, wait, signal and delay, branching, capability and limitations of lead through methods

References:

1. Koren Yoram, "Robotics for Engineers', 2, McGraw-Hill Publication., 2013

2. Groover M.P, 'Industrial Robotics', 3, Tata McGraw-Hill Publication, 2013

3. Niku Saeed B, "Introduction to Robotics', 4, Prantice Hall India Publication, 2014

I Sem M.Tech. (Production Management)

Curriculum Content

Course Code: 18EPME703		Course Title: Supply Chain Management
L-T-P:3-0-0	Credits: 4	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40 hrs		Exam Duration: 3 hrs

Supply Chain Concepts: Introduction to Supply Chain, SCOR model, Virtual/Extended Enterprise, Delivery Channel, Objective of a Supply Chain, Decision Phases in a Supply Chain, Production Approaches, Supply Chain Process, Push & Pull Production Systems, Push-Pull Boundary, Lack of Coordination and Bullwhip Effect, Order Management, Order-to-Cash Process, Procure-to-Pay Process, Call-off, Replenishment, Sourcing

Supply Chain Performance: Supply Chain Strategies, Value Chain, Capabilities, Uncertainties, Responsiveness vs Cost, Supply Chain Performance Drivers – Facilities, Inventory, Transportation, Information, Sourcing, and Pricing, Supply Chain Visibility, Resilience, Non-Financial Metrics Examples, Financial Metrics Examples, Sustainability

Designing Distribution Network: Introduction, Factors Influencing Distribution Network Design, Design Options for a Distribution Network, Distribution Network for Online Sales, Impact of Online Sales on Cost

Network Design: Introduction, Factors Influencing Network Design Decisions, Framework for Network Design Decisions, Facility Location Mathematical Models, Capacity Allocation Mathematical Models, Network Behavior, Types of Supply Relationship, Factors influencing Nature of Network Relationship, Vertical Integration

Demand Management and Forecast: House of SCM, Managing Demand, Managing Supply, Transportation Model, Just-in-Time in Supply Chain, Forecasting in Supply Chain, Characteristics of Forecasts, Approaches to Demand Forecasting

Inventory Management: Cycle Inventory, Cycle Inventory Related Costs, Economics of Scales, Economic Order Quantity, Multiechelon Cycle Inventory, Uncertainty and Safety Inventory, Safety Inventory Level

Logistic and Warehouse Management: Transportation in Supply Chain, Modes of Transportation, Transportation Network, Trade-offs in Transportation Design, Warehouse Layout and Design, Warehouse Types, Warehouse Operating Processes, Warehouse Management System, Procurement, Material Classification, Material Codification

Trends in SCM: Gartner's Hype Cycle, Capgemini's Consulting Hype Cycle, Trend Categories, Algorithmic Supply Chain Planning, Predictive Analytics, Global Logistics Visibility, Focus on Risk Management and Supply Chain Resiliency

- 1. Sunil Chopra, and Peter Meindl, "Supply Chain Management Strategy, Planning, and Operation," Pearson Education.
- 2. APICS, "Operations Management Body of Knowledge Framework."
- 3. Lora Cecere, "Supply Chain Metrics that Matter," Wiley.
- 4. Hartmut Stadtler, "Supply chain management and advanced planning basics, overview and challenges," European Journal of Operations Research, 163, 2015.
- 5. Keely L. Croxton, Sebastián J. García-Dastugue and Douglas M. Lambert, "The Supply Chain Management Processes," The International Journal of Logistic Management.

Course Code:18EPMP701Course Title:Collaborative Design - Modeling LabL-T-P:0-0-5Credits:5Contact Hrs:10 hrs/weekISA Marks:80ESA Marks:20Total Marks:100Practical Hrs:120 hrsExam Duration:2 hrs

User Interface Platform:

Understand the user interface, Connect to the PLM platform, Access your Dashboard, Use the Tags for searching content, Share various documents with other users through, 3DSpace, Use standard menus and commands, Import new data and export to required file formats, Search for a 3D data using different methods, Explore and open 3D data, Manipulate the tree, Filter data

Sketcher: Exercises on sketch tools, profile tool bar and constraint tool bar.

Part Design: Exercise on 3D models using pad, slot, shaft, groove, hole, rib and stiffener commands, cut revolve etc.

Generative Shape Design (GSD): Exercises using GSD to generate complicate surfaces using sub tool bars

Sheet Metal: Setting sheet metal parameters, bend extremities tab, creating the base wall, creating the wall on edge, creating extrusions etc.

Assembly Design: Assembly design work bench Bottom-Up and Top-Down assembly approaches invoking existing components into assembly work exercise to demonstrate Top-Down assembly approach.

Drafting: Converting existing 3D models into 2D drawings with all relevant details, sectional views etc.

Data Exchange and Collaborative Lifecycle:

Import and export different file formats, manage the Mastership of imported objects, Create a new product structure, Use different sections of the Action bar effectively, Manage the changes in a product structure, Save the product structure in the database

Design Review:

Create a design review, add markups to it, Create slides, and add markers, Create sections and measures, Export sections and measures, compare 3D Objects and 2D Drawings

References

Companion Courses – https://companion.3ds.com/

Course Code: 18EPMP702 L-T-P: 0-0-3 Credits: 3 ISA Marks: 80 ESA Marks: 20 Practical Hrs: 72hrs Course Title: **PLM Functional Lab** Contact Hrs: **6 hrs/week** Total Marks: **100** Exam Duration: **2 hrs**

Collaboration and Approvals:

Illustrate the structure of PLM Business Process Services, Create and manage your folders, Create workflows, Identify and manage your assigned tasks, Subscribe to various objects and events, Report and resolve issues in objects, Create, track and organize your documents

IP Classification:

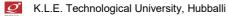
Need of IP Classification, Create different types of libraries and their related hierarchies, Create and manage documents and parts, classify the library objects based on their features, Use the Classification functionality

Engineering Bill of Material:

Create parts and specifications, Create and edit Bill of Materials, Create a Change Request to make the changes in a part or a specification, Complete Change Orders and Change Actions to implement the changes, Review and release the parts

Project Management Fundamentals:

Create programs and projects, Assign members to a project, Add tasks and assign project members to the tasks, Create folders for managing project documents, Create process flow for tasks, Review the status of programs and projects, Exchange and view projects data using Microsoft Project Integration


Project Management Advanced:

Document the various risk areas of a project and track them, Create and manage the resource requirements for a project, Create budgets and benefits to monitor the financials of a project, Track the time spent on a project using time sheets, Create calendars for the projects, Identify the quality factors of a project and monitor them, Create an assessment to measure the project's health, Use dashboards to monitor the status of your projects

Project Execution:

Manage the project schedule, Record risks for tasks, Create and submit timesheets

- 1. Companion Courses <u>https://companion.3ds.com/</u>
- Antti Saakasvuori, Anselmi Immonen, "Product Lifecycle Management" Springer, 1st Edition, 2003.

Course Code: 18EPMP703		Course Title: ERP Functional Lab
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 6hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Practical Hrs: 72 hr	S	Exam Duration: 2 hrs

Selection Criteria for ERP Packages: Survey of Indian ERP Packages

Financial Accounting: Basic Finance – Chart of accounts, Journal entries, Journal vouchers, Exchange rates; Banking (In and Out); Debit and Credit note

Master Data Management: Item master; Business partner master – Customer, vendor; Pricing; Tax

Supply chain Management

Sales: Sales quotation, Sales order, Delivery, Return, Invoice (A/R)

Purchase: Purchase quotation, Purchase order, Return, GRN, Invoice (A/P) **Production:** Assembly BOM, Production order, Goods issue, Goods receipt

Reports: Generation of reports for various functions

Course Code: 18EPMC705		Course Title: PLM Advanced
L-T-P: 2-0-0	Credits: 2	Contact Hrs: 2 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 30 hrs		Exam Duration: 3 hrs

Deployment of the PLM System: Different stages of deployment, Leading a PLM Project, Understanding the need for change, PLM maturity model, Choosing a system, Realization stage of the project, Start up, Steering group, Project manager, Accomplishing change in the organization.

Challenges of Product Management in Manufacturing Industry: Life cycle thinking, value added services and after sales traceability, Special challenges of product management in the high tech industry, Case studies.

Service Industry and PLM: Introduction, Categorizing services, Rational for building service products, PLM in service business, PLM challenges in service business, Case studies.

Role of product Information Management in Collaborative Business Development: CIM, Concurrent Engineering, Product lifecycle management as an enabler of cooperation between companies, Contents of collaboration, Successful cooperation, Tools of collaboration.

Product and Product Management Strategy: PLM as a business strategy tool, Making a product strategy, Product management strategy, Time to market, Time to react, Time to volume, Time to service.

- 1. Stark John, "Product Lifecycle Management: 21st Century Paradigm for Product Realization", Springer, Third Edition, 2015
- Antti Saakasvuori, Anselmi Immonen, "Product Lifecycle Management" Springer, 1st Edition, 2003.
- 3. Grieves Michael, "Product Lifecycle Management Driving the Next generation of LeanThinking", McGraw-Hill, 2006.

Course Code: 18EPMC706		Course Title: Enterprise Resource Planning-II
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40 hrs		Exam Duration: 3 hrs

ERP implementation Basics: Master Data Management – Item Master, Vendor Master, COA, Customer Master, Machine Master, etc. Vendors- Role of Vendor; Consultants: Types of consultants; Role of a Consultant, Employees; Role of employees; Resistance by employees; Dealing with employee resistance, Role of Top Management, Role of Implementation Partner

ERP –**Functional modules:** Functional modules of ERP software, integration of supply chain and customer relationship application.

ERP implementation Life cycle: Objectives of ERP implementation, Different phases of ERP implementation. Consultants, vendor and employees

ERP Projects: Project types, Implementation methodology, Project Preparation, Business Blueprinting, Gap Analysis, Realization, Final Preparation, Go Live and Support, User Training

ERP Post Implementation: Maintenance of ERP- Organizational and Industrial impact; Success and Failure factors and ERP Implementation - Case studies.

ERP and e-Business: Introduction ERP and e-business process model, components of e-Business supply chain ERP/ e-business integration ERP to ERP II –Bringing ERP to the Entire Enterprise

Future Directions in ERP: Faster Implementation Methodologies; Business Modules and BAPIs; Convergence on Windows NT; Application Platform; New Business Segments; More Features; Web Enabling; Market Snapshot.

Other Related Technologies of SCM: Relation to ERP; E-Procurement; E-Logistics; Internet Auctions; E-markets; Electronic Business Process Optimization; Business Objects in SCM; E commerce

Case Studies: ERP case studies in HRM, Finance, Production, Product Database, Materials, Sales & Distribution

- 1. Leon Alexis, "Enterprise Resource Planning", Tata McGraw Hill, New Delhi.
- 2. Garg V. K. and Venkatakrishna N. K., "Enterprise Resource Planning: Concepts and Practices", PHI, New Delhi.
- 3. Sadagopan S., "Enterprise Resource Planning: A Managerial Perspective", Tata McGraw Hill, New Delhi.
- 4. Brady, "Enterprise Resource Planning", Thomson Learning.

Course Code: 18EPMC707		Course Title: Project Feasibility and Analysis
L-T-P: 3-1-0	Credits: 4	Contact Hrs: 5 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50 hrs		Exam Duration: 3 hrs

Planning Overview: Capital budgeting and Allocation, Strategic planning.

Market and Demand Analysis: Situational analysis, Demand forecasting and Uncertainties in demand forecasting.

Technical Analysis: Material inputs and utilities, Product mix, Plant capacity and Location, Environmental aspects, Project charts and layouts.

Financial Estimates and Projections: Means of finance, Estimates of sales and production, Working capital requirement and its financing, Profitability projections, projected cash flow statements. Project risk analysis: Sources, Measures and Perspectives on risks, Sensitivity analysis, Scenario analysis, Break-even analysis, Simulation analysis, Decision tree analysis, managing risk.

Sustainability in Project Management: Inter-relating life cycles, The impact of sustainability on project management processes, Measuring and reporting projects

- 1. Prasanna Chandra, "Projects: Planning, Analysis, Financing, Implementation and Review", Tata McGraw-Hill Publishing Company Limited, New Delhi.
- 2. Nicholas J. M. and Steyn H. "Project Management for Business, Engineering and Technology: Principles and Practice", Elsevier.
- 3. Harold R. Kerzner, "Project Management: A Systems Approach to Planning, Scheduling, and Controlling", Wiley, New York.

Course Code: 17EPME704		Course Title: Additive Manufacturing
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40 hrs		Exam Duration: 3 hrs

Additive Manufacturing (AM) Overview: Introduction to reverse engineering Traditional manufacturing vs AM, Computer aided design (CAD) and manufacturing (CAM) vs AM, Different AM processes and relevant process physics, AM process chain Application level: Direct processes – Rapid-Prototyping, Rapid Tooling. Rapid Manufacturing; Indirect Processes - Indirect Prototyping. Indirect Tooling, Indirect Manufacturing

Materials Science of AM: Discussion on different materials used, Use of multiple materials, multifunctional and graded materials in AM, Role of solidification rate, Evolution of non-equilibrium structure, Structure property relationship, Grain structure and microstructure

AM Technologies: Powder-based AM processes involving sintering and melting (selective laser sintering, shaping, electron beam melting. involvement). Printing processes (droplet based 3D Solid-based AM processes - extrusion based fused deposition modeling object Stereo-lithography Micro- and nano-additive.

Mathematical Models for AM: Transport phenomena models: temperature, fluid flow and composition, buoyancy driven tension driven free surface flow pool) Case studies: Numerical Modeling of AM process, Powder bed melting based process, Droplet based printing process Residual stress, part fabrication time, cost, optimal orientation and optimal Defect in AM and role of transport Simulations (choice of parameter, Mo del validation for different

Process selection, planning, control for AM: Selection of AM technologies using decision methods. Additive manufacturing process plan: strategies and post processing. Monitoring and control of defects, transformation.

- 1. Ian Gibson, David W. Rosen, Brent Stucker, "Additive manufacturing technologies: rapid prototyping to direct digital manufacturing", Springer, 2010.
- 2. Andreas Gebhardt, "Understanding additive manufacturing: rapid prototyping, rapid tooling, rapid manufacturing", Hanser Publishers, 2011.
- J.D. Majumdar and I. Manna, "Laser-assisted fabrication of materials", Springer Series in Material Science, e-ISBN: 978-3-642- 28359-8.
- 4. L. Lu, J. Fuh and Y.-S. Wong, "Laser-induced materials and processes for rapid prototyping", Kluwer Academic Press, 200 I.
- 5. Zhiqiang Fan and Frank Liou, "Numerical modeling of the additive manufacturing (AM) processes of titanium alloy", lnTech, 2012.
- 6. C.K. Chua, K.F. Leong and C.S. Lim, "Rapid prototyping: principles and applications", 3rd Edition, World Scientific, 20 10.

II Sem M. Tech. (Production Management)

Curriculum Content

Course Code: 17EPME705		Course Title: Manufacturing Systems and
		Automation
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40 hrs		Exam Duration: 3 hrs

Introduction: Production system facilities, Manufacturing support systems, Automation in production system, Automation principles and strategies, Manufacturing operations, Basic elements of an automated system, Advanced automation functions, Levels of automation.

Material handling and identification technology: Considerations in material handling system design, 10 principles of material handling, Automated guided vehicle systems, Conveyor systems, Analysis of material transport system, Automated storage systems, Engineering analysis of storage system. Components of manufacturing systems, Single station automated cells, Applications and analysis of single station cells.

Flexible manufacturing systems: FMS components, FMS application and benefits, Quantitative analysis of flexible manufacturing systems.

Industrial control systems: Sensors, Actuators, Drives and other control system components. Electro-hydraulic and Electro-pneumatics in manufacturing automations

Machine vision systems: Importance of machine vision system in manufacturing automation.

Role of microcontrollers in manufacturing automation system: Microcontroller architecture, interfacing sensors and actuators with microcontroller for industrial automation, Microcontroller programming.

PLCs in manufacturing automation: Application of programmable logic controllers in manufacturing automation, PLC basic and advanced ladder logic programming using RsLogix and CoDeSys format, Usage of timers, counters, sequencing, and interlocking, latching, master control relay for developing programs for manufacturing automation. Temperature control, valve sequencing, conveyor belt control, control of a process etc

SCADA for Automation: Elements of SCADA, Benefits of SCADA, Applications, Types of SCADA systems, Features and functions of SCADA, Building applications using SCADA for manufacturing automation.

- 1. Grover M.P., "Automation, Production Systems and Computer Integrated Manufacturing", Pearson Education Asia.
- 2. Grover M.P., Weiss M. M., Nagel R.N. and Odrey N.G., "Industrial Robotics, Technology, Programming and Applications", Mc Graw Hill Book Publications.
- 3. Krishna Kant, "Computer Based Industrial Control" PHI.
- 4. W. Bolton, "Programmable Logic Controllers" Fifth Edition, Elsevier
- 5. Vijay R. Jadhav, "Programmable Logic Controller", Second Edition, Khanna Publishers.

Curriculum Content			
Course Code: 17EPME706		Course Title: Robust Design Optimization	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40 hrs		Exam Duration: 3 hrs	

6. II Sem M.Tech. (Production Management)

Robust Design Overview: Taguchi's approach to quality and quality loss function, noise factors and average quality loss, exploiting non linearity, classification of parameters

Analysis of variance: No-Way ANOVA, One-Way ANOVA, Two-Way ANOVA and Three-Way ANOVA

Two Level Experiments: Two factor factorial design, model adequacy checking and estimating model parameters, 2^2 full factorial design, 2^3 full factorial design, 2^k full factorial design and Two level fractional factorial design, General 2^{k-p} fractional factorial design.

Steps in Robust Design: Identification of process and its main function, Noise factors and testing conditions, Control factors and their levels, Matrix experiment and data analysis plan, Conducting the experiment and data analysis, Verifying experiment and future plan.

Signal to Noise Ratios: Comparison of the quality of two process conditions, Relationship between Signal to Noise Ratio and quality loss after adjustment, Identification of a scaling factor, Signal to Noise Ratios for static problems, Signal to Noise Ratios for dynamic problems, Analysis of ordered categorical data.

Taguchi Inner and Outer arrays: Orthogonal arrays and fractional factorial designs, Parameter design and tolerance design, Analysis of inner/outer array experiment, Alternative inner/outer orthogonal array experiments.

Constructing orthogonal arrays: Dummy level technique, Compound factor method, Linear graphs and Interaction assignment, Modification of linear graphs, Column merging method, Branching design.

- 1. Montgomery, D. C., "Design and Analysis of Experiments", John Wiley & Sons.
- 2. Khuri A. I. and Cornell J. A. "Response Surfaces: Designs and Analyses, Marcel Dekker, Inc., New York.
- 3. Myers R. H., Montogomery, D. C. and Anderson-Cook C. M. "Response Surface Methodology: Process and Product Optimization Using Designed Experiments", John Wiley & sons, Inc., New York.
- 4. Mason R. L., Gunst, R. F., Hess J. L., "Statistical design and Analysis of Experiments With Applications to Engineering and SISAnce", John Wiley & sons, Inc., New York.
- 5. Phadke M. S., "Quality Engineering using Robust Design", Prentice Hall PTR Englewood Cliffs, New Jersy.
- 6. Ross P. J., "Taguchi Techniques for Quality Engineering", McGraw -Hill International.

Course Code: 18EPMP704 L-T-P: 0-0-4 Credits: 4 ISA Marks: 80 ESA Marks: 20 Practical Hrs: 96 hrs Course Title: **Product Automation Lab** Contact Hrs: **8 hrs/week** Total Marks: **100** Exam Duration: **2 hrs**

Knowledge Based Engineering:

- Customize the tree to display knowledge ware features
- Create parametric models
- Embed design knowledge in the models
- Automate the design and modification processes
- Create design configurations using design tables

HTML:

Tags, Attributes and Elements, Links, Images, Tables, Forms **CSS**: CSS basics, styles, CSS syntax

JavaScript:

JavaScript Output, JavaScript Statements, JavaScript Syntax, JavaScript Variables, JavaScript Operators, JavaScript Arithmetic, JavaScript Strings, JavaScript Events, JavaScript Loop, JavaScript Objects, JavaScript functions.

Python:

Python programming skills using data structures and constructs, python programming skills using functions and packages.

References:

1. Companion Courses - https://companion.3ds.com/

Course Code: 18EPMP705		Course Title: PLM Technical Lab
L-T-P: 0-0-3	Credits: 4	Contact Hrs: 6 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Lab Hrs: 72 hrs		Exam Duration: 2 hrs

Variant Management Essentials & Product Architect:

Create the product structure, Define product portfolios based on product roadmaps, Create and manage product configurations and design variants, Use Enterprise Changes to track and release features, Generate BOMs

Traceable Requirements Management Essentials:

Capture requirements from MS Word and MS Excel documents, Create requirements and requirement specifications, Allocate requirements to products and models, Create test cases and use cases, Create revision and multiple versions of requirements, Generate traceability reports

Platform Management and Baseline Behavior:

Create collaborative spaces and users, Assign required access rights to different users, Explore the Control widget and its related features, Configure PLM platform to add additional features as per requirements

Data Model Customization Essentials:

Describe Unified Typing concepts, Create Subtypes and add attributes to it, Create Specialization, Customer and Deployment Extensions, Create Unique Keys, Create Specialization and Deployment Packages

Web Based Customization:

Use MQL to set up the schema, Create and maintain a web application based on UI configurable components, Configure automatic business rules (triggers, notifications) and automatic object naming, Execute advanced MQL commands needed for administration, Extend the application with JSP

- 1. Companion Courses https://companion.3ds.com/
- Stark John, "Product Lifecycle Management: 21st Century Paradigm for Product Realization", Springer, Third Edition, 2015
- Antti Saakasvuori, Anselmi Immonen, "Product Lifecycle Management" Springer, 1st Edition, 2003.

Course Code: 18EPMP706		Course Title: ERP Technical Lab
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 6 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Practical Hrs: 72 hrs		Exam Duration: 2 hrs

Financial Accounting (Advanced): Fixed assets, Budget, Cost center accounting

MRP: Sales forecast, MRP run, Order recommendation

Admin and Technical: Application installation (APP and DB), System initialization, Setup, Technical Enhancement – UI, Report – Query generation, Crystal report, Print layout design, Basics of Integration

Reports: Generation of reports for various functions

Course Code: 18EPM	C801 Cours	e Title: Manufacturing Execution Systems
L-T-P: 3-1-0	Credits: 4	Contact Hrs: 5 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50 hrs		Exam Duration: 3 hrs

Enterprise and Enterprise Integration: Enterprise and its characteristics, Strategic Planning, Feedback Loops, Time Definitions, Business Processes, Manufacturing Processes, Enterprise Integration, Horizontal Integration and Interoperability, Vertical Integration and Temporal Gap, Digitalization, Standards (ISO 15704)

Manufacturing Execution Systems and its Functionalities: Manufacturing Execution Systems (MES), MES Functionalities, MES Models, Manufacturing Operations Management (MOM), Functional Control Model, MES in Discrete Industry, MES in Process Industry, Standards (IEC 62264, IEC 61512, VDI 5600)

Process and Data Modeling: Enterprise Modeling, Process Modeling, Business Process Modeling Language (BPMN), Sankey Diagram, Entity-Relationship Diagrams, ARIS (ARchitecture for integrated Information Systems), Integrated Definition for Function Modelling (IDEF), Event-Driven Process Chain (EPC), Data Modeling, Data Flow Diagrams (DFDs), Unified Modeling Language (UML), Business to Manufacturing Markup Language (B2MML)

Data Collection: Process Analysis, Process Modeling, Data Modeling, Data Flow Diagrams (DFDs), Communication Patterns, Technologies, OPC (OLE for Process Control)

Traceability And Tracking: Tracing, Traceability, Enterprise Entities, Forward and Backward Traceability, Traceability Granularity, Tracking, Tracking Approaches, Regulations (GMP, US FDA, EudraLex)

PERFORMANCE MEASUREMENT: Performance Measurement, Performance Management, Performance Measurement System and Characteristics, Key Performance Indicators (KPIs), Overall Equipment Effectiveness (OEE), Metrics Maturity Model, KPI Effectiveness, Process Improvement, Standards (ISO 22400, VDMA 66412)

Managerial Accounting: Managerial Accounting, Cost Assignment Techniques, Cost Hierarchal Levels, Activity Drivers, Standard Cost, Actual Cost, Job Costing, Process Costing, Activity-Based Costing (ABC), Time-Driven ABC (TDABC), Resource Consumption Accounting (RCA), Cost of Poor Quality (COPQ)

Real-Time Enterprise: Real-Time Enterprise (RTE), Event-Driven Architecture (EDA), Events, Complex Event Processing (CEP)

Industry 4.0: Industry 4.0, Challenges, Industrial Internet of Things (IIoT), Reference Architecture for Industry 4.0, Cyber-Physical Systems (CPS), Cyber-Physical Production Systems (CPPS), Smart Product, Smart Manufacturing, Smart Logistics, Smart Services

Business Analytics and Business Intelligence, Blockchain: Knowledge Management, Case-Based Reasoning (CBR), Big Data, Decision Analytics, Descriptive Analytics, Predictive Analytics, Prescriptive Analytics, Bitcoin and Blockchain, Merkle Tree, Blockchain Types, Scope and Application of Blockchain in Manufacturing

- 1. Sachin Karadgi, "A Reference Architecture for Real-Time Performance Measurement," Springer, 2014.
- 2. Opher Etzion, Peter Niblett, "Event Processing in Action," Manning, 2011.
- 3. Roger Wattenhofer, "The Science of the Blockchain," CreateSpace Independent Publishing Platform, 2016.
- Bruce Silver, "BPMN Method and Style With BPMN Implementer's Guide," Cody-Cassidy Press, 2011.
- Charles T. Horngren, George Foster, Srikant M. Datar, Madhav V. Rajan, Chris Ittner, "Cost Accounting: A Managerial Emphasis," Prentice Hall, 13th Edition, 2008.
- 6. Wood C. Douglas (Editor), "Principles of Quality Costs: Financial Measures for Strategic Implementation of Quality Management," ASQ, 4th Edition, 2013.
- 7. Gary Cokins, "Activity-Based Cost Management: An Executive's Guide," Wiley, 2001.
- Robert S. Kaplan, Robin Cooper, "Cost & Effect: Using Integrated Cost Systems to Drive Profitability and Performance," Harvard Business Review Press, 3rd edition, 1997.
- 9. ISO 15704: Industrial Automation Systems—Requirements for Enterprise-Reference Architectures and Methodologies, 2000.
- 10. IEC 62264: Enterprise-Control System Integration. Multi-part standard.
- 11. IEC 61512: Batch Control. Multi-part standard.
- 12. ISO 22400–2: Automation Systems and Integration—Key Performance Indicators for Manufacturing Operations Management, Multi—part standard.
- 13. VDI 5600 Part 1: Manufacturing execution systems (MES), 2007.
- 14. OPC Foundation: OPC unified architecture specification part 1: overview and concepts, http://www.opcfoundation.org/.
- 15. MESA, MES Explained: A high level vision, white paper number 6, 1997.GMP
- 16. WHO Good Practices for Pharmaceutical Quality Control Laboratories, WHO Technical Report Series, No. 957, 2010.
- 17. Mike Bourne, Pippa Bourne, Handbook of Corporate Performance Management, Wiley, 2011.

Course Code: 18EPMC	C802 Course	Title: Manufacturing Systems Simulation
L-T-P: 3-0-1	Credits: 4	Contact Hrs:5 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50 hrs		Exam Duration: 3 hrs

Principles of Modeling & Simulation: Basic Simulation Modeling, Systems – discrete and continuous systems, general systems theory, models of systems- variety of modeling approach, concept of simulation, simulation as a decision making tool, types of simulation, Principle of computer modeling- Monte Carlo simulation, Nature of computer modeling, limitations of simulation, area of application.

Random Number Generation: Random variables and their properties, Properties of random numbers, generation of Pseudo random numbers, techniques for generating random numbers, Various tests for random numbers-frequency test and test for Autocorrelation,

Random Variate Generation: Different techniques to generate random Variate: Inverse transform technique,-exponential, Normal, uniform, Weibull, direct transformation technique for normal and log normal distribution, convolution method and acceptance rejection techniques-Poisson distribution, **Statistical Techniques:** Comparison of two system designs, Comparison of several system designs – Bonferroni approaches to multiple comparisons for selecting best fit, for screening

Design and Evaluation of Simulation Experiments: Problem formulation, data collection and reduction, time flow mechanism, key variables, logic flow charts, starting condition, run size, experimental design consideration, output analysis, verification and validation of simulation models. **Simulation Languages:** Comparison and selection of simulation languages, study of any one simulation language.

Discrete Event Simulation: Concepts in discrete –event simulation, development of simulation models for queuing systems, production systems, inventory systems, maintenance and replacement systems, investment analysis and network, Programming for discrete event simulation, Case studies.

- 1. Jerry Banks and John S Carson, Barry L Nelson, David M Nicol, "Discrete event system simulation", Prentice Hall, India.
- 2. Khoshnevi. B., "Discrete system simulation", McGraw Hill International.
- 3. Ronald G Askin and Charles R Standridge, "Modeling and analysis of manufacturing systems", John Wiley & Sons.
- 4. Gordon G, "System Simulation", Prentice Hall, India..
- 5. Thomas J Schriber., "Simulation using GPSS", John Wiley & Sons.
- 6. Shannon, R.E., "System Simulation The art and science", Prentice Hall, India.
- 7. Averill Law & David M.Kelton, "Simulation, Modeling and Analysis", TMH.

Curriculum Content			
Course Code: 19EPMC708		Course Title: Research Methodology	
L-T-P: 2-1-0	Credits: 3	Contact Hrs:4 hrs/week	
ISA Marks: 100	ESA Marks:	Total Marks: 100	
Teaching Hrs: 26 hrs	Tutorial Hrs: 24 hrs	Exam Duration:	

Research: Definition, Characteristics and Objectives; Types of Research, Research Methodology, Research Process, Literature Review, Review concepts and theories, Formulation of Hypothesis, Research design, Data collection, Processing and analysis of data collected, Interpretation of data, Computer and internet: Its role in research, Threats and Challenges to research, Writing a research paper, research project, Thesis, Research ethics, Citation methods and rules. Case studies.

- 1. Kothari C. R. "Research Methodology Methods & Techniques", Wishwa Prakashan,
- 2. Ranjit Kumar, "Research Methodology A step by step guide for Beginners", 3rd Edition, Pearson Edition, Singapore, 2011.
- 3. Dawson Catherine, "Practical Research Methods", UBS Publishers, New Delhi, 2002.

in Sem W. Teen. (Troduction Management)				
Curriculum Content				
Course Code: 19EPMW701		Course Title: Mini Project		
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 6 hrs/week		
ISA Marks: 80	ESA Marks: 20	Total Marks: 100		
Teaching Hrs: 72 h	nrs	Exam Duration: 2 hrs		

II Sem M. Tech. (Production Management)

Mini Project: The Guide shall define the problem statement for the Project work. The student shall execute the Project within three months duration during the 2nd semester. The student who has opted Mini Project shall opt either ERP or PLM theme to carry out their work.

1.1.2: Syllabus Revised Courses of PG Energy Systems Engineering

Course Code: 16EMEC707		Course Title: Research Methodology
L-T-P: 2-1-0	Credits: 3	Contact Hrs: 4hr/week
ISA Marks: 100	ESA Marks:	Total Marks: 100
Teaching Hrs: 40		Exam Duration: 3 hrs

Research: Definition, Characteristics and Objectives; Types of Research, Research Methodology, Research Process, Literature Review, Review concepts and theories, Formulation of Hypothesis, Research design, Data collection, Processing and analysis of data collected, Interpretation of data,	5hrs
Computer and internet: Its role in research, Threats and Challenges to research, Writing a research paper, research project, Thesis, Research ethics, Citation methods and rules. Case studies	

Reference Books

1. Kothari C. R. "Research Methodology – Methods & Techniques", Vishwa Prakashan, A Division of New Age International Pvt. Ltd., 2008.

- 2. Ranjit Kumar, "Research Methodology A step by step guide for Beginners", 3rd Edition, Pearson Edition, Singapore, 2011.
- 3. Dawson Catherine, "Practical Research Methods", UBS Publishers, New Delhi, 2002

Course Code: 17EMEC704	Course Title: Instrumentation	on and Control in Energy Systems
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4hr/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50		Exam Duration: 3 hrs

1. Generalized configurations: functional descriptions of measuring instruments. Measurement Errors for mechanical instruments. materials, radiant storage. materials, radiant storage 6hrs 2. Transducer classification. Generalized performance characteristics of instruments, Static and dynamic characteristics of transducers, Transient analysis of a control system 7hrs 3. Temperature Measurement: Use of bimaterials, Pressure thermometers, Thermocouples, RTD, Thermisters, and Pyrometers. 7hrs 4. Pressure Measurement: Manometers, dynamic response of manometers, Bourden tube, Elastic pressure elements, electromechanical pressure transducers, Measurement of High Pressure and low pressure. Calibration of Pressure measuring equipment. 5hrs 5. Flow Measurement: Flow measurement methods, variable head flow meters for incompressible Fluids. Rota meters, Electromagnetic flow meters, Hot wire anemometers, Hot film transducers, Ultrasonic flow meters 5hrs 6. Air pollution and Measurement: Introduction, Gas sampling techniques, particulate sampling techniques, Sulphur dioxide measurements, Combustion Products Measurement of Humidity moisture, measurements 5hrs 7. Miscellaneous measurements: Measurement of liquid level, Measurement, power factor meter 5hrs 9. Analog signal conditioning, Amplifiers, Instrumentation amplifier, A/D and D/A converters, Digital data processing and display, Data acquisition system 5hrs 7. Hiscellaneous type in the system Applications & Design, McGraw-Hill, Inc. 1994 2. E.O Doebelin: Measurement Systems Applications & Design, McGraw Hill, 1990 </th <th></th> <th></th> <th></th>			
dynamic characteristics of transducers, Transient analysis of a control system 7 3. Temperature Measurement: Use of bimaterials, Pressure thermometers, Thermocouples, RTD, Thermisters, and Pyrometry pyrometers. 7 4. Pressure Measurement: Manometers, dynamic response of manometers, Bourden tube, Elastic pressure elements, electromechanical pressure transducers, Measurement of High Pressure and low pressure. Calibration of Pressure measuring equipment. 5 5. Flow Measurement: Flow measurement methods, variable head flow meters for incompressible Fluids. Rota meters, Electromagnetic flow meters, Hot wire anemometers, Hot film transducers, Ultrasonic flow meters 5 6. Air pollution and Measurement: Introduction, Gas sampling techniques, particulate sampling techniques, Sulphur dioxide measurements, Combustion Products Measurements Opacity and odour measurements 5 7. Miscellaneous measurements: Measurement of liquid level, Measurement of Humidity moisture, measurement of O ₂ , CO ₂ in flue gases. pH measurement 5 8. Instruments for monitoring electrical parameters, Moving Iron/coil, Energy measurement, Shrs power factor meter 5 9. Analog signal conditioning , Amplifiers, Instrumentation amplifier, A/D and D/A converters, Digital data processing and display, Data acquisition system 5 Text Books 1. J.P.Holman: Experimental methods for engineers Sixth edition, McGraw-Hill ,Inc.1994 2. E.O Doebelin: Measurement Systems Applications & Design, McGraw Hill, 1990	1.		6hrs
Thermisters, and Pyrometry pyrometers. 4. Pressure Measurement: Manometers, dynamic response of manometers, Bourden tube, Elastic pressure elements, electromechanical pressure transducers, Measurement of High Pressure and low pressure. Calibration of Pressure measuring equipment. 5. Flow Measurement: Flow measurement methods, variable head flow meters for incompressible Fluids. Rota meters, Electromagnetic flow meters, Hot wire anemometers, Hot film transducers, Ultrasonic flow meters 5. 6. Air pollution and Measurement: Introduction, Gas sampling techniques, particulate sampling techniques, Sulphur dioxide measurements, Combustion Products Measurements Opacity and odour measurements 5. 7. Miscellaneous measurements: Measurement of liquid level, Measurement of Humidity moisture, measurement of O ₂ , CO ₂ in flue gases. pH measurement 5. 8. Instruments for monitoring electrical parameters, Moving Iron/coil, Energy measurement, Shrs power factor meter 5. 9. Analog signal conditioning, Amplifiers, Instrumentation amplifier, A/D and D/A converters, Digital data processing and display, Data acquisition system 5. Text Books 1. J.P.Holman: Experimental methods for engineers Sixth edition, McGraw-Hill ,Inc.1994 2. 2. Doebelin: Measurement Systems Applications & Design, McGraw Hill, 1990 8.	2.		7hrs
pressure elements, electromechanical pressure transducers, Measurement of High Pressure and low pressure. Calibration of Pressure measuring equipment. 5. 5. Flow Measurement: Flow measurement methods, variable head flow meters for incompressible Fluids. Rota meters, Electromagnetic flow meters, Hot wire anemometers, Hot film transducers, Ultrasonic flow meters 5hrs 6. Air pollution and Measurement: Introduction, Gas sampling techniques, particulate sampling techniques, Sulphur dioxide measurements, Combustion Products Measurements Opacity and odour measurements 5hrs 7. Miscellaneous measurements: Measurement of liquid level, Measurement of Humidity moisture, measurement of O ₂ , CO ₂ in flue gases. pH measurement 5hrs 8. Instruments for monitoring electrical parameters, Moving Iron/coil, Energy measurement, power factor meter 5hrs 9. Analog signal conditioning, Amplifiers, Instrumentation amplifier, A/D and D/A converters, Digital data processing and display, Data acquisition system 5hrs Text Books 1. J.P.Holman: Experimental methods for engineers Sixth edition, McGraw-Hill ,Inc.1994 2. 2. E.O Doebelin: Measurement Systems Applications & Design, McGraw Hill, 1990 Reference Books	3.	•	7hrs
Fluids. Rota meters, Electromagnetic flow meters, Hot wire anemometers, Hot film transducers, Ultrasonic flow meters Image: Construct of the state of the	4.	pressure elements, electromechanical pressure transducers, Measurement of High Pressure and	5hrs
techniques, Sulphur dioxide measurements, Combustion Products Measurements Opacity and odour measurements 7. Miscellaneous measurements: Measurement of liquid level, Measurement of Humidity moisture, measurement of O2, CO2 in flue gases. pH measurement 5hrs 8. Instruments for monitoring electrical parameters, Moving Iron/coil, Energy measurement, power factor meter 5hrs 9. Analog signal conditioning, Amplifiers, Instrumentation amplifier, A/D and D/A converters, Digital data processing and display, Data acquisition system 5hrs Text Books 1. J.P.Holman: Experimental methods for engineers Sixth edition, McGraw-Hill ,Inc.1994 2. E.O Doebelin: Measurement Systems Applications & Design, McGraw Hill, 1990 Reference Books 4. 4. 4.	5.	Fluids. Rota meters, Electromagnetic flow meters, Hot wire anemometers, Hot film transducers,	5hrs
moisture, measurement of O2, CO2 in flue gases. pH measurement 5 8. Instruments for monitoring electrical parameters, Moving Iron/coil, Energy measurement, power factor meter 5 9. Analog signal conditioning, Amplifiers, Instrumentation amplifier, A/D and D/A converters, Digital data processing and display, Data acquisition system 5 Text Books 1. J.P.Holman: Experimental methods for engineers Sixth edition, McGraw-Hill ,Inc.1994 2 2. E.O Doebelin: Measurement Systems Applications & Design, McGraw Hill, 1990 Reference Books	6.	techniques, Sulphur dioxide measurements, Combustion Products Measurements Opacity and	5hrs
power factor meter 9. Analog signal conditioning, Amplifiers, Instrumentation amplifier, A/D and D/A converters, Digital data processing and display, Data acquisition system 5hrs Text Books 1. J.P.Holman: Experimental methods for engineers Sixth edition, McGraw-Hill ,Inc.1994 2. E.O Doebelin: Measurement Systems Applications & Design, McGraw Hill, 1990 Reference Books 9. Analog signal conditioning, Amplifiers, Instrumentation amplifier, A/D and D/A converters, Digital data processing and display, Data acquisition system 5hrs	7.		5hrs
Digital data processing and display, Data acquisition system Text Books 1. J.P.Holman: Experimental methods for engineers Sixth edition, McGraw-Hill ,Inc.1994 2. E.O Doebelin: Measurement Systems Applications & Design, McGraw Hill, 1990 Reference Books	8.		5hrs
 J.P.Holman: Experimental methods for engineers Sixth edition, McGraw-Hill ,Inc.1994 E.O Doebelin: Measurement Systems Applications & Design, McGraw Hill, 1990 Reference Books 	9.		5hrs
	1. 2. Refe	J.P.Holman: Experimental methods for engineers Sixth edition, McGraw-Hill ,Inc.1994 E.O Doebelin: Measurement Systems Applications & Design, McGraw Hill, 1990	

2. A.K. Ghosh: Instrumentation and Control. McGraw-Hill Inc.2003

Course Code: 17EMEE701		Course Title: Wind Energy Conversion Systems
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4hr/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50		Exam Duration: 3 hrs

Introduction: Metrology of wind, Wind speed variation with height, Wind speed statistics. Wind Measurements Biological indicators, Rotational anemometers, other anemometers, Wind direction	10hrs
Basic concepts of Wind energy: Power output from an ideal turbine, Aerodynamics, Practical turbines, Transmission and generation efficiency	10hrs
Energy production and capacity factor, Torque at constant speeds, Drive train oscillations, Turbine shaft power and torque at variable speeds.	10hrs
Wind Turbine Connected to the Electrical Network: Methods of generating synchronous power, AC circuits, The synchronous generator, Per unit calculations, The induction machine, Motor starting, Capacity credit, features of electrical network.	10hrs
Asynchronous Electric Generators: Asynchronous systems, DC shunt generator with battery load, Per unit calculation, Self excitation of the induction generators, Single phase operation the induction generator, Asynchronous Loads like Piston/ Centrifugal pumps, Paddle wheel heaters, Batteries	5hrs
Economics of Wind Systems: Capital costs, Economic concepts, Revenue requirements, Value of wind generated electricity, Hidden costs in Industrialized and developing nations	5hrs
 Text Books Gary L Johnson, Wind Energy Systems ,1ed., PHI, New Jersey, 2001 D.P.Kothari, I.G.Nagrath, Electrical Machines, 2ed.,TMGH, 2004 Reference Books Rai G.D., Non-Conventional Energy Sources, 4 ed., Khanna Publications, 2002 	

Course Code: 17EMEE702		Course Title: Solar Thermal Systems Design
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4hr/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50		Exam Duration: 3 hrs

1	Solar Radiation Analysis: Solar constant, Basic earth sun angles, Beam and diffuse radiations, Radiation on titled surfaces, Measurement of solar radiation	10hrs
2	Heat Transfer for Solar Energy Utilization: Introduction, modes of heat transfer, Reflectivity, Transmissivity, Transmitance-absorptance product, Heat exchangers	10hrs
3	Liquid Flat Plate Collectors(FPC) : Liquid FPC, conversion of solar radiation into heat General description of FPCs, losses and efficiency of FPC, Characteristics of FPC, Evaluation of Overall Loss Coefficient, Thermal Analysis of FPC and Useful heat gain, Mean plate temperature, Collector performance, Selective coating, Effect of dust and shading, material selection for FPC, Evacuated tube collectors	10hrs
4	Flat Plate air heating collectors : Introduction and types, performance and applications, heating and drying of Agricultural products, Psychrometric chart and its use, Design of Forced convection dryer	10hrs
5	Performance testing of Solar Collectors : Introduction, Governing performance equations, measuring instruments and methods, Testing procedures, Testing of Liquid flat plate solar collectors, Solar Air heaters. Overall performance of solar heating panels	05hrs
6	Energy Storage : Sensible heat and latent heat storage systems, thermo-chemical storage, shallow Solar pond, Collector and Storage heaters, Salinity gradient solar pond, Solar thermal storage systems	05hrs
 Text Books JA Duffie, WA Beckman: Solar Engineering of Thermal Processes, 3rd Edn. John Wiley Sukhatme S P., Nayak J., Solar Energy: Principles of Thermal Collection & Storage, 3rd Edn, TMGH, 2008 Reference Books 		

Reference Books

- Garg H.P., Prakash J., Solar Energy: Fundamentals and Applications TMH, 2015 1.
- 2. Rai G. D., Solar Energy Utilization, 5 ed., Khanna publishers, 2006

Г

Course Code: 17EMEE704	Сои	se Title: Illumination Engineering
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4hr/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50		Exam Duration: 3 hrs

Illumination Basics:	10hrs
Radiation, colour, eye & vision; different entities of illuminating systems; Light sources: daylight, incandescent, electric discharge, fluorescent, arc lamps and lasers; Luminaries, wiring, switching & control circuits	
Laws of illumination ; illumination from point, line and surface sources. Photometry and spectrophotometry; photocells. Environment and glare. General illumination design.	10hrs
Interior lighting –	
Industrial, residential, office departmental stores, indoor stadium, theater and hospitals	10hrs
Exterior lighting - Flood, street, aviation and transport lighting, lighting for displays and signaling- neon signs, LED-LCD displays beacons and lighting for surveillance.	10hrs
Utility services for large building/office complex	10hrs
Layout of different meters and protection units. Different type of loads and their individual protections. Selection of cable/wire sizes; potential sources of fire hazards and precautions.	
Emergency supply – stand by & UPS. A specific design problem on this aspect	
Text Books	
1 R. John Koshel, Illumination Engineering: Design with Nonimaging Optics, John Wiley & Sons, 2012	
2 Jack L. Lindsey, Applied Illumination Engineering, The Fairmont Press, Inc., 1997	
Reference Books	
1. Kamalesh Roy,,Illuminating Engineering, Firewall Media,2006	

Course Code: 17EMEW701		Course Title: Mini Project-1
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 3hr/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 36		Exam Duration: 3 hrs

Theme: Renewable Energy

The Mini-Project-1 envisages facilitating students for a real-time learning experience on working of renewable energy conversion and its performance characterization. The Project shall be executed as per the following methodology

- ✓ The review on Industry /scientific research status related to the product
- \checkmark The study of product manuals related to renewable energy conversion devices available in market to capture the design-intent of the product.
- Apply fundamental concepts to work-out preliminary design calculation of the product 36hrs envisaged through a customer survey and develop alternate design.
- Evidence use of computational tools to evolve product concept and its improvisation
- \checkmark Fabrication of a working prototype/ scaled model /circuitry hardware
- ✓ Testing of the hypothesis through the fabricated device/ mathematical model

The continuous assessment includes peer review and Faculty assessment at periodic intervals during the semester The Mini-project has to be documented by student in form of a Technical Report for submission during the End-semester Assessment.

Course Code: 17EMEC705	c	Course Title: Energy Audit and Conservation
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4hr/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50		Exam Duration: 3 hrs

1.	Energy Management & Audit: Definition, Energy audit- need, Types of energy audit, Energy management (audit) approach-understanding energy costs, Bench marking, Energy performance, Matching energy use to requirement, Maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution, Energy audit instruments.	10hrs
2.	Energy Conservation: Indian energy conservation act-2001, second law of thermodynamics, rules for efficient energy conservation of energy and materials, technologies for energy conservation (reducing demand using alternative supplies, load factor, balancing and energy storage), supply side options, demand side options, maximum demand controller, transmission and distribution side options	10hrs
3.	Energy Efficient Motors and Power factor: Constructional details, factors affecting efficiency, losses distribution, soft starters, variable speed drives. Power Factor Causes and disadvantages of low power factor, methods to improve power factor, automatic power factor controllers	8hrs
4.	Energy efficient lighting Terminology, cosine law of luminance, types of lamps, characteristics, design of illumination systems, good lighting practice, lighting control, steps for lighting energy conservation	7hrs
5.	Heat Recovery Systems: Sources of waste heat, guidelines to identify waste heat, grading of waste heat, feasibility study of waste heat recovery, gas to gas heat recovery, rotary generators, heat pipes, gas to liquid heat recovery, waste heat boilers.	5hrs
6.	Cogeneration Definition and need, basics of thermodynamic cycles, classification of cogeneration systems, steam turbine, gas turbine, typical heat to power ratio in various industries, operating strategies for cogeneration plant, typical cogeneration performance parameters, relative merits of cogeneration systems.	5hrs
7.	Compressed air network Types of compressors, compressor selection, monitoring performance, specific power consumption, FAD test, capacity control and power consumption, compressed air distribution system, moisture separation.	5hrs
Text 1.		Dubliching

LC Witte, PS Schmidt and DR Brown: Industrial Energy Management and Utilization (Hemisphere Publishing Corporation, Washington, 1998).

Reference Book

- 1. George Polimeros: Energy Cogeneration Handbook, (Industrial Press, Inc., NY, 1981)
- 2. W Trinks, MH Mawhinney, RA Shannon, RJ Reed, JR Garvey: Industrial Furnaces, Sixth Edition, (John Wiley & Sons, 2003)

Course Code: 17EMEC706		Course Title: Demand-side Management
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4hr/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50		Exam Duration: 3 hrs

Types of DSM measures : Energy reduction programmes : Load management programmes, Load 5hrs growth and conservation programmes

Economic Analysis and Financial Management: Investment needs, appraisal and criteria, sources of funds. Anatomy of investment – Initial investment, Return on Investment, Economic life, Basic income equations. Tax considerations: Depreciation, types and methods of depreciation, Income tax Considerations. Financial analysis: Simple pay back period, Return on investment (ROI), Net Present value (NPV), Internal Rate of Return (IRR), and Annualized cost, Time value of money, Cash flows, Discounting, Inflation Risk and sensitivity analysis, financing options. Pros and cons of the common methods of analysis	4hrs
Project Management: Definition and scope of project, technical design, financing, contracting, implementation and performance monitoring. Implementation plan for top management, Planning budget, Procurement procedures, construction, Measurements and verification.	6hrs
Energy Monitoring, Targeting Review and Evaluation : Definition – Monitoring and targeting, elements of monitoring and targeting, data and information analysis, techniques energy consumption, production, cumulative sum of difference (CUSUM), Review and evaluation.	6hrs
Energy Policy :Need for Energy Policy for Industries, Formulation of Policy by any industrial Unit, Implementation in Industries, National & State level Policies	6hrs

Case Studies: Municipality Demand Side Management (Mu-DSM) scheme, Agriculture DSM, 3hrs Small scale Enterprise DSM, Electrical power distribution DSM, Commercial Building DSM

Text Books

1. W.R.Murphy, G.Mckay, Energy Management, Butterworths

2. C.B.Smith, Energy Management Principles, Pergamon Press).

Reference Books

1. CRC Handbook of Energy Efficiency – CRC Press

Course Code: 17EMEE705	Course Title: Design of Heat transfer Equipments			
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4hr/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 50		Exam Duration: 3 hrs		

	1	1 Heat Exchangers: Classification and selection, Heat exchanger theory and fouling Shell and tube heat exchangers						
	2	Plate heat exchangers : heat transfer and pressure drop, heat transfer prediction using Leveque analogy, design of plate heat exchangers	10hrs					
	3	Design of shell and tube heat exchanger : 1-2 parallel and Counter flow heat exchangers. Flow arrangements for increased heat recovery. Double pipe and Stirred Heat exchanger.	10hrs					
	4	Heat exchanger for Gases: Properties of gases, film coefficients, coolers for Air compressor and wet gases.	10hrs					
	5	Equipments for boiling and Evaporation: Classification of vapour generating Equipment, Analysis and design	10hrs					
Тех	ct Bo	oks						
1.	Das	s Sarit K., Process Heat Transfer 1 st Edn. Narosa 2006						
2.	Ozi	sik N. M., Heat transfer: Basic approach, 1ed., MGH, 2002						
3.	Ho	Holman J. P., Heat transfer 8 ed., MGH, 2006						
Ref	eference Book							
1.	Кау	Kays W.M, London A.L., Compact heat exchangers, 2 nd Edn, MGH, 1955						
2.	-	Kern D.G., Process Heat Transfer, 1 ed., TMH, 2000						
3.	Sch	lunder, Heat exchanger Data hand book, Vol 2 & 3, 1983						

Course Code: 17EMEE706	Course Title: S	Solar Photovoltaic System Design
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4hr/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50		Exam Duration: 3 hrs

1. Introduction to PV Systems: The PV Cell, The PV Module, The PV Array, Energy Storage, PV System Loads, PV System Availability, Associated System Electronic Components, Generators, Balance of System (BOS) ,Components. Present and Proposed PV Cells and Systems: Silicon PV Cells, Gallium Arsenide Cells, Copper Indium (Gallium) Diselenide Cells, Cadmium Telluride Cells, Emerging Technologies, New Developments in System Design	10hrs
2. Grid-Connected Utility-Interactive PV Systems: Applicable Codes and Standards, Design Considerations for Straight Grid-Connected PV Systems, Design of a System Based on Desired Annual System Performance, Design of a System Based on Available Roof Space, Design of a Micro-inverter-Based System, Design of a Nominal 21 kW System that Feeds a Three-Phase Distribution Panel, Design of a Nominal 250 kW System, System Performance Monitoring	10hrs
3. Mechanical Considerations: Important Properties of Materials, Establishing Mechanical System Requirements, Design and Installation Guidelines, Forces Acting on PV Arrays, Array Mounting System Design, Computing Mechanical Loads and Stresses, Stand-off, Roof Mount Examples.	10hrs
 Battery-Backup Grid-Connected PV Systems: Battery-Backup Design Basics, A Single-Inverter 120 V Battery-Backup System Based on Standby Loads, A 120/240 V Battery-Backup System Based on Available Roof Space, An 18 kW Battery-Backup System Using Inverters in Tandem, AC-Coupled Battery-Backup Systems, Battery Connections. 	10hrs
5. Stand-Alone PV Systems: The Simplest Configuration: Module and Fan, A PV-Powered Water- Pumping System, A PV-Powered Parking Lot Lighting System, A Cathodic Protection System, A Portable Highway Advisory Sign A Critical-Need Refrigeration System, A PV-Powered Mountain Cabin, A Hybrid-Powered, Off-Grid Residence, Summary of Design Procedures	5hrs
6. Economic Considerations: Life-Cycle Costing, Borrowing Money, Payback Analysis, Externalities and Photovoltaics: Externalities, Environmental Effects of Energy Sources, Externalities Associated with PV Systems	5hrs
 Text Books Roger Messenger, Amir Abtahi, Photovoltaic Systems Engineering, 3rd Edition, CRC Press, 2010, Solanki C.S. Solar Photovoltaics : Fundamentals, Technologies and Applications, PHI., 2011 Reference Books Matthew Buresch, Photovoltaic Energy Systems-Design and Installation, 1ed., MGH, 1983 Seippel R.G., Photovoltaics, 1 ed., Roston publication, 1986 	

Course Code: 17EMEE707	Course Title: Industrial Process Equipment Desig			
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4hr/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 50		Exam Duration: 3 hrs		

Boilers :	Types,	Combustion	in	boilers,	Performances	evaluation,	Analysis	of	losses,	Feed	water	5hrs	

KLE Technological University

B V Bhoomaraddi Campus, Vidyanagar, Hubballi – 580 031, Karnataka, India. Ph.: +91 0836 2378280

т

treatment, Blow down, Energy conservation opportunities	
Steam System: Properties of steam, Assessment of steam distribution losses, Steam leakages, Steam trapping, Condensate and flash steam recovery system, Identifying opportunities for energy savings	4hrs
Furnaces: Classification, General fuel economy measures in furnaces, Excess air, Heat distribution, Temperature control, Draft control, Waste heat recovery.	6hrs
Electrical system: Electricity billing, Electrical load management and maximum demand control, Power factor improvement and its benefit, Selection and location of capacitors, Performance assessment of PF capacitors, Distribution and transformer losses.	6hrs
Electric motors: Types, Losses in induction motors, Motor efficiency, Factors affecting motor performance, Rewinding and motor replacement issues, Energy saving opportunities with energy efficient motors	6hrs
Lighting System: Light source, Choice of lighting, Luminance requirements, and Energy conservation avenues	3hrs
Fans and blowers: Types, Performance evaluation, Efficient system operation, Flow control strategies and energy conservation opportunities	5hrs
Energy Efficient Technologies in Electrical Systems: Maximum demand controllers, Automatic power factor controllers, Energy efficient motors, Soft starters with energy saver, Variable speed drives, Energy efficient transformers, Electronic ballast, Occupancy sensors, Energy efficient lighting controls, Energy saving potential of each technology	5hrs
Text Books	
 A.K.Shaha, Combustion Engineering and Fuel Technology, Oxford & IBH Publishing Bureau of Energy Efficiency Publications 	
Reference Books/websites	
1. http://www.em-ea.org	

Course Code: 17EMEE708	Course Title:	Heating Ventilating and Air-conditioning
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4hr/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50		Exam Duration: 3 hrs

1.	Air-conditioning :ASHARE nomenclature, psychometric processes on psychometric chart, coil by	
	pass factor, estimation of cooling / heating load, plotting air conditioning processes for summer	
	using ESHF concept, concept of comfort air conditioning, effective temperature concept	

 Introduction to HVAC: Basic Air-Conditioning System , Zoned Air-Conditioning Systems , Choosing an Air-Conditioning System , System Choice Matrix Thermal Comfort: What is Thermal Comfort? Seven Factors Influencing Thermal Comfort , Conditions for Comfort , Managing Under Less Than Ideal Conditions 	10hrs
--	-------

3.	Ventilation and Indoor Air Quality: Air Pollutants and Contaminants, Indoor Air Quality Effects on Health and Comfort, Controlling Indoor Air Quality, ASHRAE Standard, Ventilation for Acceptable Indoor Air Quality, Zoning Design, Controlling the Zone, ,Single Zone Air Handlers and Unitary Equipment, Examples of Buildings with Single-zone Package Air-Conditioning Units, Air- Handling Unit Components, Refrigeration Equipment, System Performance Requirements, Pooffon Units, Solit Systems	10hrs
	Rooftop Units, Split Systems	

4.	Multiple Zone Air Systems: Single-Duct, Zoned Reheat, Constant Volume Systems, Single-Duct, Variable Air Volume Systems, By-Pass Box Systems, Constant Volume Dual-Duct, All-Air Systems, Three-deck Multizone Systems, Dual-Duct, Variable Air Volume Systems, Dual Path Outside Air Systems	10hrs
5.	Hydronic Systems: Natural Convection and Low Temperature Radiation Heating Systems, Panel	

5.	Hydronic Systems: Natural Convection and Low Temperature Radiation Heating Systems, Panel	
	Heating and Cooling , Fan Coils, Two Pipe Induction Systems, Water Source Heat Pumps, Hydronic	
	System Architecture, Steam - Water Systems , Hot Water, Chilled Water ,Condenser Water	
-		1

6. Energy Conservation Measures: Energy Considerations for Buildings, ASHRAE/IESNA Standard, Heat Recovery , Air-Side and Water-Side Economizers, Evaporative Cooling, Control of Building Pressure

- 7. Refrigerants: desirable properties, designation, azeotrops, secondary refrigerants, Ozone depletion, global warming, alternate refrigerant Applications of refrigeration systems: Industrial, 10 hrs comfort, food preservation and medical
- 8. Special Applications: Radiant Heating and Cooling Systems, Thermal Storage Systems , The Ground as Heat Source and Sink, Occupant Controlled Windows with HVAC , Room Air Distribution Systems ,Decoupled or Dual Path, and Dedicated Outdoor Air Systems

Text Books

- 1. Robert McDowall, Fundamentals of HVAC Systems, Elsevier Publications First edition 2006
- 2. Richard C.Jordan & Gayle B.Priester, Refrigeration and Air Conditioning-PHI
- 3. Norman C.Harris, Modern Air Conditioning Practice by- McGraw-Hill International Edition

Reference Book

- 1. ASHARE Handbook: Fundamental, ASHARE publication, 2013
- 2. ASHARE Handbook: Standards, ASHARE publication, 2013

Text Books

Reference Books

1.

2.

1.

aspects, IET Power and Energy Series 50, 2007.

Generation Modeling and Control, Wiley and Sons, 2009

Science Publishers, New York, 2009

5hrs

Course Code: 17EMEE709	Course Title: Renewable Energy Grid Integration	
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4hr/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50		Exam Duration: 3 hrs

1.	Introduction: Introduction to renewable energy grid integration, concept of mini/micro grids, and smart grids	5hrs
2.	Synchronous Generator based Sources: Review of synchronous generators, Introduction to power system stability problems: rotor angle stability, voltage stability and voltage collapse, classification of stability. Modeling of synchronous machines: dq transformations, synchronous machine representation in stability studies	8hrs
3.	Induction Generator based sources: Introduction to induction machines: electrical characteristics, slip, speed-torque characteristics etc. Self excited induction generator, Constant speed Induction generators, Variable speed Induction generators, Doubly fed Induction generators.	12hrs
4.	Converter based Sources: Introduction to power electronic devices, AC/DC converters, PWM, THD. Permanent magnet synchronous generator, solar PV systems, fuel cell, aqua-electrolizer	8hrs
5.	Grid Integration: Issues in integration of synchronous generator based, induction generator based and converter based sources together. Network voltage management (discusses the issue of voltage levels). Power quality management (voltage dips, harmonics and flickers). Frequency management. Influence of WECs on system transient response System protection, Grid codes. ,Need of micro and smart grids	12hrs
6.	Various Power System Studies: Various load forecasting techniques. Small signal stability, introduction to transient stability, voltage stability	5hrs

2	ALVA/a ad DEVA/allambana Davvan	Comparation One and	بناما لمستسما كمسم	Milay Q Cama Navy Varily 100C
	AJ Wood, BF Wollenberg, Power	Generation Operat	ion and Control Tonr	
<u> </u>		ocheration, operat		

Brendan Fox, Damian Flynn, Leslie Bryans, Wind Power Integration connection and system operational

Marco H. Balderas (Edited): Renewable Energy Grid Integration- The Business of Solar Photo-voltaics , Nova

Olimpo Anaya-Lara, Nick Jenkins, Janaka Ekanayake, Phill Cartwright, Michael Hughes, Wind Energy

7. Simulation Studies : power system studies for grid connected/off grid PV system, grid

connected/off grid WECS and small grid consisting of various renewable energy sources

Course Code: 17EMEW702		Course Title: Mini Project-2	
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 3hr/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 36		Exam Duration: 3 hrs	

Theme ·	Demand-side	Management	(DSM)
meme.	Demana Siac	Management	

The Mini-Project-2 envisages facilitating students for a real-time learning experience on working of Demand-side Management of Municipal supplies, Agriculture sector, Small Manufacturing Enterprises (SMEs), Commercial Building sector, Electrical distribution transformers.. The Project shall be executed as per the following methodology

- ✓ The review on Industry /scientific research status related to the product
- ✓ The study of current strategies adopted in demand-side management in different sectors in domestic and industrial sectors to capture the design-intent of the practice.
- ✓ Apply fundamental concepts to work-out preliminary design calculation of the strategy 36hrs envisaged through a customer survey and develop alternate design.
- ✓ Evidence use of computational tools to study existing concept and its improvisation
- ✓ Fabrication of a working prototype/ scaled model /circuitry hardware

✓ Testing of the hypothesis through the fabricated device/ mathematical model The continuous assessment includes peer review and Faculty assessment at periodic intervals during the semester The Mini-project has to be documented by student in form of a Technical Report for submission during the End-semester Assessment.

Course Code: 17EESC801	Course Title: Econon	Course Title: Economics and Planning of Energy Conversion	
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4hr/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50		Exam Duration: 3 hrs	

	Case studies on evaluation of Economics and Financial feasibility of Energy conversion device	s
1.	Indicators of Financial Performance, Incremental Analysis of Investment Projects Approaches of uncertainty in Financial Analysis ,Social Cost-benefit Analysis of Projects	10hrs
2.	Case Studies to assess : Solar Distillation Plant	5hrs
3.	Family size Bio-gas plant	5hrs
4.	Box type Cooker.	5hrs
5.	Improved Bio-mass cook-stove	5hrs
6.	Energy Efficient Motors in Industries	5hrs
7.	Solar Photovoltaic lanterns	5hrs
8.	Power Generation from Rice-Husk	5hrs
9.	Wind power gererator	5hrs

Text Books

1. Khandpal T.C., Garg H.P., Financial Evaluation of Renewable Energy Technologies, Mac-Millan India Ltd., 1st Edn, 2003

- 2. Sukhatme S.P., Nayak J.K., Solar Energy: Principles of Thermal Collection and Storage, TMGH, 2008 **Reference Book**
 - 1. Tiwari G.N., Solar Energy:Fundamentals, Design, Modelling and Applications, Alpha Science International Limited, 2015

Course Code:18EESP701		Course Title: Energy System Lab
L-T-P: 0-0-2	Credits: 2	Contact Hrs: 4 hr/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching hrs: 24		Exam Duration: 02 hrs

Studies on : a. Operational experience on i) Pyranometer, ii) Sunshine recorder b. Measurement of temperature using Infrared Thermometers d. Measurement of illumination using Lux meter e. Exhaust gas analysis using gas analyzer	24 hrs
 List of experiments 1. Performance evaluation of a solar flat plate thermo-syphon water heating 2. Conversion efficiency of a solar flat plate forced solar water heating system 3. Conversion efficiency of a solar Concentrating water heating system 4. Determination of conversion efficiency of a solar air heating system 5. Study and analysis of a solar still / distillation plant 6. Performance estimation of photovoltaic water pumping system 7. Investigation on a solar dryer 8. Operational characteristics of P.V. Indoor lighting system 9. Determination of characteristics of a wind generator 10. Performance evaluation of solar cooker 11. P.V. System sizing exercise 12. Data acquisition system for monitoring of P.V system using LABVIEW s/w 13. Performance evaluation of Solar fuel cell 14. Performance evaluation of vertical and horizontal axis wind turbine rotors. 	

Experience Engineering @ School of Mechanical EngineeringKLETECH

24 hrs

Course Code:18EESP702	Course Title: Industrial Instrumentation and Control Lab	
L-T-P: 0-0-2	Credits: 2	Contact Hrs: 4 hr/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching hrs: 24		Exam Duration: 02 hrs

- 1. **Control technologies** Local manual, remote electrical, Local pneumatic, Remote analog/digital
- 2. **Basic electrical and math concepts**: Applications to instruments, Electrical principles and symbols, Series/parallel circuits
- 3. **Pressure instrumentation & measurements**: Pressure measurement devices, U-tube manometer, bourdon gauge, bellows gauge, piezoelectric
- 4. **Temperature instrumentation and measurements** Measurement devices and techniques, Bimetallic temperature measurement, Filled capillary and bulb, thermocouple, resistance temperature detector (RTD), thermistors, thermowells, infrared
- 5. Flow Instrumentation and Measurements: Flow measurement methods, Factors influencing flow measurement, Flow measurement devices: orifice plates, venturi tube, flow nozzle, elbow taps, pitot tube, magnetic flow meter (Mag meter), vortex shedding meter, turbine meter, target flowmeter, ultrasonic, variable area rotameter, coriolis meter
- 6. Level instrumentation and measurements: Level measurement methods: sight glass, differential pressure level measurement, bubbler, displacer level sensor, float level sensors, capacitance, radiation-based, radar and ultrasonic level sensors
- Manipulating the process: Final control element, Actuators, valve positioners, I/P, valves Variable frequency drives
- 8. **Controllers:** Control modes: proportional, integral, derivative, Tuning feedback controllers ¼ decay, Zeigler-Nichols, damped oscillation, Ratio, cascade and feed-forward control
- 9. Control systems: Overview of PLCs, DCS and SCADA systems

Hands-on Exercises: Sensor checkout, Hookup to calibration stands, Transmitter calibration check, Program/tune controller, Set up of differential pressure, temperature, and other process-simulation devices, Checking current output with Volt-Ohm Mille-ammeter (VOM) & tracing around loop, Simulate and source 4-20mA-DC signals

24 hrs

Course Code:18EESP703	Course Title: Process Modeling and Simulation Lak	
L-T-P: 0-0-2	Credits: 2	Contact Hrs: 4 hr/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching hrs: 24		Exam Duration: 02 hrs

MATLAB Analysis

1. Declination of earth, hour angle, day length, local apparent time.

- 2. Monthly average, hourly global and diffuse radiation on a horizontal surface and tilted Surfaces.
- 3. Power generation from a wind turbine, Variation of wind velocity and power with altitude.
- 4. Solution of ordinary differential eqations-4th order R K Method.
- 5. Solution of one-dimensional steady state heat conduction equation.
- 6. Solution of two-dimensional steady state PDE.
- 7. Solution of one-dimensional transient PDE.

Finite Element Analysis

- 8. Two dimensional heat conduction.
- 9. One dimensional transient heat conduction.
- 10. Transient analysis of a casting process.

CFD Analysis

- 11. Flow through a pipe bend.
- 12. Flow through a nozzle.

Course Code:18EESP704	Course Title: IoT based Living Space Lak	
L-T-P: 0-0-2	Credits: 2	Contact Hrs: 4 hr/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching hrs: 24		Exam Duration: 02 hrs

1.	Introduction to IoT, Automation, Arduino, Raspberry Pi and IoT.	
2.	Introduction to Arduino programming and interfacing with peripherals and sensors Motor, Servo motor, LDR, PIR sensor, ultrasonic sensor, DHT 11, MQ2 smoke sensor, LCD and RC522 RFID	
3.	Wireless communication with Arduino: GSM Module, Ethernet Shield. Raspberry Pi and Raspbian operating system: Installing operating system ,Starting Raspberry Pi desktop and using Linux commands	
4.	Connecting to the network: Wired networking and Wireless networking, Setting up static IP for raspberry pi, Remote accessing of Raspberry Pi	
5.	Python programming with Raspberry Pi: Introduction to Python, Python commands and Python scripting for programming GPIO	
6.	Interfacing of Arduino with Raspberry Pi: Programming Arduino from Raspberry Pi using IDE Programming Arduino from Raspberry Pi using Python	
7.	Raspberry Pi as web server: Installing Apache Server	24 hrs
8.	Connecting Arduino and Raspberry Pi to cloud service: Uploading Arduino sensor data to cloud. Connecting Raspberry Pi to cloud and interfacing sensors	
9.	Conduction Of Living Space Lab Experiments Design of IoT based weather DAQ system IoT based temperature data monitoring and DAQ IoT based humidity data monitoring and DAQ IoT based solar insolation data monitoring and DAQ IoT based wind speed data monitoring and DAQ	
10	 Design of Energy management system IoT based SPV - Solar generation data monitoring IoT based Wind generation data monitoring IoT based SPV – Wind hybrid generation data monitoring 	

Course Code:18EESC802	Course Title: Energy Audit Practices		
L-T-P: 1-0-3	Credits: 4 Contact Hrs: 7hr/week		
ISA Marks: 100	ESA Marks:	Total M	arks: 100
Teaching Hrs: 15		Exam Durati	ion: 3 hrs
 Electrical Distribution and Utilization Electrical Systems, Transformers loss reductions, parallel operations, T & D losses, P.F.improvements, Demand Side management (DSM), Load Management, Harmonics & its improvements, Energy efficient motors and Soft starters, Automatic power factor Controllers, Variable speed drivers, Electronic Lighting ballasts for Lighting, LED Lighting, Trends and Approaches. Thermal Systems Boilers- performance evaluation, Loss analysis, Advances in boiler technologies, FBC and PFBC boilers, Heat recovery Boilers, Furnaces, Refractories, Insulators, Steam utilization Cogeneration Integrated analysis of steam base co-gen system, Gas turbine combine cycle operation, IC engine base co-generation and tri-generation, extraction turbines and steam cycle of cogeneration. System Audit of Mechanical Utilities Pumps, Blowers, Compressors, Cooling Towers, HVAC & Psychometric, refrigerants new trends, COP, 		15hrs	
Capacity	Field Studies		
Energy Audit & Management in Industri (Boilers, Steam System, Furnaces, Ins Cogeneration, Waste Heat recovery.) Electrical Energy audit and management (pf improvement, Electric motors, Comp Towers, Industrial/Commercial Lighting s Study of Energy Audit reports for various Case-studies / Report studies of Energy Guidelines for writing energy audit re impact of renewable energy on energy cost optimization projects in electrical ut	ulation and Refractories, Refrigeration t ressed air systems, Pumping systems, Fa system, Diesel based power Generation s is Industries and Organizations Audits port, data presentation in report, finc audit recommendations. Case studies	ins and blowers, Cooling ystem) lings recommendations,	25 hrs
Reference Books: 1. W.R.Murphy, G.Mckay Energy Manage 2. C.B.Smith, Energy Management Princi 3. G.C.Dryden, Efficient Use of Energy: Bo 4. A.V.Desai, Energy Economics ,Wiley Ea 5. D.A. Reay, Industrial Energy Conservat 6. W.C. Turner, Energy Management Har	ples, Pergamon Press utterworth Scientific astern ion, Pergamon Press		

Experience Engineering @ School of Mechanical EngineeringKLETECH Engage | Explore | Excel | Evolve

I			
Course Code:19EESC703	Course Title: Computational Methods in Engineering Analysis		
L-T-P: 3-1-0	Credits: 4	Contact Hrs: 5	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40		Exam Duration: 3	hrs
errors.	:: ecision, error definitions, round off erro ineering problem solving: Simple mat		06 hrs
	hod, Bisection method, False position ultiple roots, Simple fixed point iteration.	method, Newton-	06hrs
3.Roots of polynomial - Polynomials in Engineering and Scie Squaring Method.	ence, Muller's method, Bairstow's Metho	d Graeffe's Roots	06 hrs
	rical Integration: are Integration formulae, integration of Ec tion Applied to Engineering problems	-	06 hrs
	and Eigen Value Problems: r's Rule, Gauss Elimination Method, Gauss- Cholesky Method, Partition method, error		06 hrs
-	thod for symmetric matrices, Givens meth or symmetric matrices, Rutishauser met ver method.		05 hrs
7.Linear Transformation: Introduction to Linear Transformatic Science and Engg.	on, The matrix of Linear Transformation,	Linear Models in	05 hrs
 S.S.Sastry, Introductory Methods of S. Steven C. Chapra, Raymond P.Can M K Jain, S.R.K Iyengar, R K. Jain International, 2003. 	ering Mathematics, 10 th Edition , Willely Ind of Numerical Analysis, PHI, 2005. ale, Numerical Methods for Engineers, TMC n, Numerical methods for Scientific and e gineering Numerical Analysis, Cambridge, 2	6H, 4 th Ed, 2002. ngg computation, I	New Age

6. David. C. Lay, Linear Algebra and its applications, 3rd edition, Pearson Education, 2002.

Experience Engineering @ School of Mechanical EngineeringKLETECH

Course Code:19EESE703	Course Title: Cogene	ration and Electric	c Vehicles
L-T-P: 3-1-0	Credits: 4	Credits: 4 Contact Hrs: 5hr/weel	
ISA Marks: 50	ESA Marks: 50	Total N	1arks: 100
Teaching Hrs: 40		Exam Durat	tion: 3 hrs
 Concept of Cogeneration Review on Thermodynamics of conve technologies. 	ntional power producing plants - Select	ing cogeneration	8 hrs
 Thermodynamics of Cogeneration Power Plants Performance criteria and effect of irreversibility - Comparative thermodynamic performance of cogeneration plants – Numerical examples – Calculations of typical heat to power ratios and performance parameters. 		-	8 hrs
	rying plant heat to power ratio – Fu plications of cogeneration technology to	-	8 hrs
Motors Motor Cooling, Efficiency, Siz Electric Vehicles: Drive-trains: Basic	ers Regulation and Voltage Conversion, E ze and Mass, Electrical Machines for concept of electric traction - Introdu er flow control in electric drive-train to	Hybrid Vehicles, action to various	8 hrs
5. Electric Vehicle Modelling Tractive Effort, Modelling Vehicle Acceleration, Modelling Electric Vehicle Range, Simulations, Design Considerations: Aerodynamic Considerations, Consideration of Rolling Resistance, Transmission Efficiency ,Consideration of Vehicle Mass, Electric Vehicle Chassis and Body Design, General Issues in Design, Software in the use of electric vehicle design			8 hrs
 Reference books: 1. Sirchis, J., Combined Production of H 2. Spiewak, S. A., Cogeneration, Fairmo 3. James Larminie, John Lowry, Electric 4. Tariq Muneer, Mohan Kolhe, Aisling I 5. Zoran Stevic, New Generation of Electric 	nt Press Inc., 1991. Vehicle Technology Explained, John Wile Doyle, Electric Vehicles: Prospects and C	ey & Sons Ltd, 2003 hallenges, Elsevier	

Experience Engineering @ School of Mechanical EngineeringKLETECH

Course Code:19EESE708		Course Title: Hydrogen and	Fuel Cells
L-T-P: 3-0-1	Credits: 4	Credits: 4 Contact Hrs: 5hr/wee	
ISA Marks: 50	ESA Marks: 50	Total M	larks: 100
Teaching Hrs: 40		Exam Durat	ion: 3 hrs
 Hydrogen Energy Economy Hydrogen Energy Economy – Cor Hydrogen - Transport application-ca gadgets. 	-		8 hrs
 Hydrogen And Production Techniq HydrogenPhysical and chemical pro Steam reforming – Water electro Biological hydrogen production – F water. 	operties, salient characteristics - olysis – Gasification and woo	dy biomass conversion –	8 hrs
 Hydrogen Storage & Transport Hydrogen storage options – Compr – Comparisons - Transport of Hydro 			8 hrs
 Fuel Cells HistoryPrinciple - Working - Therma evaluation of fuel cell – Compariso SOFC, MCFC, DMFC, PEMFC – Relat 	odynamics and kinetics of fuel on on battery Vs fuel cell - Type	cell process – Performance	8 hrs
 Application Of Fuel Cell Fuel cell usage for domestic powe Space - Environmental analysis of u 			8 hrs
 Reference Books 1. Rebecca L. and Busby, Hydrogen Oklahoma (2005) 2. Bent Sorensen (Sorensen)Hydrogen UK (2005) 3. Jeremy Rifkin, The Hydrogen Econo 	n and Fuel Cells: Emerging Tecl	hnologies and Applications,	-

4. Viswanathan, B and M AuliceScibioh, Fuel Cells – Principles and Applications, Universities Press (2006)

1.1.2: Syllabus Revised Courses of PG Machine Design

	se Code: 16EMDC706		y of Vibrations with Application	
	-SS: 4-1-0-0	Credits: 05	Contact Hrs: 50	
	1arks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ning Hrs: 50		Exam Duration: 03 Hours	
No.		Content		Hrs
1	study of vibration, Classification, of motion and natural frequency	Free vibration of an u v of systems, Types	eeof freedom systems: Importance of the indamped translational systems, Equation of damping, Response of single degree nt, Systems with Coulomb damping.	07
2	-	e base, Relative moti	der harmonic force, Response of a system on, Response of a system under rotating issibilityandForce transmitted.	06
3	Transient Vibrations of Single Deg Impulse excitation, Arbitrary excita excitation, Shock response spectru	tion, Laplace transfor		06
4	Multi Degree-of-Freedom Systems Introduction, Two degree-of-freedom systems:Free vibration analysis of an un-damped system,			07
5	Control of vibration; Control of na	tural frequencies, Int tion, Shock isolatio	ria; Reduction of vibration at the source, roduction of damping, Vibration isolation n, Active vibration control, Vibration orber.	06
6	Belt friction system, Variable mass philosophy, Lindstedt s Pertu Subharmonic and Superharmon	system, Exact metho rbation method, It ic Oscillations, Syst	ns-Simple pendulum, Mechanical chatter, ds, Approximate analytical methods-Basic terative method, Ritz-Galerkinmethod, ems with time-dependent coefficients ability analysis, Classification of singular	06
7	Vibration Measurement and Cond Introduction, Transducers, Vibratio Spectrum analyzers, Bandpass filt modal analysis: Exciter, Transdo	on pickups, Frequenc er. Dynamic testing c ucer, Signal condition n severity criteria, M	y measuring instruments. Signal analysis: of machines and structures, Experimental oner and analyzer. Machine condition achine maintenance techniques, Machine echniques.	06
8	Continuous Systems Vibrating string, Longitudinal vibr beams.	ation of rods, Torsio	nal vibration of rods, Euler equation for	06
1 2 3 4	ChandramouliPadmanabhan, Fift Mechanical Vibrations: Theory a	tions, - William T. Tho h edition, Pearson Ed nd applications -S Gra panion- Rao V. Dukkip	mson, Marie Dillon Dahleh and ucation, 2008. ham Kelly, Cengage Learning , 2012. ti, J. Srinivas, Narosa, 2007	

B V Bhoomaraddi Campus, Vidyanagar, Hubballi – 580 031, Karnataka, India. Ph.: +91 0836 2378280

Course	Code: 16EMDP702	Course Title: Design L	ab	
L-T-P:0-	0-2	Credits: 2	Contact Hrs: 4 hrs / week	
ISA Mar	ks: 80	ESA Marks: 20	Total Marks: 100	
Teachin	g Hrs: 24		Exam Duration: 120 min	
		Content		Hrs
AA AAA		pring.	y dynamic software. einforced Polymer Composite	48
Materia	als and Resources Required	<u>:</u>	I	
1.	S. S. Rao, Mechanical Vibr	ations , Pearson Education, 4 th	edition, 2004.	
2.	R. A. Caollacatt Chapman 1977.	"Mechanical Fault Diagnosis a	nd Condition Monitoring"- Chapma	an and hall
3.	Robert M.Jones - Mechan	nanics of Composite Materials, McGraw Hill Kogakusha Ltd.1998.		

Course Code: 16EMDC801	Course Title: Machine Tool Design and Analysis	
L-T-P-S: 4-0-0-0	Credits: 4	Contact Hrs: 4
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 4		Exam Duration: 3 hrs

Content	Hrs
Unit - 1	
Chapter No. 1. Machine tool basics Introduction to machine tools, Design of shafts, keys, splines, poly V-belts, gears. Calculation of forces in lathe and milling machines. Calculation of motor power for a given application. Theory of metal cutting. Standards for bought out items like cap screws, hex bolts, nuts, washers etc. Selection of preferred sizes, Renard series.	10 hrs
Chapter No. 2. Elements of CNC Steels, CI used in M/C tools & heat treatment of steels, Surface finish and methods of improving them. GD&T and how to represent them in drawings. Types of ball and roller bearings, Spindle assemblies of turning and VMC machines, IS standards for various Lathe and CNC milling standards. Design of spindles for rigidity, speed, lubrication etc	10 hrs
Chapter No. 3. SQC & Testing of CNC Cp, Cpk calculations and their importance in CNC machines. How to establish positioning and repeatability by JIS method. Elements of CNC machines and introduction to CNC machines. Testing of CNC lathes and VMC machines.	7 hrs
Chapter No. 4. Selection of CNC elements Ballscrews, LM guide ways-types, accuracy, and method of selection for CNC machines. Calculation of static and dynamic loads etc. Servomotors, spindle motors and selection of the same for a specific application. Principle of operation of incremental and absolute encoders	6 hrs
Chapter No. 5. Hydraulics in CNC Design of hydraulic system for a lathe. Introduction to X, Y and Z assembly and how to compensate for thermal expansion of ballscrews.	7 hrs
Chapter No. 6. CNC assemblies Headstock, axes table, Declamping mechanisms of a tool in VMC. Ergonomics and aesthetics of machine tool	4 hrs
Chapter No. 7. Electrical & Electronics of CNC Basic electronics for mechanical engineers. Electricals for mechanical engineers-explanation of switch gear elements used in machine tools. Reading electrical diagrams and design of electrical system for CNC machines. PLC programme and ladder logics.	6 hrs

Course	Code: 17EMDP701	Course Title: Finite El	ement Analysis Lab	
L-T-P:0	-0-1	Credits: 1	Contact Hrs: 2 hrs / wee	ek
ISA Marks: 80		BO ESA Marks: 20	Total Marks: 100	
Teachir	ng Hrs: 24		Exam Duration: 120 mir	ı
		Content		Hrs
A A	 three dimensional. Static analysis of above modelled components using different possible types of elements and materials. Non-Linear Analysis of 3D model created for any possible Nonlinearity criteria viz - Geometric, Material, and Contact. 		24	
	• · •	ife Prediction of created 3D r validation of the above analy		
1.	Materials and Resources R	equired:	, "Practical Finite Element Analy	vsis", Vikas Book
2.	2. Sham Tickoo, "Ansys Workbench 14.0 for Engineers and Designers-, A Tutorial Approach", Dream Tec			ach", Dream Tech
3. 4.	http://148.204.81.206/Ans	ys/150/ANSYS%20Mechanica		vier, 2014.
5.	http://abaqus.software.po	imi.it/v6.12/pdf_books/CAE.	pdf	

Experience Engineering @ School of Mechanical EngineeringKLETECH

Course	e Code: 17EMDC707	Course Title: Fracture	e Mechanics		
L-T-P:4	-T-P:4-0-0 Credits: 4 Contact Hrs: 4 hrs / week				
ISA Marks: 50		ESA Marks: 50	Total Marks: 100		
Teachi	Teaching Hrs: 50 Exam Duration: 180 min				
No		Content		Hrs	
1	Introduction: History andoverview, Fundamental concepts, Fracture mechanics in Metals, Ductile fracture, Cleavage, The Ductile-Brittle transition, Inter-granular fracture, Modes of Fracture Failure;			04	
2		Energy Release Rate: Introduction, The Griffith energy balance, The energy release rate, Instability and the R-Curve, Thin plate vs Thick plate, Critical Energy release rate;			
3	Stress Intensity Factor: Introduction, Stress analysis of cracks, The stress Intensity Factor, Relationship between K and Global behavior, Effect of Finite size, Principle of superposition, Weight Functions, Relationship between K and G, Crack tip plasticity, Plane stress versus plane strain, K as a failure criterion, Mixed mode fracture			08	
4	Elastic Plastic Fracture Mechanics: Crack tip opening displacement, The J Contour Integral, Relationships between J and CTOD, Crack growth resistance curves, J-controlled fracture, Crack tip constraint under large scale yielding, HRR field;			08	
5	Mixed Mode fracture: A simple Elliptical Model, Maximum Tensile Stress Criterion, Strain Energy Density Criterion, Maximum Energy Release Rate Criterion, Experimental Verifications;			04	
6	Fracture Toughness testing of metals: General Considerations, K _{IC} testing, K-R Curve testing, J testing of metals, CTOD testing, Dynamic and crack arrest toughness, Fracture testing of weldments.			06	
7	Fatigue Crack Propagation Similitude in fatigue, Empirical fatigue crack growth equations, Crack Closure, Variable amplitude loading and retardation, Growth of short cracks, Micro-mechanisms of fatigue, Experimental measurement of fatigue crack growth, Damage Tolerance.			08	
8		ck Arrest, Rapid Loading Crack Speed, Elasto dyna Dynamic Contour Integrals,	mic Crack-Tip Parameters, Dynamic Creep Crack Growth, The C* Integral,	06	
Refere	ence Book:		· · · · ·		
1. 2. 3. 4.	T.L.Anderson, "Fracture Mee Prashant Kumar, "Elements David Broek, ArtinusNijhoff	of Fracture Mechanics", Tata , "Elementary Engineering Fi	Applications", CRC Press, 2 nd Edition, 1995 a McGraw-Hill Education Pvt. Ltd. New De racture Mechanics", London, 1999.		
4. 5.	-	re Mechanics", Elsevier, 201			

Course Code: 17EMDC708	Course Title: Research Methodology	
L-T-P: 2-1-0	Contact Hrs: 4 hrs / week	
ISA Marks: 100	Total Marks: 100	
Teaching Hrs:25	Credits: 3	
Content		Hrs
Research: Definition, Characteristics and Objectives; Types of Process, Literature Review, Review concepts and theories, Data collection, Processing and analysis of data collected, Inter role in research, Threats and Challenges to research, Writi Research ethics, Citation methods and rules. Case studies.	Formulation of Hypothesis, Research design, erpretation of data, Computer and internet: Its	25
 Reference Book: Kothari C. R. "Research Methodology – Methods & T International Pvt. Ltd., 2008. Ranjit Kumar, "Research Methodology – A step by ster Singapore, 2011. 		•

3. Dawson Catherine, "Practical Research Methods", UBS Publishers, New Delhi, 2002.

Course	e Code: 17EMDE707 Course Title: Mechanical Behavior of Materials			
L-T-P:4	-0-0	Credits: 4 Contact Hrs: 4 hrs / week		
ISA Ma	ırks: 50	ESA Marks: 50	Total Marks: 100	
Teachi	ng Hrs: 50		Exam Duration: 180 min	
No		Content		Hrs

KLE Technological University

B V Bhoomaraddi Campus, Vidyanagar, Hubballi – 580 031, Karnataka, India. Ph.: +91 0836 2378280

Experience Engineering @ School of Mechanical EngineeringKLETECH

1	Introduction: Materials in design, The evolution of engineering materials, Fundamental Characteristics of Composites, Interfaces in Composites, Fracture in Composites, , Functionally Graded Materials. Macro Mechanics of a Lamina: Hooke's law for different types of materials, Number of elastic constants, Derivation of nine independent constants for orthotropic material, Two - dimensional relationship of compliance and stiffness matrix. Hooke's law for two-dimensional angle lamina, engineering constants - Numerical problems. Invariant properties. Numerical	10
2	angle lamina, engineering constants - Numerical problems. Invariant properties. Numerical problems. Plastic Deformation and Dislocation Theory: Lattice defects, deformation in a perfect lattice, dislocation in crystal and deformation, strain hardening of single crystal, low angle grain boundaries, Stress field of a dislocation, forces between dislocations, dislocation climb and jog, interaction with vacancy and impurity. Multiplication of dislocation and pile-up; Plastic Deformation in Tension, Plastic Deformation in Compression Testing, Plastic Deformation of Deform	10
3	Polymers. Behavior under Tensile loading: Engineering and true stress-strain curves, yield point and strain ageing, strength coefficient and strain hardening exponent, necking or instability in tension, Effect of gauge length on strength and elongation, Effect of strain rate and temperature on tensile properties. Yield point phenomenon. Fracture under tension and torsion; Solid-Solution Strengthening, Mechanical Effects Associated with Solid Solutions.	10
4	Deformation under cyclic loading: Stress cycle, fatigue curve, fatigue fracture characteristics. Fatigue testing and testing machines, determination of fatigue strength. Factors affecting fatigue- contact under pressure. Under stressing, coaxing and overstressing. Effect of metallurgical impurities;	10
5	Deformation under high temperature and Superplasticity of Metals : Creep strain and creep-time curves, low temperature and high temperature creep theories. Fracture at elevated temperature, Stress rupture, Creep-Induced Fracture, Creep in Polymers, Heat-Resistant Materials, Superplasticity, Creep parameters and practical applications. Effect of metallurgical variables and materials for high temperature applications;	10
Refere	nce Book:	·
1.	Marc Andre Meyers and Krishan Kumar Chawla: "Mechanical Behavior of Materials", Cambridge	University
2.	Press, 2 nd Edition 2008. Norman Dowling, "Mechanical Behavior of Materials: Engineering Methods for Deformation, Fraigue", Prentice Hall, 4 th Edition 2012.	acture and
3.	G.E. Dieter: "Mechanical Metallurgy". McGraw-Hill, 3 rd Edition 1988.	
4.	Keith Bowman, "Mechanical Behavior of Materials", Wiley international edition, 2003.	
5.	Thomas Courtney, "Mechanical Behavior of Materials", Waveland Press Inc; 2 nd Edition, 2005.	
6.	J. Roesler, H. Harders, M. Baeker, "Mechanical Behavior of Engineering Materials", 1 st Edition 2007	
7.	W.F. Hosford, "Mechanical Behavior of Materials", 2 nd Edition, Cambridge University Press, 2009).

Course Code: 19EMDE702	Course Title: Mecha		
L-T-P: 4-0-0	Credits: 4	Conta	act Hrs: 5
ISA Marks: 50	ESA Marks: 50	Total Ma	arks: 100
Teaching Hrs: 50		Exam Durati	on: 3 hrs
	Contents		hrs
stress components, stress compo	onents on an arbitrary p al stresses, Mohr's circle	the state of stress at a point, rectangular plane, equality of cross shears, differential s for the three-dimensional state of stress, re shear states.	07
		state of strain at a point, strain tensors, viator strain tensors, octahedral strains,	07
	train relations for isotrop to stress components, re	ic materials, transformation of compatibility elations between the elastic constants, Saint	06
4. Two Dimensional Problems in C Plane stress and plane strain prob the use of polynomials, pure benc	artesian Co-ordinates lems, Airy's stress functio ing of a beam, bending o	on, solution of two-dimensional problems by of a narrow cantilever beam under end load, mly distributed load, use of Fourier series to	07
•	equation, stress distrib , thick-walled cylinders, r	oution symmetrical about an axis, strain rotating disks of uniform thickness, effect of	07
6. Torsion of Prismatic Bars Introduction, general solution of triangular cross section bar, memb		orsion of circular, elliptical and equilateral hin tubes.	06
7. Thermal Stresses			05

KLE Technological University

B V Bhoomaraddi Campus, Vidyanagar, Hubballi – 580 031, Karnataka, India. Ph.: +91 0836 2378280

Introduction, thermoelastic stress-strain relations, thin circular disk; temperature symmetrical about
centre, long circular cylinder, normal stresses in straight beams due to thermal loading.Introduction to Plasticity8. Introduction to Plasticity
Mechanism of plastic deformation, factors affecting plastic deformation, strain hardening, theories of
plastic flow, Tresca and Von Mises yield criteria, discussion of plasticity conditions, experimental
evidence for yield criteria.05Reference Books:Image: Constraint of the plastic deformation of t

- 1. L S Srinath, Advanced Mechanics of Solids, 3rd Edition, Tata Mcgraw Hill Company, 2009.
 - 2. T.G. SitharamandL. Govindaraju, Elasticity for Engineers, I K International Publishing House, 2016.
 - 3. Dr. Sadhu Singh, Theory of Plasticity and Metal Forming Process, 3rd Edition, Khanna Publishers, 2011.
 - 4. J. Chakraborty, Theory of Plasticity, 3rd Edition, Butterworth-Heinemann, 2006.

1.1.2: Syllabus Revised Courses

Course Code: 16EMEP203

Course Title: Engineering Design

L-T-P: 0-0-3 ISA Marks: 80 Teaching Hrs: 72 Credits: 3 ESA Marks: 20 Contact Hrs: 6 hrs/week Total Marks: 100 Exam Duration: 2 hrs

Engineering Design [Part A]

1	Planning: Analyse Need, Formulate a Product Proposal, Clarify the Task, Requirements	6			
	Modeling (SRS), Elaborate Requirements List, Design Specifications				
2	Concept Development: Function to Architecture, Establish Functions Structure, Search for	9			
	Working Principles & Working Structures, Combine & Firm-up into Concept Variants, Evaluate				
	against Technical & Economic criteria, Best Feasible Design				
3	System-level Design: Product Architecture -State Diagrams, Data-flow Diagrams,	9			
	Configuration Design, Parametric Design, Construction Structure, Preliminary BOM, Co-				
	simulation across domains				
4	Detail Design: Geometry, Dimensions, Material, PCB Design, Component Selection,				
	Class Diagrams, Code Generation, Design Verification, Detailed & Assembly Drawings				
	Production & Assembly Instructions, Final BOM, Product Specifications				

Text Books (List of books as mentioned in the approved syllabus)

1. Clive L Dym and Patrick Little, "Engineering Design: A Project Based Introduction", John Wiley & Sons

2. Yousef Haik, "Engineering Design Process", Cengage Learning India Private Limited, New Delhi

References

1. Pahl, G., Beitz, W., Feldhusen, J. and Grote ; "Engineering Design-A Systematic Approach" by, K.-H- Springer; 3rd ed. 2007

Laboratory Plan				
Laboratory Title: Engineering Design[Part B]	Lab. Code: 15EMEP203[P	art B]		
Total Hours: 40	Duration of ESA Hours: -			
ISA Marks: 40	ESA Marks: 0			
Part – B COURSE CONTENT Course Code: 15EMEP203 [Part B] Course Title: Engine L-T-P-S: 0-0-0-1.5 Credits:1.5 Contact Hrs: 3hrs/week ISA Ma Teaching Hours: 13 Sessions of 3 hours each (40hrs) ISA Ma	ering Design Practice [Part rks: 40 ESA Ma	-		
Part – B1 [3D Modeling]		7 sessions		
 Introduction to 3D Modeling and different work benches: Sketcher Workbench: Demonstration of sketch tools, mod constraints and dimensional constraints. 	lifying tools, geometrical	<u>3 Hours / 1 sessions</u>		
 Part Modeling: Shape toolbar for adding materials, shape toolbar for removing types of views etc., 	materials, modifying tools,	<u>6 Hours / 2 sessions</u>		
 Assembly and Co-simulation: Component placement, Placement types (Surface, Axis, and Plane Integration of two different domain tools. 	es), Feature settings etc.	<u>9 Hours / 3 sessions</u>		
4. Drawing: Drawing properties, Adding drawing models, View types, Scale fad display	actors, Section apply, View	<u>3 Hours / 1 sessions</u>		
Part – B2 [2D Drafting]	<u>6 sessions</u>			
 Orthographic Projections – Sectional [MANUAL drawings] Conversion of pictorial views into orthographic projections, Section, full section, local section, removed section and offset projection] 		<u>12 Hours / 4 sessions</u>		
 Thread forms and Threaded Fasteners: [MANUAL drawings] Thread forms: Thread terminology, thread profiles, [ISO Metric, BSW, Square and Acme, Sellers thread].Fasteners: Hexagonal headed bolt and nut with washer, square headed bolt and nut with washer (assembly). 		<u>3 Hours / 1 sessions</u>		
3. 2D Assembly Drawings: Part and Assembly Drawings, Generating bill of materials for ass views of parts and assembly of protected type flanged coupling]	embly. [Creating sectional	<u>3 Hours / 1 sessions</u>		
Books/References: Text books:		·]		

- Machine Drawing by K.R. Gopalakrishna, Subhas Publications, 22nd Edition 2013. 1.
- 2. Machine Drawing byN.D.Bhat&V.M.Panchal, Charotar Publishing House.

Reference books:

1. A Text Book of Computer Aided Machine Drawing, S. Trymbaka Murthy, CBS Publishers, New Delhi, 2007 Edition.

Experience Engineering @ School of Mechanical EngineeringKLETECH

Course Title: Instrumentation & Control Engineering

Course Code: 16EMEC201

		6 6
L-T-P: 3-1-0	Credits: 4	Contact Hrs: 5 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40 + 25		Exam Duration: 3 hrs

Unit – 1

1. Introduction to Instrumentation & Control Engineering

Generalized configurations and functional description of measuring instruments, Static Performance characteristics of instruments, Generalized configurations and functional description of control systems. Control system design, Design examples - Open loop and Close loop automatic control

2. Measurement of Physical Parameter

Motion measurement - Displacement: Translation and Rotational, Velocity: Translation and Rotational, Acceleration measurements, Force, Torque and Power measurement, Pressure and Temperature measurement, Flowrate measurement

3. Concepts of Control Engineering

Introduction, Differential equations of physical systems, The Laplace Transform, Order of system, Block	04 hrs
representation of system elements, Reduction of block diagrams to get transfer function	

Unit – 2

4. Mathematical Models of Physical Systems:

The transfer function of linear and rotational Mechanical systems, Thermal systems, Liquid system, 08 hrs Electrical systems, Transfer function of DC motor, Instrument modeling and static performance study

5. System Response

Introduction, Poles, Zeros, and System Response, First-order system response to step, ramp and impulse inputs, Second-order system response to step input; Un-damped, Under damped, Critical damped and Over damped systems, Response specifications, Design of 1st and 2nd order system. Introduction to stability and the stability analysis by Routh-Hurwitz Criterion. Instrument Dynamic Performance Characteristics

Unit – 3

6. System Stability

Introduction to Stability, Defining the Root locus, General rules for constructing root loci, Sketching the Root locus, Effect of gain adjustment, addition of pole and addition of zero on system response and system stability. Frequency Response Techniques: Bode Plots. Stability analysis using bode plots

7. Control Action

Types of Controllers, Mathematical modeling of PID, ON-OFF controller, Effect of Proportional, Derivative and Integral elements on system behavior, Design of Controller for given simple applications 05 hrs

Text Book

- 1. Katsuhiko Ogata, Modern Control Engineering, 5th edition
- 2. Ernest Doebelin and Dhanesh Manik, Measurement Systems, 6th edition, Tata McGraw-Hill Education Pvt. Ltd., 2011

References

- 1. Richard C Dorf and Robert H. Bishop, 'Modern Control Systems', Addison Wesley.
- 2. Norman S. Nise, 'Control. Systems', John Wiley & Sons
- T.G Beckwith, R.D Marangoni and J.H Lienhard, "Mechanical Measurements", 5th edition, Addison Wesley, 1993
- 4. R.S Figiola and D.E Beasley, "Theory and Design for Mechanical Measurement", 2nd edition, John Wiley 1995

KLE Technological University

B V Bhoomaraddi Campus, Vidyanagar, Hubballi – 580 031, Karnataka, India. Ph.: +91 0836 2378280

www.kletech.ac.in

Tutorial

Use of more examples and discussed at all places regularly. Assignment on a instrument's cost and specification. Solving more problems on various topics as per syllabus. Exploring experiments mentioned in Transducer and Instrumentation Virtual Lab at IIT Kanpur.

Course Code: 16EMEP204

L-T-P: 0-0-3 ISA Marks: 80

Teaching Hrs: 72

Credits: 3 ESA Marks: 20 Course Title: Mechatronics Lab Contact Hrs: 6 Hrs/Week Total Marks: 100 Exam Duration: 2 hrs

Introduction to Mechatronics: Definition & overview of Mechatronics, Key elements. Mechatronics Design approach, Mechatronics and sustainability, examples of mechatronic systems

Sensor, Actuators:

Review of Sensors and Actuators. Classification and application.

Signal conditioning:

ADC, DAC, MUX, Demux, encoder, Decoder; Data Acquisition System(DAQ)

Drive Circuits

power drives based on MOSFET- H bridge, SCR, TRIAC, IGBT, IPM; VFD; Servo drives-AC, DC;

Microcontrollers: Introduction to FF, Registers as memory element, Memory Hierarchy in Computer; Address/Data lines; Micro-controller Vs Microprocessor; RISC vs CISC, Harward Vs. Von neoman, Introduction to 8051 Architecture; Introduction to communication protocols-RS232, I2C, Ethernet Etc. Introduction to Programmable logic controller(PLC) and it's Architecture; examples of applications; Ladder diagrams, logic functions, latching, interlocking, Timer/counter, web controlled application, Programming on industrial applications;

Robotics: Types of robot, Robotic arm terminology, Robotic arm configuration, Robot applications, Evolution of Robots, Co-ordinates of Robots;

Automation & 3D printing: Introduction to Automation and Applications of Automation; Introduction to 3D printing Hardware and Software.

Machine Vision System & IOT: Introduction to Machine Vision; Image Acquisition; Image Processing; Visual Navigation; Introduction to IOT; Applications of IOT

Quad Copter & Simulators:: Introduction, Construction, Components Specification, tuning and working demonstration.

Text Books:

- 1. Devdas Shetty, Rechard A. Kolk, Mechatronics System Design, Cengage Learning 2nd edition 2011.
- 2. W. Bolton, 'Programmable Logic Controllers', Elsevier 4th edition 2006.

Reference for Mechatronics:

- 1. David Bradley · David W. Russell, Mechatronics in Action: Case Studies in Mechatronics Applications and Education, Springer 2010
- 2. Robert H Bishop, Mechatronics -an Introduction, Taylor & Francis Group 2006
- 3. W. Bolton, Mechatronics, Pearson Education Asia 2nd edition 2001
- 4. Jacob Fraden, Handbook of Modern Sensor, Springer Science Business Media -Fourth Edition 2010
- 5. http://www.arduino.cc
- 6. Garry Dunning, 'Introduction to Programmable Logic Controllers' Thomson

Experience Engineering @ School of Mechanical EngineeringKLETECH

List of planned Experiments:

SI. No.	Particulars
1.	PLC1- software Familiarization and Basic Programming.
2.	PLC2- Timer, Counter programming.
3.	PLC3- Building applications
4.	PLC4- SAP applications: Water level controller, Sequencing of 3 motors, Washing machine sequencing, Welding process/ conveyor controller, Dc motor controller
5.	PLC5- Industrial Based Application, Demonstration
6.	PLC6- Web based control
7.	ADC, DAC Circuit realization.
8.	MUX, Demux realization using Trainer Kit
9.	encoder, Decoder realization using Trainer Kit
10.	Flip Flop as memory and counter
11.	Image Processing basics using Matlab/Simulink/LabVIEW
12.	Image Processing using Raspberry PI/myRIO as Target Hardware
13.	Ball tracking application based on image processing
14.	Quad Copter flight Control
15.	3DP working demonstration showing all components and its working.
16.	Building few IOT applications using Raspberry PI/myRIO
17.	DC Servo motor using Arduino/myRIO
18.	AC servo motor control demonstration
19.	Course Project

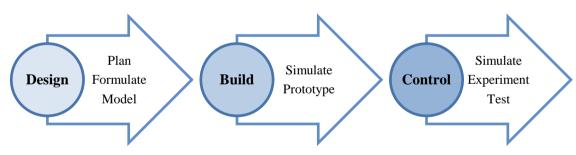
Experience Engineering @ School of Mechanical EngineeringKLETECH

VII Semester Syllabus Curriculum Content

Course Code: 18EMEW301

L-T-P: 0-0-3 ISA Marks: 50 Credits: 6 ESA Marks: 50

Course Title: Minor Project


Contact Hrs: 3 hrs/week Total Marks: 100 Exam Duration: 3 hrs

Themes for Minor Projects

Precision Agriculture	Factory Automation	Hospital Automation	Social Issues		
 Observe, Measure, Act, Replacing human labor with automation Eg: Moisture control in soil 	 Includes industry, workplace, assembly, machining operations, etc Eg: Automation of manual paper punching/ cutting machine 	 Assistance for patients Hospital Logistics Medical instruments re/design Eg: Equipment to lift/ transfer patient from one place to another 	 Issues concerned with water conversation, air pollution and public sanitation. Eg: An instrument to monitor, measure and control water pollution within a factory. (as per defined industry standards) 		
Any other Machatronics					

Any other Machatronics products

Methodology to be followed for carrying out the projects:

Role of Guide:

- The guide has to provide technical know-how from inception of project to execution
- Help students in identifying proper sources for raw materials, tools and other requirements
- Form a team and encourage students to take roles and responsibilities so that each one of them can enhance their knowledge and skills
- The Guide has to assess the student competencies with regard to his project work. More specifically to assess the student's individual contribution to the project
- Develop the clarity of assessment among the team in every phase of the project and advised to check for the formatting of the presentation and project report
- Continuous monitoring of project at different phases with the help of PLM e-NOVIA to work on paper-less
 office theme.

KLE Technological University

B V Bhoomaraddi Campus, Vidyanagar, Hubballi – 580 031, Karnataka, India. Ph.: +91 0836 2378280

www.kletech.ac.in

Evaluation of Minor-Project

The evaluation of project work shall be done in two stages as Continuous Internal Evaluation (CIE) and Semester End Examination (SEE) having equal weightages in marks.

CIE Evaluation:

- The CIE evaluation of project work shall be done in stages by the expert review panel including guide. In addition the guide shall separately evaluate the progress of project till its completion.
- There shall be three reviews by the panel experts and marks shall be allotted as per the weightages given for each review. The student shall showcase the progress of work through the presentation, videos, models, prototypes, etc to the panel members during the reviews.
- Each of the micro activities involved in accomplishing a project have been identified and included in the evaluation criteria as performance indicators. These performance indicators are being made known to students from day one of the project which helps them to plan and be guided to reach the intended goal. The assessment of each of the performance indicators is carried out as per rubrics which are also shared with the students.
- The review panel will be given a detailed assessment rubrics for each review based on which the panel experts will award the marks.
- Project guide shall be having individual responsibility to assess the entire project work and award the marks as per the assessment rubrics.
- During each review the panel experts shall advice the students with various aspects of the work for continuous development and Implementation.

SEE Evaluation:

- Student shall prepare a detailed project report according to approved guidelines and duly signed by the guide(s) and the Head of the Department and submit it to the examiners.
- The SEE evaluation of the project work shall be based on the demonstration of the model/prototype, presentation, project report submitted and a Viva-Voce by a team consisting of the Guide, an Internal examiner (other than the guide) and an External Examiner appointed by the department.
- Student shall submit a copy of the approved project report after the successful completion of viva examinations to the department.

Course Code: 19EMEC301

Experience Engineering @ School of Mechanical EngineeringKLETECH Engage | Explore | Excel | Evolve

Course Title: Finite Element Methods

L-T-P : 3-0-0	Credits: 03	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40		Exam Duration: 03
Unit - 1		
1. Introduction to FEM: FEM paradigm : History, present/future, Research, components on arbitrary plane, Equilibrium equatio Hook's law, Plane stress and plain strain, principle of m RR method and Galerkin's methods, FEM steps, Advant	ns, compatibility equations, Generinimum potential energy and virtual	ralized I work,
2 Interpolation Functions For General Element Formul Discretization process, types of elements, size of elem scheme and mesh requirements in finite element m functions, convergence requirements, Pascal triangle, Higher order elements).	nents, location of node, node num ethod, polynomial form of interpo	olation
Unit - 2		
3. Basic FEA analysis: Elimination approach, Penalty approach and Therr problems. Multi-point constraint, Iso-parametric and As		8hrs eering
4. Advanced FEA analysis:		7hrs
Practical aspects of industrial machine components, Fie using higher order polynomials.	ld issues related to structural applic	cations
Unit - 3		
4. Post processing techniques: Validate and interpret the results, Average and Un- processing, Design modification, CAE Reports	average stresses, Special tricks fo	5hrs or post
5. Experimental Validation and Data Acquisition: Strain gauge, Photo elasticity, Load cells, Torque Acceleration test, Fatigue life measurement, Natural Fre		5hrs tests,
Text Book		
 K. H. Huebner, D. L. Dewhirst, D. E. Smith and 4th edition, Wiley, New York, 2001. T. R. Chandraputala and A. D. Belegundu, I Edition, Prentice Hall of India, 2004. Nitin Ghokale, Practical finite element analysis 	ntroduction to Finite Elements in	-
References		
 N. S. Ottosen and H. Petersson. Introduction to Englewood Cliffs, 1992.) the Finite Element Method, Prent	ice-Hall,

2. S. S. Rao, Finite Element Method in Engineering , Fourth Edition, Elsevier Publishing, 2007.

Course Code: 19EMEP301

Course Title: CAD modelling and PLM Lab

L-T-P: 2-0-2	Credits: 4	Contact Hrs:6hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs: 80		Exam Duration: 3 hrs

Sl. No.	Work Benches of 3D PLM	No of weeks
1	Sketcher- Brief introduction on Sketcher work bench environment Structure of users and saving of files. Exercises on Sketch Tools, Profile Tool bar and Constraint Tool bar: Generate the following 2D sketches and make them Iso-constrained.	1
2	Part Design -Exercise on 3d models using pad, slot, shaft, groove, hole ,rib and stiffener commands, cut revolve, Dress up commands like chamfer, fillets etc. (Multi-Sections Solid and Removed Multi-Sections Solid Commands	2
3	Generative shape design (GSD)- Exercises using GSD to generate complicate surfaces using sub tool bars: Extrude-Revolution, Offset Var and Sweeps Extrude, Revolve, Trim, Transformation and Fillet tools Exercises on Wireframe, Surfaces and Operations Tool bar: (Conversion of Surface model into Solid model	3
4.	Assembly Design - Introduction to Assembly Design Work bench Bottom-Up and Top-Down assembly approaches Invoking existing components into assembly work Exercise to demonstrate Top-Down assembly approach.	2
5	Drafting- Converting existing 3D models into 2d drawings with all relevant	3

- details, sectional views, sheet selection, indicating GD&T symbols and dimensioning. 6 Enovia- Introduction to CATIA 3D experience PLM Import the existing CATIA 3D
- 1 experience data and store in Search and identify the data located in 3D experience database Modify the data in any PLM process Sharing information with users Analyze and Identify impacts of modifications Save the modifications into database

Reference Book:

Training material given by EDS on 3D experience

Experience Engineering @ School of Mechanical Engineering**KLETECH** Engage | Explore | Excel | Evolve

Course Code:19EMEP302

Course Code:19EMEP302		Course Title: FEM Lab
L-T-P: 0-0-1	Credits: 1	Contact Hrs: 2 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs: 24	No of Sessions: 12	Exam Duration: 2 hrs

Category: De	monstration	No. of Lab. Sessions per batch (estimate)
1	Scientific Research Exposure (Research Education): Methods to search/extract Journal papers (Reputed journal paper), Referring papers, Drafting a paper. Introduction to ANSYS Workbench and familiarity. Real time Current/future field issues : Problem Identification	03
Category: Exe	ercises	
Expt./Job No.	Experiment/job Details	No. of Lab. Sessions per batch (estimate)
1.	Static Structural analysis a) Uniform bar, b) Bracket, c) Machine Components	01
2.	Linear Buckling a) Columns & Struts (Different Boundary Conditions) b) Machine component	01
3.	Non-Linear Structural Analysis a) Geometric Nonlinearity b) Material Nonlinearity c) Contact Nonlinearity	02
4.	Dynamic Analysis (Modal/Harmonic/Transient Analysis) a) Beam (Different Boundary Conditions) b) Machine components	01
5.	Thermal Analysis a) Fins b) Heat Exchangers c) Machine component	01
6.	Drop Test & Impact Analysis a) Mobile drop test b) TV, Refrigerator etc.	01
7.	Optimization	01
8.	Model Test	01

Execute all the FEM Analysis modules which are dealt under the lab exercise.

Identify the component (Sub-assembly need have Minimum 3 to 4 components) Start from scratch

- Measure the dimensions of component
- Senerate the Solid Modeling of components with overall assembly (In any of the CAD Software)
- > Import the model in neutral form to ANSYS Workbench
- Collection of data relevant to Material Properties
- > Understand the physics of the problem (Working Principle with load's and boundary conditions)
- Interpretation of Results with conclusion.

KLE Technological University

B V Bhoomaraddi Campus, Vidyanagar, Hubballi – 580 031, Karnataka, India. Ph.: +91 0836 2378280

www.kletech.ac.in

Category: Open ended

- 1. Identify field issue pertaining to any component/product in today's industry.
- 2. Collect the information/literature on earlier worked project through external/internal search (Journal Paper/Patent/reports)
- 3. Comprehend the physics of the problem with working principle.
- 4. Prepare the abstract and apply to a national/international conference
- 5. Identify material properties, boundary conditions and load steps.
- 6. Carryout the analysis as per the FEA steps.
- 7. Provide engineering solutions to the identified sub assembly (deformation and stresses, material change, weight reduction, increasing load bearing capacity, fatigue life calculation, prediction of endurance limit of component and damage factor).
- Prepare the draft on the worked out problem and apply to a national/international conference 8.

Materials and Resources Required:

- 1. Books/References: Nitin Ghokale, Practical finite element analysis
- 2. Manuals: Sham Tickoo, ANSYS for Engineers and Designers

Experience Engineering @

School of Mechanical Engineering KLETECH

Engage | Explore | Excel | Evol

L-T-P: 2-1-0 ISA Marks: 50 Teaching Hrs: 40

Unit – 1

Credits: 3

ESA Marks: 50

1. Introduction to Control System

Generalized configurations and functional description of control systems. Control system design. Examples of Control System. Introduction to Linear, Nonlinear, Time Variant and Time Invariant systems.

2. Modeling of Physical Systems:

Introduction, Differential equations of physical systems, The Laplace Transform, Order of system; The transfer function of linear and rotational Mechanical systems, Gear Train, Electrical systems, Electro-mechanical System, Thermal systems, Hydraulic System; Block representation of system elements, Reduction of block diagrams to get transfer function.

Unit – 2

3. System Response Introduction, Poles, Zeros, and System Response, First-order system response to step, ramp and impulse inputs, Second-order system response to step input; Un-damped, Under damped, Critical damped and Over damped systems, Time response specifications. Design of 1st and 2nd order system.

4.Control Action

Introduction to PID controller design. Types of Controllers, Mathematical modeling of PID, ON-OFF controller, Effect of Proportional, Derivative and Integral elements on system behavior, Design of Controller for given simple applications. Design For Deadbeat Response.

Unit – 3

5. System Stability

Introduction to stability. Stability analysis by time response, S-plane and Routh-Hurwitz Criterion. Effect of gain adjustment, addition of pole and addition of zero on system response and system stability. Defining the Root locus, General rules for constructing root loci, Sketching the Root locus, Controller Design using root locus.

6. Frequency Domain Analysis

Nyquist stability criteria, Bode Plots. Stability analysis using bode plots.

Text Book

1. Richard C Dorf and Robert H. Bishop, Modern Control Systems, 12th edition, Addison Wesley

2. A. Anandkumar, Control Systems, 2nd edition, PHI Learning Private Limited, 2014.

References

- 1. Katsuhiko Ogata, Modern Control Engineering, 5th edition, Pearson Publications.
- 2. Norman S. Nise, Control. Systems, 6th edition, John Wiley & Sons.

Course Title: Control Systems

8 hrs

3 hrs

6 hrs

5 hrs

4 hrs

4 hrs

Contact Hrs: 4 hrs/week

Total Marks: 100

Exam Duration: 3 hrs

Course Code: 19EMEC201

Experience Engineering @ School of Mechanical EngineeringKLETECH

Course Code: 19EMEP201

	Course Title: Control Systems Lab
2	Contact Hrs: 4 hrs/week

L-T-P: 0-0-2 ISA Marks: 80 Teaching Hrs: 48 Credits: 2 ESA Marks: 20 Contact Hrs: 4 hrs/week Total Marks: 100 Exam Duration: 2 hrs

Experi Num		Experiments	No of sessions
01	a)	Reduce a given block diagram using a tool and verify with analytical solution.	1
	b)	To solve differential equations using graphical programming.	1
	c)	To build Graphical User Interface for a given application with at least 5 functions.	1
02	a)	For a potential divider circuit (Zero order) find response by experimentally and analytical. Simulate both using a tool.	2
	b)	Evaluate the effects of varying system parameters on zero, first and second order systems for various standard test signals.	2
	c)	Determine the step response for a given mechanical system and validate the results through electrical analogous system.	2
	d)	Study the step response for Electro - Mechanical system, Gear Train, Hydraulic, Hydraulic lift, thermal physical modeled systems	4
03	a)	Design a positional control system for a DC servo motor and carryout investigations.	8
04	a)	Comparative study of Time response, root locus and Bode plot with respect to stability.	1

Course Code: 19EMAB301

L-T-P: 3-0-1 CIE Marks: 50 Teaching Hours: 40

1. Numerical Methods

Introduction to numerical methods. Roots of equations using Bisection Method, Newton- Raphson Method, Finite differences, Forward, Backward Operators. Newton Gregory forward and backward interpolation formulae. Newton's divided difference formula for un equal intervals. Numerical solution of first order ODE, Euler's and Modified Euler's method, Runge Kutta 4th order method. Implementation using python-programming

Unit I

Credits: 04

SEE Marks: 50

2. Matrices and System of linear equations

Experience Engineering @

School of Mechanical EngineeringKLETECH

Engage | Explore | Excel | Evo

Introduction to system of linear equations, Rank of a matrix by elementary row transformations. Consistency of system of linear equation solution of system by (i) Direct methods-Gauss elimination, Gauss Jordon method (ii) Iterative methods- Guass-Seidal method. Eigenvalues and Eigenvectors of a matrix. Largest Eigenvalue and the corresponding Eigenvector by power method. Implementation using python-programming.

Unit II

3. Curve fitting and regression

Introduction to method of least squares, fitting of curves y = a + bx, $y = ab^x$, $y=a + bx + cx^2$, correlation and regression.

4. Probability

Definition of probability, addition rule, conditional probability, multiplication rule, Baye's rule. (no proof) Discrete and continuous random variables- PDF-CDF- Binomial, Poisson and Normal distributions (Problems only).

Unit III

5. Sampling distributions

(a) Sampling, Sampling distribution, Standard error, Null and alternate hypothesis, Type-I and Type-II errors, Level of significance. Confidence limits for means (large sample).

(b) Testing of hypothesis for means. large and small samples and student's t- distribution

and Confidence limits for means (small sample).

Text Books

- 1. Bali and Iyengar, A text book of Engineering Mathematics, 6ed, Laxmi Publications(p) Ltd, New Delhi,2003
- 2. Chapra S C and Canale R P, Numerical methods for Engineers, 5ed, TATA McGraw-Hill, 2007
- 3. Gupta S C and Kapoor V K, Fundamentals of Mathematical Statistics, 9ed, Sultan Chand & Sons, New Delhi, 2002

Reference Books:

- 1. Sastry S S, Introductory method for numerical analysis, 3ed, PHI, 2003.
- 2. J. Susan Milton, Jesse C. Arnold, Introduction to Probability and Statistics: Principles and Applications for Engineering and the Computing Sciences, 4th Ed, TATA McGraw-Hill Edition 2007.

10 hrs

5 hrs

9 hrs

Course Title: Numerical methods and Statistics

Contact Hours: 6 hrs/week

Examination Duration: 3hrs

8 hrs

8 hrs

Total Marks: 100

Experience Engineering @ School of Mechanical EngineeringKLETECH Engage | Explore | Excel | Evolve

Course Code: 15EMEC402		Course Title: Design of Therma	al Systems
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3	hrs/week
ISA Marks: 50	ESA Marks: 50	Total N	/larks: 100
Teaching Hrs: 40		Exam Dura	tion: 3 hrs
1 Uppt overhangers Classification and Colortic	Unit I		5 Hrs
1. Heat exchangers Classification and Selection Introduction, Recuperation and Regeneration Tubular Heat Exchanger, Plate Heat Exchange Mechanisms, Flow arrangements, Applications	on, Transfer process, G ger, Extended Surface I	heat exchanger, Heat Transfer	5 115
2. Design of Shell and Tube heat exchanger Construction of shell and tube exchanger, spe some Typical operating limits for heat excha Exchangers.	ecifications and classifi	cation of S&T Heat Exchanger,	10 Hrs
	Unit II		
3. Condensers : Classification of condensers, Shell and tube condensers : Analysis and o Flooding , Condensers for mixtures , Design o cooled condensers , direct contact condensers	design, special consider of shell and tube Exchar	eration in Reflux Condensers:	5 Hrs
4. Modeling of Thermal Equipment:	· ·		6 Hrs
Counter flow heat exchanger, Evaporators Effectiveness of a counter flow heat exchange Problems.		-	
5. Optimization:			4 Hrs
Mathematical representation of optimizatio procedure, Setting up the mathematical states			
6. Lagrange Multipliers:			5 Hrs
The Lagrange multiplier equations, unconstrai 7. Dynamic Programming:	ned optimization, Cons	trained optimization.	5 Hrs
Characteristic of the Dynamic programming s of Dynamic programming to energy system pr		nstrained problem, Application	
 Text Books (List of books as mentioned in the W.F.Stoecker, Design of Thermal Systems, Sarit K. Das., Process heat transfer, Narosa Sadik Kakac, Hongtan Liu, Heat Exchange 	, 3 ed., MGH, 1989. a Publishing House 1 st E		

3. Sadik Kakac, Hongtan Liu, Heat Exchanger Selection, Rating and Thermal Design, 2 ed., CRC Press, 2002.

References.

1. Yogesh Jaluria, Design and Optimisation of Thermal Systems, 2nd ed., CRC Press, 2008

2. Hodge B.K., Analysis and Design of Thermal Systems, 1 ed., PHI, 1990.

Course Code: 19EMEC401

Course Code: 19EMEC401		Course Title: I C Engines
L-T-P: 2-0-0	Credits: 2	Contact Hrs: 2 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 26		Exam Duration: 3 hrs

1. Introduction to I C Engines

Internal Combustion Engine Classification, Operating Cycles, Spark Ignition and Compression-Ignition Engines.

Unit I

Combustion in Spark Ignition Engines

Ignition limits, Normal combustion, Thermodynamic Analysis of SI Engine Combustion - stages, ignition lag, and effect of engine variables on ignition lag Causes of Cycle-by-Cycle and Cylinder-to-Cylinder Variations and flame propagation phase, detonation, Abnormal Combustion: Knock Fundamentals and fuel factors, Factors affecting knock.SI engine combustion chambers.

2. Combustion in Compression Ignition Engines

Experience Engineering @

School of Mechanical Engineering KLETECH

Engage | Explore | Excel | Evol

Types of Diesel Combustion Systems, Direct and Indirect-Injection Systems, Comparison, Combustion Efficiency, Normal combustion – stages, delay period, variables affecting delay period. Diesel knock, comparison between diesel and petrol engine knocks. Cl engine combustion chambers, Fuel spray behavior. HRR analysis.

Unit II

3. Engine Exhaust Emission Control

Formation of NOX, HC/CO mechanism , Smoke and Particulate emissions, Green House Effect, Methods of controlling emissions, Three way catalytic converter and Particulate Trap, Emission (HC, CO, NO and NOX) measuring equipments, Smoke and Particulate measurement, Indian Driving Cycles and emission norms.

4. Overall Engine Performance

Alternate fuels, Operating Variables that Affect SI Engine Performance, Efficiency, and Emissions: Spark Timing, Mixture Composition, Load and Speed, Compression Ratio. Variables that Affect CI Engine Performance, Efficiency, and Emissions: Load and Speed, Fuel-Injection Parameters.

Unit III

5. Recent Trends in IC Engines

Dual fuel Engine, Common Rail Direct Injection Diesel Engine (CRDI), Homogeneous Charge Compression Ignition Engine (HCCI), Reactivity controlled compression ignition engine (RCCI) Lean Burn Engine, Surface Ignition alcohol CI Engine, VVT engines, Gasoline Direct Injection Engine.

Text Books:

- 1. John B Heywood, "Internal Combustion Engine Fundamentals", Tata McGraw-Hill, 1988
- 2. Heinz Heisler, "Advanced Engine Technology", SAE International Publications, USA, 1998
- 3. Patterson D.J. and Henein N.A, "Emissions from combustion engines and their control", Ann ArborScience, publishers Inc, USA, 1978

Reference Books:

- 1. Ganesan V. "Internal Combustion Engines", Third Edition, Tata Mcgraw-Hill, 2007.
- 2. Gupta H.N, "Fundamentals of Internal Combustion Engines", Prentice Hall of India, 2006.
- 3. Ultrich Adler, "Automotive Electric / Electronic Systems", Published by Robert Bosh GmbH, 1995.

5 Hrs

5 Hrs

5 Hrs

6 Hrs

5 Hrs

Unit – I 1: Introduction to HVAC Systems and Psychrometry Purpose, applications, definition and components of air conditioning - Need and methods of ventilation. Evolution of air properties and psychrometric chart - Basic processes such as sensible heating/cooling, humidification/dehumidification and their combinations, steam and adiabatic humidification, adiabatic mixing, etc. - Bypass factor and Sensible heat ratio, Numerical problems.

2: Human Comfort, Summer and winter AC

Heat transfer from body, convection, radiation, conduction, evaporation, clothing resistance, activity level - Concept of human comfort - Thermal response - comfort factors - Environmental indices - Indoor air quality. - Simple summer AC process, Room sensible heat factor, Coil sensible heat factor, ADP -Precision AC - Winter AC.

Credits: 3

ESA Marks: 50

3: AC Systems and Equipment

Classification of air conditioning systems, Filters, types, efficiency - Fan laws, cooling coils and heating coils, sizing and off design performance - Cooling and dehumidifying coil, dry and wet, sizing, performance.

Unit – II

4: Heat Transfer Heat transfer in wall and roof, sol-air temperature, insulation, cooling load temperature difference -Fenestration, types of glass, sun shade, shading coefficient, maximum radiation, cooling load factor

5: Cooling load and heating load estimation

Thermodynamics of human body and mathematical model, Human comfort chart, Design conditions, outdoor, indoor - External load, wall, roof, glass - Internal load, occupancy, lighting, equipments -Ventilation, air quantity, loads - Load estimation methods. Vapour transfer in wall, vapour barrier, load estimation basics.

Introduction to AutoCAD REVIT software

6: Air distribution, diffusion and Ventilation

Ducts, types, energy equation for pipe flow, friction chart, methods of sizing, air distribution systems, ADPI, outlet/inlet selection.

Need, threshold limits of contaminants, estimation of ventilation rates, decay equation, air flow round buildings, Natural, wind effect, stack effect, combined effect - Mechanical, forced, exhaust, combined -**Displacement ventilation**

onit – m	
7: Ventilation system design	4 hrs
Exhaust ducts, filters, blowers, hoods, chimney, etc.	
8: Industrial ventilation	4 hrs

Steel plants, car parks, plant rooms, mines, etc.

Text Book:

- Faye C. McQuiston, Jerald D. Parker, Jeffrey D. Spitler, Heating, Ventilating and Air Conditioning: Analysis 1. and Design, 6th Edition, July 2004,
- W P Jones, Air Conditioning Engineering ELBS 3rd edn Edward Arnold (Publishers) ltd. Londan. 2.

Reference Book:

- Harris, Modern Air Conditioning Practice 3nd Edn McGraw Hill Book Company 1.
- S. N. Sapali, Refrigeration and air conditioning 2nd Edn, PHI learning pvt ltd, Delhi 2016 2.
- C P Arora, Refrigeration and air conditioning 3rd edn 3.

KLE Technological University

B V Bhoomaraddi Campus, Vidyanagar, Hubballi – 580 031, Karnataka, India. Ph.: +91 0836 2378280

Course Code: 15EMEE308

L-T-P: 3-0-0

ISA Marks: 50

Teaching Hrs: 40

Experience Engineering @

School of Mechanical EngineeringKLETECH

Engage | Explore | Excel | Evo

Course Title: HVAC Systems

Contact Hrs: 3 hrs/week

Total Marks: 100

Exam Duration: 3 hrs

5 hrs

6 hrs

3 hrs

7 hrs

6 hrs

18

L-T-P: 3-0-0 CIE: 50 SEE: 50

Code: 17EEEC201 Course Title: Electrical Machines. Teaching Hours: 40

KLE TECH.

Unit –I

Chapter 1 : Transformer : Transformer construction and principle of operation,	
Ideal Transformer, Practical Transformer, Transformer phasor diagrams, Equivalent	
circuit of transformers, Open circuit and short circuit tests, Voltage regulation,	10 hours
transformer losses and efficiency, Testing of transformers, Three phase	
transformers, Auto-transformers.	
Chapter 2: DC Machines: Construction of DC machine and DC machine as	
generator, EMF equation of DC machine, Operating characteristics of types of DC	05 hours
generators, Operating characteristics of DC motors, DC motor starting, Speed	05 nours
control of DC motors.	
Unit – II	

Chapter 3: Induction (Asynchronous) Machines: Induction motor as	
transformer, Principle of operation, Rotor frequency, e.m.f, current and power,	
Losses and Efficiency, Equivalent circuit, Torque slip and Power-slip	10 hours
characteristics, Determination of equivalent circuit parameters. Circle diagram,	
Starting of polyphase induction motors.	
Chapter 4 : Synchronous Machines: Cylindrical and salient pole machines,	05 hours
Phasor diagram of cylindrical rotor alternator. AC armature winding, Voltage	03 HOUIS
regulation of alternator using e.m.f method.	

Unit – III	
Chapter 5 : Synchronous Machines: Synchronous motor phasor, Power angle characteristic of synchronous machine, Measurement of Xd and Xq, Capability curves of synchronous generators, Power factor correction by synchronous motors.	5 hours
Chapter 6:Single phase induction machines: Double field revolving theory, Equivalent circuit, Resistance split phase motors, capacitor start motor, permanent capacitor motor, two-value capacitor motor, shaded-pole motor. Performance and cost comparison and choice of single phase induction motors.	5 hours

Text Book

1. P. C. Sen, "Principles of Electric Machines and Power Electronics", John Wiley & Sons Publications, Canada, 2nd Edition, 2001.

References

- 1. Bhimbra, "Principles of Electrical machinery", Khanna Publishers.2006.
- 2. D. P. Kothari and I. J. Nagrath, "Electrical Machines", MGH Publishers. 4th Edition, 2011.
- 3. Fitzgerald, Kingsly & Stephen, "Electric Machinery", 5ed., McGraw Hill, 1992

Course Title: Linear Integrated Circuits

Department of Electrical & Electronics Engineering
Curriculum Structure with Content- Course wise

Course Code: 18EEEC301

L-T-P: 3-0-0

CIE Marks: 50 Teaching Hrs: 40 Credits: 3 SEE Marks: 50 Contact Hrs: 40 Total Marks: 100 Exam Duration: 3 hrs

Chapter	Unit-I	
No.		
1	Current Mirrors	05 Hrs
	Current Mirror circuits and Modeling, Figures of merit (output impedance, voltage	
	swing), Widlar, Cascode and Wilson current Mirrors, Current source and current	
	sink.	
2	Basic OPAMP architecture	06 Hrs
	Basic differential amplifier, Common mode and difference mode gain, CMRR, 5-	
	pack differential amplifier, 7-pack operational amplifier, Slew rate limitation,	
	Instability and Compensation, Bandwidth and frequency response curve	
3	OPAMP characteristics	04 Hrs
	Ideal and non-ideal OPAMP terminal characteristics, Input and output impedance,	
	output Offset voltage, Small signal and Large signal bandwidth.	
	Unit-II	
4	OPAMP with Feedback	
	OPAMP under Positive and Negative feedback, Impact Negative feedback on	05Hrs
	linearity, Offset voltage, Bandwidth, Input and Output impedances, Follower	031113
	property, Inversion property	
5	Linear applications of OPAMP	
	DC and AC Amplifiers, Voltage Follower, Summing, Scaling and	
	Averagingamplifiers (Inverting, Non-inverting and Differential configuration),	10 Hrs
	Integrator, Differentiator, , Currentamplifiers, Instrumentation amplifier, Phase	10 1115
	shifters, Voltage to current converter, Phase shift oscillator, Weinbridge oscillator,	
	Active Filters – First and second order Low pass & High pass filters.	
ļ	Unit-III	
6	Nonlinear applications of OPAMP	
	Crossing detectors (ZCD. Comparator), Schmitt trigger circuits, Monostable &	
	Astable multivibrator, Triangular/rectangular wave generators, Waveform	10 Hrs
	generator, Voltage controlled Oscillator, Precisionrectifiers, Limiting	101115
	circuits.Clamping circuits, Peak detectors, sample and hold circuits, Log and	
	antilog amplifiers, Multiplier and divider Amplifiers, Voltage Regulators.	

Text Books

- 1 Sedra and Smith, "Microelectronics", 5th edition, Oxford University Press.
- 2 Ramakant A. Gayakwad, "Op Amps and Linear Integrated Circuits", 4th edition, PHI.

Reference Books:

- 1 Robert. F. Coughlin & Fredrick F. Driscoll, "Operational Amplifiers and Linear Integrated Circuits", PHI/Pearson, 2006.
- 2 James M. Fiore, "Op Amps and Linear Integrated Circuits", Thomson Learning, 2001
- 3 Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", TMH, 3e, 2005
- 4 David A. Bell, "Operational Amplifiers and Linear IC's", 2nd edition, PHI/Pearson, 2004

Laboratory Title: Control System Lab Total Hours: 32 Total Exam Marks: 20 Lab. Code: **18EEEP302** Duration of Exam: **02** Total ISA. Marks: **80**

Category	: Demonstration Total Weightage: 10.00 No. of lab sessions: 2.00		
Expt./ Job No.	Experiment/job Details		
1	Demonstration of heat tank simulator without controller using Labview Interactive learning model		
2	Demonstration of temperature control of liquid tank simulator using Labview Interactive learning model		
Category	: Exercises Total Weightage: 40.00 No. of lab sessions: 5.00		
Expt./ Job No.	Experiment/job Details		
1	Time response specifications of second order system		
2	Frequency response of second order system		
3	P,PI and PID controllers-effect on plant step response		
4	Lag and Lead Compensators- determination of frequency response		
5	Determination of Phase and Gain margin		
	: Structured Enquiry Total Weightage: 30.00 No. of lab sessions: 4.00		
Expt./ Job No.	Experiment/job Details		
1.	Each batch consisting of 4 students work on a given design problem- To employ MATLAB to design compensator/controller for a system to meet given specifications and analyze the performance by simulating the time and frequency responses. To submit a technical report (consisting of objectives, specifications set, list of assumptions, design formulation, design calculations, simulation results, design validation)		

Course Code: 18EEEE301

L-T-P: 3-0-0

ISA Marks: 50

Teaching Hrs: 40

Department of Electrical & Electronics Engineering Curriculum Structure with Content- Course wise

Course Title: Object Oriented Programming with C++ Credits: 3 ESA Marks: 50

Contact Hrs: 3 Total Marks: 100 Exam Duration: 03 hrs

Content	Hrs
Unit - 1	
Chapter 01: Introduction	4 hrs
Principles of Object Oriented Programming, Procedure oriented and Object oriented	
Programming, Basic Concepts of OOP, Benefits and Applications of OOP,	
Beginning with C++, Simple C++ program, C++ with classes, Structure of C++	
program, Creating, compiling and linking C++ programs.	
Chapter 02: Classes and Objects	7 hrs
Structures and Classes, Specifying a Class, Defining Member functions, C++	
program with class, Access Specifiers, Scope Resolution Operators, Inline	
functions, Static Data Members, Static Member Functions, Friend Functions.	
Chapter 03: Constructors and Destructors	4 hrs
Introduction, Parameterized Constructors, Multiple Constructors, Copy Constructor,	
Dynamic Constructor, Destructors, Dynamic allocation of objects - new and delete	
operators.	
Unit - 2	
Chapter 04: Inheritance	6 hrs
Introduction, Defining Derived Classes, Types of Inheritance, Virtual Base Classes,	
Abstract Classes, Constructors in Derived Classes, Nesting of Classes.	
Chapter 05: Virtual Functions and Polymorphism	5 hrs
Pointers to objects, this pointer, Pointers to Derived classes, Virtual Functions. Pure	
Virtual Functions.	
Chapter 06: Exception Handling	4 hrs
Basics, Exception Handling Mechanism, Throwing, Catching and Rethrowing	
Exceptions.	
Unit - 3	
Chapter 07: Function Overloading, Operator Overloading	5 hrs
Function Overloading, Overloading Constructors, Defining operator Overloading,	
Unary and Binary operator overloading, Rules for overloading operators.	
Chapter 08: Templates, STL	5 hrs
Class Templates, Function Templates, Overloading of Template functions,	
Components of STL, Containers, Iterators, Application of Container Classes.	

Text Books (List of books as mentioned in the approved syllabus)

- 1. E.Balagurusamy, Object Oriented Programming with C++, 4th edition, Tata McGrawHill, 2008
- 2. Herbert Schildt, C++ The Complete Reference, Fourth Edition, Tata McGrawHill, 2003

References

- 1. Yashavant P. Kanetkar, Let Us C++, 1st, BPB Publications,
- 2. Stanley B.Lippmann, Josee Lajore, Barbara E. Moo, C++ Primer, 4th Edition, Pearson Education, 2005

KJ	Technological University
	Creating Value
	_ Leveraging Knowledge

KLE TECH.

Department of Electrical & Electronics Engineering Curriculum Structure with Content- Course wise

Course Title: Digital System Design using Verilag

Course Title: Digital Sys	tem Design using verilog
L-T-P: 0-0-2	Credits: 2
ISA Marks: 80	SEA Marks:20
Teaching + Lab. Hours:	Examination Duration: 2
48 Hrs	Hrs

Course Code: 18EEEP303 Contact Hours: 4Hrs/week Total Marks: 100

48 Hr	s Hrs	
1.	Chapter No. 1. Architecture of FPGA	4hrs
	Architecture of FPGS: Spartan 3, What Is HDL, Verilog HDL Data Types and	
	Operators.	
2.	Chapter No. 2. Data Flow Descriptions	6 hrs
	Highlights of Data-Flow Descriptions, Structure of Data-Flow Description,	
	Data Type – Vectors, Testbench.	
3.	Chapter No. 3. Behavioral Descriptions	10 hrs
	Behavioral Description highlights, structure of HDL behavioral Description,	
	The VHDL variable -Assignment Statement, sequential statements, Tasks and	
	Functions	
4.	Chapter No. 4. Structural Descriptions	10 hrs
	Highlights of structural Description, Organization of the structural	
	Descriptions, Binding, state Machines, Generate, Generic, and Parameter	
	statements	
5.	Chapter No. 5: Finite State Machine:	4hrs
	Moore Machines, Mealy Machines	
6.	Chapter No. 6:Timing Issues in Digital Circuits:	6hrs
	Setup Time Constraints, Hold Time Constraints, Static Time analysis, Critical	
	Path, Clock Skew.	
7.	Chapter No. 7. Advanced HDL Descriptions	8hrs
	File operations in Verilog, Memories: RAM, ROM, Block Memories(Xilinx	
	IP)	

Course Code: 19EEEC401

Course Title: Power System Modeling, Operation & Control

L-T-P: 3-0-0 CIE Marks: 50

Credits: 3 SEE Marks: 50

Teaching Hrs: 40

Contact Hrs: 40 Total Marks: 100 Exam Duration: 3 hrs

Chapter	Unit-I	
No.		
1	Formation of network matrices : Multi-port power system representation, performance equations in bus frame of reference, definitions of Network models Ybus and Zbus, Primitive element representations, primitive performance equations,.	8 hrs
	Formation of Ybus by method of Inspection, Introduction to graph theory- definitions of terms, Bus incidence matrix, Ybus by the method of singular transformation,	
	Examples on Ybus formation by singular transformation (with no mutual coupling) and Inspection method, Zbus building algorithm-addition of uncoupled branches and links, modification of Zbus for changes in elements not mutually coupled, Examples on Zbus formation	
2	Optimal load dispatch : Importance and objective of economic load dispatch, Fuel	7 hrs
L	cost and Incremental fuel cost, Optimal load allocation between plants neglecting transmission losses, Examples on optimal load allocation with and without generation constraints, Optimal load allocation considering transmission losses, General transmission loss formula, Examples.	7 111 5
	Unit-II	
3	Load flow analysis : Importance of Power flow, Classification of busses, General	8 hrs
	steps in load flow analysis, Off-nominal ratio tap changing ratio transformer representation. Bus voltage solution by Gauss and Gauss-Seidel methods without PV	
	buses, Handling PV buses in Gauss-Seidel method, N-R load flow model in polar coordinates, formation of NR Jacobian, Introduction to FDLF load flow model,	
	Comparison of Gauss-Seidel, NR and FDLF load flow methods, Examples on one iteration of load flow solution.	
4	Load frequency control :Introduction to load frequency control problem, Working	7 hrs
	principle of speed governor, Model of isolated power system area –block diagram representation, Expression for steady-state frequency deviation, Parallel operation of generators –expression for operating frequency and load sharing,, two area load frequency control, steady-state operation of multi-area system under free governor operation, Examples on load sharing between areas.	
	Unit-III	
5	Reactive power and voltage control : Power flow through a line, Relation between	5 hrs
	voltage, power and reactive power at a node, Brief descriptions of methods of voltage control-by injection of reactive power and tap changing transformer. Generator reactive power control by AVR-simplified AVR system model, AVR response.	
6	Power System Simulations: Simulation of automatic generation control, simulation of small signal stability of a SMIB power system, Transient stability simulation of SMIB power system using trapezoidal integration, simulation of classical economic load dispatch Algorithm	5 hrs

Text Books

- 1 Stagg and El-Abid, Computer Methods in power system analysis, First Edition, Mc-Graw Hill, 1968
- 2 Kothari and Nagarath, Modern power system analysis, 3rd Edition, Tata McGraw Hill, 2004

Reference Books:

- 1 P. Kundur, Power system stability and control, First Edition, Tata McGraw Hill, 2007
- 2 Hadi Sadat, Power System analysis, Ed. First Edition, Tata McGraw Hill, 2002
- 3 A.R. Bergen and Vijay Vittal, Power system analysis, Ed. First Edition, Pearson Ed, 2009

50

Department of Electrical & Electronics Engineering Curriculum Structure with Content- Course wise

> L-T-P: **3- 0- 0** CIE Marks: **50** SEE Marks:

Course Code: 19H	EEEE401
Course Title: Flex	ible AC Transmission System (FACTS)
Teaching Hrs: 40	hrs

	UNIT I	Hrs
1.	FACTS: Concept and General System Considerations: Transmission Interconnection, Flow of power in AC system, Limits of loading capability, Power flow and dynamic stability consideration of a Transmission Interconnection, Relative importance of controllable parameters, and Basic types of FACTS controllers, Brief description and Definitions of FACTS controllers, Perspective: HVDC or FACTS	10 hrs
2.	Voltage Sourced Converters: Basic Concepts, Single Phase Full Wave Bridge Converter Operation, Single phase Leg operation, Three Phase Full Wave Bridge Converter, Transformer Connection for 12 pulse operation	05 hrs
	UNIT II	
3. 4.	Current Sourced Converters: Basic concepts, Three phase full wave diode rectifier, Thyristor based converter Rectifier operation with gate turn ON, Current sourced converter with turn OFF devices, Current sourced versus Voltage sourced converter. Objectives of Series and Shunt Compensation:	05 hrs 10 hrs
	Objective of Shunt Compensation, Methods of Controllable VAR Generation, Static VAR Compensators SVC STATCOM, Objective of Series Compensation, Static Series Compensators, GCSC, TSSC, TCSC and SSSC Unit – III	
5.	Static Voltage, Phase Angle Regulators:	05hrs
	Objectives of Static Voltage and Phase Angle Regulators, Approach to Thyristor Controlled Voltage and Phase Angle Regulators, TCVR and TCPAR,	051115
6.	Combined Compensators: Unified Power Flow Controller UPFC and Interline Power Flow Controller IPFC.	05hrs

Text Book:

1. Narain G. Hingorani, and Laszlo Gyugyi., "*Understanding FACTS*", IEEE Press, Standard Publishers Distributors, Delhi, 200, ISBN 81 86308 79 2. **References Book:**

1. K. R Padiyar, "*FACTS controllers in Power Transmission and Distribution*", New Age International Publishers, New-Delhi, 2007, ISBN 978 81 224 2142 2.

	Course Code: 19EEEO401L-T-PCourse Title: Wind and PV Electrical Energy SystemsCIE: 50SEE: 50 MarksTeaching Hot	Marks
1.	Introduction to Wind Energy Systems Historical development of wind power, types of wind turbines, power in the wind.	2 hrs
2.	Wind Turbine generators Impact of tower height, maximum rotor efficiency, wind turbine generators, importance of variable rotor speeds, pole changing induction generators, multiple gear boxes, variable slip induction generators, indirect grid connection systems.	5 hrs
3.	Average power in the wind Discrete wind histogram, wind power probability density functions, Weibull and Rayleigh statistics, average power in the wind with Rayleigh statistics. Annual energy using average turbine efficiency, wind farms.	8 hrs
	Unit–II	
4.	Specific wind turbine performance calculations Aerodynamics, idealized wind turbine power curve, optimizing rotor diameter and generator rated power, wind speed cumulative distribution function, using real power curves with Weibull statistics, using capacity factor to estimate energy produced.	5 hrs
5.	PV materials and electrical characteristics Introduction, generic PV cell, cells to modules to arrays, PV I-V curve at STC, impacts of temperature and insolation on I-V curve, shading impacts on I-V curve	5 Hrs
6.	PV systems Introduction, current-voltage curves for loads, grid connected systems, grid connected PV system economics, stand-alone PV systems, PV power water pumping	5 Hrs
	Unit -III	
7.	The solar resource Solar spectrum, earth's orbit, altitude angle of the sun, solar position at any time of day, sun path diagrams, solar time and civil time, sun rise and sun set, clear sky direct beam radiation.	5 Hrs
8.	Insolation and its measurement Total insolation on a solar collecting surface, monthly clear sky insolation, solar radiation measurements, average monthly insolation.	5 Hrs

Text Book

1. Gillbert M Masters, Renewable and efficient Electric Power Systems, Wily Interscience, New Jersey, 2004.

References:

1. B. H. Khan, Non Conventional Energy Resources, TMH Publishers, New Delhi, 2006.

Q	K	LE
KLE TECH.		Creati
REE FEOTI		_ Leveraging

Course Code: 19EEEP403	Course Title: Embedded Linux		
L-T-P: 3-0-0	Credits: 03	Contact Hrs: 03	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40		Exam Duration: 03 hrs	

Content	Hrs
Unit - 1	
Chapter 01: Introduction to Embedded Linux:	4 hrs
A Brief History of Linux -Benefits of Linux -Acquiring and Using Linux -Examining	
Linux Distributions - Devices and Drives in Linux-Components: Kernel, Distribution,	
Sawfish, and Gnome.	
Chapter 02: Overview of Embedded Linux:	5 hrs
Overview: Development-Kernel architectures and device driver model- Embedded	
development issues-Tool chains in Embedded Linux-GNU Tool Chain (GCC,GDB,	
MAKE, GPROF & GCONV)- Linux Boot process.	
Chapter 03: System Management and user interface:	5 hrs
Boot sequence-System loading, sys linux, Lilo, grub-Root file system-Binaries required	
for system operation-Shared and static Libraries overview-Writing applications in user	
space-GUI environments for embedded Linux system.	
Unit - 2	
Chapter 04: File system in Linux:	6 hrs
File system Hierarchy-File system Navigation -Managing the File system –Extended file	
systems-INODE-Group Descriptor-Directories-Virtual File systems- Performing File	
system Maintenance -Locating Files –Registering the File systems- Mounting and	
Unmounting –Buffer cache-/proc file systems-Device special files.	
Chapter 05: Configuration:	4 hrs
Configuration, Compilation & Porting of Embedded Linux-Examining Shells -Using	
Variables -Examining Linux Configuration Script Files -Examining System Start-up Files	
-Creating a Shell Script.	
Chapter 06: Process management and Inter process communication:	8 hrs
Managing Process and Background Processes -Using the Process Table to Manage	
Processes - Introducing Delayed and Detached Jobs - Configuring and Managing Services -	
Starting and Stopping Services -Identifying Core and Non-critical Services -Configuring	
Basic Client Services -Configuring Basic Internet Services –Working with Modules.	
IPC-Benefits of IPC- Basic concepts-system calls-creating pipes-creating a FIFO-FIFO	
operations-IPC identifiers-IPC keys-IPCS commands- Message queues-Message buffer-	
Kernel Ring Buffer semaphores-semtools-shared memory semtools- signals-sockets. Unit - 3	l
Chapter 07: Linux device drivers:	8 hrs
Devices in Linux- User Space Driver APIs- Compiling, Loading and Exporting- Character	0 111 5
Devices In Linux- Oser Space Driver APIs- Complifing, Loading and Exporting- Character Devices- Tracing and Debugging- Blocking and Wait Queues- Accessing Hardware-	
Handling Interrupts- Accessing PCI hardware- USB Drivers- Managing Time- Block	
Device Drivers- Network Drivers- Adding a Driver to the Kernel Tree.	
Device Drivers- Network Drivers- Adding a Driver to the Kenter free.	1

Text Books (List of books as mentioned in the approved syllabus)

- 1. Embedded Linux Hardware, Software and Interfacing Craig Hollabaugh, Addison-Wesley Professional, 2002
- 2. Embedded / Real-Time Systems: Concepts, Design and Programming Black Book, New ed (MISL-DT) Paperback – 12 Nov 2003.

References

- 3. Building Embedded Linux Systems, Karim Yaghmour, First edition, April 2003.
- 4. Embedded Linux- John Lombardo, Newriders.com

Course Code: 18EEEP201 L-T-P: (0-0-3) Credits:3 CIE Marks: 80 SEE Marks: 20 Teaching Hrs: 48hrs

KLE TECH.

Title: Data Structure Using C Lab Contact Hrs: **4 hrs/week** Total Marks: **100** Exam Duration: **3 hrs**

Chapter No.	Unit-I	
1	Programming on pointer concepts : Pointer concepts,1D and 2D arrays, pointers to functions, memory management functions	02+02 Hrs
2	Programming on string handling functions using pointers, structures, bit-fields : Perform string handling functions like String length, String concatenate, Strings compare, String copy and Strings reverse, Implementing Structures, union and bit- field.	02+02 Hrs
3	Programming on files: Open, Close, Read, Write and Append the file.	02+02 Hrs
4	Programming on stack data structures and applications: Insert delete and display an integer in a stack, Conversion from Infix to postfix & Infix to Prefix, Recursion.	02+02 Hrs
5	Programming on queue data structures: Insert at rear end ,delete at front end and display the integers in queue, Deque and circular queue.	02+02 Hrs
6	Programming on linked lists: Insert, delete and display a node in Singly Linked List, Doubly Linked List and Circular Linked List.	06+03 Hrs
7	Programming on trees: Perform various operations on binary trees, find max, min value in a binary search trees, find the height of a tree, count nodes in a tree, delete a node in a tree.	02+02 Hrs
8	Programming on sorting: Merge sort, Quick sort, Heap sort, Shell sort, Radix sort.	02+02 Hrs
<u>9</u>	Programming on graphs: Compare Breadth First Sort Sort, and Depth First Sort	02+02 Hrs
10	Programming on hashing tables: Implement different methods of hash tables.	02+02 Hrs
11	Open ended experiment: Implement given Data structures.	02+02 Hrs

Text Books

- 1 Horowitz, Sahani, Anderson-Feed, "Fundamentals of Data Structures in C", 2ed,Universities Press, 2008
- 2 Aaron M. Tenenbaum, "Data Structures Using C", Pearson Education India, 2003
- 3 Richard F. Gilberg, Behrouz A. Forouzan "Data Structures: A Pseudocode Approach With C", 2nd Edition, Course Technology, Oct 2009.

Reference Books:

- 1 E Balaguruswamy, "The ANSI C programming Language", 2ed., PHI, 2010.
- 2 Yashavant Kanetkar, "Data Structures through C", BPB publications 2010

Q	K
KLE TECH.	

Course Code: 19EEEE301

Course Title: CMOS VLSI Circuits

L-T-P: 3-0-0

ISA Marks: 50

Teaching Hrs: 40

Credits: 3 Contact Hrs: 40

ESA Marks: 50

Total Marks: 100

Exam Duration: 3 hrs

Content	Hrs
Unit – 1	
Chapter No. 1. Introduction to VLSI and IC fabrication technology VLSI Design Flow, Semiconductor Technology - An Overview, Czochralski method of growing Silicon, Introduction to Unit Processes (Oxidation, Diffusion, Deposition, Ion-implantation), Basic CMOS technology - Silicon gate process, n-Well process, p- Well process, Twin-tub Process, Oxide isolation.	06 hrs
Chapter No. 2. Electronic Analysis of CMOS logic gates DC transfer characteristics of CMOS inverter, Beta Ratio Effects, Noise Margin, MOS capacitance models. Transient Analysis of CMOS Inverter, NAND, NOR and Complex Logic Gates, Gate Design for Transient Performance, Switch-level RC Delay Models, Delay Estimation, Elmore Delay Model, Power Dissipation of CMOS Inverter, Transmission Gates & Pass Transistors, Tristate Inverter.	14 hrs
Unit – 2	
Chapter No. 3. Design of CMOS logic gates Stick Diagrams, Euler Path, Layout design rules, DRC, Circuit extraction, Latch up – Triggering Prevention.	06 hrs
Chapter No. 4. Designing Combinational Logic Networks Gate Delays, Pseudo nMOS, Clocked CMOS, Dynamic CMOS Logic Circuits, Dual- rail Logic Networks: CVSL, CPL.	08 hrs
Unit – 3	
Chapter No. 5. VLSI Design Flow Structured Design Strategies: Hierarchy, Regularity, Modularity, Locality, SDEF Layout Flow, Case Study IC tape out.	06 hrs

Text Books (List of books as mentioned in the approved syllabus)

- 1. □John P. Uyemura, Introduction to VLSI Circuits and Systems, 1, Wiley, 2007
- Neil Weste, David Harris & Ayan Banerjee, CMOS VLSI Design, 3, Pearson Ed, 2005
- **3.** Sung-Mo Kang & Yusuf Leblebici, CMOS Digital Integrated Circuits: Analysis

and Design, 3, Tata McGra, 2007

References

- 1. Wayne, Wolf, Modern VLSI design: System on Silicon, 3, Pearson Ed, 2005
- 2. Douglas A Pucknell and Kamran Eshraghian, Basic VLSI Design, 3, PHI, 2005
- **3.** Phillip. E. Allen, Douglas R. Holberg, CMOS Analog circuit Design, 1, Oxford University, 2002

KLE TECH.

Department of Electrical & Electronics Engineering Curriculum Structure with Content- Course wise

Course Code: 19EEEE302	Course Title: Battery Management Systems		
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40		Exam Duration: 3 hr	S
Conte	nt		Hrs
Unit –	1		
Chapter No. 1. Introduction : Introduction to elect batteries and their specific applications, Lithium- Battery Construction, Battery Chemistry, Safety, L	ion battery fundamenta	ls: Battery Operation,	03 hrs
Chapter No. 2. Battery Models : Battery Models, C Equivalent Circuit, Hysteresis, Coulombic E identification using SOC/OCV.			04hrs
Chapter No. 3. BMS (Black-box approach) : Need typical functions Battery management system network			02 hrs
Chapter No. 4. BMS Architectures: Monolithic Methods, Additional Scalability, Battery Pack Arch		istributed, Connection	02 hrs
Chapter No. 5. System Control: Contactor Cont Topologies, Contactor Opening Transients, C		-	04 hrs

Topologies, Contactor Fault Detection.

Unit – 2

Chapter No. 6. Data acquisition (Measurement): Cell voltage, current and temperature 05 hrs measurement, Synchronization of Current and Voltage.

Chapter No. 7. Battery Management System Functionalities: CC/CV Charging Method, Target Voltage Method, Constant Current Method, Thermal Management, and Operational Modes.

Chapter No. 8. Charge Balancing(Cell balancing): Charge Balancing Strategies, Balancing 05 hrs Optimization, Charge Transfer Balancing, Flying capacitor.

Chapter No. 9. SoC Estimation: Columb counting, SoC corrections, OCV measurements, 02 hrs temperature compensation.

Unit – 3

Chapter No. 10. BMS communications:Overview, Network Technologies ,I2C/SPI, RS-23205 hrsand RS-485 134, Local Interconnect Network, CAN 136 ,Ethernet and TCP/IP, Modbus, FlexRay,
Network Design.05 hrs

Chapter No. 11. Battery Safety: Functional Safety, Hazard Analysis, Safety Goals, Safety 05hrs Concepts and Strategies, Reference Design for Safety.

Text Books

1. Phillip Weicker "A Systems Approach to Lithium-Ion Battery Management" 2013, Artech house publisher

References

1. Jiuchun Jiang and Caiping Zhang, "Fundamentals and Applications of Lithium-Ion Batteries in Electric Drive Vehicles", John Wiley & Sons, 2015

٦

Department of Electrical & Electronics Engineering Curriculum Structure with Content- Course wise

Laboratory Title: Electric Drives and Control Lab

Lab. Code: 19EEEP302

Duration of SEE Hours: 3

Total Hours: 24

CIE Marks: 80

SEE Marks: 20

Г

Category: Demonstration				
Expt./ Job No.	Experiment / Job Details			
1	Forward and Flyback DC-DC Converter			
2	Single phase full bridge inverter			
3	Half controlled Rectifier feeding R and RL load			
4	Introduction to STEmbed Model based design and C-code generation for Power Electronics & Drives Application using TI's DSPs.			
Category	: Exercise			
Expt./ Job No.	Experiment / Job Details			
1	Three phase full bridge controlled rectifier fed DC motor drive.			
2	Fully controlled bridge rectifier feeding R and RL load			
3	VSI based open loop volts/hertz control of three phase induction motor drive.			
4	ADC, PWM pulse Generation and PI Controller design for PE and Drives application using STEmbed and TI's DSPs.			
Category	: Structured Enquiry			
Expt./ Job No.	Experiment / Job Details			
1	To design, simulate and experimentally verify given drive system to meet defined specifications.			

KLE TECH. KLE TECH.	FORM ISO 9001: 2008	Document #: FMCD2005	Rev: 1	.0
Department of Electrical & Electronics Engineering Curriculum Structure with Content- Course wise				
Course Code: 20EEEE401	Course Title: Tra	ction Systems	for Electric	Vehicles
L-T-P: 3-0-0	Credits: 3	Contact	Hrs: 40	
ISA Marks: 50	ESA Marks: 50	Total M	arks: 100	
Teaching Hrs: 40		Exam D	uration: 3 h	rs
Conten	nt			Hrs
Unit -	1			
Chapter No. 1. Motion and dynamic equations f Introduction to hybrid and electric vehicles, dynamic and dynamic equations for hybrid and electric vehicles	mics of hybrid and	electric vehic	les, motion	5 hrs
Chapter No. 2. Vehicle Power Plant and Transmission Characteristics The drive train configuration, Various types of vehicle power plants, The need of gearbox in a vehicle, The mathematical model of vehicle performance			earbox in a	5 hrs
Chapter No. 3: Basic Architecture of Electric Drive Trains Electric Vehicle Configuration, EV alternatives based on drivetrains, EV alternatives based on power source configuration, Single and Multi-motor drives in wheel drives			5 hrs	
Unit - 2	2		i	
Chapter No. 4. Permanent Magnet Machines for Permanent Magnet (PM) Machines, Principle of O Machine Supplied by DC-AC Converter with 1 Machine Supplied by DC-AC Converter with 1800	Departion of PM M 200Mode of Ope	lachine, Operation, Operation, Operation		7 hrs
Chapter No. 5. Permanent Magnet Machines suitability Electric Vehicles Relevance /operation of PM Motor specific to electric vehicles, Operation of PM Machine Supplied by DC-AC Converter with 120 degree Mode of Operation, Operation of PM Machine Supplied by DC-AC Converter with 180 degree Mode of Operation, Steady state characteristic operation of PM motor and importance of reluctance torque			8 hrs	
Unit - 3	3			
Chapter No. 6. Control of PM machines Control Strategies of PM Machines, Constant Toro Flux Linkage Control, Optimum Torque per Ampe		Constant Mut	ıal Air gap	5 hrs
Chapter No. 7. Drive cycle analysis and sizing of Power Train and Drive Cycles, New York City Cy 75), Sizing of Electric machine, Peak Torque and Sizing, Sizing Power Electronics <i>Text Book</i>	ycle (NYCC), Fede	eral Test Proce	dure (FTP-	5 hrs

.

.

I.

1. Chris Mi and M Abul Masrur, "Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives", John Wiley & Sons, 2018.

Course Code: 20EEEE402	Course Title: Powertrair	Control Laboratory	
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 40	
		Total Marks: 100	
Teaching Hrs: 40	LSA Marks. 50	Exam Duration: 3	hre
	EV Laboratory		1115
Plan for		rs = 24 Lab sessions of 3 Hrs eac	ch)
	Content		Hrs
1. Introduction to Ma data acquisition, data		nethods, configuration settings,	
2. Battery Modelling			(4 Sessions)
	rallel connection	1 cell on d hottomy goals	
c. SoC algorithm	lischarge curves of individua	n cen and battery pack.	
•	Active Cell Balancing		
a. Bi-directiona battery)	elling and Simulation of Po 1 DC-DC converters (For int voltage source inverter (mot	erface between Inverter and	(3 Sessions)
4. dq Transformation			(1 sessions)
a. Parks transfo	rmation		````
b. Clarke's tran	sformation		
b. Scalar Controc. Vector Controi. Direc	Three Phase Induction Mach ol (Constant Voltz/Hertz Law		(4 sessions)
6. PMBLDC Drive			(4 sessions)
a. Model of BL			
b. Speed Contro	of Strategies		
c. Vector Contr i. Direc	ol (Constant Voltz/Hertz Lav	v)	(4 sessions)
Course Project (4 lab	Sessions)		
1. System Integration	and testing (End-to-End S	imulation)	
2. Experimental Verif	ication (Build sub modules	s throughout the semester)	

KLE TECH. KLE TECH.		FORM ISO 9001: 2008	Document #: FMCD2005	
Department of Curriculum S	_			
Guindalaire				_
Laboratory Title: Project			Lab. Code:	20EEEW401
Credits: L-T-P: 0-0-14	Credits: 14		Duration of S	SEE Hours: 3

Duration of SEE Hours: 3

CIE Marks: 50

Capstone Project Guidelines

(I) Preamble

SEE Marks: 50

A project work essentially gives the students a platform to integrate the concepts studied during the study, enhance their analytical capabilities and develop abilities to effectively communicate technical information in multiple formats. During the course of projects, students are asked to follow the research methodology in identifying a problem of their interest though literature survey, carry-out feasibility study, formulate the problem, develop mathematical models, select suitable solution technique etc. Students are also encouraged to develop new formulations, alternate solution techniques, study and apply new optimization algorithms, develop new simulation models and use modern engineering/simulation tools.

(II) Project batch and Guide

Each project batch consists of 3 or 4 students. Students will be informed to form their own batch based on the kind of project work and their interest. Each batch is supposed to give four faculty names as guides based on faculty expertise in the order of their preference. Guides will be allocated based on the preference given by the batch. The primary role of the guide is to supervise the work, give appropriate guidance in successfully carrying out the project work.

(III) Project implementation

The principal steps in carrying out the project work are summarized below:

Step-1: Selection of a specialized area for the project work

A specialized area in which the project work is to be carried out depends on the interest and specialized skills acquired by the project team. This includes areas such as power system analysis, power system dynamics, renewable energy, electric drives, VLSI & Embedded system, Power quality issues etc. The proposed work may include simulation studies, hardware implementation or both.

Step-2: Selection of topic based on literature survey

A literature survey in the selected specialized area is to be carried out in order to understand the state of the current research. Further, a critical review of the collected literature will facilitate to summarize key observations. Key observations will lead to identifying a specific problem for the project work in terms of alternate/new solution techniques, possible improvements, new formulations or models, hardware implementations etc.

Step-3: Prepare a synopsis

A synopsis highlights the definition of identified problem and its significance. The synopsis will also contain detailed literature review giving the state of the current

Department of Electrical & Electronics Engineering Curriculum Structure with Content- Course wise

research on the selected specialized area. It will also brief the problem formulation, solution methodology, tools employed and possible outcomes.

Step-4: Project implementation

The work is to be carried out in phase wise manner, testing or analyzing the partial results obtained. Guide will periodically monitor the progress of the work done giving suitable suggestions as required.

(IV) Schedule

Sl. No.	Activity	Week No.	Evaluation Objectives
1	Announcement to form the batches	At the end of the previous 7 th sem	NA
2	Allotment of guides	1^{st} - 2^{nd}	NA
3	Submission of Synopsis	4 th - 5 th	Literature review, problem formulation, methodology by respective Guides
4	Review-I	6 th - 8 th	Literature review, problem formulation, methodology, tools used in the presence Review Committee
5	Review-II	9 th -10 th	Implementation and analysis done
6	Review-III	12 th - 14 th	Completion along with Hardware/ Software/ Report. Results and Conclusions.

(V) Evaluation

Evaluation of the project work carried out by each batch will be reviewed periodically by a review committee. Review committee consists of guide and two/ three other faculty members who are guiding other batches. Generally, two to three reviews will be held during a semester. However, each project batch will be supervised by the guide on a weekly basis. Review committee will evaluate for 40% and guide will evaluate for 60% of the total marks.

Activity	Assessment	Marks
ISA (50%)	Project Review committee	20
	Evaluation by Project Guide	30
ESA	Using ESA Rubrics	50
(50%)	Total	100

Passing: 40% both in ISA and ESA

Department of Electrical & Electronics Engineering Curriculum Structure with Content- Course wise

Review Committee Evaluation Schedule				
Activity	Week	Marks		
Review I: Problem Definition	6 th	05		
Review II: Progress	8 th	05		
Review III: Results & Conclusions	12 th	10		
Guide Evaluation	12 th	30		
Total	50			

C-L . C **T**---- 1-**.**.... ъ

In Semester Assessment (ISA)

Review	Phases of the project	PI	Marks	
	Identification of problem, Literature survey, Methodology	2.4.1		
	Relevance of project topic literature review	24.1	10 Marks	
1	Tools/ Software/ Hardware using	2.2.3		
	Team and Individual Work	9.2.1		
	Develop models and simulate power/ energy/	13.1.1		
	electronics systems using appropriate engineering tools			
	Presentation and communication skills	10.3.2		
2	Design/ Development of solutions	3.4.1	10 Marks	
	Investigation of complex problems	4.3.4		
	Work done	2.2.3		
	Team and Individual Work	9.2.1		
	Develop models and simulate power/ energy/ electronics systems using appropriate engineering tools	13.1.1		
	Work done	2.2.3		
3	Design/ Development of solutions	3.4.1	30 Marks	
5	Investigation of complex problems	4.3.4		
	Analysis and Results	3.4.1		
	Team and Individual Work	9.2.1		
Total (A	verage of three reviews)		50 Marks	

Department of Electrical & Electronics Engineering Curriculum Structure with Content- Course wise

End Semester Assessment (ESA)

CAPSTONE PROJECT					
	Grou	p Evaluation	PO Assessed	PI Assessed	Weightage
	Relevance of project topic and Literature review	 Problem identification Problem objectives and scope	2	2.2.3 2.4.1	30%
End Semester Assessment (ESA)	Quality and Quantity of work reported	 Problem formulation Contribution to the field of knowledge Experimentation/simu lation Analysis of results Drawing conclusions Assumptions and justifications Organization of the report/presentation Clarity of language Clarity of illustrations and Tables 	2 3 4 13	2.4.2 13.1.1 3.4.1 4.3.4	40%
	Individ	ual Evaluation			
	Presentation/ Communicatio n skills	Clarity of languageTechnical Knowled	10	10.3.2	5%
	Viva Voce	• Demonstration of clear understanding of the concept	10	10.3.2	5%

Course Title: Signals and Systems

L-T-P: 3-0-0

ISA Marks: 50

Credits:3

SEA Marks:50

Department of Electrical & Electronics Engineering Curriculum Structure with Content- Course wise

Course Code: 19EEEC205
Contact Hours: 3Hrs/week
Total Marks: 100

Teac	hing Hours: 40 Hrs Examination Duration: 3 Hrs	
1.	Chapter No. 1. Introduction and Classification of signals: Definition of signal and systems. Sampling of analog signals, Continuous time and discrete time signal, Classification of signals as even, odd, periodic and non-periodic, deterministic and non-deterministic, energy and power. Elementary signals/Functions: exponential, sine, impulse, step and its properties, ramp, rectangular, triangular. Operations on signals: Amplitude scaling, addition, multiplication, differentiation, integration, time scaling, time shifting and time folding. Systems: Definition, Classification: linear and nonlinear, time variant and invariant, causal and non-causal, static and dynamic, stable and unstable, invertible.	8hrs
2.	Chapter No. 2. Time domain representation of LTI System: Definition of impulse response, convolution sum, convolution integral ,computation of convolution sum using graphical method for unit step to unit step, unit step to exponential, exponential to exponential, unit step to rectangular and rectangular to rectangular only. Properties of convolution.	7hrs
3.	Chapter No. 3. Fourier Representation of Periodic Signals: Fourier Representation of Periodic Signals: Introduction to CTFS and DTFS, definition, properties and basic problems.	5hrs
4.	Chapter No. 4. Fourier Representation of aperiodic Signals: FT representation of aperiodic CT signals, definition, FT of standard CT signals, Properties and their significance. FT representation of aperiodic discrete signals DTFT, definition, DTFT of standard discrete signals, Properties and their significance, Impulse sampling and reconstruction: Sampling theorem and reconstruction of signals.	10hrs
5.	Chapter No. 5: Z-Transforms: Introduction, the Z-transform, properties of the Region of convergence, Properties of the Z-Transform, Inversion of the Z-Transform, Implementation of discrete time of LTI systems.	10hrs

Text Book

1. Simon Haykin and Barry Van Veen, Signals and Systems –2nd Edition, John Wiley, 2004.

2016-17

Course Title: Environmental Engineering		Course Code: 15ECVC204	
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4 Hrs/ week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 50 Hrs	Examination Duration: 3 Hrs		
Unit I			

1.Introduction

Impact of human activities on environment, Water pollution causes, need for protected 02 hrs water supply.

2. Demand and conveyance of water

Human activities and environmental pollution need for protected water supply. Types
of water demands, population forecasting- arithmetical, geometrical, incremental
increase and simple graphical method. Surface and subsurface sources Intake
structures. Design of the economical diameter of the rising main.04 hrs

3. Quality of Water

Concept of safe wholesome and palatability of water, Sampling of water, Examination of Water–Physical, chemical and Biological Examinations. Drinking water standards BIS & WHO guidelines. Health significance of Fluoride, Nitrates and heavy metals like Mercury, Cadmium, Arsenic etc.

4.Water Treatment

Treatment flow-charts. Aeration- Principles, types of Aerators. Sedimentation aided Coagulant, design, jar test, Theory of filtration, slow sand, rapid sand and pressure filters, design – excluding under drainage system .Theory of disinfection, types of disinfection.

Unit II

5.Miscellaneous Treatment and Distribution of Water

Softening methods of removal of hardness by lime soda process and zeolite process. Adsorption technique, reverse osmosis technique, fluoridation and defluoridation.	05 hrs
System of supply, service reservoirs and their capacity determination, methods of layout of distribution systems.	
6. Sewerage systems	
Types of sewerage systems. DWF, estimation of storm flow, design of storm water drain. Design of sewers - self cleansing and non-scouring velocities. Design of hydraulic elements for circular sewers flowing full and flowing partially full.	06 hrs

7. Sewage characteristics

Physical, Chemical and Biological characteristics, CNS cycle. BOD and COD their 03 hrs significance.

8. Disposal of Sewage

Self-purification phenomenon, Zones of purification, Oxygen sag curve. Sewage04 hrssickness Sewage farming. Numerical Problems on Disposal of Effluents usingStreeter Phelps equation.

9. Sewage Treatment

Flow diagram of municipal waste water treatment plant. Preliminary & Primary treatment: Screening, grit chambers, primary sedimentation tanks – Design.

Unit III

10.Secondary treatment and sludge disposal

Theory and design of biological unit operation- Trickling filter and Activated sludge **09 hrs** process and its modifications.

Miscellaneous treatment – Oxidation pond, concepts of UASB and RBC. Digestion of sludge, Sludge drving beds.

Text Books

- 1. Birdie, G.S., *Water Supply and Sanitary Engineering*, Dhanpath Rai and Son Publishers, New Delhi, 2003
- 2. Garg, S.K., Sewage disposal and Air Pollution Engineering, Khanna Publishers, 2003.
- 3. Garg, S.K., Water supply Engineering, 7ed., Khanna Publishers, New Delhi, 2005.
- 4. Modi, P.N., *Sewage Treatment and Disposal Engineering*, 15ed., Standard Book House, New Delhi, 2015.
- 5. Punima, B. C., and Jain Ashok, *Environmental Engineering-I*, 2ed., Laxmi Publications, New Delhi., 2008.
- 6. Punmia, B. C., Ashok K Jain and Arun Kumar Jain, *Wastewater Engineering*, Laxmi Publications, New Delhi, 2016.

Course (

Course Title: Structural Analysis-II

· ·	
L-T-P: 3-0-0	Credits:
ISA Marks: 50	ESA Ma
Teaching Hours: 40	Examina
Unit I	
1. Slope Deflection Method	
Introduction, Sign convention, Development of slope-deflection equations and Analysis of Beams and Orthogonal Rigid jointed plane frames (sway and non sway) with kinematic redundancy less than/equal to three. (Members to be axially rigid)	08 hrs
2. Consistency Deformation Method	
Introduction, static indeterminacy, Analysis of continuous beam and frame by Consistency Deformation Method.	08 hrs
Unit II	
3. Stiffness Matrix Method	
Degree of kinematic indeterminacy of one and two dimensional structures, generalised coordinates, Analysis of continuous beams with and without sinking of supports and portal frames kinematic redundancy ≤ 3 .	08 hrs
4. Flexibility Matrix Method	
Development of element flexibility matrices, Development of global flexibility matrix, Analysis of continuous beams, and rigid plane frames to determine for internal forces and displacements,	08 hrs
Unit III	
5. Plastic Analysis	
Introduction, plastic hinge and plastic moment capacity, Assumptions, Shape factor for general sections, Collapse load, Basic theorems for finding collapse loads, Methods of plastic analysis, Beam mechanism for continuous beam.	08 hrs
Text Books	
1. Bhavikatti S.S, Structural Analysis II, 4ed., Vikas Publishing House India Pvt. Ltd, Bangalore, 2016.	
2. Pandit G.S. and Gupta S.P. Matrix Method of Analysis, 2ed., McGraw Hill Education India	

- 2. Pandit G.S. and Gupta S.P, *Matrix Method of Analysis*, 2ed., McGraw Hill Education India Pvt. Ltd, New Delhi, 2008.
- 3. Reddy C.S., *Basic Structural Analysis*, 3ed., Tata McGraw Hill Education India Pvt. Ltd New Delhi, 2017.

Ram chandra, Design of steel structures-Vol II, 12ed, Standard book house, New Delhi 2015

Reference Books:

- 1. Jain A.K., *Advanced Structural Analysis*, 3ed., Nemchand and Brothers, Roorkee, India, 2015.
- 2. Leet, Uang, and Anne M., *Fundamentals of Structural Analysis*, 3ed., Tata McGraw Hill Publishing Company, New Delhi, 2017.
- 3. Noris, C.H. and Wilbur, J., *Elementary Structural Analysis*, 3ed., Tata McGraw Hill Publishing Company, New Delhi, 2005.
- 4. Bhavikatti S.S, *Matrix Methods of Structural Analysis*, 1ed., I K International Publishing House Pvt. Ltd., 2011.
- 5. Timoshenko, S.P., and Young, D.H., *Theory of Structures*, McGraw Hill Company, New York, 1965.
- 6. B. G. Neal, The Plastic Methods of Structural Analysis, Chapman and Hall, 1977

Course Title: Transportation Engineering		Course Code: 15ECVC304		
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4 Hrs/ week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 50	Examination Duration: 3 Hrs			
Unit I				

1. Development of Highway Engineering

Importance of transportation, Different modes of transportation, Characteristics of	
road transport, Jayakar committee recommendations and implementation, Types	
of Roads, Road patterns, planning surveys, master plan-saturation system of road	
planning, Phasing of road development in India and problems, Salient features of	08 hrs
3 rd and 4 th 20year road development plans and problems, Highway development	
authorities – NHAI, MoRTH, KSHIP, KRDCL, Present scenario of road	
development nationally and at state level – Bharatmala Project, NGHM, NHDP,	
PMGSY, Vision 2021.	
2. Highway Alignment Selection Criteria	
Guidelines for selection of Ideal alignment, factors affecting the alignment,	04 hrs
Engineering surveys, Steps involved in Preparation of Detailed Project Report	
(DPR) for new highway alignment and realignment of highway.	
3. Geometric Design of Highways	
Functional design of highways, Cross Section Elements of highways, Sight	12 hrs
Distance, Design of Horizontal and Vertical Curves, Features involved in highway	12 m
safety and traffic efficiency.	

4. Traffic Engineering

Sampling in Traffic Studies, Objectives, methods of traffic study, equipment used for traffic studies, data collection, analysis and interpretation of (i) Spot speed (ii) Speed and delay (iii) Volume (iv) Origin - Destination (v) Parking (vi) Accident studies, problems on above

5. Pavement Materials

Materials used in Highway construction – Soil, Stone aggregates, bituminous binders, bituminous paving mixes, Portland cement and cement concrete : Desirable properties, tests, requirements for different types of pavement. Innovative materials used in road construction.

6. Fundamentals of Pavement Engineering

Introduction of pavement design - Types of pavements, Desirable characteristics
of pavement, components of flexible and rigid pavement and function of each
component layer, Factors affecting pavement design, ESWL and its determination.04 hrsTypes of joints in rigid pavement and function of each type.04 hrs

Unit III

7.Pavement Construction Technology

Specification and construction procedure of : Earthwork, Preparation of
 Embankment / Subgrade, Granular sub base course, Granular base course, Prime
 Coat, Cementaceous Subbase/Base course, Bituminous base course, Tack Coat,
 Bituminous surface course, Dry Lean Concrete base course, Pavement Quality
 Concrete surface course, Highway drainage system.
 8. Highway Economics

Concept and principle of Engineering economics, Identification and measurement of Highway Benefits, Highway Transportation costs, Road User costs and 04 hrs Benefits. Economic analysis by benefit cost ratio method- BCR, NPV-IRR. Highway Financing- BOO, BOT, BOOT Concepts, eProcurement system.

Text Books

- 1. Khanna S.K., and C.E.G. Justo, & A. Veeraragavan, *Highway Engineering*, 10ed., Nem Chand and Bros. Publishers, Roorkee, 2016.
- 2. Kadiyali L.R., *Traffic Engineering and Transportation Planning*, 7ed., Khanna Publishers, New Delhi, 2011.
- 3. Kadiyali L.R., *Principles and Practices* of *Highway Engineering*, Khanna Publishers, New Delhi, 2005.
- 4. Papacostas C.S. and Prevedourous, P.D., *Transportation Engineering and Planning*, 3 ed., Prentice-Hall India, New Delhi, 2002.

Reference Books:

- 1. T. Fwa, *The Handbook of Highway Engineering*', Taylor & Francis Group, Newyork, 2006.
- 2. C. Jotin Khisty, B.Kent lal, *Transportation Engineering*, PHI Learning Pvt. Ltd. New Delhi, 2014.

- 3. Ministry of Road Transport and Highways, *Specification for Road and Bridge Works* (Fifth revision 2014), Indian Road Congress, New Delhi.
- 4. IRC: 73-1980-Geometric Design Standards for Rural (Non Urban) Highways, Indian Road Congress, New Delhi.
- 5. IRC: 37-2012 *Guidelines for the Design of Flexible Pavements* (Third Revision), Indian Roads Congress, New Delhi.
- 6. IRC: 58-2015- *Guidelines for the Design of Plain jointed Rigid pavements for highway*, Indian Roads Congress, New Delhi.

Course Title: Traffic Engin	eering	Course Code: 15ECVE302
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/ week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 3 Hrs	
	Unit I	

1. Traffic and Road user characteristics

Objectives and scope of traffic engineering, Components of road traffic- vehicle,	
driver and road, vehicle performance characteristics, road user characteristics:	04 hrs
human characteristics, factors affecting road traffic, concept of classified traffic,	
methods of measurements, and concepts of passenger car units (PUC) for mixed	
traffic flow.	
2. Traffic Engineering studies and analysis	

Sampling in traffic studies, adequacy of sample size, sampling techniques, application of sampling methods for traffic studies, equipment, concept Data collection, analysis and interpretation of results of classified traffic volume, spot speed, speed and delay, origin and destination, parking studies and accident studies. Problems on above.

3. Traffic flow characteristics, traffic flow variables, speed

Flow –density relationship, PCU values, level of service, factors influencing 06 hrs roadway capacity, capacity of roads at various levels of service, capacity of intersections.

Unit II

5. Traffic Regulation and control

General regulations, regulation on vehicles, drivers and flow regulation and traffic control devices – Types & objectives of marking, signs, signals and islands, delineators, traffic and environment hazard- noise and air pollution due to road traffic and method of control.

4. Traffic features Design

Design of intersection – Channelization and rotary, Design of signalized	10 hrs
intersections including signal timings as per IRC guidelines, problems on above	
Design of on street and off street parking facilities.	

6. Traffic Management system

Traffic System Management (TSM) with IRC standards, Traffic regulatory
measures, Travel Demand Model (TDM), Direct and Indirect methods,
Congestion and parking pricing, all segregation methods-coordination among
different agencies, ITS for traffic management system.

06 hrs

Text Books

- 1. L.R. Kadiyali, *Traffic Engineering and Transport Planning*, Khanna Publications, Delhi, 2013.
- S. K.Khanna, CEG Justo and A.Veeraragavan, *Highway Engineering*, Nem Chand Bros, Roorkee, 2016.

Reference Books:

- 1. Matson T.M., Smith W.S., Hurd, H.W. *Traffic Engineering*, McGraw Hill Publishing Co. Inc., New York, 2005.
- 2. Drew D.R., *Traffic Flow Theory and Control*, McGraw Hill Publishing Co. . Inc., New York, 2002.
- 3. Wiiliam R. McShane and Roger P, Roess, *Traffic Engineering*, Prentice Hall, New Jersey, 2000.
- 4. Papacostas, C.A., *Fundamentals of Transportation Engineering*, Prentice-Hall of India Pvt. Ltd., New Delhi, 2000.

Course Title: Construction I Management Laboratory	Engineering &	Course Code: 15ECVP306
L-T-P: 0-0-1	Credits: 1	Contact Hours: 2 Hrs/ week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hours: 30	Examination Duration: 3 Hrs	

- 1. Introduction to project management software such as Primavera P6, MS Project, etc.
- 2. Develop a Work Break-down Structure (WBS) for a residential building of 3 storey.
- 3. Create and add activities to the WBS and assign relationships as per the logic of the precedence diagram for the residential building. Determine the duration of the project.
- 4. Apply constraints and filters to the developed activities to develop two-week, onemonth and three-month look-ahead schedule.
- 5. Develop different roles and resources in the resource library and assign to the various activities along with their unit rates.
- 6. Develop the cost-loaded schedule and create baseline of the project.

- 7. Perform earned value analysis to track and monitor the project.
- 8. Building a 3D model of a typical building in AutoCAD Revit 2018 and Synchro (Architectural, Structural and Construction Details)
- 9. Conduct simulations in Microsoft Visio process simulator to determine most efficient excavation cycles on large scale projects.
- 10. Conduct Monte-Carlo simulation in Microsoft Excel to perform risk analysis for the project.

Reference Books:

- 1. Kim Heldman & William Heldman, Microsoft Excel for Project managers 2007.
- 2. P. Harris, Planning and Scheduling Using Primavera P6 2010.

2017-18

Course Title: Building Technology and Services		Course Code: 15ECVC201
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/ week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 3 Hrs	
	Unit I	

1. Components of a Building

Introduction, types of building as per NBC, Components of a building –	05 hrs
Foundations, RCC components like columns, beams, slabs. Floor structures, roof	
structures, doors, windows and other openings, building finishes.	

2. Building Materials

Introduction. Properties of concrete and its ingredients, building stones, Clay products, Bricks and tiles; Timber, Plywood, Allied products, Plastics and glass, Paints, Steel, Gypsum and Allied products, Adhesives.

3. Types of Foundations

Preliminary investigations of soil, Presumptive bearing capacity of soils, Masonry footings, Isolated footings, Grillage footings, Strap footings, Raft foundations, Pile foundations.

Unit II

4. Stone and Brick Masonry

Rubble masonry, Ashlar masonry, Bonds in brick work (English and Flemish bond). Load bearing and partition walls. Damp proof construction.

5. Floors and Roofs

Types of flooring (Materials and method of laying), Granolithic, Mosaic, Ceramic, Marble, Polished Granite, Industrial flooring, Flat Roof (R.C.C.), Sloped roof (R.C.C. and Tile roof), Lean to roof, Steel trusses, Water and Weather proof course. 03 hrs

6. Stairs, Doors and Windows

Types (Classifications) and Technical terms in stairs, Requirements of a good stair. Geometric Design of RCC Dog Legged and open well stairs. (Plan and sectional elevation of stairs) Paneled doors, Glazed doors, Flush doors, Collapsible and rolling shutters, Louvered doors, Revolving, sliding and swing doors, Windows, Types, Paneled, Glazed, Bat window, Dormer window, Louvered and corner window, Ventilators

Unit III

7. Plastering and Painting

Purpose of Plastering, Materials of plastering, Lime mortar, Cement Mortar,	
Methods of plastering, Stucco plastering, Lath plastering, Purpose of Painting,	05 hrs
Distemper, Plastic emulsion, Enamel, Powder coated painting to walls and iron	
and steel surfaces, Polishing of wood surface.	

8. Introduction to cost effective construction and services

Necessity, Advantages, Pre fabrication techniques, Pre cast doors and windows (Pre cast frames and shutters), Alternative Building Materials, Hollow concrete blocks, Stabilized mud blocks, Micro concrete tiles, Precast roofing elements.
 Water supply and sanitation. Electricity illuminated. Modern services & Air condition, fire detection and protection.

Text Books

- 4. Bhavikatti.S.S, Building Materials, Vikas Publishing House Pvt Ltd, 2012.
- 5. Punmia, B.C., Jain A.K., *Building Construction*, 10ed., Lakshmi Publications, New Delhi, 2008.
- 6. Rai, M. and Jai Sing, *Advanced Building Materials and Construction*, CBRI Publications, Roorkee, 2014.
- Sushilkumar, *Building Construction*, 20ed., Standard Publisher and Distributors, Delhi, 2014.

Reference Books:

- 1. Arora, S.P. and Bindra, S.P., *A Text Book of Building Construction Technology*, Dhanapat Rai Publications (P) Ltd., New Delhi, 2014.
- Jagadeesh, K.S., Venkatarama Reddy B.V. and Nanjunda Rao K.S., *Alternative Building Materials and Technologies*, New Age International (P) Ltd., New Delhi, 2007.
- 3. National Building Code of India 2016, Bureau of Indian Standards

Course Title: Survey Practic	ce - I	Course Code: 17ECVP201
L-T-P: 0-0-1	Credits: 1	Contact Hours: 2 Hrs / Week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hours: 30	Examination Duration: 3	3 Hrs

Demonstrations

- 1. Study of chain, tape, Ranging rod, Direct Ranging, Dumpy level, Compass and EDM device.
- 2. Use of planimeter and demonstration of minor instruments like clinometer, hand level, box sextant.
- 3. To locate contour by direct and indirect method.

4. To locate points using radiation & intersection method of plane tabling.

Experiments

- 1. Plot the boundary layout of a building by using direct ranging and set out the perpendiculars using chain, tape and cross staff.
- 2. To mark the center line for different types of civil engineering structures (using closed traverse methods) having different shapes.
- 3. To locate the various positions of objects (trees, electric pole, drainage) along the center line of a road.
- 4. To setup the temporary bench marks for a given topography using Auto level.
- 5. To determine difference in elevation between two points using reciprocal leveling and determine the collimation error.
- 6. To conduct profile leveling for water supply / sewage line / road alignment and to draw the longitudinal section to determine the depth of cut and depth of filling for a given formation level.

Open Ended Experiments:

• Determine and plot the contour map for a sloping terrain and locate the plinth level for the proposed building on sloping terrain.

Reference Books:

- 1. Bhavikatti S.S., *Surveying and Leveling Vol-I & II*, I.K., International Publishers, New Delhi, 2008.
- 2. Punmia, B.C., Ashok.K Jain, Arun.K., *Surveying Vol. 1 & 2*, 15ed., Laxmi Publishers, New Delhi- 2005.
- 3. SP:7, National Building Code of India, Bureau of Indian Standards, 2016

Course Title: Building Engineering Drawing		Course Code: 17ECVP202
L-T-P: 0-0-2	Credits: 2	Contact Hours: 4 Hrs/ week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hours: 40 Hrs	Examination Duration: 4 Hrs	

1. Introduction to NBC, Building Bye Laws, Model space and paper space, Bubble diagram.

2. Bubble diagram with circulation for a residential building

3. Draw plan, front elevation, section, site plan and write schedule of openings, as per Bye Laws, using AutoCAD, for a given site dimensions for different types of buildings and calculate FAR, Plinth area and Carpet area;

- i. Residential Building
- ii. Office Building
- iii. School Building
- iv. Hospital Building
- v. College Building

4. Select any one of the building plans from above and draw water supply, sanitary system and rainwater recharging and harvesting system using ByLayer command in AutoCAD.5. Select any one of the building plans from above and draw bubble diagram with circulation suing AutoCAD.

Open Ended Experiment

- Obtain contour details from the open ended experiment from survey practice-I. Propose a
 residential building on the sloping ground for the given site dimension as per NBC.
- Draw plan, front elevation, sectional elevation and site plan in AutoCAD with necessary details.

References

- 1. Bethune, J. D., Engineering Graphics with AutoCAD, Pearson Education Publishers, 2017.
- 2. Chandra, A.M and Chandra, S., *Engineering Graphics with AutoCAD*, 2ed., Pearson Education Publishers, 2004.
- 3. Gurcharan Singh., Civil Engineering Drawing, 7ed., Standard Publishers Distributors, 2014.
- 4. N. Kumara Swamy, A. Kameswara Rao, *Building Planning and Drawing*, Charator Publishing House Pvt. Ltd., 2007.
- 5. Shah, M.H and Kale, C.M, Building Drawing, Tata Mc Graw Hill Publishing Co. Ltd., 2012.
- 6. Malik R S and Meo G S, *Civil Engineering Drawing*, 2ed, Asian Publishers/Computech Publications Pvt Ltd, 2010.
- 7. SP:7, National Building Code of India, Bureau of Indian Standards, 2016

Course Title: Survey Practice - II		Course Code: 15ECVP204
L-T-P: 0-0-1	Credits: 1	Contact Hours: 2 hr / week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hours: 30	Examination Duration: 3Hrs	

List of Experiments

Demonstrations

- 1. Measurement of horizontal angles with method of repetition and reiteration using theodolite and Total Station, Measurement of vertical angles using theodolite and Total Station.
- 2. To determine height of a remote object, horizontal distance and coordinates of points using Total Station.
- 3. Introduction to GPS.

Experiments

- 1. To determine the elevation of an object using single plane method when base is accessible and inaccessible using theodolite and Total station.
- 2. To determine the distance and difference in elevation between two inaccessible points using double plane method using theodolite and Total station.
- 3. To set out simple curves using linear methods perpendicular offsets from long chord.

- 4. To set out simple curves using linear methods by offsets from chords produced.
- 5. To set out simple curves using Rankine's deflection angles method.
- 6. To set out compound curve with angular methods.
- 7. To set out reverse curve between two parallel line with angular methods.

Structured Enquiry

- To set out the center line of columns for different buildings using Total Station. Open Ended
- 1. To collect various surveying data and build model using AutoCAD / Civil 3D software.
- 2. Plot the longitudinal and cross sections of a road and determine the volume of Earthwork.

Reference Books:

- 1. Bhavikatti S.S., Surveying and Leveling Vol-I & II, I.K. International Publishers, 2008.
- 2. Punmia B.C., Jain, Ashok K. J., and Arun.K. J., *Surveying Vol. 1 & 2*, 15ed., Laxmi Publications (P) ltd, New Delhi, 2005.
- 3. Duggal S. K., Surveying Vol-II, 4e, McGraw Hill Education Pvt. Ltd., New Delhi, 2013.

IS Codes:

- 1. IS 11134:1984(R2000), Code of practice for Setting out of Buildings.
- 2. SP:7, National Building Code of India, Bureau of Indian Standards, 2016
- 3. IRC: 73-1980-Geometric Design Standards for Rural (Non Urban) Highways, Indian Road Congress, New Delhi.
- 4. IRC: 86-1983-Geometric Design Standards for Urban Roads in Plains, India Road Congress, New Delhi.

Course Title: Advanced Project Management		Course Code: 15ECVC305
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/ week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 3 Hrs	
Unit I		

1. Introduction to Advanced Project Management

Introduction, Importance of advanced project management, the project management **05 hrs** institute and PMBOK, the role of a project manager, project management in India.

2. Work Breakdown Structure

Concept of WBS, Common usage of terms, Preparing a WBS, Factors to be considered, WBS measurement considerations, Challenges to be considered, WBS level of Detail, WBS life-cycle considerations, Project risk and the WBS, Resource planning and management with WBS, Problems – Detailed WBS of residential, commercial, industrial and Highway Road etc. CPM and PERT.

3. Cost Loaded Scheduling and Project Controls

Determination of unit costs and total cost of a typical construction project. Project Controls - Introduction, Project life cycle, Overview of project life cycle, earned value management, Cost performance Index, Schedule performance index, forecasting methods and problems, resource utilization and cumulative curves, Cost loaded Schedules.

4. Resource Allocation

Introduction, Objectives of resource allocation, Methods of resource allocation, Resource 04 hrs smoothing, Steps in resource smoothing, Resource levelling, Steps in resource levelling.

5. Contractor's Estimation of cost and Bidding Strategy

Pre-qualification process, study of tender documents, preparation of construction schedule,	04 hrs
determination of bid price.	04 111 5

Bidding and Estimation practices in Indian Construction Industry.

Unit III

6. Risk analysis and Project Close out

Risks involved in projects – determination and mitigation. Closing out of project, Lessons 03 hrs learnt, historical data - creation and uses.

7. Quality Control

Need for inspection and Quality Control, principles of inspection, Stages of inspection and quality control. Status of construction labour, wages of construction workers, different labour acts.

Text Books

1. James Lewis, Project Planning, Scheduling, and Control, 3ed., 2009.

Reference Books:

- 1. P. Harris, *Planning and Scheduling Using MS Project* 2010.
- 2. Ursula Kuehn, Integrated Cost and Schedule Control in Project Management, 2ed., 2011.

Course Title: Construction S	imulation Practice	Course Code: 17ECVP301
<mark>L-Т-Р: 0-0-1</mark>	Credits: 1	Contact Hours: 2 Hrs/ week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hours: 30	Examination Duration: 3	Hrs
Preamble:		

Through the courses in the preceding semesters (3rd, 4th and 5th), the students are studying the basics of many courses in the fields of construction engineering and management, structural engineering, geotechnical

engineering, environmental engineering and transportation engineering. This course aims to bridge the gaps between theoretical concepts learned in classroom and their practical applications in the industry.

Course will be delivered through a series of site visits and guest lectures from industry experts.

Deliverables:

Student group will be given a hypothetical site where in their job profile will be of a project manager. Guest lectures from project managers and site engineers will provide the necessary tools and work cultures on the site, which the students have to apply to their project.

The students will learn the following concepts as practiced in the field:

- 1. Roles and responsibilities of various stakeholders involved like the owner, architect, structural consultant and the general contractor.
- The material procurement process quality and cost negotiation process. Costs involved in using RMC or procurement of raw materials to produce concrete on site etc.
- 3. Labour cost negotiations, roles and responsibilities, basic amenities to be provided and person-hour tracking.
- 4. Safety protocol followed in the jobsite.
- 5. Process of material delivery on the job site and coordination with the accounts department.
- Technical problems encountered during execution For example, deep well located during excavation – design changes to be made, concrete strength failure after 28 days – what measures to be taken, errors during surveying of the building, honeycombing or bulging of concrete etc.
- Tracking of the progress both time and cost. Creating of monthly progress reports.
- 8. Equipment management renting vs owning, maintenance.
- Roles and responsibilities on the project manager, site engineers, supervisors, safety officers.
- 10. Store management.
- 11. On site testing and third party testing advantages and disadvantages.
- 12. Site layout for optimum utilization of construction space.
- 13. Reconciliation of materials like formwork, steel etc.

The student team will submit a comprehensive report about the management of a construction site and the difficulties and solutions employed to their sites and present their case.

References books:

- Kumar Neeraj Jha, *Construction Project Management: Theory and Practice*, 2ed., Edition, Pearson Publications, 2015.
- 2. Robert. L Peurifoy and William B. Ledbetter, *Construction planning and Equipment& methods*, Tata McGraw Hill Pvt. Ltd, New Delhi, 3ed., 2010.
- 3. Ursula Kuehn, Integrated Cost and Schedule Control in Project Management, 2ed.,2011.

Course Title: Horizontal and Methods	l Vertical Construction	Course Code: 15ECVE	405
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/	week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40	Examination Duration: 3	Hrs	
	Unit I		
1. Planning for earthwork construction6Planning, Graphical presentation of Earthwork, Earthwork quantities, Mass diagram and its applications, Pricing of earthwork operations.04 hrs			
2. Compaction and Stabiliza	tion Equipment		

Compaction of soil and rock, Types of compaction equipment, roller production estimating, Dynamic compaction, Soil stabilization, stabilizing soils with lime, Cement-soil stabilization. 05 hrs

3. Excavators and loaders	06 hrs
Hydraulic Excavators, selection of front shovels, calculating shovel production,	
height of cut effect on shovel production, angle of swing effect on shovel	
production, Loaders - introduction, Loader buckets/attachments, operating	
specifications, Loader production rates, calculating wheel loader production,	
Calculating track loader production, Loader safety.	

Unit II

4. Drilled Shaft Foundations

Introduction, Construction of drilled shafts – dry method of construction, casing
method of construction, wet construction method, Installation of casings, Steel
cages, Placement of concrete, Dewatering, open dewatering systems, deep well
systems, well point systems – Types, techniques, Basement waterproofing
systems.05 hrs

06 hrs

5. Formwork Systems

Introduction, formwork materials, shores and scaffolding, Vertical formwork systems – Conventional wall/columns forming systems, Modular panel column form, adjustable wraparound column forms, circular steel forms for round columns, wall panel system, single sided wall formwork, formwork ties,

Horizontal formwork systems – conventional wood form and metal systems, cuplock type scaffolding system, slab flex system, tunnel form, flying formwork system, crane-iumped formwork, automatic climbing formwork, self-rising core system.

6. Concrete and Conveying Systems

06 hrs

Introduction, Concrete – Mixers, Concrete plants, Pre-tensioning and Post tensioning. Transporting and handling – Concrete chute, concrete mixer with lift. concrete skip, truck mixer concrete pumps, concrete belt conveyors, concrete pump truck, trailer pump and pipeline with tower-mounted boom, trailer mounted pumps, pipeline system, mobile concrete placing booms, finishing.

Unit III

7. Cranes

Major cranes types. Mobile cranes, Crawler cranes, Telescoping-boom truckmounted cranes. Lattice-boom truck-mounted cranes. Rough-terrain cranes. modified cranes for heavy lifting, crane booms, lifting capacities of cranes, Rated 05 hrs loads for lattice and telescopic boom cranes. Tower cranes – classifications. operation. Tower crane selection. Rated loads for tower cranes, rigging, slings, safety.

8. Modular Construction Practices: Introduction to Modular Construction, Modular coordination, Modular 03 hrs

Standardization, Modular System Building, Limitation and Advantages of Modular Construction

Text Books

- 1. Peurifoy, Construction Planning, Equipment & Method, 7ed., Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2010.
- 2. Basem M, Construction Technology for High-rise Buildings-Handbook, 2014.

Reference Books:

- 1. Stephens W. Nunnally, Managing Construction Equipment, 2ed, Pearson Publications, USA, 2000.
- 2. Gupta B. L., Amit Gupta, Construction Management and Machinary, 5ed, Standard Publications, New Delhi, 2015.

Course Title: Finite Element Methods		Course Code: 15ECVE403
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/ week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 3 Hrs	
	Unit I	

1. Introduction to Finite Element method.

Introduction, Basic concepts on finite element analysis, Introduction to nodes, elements, and shape functions, Steps in Finite Element Analysis, Key concepts and Terminologies. 05 hrs

2. Element Properties.

Natural Coordinates, Triangular Elements, Rectangular Elements, Introduction to	05 hrs
Weighted integrals, Integration by parts-Review, Gradient and Divergence Theorems,	
Functionals.	

3. Finite Element Formulation Technique. 05 hrs

Virtual Work and Variational Principle (Rayleigh-Ritz Method), Weighted Integrals and Weak Formulation, Different types of weighted integral methods such as Galerkin Method, Petrov-Galerkin Method, Collocation Method and Method of Least-squares.

Unit II

4. Second Order Boundary Value Problem.

FEA formulation of 2 nd order boundary value problem, Development of element level	08 hrs
equations, Assembly of element level equations and implementation of boundary	00 110
conditions, Assembly process and Connectivity matrix.	

5 Applications of Second Order Boundary Value Problem.	10 hrs
Radially symmetric problems, One-dimensional heat transfer problem, Euler-Bernoulli	
beam, Shear deformable beam, Eigen value problems, Introduction to time dependant	
problems.	

Unit III

6. FEM Program

Structure of FEM program for FEM Analysis, Description of different modules in FEM 07 hrs software (ABAQUS), Introduction to different types of analysis, Pre and post processing. Comparison of manually solved problems with software results.

Text Books

- 1. Reddy J.N., *An Introduction to Finite Element Method*, 3ed., McGraw- Hill Publishing Company Inc, New York, 2017.
- Krishnamoorthy C. S., *Finite Element Analysis*, Tata McGraw-Hill Education Pvt. Ltd, New Delhi, 2004.

Reference Books:

Rajasekaran, S., Finite Element Analysis in Engineering Design, S. Chand Group, 2006.

- 1. Pandit G.S. and Gupta, S.P., *Structural Analysis, A Matrix Approach*, 2ed., Tata McGraw-Hill Education Pvt. Ltd, New Delhi, 2008.
- 2. Cook R.D., Malkus D.S., Plesha M.E. and Witt R.J. *Concepts And Applications Of Finite Element Analysis*, 4ed., John Wiley and Jous, Inc., 2013.
- 3. Bathe K.J., Finite Element Procedures, Klaus-Jürgen Bathe; 2ed., 2014.
- 4. Bhavikatti S.S., *Finite Element Analysis*, New Age International Publication Pvt. Ltd., New Delhi, 2010.
- 5. Daryl L. Logan., A first course in the Finite Element Method, 5ed, Cengage Learning, 2010.
- 6. Tirupathi R. Chandrupatla and Ashok D. Belegundu, *Introduction to Finite Elements in Engineering*, 4ed, Pearson, 2011

2018-19

Course Title: Surveying		Course Code: 15ECVC202
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4 Hrs / week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 50	Examination Duration: 3 Hrs	
UNIT-I05 II1. Overview and Measurement of directions05 IIBasic principle of surveying, classification of surveying, Measurement of distance: chain surveying. chain and their types, tapes and their types. Errors in chain surveying and tape corrections.05 II		
Compass surveying, prismatic and surveyor's compass, bearings and their types. Calculation of included angles from bearings. Corrections to measured bearings – local attraction. Plotting a traverse, closing error and its adjustment by Bowditch's rule. Traverse computations – Latitude and departure (omitted measurements).		
2. Measurement of elevations and contouring0Levelling - Terminologies, Types of levelling instruments viz Dumpy level, Autolevel, electronic or digital level and their temporary adjustments, taking observations.0		
Methods of calculating reduced levels – HI method and rise and fall method.		
Types of leveling curvature	and refraction correction, sensiti	veness of bubble tube.
Contours and contouring, characteristics of contours, contour interval, Contouring methods – Direct and indirect. Interpolation of contours. Preparation of contour maps. Uses of contour maps.		
3. Theodolite surveying and Trigonometric levelling		04 hrs
Theodolite surveying, terminologies used in theodolite, parts of a vernier theodolite, temporary adjustments. Measurement of horizontal angle, vertical angle and other theodolite applications. Theodolite traversing, locating landscape details.		
Basic principles, calculation double plane method	n of heights and distances using si	ngle plane method and
sight, inclined line of sight (to LOS; Anallactic lens,	g cheometry; tacheometric equation (LOS), when staff vertical to LOS tangential method of tacheomet nination of tacheometric constant	and when staff normal ry, subtense bar, and

Unit II

5. Curve surveying

Types of curves, circular curve-terminologies, elements of a simple curve, methods of setting out simple curve- linear method, angular method; compound curves- elements of a compound curve, setting out of compound curve; Reverse curve-element of elements of a reverse curve, setting out of reverse curve; Transition curve- requirements of a transition curve, elements of transition curve, setting out of transition curve;

6. Modern Surveying Instruments: Theodolite, EDM and Total Station Modern theodolites- Micro-optic theodolites, electronic theodolites, digital theodolite Electromagnetic spectrum radar, electromagnetic distance measurement (EDM), EDM equipment- Geodimeter, tellurometer, mekenometer, distomat. Corrections to measurements; Total station- principles and working, temporary adjustments, application- angle measurement, distance measurement (horizontal, vertical and slope)

7. Areas and Volumes

Computation of areas: Area from co-ordinates, latitude and departures, Midordinate method, average ordinate method, Trapezodial rule, Simpson's rule, Computation of volumes: Volumes from cross sections, Prismoidal formula, and Trapezoidal formula capacity of reservoirs volume of borrow pits, Construction surveying / setting out works: Prerequisites, instruments and methods.

Laying out buildings, Setting-out of culverts, Setting-out bridges – locating the center line – locating bridge piers, Setting-out tunnels – Transferring alignment, Transferring bench marks or levels, Setting out Sewer lines

Unit III

8. Introduction to Photogrammetry and Remote Sensing: Terrestrial and Aerial	05 hrs
photographs, Photo interpretation, Stereoscopy.	
Remote Sensing: Principle, Idealized remote sensing system, Types, applications.	
Introduction and applications of LIDAR.	
9. Modern methods of Surveying	05 hrs

Area from digital planimeter, Satellite based positioning system, Global Positioning System (GPS), basic principles, Satellite configuration, positioning using satellite signals, receivers; Functions - determining position, navigation, tracking, mapping, precise time determination; Application in surveying.

Introduction to GIS (Geographic Information System): Components, software, data, users, features, subsystems, data acquisition, data processing and analysis, communication, management, capabilities, operations, Applications of GIS in civil engineering.

06 hrs

08 hrs

06 hrs

Text Books

- 1. Alak, D., Plane Surveying, S. Chand & Co., 2000.
- 2. Bhavikatti S.S., Surveying and Leveling Vol-I & II, I.K. International Publishers, 2008.
- 3. Chandra, A.M., Higher Surveying, 3ed. New Age India Ltd. 2015.
- 4. Chandra, A.M., Plane Surveying, 3ed. New Age India Ltd. 2015.
- 5. Punmia, B.C., Ashok.K. Jain, Arun.K. Surveying Vol. 1, Vol. 2 and Vol. 3., Lakshmi Publishers, 2015.

Reference Books:

- 1. Anderson, J. M. and Mikhail E. M., Introduction to Surveying, TMH, New York, 1985
- 2. Roy, S.K., Fundamentals of Surveying, Prentice Hall of India, 2010.

Course Title: Construction Project Management		Course Code: 15ECVC206
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3Hrs / Week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40 Hrs	Examination Duration: 3 Hrs	
	I Init I	

Unit I

1. Introduction to Construction Project Management

Phases of construction project, importance of construction and construction industry, Indian construction Industry, Construction project management and its relevance, stakeholders of a construction project.

2. Drawings and Specifications

Types of Drawings-Architectural and Structural, Study of Scales Used, sequence of
dimensioning, dimension lines and figures, Importance of Specifications, General05 hrsspecifications detailed specifications of a typical building. Scope definition using drawings
and specifications.05 hrs

3. Work Breakdown Structure

Concept of WBS, Common usage of terms, Preparing a WBS, Factors to be considered, WBS measurement considerations, Challenges to be considered, WBS level of Detail, WBS life-cycle considerations, Project risk and the WBS, Resource planning and management with WBS, Problems – Detailed WBS of a residential building.

Unit II

4. Project Management through Networks

Introduction, project feasibility, planning methods of projects– Objectives, planning stages.Scheduling, Bar charts and mile stone charts. Introduction, Terms & definitions, Elements
of network, types of network, drawing the network. CPM – Event times, Activity times,
floats, critical activity and critical path. Problems. PERT – Introduction, time estimates,
expected time, earliest expected time, latest allowable occurrence time, slack, critical path.08 hrs

Probability of completing the project. Problems. Updating of network. Problems. Contraction of network. Problems.

5. Construction Safety Management

Introduction, evolution of safety, Accident causation theories, unsafe conditions and acts, health and safety act and regulations, role of safety personal, causes of accidents, principles **05 hrs** of safety, safety and health management system.

6. Inspection and Quality Control

Introduction, Objectives, principles and function, Inspector's role, Technical services required for field inspection, Laboratories required, Quality control, Factors affecting the quality of conformance, Quality control methods.

Unit III

6. Construction Equipment

Introduction, standard and special equipment, factor for selecting equipment, cost of owning and operating, economic life of an equipment. Earth moving equipment (Bulldozers, Scrapers, Loaders and Excavators). Hoisting equipment, concrete mixer and plants, conveyors and rollers, trenching machines, equipment for highway construction. Live projects for course project.

Text Books

1. Kumar Neeraj Jha, *Construction Project Management: Theory and Practice*, 2ed., Edition, Pearson Publications, 2015.

Reference Books:

- 1. Robert. L Peurifoy and William B. Ledbetter, *Construction planning and Equipment& methods*, Tata McGraw Hill Pvt. Ltd, New Delhi, 3ed., 2010.
- 2. Verma Mahesh, *Construction planning and Management*, Metropolitan Book Co. Delhi, 1982.

Course Title: Structural Ar	alysis-I	Course Code: 15ECVC203
L-T-P: 4-0-0	Credits: 3	Contact Hours: 4 Hrs/ week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40 Hrs	Examination Duration:	3 Hrs
Unit I		

1. Structural Systems

Forms of structures, Conditions of equilibrium, Degree of freedom, Linear and Nonlinear structures, one, two, three dimensional structural systems, Static and Kinematics determinacy of structures. Theorem of minimum potential energy Law of conservation of energy Principle of virtual work.

2. Deflection of Beams

Slope and deflection of simply supported and cantilever beams by Moment area method and Conjugate beam method.

3. Strain Energy

Strain energy and complimentary strain energy, Strain energy due to axial load, bending and shear, Principle of virtual work, Unit load method, The first & second theorem of Castigliano, Betti's law, Clarke - Maxwell's theorem of reciprocal deflection, Problems on beams frames and trusses.

Unit II

4 Analysis of beams and trusses

Analysis of beams (Propped cantilever and trusses) by strain energy and unit load **8** method. **8**

5. Arches and cables

Three hinged circular and parabolic arches with supports at same levels and at different levels. Determination of thrust, shear and bending moment, Analysis of cables under point loads and UDL, length of cables - Supports at same level and at different levels.

6. Consistent deformation method

Propped cantilever and fixed beams

6 HRS

7. Influence Line Diagrams

Influence line diagrams for simply supported, cantilever and over hanging beams, Influence line diagrams for girders supporting floor beams, Use of Influence line diagrams, Maximum S.F. and B.M. values due to moving loads

8. Two hinged arches:

Parabolic and circular arches

Text Books

- 1. Bhavikatti S.S, *Structural Analysis I*, 4ed., Vikas Publishing House Pvt. Ltd, Bangalore, 2011
- 2. Punmia, B. C. Ashok Kumar Jain and Arun Kumar Jain, *Mechanics of Materials*, Laxmi Publications Pvt. Ltd Ltd, New Delhi, 2005.

Reference Books:

- 1. Reddy C.S., *Basic Structural Analysis*, 3ed., Tata McGraw Hill Education Pvt. Ltd, New Delhi, 2017.
- 2. A.K. Jain, *Advanced Structural Analysis*, 3ed., Nemchand and Brothers, Roorkee, India, 2015.
- 3. Leet, Uang, and Anne M., *Fundamentals of Structural Analysis*, 3ed., Tata McGraw Hill Publishing Company Inc., New York, 2017.
- 4. Pandit G. S. and Gupta S. P, *Theory of Structures*, Vol I & II, Tata McGraw-Hill Publishing Company, New Delhi, 2017.
- 5. Ramamruthum, S. and Narayan, R., *Theory of Structures*, Dhanpat Rai Publishing Company, New Delhi, 2017.
- 6. Prakash Rao D. S., *Structural Analysis, A unified approach*, 1ed., University Press Limited, Hyderabad, 1996.
- 7. Timoshenko, S. P. and Young, D. H., *Theory of Structures*, Tata McGraw Hill Book Company, New York, 1965.

6

HRS

Course Code: 19ESEC701 Course Title: Numerical Methods and Programming					
L-T-P: 4-0-1 Cro	edits: 5	Contact Hrs: 5 hrs/week	C.		
	A Marks: 50	Total Marks: 100	-		
Teaching Hrs: 50 hrs		Exam Duration: 3 hrs	3		
	Unit – I				
1.Modelling, Computers a	nd Error Analysis				
Mathematical modelling, Analytical and numerical solutions, Computer programs, Algorithms, flow charts, Approximations, Round-off errors, Accuracy and precision, Machine epsilon 04					
2.Linear Algebra					
Systems of linear algebraic equations, Uniqueness of solution, Ill-conditioned systems, Direct methods – Gauss elimination method, Gauss-Jordan method, LU decomposition by Crout method and Cholesky method; Iterative methods – Gauss Seidel method; Determinants and matrix inversion. 10 hrs					
3.Numerical Integration					
Trapezoidal rule; Simps	on's rules; Gaussian qua	adrature 06 hrs	5		
Unit – II					
4.Solution of Nonlinear Ec	-				
method; Newton's method	,	e position method; Secant 08 hrs	5		
5. Eigenvalue Problems					
0 1	U ,	hod, Power method, Power ctral shift, Inverse Power 06 hrs	5		
6.Interpolation and Curve Fitting					
1 2 2	ge's method, Newton east squares fit, Cubic sp	i's method, Polynomial of hrs	5		
Unit – III					
7. Solution of Ordinary Differential Equations					
	l and fourth order Runge r's and Runge-Kutta met	-Kutta methods; Systems thods. 10 hrs	5		
Note					

Note

- 1. Emphasis must be on developing algorithms / flow charts and converting them into working programs. Computer implementation must be verified against solution obtained by built-in methods provided in programming language.
- 2. Programs can be written in Python/Scilab/MATLAB/Julia/C/C++ or any other programming language that the student finds suitable. In the class, Python will be used.
- 3. Pre-requisites: Working knowledge of Python/Scilab/MATLAB. This shall be done during an intensive hands-on workshop at the start of the semester.

References

- 1. Kiusalaas, J., *Applied Numerical Methods in Engineers with Python*, Cambridge University Press, 2005.
- 2. Gerald, C.F. and Wheatley, P.O., *Applied Numerical Analysis*, 6ed., Pearson Education, 1999.
- 3. Chapra, S.C. and Canale, R.P., *Numerical Methods for Engineers with Programming and Software Applications*, 3ed., Tata McGraw Hill, New Delhi, 1998.

Course Content						
Course Code: 15ESEC801		Course Title: Advanced Material Science				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week				
ISA Marks: 50	ESA Marks: 50	Total Marks: 100				
Teaching Hrs: 40 hrs		Exam Duration: 3 hrs				

~

_

Unit – I

1. Structure of Concrete

Structure of aggregate phase & hydrated cement paste, mechanism of hydration, hydration products & micro structure, voids in cement paste, water in hydrated cement paste, properties of HCP, Transition zone in concrete.

2.Special Conncretes

Fibre reinforced concrete, Carbon fibers, carbon nanotubes. Repair of Concrete structures, grouting shortcreting and guniting Epoxy resins, CFRP and GFRP sheets. 07 hrs

Unit – II

1. Introduction to composite material

Introduction to materials, traditional materials, development, properties, strength of and mechanical properties of materials, introduction, definition, classification and characteristics of composite materials - fibrous composites, laminated composites, particulate composites

2. Fiber, matrices and their application

Fiber, matrices and their application - Different types of fibers and matrices. Polymer composites, metal composites and ceramic composites, Application of composites in different industries. 05 hrs

6. An overview of Nanoscience & Nanotechnology

Historical background – nature, scope and content of the subject multidisciplinary aspects – industrial, economic and societal implications, Experimental techniques and Methods 06 hrs

Introduction to Nanomaterials- Carbon Nanotubes , synthesis and purification – filling of nanotubes , mechanical and physical properties – applications

Unit – III

7. Introduction to nano-composite

Nano composite polymer matrix, nano composite ceramic matrix, nano composite **05 hrs** metal matrix Applications in engineering, future scope of nano-composite, research.

8.Safety and environmental aspects

Safety and environmental aspects of nano-materials, future challenge, cost **04 hrs** optimization and fabrication process of nano composite materials

Text Book:

- 1. Mehta, P. K., *Concrete: Microstructure, Properties, and Materials*, 4ed., McGraw-Hill Education: New York, 2014.
- 2. A.M. Neville, Properties of Concrete, Longmans, 4th Edition, 1995
- 3. Hull D. and Clyne T.W., *Introduction to Composite Materials*, Cambridge University Press, 2ed, 1996.
- 4. Pradeep T., *NANO: The Essentials Understanding Nanoscience and Nanotechnology*, 1ed., Tata McGraw-Hill Education Pvt. Ltd, New Delhi, 2017

References:

- 1. Sidney Mindess and J. Frances Young, Concrete, PH NJ, 1981.
- 2. IS: 10262 -2007 Code of Practice for Concrete Mix Design.
- 3. ACI 318-2005, Code of practice for reinforced concrete structures
- 4. Ventra M., Evoy S., Heflin J.R., *Introduction to Nanoscale Science and Technology [Series: Nanostructure Science and Technology]*, Springer (2006).
- 5. Chawla K.K., Composite Material : Science and Engineering, 3ed., Springer, 2012.
- Linda Williams & Wade Adams, *Nanotechnology Demystified*, McGraw-Hill Company Inc, New York, 2007.
- 7. Johns R.M., Mechanics of Composite Materials, 2ed., CRC Press, 2015.

Course Code: 18ESEP701 L-T-P: 0-0-1 Credits: 1 ISA Marks: 80 ESA Marks: 20 Teaching Hrs: 24hrs

List of experiments/jobs planned to meet the requirements of the course.

- 1. Introduction to ABAQUS modeling, material properties, meshing and element types.
- 2. Introduction to Loading, Boundary conditions and post processing.
- 3. Analysis of member forces in beams
- 4. Analysis of member forces in beams with surface interaction
- 5. Analysis of member forces and deflections in truss
- 6. Analysis of stress concentrations near the geometric imperfections
- 7. Analysis for member forces in portal frames.

Materials and Resources Required:

- 1. ABAQUS Benchmark manual 6.11.
- 2. ABAQUS release notes 6.13.
- 3. ABAQUS Example problem manual, Volume I (Statics and dynamics)
- 4. ABAQUS Example problem manual, Volume II (Other Applications and Analyses)
- 5. ABAQUS Verification manual

Course Title: Fire Resista	nce of Structures	Course Code: 20ESEE	2701	
L-T-P: 4-0-0	Credits: 4	Contact Hours: 3 Hrs	Contact Hours: 3 Hrs/ week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 40	Examination Durat	ion: 3 Hrs		
Unit I				
1.Introduction Overview, Fire Safety in Buildings, Fire Safety Objectives, Process of Fire Development, Fire Resistance, Controlling Fire Spread, Building Construction for Fire Safety.			03 hrs	
2. Fire and Heat transfer Fuels, Combustion, Fire Initiation, t-squared fires, Heat Transfer.		04 hrs		
3.Room Fires and Fire Severity Pre flashover, Flashover and Post flashover fires, Fire Severity and Fire Resistance, Equivalent Fire Severity.			04 hrs	
4. Fire Resistance Introduction, Fire Resistance Tests, Listings, Fire Resistance by Calculation, Fire Resistance of Assemblies.			03 hrs	
Unit II				
5. Design of Structures Exposed to Fire Overview of design of structures at normal temperature, Structural Design in Fire Condition, Material properties in fire, Design of individual members exposed to fire, Design of structural assemblies exposed to fire.			10 hrs	
6. Design of Concrete Structures Exposed to Fire Behavior of concrete structures exposed to fire, Concrete and Reinforcing temperatures, Mechanical properties of concrete at elevated temperatures, Design of concrete members exposed to fire. Unit III			08 hrs	
7. Design of Steel Structure Behavior of steel structures systems, Mechanical proper steel members exposed to fi Text Books	exposed to fire, Steel t ties of steel at elevated		08 hrs	

Text Books

- 1. Andrew H. Buchanan, *Structural Design for Fire Safety*, John Wiley and Sons, LTD, 2006.
- 2. John A. Purkiss, Long-Yuan Li, *Fire Safety Engineering Design of Structures*, CRC Press Taylor and Francis group Boca Raton, 2014.

Reference Books:

- 1. Yong Wang, Ian Burgess, Frantisek Wald, Martin Gillie, *Performance Based Fire Engineering of Structures*, CRC Press Taylor and Francis Group Boca Raton, 2013.
- 2. Naotake Noda, Richard B. Hetnarski, Yoshinobu Tanigawa, Thermal Stresses, Taylor and Francis group, New York, 2003.
- 3. EN 1992-1-1 Eurocode 2: Design of concrete structures Part 1-2

Course Code: 20ESEC701 Course Title: Earthquake Resistant Design of structures L-T-P: 4-1-0 Credits: 5 Contact Hrs: 6 hrs/week ISA Marks: 50 ESA Marks: 50 Total Marks: 100				
Teaching Hrs: 54 hrs Unit – I	Exam Duration: 3 hrs			
1. Engineering Seismology				
	10 hrs			
Introduction, Reid's elastic rebound theory, Theory of plate tectonic waves; Earthquake size – Intensity, Magnitude, Isoseismal map, Ene released in an earthquake; Local site effects; Seismicity of India; Clas of earthquakes.	rgy			
2. Earthquake Load Specification				
Response spectra, Design response spectrum; Equivalent static meth Response spectrum method; Time history analysis	nod; 12 hrs			
Unit – II				
3.Design of Plan Asymmetric Buildings	10 hr			
Effect of plan asymmetry; Centre of mass, Centre of rigidity, Static eccentricity, dynamic eccentricity, accidental eccentricity; Design eccentricity; Design forces in asymmetric buildings; Seismic code analysis of buildings without locating centres of rigidity				
4.Earthquake Resistant Design of Masonry Buildings	08 hrs			
Elastic properties of structural masonry; Lateral load analysis o building				
Unit – III				
5.Design of Reinforced concrete buildings for earthquake resistant	nce 08 hrs			
Load combinations, Ductility and energy absorption in buildings. Co of concrete for ductility, design of columns and beams for ductili detailing provisions as per IS1893. Structural behavior, design a detailing of shear walls.	ty, ductile			
6. Techniques for Earthquake Resistance	04 hrs			
Base Isoloation, Passive and active control systems				
References				
 Agarwal P. and Shrikhande M., <i>Earthquake Resistant Des</i> Hall of India Pvt. Ltd., New Delhi, 2011. 	ign of Structures, Pentice-			

2. Chopra, A.K., *Dynamics of Structures*, 4ed., Prentice-Hall of India Pvt. Ltd., New Delhi, 2011.

3. Duggal, S.K., *Earthquake Resistant Design of Structures*, Oxford University Press, New Delhi, 2013.

IS Codes

- 1. IS:1893-2016 (Part 1), Criteria for Earthquake Resistant Design of Structures, Bureau of Indian Standards, New Delhi, 2016.
- 2. IS:13920-2016, Ductile Detailing of Reinforced Concrete Structures Subjected to Seismic Forces, Bureau of Indian Standards, New Delhi, 2016.
- 3. IS:4326-2013, Earthquake Resistant Design and Construction of Buildings Codeof Practice, Bureau of Indian Standards, New Delhi, 2013

Course Title: Structural H	lealth Monitoring	Course Code: 20ES	SEE701
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4 Hrs/ weel	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40		Examination Durati	on: 3 Hrs
	Unit I		
1.Introduction Factors affecting Health of S Maintenance. Concepts, Var			08 hrs
2. Structural Audit Assessment of Health of Str Investigation Management, Procedures.			08 hrs
	Unit II		
4. Static Field Testing Types of Static Tests, Simulation and Loading Methods, Behavioral / Diagnostic tests - Proof tests, Sensor systems and hardware requirements, Static Response Measurement- strain gauges, LVDTs, dial gauges - case study			08 hrs
Types of Dynamic Field Tes Methods, Forced vibration r Hardware for Data Acquisit	5. Dynamic Field Test08 hrsTypes of Dynamic Field Test, Stress History Data, Dynamic Response08 hrsMethods, Forced vibration method, Impact hammer and shaker testing, Hardware for Data Acquisition Systems, Network of sensors, Data compression techniques, Remote Structural Health Monitoring.08 hrs		
	Unit III		
 6. Introduction To Retrofitting and Repairs Of Structures Introduction to retrofitting of structures, Retrofitting of structural elements, Techniques, Material used for retrofitting, Case Studies, piezo–electric materials and other smart materials, electro–mechanical impedance (EMI) technique, adaptations of EMI technique. 			08 hrs
 Text Books Structural Health Monitoring Daniel Balageas, Claus-Peter Fritzen and Alfredo Güemes, John Wiley-ISTE, London, 2006. Health Monitoring of Structural Materials and Components - Methods with Applications, Douglas E Adams, John Wiley & Sons, New York, 2007. 			
 Reference Books: 1. "Structural Health Monitoring and Intelligent Infrastructure", Vol1, J.P. Ou, H. Li and Z. D. Duan, Taylor & Francis, London, 2006. 2. Structural Health Monitoring with Wafer Active Sensors, Victor Giurglutiu, Academic Press Inc., 2007 			

Course Content Course Code: 16EARC201 Course Title: Analog and Digital Electronic Circuits L-T-P-SS: 4-0-0-0 Credits: 4 Contact Hrs: 50 ISA Marks: 50 ESA Marks: 50 Total Marks: 100 Teaching Hrs: 50 Exam Duration: 3 hrs Content Hrs Unit - 1 1.0 Modeling and Analysis of electrical circuits The Lumped Circuit Abstraction, Modeling Physical Elements using lumped circuit abstraction, Signal Representation, Dependent Sources and the Control Concept, Network theorems: The Node Method, Loop Method, Superposition, Thévenin's Theorem and Norton's Theorem. 2.0 Basics of Digital Electronics Number Representation, MOSFET Switch Implementation of Logic Gates, The SR Model of the MOSFET, Active Pullups Voltage Levels and the Static Discipline, Simplifying Logic Expressions using K-map, Combinational circuits: encoder/decoder, multiplexers/demultiplexers, Binary adder/ subtractor, Binary comparator, Sequential Circuits: Gated D Latch, JK Flip-Flop, Registers, Counters. **3.0Transistors**

7

7

Operating point, Fixed bias circuits, Emitter stabilized biased circuits, Voltage divider biased, Bias stabilization, BJT transistor modeling, , Emitter follower, CB configuration, 6 Collector feedback configuration, analysis of CE configuration using h- parameter model; Relationship between h-parameter model of CE,CC and CB configuration.

Unit - 2

4.0 Operational Amplifiers

Device Properties of the Operational Amplifier, Simple Op Amp Circuits: The Non-Inverting Op Amp, The Inverting Connection, A Special Case: The Voltage Follower, Op Amp RC 7 Circuits: Op Amp Integrator, Op Amp Differentiator, An RC Active Filter, The RC Active Filter Impedance Analysis, Sallen-Key Filter, Op Amp in Saturation: Op Amp Integrator in Saturation, Positive Feedback : RC Oscillator.

5.0 Printed Circuit Board (PCB) Design Issues

Partitioning , Resistance Of Conductors ,"Kelvin Feedback" , Ground Noise And Ground 7 Loops, Ground Isolation Techniques, Static PCB Effects, Inductance, Parasitic Effects In Inductors ,Capacitative Noise And Faraday Shields , Buffering ADCs against Logic Noise, Skin Effect, Transmission Lines, Basic Linear Design, Decoupling Mixed Signals ICs With

Low Digital Content, Sampling Clock Considerations, Mixed Signal Grounding, Grounding DSPs with Internal Phase-Locked Loops, Decoupling ,Ringing, Thermal Management Thermal Basics, Data Converter Thermal Considerations	
6.0 First Order Transients in Linear Electrical Circuits Analysis of RC & RL circuits, Propagation Delays, State and State variables, Problems	6
Unit - 3	
7.0 Energy and Power in Digital Circuits Energy Storage Elements; capacitors and inductors, Power and Energy Relations for a Simple RC Circuit, Average Power in an RC Circuit, Power Dissipation in Logic Gates: Static Power Dissipation, Total Power Dissipation, CMOS Logic Gate Design.	5
8.0 Transients in Second Order Circuits Undriven Series RLC circuit, Stored Energy in Transient Series RLC circuit, Undriven Parallel RLC circuit, Driven Parallel RLC circuit, State Space Analysis	5

Course Code: 16EARC203	Course Title: Manufacturing Technology	
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 50
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50		Exam Duration: 3 hrs

Content	Hrs
Unit - 1	
Chapter No. 1. Turning , Shaping and Planing Machines Classification, constructional features of Lathe, Shaping Machine, Planing Machine. Driving mechanisms of Lathe, Shaping and Planing machines. Different operations on Lathe, Shaping Machine & Planing Machine. Cutting tools. Simple problems on machining time calculations	7 hrs
Chapter No. 2. Milling Machines Classification, constructional features of milling machines. Types of milling cutters & milling cutter nomenclature. Milling processes, up milling and down milling concepts. Various milling operations. Indexing: Simple, compound, differential and angular indexing. Simple problems on simple and compound indexing	7 hrs
Chapter No. 3. Drilling & Grinding Machines Classification, constructional features of drilling machine & related operations. Types of drill & drill bit nomenclature, drill materials. Types of abrasives, Grain size, bonding process, grade and structure of grinding wheels, grinding wheel types. Classification, constructional features of grinding machines (Center less, cylindrical and surface grinding). Selection of grinding wheel, dressing and truing of grinding wheels. Analysis of the grinding process	6 hrs
Unit - 2	
Chapter No. 4. CNC Machine Tools Introduction to CNC machines- Principles of operation. Axes of CNC machine-Coordinate systems. Elements of CNC machines, Basics of Manual part programming methods.	7 hrs
Chapter No. 5. Nontraditional Machining Need for nontraditional machining, principle, equipment & operation of Abrasive Jet Machining, Water Jet Machining, Electro-Chemical Machining, Electrical Discharge Machining, Wire EDM, Electron Beam Machining, Laser Beam Machining & Plasma Arc Machining	7 hrs
Chapter No. 6. Metrology and Inspection:	6 hrs

Definition, need of inspection, terminologies, methods of measurement. Standards of measurement-line standards, end standards & wavelength standards. Limits, fits & gauges-introduction, tolerances, limits of size, fit and tolerances, Limit gauges classification.	
Unit - 3	
Chapter No. 7. Comparators and Angular Measurement Devices Characteristics of comparators , classification of comparators- Mechanical, Electrical & Pneumatic comparators. Introduction to angular measurement - Vernier & optical Bevel Protractor ,sine bar, sine centre, angel gauges.	5 hrs
Chapter No. 8. Advanced Metrology: Introduction & applications of: Co-ordinate Measuring Machine-important features of CMM, possible causes of errors in CMM, Performance, applications & advantages of CMM. Universal Measuring Machine- comparison of CMM & UMM, inspection on UMM. Precision instruments based on laser – principle- laser interferometer- application in linear, angular measurements	5 hrs

Laboratory Plan

Semester: III

Year: 2017 - 2018

Laboratory Title: Programming laboratory	Lab. Code: 16EARP203
Total Hours: 24	Duration of SEE Hours: 3
SEE Marks: 20	CIE Marks: 80

Experiment wise Plan

Catego	Category: structured query		Total Weightage: 80		No. of lab sessions: 11
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimat	:e)	Marks / Experiment	Correlation of Experiment with the theory
1	Experiment on –Structure and union			10	
	Learning Objectives: The students should be able to: 1.Demonstrate how to compile ar C/C++ 2. Write program using operators 3. Write program using structures	and control stat			Analysis of algorithms & Design of Programs -Unit II
2	Experiment on-queues		10		
	Learning Objectives: The students should be able to: 1. Write program using different types of arrays and strings. 2. Develop a program using circular queue.		Analysis of algorithms & Design of Programs -Unit II		
3	Experiment on –doubly linked list		12		

	 Learning Objectives: The students should be able to: 1.Demonstrate how to maintain information of an university 2. Demonstrate how to specify different types of constraints on a given set of operations. 3. Develop a program in c using doubly linked list. 			Analysis of algorithms & Design of Programs -Unit II
4	Experiment on- self balancing binary tree		12	
	Learning Objectives: The students should be able t 1. Demonstrate how to search 2. Develop a program in c using	operation in execu		Analysis of algorithms & Design of Programs -Unit II
5	Experiment on –circular doubly link list.		12	
	Learning Objectives: The students should be able to: 1.Demonstrate how it will store Prerequisite subjects 2.Develop the programs using circular doubly linked list			Analysis of algorithms & Design of Programs -Unit II
6	Experiment on-Dynamic programming		12	
	Learning Objectives: The students should be able to: 1. Demonstrate the graphical solution for the problem. 2. Analyze the efficiency of the algorithm. 3. Develop the program in c using dynamic programming technique.			Analysis of algorithms & Design of Programs -Unit III
7	Experiment on-Dynamic programming		12	
	Learning Objectives: The students should be able to: 1. Demonstrate the graphical solution for the problem. 2. Analyze the efficiency of the algorithm. 3. Develop the program in c using dynamic programming			Analysis of algorithms & Design of Programs -Unit III

	technique.			
Category: Open Ended		Total Weightage: 20		No. of lab sessions: 3
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
11	Implement software using the knowledge of Analysis of algorithms & Design of Programs for building the applications in automation and robotics engineering. (FOR SEE)	2	20	
	 Learning Objectives: The students should be able to: 1. Use Analysis of algorithms & Design of Programs concepts to implement the project. 2. Select the appropriate tool/software to implement the project. 3. Write a technical report using IEEE standard. 4. Present the technical report for the implemented project. 5. Demonstrate the learning experiences of working in a team. 			Analysis of algorithms & Design of Programs Unit I, Unit II , Unitl III

Cou	rse Code: 16EARC207	Course Title: Microc	controllers	
L-T-I	^D -SS: 4-0-0-0	Credits:4	Contact Hrs: 4	
ISA I	Marks: 50 ESA Marks: 50 Total Marks: 100			
Tead	ching Hrs: 50		Exam Duration: 100	
		Unit I		
No		Content		Hrs
1	microprocessors, Difference architectures: RISC/CISC and family, Introduction to diffe	ssor and Microcontroller: H between Microprocessors d Harvard/Von-Neumann, (rent microcontroller famili	Overview of PIC Microcontroller es (8051, ATMEL/AVR, and ARM).	5 Hrs
2	Introduction to assembly la	ons, Registers and Instructi nguage programming, Prog loop: Branch instructions a	ions, Data formats and directives, gram counter and program ROM space. and looping, Call instruction and stack,	7 Hrs
3	programs: Arithmetic instru	bit manipulation programm ctions, Signed number con otate instructions and data	ning, Arithmetic, logic instructions and cepts and arithmetic operations, logic a serialization, BCD and ASCII	8 Hrs
	·······	Unit II		
4		vs in C, I/O programming, Ic	ogic operations, data serialization, nC18, State diagrams, Timing diagrams	5 Hrs
5	Chapter 5: Timer and Ser Programming TIMERS 0 a	nd 1, counter programming ations, PIC18 connection to	g, Programming TIMER0 and 1 in C, o RS232, PIC18 serial port	8 Hrs
6	Polling Vs interrupts, PIC1 external hardware interru change interrupts. ADC, D	pts, programming the serie AC and sensor interfacing:	; timer interrupts, programming al communication interrupt, PortB	7 Hrs
		Unit – III		···•
7		d EEPROM Memories for a	data storage in the PIC18F, Reading and writing to	

	Chapter 8: Applications of Microcontroller:	
8	Event counter, Linear variable Differential Transformer (LVDT), Angular speed	
0	measurement (RPM meter), Digital Thermometer, Digital PID controller.	
		5 Hrs

Course Plan

Semester: IV	Year: 2017-18
Course Title: Product Realization	Course Code: 16EARP208
Total Contact Credits: 2(0-0-2)	Duration of SEE Credits:
ISA Marks: 80	ESA Marks: 20

Week wise Plan:

Week #	Particulars	Venue
Week 1 and Week 2	 Introduction to Prototyping Specifications, Part Drawings, Assembly Drawings, PCB Layout, Wireframe, Pseudocode, BOM, Process Plan, Fabrication and Test Plan Validation IOT Workshop 	Studio Engagement
Week 3	 Identifying sub-assemblies Procurement of logistics for proof of concept testing. Selection of materials for all the parts and joining techniques Selection of UI and Core Component of Android 	Makers Space/
Week 4	 Process plan Identifying the proper machines, tools and operations required for prototyping. Selection of appropriate raw materials for prototyping. Demonstrate breadboard prototype of entire electronics in the system. (To have tested electronic circuit for PCB design) UI implementation using XML 	
Week 5	 Fabricate the parts for sub assembly Initiate schematic entry in PCB design software, also refine and optimize thesize of the board. UI implementation and validation 	
Week 6	 Fabricate the parts for sub assembly Generate gerber files for the optimal PCB design. Android core component implementation and Unit Testing 	
Week 7	 Fabricate the parts for sub assembly Fabricate PCB using MITS machine, solder components and test the design. Android core component implementation and Unit Testing 	
Week 8	Assemble the sub assemblies and check for interference and	

	 functionality Revisit PCB testing for increasing reliability of the design. (test to avoid/eliminate lose connections, dry soldering, andbad electronic components) Android core components integration and testing 	
Week 9	 Test the functional prototype using proper identified test methods. Demonstrate working of fully functional PCB. Configuration of IoT Server 	
Week 10	 Integratesubsystems for prototype testing. Analyse the test results System modification System integration 	
Week 11	 Final concluding review Product catalog System Tesing. 	Studio/ Makers Space

Laboratory Plan

Laboratory Course Plan: B E in A&R

Semester IV

Year:2018-2019

Laboratory Title: Manufacturing & Metrology lab	Lab. Code: 16EARP205
Total Hours: 24	Duration of ESA Hours: 3
ISA Marks: 80	ESA Marks: 20

Experiment wise Plan

Category	Demonstration	Total Weightage:	20	No. of lab sessions: 5
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1.	Material Removal Operations(Lathe)	4	15	
	Learning Objectives: The students should be able to: Perform various operations like Facing, Turning, drilling, boring on a work piece using Lathe machine. Perform operations like drilling of holes on a given work material using Drilling Machine. Perform surface milling operation on a given slab of metal. Demonstrate grinding operation on a given metal cube to achieve predefined dimensions. Demonstrate arc welding process Demonstrate sheet metal cutting operations- Shearing ,Bending			Unit I, II & III
2.	Measurement	1	5	
	Learning Objectives: The students should be able to: Extract the dimensions of the given part using (CMM) Compare the dimensions of the given part between conventional machine & CMM			Unit III
Category	Exercise	Total Weightage:	50	No. of lab sessions: 7

Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
3	Measurement for Linear and angular dimensions	1	10	
	Learning Objectives: The students should be able to: Select proper instruments for measurement Calculate least count of instrument Take reading using the instrument, Collection / recording of data, Interpret the observation, results Measure dimensions of the given component using vernier caliper & micrometer Measure unknown angle of a component using Sine bar and slip gauges			Unit II & III
4	Sheet metal	3	20	
	Learning Objectives: The students should be ab Demonstrate how to use too Mark & cut the sheet metal Construct common sheet me Construct a sheet metal pro-			
5	Fabricate the Parts for Table Clamping Device	3	20	
	Learning Objectives: The students should be able to: To machine a given raw metal sheet to actual dimensions. Perform drilling operations at suitable locations. Mark the work piece before going for manufacture. Taking measurements at every step of operations using vernier calipers. Perform welding operation on hinges to achieve perfect right angle. Fill machining time calculation chart. Performing threading on a circular bar to a given pitch. Fill operation chart and inspections reports			Unit I,II,III

FMTH0303-3.0

Laboratory Plan

Semester: V

Year: 2018 - 19

Laboratory Title: OOP and Python Practice	Lab Code: 16EARP305
Total Hours: 22	Duration of ESA: 2 hours
ISA Marks: 80	ESA Marks: 20

Experiment wise Plan

Category: Demonstration		Total Weightage:	No. of lab sessions: 2	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	Write programs using the concept of OOP (C++/Java) Language Fundamentals and concept of command line arguments.	1	10	
	Learning Objectives: The students should be able to: 1. Demonstrate how to compile and run a program in command prompt. 2. Write programs using operators and control statements. 3. Write programs for accepting command line arguments and process them in program. 4. Demonstrate how to compile and run a Java program using different IDE's like eclipse, Net beans etc.			Object Oriented Programming - I
2	Write programs using the concept of arrays, Strings and String Buffer class and exception Handling.	1	10	
	Learning Objectives: The students should be ab	le to:		Object Oriented

	 Write programs using different types of arrays and strings. Write a program to catch different types of exceptions. Demonstrate how the String Buffer is used in a program. 			Programming - I	
Category: E	xercise To	tal Weightage: 20	No	. of lab sess	ions: 2
3	Develop a swing based GUI using swing components and containers and connect it to database .	1	10	Object Ori Programm	
	Learning Objectives: The students should be able to: 1. Develop a GUI using swing components and containers. 2. Demonstrate how to insert, update and retrieve data from a database by using a simple swing based program. 3. Demonstrate the procedure of database connection.				
4	Write programs using the concept of Generic class, Inheritance, Interface and Package.	1	10		
	 Write a program to creat and demonstrate the inheri program. Write a program to creat how to use the interface for 3. Use the built in packages task. Create the user packages the user package in other posting 5. Demonstrate how to creat 	rning Objectives: students should be able to: rite a program to create base class and derived class emonstrate the inheritance concept using the same am. rite a program to create interface and demonstrate o use the interface for other programs also. e the built in packages to write programs for defined eate the user packages and demonstrate how to use ser package in other programs or other classes. monstrate how to create parameterized constructors ow to use different types of access specifies in a		Object Ori Programm	
Category: E	xercise	Total Weightage:	30	No. of lab	sessions: 3
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation with the th	n of Experiment neory
5	Write a program using the concepts of python	1	10	Python pro	ogramming-II

	scripting elements python constructs, data structures. Learning Objectives: The students should be ab 1. Demonstrate how to con command prompt. 2. Write programs using op 3. Write programs for acception	npile and run a pro erators and contro	l statements.	
	 and process them in program 4. Demonstrate how to con using different IDE's like and 	m. npile and run a pyt	hon program	
6	Write programs using the concept of functions, modules, packages and regular expressions	1	10	Python programming-II
	Learning Objectives: The students should be ab 1. Write programs using fur 2. Write a program to use p	nctions and module		
7	Write a python program to use the language scripting elements and constructs, data structures, and repository of standard library, to develop real world applications.	1	10	Python programming-II
	Learning Objectives: The students should be ab 1. Write a program using sc structures. 2. Create the user packages the user package in other pr 3. Write a program to create to use the interface for othe	ripting elements ar s and demonstrate rograms or other c e interface and der	how to use lasses.	
Category: S	tructured Enquiry	Total Weightage:	10	No. of lab sessions: 3

Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
8	Solving a Maze: Program a robot to solve a maze by finding the goal position in the maze starting from a starting position. You will need a data structure to keep track of positions found in the maze that are yet to be explored, starting with positions around the starting position. You will compare the maze solutions found using a Stack versus a Queue for storing unexplored positions.	2	10	
	Learning Objectives: The students should be ab 1. Select fundamentals con programming concepts/pyt scenario to implement prog	cepts of object orion hon, based on the		Object Oriented Programming –I/ Python programming-II
Category: C	Dpen Ended	Total Weightage:	Weightage: 20 No. of lab sessi	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
9	Implement a project using C++/Java/python concepts, for automation and robotics applications. (FOR SEE)	2	20	
	Learning Objectives: The students should be able to: 1. Use the C++/Java/python concepts to implement the project. 2. Select the appropriate tool/software to implement the project.			Object Oriented Programming –I/ Python programming-II

3. Write a technical report using IEEE standard.	
4. Present the technical report for the implemented project.	
5. Demonstrate the learning experiences of working in a	
team.	

KLE TECH. Creating Value Leveraging Knowledge _____ DEPARTMENT OF AUTOMATION & ROBOTICS

Laboratory Plan

FMTH0303-3.0

Semester: V

Year: 2018-2019

Laboratory Title: DBMS Practice	Laboratory Code 16EARP306
Total Contact Hours: 48	Duration of ESA: 3 Hours
Total ISA Marks: 80	Total ESA Marks: 20

Experiment wise Plan

Category:	Demonstration	Total Weightage:	10	No. of lab sessions: 1		
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the practice		
1	Preparing an ER diagram for given database	1	10	Basic Knowledge of data base design		
	graphically by an ER diag	ture of a database o gram. present attributes, r	ure of a database can be expressed ram. resent attributes, relationships among entity			
Category:	Exercise			No. of lab sessions: 1		
2	Execute basic SQL queries on a given database. (DDL, DML, DCL commands)			DDL, DML, DCL commands		

	Learning Objectives: The students should be able to: 1. Demonstrate how to use DDL, DML and DCL commands on a database. 2. Demonstrate how to specify different types of constraints on a table while creating a table.					
Category	: Structured Enquiry	Total Weightage:	60	No. of lab sessions: 10		
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory		
3	Execute nested, correlated queries using exist, like, union, intersection and joins on a given database.	2	10	Nested queries		
	1. Write SQL queries to queries, nested queries, and intersection.	 Learning Objectives: The students should be able to: 1. Write SQL queries to retrieve the required data, using correlated queries, nested queries, joins, and using keywords exist, like, union and intersection. 2. Demonstrate how to join two tables using different types of joins 				
4	Execute SQL queries on - group by, having clauses and aggregate functions on a given database to retrieve the required data.	2	20	Nested queries using clauses- group by, having &aggregate functions.		
	Learning Objectives: The students should be 1. Write SQL queries usi functions to retrieve the					
5	Specifying views in SQL	2	10	Views of SQL		
	Learning Objectives: The students should be	e able to				

	1. Write SQL queries to a	create & update Vie	ews	
6	Design a database for the given schema using normalization concept and execution of given queries on the database and execution of queries.	2	10	Normalization- 1NF,2NF,3NF & BCNF
	Learning Objectives: The students should be 1. Design the database f concepts and use the give database.	for the given schem	-	
7	Design a database for the given specifications & implement the database and write and execute the queries for the given statements.	2	10	Basic Knowledge of data base design, DDL, DML, DCL commands
	Learning Objectives: The students should be 1. Draw the ER diagram 2. Design a database ba tables by specifying diffe write SQL queries for giv 3. Select the proper RDI	for a given specific sed on the specific erent types of const ren statements and	ations given and create traints on database and execute them.	
Category	: Open Ended	Total Weightage:	20	No. of lab sessions:
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
8	Implement a project using Java/database		20	

(FOR ESA)			
Learning Objectives: The students should be 1. Use the java /databas project. 2. Select the appropriate 3. Write a technical repo 4. Present the technical	e management cor e tool/software to ort using IEEE stand	implement the project. ard.	
5. Demonstrate the lear	ning experiences o	f working in a team.	

Uni	t - 3		I	
CHAPTER NO. 6. POWER ELECTRONICS FOR MOT DC and AC motor control, Single phase SCR drive, Speed control of DC motor, chopper-controlled D AC motor characteristics, speed control methods and Electronic commutation.	Three phase SCR drive, Re C drives, Microprocessor-(eversible SCR drive, Controlled DC drives,	6 hrs	
CHAPTER NO. 5. DC-DC CONVERTERS - Introduction, principle of step-down operation and its analysis with RL load, principle of step-up operation, Step-up converter with a resistive load, Performance parameters, Converter classification, Switching mode regulators: Buck regulator, Boost regulator, Buck-Boost Regulators.				
CHAPTER NO. 4. STATIC SWITCHES AND POWER SUPPLIES Single phase ac static switches, three phase ac static switches, three phase reversing switches, Solid state relays, Design of static switches, DC power supplies, DC Switched Mode DC power supplies, bidirectional power supplies, Switched Mode AC power supplies.				
Firing Circuit, Resistance capacitance firing circuit. Unit - 2				
CHAPTER NO. 3. THYRISTORS AND COMMUTATION THEORY Introduction, Principle of Operation of SCR, Static Anode-Cathode Characteristics of SCR, two transistor model of SCR, Gate Characteristics of SCR, Firing circuits for SCRs, Turn-On Methods, Turn-Off Mechanism, Turn-Off. Natural and Forced Commutation – Class A and Class B types, Gate Trigger Circuit: Resistance				
CHAPTER NO. 2. POWER DIODES, BJT, MOSFET AND RECTIFIERS: Introduction, Diode Characteristics, Reverse Recovery Characteristics, Power Diode Types, Freewheeling Diodes with Switched RL Load. power BJT, structure of BJT, MOSFET and IGBT, characteristics of BJT, MOSFET and IGBT, comparison of power devices. Introduction, Single-Phase Full-Wave Rectifiers, Single- Phase Full-Wave Rectifier with RL Load, Single-Phase Full-Wave Rectifier with a Highly Inductive Load.				
CHAPTER NO. 1. INTRODUCTION TO PE AND ELE Applications of Power Electronics, Types of Powe Characteristics and Specifications of Switches. Ba Mechanical loads, electric motors, power sources	r Electronic Circuits, Periph sic components of an Elect	neral Effects, ric drive system:	7 hrs	
	t - 1			
Con	tent		Hrs	
Teaching Hrs: 50		Exam Duration: 3 hrs		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40		
Course Code: 16EARE301	Course Title: Power Electronics, Motors & Drives			

CHAPTER NO. 7. STEPPER MOTOR Principle of Stepper motor, Classification of Stepper motor, Principle of variable reluctant stepper motor, Principle of Permanent magnet stepper motor, Principle of hybrid stepper motor, driver for stepper motor, Applications of Stepper motor.	5 hrs
CHAPTER NO. 8. DRIVES FOR INDUSTRIAL APPLICATIONS Rolling mill drives, cement mill drives, electric traction drives, textile mill drives and machine tool drives.	5 hrs

Laboratory Plan

FMTH0303-3.1

Semester:6

Year: 2018-19

Laboratory Title: Hydraulics And Pneumatics Lab	Lab. Code: 16EARP302
Total Hours: 24	Duration of Exam: 2 Hours
Total Exam Marks: 20	Total ISA. Marks: 80

Experiment wise Plan

Category: Demonstration		Total Weightage: 25.00		No. of lab sessions: 5.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	To study hydraulic pump, its characteristics and calculate the hydraulic power	1.00	4.00	
	Learning Objectives: The students should be able to 1. Differentiate betweer 2. Plot and infer characte	types of pumps.	Pump.	Unit - I
2	 A. To study concepts of Meter-in and Meter-out circuits using Single-rod cylinder and 4/2 DCV B.To study the application of different center configuration of 4/3 DCV. (Tandem and closed centre) 	1.00	8.00	

	 Learning Objectives: The students should be able to: Identify hydraulic cylinders and various direction control valves. Explain meter-in and meter-out circuits used to control the speed of a single acting cylinder using meter in/out throttle. Demonstrate how a hydraulic cylinder is controlled by a 4/3 directional valve with different spool shapes (blocked and circulation position). 				
3	In a machining station, a hydraulic rotary drive is to swivel a drum from the horizontal to the vertical position after a welding process. The movement is to be performed by a hydraulic motor. Despite varying loads, the motor speed must remain constant.	1.00	4.00		
	 Learning Objectives: The students should be able to: Discuss the operating features of a hydraulic motor. Explain how a 4/3 directional valves can be used to implement clockwise and counter-clockwise running of the hydraulic motor. 				
4	On a machine tool the velocity of a feed cylinder is to be increased and thus the cycle time of the system shortened without changing the pump flow. The advance velocity (extending time of the hydraulic cylinder) is to be adjustable independently of the load.	1.00	4.00		
	Learning Objectives: The students should be able to):		Unit – I	

	 Understand and recor Calculate the velocity 			
5	In a fixture, a tool is to be moved by means of a hydraulic cylinder into and out of the machining area. In the event of a hydraulic pump failure, the tool must be extended by means of stored energy.	1.00	5.00	
	Learning Objectives: The students should be able to 1. Understand the worki		cumulator.	Unit - II
Category: Exercise		Total Weightage: 24.00		No. of lab sessions: 4.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch	Marks / Experiment	Correlation of Experiment with the theory
6	 A. Study of indirect control of a double-acting cylinder with a pneumatically operated 5/2 directional control valve. B. To study position dependent control of a double acting cylinder using mechanical limit switches. 	1.00	6.00	
	Learning Objectives: The students should be able to: 1. Demonstrate how a 5/2 DCV can be used control a double acting cylinder.			Unit - II

	Identify switches and push buttons and use them to build the circuits.			
7	 A. Study of Speed Control of Single Acting Cylinder - Slow Speed Extension and Rapid Retraction. B. Stop control, double-acting cylinder with 5/3 directional control valve, tensile load 		6.00	
	 Learning Objectives: The students should be able to: Explain how the speed of a single acting cylinder is controlled using a quick-exhaust valve. Explain the use of a 5/3 directional control valve with closed midposition for stopping a double-acting cylinder. 			
8	The sequential control with two hydraulic drives.	1.00	6.00	
	Learning Objectives: The students should be able t 1. Explain how the sequ		een multiple cylinders.	Unit I and II
9	Control of hydraulic circuit using logic gates, timers and counters.	1.00	6.00	
	Learning Objectives: The students should be able t 1. Identify different logi 2. Demonstrate circuit u	c gates	unters.	Unit - III
Category	Structured Enquiry	Total Weightage:	14.00	No. of lab sessions: 2.00
Expt./	Experiment / Job Details	No. of Lab	Marks / Experiment	Correlation

Job No.		Session(s) per batch		of Experiment with the theory
10	Hydraulic feed drive with electrical control and proportional valve.	1.00	7.00	
	Learning Objectives: The students should be able to 1. Explain how the doub proportional valve.		controlled using	Unit - I
11	The sequential control with two pneumatic drives. The signal overlapping occurring during this exercise is constructively solved by use of rollers with idle return. Practice is obtained in developing sequential diagrams and pneumatic circuit diagrams.	1.00	7.00	
		linders, appropriat d construct the ci	e DCVs, flow control valves rcuit diagram for sequential	Unit - II
Category	: Open Ended	Total Weightage:	7.00	No. of lab sessions: 1.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch	Marks / Experiment	Correlation of Experiment with the theory
12	A double-acting cylinder is used to press together glued components. Upon pressing	1.00	7.00	

a push-button, the clamping cylinder is to extend and trip the roller valve. Once the fully extended position of the cylinder has been reached and sufficient clamping force has been developed, the cylinder is to retract to the initial position. Develop a control circuit using a pressure sequence valve.		
Learning Objectives: The students should be able to: 1. Construct a control circuit using a pressure sequence valve for a given application.		

Course Code: 16EARE403	Course Title: Machine learning and ROS			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40		
SA Marks: 50 ESA Marks: 50 Total Marks: 100				
Teaching Hrs: 40	Teaching Hrs: 40 Exam Duration : 3 ho			
	Content		Hours	
	UNIT – 1		1	
Chapter 1:Introduction to Robot operating system ROS concepts, creating ROS packages writing a minimal ROS publisher, compiling ROS nodes, running ROS nodes, examining running minimal publisher node, scheduling node timing, writing a minimal ROS subscriber compiling and running minimal subscriber, minimal subscriber and publisher node summary writing ROS nodes more ROS tools: catkin simple, ROSlaunch, simplifying cmakelists.txt with catkin simple automating starting multiple nodes viewing output in a ROS console recording and playing back data with ROSbag.				
Chapter 2:Messages, Classes and Servers in ROS Defining custom messages, ROS services- service messages, ROS service nodes, manual interaction with ROS services, example ROS service client, running, example service and client, using C++ classes in ROS creating library modules in ROS, introduction to action servers and action clients- creating an action server package, defining custom action-server messages, designing an action client running the example code, introduction to parameter server.				
Chapter 3: Introduction to machine learning Introduction Machine Learning ,Well posed learning problem, Types of learning, supervised learning ,unsupervised learning and reinforcement learning, Learning Associations, Designing of learning system, perspectives & issues in machine learning, Concept learning task, concept learning search, Find-S: Finding a maximally specific hypotheses, version spaces & candidate elimination algorithm, Remarks - version spaces & candidate elimination algorithm, inductive bias.				
	UNIT – 2			
Motivation, Estimating hypoth approach for deriving confiden	Earning theory and decision tree l lesses accuracy, Basics of sampli- ce intervals, comparing learning a ect hypothesis, sample complexity	ng theory, general lgorithm. Probably	8 hrs	

spaces, sample complexity for infinite hypothesis spaces, instance based learning-K nearest neighbor learning, locally weighted regression, Representation, decision tree algorithm, hypotheses space search in decision tree algorithm inductive bias in decision tree algorithm, issues in DTL, Bayesian decision theory classification.				
Chapter 5:Kernel methods and Graphical models Embedding's into feature spaces, the kernel trick, Multiple kernel learning, Kernel dimensionality reduction Canonical Cases for Conditional Independence, Example Graphical Models, Naive Bayes' Classifier, Hidden Markov Model, Linear Regression, d-Separation Belief Propagation, Linkage–Based clustering algorithms- means and other cost minimization clustering.				
UNIT – 3				
Chapter 6:Reinforcement Learning The learning task,Q-learning,Nondeterministic rewards & actions, temporal difference learning, generalizing from examples, relationship to dynamic programming.				
Chapter 7: Artificial neural network Biological motivation, neural network representations, and appropriate problems for neural network learning, perceptron's, multilayer networks and the back propagation, algorithm, an illustrative example: face recognition				

Course Code: 16EARE401	Course Title: Measureme	Course Title: Measurement Systems		
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40 hours		
ISA Marks: 50	Marks: 50 ESA Marks: 50 Total Marks: 100			
Teaching Hrs: 40		Duration of ESA: 3 I		
Cont	ent		Hrs	
Unit	:-I		1	
Chapter No. 1. Introduction to Measurement Systems Need for study of Measurement Systems, Classification of Types of Measurement Applications, Computer-Aided Machines and Processes, Functional Elements of an Instrument, Active and Passive Transducers, Analog And Digital Modes of Operation, Null and Deflection Methods, Input-Output Configuration of Instruments and Measurement Systems, Static Characteristics and Static Calibration, Dynamic Characteristics.			5 hrs	
Chapter No. 2. Sensors and Signal conditioning Sensor characterization, Relations between physical quantities, Sensor Classification, Specifications, Error reduction techniques, Loading errors, Signal conditioning processes, The operational amplifier, Filtering, Wheatstone bridge, Pulse modulation.			5 hrs	
Chapter No. 3. Motion Measurement Fundamental Standards, Relative Displacement: Translation and Rotational, Relative Velocity: Translation and Rotational, Relative-Acceleration Measurements, Displacement Pickups, Velocity Pickups, Acceleration Pickups, Calibration and Vibration Pickups, Jerk Pickups.				
Unit	- II		1	
Chapter No. 4. Force, Torque, and Shaft Power Measurement Standards and Calibration, Basic Methods of Force Measurement, Characteristics of Elastic Force Transducers, Torque measurement on Rotating shaft, Shaft Power Measurement (Dynamometers), Vibrating Wire Force Transducers.				
Chapter No. 5. Pressure & Sound Measuremen Standards and Calibration, Basic Methods of P Manometers, Elastic Transducers, Vibrating-Cylin Testing of Pressure-Measuring Systems, Measurement, Sound Measurement.	ressure Measurement, Deac ider and Other Resonant Tra	insducers, Dynamic	5 hrs	
Chapter No. 6. Flow and Temperature Measure Local Flow Velocity, Magnitude and Direction		te, Standards and		

Calibration of Temperature Measurement, Thermal-Expansion methods, Thermoelectric Sensors, Electrical-Resistance Sensors, Junction Semiconductor Sensors, Digital Thermometers, 5 hrs Radiation Methods. Unit – III **Chapter No.7. Data Acquisition Systems** Data conversion devices, Signal sampling and aliasing, Sampling theorem, Quantization, Encoding, Digital to analog conversion methods, Analog to digital conversion methods, Sample & 5 hrs Hold circuit, Flash ADC, Successive approximation ADC, Dual slope ADC, Sigma Delta ADC, Multiplexers. Chapter No. 8. Transmission and Recording of Data Cable Transmission of Analog Voltage and Current Signals, Cable Transmission of Digital Data, Fiber-Optic Data Transmission, Analog Voltmeters and Potentiometers, Electrical Instruments, 5 hrs Digital Voltmeters and Multimeters, Signal Generation, Electromechanical XT and XY Recorders, Fiber Optic Sensors.

Course Code: 17EARC203 Course Title: Algorithm Analysis & Program Design					
L-T-P : 4-0-0	Credits: 4	Contact Hrs: 50			
ISA Marks: 50	ESA Marks: 50 Total Marks: 100				
Teaching Hrs: 50		Duration of ESA: 03	8 hours		
	Content		Hrs		
	Unit - 1		1		
Chapter 1: GENERAL PROBLEM SOLVING CONCEPTS- Problem Solving in Everyday Life, Types of Problems, Problem Solving with Computers - Problem Definition, Solution Design & Refinement, Testing Strategy Development, Program Coding and Testing, Using the Problem Solving Method, , Break-Out Diagrams, Difficulties with Problem Solving. How the Computer Stores Data, Functions-function prototypes, Operators, Expressions and Equations.					
Chapter 2: SOLUTION PLANNING- Software Development Cycle,SDLC models, Requirement Modeling framework, Computer Communication methods, Unified modeling language: UML Building Blocks, UML Diagrams-Class Diagram, object diagram, component diagram, UML Modeling Types, UML Basic Notations, UML- SysML ,Using the Tools, Testing the Solution, Coding the Solution, Case studies- Modeling the sequence diagram for the Plant operation, Modeling the control strategy action					
action Chapter 3: PROGRAMMING CONCEPTS FOR DESIGN AND ANALYSIS OF ALGORITHMS- Algorithms and Procedure oriented concepts, Object oriented programming concepts, data types, control structures, class and class concepts ,oop principles-inheritance,polymorphism,abstraction, exception handling mechanisms Their Representations, Modifying Algorithms, Alternative Algorithms. Review of Asymptotic Notations, Mathematical Analysis of Non-Recursive and Recursive Algorithms, Brute Force Approaches: Introduction, Selection Sort and Bubble Sort, Sequential Search and Brute Force String Matching , Divide and Conquer: General Method, Defective Chess Board, Binary Search, Merge Sort, Quick Sort and its performance. Unit - 2					
Chapton 4. ADDAVE ST		mically Allocated	10		
Chapter 4: AKKAYS, S	FACKS & QUEUES: Arrays, Dyna	anically Allocated	10		

Arrays, , Polynomials, Sparse Matrices, Representation of Multidimensional Arrays, hrs

Structures and Unions, Stacks, Stacks Using Dynamic Arrays, Queues, Circular Queues, Evaluation of Expressions, Multiple Stacks and Queues, Single- and Double- Ended Priority Queues.	
Chapter 5: LINKED LISTS, TREES & GRAPHS: Singly Linked lists and Chains, Representing Chains in C, Linked Stacks and Queues, Polynomials, Additional List operations, Sparse Matrices, Doubly Linked Lists. Introduction, Binary Trees, Binary Tree Traversals, Threaded Binary Trees, Heaps, Graph representation, Adjacency	10hrs
matrix, Adjancey list, Application of graphs.	
Unit - 3	
Unit - 3 Chapter 6:DYNAMIC PROGRAMMING & GREEDY METHOD: Depth First Search and Breadth First Search, The General Method, Warshall's Algorithm, Floyd's Algorithm for the All-Pairs Shortest Paths Problem, Single-Source Shortest Paths, The Traveling Salesperson problem,Kruskal's algorithm, Huffman trees.	5 hrs

Cours	se Code: 17EARC207	Course Title: Microco	ontrollers	
L-T-P	-SS: 4-0-0-0	Credits:4	Contact Hrs: 4	
ISA N	1arks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ning Hrs: 50		Exam Duration: 100	
		Unit I		
No		Content		Hrs
1	microprocessors, Difference	sor and Microcontroller between Microprocesso Harvard/Von-Neumann	: History and Evolution, types of ors and Microcontrollers. CPU , Overview of PIC Microcontroller ilies (8051, ATMEL/AVR, and	5 Hrs
2	Chapter 2: PIC Microcontroller Architecture and assembly language programming Architecture and pin functions, Registers and Instructions, Data formats and directives, Introduction to assembly language programming, Program counter and program ROM space. Branch, Call and Time delay loop: Branch instructions and looping, Call instruction and stack, Time delay instructions and pipeline. Timing			7 Hrs
3	diagrams. Chapter 3: I/O Port programming I/O port programming, I/O bit manipulation programming, Arithmetic, logic instructions and programs: Arithmetic instructions, Signed number concepts and arithmetic operations, logic and compare instructions, rotate instructions and data serialization, BCD and ASCII conversion.			8 Hrs
		Unit II		
4	Chapter 4: PIC and AVR prog Data types and time delays i program ROM allocation, Pro diagrams in-depth.	n C, I/O programming, lo	gic operations, data serialization, C18, State diagrams, Timing	5 Hrs
5	Chapter 5: Timer and Serial	1, counter programming ons, PIC18 connection to	;, Programming TIMER0 and 1 in C, 9 RS232, PIC18 serial port	8 Hrs
6	Chapter 6: Interrupt program Polling Vs interrupts, PIC18 I external hardware interrupts change interrupts. ADC, DAC	mming in Assembly and nterrupts, Programming s, programming the seria and sensor interfacing:	timer interrupts, programming al communication interrupt, PortB	7 Hrs

	Unit – III	
7	Chapter 7: High end processors Introduction to 80386 and 80486, architecture and pin definitions of 80386 and 80486, EFLAG Register Of The 80486, 80486 Memory System, Real Address Mode, Features of 80386 and 80486.	5 Hrs
8	Chapter 8: Introduction to MicroPython : Design Philosophy, Exploring MicroPython, Object-Oriented Programming and Some Python Basics, Using MicroPython with a Pyboard, Bare-Metal Approach, programming to handle interrupts, ADC.	5 Hrs

Course Code: 17EARC209	Course Title: Control Systems			
L-T-P : 4-1-0	Credits: 5	Contact Hrs: 50		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 50		Exam Duration: 3 Hrs	6	
Conte	nt		Hrs	
Unit - 1				
Chapter No. 1. Introduction to Control Systems and System Configurations (open-loop & closed loop Design Process. Mathematical modeling of ph networks, Mechanical systems, Transfer Function System Transfer Functions, Analogous systems, Signal flow graph representation and reduction usin	systems), Analysis and De ysical Systems: Transfer ns for Systems with Gears Block diagram representa	sign Objectives, The function, Electrical s, Electromechanical	8	
Chapter No. 2. Time Response Introduction, Poles, Zeros, and System Response, Standard test signals, First-order system response to step, ramp and impulse inputs, Second-order system response to step input; Undamped, Under damped, Critical damped and Over damped systems. Time response specifications of first and second order systems, Analysis and Design of Feedback Systems, Steady state errors and error constants.				
Chapter No. 3. Introduction to PID controller desig Types of Controllers, Mathematical modeling of F Derivative and Integral elements on system behavior	PID, ON-OFF controller, Ef		4	
Unit -	- 2			
Chapter No. 4. Stability Analysis Concepts of stability, Necessary conditions for Sta Criterion: Special Cases.	ability, Routh-Hurwitz Crite	erion, Routh-Hurwitz	5	
Chapter No. 5: Root Locus Techniques Defining the Root locus, General rules for constructing root loci, Sketching the Root locus, Effect of gain adjustment, addition of pole and addition of zero on system response and system stability.				
Chapter No. 6 : Frequency Domain Analysis Introduction, Correlation between time and freque Nyquist plot to obtain phase margin and gain margi Introduction to lead, lag and lead-lag compensating Unit -	ency response, Stability and n of a given system. networks.	alysis, Bode plot and	10	

Chapter No. 7 : Design Via Frequency Response Transient Response via Gain Adjustment, Lag Compensation, Lead Compensation, Lag-Lead Compensation, tuning of PID controllers.	5
Chapter No. 8: Design Via Root Locus and Introduction to State Space Design Via Root Locus: Improving Transient Response and Steady-State Error via Cascade	5
Compensation, Feedback Compensation, Physical Realization of Compensation,	
State Space: Introduction, General State-Space Representation	

Laboratory Course Plan: B E in A&R

Semester IV	Year:2018-19
Laboratory Title: Microcontroller Lab	Lab. Code: 17EARP207
Total Hours: 28	Duration of ESA Hours: 3
Total Exam Marks: 20	Total ISA Marks: 80

Experiment wise Plan

List of experiments/jobs planned to meet the requirements of the course.

	Category: Demonstration Total Weightage:20 No. o	f lab sessions	5: 2		
Expt./ Job No.	Experiment/job Details	No. of Lab. Session/s per batch (estimate)	Marks/E xperime nt	Marks obtain ed	Correlation of Experiment with the theory
1	Compare Architectures of different microcontrollers w.r.t to time response, frequency response, delay, process time etc. Write a program to demonstrate the blinking of LED in PIC16F877A and Arduino board.	1	5		Chap1
	Learning Objectives : The students should be able to: Study the data sheets and make a comparative study of the Architectur applications of different microcontroller Compare and contrast different microcontrollers. Connect microcontroller to LED and blink LED with proper delay. Apply suitable method or logic to solve given problem. Pre-lab: Download the data sheets of PIC16F877a, ATMEGA328, 8051 microcontroller- 168A-168PA-328-328P_datasheet_Complete.pdf http://ww1.microchip.com/downloads/en/DeviceDoc/39582b.pdf http://ww1.microchip.com/downloads/en/devicedoc/41159d.pdf http://www.farnell.com/images/doc8161.pdf http://www.farnell.com/datasheets/46220.pdf http://www.nxp.com/documents/data_sheet/LPC2921_23_25.pdf	rollers from ATmega48A	the followir -48PA-88A-1	0	

	PIC16F877a				
	ATMEGA328				
	8051				
	Make a comparative study and fill up the table 1 given in lab manual.				
	Download the application notes.				
	Prepare flowcharts and develop the code to demonstrate the use of the microcontroller as a simple				
	digital output device.				
	Study Proteus 8 Professional				
	Study different ports and understand the basic LED program				
	In lab:				
	Must be able to explain difference between various types of Microcontro	llers and its	architectu	res.	
	Setup the hardware platform and deploy the code on the hardware.				
	If any errors debug the code until it works.				
	Make a note of the number and types of errors.				
	Simulate LED blink program on Proteus 8 Professional				
	Post-lab:				
	Analyze the cause for errors and make a note.				
2	Write a program to demonstrate a counting machine which count from	1	5		Chap2
	0000 to 9999 and display on 7 segment LED display using PIC16F877A				·
	and Arduino board.				
	Learning Objectives :				
	The students should be able to:				
	Use 7Segment LED for counting numbers.				
	Use appropriate logic or method for counting.				
	Pre-lab				
	Study the application notes of Arduino and PIC16F877a				
	Study advantages and disadvantages of Arduino and PIC16F877a microco	ontrollers			
	Understand 7segment LED.				
	Prepare flowcharts and develop the code to demonstrate the use of the r	nicrocontro	ller as a sir	nple	
	digital input and output device				
	Study different segments of LED				
	In-lab				
	Write program for both Arduino and PIC				
	If any errors debug the code until it works.				
	Make a note of the number and types of errors.				
	Simulate in Proteus				
	Setup the hardware platform and deploy the code on the hardware.				
	Execute the code and note the output.				
	Post-lab				
	Record the results and experience you got in lab				
	Analyze the cause for errors and make a note				
3.	Write a program to read the values from the temperature sensor	1	5		Chap2,3
э.	(LM35) and display the temperature in degree Celsius on LCD display	–	J		Chapz,5
	(Liviss) and display the temperature in degree Ceisius on LCD display				

1					1	
	using PIC16F877A and Arduino board.					
	Learning Objectives :					
	The students should be able to:					
	Connect LM35, LCD and microcontroller.					
	Write function to read values from LM35 and display it on LCD.					
	Pre-lab					
	Study the application notes of Arduino and PIC for interfacing LM35 and LCD.					
	Prepare flowcharts and develop the code to demonstrate the use of the microcontroller as a simple					
	digital input and output device.					
	Study what is 16*2 LCD and how it works.					
	Analyze the driver required for LCD.					
	In-lab					
	Write program for both Arduino and PIC					
	Execute the code and note the output.					
	If any errors debug the code until it works.					
	Simulate LCD display in Proteus.					
	Setup the hardware platform and deploy the code on the hardware.					
	Make a note of the number and types of errors.					
	Post-lab					
	Analyze the cause for errors and make a note.					
-	List down different types of LCDs and sensors.		-			
4	In bank lockers there is requirement of password protection to	1	5		Chap2,3	
	open the locker. Develop an application Using a 4*3 keypad					
	and LCD to secure the lockers by providing password					
	protection.					
	Learning Objectives :					
	The students should be able to:					
	Connect Keypad, LCD with microcontroller.					
	Write logic to read key press event from keypad.					
	Pre-lab					
	Study the application notes of Arduino and PIC for interfacing keypad and	d LCD.				
	Prepare flowcharts and develop the code to demonstrate the use of the	microcontro	oller as a sir	nple		
	digital input and output device.					
	List down different types of keypads					
	Analyze the driver required for 4*3 keypad.					
	In-lab					
	Write programs for both Arduino and PIC					
	Execute the code and note the output.					
	If any errors debug the code until it works.					
	Make a note of the number and types of errors.					
	Simulate both in Proteus					
	Setup the hardware platform and deploy the code on the hardware					
	Post-lab					

	Record the results and expe	rience in manual lications of Keypad in real world.(eg. In Sec	rurity applicatio	ans)		
	Category: Exercises	Total Weightage: 20		-	ab sessior	ns:4
Expt./ Job No.	Experiment/job Details		No. of Lab. Session/s per batch (estimate)	Marks/E xperime nt	Marks obtain ed	Correlation of Experiment with the theory
5	ultrasonic Sensors and displ inches. Make the connection flowchart and the code to p Learning Objectives : The students should be able Connect Ultrasonic Distance Logic to find distance in CM Pre-lab Study the application notes Understand different types	e Sensor and microcontroller and Meters. of Arduino and PIC for interfacing Ultrasor of sensors.		5		Chapter 4
	Prepare flowchart and deve analog input sensor and cor In-lab Write programs for both are Execute the code and note If any errors debug the code Make a note of the number Setup the hardware platfor Post-lab Record the results and expe	duino and PIC the output. e until it works. r and types of errors m and deploy the code on the hardware. erience in manual other sensors and note down the readings		ller as a sim	ple	
6	Write a program to control servo motors.	the speed and direction of DC, stepper and	d 1	5		Chapter 4,5
	Discuss how motor driver h Pre-lab: Study the application notes Study the working principle	s from microcontroller to DC motor using e elps in controlling the speed on a DC moto of Arduino and PIC for interfacing DC mot of DC motor. ent types of DC motors and list out them	or.			

	List the applications in the real world				
	In lab:				
	Write programs for both Arduino and PIC				
	Simulate in Proteus				
	Demonstrate the hardware for both Arduino and PIC.				
	Post-lab				
	Record the results and experience in manual				
7	Measure the speed of the DC motor w.r.t voltage.		1		Chanton 4 E
7	Design a development board using Atmega328 or PIC 18 us	sing eagle/	1	5	Chapter 4,5
	Dip-trace				
	Learning Objectives :				
	The students should be able to:				
	Design circuit diagram of development board.				
	Pre-lab:				
	Get familiar with circuit design software like eagle or diptra	ace			
	Sketch circuit diagram on paper.				
	In lab:				
	Design circuit.				
	Simulate in Proteus				
	Demonstrate the hardware for both Arduino and PIC.				
	Post-lab				
	Record the results and experience in manual				
	Measure the speed of the stepper motor w.r.t step angle.		,		
8	Develop a printed circuit board (PCB) for your designed At	mega328 or	1	5	Chap 6
	PIC18 development board.				
	Learning Objectives :				
	The students should be able to:				
	Develop a PCB and assemble the components.				
	Pre-lab:				
	Design of the PCB has to be ready.				
	In lab:				
	Develop the PCB and mount the components.				
	Simulate in Proteus				
	Demonstrate the hardware for both Arduino and PIC.				
	Post-lab				
	Record the results and experience in manual				
	Category: Structured Enquiry Total Weightage:	20		No. of lab se	ssions:4
Expt./Jo	Experiment/job Details	No. of Lab.	Marks/Ex	oe Marks	Correlation of
b No.		Session/s per	riment	obtained	Experiment with
		batch (estimate)			the theory
9	Design a programmer for your PIC18 development board	1	10		Chapter 6,7
	to burn the program using PICkit2 or any similar	-			
	software's.				
	Soleware Si				1

					1
	Learning Objectives :				
	The students should be able to:				
	Design circuit diagram of development board.				
	Pre-lab:				
	Get familiar with circuit design software like eagle or diptra	асе			
	Sketch circuit diagram on paper.				
	In lab:				
	Design circuit.				
	Simulate in Proteus				
	Demonstrate the hardware for both Arduino and PIC.				
	Post-lab				
	Record the results and experience in manual				
	Measure the speed of the stepper motor w.r.t step angle.				
10	Develop a printed circuit board (PCB) for your designed	1	10		Chapter 6,7
	and validated programmer which can burn programs on				
	the PIC16 or PIC18 ICs.				
	Learning Objectives :	•			
	The students should be able to:				
	Develop a PCB and assemble the components.				
	Pre-lab:				
	Design of the PCB has to be ready.				
	In lab:				
	Develop the PCB and mount the components.				
	Simulate in Proteus				
	Demonstrate the hardware for both Arduino and PIC.				
	Post-lab				
	Record the results and experience in manual				
	Category: Open Ended Total Weightage:	20		No. of lab sessi	on:2
Expt./	Experiment/job Details	No. of Lab.	Marks/Expe	Marks	Correlation
Job		Slots per batch	riment	obtained	of
No.		(estimate)			Experiment
					with the
					theory
11	Write a program on Pyboard microcontroller using	2	20		, Chapter 1 to
	python programming and image processing to detect the				7
	tennis ball.				
	Learning Objectives :	1	I	1	
	The students should be able to:				
	Identify the problem and solve.				
	Apply the knowledge of electronics and programming to m	easurement Lic	uid flow rate.		
					1

Course Code: 17EARC304	Course Title: Measuremer	nt Systems		
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40 hours		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40		Duration of ESA: 3 I	Hrs	
Conte	nt		Hrs	
Unit -	- I			
Chapter No. 1. Introduction to Measurement Systems Need for study of Measurement Systems, Classification of Types of Measurement Applications, Computer-Aided Machines and Processes, Functional Elements of an Instrument, Active and Passive Transducers, Analog And Digital Modes of Operation, Null and Deflection Methods, Input-Output Configuration of Instruments and Measurement Systems, Static Characteristics and Static Calibration, Dynamic Characteristics.				
Chapter No. 2. Sensors and Signal conditioning Sensor characterization, Relations between physical quantities, Sensor Classification, Specifications, Error reduction techniques, Loading errors, Signal conditioning processes, The operational amplifier, Filtering, Wheatstone bridge, Pulse modulation.			5 hrs	
Chapter No. 3. Motion Measurement Fundamental Standards, Relative Displacement: Translation and Rotational, Relative Velocity: Translation and Rotational, Relative-Acceleration Measurements, Displacement Pickups, Velocity Pickups, Acceleration Pickups, Calibration and Vibration Pickups, Jerk Pickups.			5 hrs	
Unit –	II			
Chapter No. 4. Force, Torque, and Shaft Power Measurement Standards and Calibration, Basic Methods of Force Measurement, Characteristics of Elastic Force Transducers, Torque measurement on Rotating shaft, Shaft Power Measurement (Dynamometers), Vibrating Wire Force Transducers.				
Chapter No. 5. Pressure & Sound Measurement Standards and Calibration, Basic Methods of Pre Manometers, Elastic Transducers, Vibrating-Cylind Testing of Pressure-Measuring Systems, H Measurement, Sound Measurement.	er and Other Resonant Tra	ansducers, Dynamic	5 hrs	
Chapter No. 6. Flow and Temperature Measurem Local Flow Velocity, Magnitude and Direction, Gross		ards and Calibration		

of Temperature Measurement, Thermal-Expansion methods, Thermoelectric Sensors, Electrical-Resistance Sensors, Junction Semiconductor Sensors, Digital Thermometers, Radiation Methods. 5 hrs

Unit – III

Chapter No.7. Data Acquisition Systems

Data conversion devices, Signal sampling and aliasing, Sampling theorem, Quantization, Encoding, Digital to analog conversion methods, Analog to digital conversion methods, Sample & Hold circuit, Flash ADC, Successive approximation ADC, Dual slope ADC, Sigma Delta ADC, Multiplexers.

Chapter No. 8. Transmission and Recording of Data

Cable Transmission of Analog Voltage and Current Signals, Cable Transmission of Digital Data, Fiber-Optic Data Transmission, Analog Voltmeters and Potentiometers, Electrical Instruments, Digital Voltmeters and Multimeters, Signal Generation, Electromechanical XT and XY Recorders, Fiber Optic Sensors.

Semester:V

Year: 2019-20

Laboratory Title: Mechatronics & Measurements Lab	Lab. Code: 17EARP303
Total Hours: 24	Duration of Exam: 3 hrs
Total Exam Marks: 20	Total ISA. Marks: 80

Experiment wise Plan

List of experiments/jobs planned to meet the requirements of the course.

Category: Demonstration		Total Weightage: 10.00		No. of lab sessions: 2.00	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory	
1	Demo of Quanser Mechatronics Sensor kit, DC Motor Control Trainer module, Inverted Pendulum Trainer module with NI ELVIS Platform	1.00	5.00	Unit-1, Unit II	
2	Data Acquisition process using DAQ card from NI using LABVIEW with strain guage load cell	1.00	5.00		
Category	: Exercise	Total Weightage: 20.00		No. of lab sessions: 3.00	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory	
3	Sensor characterization using sensor modules, namely, Accelerometer, Ultrasonic sensor, Temperature sensor, Strain gauge	1.00	5.00	Unit I & Unit II	
4	Sensor fusion of IMU and compass	1.00	5.00		
5	Development of a Data acquisition system , DAQ hardware as an embedded system	1.00	10.00		

Category: Structured Enquiry		Total Weightage: 45.00		No. of lab sessions: 5.00	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory	
6	System identification of DC motor	2.00	15.00	Unit – 1, Unit - 2	
7	Hardware in Loop model for a stated problem using Speed goat / Controller/ Processor and MATLAB2018A	1.00	15.00	and Unit - 3	
8	Develop a plant model using Inverted pendulum in MATLAB and analyze its performance characteristics	2.00	15.00		
Category	: Open Ended	Total Weightage	: 5.00	No. of lab sessions: 2.00	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory	
9	Design and develop a Haptic kit for physically challenged people	2.00	5.00	Unit – 1, Unit - 2 and Unit - 3	

Course Code: 17EARC305	Course Title: Machine learning and ROS		
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40		Exam Duration : 3 h	ours
	Content		Hours
	UNIT – 1		
ROS nodes, running ROS nod scheduling node timing, writing minimal subscriber, minimal sub nodes more ROS tools: catkin s	ckages writing a minimal ROS pu des, examining running minima a minimal ROS subscriber comp oscriber and publisher node sum simple, ROSlaunch, simplifying o g multiple nodes viewing output	l publisher node, piling and running mary writing ROS cmakelists.txt with	5 hrs
Chapter 2:Messages, Classes and Servers in ROS Defining custom messages, ROS services- service messages, ROS service nodes, manual interaction with ROS services, example ROS service client, running, example service and client, using C++ classes in ROS creating library modules in ROS, introduction to action servers and action clients- creating an action server package, defining custom action-server messages, designing an action client running the example code, introduction to parameter server.			5 hrs
Chapter 3: Introduction to machine learning5Introduction Machine Learning ,Well posed learning problem, Types of learning, supervised learning ,unsupervised learning and reinforcement learning, Learning Associations, Designing of learning system, perspectives & issues in machine learning, Concept learning task, concept learning search, Find-S: Finding a maximally specific hypotheses, version spaces & candidate elimination algorithm, Remarks - version spaces & candidate elimination algorithm, inductive bias.5			5 hrs
	UNIT – 2		
Motivation, Estimating hypothe	rning theory and decision tree lesses accuracy, Basics of samplir e intervals, comparing learning al	ig theory, general	8 hrs

learning an approximately correct hypothesis, sample complexity for finite hypnosis spaces, sample complexity for infinite hypothesis spaces, instance based learning-K nearest neighbor learning, locally weighted regression, Representation, decision tree algorithm, hypotheses space search in decision tree algorithm inductive bias in decision tree algorithm, issues in DTL, Bayesian decision theory classification.	
Chapter 5:Kernel methods and Graphical models Embedding's into feature spaces, the kernel trick, Multiple kernel learning, Kernel dimensionality reduction Canonical Cases for Conditional Independence, Example Graphical Models, Naive Bayes' Classifier, Hidden Markov Model, Linear Regression, d-Separation Belief Propagation, Linkage–Based clustering algorithms- means and other cost minimization clustering.	
UNIT – 3	
Chapter 6:Reinforcement Learning The learning task,Q-learning,Nondeterministic rewards & actions, temporal difference learning, generalizing from examples, relationship to dynamic programming.	5 hrs
Chapter 7: Artificial neural network	5 hrs

Course Code: 17EARC301	Course Title: Object Oriented Programming and Database Management Systems		
L-T-P: 4-0-0	Credits: 3	Contact Hrs: 50	
ISA Marks: 50	ESA Marks: 50	Total Marks: 50	
Teaching Hrs: 50		Exam Duration: 3	hrs
Conte	ent		Hrs
Unit	- I		1
Chapter 1 Introduction to Software Developm Language: Software Development Lifecycle, SE Framework, Computer Communication Methods Unified Modeling Language (UML): UML Buildin Object Diagram, Component Diagram, UML Mod SysML, Using the Tools, Testing the Solution, C the Sequence Diagram for the Plant Operation,	DLC Models, Requirement I g Blocks, UML Diagrams - deling Types, UML Basic N oding the Solution, Case S	Modeling Class Diagram, lotations, UML- itudies - Modeling	6
Chapter 2 Data Modeling using the ER Model for Database Design, An Example Database Ap and Keys, Relationship Types, Relationship Sets Entity Types, Refining the ER Design, Relations Diagrams, Naming Conventions and Design Issu	plication, Entity Types, Enti s, Roles and Structural Cor hip Types of Degree Highe	ity Sets, Attributes nstraints, Weak	6
Chapter 3 Introduction to Object-Oriented Programming - I : Introduction to .NET Environment, The Java Virtual Machine, Variables and Data Types, Conditional and Looping Constructs, Arrays, Fields and Methods, Constructors, Overloading Methods, Garbage Collection, Nested Classes, Simple Inheritance, Multilevel Inheritance, Overriding, Overloading, Defining Interfaces, Implementing Interfaces, Polymorphism, Abstract Classes, Access Control, Access Modifiers, Access Protection			8
Unit	- 11		Ì
Chapter 4 Object-Oriented Programming - II : Finalizer Method: finalise (), Exception Handling Exception Types, Constructors and Methods in Unchecked and Checked Exception, Creating Ye	, Fundamentals of Exception Throwable Class, Java's Bu	on Handling, uilt-in Exceptions,	4
Chapter 5 Object-Oriented Programming - III: and Branching, Core elements of Programs - Bin Flow and Iteration, Functions - Decomposition a Keyword Arguments, Specifications, Lists, Tuple Functions as Objects, Dictionaries, Example with Global Variables, Classes and Inheritance: Objection Methods Classes, Examples, Hierarchies	ndings, Strings, Input/Outpund nd Abstraction, Functions a s, Sets, Mutation, Aliasing n a Dictionary, Fibonacci an	ut, IDEs, Control and Scope, , Cloning, nd Dictionaries,	10

Chapter 6 Introduction to Database Management Systems : Introduction to DBMS with an example, Characteristics of Database Approach, Actors on and Behind the Scene, Advantages and Disadvantages of using DBMS, Data models, Schemas and Instances, Three-Schema Architecture and Data Independence, Database Languages and Interfaces, Database System Environment	6
Unit - III	
Chapter 7 Relational Data Model and SQL : Relational Model Concepts, Relational Model Constraints and Relational Database Schemas, Update Operations, Transactions and Dealing with Constraint Violations, SQL Data Definition and Data Types, Specifying Basic Constraints in SQL, Schema Change Statements in SQL, Insert, Delete and Update Statements in SQL, Specifying Constraints as Assertion and Trigger, Indexing Techniques, Views in SQL, Basic Queries in SQL, More Complex SQL Queries, Informal Design Guidelines for Relation Schemas, Functional Dependencies, Normal Forms Based on Primary Keys, General Definitions of Second and Third Normal Forms, Boyce-Codd Normal Form	5
Chapter 8 Object-Relational Databases and Semantic Modeling Approach : Overview of Object Database Concepts, Object-Relational Features: Object Database Extensions to SQL, The ODMG Object Model and the Object Definition Language ODL, Object Database Conceptual Design, The Object Query Language OQL, Semantic Introduction to Databases, Semantic Modeling, Semantic Binary Schemas, Schema Quality Criteria, Subschemas and User views, Transaction Processing Concepts	5

Course Code: 17EARC303	Course Title: Mechatronic	s System Design	
L-T-P : 4-0-0	Credits: 4	Contact Hrs: 50 hours	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50 hours		Exam Duration: 3 Hrs	
Con	tent		Hrs
Un	it - I		
1. Introduction to Mechatronics Systems and elements Introduction to Mechatronic Systems and Design, Mechatronic systems in Precision mechanics, Micromechanics and Process Engineering, Confinement of Mechatronic Systems, Functions, Distribution of Mechanical and Electronic Functions, Integration Forms of Processes and Electronics, Ways of Information Processing, Multi-level Control Systems, Special Signal Preprocessing, Design Procedures for Mechatronics Systems, V model			8
			12
Uni	t - II		
3.Electrical Drives Types of Electrical Drives, Electromagnets, Direct Current Motors, Dynamic Behavior, Static Behavior, Special Types of DC Motors, Alternating Current Motors (AC), Induction Motors, Synchronous Motors, Single-phase Motors, Commutator Motors (Universal Motors), Squirrel-cage Motors, Power Electronics Circuits, Internally or Externally Commutated Electro-motors, Electrical Motor Sizing and Selection Procedure, Electric Motor Operational Conditions, Motion Profile, Load Torque Calculation, Motor Shaft Torque Calculation, Load Torque–Speed Profile, DC Motor Parameter Estimation, Process Dynamics Particularities, Electrical Binary Actuators.			10
		10	
Unit - III			
5. Recent trends in Mechatronics System Design process Mechatronics systems contributing to economic growth, Changes in technological processes and products, Tools and methods in mechatronics system design and development, Use of Artificial Neural Networks and Fuzzy-logic Models , Fields of application, Future Mechatronics systems.			5
6. Case studies Dynamic Models ofa Electromagnetic actuator,	Control Prototyping and	Hardware-in-the-loop	5

Simulation, Rapid Control Prototyping for Engine Control, Hardware-in-the-loop Simulation for Industrial Robot , Process control system, etc, UML/ SysML and State chart modeling for each example.

FMTH0303-3.1

Semester: V

Year: 2019-20

Laboratory Title: Object-Oriented Programming and Database Management Systems Lab	Lab. Code: 17EARP301
Total Hours: 24	Duration of Exam: 2 hrs
Total Exam Marks: 100	Total ISA. Marks: 80

Experiment-wise plan

1. List of experiments/jobs planned to meet the requirements of the course.

Category: D	emonstration Total Weighta	ge: 35	No. of lab sessior	ns: 7	
Learning Outcomes: The students should be able to: Design and model using UML diagrams and ER models. Demonstrate how to compile and run a program in JAVA, Python, and .NET environment. Write programs using class, inheritance, and other fundamentals of OOP. Write SQL statements concerning data manipulation using retrieving, inserting, updating, and deleting commands. Write packages/procedure for manipulating data and triggers to enhance data retrieval.					
Expt./Job No.	Experiment/job Details	No. of Lab. Session/s p batch (estimate)		Correlation of Experiment with the theory	
1	SysML - Getting used to tool, use case, cr class diagram, sequence diagram, and sta diagram.	eating	5	Introduction to Software Development Lifecycle and Unified Modeling Language	
2	Creating ER models considering different relationship and attributes.	1	5	Data Modeling using the ER Model	
3	Write programs in Java or .NET using the concept of OOP like arrays, strings, functi overloading, and exception handling.	ons, 1	5	Introduction to Object-Oriented Programming - I	
4	Write programs in JAVA or .NET using the concept of a generic class, inheritance, interface, and package.	2 1	5	Object-Oriented Programming - II	
5	Write programs in PYTHON using the con of generic classes, inheritance, interface, package.		5	Object-Oriented Programming - III	

6	Write SQL statements related to data			Relational Data
J.	manipulation, like insert, delete, and update.	1	5	Model and SQL
7	Write statements to create views, procedures			Relational Data
7	packages, and indexing for fast retrieval.	' 1	5	Model and SQL
	puckuges, and mucking for fust retrieval.			Woder and SQL
Category: Ex		20 No.	. of lab session	s: 2
Learning Ou				
	s should be able to:			
-	model using UML diagrams.			
•	classes in JAVA or .NET environment.			
•	d build JAR/DLL files.			
-	mode ER models for different scenarios.			
	database schema with data manipulation SQL s	statement, a prop	per procedure i	in place, and create
	fast data retrieval.			
Expt./Job	Experiment/job Details	No. of Lab.	Marks/Exp	Correlation of
No.		Session/s per batch	eriment	Experiment with the
		(estimate)		theory
1	Develop a class diagram concerning sensor,	()		Introduction to
	actuators and controls, implement these			Software
	classes, and build JAR/DLL files.			Development
				Lifecycle and
				Unified Modeling
				Language
		1	10	Introduction to
			-	Object-Oriented
				Programming - I
				Object-Oriented
				Programming - II
				Object-Oriented
				Programming - III
	Develop an ER model and construct a databas	e		Data Modeling using
	schema for a given manufacturing scenario.	-		the ER Model
				Relational Data
		1	10	Model and SQL
				Relational Data
				Model and SQL
Category: St	tructured Enquiry Total Weig	phtage: 25	No. of lab	sessions: 2
Learning Ou	s should be able to:			
	elop and implement application utilizing previo			
	rom the application into the database	usiy ueveloped Jr	NY DEL 11165.	

Store data from the application into the database.

Design, development and implement the user interface for visualization of data from the database.

Expt./Job No.	Experiment/job De	tails	No. of Lab. Session/s per batch (estimate)	Marks/ Experiment	Correlation of Experiment with the theory
	generated JAR/ store data from the actuators. A	oject which utilizes previously DLL files and database schema to automation devices and control dditionally, proper checks have to d and with necessary visualization.	2	25	
Category: C	pen Ended	Total Weightage: 20	No. of lab session	s: 2	
Use the OO Use databa Select the a Write a tech Present the	ts should be able P concepts to imp se concept to imp ppropriate tool/s nnical report usin technical report te the learning ex	plement the project. Dement the project oftware to implement the project. g a predefined template. of the implemented project. periences of working in a team.			
Expt./Job No.	Experiment/job De	tails	No. of Lab. Slots per batch (estimate)	Marks/ Experiment	Correlation of Experiment with the theory
1.		oject using C++/Java/python/DB Itomation and robotics	2	20	

CourseCode:17EARE301	Course Title: Artificial I	Intelligence for autonomous systems		
L-T-P:3-0-0	Credits:3	ContactHrs:40		
ISAMarks:50	ESAMarks:50	Total Marks: 100		
TeachingHrs:40		ExamDuration:3hours		
	Content	Hours		
	UNIT–1			
Chapter1:IntroductiontoArt	ficialintelligenceand		5hrs	
autonomoussystemsFoundationautonomouscontrol,Sevenareas TheStructure of Agents,Probl	onofartificialintelligence,rol sofAI,TheConceptofRationa em-SolvingAgents,Searchin nformedSearchStrategies,Ku	alityTheNatureofEnvironments, ng forSolutions, nowledgerepresentationinAI,knowledgeb		
Chapter2:Roboticsoftwarear Subsumptionarchitecture,Three AttributesoftheHierarchicalPar AttributesofReactiveParadigm AttributesofHybridParadigm,A AutonomousRobotArchitecture HierarchyArchitectures,Model	e-layerarchitecture, Pi adigm,ReactiveParadigm- ,HybridDeliberative/Reactiv ,rchitecturalAspects,Manage e(AuRA),SensorFusionEffe	erialArchitectures-	5hrs.	
Chapter3:BiologicalFoundat	ionsoftheReactiveParadig	m	5hrs	
Chapter3:BiologicalFoundationsoftheReactiveParadigm Agencyandcomputationaltheory,AnimalBehaviors,Reflexivebehaviors ,CoordinationandControlofBehaviors,Innatereleasingmechanisms,Concurrentbehaviors,Perception inBehaviors,Action- perceptioncycle,TwofunctionsofperceptionGibson:Ecologicalapproach,Neisser:Twoperceptualsyst ems,SchemaTheory,Behaviorsandschematheory,PrinciplesandIssuesinTransferringInsightstoRobot				
	UNIT–2			
Behaviors inDesigningaReactiveBehavio blagesofBehaviors,Logicalsens	tationwithcommonsensing asObjects ralSystem,CaseStudy:Unma sors,BehavioralSensorFusio	gtechniquesforroboticsperception inOOP,Steps annedGroundRoboticsCompetition,Assem n,DesigningaSensorSuite,ProprioceptiveS on,CaseStudy:Horsd'Oeuvres,Anyone?		

Chapter5: Multi-agentsandnavigation inrobotics

Heterogeneity, Control, Cooperation, Emergent Social Behavior, Topological Path Planning, Relational Methods, Associative Methods, Case Study of Topological Navigation with a Hybrid Architecture Study of Topological Navigation and the study of the st

7hrs

Course Code: 17EARE304	Course Title: Digital System Design and FPGA programming					
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 50				
ISA Marks: 50	ESA Marks: 50	Total Marks: 100				
Teaching Hrs: 50		Exam Duration: 3	hrs			
Conten	t		Hrs			
Unit – 2	L		I			
Chapter No. 1. Review of Logic Design Fundament and algebraic Simplification Karnaugh maps, design combinational circuits, flip-flops and latches, Mealy sequential circuit, equivalent states and reduction of tristate logic and busses. Advanced Design Issues: N out, TimingConsiderations, Brief overview of progra programmable logic devices (SPLDs), complex progra programmable gate arrays (FPGAs),	ing with NAND and NOR ga sequential circuit design, c of state tables, sequential c Aeta-stability, Noise Margir ammable logic devices, sim	tes, hazards in lesign of a Moore ircuit timing, ns, Power, Fan- ole	9hrs			
Chapter No. 2. Introduction to State Machine Charts and Microprogramming : State machine(SM) charts, derivation of SM charts, realization of SM charts, implementation of the dice game, microprogramming,: Design Examples						
Unit – 2			Ì			
Chapter No. 3. Designing with Field Programmable FPGAs, implementing functions using Shannon's de chains in FPGAs, examples of logic blocks in comme dedicated multipliers in FPGAs, cost of programmal	composition, carry chains in rcial FPGAs, dedicated mer	n FPGAs, cascade nory in FPGAs,	7hrs			
Chapter No. 4. Modeling and design with HDL Basic Concepts, Dataflow Descriptions, Behavioral Descriptions ,Structural Descriptions, Design examples,Timing and Delays, BCD to 7- Segment Display Decoder, BCD Adder, 32-Bit Adders, Traffic Light Controller, Shift-and-Add Multiplier, Array Multiplier. Introduction to Verilog and VHDL: Data Types, Modeling Concepts, Task and Functions, Specify Block and Timing Checks , Architecture study of popular FPGA families						
Unit – 3						
Chapter No. 5. Testing and Verification What is Verification, what is a Test bench, The Importance of Verification, Convergence Model, What Is Being Verified, Functional Verification Approaches, Testing Versus Verification, Design and Verification Reuse, Cost of Verification						
Chapter No. 6 Case studies on FPGA technologies in Automation and Robotics applications Robotic Car from Georgia Institute of Technology Robotic Controller: ASIC versus FPGA						

Expanding a robot's life: Low power object recognition via FPGA-based DCNN deployment FPGA-powered parallel, pipelined vision algorithms

ourse Code: 17EARC308 Course Title: Hydraulics and Pneumatics					
L-T-P : : 3-0-0	Credits: 3	Contact Hrs: 40 hours			
ISA Marks: 50	ESA Marks: 50	Total Marks: 100			
Teaching Hrs: 40 hours		Exam Duration: 3 H	rs		
Conte	nt		Hrs		
Unit -	1				
Chapter No. 1. Introduction to Hydraulic Pow Pascal's law, Structure of Hydraulic Control Syste Pumping theory, pump classification, gear pun displacement pumps, pump performance, pump sele rate, pump efficiency and pump power.	em. The Source of Hydra nps, vane pumps, pistor	ulic Power: Pumps n pumps, Variable	5hrs		
Chapter No. 2. Hydraulic Actuators: Cylinde Linear Hydraulic Actuators (cylinders), Mechanics of Actuators, Gear motors, vane motors, piston motor determining motor speed, torque, power ,motor eff loading.	of Hydraulic Cylinder Ioadin s, Hydraulic Motor Perform	nance. Problems on	5hrs		
Chapter No. 3. Hydraulic Valves Hydraulic Valves: Directional Control Valves- classification of directional control valves, direction control valves actuating devices, Symbolic representation as per ISO 1219 and ISO 5599, pressure control valves, flow control valves- classification of flow control valves, proportional control valves, and servo valves.					
Unit - 2					
Chapter No. 4. Hydraulic Circuit Design and Analysis Control of single acting and double acting Hydraulic Cylinder, regenerative circuit, pump unloading circuit, Double pump Hydraulic system, Counter Balance Valve application, Hydraulic cylinder sequencing circuits. Locked cylinder using pilot check valve, cylinder synchronizing circuits, Speed control of hydraulic cylinder: Meter-in circuit, Meter-out circuit and Bleed-off circuit, speed control of hydraulic motors. Ancillary Hydraulic Devices: Reservoirs, Accumulators, Pressure Intensifiers, Sealing Devices.					
Chapter No. 5. Pneumatic Systems Structure of Pneumatic control system, Choice of working medium, characteristics of compressed air, Pneumatic Actuators: Types of Linear Actuators or Pneumatic cylinders, Cylinder mountings, Cylinder seals, End cushioning in pneumatic cylinders. Pneumatic Control Valves: Direction control valve- types of direction control valves, ISO designation of direction control valves, Non return valves, methods of actuation of pneumatic directional control valves, Flow control valves, and Pressure control valves.					
Chapter No. 6. Pneumatic Circuit Design			5hrs		

Direct and indirect control of single acting cylinder, control of single acting cylinder using "or" valve, control of single acting cylinder using "and" valve, control of single acting cylinder using "not" valve. Direct control of a double acting cylinder, Indirect control of double acting cylinder using memory valve, Supply air throttling and exhaust air throttling, Various methods of checking end position of a cylinder, Pressure dependent controls and Time dependent controls.	
Unit - 3	
Chapter No. 7. Hydraulic Control Systems Servo Control, Valve servo systems: Valve lap, mechanical feedback, systems response, electro hydraulic servo valves, system response and stability, Pump servo systems, Proportional valves: Force control, force position control, spool position control, proportional pressure control, two stage proportional valves, proportional flow control, electrical control of proportional valve, Proportional versus Servo valves, Applications of proportional control valves.	5 hrs
Chapter No. 8. Electro Pneumatics Basic electrical devices- Manually actuated push button switches, Limit switches, Pressure switches, Solenoids, Relays, Timers, Temperature switches, Direct and indirect control of single acting cylinders using electro pneumatics, Direct and indirect control of double acting cylinders using electro- pneumatics, Control of double acting cylinder OR logic (Parallel circuit), Control of double acting cylinder AND logic.	5 hrs

Laboratory Course Plan: B.E in A&R

Semester: VI

Year: 2019-2020

Laboratory Title: Industrial Robotics Lab	Lab. Code: 17EARP306
Total Hours: 28	Duration of Exam: 3 hrs.
ISA Marks: 80	ESA. Marks: 20

Experiment wise Plan

List of experiments/jobs planned to meet the requirements of the course.

Category	: Exercise	Total Weightage: 70	0.00	No. of lab sessions: 8.00	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Session(s) per Experiment		
1	Matlab Introduction	1.00	10		
	Millions of engineers and scientists analyze and design the systems ar world. The matrix-based MATLAB natural way to express computation make it easy to visualize and gain environment invites experimentation These MATLAB tools and capabilit designed to work together. MATLAB helps you take your ideas your analyses on larger data sets, clouds. MATLAB code can be integ enabling you to deploy algorithms enterprise, and production systems Topics: Basic commands Vectors and Matrices Importing Data Plotting Data Technically speaking, MATLAB is r is a tool with which you can find en mathematics. Robotic developers r to analyze data, produce advanced systems.	nd products transfo language is the wo nal mathematics. B insights from data. on, exploration, and ies are all rigorousl s beyond the deskte and scale up to clu grated with other la and applications wi s.	rming our rld's most uilt-in graphics The desktop discovery. ly tested and op. You can run sters and nguages, thin web,	UNIT – I	

	 MATLAB, and its open source relation popular with some robotic engineer developing control systems. Programming for a robot requires governs robot behavior. Modeling understand how the controller interperception, mobility, and interaction Why MATLAB is the Most Used P Robotics? MATLAB is highly useful in destination of the foundation and development of the foundation and development of the foundation and development of the simulates the result. On the other hand, simulation system design and eliminate error prototypes. 	and er that e vital to environment e in ic system. / rooted in llgorithm or ne the			
2	Robotics Toolbox	1.00	10)	
	The Toolbox has always provided the study and simulation of classic such things as kinematics, dynam The toolbox contains functions an and pose in 2D and 3D (SO (2), S quaternions, twists, triple angles, a Toolbox also provides functions for between data types such as vector and unit-quaternions which are ne dimensional position and orientation	or example eration. orientation as matrices, s. The nverting sformations	UNIT – I		
3	RoboAnalyzer	2.00	20)	
	 Explaining the concepts in a course on Robotics typically requires a 3D model of a serial-robot/manipulator, either in the form of a physical robot or a virtual robot in software environment, for a better understanding. With the experience of handling Robotics courses and the feedback received so far, we have come up with a list of Virtual Experiments using RoboAnalyzer. List of Virtual Experiments using RoboAnalyzer 				
	SI Practical Assignments using No. RoboAnalyzer		Topics Cove		
	1 Introduction to RoboAnalyzer		Usage of Rob		
	2 Virtual Models of Industrial Ro		Industrial Ro		
	3 Understanding coordinate fram	nes and	DH Paramete	ers. Robot	

		transformations		Geometry		
	4	Forward kinematics of robots		Robot Kinematic Analysis		
	5	Inverse kinematics of robots		Robot Kin	nematic Analysis	
	6	Case Study: Kinematics of MTAB N Robot	1ini	Robot Kin	ematic Analysis	
	7	Case Study: Workspace Analysis of axis robot	a 6	Workspac	ce Analysis	
	8	Inverse and Forward dynamics of r	obots	Robot Dy	namics	
	9	Creating robot joint trajectories		Trajector	y Planning	
4	Intro	duction to ABB Robotstudio	1.00		5.00	
	robot Robo syste optim This p Risk r Quick Short Increa Robo softw	ffline programming is the best way to maximize return on investment for boot systems. ABB's simulation and offline programming software, bootStudio, allows robot programming to be done on a PC in the office ithout shutting down production. bootStudio provides the tools to increase the profitability of your robot return by letting you perform tasks such as training, programming, and botimization without disturbing production. his provides numerous benefits including: sk reduction uicker start-up horter change-over creased productivity bootStudio is built on the ABB VirtualController, an exact copy of the real oftware that runs your robots in production. This allows very realistic mulations to be performed, using real robot programs and configuration			UNIT-I & II	
5		lation/Offline Programming otstudio)	2.00		15.00	
	Topics to be covered: Create mechanism AutoPath Set Task Frame Collision control Reachability Create MultiMove System from Layout			UNIT-I & II		

6	Online Programming	1.00	10			
	To perform a particular action, robots are programmed either by guiding or by off-line programming. Most of the industrial robots are programmed by guiding a robot from point to point through the phases of an operation, with each point stored in the robotic control system. Robots receive instructions through computer commands and this is referred to as manipulator level off-line programming. Usage of off- line programming involves higher-level languages, in which robotic actions are defined by tasks or objectives. Robotic programmers must have knowledge on different types of programming languages as switching from computers to robots is not the smooth transition that many developers/programmers may think.					
Category: Structured Enquiry		Total Weightage: 20.00		No. of lab sessions: 1.00		
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory		
7	Project Students should form a team of 4 in numbers and select a problem or need statement in industrial robotics area. The project should consists of following requirements: Minimum 3 to 6 DOF robot arm DH Parameters Students are free to choose the software to complete the project	1	20.00	UNIT-I & II		

FMTH0303-3.1

Year: 2020-21

Laboratory Title: Project	Lab Code: 18EARW401
Total Hours: 30	Duration of Exam: 3 Hrs
Total ESA Marks: 50	Total ISA. Marks: 50

Prerequisites:

Semester:

Subjects learnt up to VI semester.

VII

Course Outcomes-CO

At the end of the course student will be able to:

- 1. Carry out market survey, do need analysis and identify suitable problems.
- 2. Write a project proposal, which will involve developing a complete solution for the identified problem from the real world.
- 3. Apply the principles of engineering design to plan and manage the project.
- 4. Apply suitable design processes and develop the best possible solution.
- 5. Develop proof of concepts and models for verification.
- 6. Prepare production drawings, bill of materials and process plans.

	Course Content		
Course Code: 18EARC201	C201 Course Title: Analog and Digital Electronic Circuits		
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 50	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50		Duration of ESA: 3 hrs	
	Content		Hrs
	Unit - 1		
1.0 Introduction of PN junctions Diode theory, forward and reverse diode applications – limiters, clip rectification, voltage regulators, purpose diodes – Zener diode, vai and applications: KVL, KCL, Theorem and Norton's Theorem.	biased junctions, reverse- bia pers, clampers, voltage mult voltage dividers,pull up, ractor, light emitting diodes,	tipliers, half wave and full wave pull down, optocoupler,special photodiodes. Network theorems	7
2.0 Transistors Bipolar Junction Transistors and in Operating point, Fixed bias circui Bias stabilization, BJT transistor feedback configuration, analysis of between h-parameter model of MOSFET as a switch.	its, Emitter stabilized biased modeling, , Emitter follow of CE configuration using h	ver, CB configuration, Collector - parameter model; Relationship	7
3.0 Operational Amplifiers Op-Amp Basics, practical Op-Amp circuits, differential and Common mode operation, Inverting &Non-Inverting Amplifier, differential and cascade amplifier, Op-Amp applications: Voltage follower, Comparator, summing, integrator, differentiator, instrumentation amplifiers, Schmitt trigger, Op-amp based oscillators.			6
	Unit - 2		
4.0 Number system and digital logic gates Decimal, binary, octal, hexadecimal number system and conversion, binary weighted codes, signed numbers, 1s and 2s complement codes, Binary arithmetic. Logical Operators, Logic Gates-Basic Gates, Other gates, Active high and Active low concepts, Universal Gates and realization of other gates using universal gates, Gate Performance Characteristics and Parameters.			6
5.0 Boolean algebra and combinational logic circuits Binary logic functions, Boolean laws, truth tables, half adder, full adder, subtractor, associative and distributive properties, DE Morgan's theorems, realization of switching functions using logic gates. Switching equations, canonical logic forms, sum of product & product of sums, Karnaugh maps, two, three and four variable Karnaugh maps, simplification of expressions.			7
6.0 Design of combinational logi	c circuits and sequential log	gic	7

Introduction to combinational circuits, code conversions, decoder, encoder, priority encoder, multiplexers as function generators, binary adder, subtractor, BCD adder, Binary comparator, arithmetic logic units. Sequential circuits, flip-flops, clocked and edge triggered flipflops, timing specifications, asynchronous and synchronous counters, counter design with state equations, Registers, serial in serial out shift registers, tristate register, timing considerations.	
Unit - 3	
7.0 Data conversions Introduction to data conversions, $R/2^{n}R$ DAC, $R/2R$, Flash, Digital ramp ADC, Successive approximation ADC, Slope (integrating) ADC, Delta-Sigma ($\Delta\Sigma$) ADC, Practical considerations of ADC circuits.	5
8.0 Digital integrated circuits Logic levels, propagation delay time, power dissipation fan-out and fan-in, noise margin, logic families and their characteristics TTL, LSTTL CMOS and ECL integrated circuits and their performance comparison, open collector and tristate gates and buffers.	4

Course Content

Course Code: 18EARC203	Course Title:Data structures ,Algorithm	design and analysis		
L-T-P : 4-1-0	Credits: 4	Contact Hrs: 50		
ISA Marks: 50	ESA Marks: 50 Total Marks: 100			
Teaching Hrs: 50		Exam Duration: 03 ho	ours	
	Content		Hrs	
	Unit - 1		1	
Everyday Life, Types of Definition, Solution Design Coding and Testing, Using	Chapter 1: GENERAL PROBLEM SOLVING CONCEPTS - Problem Solving in Everyday Life, Types of Problems, Problem Solving with Computers - Problem Definition, Solution Design & Refinement, Testing Strategy Development, Program Coding and Testing, Using the Problem Solving Method, Break-Out Diagrams, Difficulties with Problem Solving. How the Computer Stores Data, Functions-function prototumes. Operators, Expressions and Equations.			
Chapter 2: DESIGN AND ANALYSIS OF ALGORITHMS- Algorithms and Their Representations, Modifying Algorithms, Review of Asymptotic Notations, Mathematical Analysis of Non-Recursive and Recursive Algorithms, Brute Force Approaches: Introduction, Selection Sort and Bubble Sort, Sequential Search and Brute Force String Matching , Divide and Conquer: General Method, Defective Chess Board, Binary Search, Merge Sort, Quick Sort and its performance.				
Chapter 3: ARRAYS, STACKS & QUEUES: Arrays, Dynamically Allocated Arrays, , Polynomials, Sparse Matrices, Representation of Multidimensional Arrays, Structures and Unions, Stacks, Stacks Using Dynamic Arrays, Queues, Circular Queues, Evaluation of Expressions, Queues, Single- and Double-Ended Priority Queues.				
	Unit - 2		ł	
Representing Chains in C, operations, Sparse Matrices	TS, TREES & GRAPHS: Singly Link Linked Stacks and Queues, Polynomi , Doubly Linked Lists. Introduction, E resentation, Adjacency matrix, Adjance	als, Additional List Binary Trees, Binary		
Search and Breadth First S	ROGRAMMING & GREEDY MET earch, The General Method, Warshall's Shortest Paths Problem, Single-Source	Algorithm, Floyd's	7 hrs	

Traveling Salesperson problem, Kruskal's algorithm, Huffman trees.	
Unit - 3	
Chapter 6: INTRODUCTION TO C++: Overview of C++, Sample C++ program, Different data types, operators, expressions, and statements, arrays and strings, pointers & user defined types. Class Specification, Class Objects, Scope resolution operator, Access members, Defining member functions, Data hiding, Constructors, Destructors, Parameterized constructors,	8hrs
Chapter 7:BASIC OOP CONCEPTS: Base Class, Inheritance and protected members, Protected base class inheritance, Inheriting multiple base classes, Virtual function, Calling a Virtual function through a base class reference, Virtual attribute is inherited, and Virtual functions are hierarchical, Pure virtual functions, Abstract classes, Using virtual functions.	7hrs

Course Content

Course Code: 18EARC209	Course Title: Object Oriented Programming Database Management Systems		g and	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40		
ISA Marks: 80	ESA Marks: 20 Total Marks: 100			
Teaching Hrs: 40		Exam Duration: 2 hrs	6	
Content			Hrs	
UNI	ті			
Software Development Lifecycle, SDLC Models, Agi	Chapter 1. Introduction to Software Development Lifecycle Software Development Lifecycle, SDLC Models, Agile Software Development, Requirement Engineering, System Modelling, Architecture Design, Design and Implementation, Software Testing, Software Evolution			
Chapter 2. Introduction to Object-Oriented Programming - I Structure vs. Class, Components of a Class, Encapsulation, Access Specifiers, Member Functions, Instance of a Class, Default Constructors, Destructors, Accessing Data Fields, Constructors with Parameters, Static Class Members - Data Members and Member Functions, Scope Resolution Operator, Nested Classes, Local Classes, Passing Objects to Functions, Return Objects, Object Assignment, Friend Function, Operator Overloading, Function Overloading, Copy Constructors			7	
Chapter 3. UML Diagram UML Walkthrough, Class Diagram, Use Case Diagram, State Chart Diagram, Activity Diagram, Sequence Diagram			4	
UNI	TII			
Chapter 4. Introduction to Object-Oriented Programming – II Inheritance, Derived Class, Calling the Base Class Constructor, Overriding Member Functions, Polymorphism, Class Inheritance Hierarchies, Revisiting Class Diagrams, Abstract Classes, Run-Time Information, Early vs. Late Binding, Virtual Base Classes, Multiple Inheritance, Interfaces			7	
Chapter 5. Entity Relationship (ER) Model High-Level Conceptual Data Models for Database Design, Entity Types, Entity Sets, Attributes and Keys, Relationship Types, Relationship Sets, Roles and Structural Constraints, Weak Entity Types, Relationship Types of Degree Higher than Two, ER Notations, Informal Design Guidelines for Relation Schemas, Functional Dependencies, Normal Forms Based on Primary Keys, First Normal Form (1NF), Second Normal Form (2NF) and Third Normal Form (3NF), Boyce-Codd Normal Form (BCNF)			8	
	T III			
Chapter 6. Database Management System Introduction, Characteristics of Database Approach,	Actors on the Scene, \	Norkers Behind the	5	

Scene, Advantages and Disadvantages of using DBMS Approach, Data models, Schemas and Instances, Three-Schema Architecture and Data Independence, Database Languages and Interfaces, Database System Environment	
Chapter 7. Cloud Computing Introduction to Cloud Computing, Virtualization Concepts, Main Players, Types of Cloud – Public, Private and Hybrid, Cloud Services – CaaS, SaaS, PaaS, and IaaS, Service Level Agreement, Cloud Security, Cloud Computing at Enterprise Systems Level, Hybrid Cloud Options	5

Laboratory Plan

FMTH0303-3.1

Semester: IV

Year: 2019-20

Laboratory Title: Object-Oriented Programming and Database Management Systems Lab	Lab. Code: 18EARP209
Total Hours: 52	Duration of Exam: 2 hrs
Total Exam Marks: 100	Total ISA. Marks: 80

Experiment-wise plan

2. List of experiments/jobs planned to meet the requirements of the course.

Category: D	Demonstration Total Weig	ghtage: 10	No. of lab	sessions: 9
Learning O	utcomes:			
The studen	ts should be able to:			
Demonstra	te how to compile, debug and run a program in.	NET environment		
Write prog	rams using class, inheritance, and other fundam	entals of OOP.		
	model using UML diagrams.			
Expt./Job No.	Experiment/job Details	No. of Lab. Session/s per batch (estimate)	Marks/ Experiment	Correlation of Experiment with the theory
1	Visual Studio IDE, Hello World Project, Project Properties Programming, Compiling, Debugging, Input, Output and Formatted Output, Number Types, String, Arrays, Variab Definition, Assignments, Constants, Namespace	5,	1	
2	<i>if</i> Statement, <i>switch</i> Statement, Nested <i>if</i> and <i>switch</i> Statements, ? Alternative, <i>while</i> Loop, <i>for</i> Loop, <i>do</i> Loop Nested Loops, Predefined Functions, Functions, Return Values, Arguments, Parameters, Debugging, Default Function Arguments, Procedures, Friend Function, Inline Function, Variable Scope, Global Variable, Program Style	1	1	
3	Pointers, Pointer Variables, Pointer Operators, Pointer Expressions, Array of Pointers, Pointers to Functions, Structures, Structure Members, Structure Assignments, Passing Structures to Functions, Structure Pointers	1	1	
4	Structure vs. Class, Components of a Class, Encapsulatio Access Specifiers, Member Functions, Instance of a Class Default Constructors, Destructors, Accessing Data Fields	, 1	1	Introduction to Object- Oriented Programming - I
5	Passing Objects to Functions, Return Objects, Object Assignment, Friend Function	1	1	Introduction to Object- Oriented Programming - I

6	UML Class Diagram, Use Case Diagram, State Chart Diagram, Activity Diagram, Sequence Diagram	1	1	UML Diagram
7	Abstract Classes, Multiple Inheritance, Interfaces	1	1	Introduction to Object- Oriented Programming - II
8	File Handling, MVC, User Interface	1	2	
9	Connecting Database through C++ Programs	1	1	
Category: Exercise Total Weightage: 30 No. of lab sessions: 10				sessions: 10

Learning Outcomes:

The students should be able to:

Design and model using ER models.

Write programs using class, inheritance, and other fundamentals of OOP.

Write SQL statements concerning data manipulation using retrieving, inserting, updating, and deleting commands.

Write packages/procedure for manipulating data and triggers to enhance data retrieval.

Design and model ER models for different scenarios.

Construct a database schema with data manipulation SQL statement, a proper procedure in place, and create triggers for fast data retrieval.

Expt./Job No.	Experiment/job Details	No. of Lab. Session/s per batch (estimate)	Marks/ Experiment	Correlation of Experiment with the theory
01	Exception Handling, Lists, Queues, Stack	1	3	
02	Constructors with Parameters, Static Class Members - Data Members and Member Functions, Scope Resolution Operator, Nested Classes, Local Classes	1	3	Introduction to Object- Oriented Programming - I
03	Function Overloading, Operator Overloading, Copy Constructors	1	3	Introduction to Object- Oriented Programming - I
04	Inheritance, Derived Class, Calling the Base Class Constructor	1	3	Introduction to Object- Oriented Programming - II
05	Overriding Member Functions, Polymorphism	1	3	Introduction to Object- Oriented Programming - II
06	Class Inheritance Hierarchies	1	3	Introduction to Object- Oriented Programming - II
07	ER Diagram	1	3	Entity Relationship (ER) Model
08	DDL (Data Definition Language), like CREATE, DROP, ALTER, TRUNCATE and RENAME commands, DML (Data Manipulation Language), like SELECT, INSERT, UPDATE and DELETE commands	1	3	Database Management System

09	DML (Data Manipulation Language), like SELECT, INSERT, UPDATE and DELETE commands, and TCL (Transaction Control Language), like COMMIT and ROLLBACK commands	1	3		Database System	e Management
10	Database Performance, Indexing, Views, Procedure	1	3		Database System	Management
Category: St	tructured Enquiry Total Weighta	ge: 20	No.	of lab s	essions	: 2
Design, dev Store data f	itcomes: is should be able to: elop and implement application utilizing previously from the application into the database. elopment and implement the user interface for vis				tahase	
Expt./Job No.	Experiment/job Details	No. of Lab. Session/s p batch (estin	er E	Marks/ Experimer		Correlation of Experiment with the theory
1	Implement an application that utilizes previously learnt concepts to replicate an automation system using classes	2	2 10			
2	Implement a database schema that utilizes previously learnt concepts to capture the data to and from an automation system		2 10			
Category: O	pen Ended Total Weightage: 20	No	. of lab se	essions:	2	
Use the OO Use databas Select the a Write a tech Present the	atcomes: as should be able to: P concepts to implement the project. Se concept to implement the project ppropriate tool/software to implement the project nnical report using a predefined template. technical report of the implemented project. as the learning experiences of working in a team.					
Expt./Job No.	Experiment/job Details	No. of Lab. per batch (estimate)		Marks/ Experim	ent	Correlation of Experiment with the theory
1	Implement an open-ended project using C++/DB concepts for an automation application	^{or} 2		20		

Course Content

Cour	se Code: 18EARC208	Course Title: Microo	controllers Programming & Interfaci	ng	
L-T-P	-SS: 4-0-0-0	Credits:4	Contact Hrs: 4		
ISA N	1arks: 50	ESA Marks: 50	Total Marks: 100		
Teac	hing Hrs: 50		Exam Duration: 100		
		Unit I	I		
No		Content		Hrs	
1	Chapter 1: Introduction to Microcontroller Introduction To Microprocessor and Microcontroller: History and Evolution, types of microprocessors, Difference between Microprocessors and Microcontrollers. CPU architectures: RISC/CISC and Harvard/Von-Neumann, Overview of PIC Microcontroller family, Introduction to different microcontroller families (8051, ATMEL/AVR, and ARM).				
2	Chapter 2: PIC Microcontroller Architecture and assembly language programming Architecture and pin functions, Registers and Instructions, Data formats and directives, Introduction to assembly language programming, Program counter and program ROM space. Branch, Call and Time delay loop: Branch instructions and looping, Call instruction and stack, Time delay instructions and pipeline. Timing diagrams.				
3	Chapter 3: I/O Port programming I/O port programming, I/O bit manipulation programming, Arithmetic, logic instructions and programs: Arithmetic instructions, Signed number concepts and arithmetic operations, logic and compare instructions, rotate instructions and data serialization, BCD and ASCII conversion.				
		Unit II			
4	Chapter 4: PIC and AVR prog Data types and time delays in program ROM allocation, Pro diagrams in-depth.	C, I/O programming, lo	gic operations, data serialization, C18, State diagrams, Timing	5 Hrs	
5	Chapter 5: Timer and Serial port programming Programming TIMERS 0 and 1, counter programming, Programming TIMER0 and 1 in C				
6	programming in assembly and C Chapter 6: Interrupt programming in Assembly and C Polling Vs interrupts, PIC18 Interrupts, Programming timer interrupts, programming external hardware interrupts, programming the serial communication interrupt, PortB change interrupts. ADC, DAC and sensor interfacing: ADC characteristics, ADC programming in the PIC18, DAC interfacing, sensor interfacing and signal interfacing.				

	Unit – III	
7	Chapter 7: Introduction to the STMicroelectronics Line of Microcontrollers STM Nucleo Boards, STM32CubeMX Application: Pinout Tab, MCU Alternative Functions, Integrated Peripheral (IP) Tree Pane, Creating a Project using CubeMX, ARM Cortex Microcontroller Software Interface Standard, Memory-Mapped Peripherals, Core Memory Addresses, Peripheral Memory Addresses, HAL_GPIO Module	5 Hrs
8	Chapter 8: Interrupts and Timers: Interrupts, NVIC Specifications, Interrupt Process, External Interrupts, Interrupt Demonstration, STM Timer Peripherals STM Timer Configuration, Update Event Calculation, Polled or Non-interrupt Blink LED Timer Demonstration, Test Run: Interrupt-Driven Blink LED Timer Demonstration, Test Run: Multi-rate Interrupt-Driven Blink LED Timer Demonstration	5 Hrs

Course Content

	e content			
Course Code: 18EARC207	Course Title: Control Sy	stems		
L-T-P : 4-0-0	Credits: 5	Contact Hrs: 50		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 50		Exam Duration: 3 Hr	s	
Cont	tent		Hrs	
Unit	t - 1			
Chapter No. 1. Introduction to Control Systems Introduction to Control Systems, Classification of Dynamic Systems, Closed Loop Control System with Feedback, Mathematical Preliminaries – Complex Variables, Laplace Transform.				
Chapter No. 2. System Modeling in Frequer Standard Inputs, Free and Forced Response, Tran Response to various Inputs, Effect of Poles, No stability, Block diagram reduction and signal flow g	sfer Function, Poles and Zention of Bounded Input Bo		8	
Chapter No. 3. Time Response Effect of Zeros, Closed Loop Transfer Function, Dynamic Performance Specification, First Order Systems, Second Order Systems, Unit Step Response of Underdamped Second Order Systems, Concepts of Rise Time, Peak Time, Maximum Peak Overshoot and Settling Time, Steady state errors and error constants			8	
Unit	t - 2			
Chapter No. 4. Controllers Controllers – Proportional (P), Integral (I) and Derivative (D) Blocks, Examples of PID controller design, Problems				
Chapter No. 5: Stability Analysis Routh's Stability Criterion, Use in Control Design, Incorporation of Performance Specifications in Controller Design, Analysis of Steady State Errors, Root Locus and its Application in Control Design.			8	
Chapter No. 6 : Frequency Domain Analysis Stability analysis, Bode plot, Nyquist Stability Criterion, Relative Stability – Gain and Phase Margins.			8	
Unit - 3				
Chapter No. 7 : Design Via Frequency Resp Control System Design via Frequency Response –		Compensation	5	
Chapter No. 8: Case Studies Plants for Pressure Control, Electromechanical Pla Modeling and design of Aircraft.	nts, Modeling and design of I	nvertedPendulum,	5	

Laboratory Plan

Laboratory Course Plan: B E in A&R

Semester: 4th Semester

Year:2019-2020

Laboratory Title: Microcontroller Lab	Lab. Code: 18EARP208
Total Hours: 28	Duration of SEE Hours: 2
SEE Marks: 20	CIE Marks: 80

Experiment wise Plan

List of experiments/jobs planned to meet the requirements of the course.

	Category: Demonstration Total Weightage:20 No	o. of lab sessions	: 2		
Expt./ Job No.	Experiment/job Details	No. of Lab. Session/s per batch (estimate)	Marks/E xperime nt	Mark s obtai ned	Correlation of Experiment with the theory
1	Compare Architectures of different microcontrollers w.r.t to time response, frequency response, delay, process time etc. Write a program to demonstrate the blinking of LED in PIC16F877A a Arduino board.	and 1	5		Chap1
	Learning Objectives : The students should be able to: Study the data sheets and make a comparative study of the Architect applications of different microcontroller Compare and contrast different microcontrollers. Connect microcontroller to LED and blink LED with proper delay. Apply suitable method or logic to solve given problem. Pre-lab: Download the data sheets of PIC16F877a, ATMEGA328, 8051 microcontroller to websites http://www.atmel.com/images/Atmel-8271-8-bit-AVR-Microcontroller 168A-168PA-328-328P_datasheet_Complete.pdf http://ww1.microchip.com/downloads/en/DeviceDoc/39582b.pdf http://ww1.microchip.com/downloads/en/devicedoc/41159d.pdf http://www.farnell.com/images/doc8161.pdf http://www.farnell.com/idatasheets/46220.pdf http://www.nxp.com/documents/data_sheet/LPC2921_23_25.pdf Draw the architectural layout of the following microcontrollers with p	ontrollers from t ler-ATmega48A-4	:he followir 48PA-88A-8	0	

	PIC16F877a				
	ATMEGA328				
	8051				
	Make a comparative study and fill up the table 1 given in lab manual.				
	Download the application notes.				
	Prepare flowcharts and develop the code to demonstrate the use of the microcontroller as a simple				
	digital output device.				
	Study Proteus 8 Professional				
	Study different ports and understand the basic LED program				
	In lab:				
	Must be able to explain difference between various types of Microcontro	ollers and its	architectu	res.	
	Setup the hardware platform and deploy the code on the hardware.				
	If any errors debug the code until it works.				
	Make a note of the number and types of errors.				
	Simulate LED blink program on Proteus 8 Professional				
	Post-lab:				
	Analyze the cause for errors and make a note.				
2	Write a program to demonstrate a counting machine which count from	1	5		Chap2
	0000 to 9999 and display on 7 segment LED display using PIC16F877A		-		
	and Arduino board.				
	Learning Objectives :				
	The students should be able to:				
	Use 7Segment LED for counting numbers.				
	Use appropriate logic or method for counting.				
	Pre-lab				
	Study the application notes of Arduino and PIC16F877a				
	Study advantages and disadvantages of Arduino and PIC16F877a microco	ntrollers			
	Understand 7segment LED.	introller3			
	Prepare flowcharts and develop the code to demonstrate the use of the i	microcontro	llor ac a cir	nnlo	
	digital input and output device			iihie	
	Study different segments of LED				
	In-lab				
	Write program for both Arduino and PIC				
	If any errors debug the code until it works.				
	Make a note of the number and types of errors.				
	Simulate in Proteus				
	Setup the hardware platform and deploy the code on the hardware.				
	Execute the code and note the output.				
	Post-lab				
	Record the results and experience you got in lab				
	Analyze the cause for errors and make a note		1	1	
3.	Write a program to read the values from the temperature sensor	1	5		Chap2,3
	(LM35) and display the temperature in degree Celsius on LCD display				

[r	I
	using PIC16F877A and Arduino board.				
	Learning Objectives :				
	The students should be able to:				
	Connect LM35, LCD and microcontroller.				
	Write function to read values from LM35 and display it on LCD.				
	Pre-lab				
	Study the application notes of Arduino and PIC for interfacing LM35 and				
	Prepare flowcharts and develop the code to demonstrate the use of the	microcontro	oller as a sir	nple	
	digital input and output device.				
	Study what is 16*2 LCD and how it works.				
	Analyze the driver required for LCD.				
	In-lab				
	Write program for both Arduino and PIC				
	Execute the code and note the output.				
	If any errors debug the code until it works. Simulate LCD display in Proteus.				
	Setup the hardware platform and deploy the code on the hardware.				
	Make a note of the number and types of errors.				
	Post-lab				
	Analyze the cause for errors and make a note.				
	List down different types of LCDs and sensors.				
4	In bank lockers there is requirement of password protection to	1	5		Chap2,3
т		-	5		chap2,5
	open the locker. Develop an application Using a 4*3 keypad				
	and LCD to secure the lockers by providing password				
	protection.				
	Learning Objectives :				
	The students should be able to:				
	Connect Keypad, LCD with microcontroller.				
	Write logic to read key press event from keypad.				
	Pre-lab				
	Study the application notes of Arduino and PIC for interfacing keypad and				
	Prepare flowcharts and develop the code to demonstrate the use of the	microcontro	oller as a sir	nple	
	digital input and output device.				
	List down different types of keypads				
	Analyze the driver required for 4*3 keypad. In-lab				
	Write programs for both Arduino and PIC Execute the code and note the output.				
	If any errors debug the code until it works.				
	Make a note of the number and types of errors.				
	Simulate both in Proteus				
	Setup the hardware platform and deploy the code on the hardware				
	Post-lab				

	Record the results and experience in manual List down the different applications of Keypad in real	world (eg. In Securit	tv annlicati	ons)		
	Category: Exercises Total Weight		ty application		ab sessior	าร:4
Expt./ Job No.	Experiment/job Details		No. of Lab. Session/s per batch (estimate)	Marks/E xperime nt	Marks obtain ed	Correlation of Experiment with the theory
5	Write a program to measure the distance of an object ultrasonic Sensors and display the distance in terms inches. Make the connections as per the schematic at flowchart and the code to perform the required oper Learning Objectives : The students should be able to: Connect Ultrasonic Distance Sensor and microcontro Logic to find distance in CM and Meters.	of centimeters and nd develop the ration.	1	5		Chapter 4
	Pre-lab Study the application notes of Arduino and PIC for in Understand different types of sensors. List the advantages and disadvantages of different se Prepare flowchart and develop the code to demonst analog input sensor and convertor. In-lab Write programs for both arduino and PIC Execute the code and note the output. If any errors debug the code until it works. Make a note of the number and types of errors Setup the hardware platform and deploy the code on Post-lab Record the results and experience in manual Try interfacing at least two other sensors and note d List real world applications of sensors.	ensors. rate the use of the m		ller as a sim	nple	
6	Write a program to control the speed and direction of servo motors.	of DC, stepper and	1	5		Chapter 4,5
	Learning Objectives : The students should be able to: Understand the connections from microcontroller to Discuss how motor driver helps in controlling the spe Pre-lab: Study the application notes of Arduino and PIC for in Study the working principle of DC motor. Study in detail about different types of DC motors ar List advantages and disadvantages of DC motors	eed on a DC motor. terfacing DC motor.	es.			

					1
	List the applications in the real world				
	In lab:				
	Write programs for both Arduino and PIC				
	Simulate in Proteus				
	Demonstrate the hardware for both Arduino and PIC.				
	Post-lab				
	Record the results and experience in manual				
	Measure the speed of the DC motor w.r.t voltage.		1	1	
7	Design and develop an interconnected connection of contr		1	5	Chapter 4,5
	communicate and transfer data between them. Use Bluet	ooth			
	modulecontroller.				
	Learning Objectives :				
	The students should be able to:				
	Establish connection between different controllers and tra	nsfer the data			
	Pre-lab:				
	Get familiar with Bluetooth module				
	Sketch circuit diagram on paper.				
	In lab:				
	Design circuit.				
	Simulate in Proteus				
	Demonstrate the hardware for both Arduino and PIC.				
	Post-lab				
	Record the results and experience in manual				
	Measure the speed of the stepper motor w.r.t step angle.				
8	Design and develop an IOT (Internet of Things) system to c	ollect data	1	5	Chap 6
	from NPK or pH sensor and store the data in the cloud. Us	e Wi-Fi-			
	module and controller.				
	Learning Objectives :		1		
	The students should be able to:				
	Develop an IOT system that must be able to record and sto	ore the data on	n cloud.		
	Pre-lab:				
	Get familiar with IOT and Wi-Fi module.				
	In lab:				
	Wire-up the circuit and place the sensor in the farm field/	garden and co	llect the data	۱.	
	Store the collected data on cloud for analysis.	5			
	Demonstrate the hardware for STM MCU.				
	Post-lab				
	Record the results and experience in manual				
	Category: Structured Enquiry Total Weightage:	20		No. of lab se	ssions:4
Expt./Jo	Experiment/job Details	No. of Lab.	Marks/Exp		Correlation of
b No.		Session/s per	riment	obtained	Experiment
		batch		e stanica	with the
	Write Times and interrupt are successed as CTMANACL	(estimate)	10		theory
9	Write Timer and interrupt programs on STM MCU.	1	10		Chapter 6,7

	Learning Objectives : The students should be able to: Differentiate between polling and interrupt. Control the flow of program using timers. Pre-lab: Understand types of timers and interrupts Applications and working principles of timers and interrupt	s.			
	 In lab: i. Simulate the working of timers and interrupts ii. Demonstrate the hardware for STM. Post-lab Record the results and experience in manual Measure the speed of the stepper motor w.r.t step angle. 				
10	Develop an applications using STM MCU to predict the data using the existing trained module.	1	10		Chapter 6,7
	Learning Objectives : The students should be able to: Demonstrate the knowledge of data analysis. Pre-lab: Understand different trained modules that can be used on In lab: Analyze and predict data for the selected trained module. Demonstrate the hardware for STM MCU. Post-lab Record the results and experience in manual	STM MCU.			
	Category: Open Ended Total Weightage:	1		No. of lab sessi	on:2
Expt./ Job No.	Experiment/job Details	No. of Lab. Slots per batch (estimate)	Marks/Expe riment	Marks obtained	Correlation of Experiment with the theory
11	Develop an IOT system using NPK and existing prediction module to suggest the crop to be grown in the field considering weather forecasting.	2	20		Chapter 1 to 7
	Learning Objectives : The students should be able to: Identify the problem and solve. Apply the knowledge of electronics, data science and progr	amming.			

Page of

Year:

Program: Biotechnology			
Course Title: Biochemistry	Course Code: 15EBTC202		
L-T-P: 4-0-0 Credits: 4.0		Contact Hours: 04 Hours/Week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 50	Examination Duration: 03 Hours		

Unit I

1. Biochemical Foundation & Carbohydrates

Types of chemical reactions, Solution chemistry. pH (Henderson-hesselbatch equation) Buffers and their Biological importance, carbohydrates- chemical structure and properties classification-Monosaccharide's, Disaccharides, Sugar derivatives, deoxy sugars, amino sugars, and sugar acids, phosphorylated sugars, structure and properties of polysaccharides, Homopolysaccharides, Heteropolysaccharides - Peptidoglycan, Glycosaminoglycans, Glycoconjugates, Glycobiology . Biological importance of carbohydrates. **07 Hours**

2. Lipids

Definition and classification of lipid – simple, compound and derived lipids. Structure, classification and properties of fatty acids, Essential and non-essential fatty acid with physiological importance. Structure and physiogical functions of phospholipids, Sphingolipids, cerebrosides and gangliosides. Steroids- Structure and functions of cholesterol,. Eicosanoids, lipoproteins and terpenes. Vitamins-classifications and functions **05 Hours**

3. Amino acids and Proteins

Definition, Classification and properties of amino acids, reactions, rare amino acids, essential and nonessential amino acids with physiological importance. Peptides - Definition of peptide bond, Biologically important peptides. Proteins – Classification- primary, secondary- Alpha helix, Beta sheets, tertiary and quaternary proteins-hemoglobin. Ramachandran plot, polypeptide sequencing- Edman degradation, Chemical synthesis of Peptides. **05Hours**

4. Nucleic acids

Structure and properties of purines, pyrimidines, nucleosides and nucleotides. Nucleic acids-Structure of DNA, RNA -Types, 03 Hours

Q KLE TECH.	FORM ISO 9001: 2015 – KLE TECH Department of Biotechnology	Document #: FMCD2005	Rev: 1.1
	Detailed Content	Page of	
		Year:	

Unit II

5. Carbohydrate metabolism

Glycolysis-aerobic and in anaerobic pathway, Energy yield of glycolysis Regulation of glycolysismetabolic and hormonal. Fates of pyruvate. Glycogen - synthesis and degradation. Regulation of glycogen metabolism. Gluconeogenesis, Pentose phosphate pathway. Significance of pentose phosphate pathway and regulation. Production of Acetyl-CoA, Reactions of Citric acid cycle, Anaplerotic reactions, regulation of citric acid cycle. Glyoxylate cycle, Electron transport chain, ATP synthesis, shuttle systems and Oxidative phosphorylation. Cyclic and Non-cyclic Photophosphorylation and Calvin Cycle (C3) in plants Disorders of carbohydrate metabolism. Production of microbial polysaccharides; industrial and Medical application of exopolysaccharides.

10 Hours

6. Metabolism of Amino acids

General reactions of amino acid metabolism, urea cycle, amino acid biosynthesis-aspartate and glutamate family and degradation of aromatic amino acid - phenylalanine and tyrosine, metabolic disorders of amino acid metabolism, biosynthesis of plant substances and neurotransmitters, Environmental and Industrial Significance of Amino acid metabolism.

05 Hours

7. Metabolism of Fatty acids

Fatty acid oxidation, biosynthesis of fatty acids, Ketone bodies, phospholipids and spingolipids cholesterol biosynthesis, Regulation, metabolic disorders of lipid metabolism. Environmental and 05 Hours Industrial Significance of lipid metabolism

Unit III

8. Metabolism of Nucleic acids

Biosynthesis and degradation of purines and pyrimidines, salvage pathway, uric acid production, regulation, metabolic disorders of nucleic acid metabolism. 05 Hours

9. Biological Membranes And Transport Mechanism

Composition and functions of biological membranes (fluid mosaic model) - Proteins, Carbohydrates, Glycoprotein and glycolipids, Membrane transport - Passive transport and Active transport. Mechanism of Na+ and K+, glucose and amino acid transport. Role of transport in signal transduction processes. 05 Hours

Text Books

- 1. David L. Nelson, Michael M. Cox, Lehninger Principles of Biochemistry, Sixth Edition, W.H. Freeman, 2012.
- 2. Jeremy M. Berg, John L. Tymoczko, Lubert Stryer., Biochemistry, 7th revised International edition, Palgrave MacMillan, 2011.

Q KLE TECH.	FORM ISO 9001: 2015 – KLE TECH Department of Biotechnology	Document #: FMCD2005	Rev: 1.1
	Detailed Content	Page of	
		Year:	

Reference Books

- 1. Donald Voet and Judith G. Voet. , Biochemistry, 4th edition, Wiley; , 2010
- 2. Geoffrey L. Zubay, Principles of Biochemistry, Edition: 4th, William C Brown Pub, 1999.

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
I	3 Questions to be set of 20 Marks Each	1, 2, 3,4	Solve Any 2 out of 3
11	3 Questions to be set of 20 Marks Each	5,6,7	Solve Any 2 out of 3
III	2 Questions to be set of 20 Marks Each	8,9	Solve Any 1 out of 2

Q KLE TECH.	FORM ISO 9001: 2015 – KLE TECH Department of Biotechnology	Document #: FMCD2005	Rev: 1.1
	Detailed Content	Page of	
		Year:	

Program: Biotechnology		
Course Title: Enzyme Tec	chnology	Course Code: 17EBTC201
L-T-P: 4-0-0	Credits: 4.0	Contact Hours: 04 Hours/Week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 50	Examination Duration: 03 Hours	3

Unit I

1. Introduction to enzymes

History, nomenclature, classification of enzymes, sources of enzymes, properties of enzyme, Types of specificities, mechanism of enzyme action-Lock and Key model and Induced fit model, Enzyme catalysis -Acid base catalysis, covalent catalysis, metal ion catalysis, Proximity and orientation effects. Mechanism of coenzymes (NAD/NADP,FAD/FADH₂,PLP, Coenzyme A, TPP, Biotin) 07 Hours

2. Purification of enzymes

Objectives and strategies in enzyme purification, choice of source-plant, animal and microbial, purification of intracellular and extracellular enzymes (Comprehensive flow sheet for enzyme purification), methods of homogenization, methods of separation-Enzyme fractionation by precipitation (using Temperature, salt, solvent, pH, etc.), liquid-liquid extraction, ionic exchange, gel chromatography, affinity chromatography and other special purification methods., Methods of characterization of enzymes; Analysis of yield, purity and activity of enzymes. Molecular weight determination-SDS-PAGE, MALDI-TOF **08 Hours**

3. Enzymatic techniques

Enzyme assay, Enzyme and isoenzyme measurement methods with examples (fixed incubation and kinetic methods) Methods for investigating the kinetics of Enzyme catalyzed reactions-Initial velocity studies, rapid-reaction techniques, Standardization and optimization methods, stability and activity of enzymes 05 Hours

KLE TECH.	FORM ISO 9001: 2015 – KLE TECH Department of Biotechnology	Document #: FMCD2005	Rev: 1.1
	Detailed Content	Page of	
		Year:	

Unit II

4. Enzyme Kinetics and Enzyme Inhibitions.

Kinetics of single substrate reactions: Derivation of Michaelis -Menten equation, turnover number: K_{cat} value, determination of Km and Vmax, Line Weaver Burk plot, Eadie Hofstee plot, Hanes woolf plot, Importance of Km & Vmax; Enzyme inhibitions- reversible, competitive, uncompetitive and non-competitive inhibitions and kinetics, allosteric and irreversible inhibition. Substrate inhibitions, Multi-substrate reactions-ordered mechanisms, random mechanisms, Ping-pong mechanism. Allosteric enzymes and regulation - The Monad - Changeux - Wyman model (MCW) and The Koshland - Nemethy - Filmer (KNF) model, Feedback regulation and covalent regulation.

07 Hours

5. Enzymes Of Medical Importance

Acetylcholinesterase, angiotensin converting enzyme (ACE), ACE Inhibitors, HMG Co A reductase inhibitors, pseudocholinesterase, 5'-nucleotidase (5NT), glucose-6-phosphate dehydrogenase immunoreactive trypsinogen (IRT) (GPD), CKisoforms. and chymotrypsin; amvlase isoenzymes. Importance of enzymes in diagnostics, Enzyme pattern in diseases like Myocardial infarctions, (SGOT, SGPT & LDH). Isoenzymes (CK, LD, ALP). Enzymes in immunoassay 07 Hours techniques, Therapeutic enzymes.

6. Enzyme Immobilization

Techniques of enzyme immobilization, adsorption - matrix entrapment- encapsulation- crosslinking - covalent binding - examples; whole cell immobilization and their application, kinetics of immobilized enzymes, effect of solute, partition & diffusion on the kinetics of immobilized enzymes, uses of immobilized enzymes, Design of Immobilized Enzyme Reactors- Stirred tank reactors(STR), Continuous Flow Stirred Tank Reactors (CSTR), Packed- bed reactors (PBR), Fluidized-bed Reactors (FBR); Membrane reactor 06 Hours

Unit III

7. Industrial Applications of enzymes:

Enzymes used in detergents, use of proteases in food, leather and wool industries, uses of lactase in dairy industry, methods involved in production of glucose and maltose syrup from starch (using starch hydrolyzing enzymes), Glucose from cellulose, glucose oxidase and catalase in food 05 Hours industry,

8. Enzyme transformation and Enzyme Biosensors

The design and construction of novel enzymes- Enzyme Engineering and site directed mutagenesis, Designer enzymes, synzymes, Biocatalysts from extreme Thermophilic and Hyperthermophilic microorganisms (extremozymes) Elements of biosensors, Design of enzyme electrodes and their applications as biosensors in industry, health care and environment.

05Hours

ECH.	FORM ISO 9001: 2015 – KLE TECH Department of Biotechnology	Document #: FMCD2005	Rev: 1.1
	Detailed Content	Page of	
		Year:	

- 1. David L. Nelson, Michael M. Cox, Lehninger Principles of Biochemistry. , 6, W.H. Freeman, 2012
- 2. Trevor Palmer, 2. Enzymes: Biochemistry, Biotechnology and Clinical Chemistry, 1, East-West Press Pvt. Ltd, 2004

References

- 1. Laurence A. Moran, Raymond S. Ochs, J. David Rawn, and K. Gray Scrimgeour. , Principles of biochemistry., 3, Prentice Hall, 2002
- 2. Faber, Biotransformation in Organic Chemistry , 4, Springer, 2000 Aehle W, Enzymes in industry- production and applications, 3, Wiley-VCH, 2007
- 3. Nicholas .C. Price and Lewis Stevens, Fundamentals of Enzymology , 3, Oxford University Press , 1991

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
I	3 Questions to be set of 20 Marks Each	1, 2, 3	Solve Any 2 out of 3
II	3 Questions to be set of 20 Marks Each	4,5,6	Solve Any 2 out of 3
	2 Questions to be set of 20 Marks Each	7,8	Solve Any 1 out of 2

C KLE TECH.	FORM ISO 9001: 2015 – KLE TECH Department of Biotechnology	Document #: FMCD2005	Rev: 1.1
	Detailed Content	Page of	
		Year:	

Program: Biotechnology		
Course Title: Bioprocess	Plant Design and Economics	Course Code: 18EBTE301
L-T-P: 3-0-0	Credits: 3.0	Contact Hours: 03 Hours/Week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 0 Hours	3
	11:41	

Unit I

1. Introduction to Process Design Development

Design project procedure, design information from the literature and other sources of flow diagrams, preliminary design, and comparison of different processes, information. Equipment design and specialization, factors affecting the investment. 06Hours

2. General Design Considerations

Marketability of the product, availability of technology, Health and safety hazards, raw materials, human resources, loss prevention Environmental protection and utilities, site characteristics. plant location, plant layout, plant operation and control, utilities, structural design, storage, materials handling, materials and fabrication Selection, optimum design and design strategy. Waste disposal, physical treatment, chemical treatment and biological treatment, govt. regulations and other legal restrictions, community factors. Safety and hazard control measures.

10 Hours

Unit II

3. Cost Analysis and Manufacturing Cost

Cost Analysis: Factors involved in project cost estimation. Cash flow diagrams for the industrial operation, Cumulative cash position, factors affecting the Investment and production cost, Different methods employed for the estimation of the capital investment. Estimation of equipment cost by sixth tenth rule, Cost index. Marshall and swift installed – equipment indexes, Engineers News-Record construction index, Nelson -Farrar refinery construction index. and Chemical Engineering plant cost index Manufacturing Costs: Direct Production costs, indirect cost and fixed charges (including depreciation, taxes, insurance, rental costs etc.)

10 Hours

4. Bioprocess Economics:

Economic analysis for the production of following Products. (Historical Perspective, Fermentation Technology, Recovery of product and process economics of following products)High volume, low value products. (Citric acid, Ethanol and Amino acids etc) Medium volume, medium value products.(Antibiotics, Crude Enzymes and Vitamins etc)

FORM ISO 9001: 2015 – KLE TECH Department of Biotechnology	Document #: FMCD2005	Rev: 1.1
Detailed Content	Page of	
	Year:	

Low volume, high value products. (MAb, purified Enzymes and Therapeutic proteins etc)
 06 Hours

Unit III

5. Profitability Analysis and Optimization Technique

i) Importance of profitability analysis in investment decision making. Different Methods for calculating the profitability. Minimum Acceptable Rate of return. Methods that Do not consider Time value of money.

04 Hours

ii) General procedure to find the optimum conditions, factors affecting the optimization, comparison of analytical and graphical methods. Linear programming, Simultaneous Equations and dynamic programming

04 Hours

Text Books:

- 1. Peters and Timmerhaus, Plant Design and Economics for Chemical Engineers, McGraw Hill 5th edition, 2004.
- 2 Chemical Engineering plant design, Frank C Vilbrandt and Charles E Dryden , McGraw Hill 4th edition, 1959

Reference Books:

- 1. Rudd and Watson, Strategy of Process Engineering, Wiley, 1987.
- 2. Backhurst, J.R And Harker, J. H Process Plant Design, Heieman Educational Books, (1973).
- 3. Biochemical Engineering Fundamentals, James E Baily David F Oillis. McGraw-Hill 2nd Internat Edition

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
I	3 Questions to be set of 20 Marks Each	1, 2	Solve Any 2 out of 3
II	3 Questions to be set of 20 Marks Each	3,4	Solve Any 2 out of 3
Ш	2 Questions to be set of 20 Marks Each	5	Solve Any 1 out of 2

C KLE TECH.	FORM ISO 9001: 2015 – KLE TECH Department of Biotechnology	Document #: FMCD2005	Rev: 1.1
	Detailed Content	Page of	
		Year:	

Program: Biotechnology			
Course Title: Environmental Biotechnology Course Code: 18EBTE404			
L-T-P: 3-0-0	Credits: 3.0	Contact Hours: 03 Hours/Week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40	Examination Duration: 03 Hours		

Unit I

1. Introduction

Issues and scope of Environmental Biotechnology, Environment and Biotechnology, Areas of applications for Biotechnology. Microbes and Environment, Genetically modified organisms and Legislation. 03 Hours

2. Waste Water Treatment

Sources of water pollution, Waste water characteristics: Physical, Chemical and Biological characteristics. Chemical Oxygen Demond (COD) and Biochemical Oxygen Demond (BOD). Introduction to physical and chemical waste water treatment methods. Biological wastewater treatment methods: Aerobic suspended growth treatment processes (Activated Sludge Process, aerared lagoons etc), Aerobic attached growth treatment processes (Trickling Filter, Rotating Biological contactors), Anaerobic suspended growth treatment processes- contact digestors, packed column reactors, UASB. 12 Hours

Unit II

3. Solid waste Management

Basic aspects, Generation of solid wastes, general composition of Municipal solid waste, On site handling, storage and processing, Collection of solid wastes. Solid waste processing techniques and equipments. Recovery of biological conversion products from solid waste such as sanitary landfilling, recycling, vermicomposting, incineration. composting. Solid waste management for energy recovery-Biogas production, processing of lignocellulosic waste biomass for ethanol production

10 Hours

4. Bioremediation

Uses of bacteria for bioremediation, bioremediation of aromatic and aliphatic hydrocarbons, PCB dechlorination, immobilization techniques for bioremediation, biosorption & bioaccumulation, genetic engineering of microbes for bioremediation. Phytoremediation-plants capable of assimilating heavy metals 05 Hours

5.Bioleaching

Unit III

Bioleaching using microbes, role of Thiobacilli, direct & indirect bioleaching, copper extraction by leaching, dump leaching 05 Hours

Q. KLE TECH.	FORM ISO 9001: 2015 – KLE TECH Department of Biotechnology	Document #: FMCD2005	Rev: 1.1
	Detailed Content	Page of	
		Year:	

6. Environmental Impact Assessment

Introduction, Scope and history of EIA, Need of Environmental Impact assessment. Stakeholder and public involvement, Identification and quantification of environmental effects and 05 Hours Environmental Impact statement (EIS)

Text Books:

- 1. Metcalf and Eddy, Wastewater Engineering, International Edition, McGraw-Hill, 1991
- 2. George Tchobanoglous, Hilary Theisen and Rolf Eliassen, Solid Wastes, McGraw Hill Kogakusha

Reference Books:

- 1. Colin Ratledge, Basic Biotechnology, Cambridge Pub, 2001
- 2. Indu Shekhar Thakur, Environmental Biotechnology, IK Pub, 2006
- 3. Pradipta Kumar Mohapatra, Environmental Biotechnology, IK Pub, 2006

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
I	3 Questions to be set of 20 Marks Each	1,2	Solve Any 2 out of 3
11	3 Questions to be set of 20 Marks Each	3,4	Solve Any 2 out of 3
	2 Questions to be set of 20 Marks Each	5,6	Solve Any 1 out of 2

Q LE TECH.	FORM ISO 9001: 2015 – KLE TECH Department of Biotechnology	Document #: FMCD2005	Rev: 1.1
	Detailed Content	Page of	
		Year:	

Program: Biotechnology		
Course Title: Bioinformatics	Course Code: 19EBTC301	
L-T-P: 4-0-0	Credits: 4.0	Contact Hours: 04 Hours/Week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 50	Examination Duration: 03 Hours	

Unit - I

1.Database

Introduction, meaning of databases, types of databases, Primary Database: NCBI, Genbank, DDBJ, EMBL. File formats, Secondary Database: PROSITE, PIR, UNIPROT, BLOCKS, Pfam, specialized databases: metabolic pathway database, Structure Database: PDB, MMBD, CATH, SCOP, Ligand Database, Enzyme database, human disease database, microbial and viral genome database, structure visualization tools.

7 Hours

2. Pairwise Sequence Alignment

Meaning and significance of Sequence alignment, Pairwise sequence alignment, Global alignment, Local Alignment, overview of methods, Methods & Algorithms-dot matrix, dynamic programming, substitution matrices, gap penalties, FASTA, BLAST, PSI-BLAST & PHI-BLAST.

8 Hours

3.Multiple Sequence Alignment

Meaning of Multiple Sequence Alignment, Global Multiple Sequence Alignment: Progressive Alignment methods, Iterative methods, Local Multiple sequence Alignment, Significance of Multiple Sequence Alignment, Multiple Sequence Alignment editors. Motifs and Patterns analysis

5 Hours

4.Molecular Phylogenetics

Meaning of phylogenetic analysis, Meaning & significance of evolutionary trees, Rooted and unrooted trees, Elements of phylogenetic Models, Phylogenetic Data Analysis, Distance based methods: Neighbor Joining (NJ) method, Fitch-Margoliash (FM) method, Minimum Evolution (ME) method, Character based methods: Maximum parsimony, Maximum Likelihood; Tree Evaluation methods, Phylogenetic Softwares

5.Gene Prediction

Prokaryote and Eukaryote gene prediction, Prokaryote and Eukaryote promoter site prediction Gene Prediction tools, Genomic database, Next Generation Sequencing.

Unit - II

7 Hours

Department of Biotechnology

Detailed Content

Page of

Year:

6.Protein Prediction

Protein structures: Secondary Structure: Alpha helix, beta Sheets, phi & psi angles, Ramachandran plots. Protein Secondary Structure Prediction, Tertiary Structure Predictions: Homology modeling, Protein analysis software: Physicochemical parameters, binding site, sub-cellular location, protein stability, patterns

8 Hours

5 Hours

Unit - III

7.In-silico Drug Designing-I

Introduction to traditional drug designing, Introduction in-silico drug designing approach, Methodology for in-silico drug designing: Structure based and Fragment based drug designing, Steps in drug designing: Target identification, target validation, lead identification and validation, different tools used for drug designing, molecular Modeling

5 Hours

8.In-silico Drug Designing-II

Identification of ligands, Lipinski's rule, Virtual Screening, Process of Docking, Quantitative structure-activity relationship (QSAR), Physical and Chemical basis of receptor ligand interactions, ADMET property analysis. **5 Hours**

Text Books

- 1. Andreas D. Baxevanis, B. F. Francis Ouellette, Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, 3rd, Wiley-Inte, 2005
- 2. David Mount, Bioinformatics: Sequence and Genome Analysis , 2nd, Cold Sprin, 2004

Reference Books

- 1. P. Rastogi, N. Mendiritta, S. C. Rastogi, Bioinformatics: Methods and Applications: Genomics, Proteomics and Drug Discovery, 4th, Prentice-H, 2013.
- 2. Anand Solomon K, Molecular Modelling and Drug Design , 1st, MJP Publis, 2015
- Richard Durbin, Sean R. Eddy, Anders Krogh, Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids, 1st, Cambridge, 1998

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
I	3 Questions to be set of 20 Marks Each	1, 2, 3	Solve Any 2 out of 3
II	3 Questions to be set of 20 Marks Each	4,5,6	Solve Any 2 out of 3
111	2 Questions to be set of 20 Marks Each	7,8	Solve Any 1 out of 2

FORM ISO 9001: 2015 – KLE TECH Department of Biotechnology

Detailed Content

Page of

Year:

Program: Biotechnology		
Course Title: Bioprocess Con	trol and Automation	Course Code:19EBTC302
L-T-P: 4-0-0	Credits: 4.0	Contact Hours: 4 hours/week
ISA Marks:50	ESA Marks:50	Total Marks:100
Teaching Hours:50	Examination Duration:3 hrs	

Unit I

1 Instrumentation & Process Dynamics: Introduction to Measurement of important physicochemical and biochemical parameters in bioprocess. Methods of on line and off line estimation of biomass, substrates and products. Brief introduction to typical automatic control system and its components. Open loop and closed loop control systems.

05 Hours

2 First & Second Order Systems: Mathematical representation of physical systems. Transfer function representation of linear first order systems, Examples: mercury in glass thermometer & Liquid level system. Mathematical forms of standard Input function/Forcing Functions such as Step input, Impulse Input, Linearly increasing Input and Sinusoidal Input. Response of first order system for step input, Features of step response, Response of linearly increasing input. Conceptual numerical. First Order Systems in Series: Interacting and Non-Interacting systems & their Transfer function representation. Second Order Systems: Transfer function representation of Second order systems, Example: Pneumatic Control Valve.

10 Hours

Unit II

3 Controller and Final Control Elements: Different types of controllers-P (Special case of Pcontroller i.e ON-OFF controller), PI, PD, PID controllers. Derivation of Transfer Functions of different types of controllers. Final control element: The role of Final control Element in control system. Example: Pneumatic Control Valve: Working of Pneumatic control valve, Types of Pneumatic Control Valves i.e. Air to close & air to open.

10 Hours

4 Block Diagram Reduction: Block diagram representation of control systems, Block diagram reduction in case of Servo and Regulatory control systems. Reduction of block diagrams for single input & Single output systems (SISO) & Multiple Input & Multiple Output Systems (MIMO), Problems on block diagram reduction.

05 Hours

5 Block Diagram Reduction (MIMO systems): Analysis of Multiple Input Multiple Output Systems: Introduction to Multiple Input & Multiple Output Systems (MIMO), Examples of MIMO systems. Analysis of MIMO systems considering only one Input at a time while other Inputs are Suppressed. Considering only one output at a time while other outputs are Suppressed. Problems on block diagram reduction considering MIMO systems.

05 hours

Page of Year:

6 Transient response of different controllers for Servo & Regulatory control Problems: Transient response of P, PI, PD & PID controllers for servo and regulatory problems. The determination of offset in all cases. 05 Hours

7 Analysis of Stability: Concept of stability, stability criterion. Routh test for stability. Theorems of Routh Array test, Conceptual numerical on Routh test for stability. **05 hours**

Text Books

- 1. Process System analysis and control by Donald R Coughnowr, 2nd Edn.Mc Graw Hill,1991
- 2. Chemical Process Control by George Stephanopoulos, Prentice Hall of India, 1999

Reference Books

1. Process Control-Peter Harriott, Tata McGraw-Hill Publishing Company Limited, 2004.

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
I	3 Questions to be set of 20 Marks Each	1,2	Solve Any 2 out of 3
II	3 Questions to be set of 20 Marks Each	3,4,5	Solve Any 2 out of 3
III	2 Questions to be set of 20 Marks Each	6,7	Solve Any 1 out of 2

Page of

Year:

Program: Biotechnology				
Course Title: Bioprocess Modeling and Simulation Course Code: 18EBTE401				
L-T-P: 3-0-0	Credits: 3.0	Contact Hours: 03 Hours/Week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 40	Examination Duration: 03 Hours			

Unit I

1.Introduction to modeling:

Introduction, Mathematical Modeling of Bioprocess Engineering System, General Aspects of the Modeling Approach, General Modeling Procedure: Fundamentals uses of mathematical model, scope of coverage, principles of formulation; Fundamental Laws of Modeling: continuity equation, energy equation with examples **05 Hours**

2.Fundamental Laws of Modeling:

Equation of motion, transport equation, equation of state, phase and chemical equilibrium, chemical kinetics; Lumped and distributor parameters with examples 05 Hours

3. Mathematical models of Biochemical Engineering Systems:

Modeling of Batch reactors, modeling of CSTR, Numericals. Plug flow reactor, Fluidized bed reactor, Reactors used in effluent treatments, packed bed reactor. **05 Hours**

Unit II

4. Use of MATLAB in Process Simulation:

Basics-Data analysis-curve fittings, Numerical integration, Euler and fourth order RungeKutta method, Input and Output in MATLAB. Solving problems using MATLAB by numerical integration, Euler and fourth order Runge Kutta methods. Simulation of CSTR and Batch Reactor, Simulation of Plug flow reactor.

4.Introduction to Process Design:

Steps involved in process design, Process flow diagram structure and hierarchical approach, importance of Material and Energy balance, selection of unit operations,

05 Hours

Unit III

5.Introduction to process simulation software

Bioprocess design with example: Process Description, Specifying Process Sections, Specifying Equipment Sharing, Initialization of Reaction Operations, Process Analysis, Cost Analysis and Economic Evaluation, Environmental Impact.

05 Hours

Page of

Year:

6. Use of Super Pro in Process Simulation:

Detailed Content

Components and mixtures, Physical and Chemical properties of components, material and energy balance simulation, adding unit operation, scheduling the unit process, process cost estimation, sizing of the unit operation.Case study: Monoclonal antibody production, Enzyme production

05 Hours

Text Books:

1.Luyben W.L., Process Modeling Simulation and Control for Chemical Engineers., McGraw Hill, 1988.

2. Pauline M. Doran, "Bioprocess Engineering Calculation", Blackwell Scientific Publications.

Reference Books:

1. Kenneth J. Beers. "Numerical Methods for Chemical Engineering Applications in MATLAB®", Massachusetts Institute of Technology, Cambridge University press 2007 edition.

2. Bailey and Ollis, "Biochemical Engineering Fundamentals", 2 nd ed., McGraw Hill, 1986.

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
I	3 Questions to be set of 20 Marks Each	1, 2	Solve Any 2 out of 3
П	3 Questions to be set of 20 Marks Each	3,4	Solve Any 2 out of 3
III	2 Questions to be set of 20 Marks Each	5,6	Solve Any 1 out of 2

Page of

Year:

L-T-P: 4-0-0Credits: 4.0Contact Hours/WeekISA Marks: 50ESA Marks: 50Total Marks: 100Teaching Hours: 50Examination Duration: 03Output	Program: Biotechnology		
Hours/WeekISA Marks: 50ESA Marks: 50Teaching Hours: 50Examination Duration: 03	Course Title: Downstream Pro	ocessing Technology	Course Code: 19EBTC401
Teaching Hours: 50 Examination Duration: 03	L-T-P: 4-0-0	Credits: 4.0	
5	ISA Marks: 50	ESA Marks: 50	Total Marks: 100
	Teaching Hours: 50	Examination Duration: 03 Hours	

Unit I

1. Introduction

Role and importance of downstream processing in biotechnological processes. Characteristics of biological mixtures, Process design criteria for various classes of byproducts (high volume, low value products and low volume, high value products), Steps involved, case studies, costing of product and numericals

09 Hours

2. Primary Separation Techniques

Cell disruption methods for intracellular products, Removal of insolubles, Biomass (and particulate debris) heat and photosensitive materials (considering lyophilization) separation techniques; Flocculation and Sedimentation, Centrifugation and methods of centrifugation, filtration methods and types of filter media, numericals.

11 Hours

Unit II

3. Membrane separation processes

Membrane – based separations theory; Design and configuration of membrane separation equipment; Concentration polarization and fouling – causes, consequences and control techniques; Applications: Reverse osmosis, Dialysis, Ultra filtration, Micro filtration, Numerical of membrane separation process, Case Studies.

4. Enrichment operations

Precipitation methods with salts, organic solvents, and polymers, Extraction methods for separations. Reversed micellar extraction and Aqueous two-phase extraction, Supercritical extraction; In situ product removal / integrated bio-processing, numericals.

08 Hours

12 Hours

5. Product recovery-I

Introduction to chromatography (Van Deemter equation), reversed phase chromatography, Hydrophobic Interaction Chromatography, Ion Exchange Chromatography, numericals.

Unit III

05 Hours

Department of Biotechnology

Page of

Year:

6. Product recovery-II

Gel Filtration Chromatography, Affinity Chromatography, Polishing Operations: Crystallization, Drying 05 Hours

Text Books:

1. B. Sivasankar, Bioseparations: Principles and Techniques , Eastern Economy Edit, Prentice-H, 2005

2. P.A. Belter E.L. Cussler, W.S. Hu, Bioseparations: downstream processing for biotechnology, John-Wiley, New York, 1988

Reference Books:

- 1. BIOTOL, Product Recovery in Bioprocess Technology, VCH, 1990
- 2. Shuler and Kargi , Bioprocess Engineering , Prentice Hall, 1992
- 3. Asenjo J. and Dekker M, Separation Processes in Biotechnology , 1993 CRC Press

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
I	3 Questions to be set of 20 Marks Each	1, 2	Solve Any 2 out of 3
II	3 Questions to be set of 20 Marks Each	3,4	Solve Any 2 out of 3
III	2 Questions to be set of 20 Marks Each	5,6	Solve Any 1 out of 2

Page of

Year:

Program: Biotechnology		
Course Title: Bioethics, S	afety & IPR	Course Code:19EBTE401
L-T-P: 3-0-0	Credits: 3.0	Contact Hours: 03 Hours/Week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 03 Hours	

Unit I

1. Perceptions about Biotechnology: Biotechnology and social responsibility, Positive & negative perceptions of Biotechnology, Public acceptance issues, surveys, areas of public concern for Biotechnology. Socio, ethical, economic and legal aspects of Biotechnology. Public education & Biotechnology. 05Hours

2. Bioethics: Legality, morality, and ethics, Principles of bioethics: autonomy, human rights, beneficence, justice, equity, etc. Expanding scope of ethics from Biomedical practice to Biotechnology, ethical conflicts in Biotechnology. **05 Hours**

3. Biosafety concept and issues : Rational vs. subjective perception of risks and benefits, Hazards of BT , relationship between risk and hazard, Ethical implications of biotechnology products and techniques, **05 Hours**

Unit II

4. National and International Regulations: Cartagena protocol, OECD consensus documents and Codex Alimentarius; Indian regulations – EPA act and rules, guidance documents, regulatory framework – RCGM, GEAC, IBSC and other regulatory bodies; category of rDNA experiments; field trails – biosafety research trials – standard operating procedures - guidelines of state governments; GM labeling – Food Safety and Standards Authority of India (FSSAI)

10Hours

5. Biosafety & Management: Laboratory associated Biosafety practices, assessment of biohazard, Biosafety levels,. Risk analysis and assessment, Containment levels-physical, biological containments,. Good manufacturing practice and Good lab practices (GMP and GLP). **05 Hours**

Unit III

6. Intellectual Property rights: Introduction to history of GATT, WTO, WIPO and TRIPS; Introduction to IPR, Types of IP: Patents, Trademarks, Copyright, Design & Related Rights. Plant variety protection, Traditional knowledge, breeders rights, Geographical indications, Biodiversity and farmers rights. Patenting in biotechnology, case studies.

05 Hours

7. Food, Agri and Pharma Sector: The GM-food debate and biosafety assessment procedures for biotech foods including transgenic food crops, case studies- Golden Rice and Flav Savr

Year:

Tomatto. Biosafety assessment of pharmaceutical products such as drugs/vaccines etc. Biosafety issues in Clinical Trials. 05 Hours

Text Books

- 1. Bioethics & Biosafety- Sateesh MK, I.K. International Publishing House
- 2.Intellectual Property rights on Biotechnology Singh K, BCIL, New Delhi.
- 3.Biotechnology: Expanding Horizons B D Singh, Kalayani Publishers, 2010

Reference Books:

- 1. Bioethics & Biosafety R. Rallapalli & Gita Bali, APH publication, 2007
- 2. Safety considerations for Biotechnology-Paris, OECD publications

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
I	3 Questions to be set of 20 Marks Each	1,2,3	Solve Any 2 out of 3
II	3 Questions to be set of 20 Marks Each	4,5	Solve Any 2 out of 3
	2 Questions to be set of 20 Marks Each	6,7	Solve Any 1 out of 2

FORM ISO 9001: 2015 – KLE TECH

Detailed Content

Department of Biotechnology

Page of

Year:

Program: Biotechnology			
Course Title: Industrial Biotechnology Course Code: 20EBTE401			
L-T-P: 3-0-0	Credits: 3.0	Contact Hours: 03 Hours/Week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40	Examination Duration: 03 Hours		

Unit I

1 Introduction

History of fermentation products, Range of fermentation process: Traditional approach: biomass, enzymes, metabolites and biotransformation; Modern fermentation process: rDNA products, animal cell culture: therapeutic proteins, monoclonal antibodies; application of system biology approach; generalized representation of typical fermentation process.

05Hours

2. Isolation and improvement of industrial microorganisms

Isolation methods: Primary screening and secondary screening; Improvement of industrial microorganism: selection of induced mutants for primary and secondary metabolites, isolation of revertant mutants, use of rDNA systems, and improvement by other properties.

3. Fermentation products

Beverages(beer), Ethanol, Aminoacids, enzymes(lipase/protease), penicillin, therapeutic proteins, monoclonal antibodies and vaccines.

Unit II

4 Bioreactor configuration-I

CSTR with recycle, CSTR in series, Airlift reactor, Fluidized bed bioreactor, bubble column bioreactor, packed bed bioreactor, tickle bed bioreactor, deep jet bioreactor, rotating disc bioreactor.

5. Bioreactor configuration-II

Animal cell bioreactors:- Homogeneous reactor: Solid and macro porous micro carriers bioreactor; Heterogeneous reactor: Hallow fiber bioreactor, Packed glass bed bioreactor, fluidized bed bioreactor, cell encapsulation; Disposable bioreactor: Wave bioreactor and stirred bag bioreactor.

05Hours

05Hours

6. Advance downstream processing

Process integration in product recovery, large scale refolding of therapeutic proteins, advanced membrane technology, Chromatography: column quantification and validation, AKTA purifier, reversed micellar technique for bio separation Single use technology in purification.

05Hours

05Hours

05Hours

Department of Biotechnology

Detailed Content

Page of

Year:

Unit III

7. Fermentation monitoring and control:

On-line and off-line monitoring instruments, Bioprocess modeling for control, Estimation technique: Traditional method, linear black-box model and non-linear model; control strategies for fermentation, real time data analysis: Raman spectroscopy.

05 Hours

8. Fermentation data analysis:

Introduction, classification of fermentation measurement and quantities, calculation of metabolites, estimation of unmeasured variables, calculation of integral and averaged variable, physiological variable and pattern recognition technique, SIMCA software.

05Hours

Text Books:

- 1. L.E.Casida, JR , Industrial Microbiology, New Age International (P) Ltd Publication.
- 2. Prescot and Dun, Industrial Microbiology, McGraw-Hill Book Company, Inc. New York

Reference Books:

- 1. D.Lanch, Drew, Wang, Comprehensive Biotechnology-Volume 3, Elsevier Publication.
- 2. George T. Austin, Nicholas Basta; Shreves Chemical Process Industries Handbook; McGraw Hill Professional, 1998

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
I	3 Questions to be set of 20 Marks Each	1, 2,3	Solve Any 2 out of 3
II	3 Questions to be set of 20 Marks Each	4,5,6	Solve Any 2 out of 3
	2 Questions to be set of 20 Marks Each	7a,7b	Solve Any 1 out of 2

Page of

Year:

Program: Biotechnology				
Course Title: Bio-business & Entrepreneurship Course Code: 20EBTE402				
L-T-P: 3-0-0	Credits: 3.0	Contact Hours: 3 hours/week		
ISA Marks:50	ESA Marks:50	Total Marks:100		
Teaching Hours:40	Examination Duration:3 hrs			

Unit-I

1. Entrepreneurship

Concept of Entrepreneurship - Development of Entrepreneurship; Stages in entrepreneurial process; Role of entrepreneurs in Economic Development; Characteristics of successful Entrepreneur, Classification of Entrepreneurs, Myths of Entrepreneurship, Entrepreneurial Development models, Entrepreneurial development cycle, Problems faced by Entrepreneurs. Entrepreneurship in India: Small scale industries: Definition; Characteristics; Need and rationale. Objectives; Scope; Introduction to bio-business, from the Indian context, SWOT analysis of bio-business.

10 hours

2. Social Responsibilities of Business

Meaning of Social Responsibility, Social Responsibilities of Business towards Different Groups, Social Audit, Business Ethics and Corporate Governance Institutional Support for Business Enterprises: Introduction, Policies & Schemes of Central Level Institutions, State Level Institutions.

05 hours

Unit-II

3. Entrepreneurship opportunity in biotechnology

Business opportunity, Essential requirement, marketing strategies, schemes, challenges and scope-with case studies on entrepreneurship opportunities in different domains of Biotechnology (Agri biotechnology, industrial Biotechnology, food biotechnology, Biopharma, Nutraceuticals. etc).

05 hours

4. Project management, technology management and startup schemes

Meaning of Project; Project Identification; Project Selection; Project Report; Need and Significance of Report; Contents; Formulation; Guidelines by Planning Commission for Project report; Network Analysis; Errors of Project Report; Project Appraisal. Identification of business opportunities: Market Feasibility Study; Technical Feasibility Study; Financial Feasibility Study & Social Feasibility Study.

10 hours

5. Startup Schemes

Building Biotech business challenges in Indian context-biotech partners (BIRAC, DBT, Incubation

Unit-III

centers. Etc.), operational biotech parks in India. Indian Company act for Bio business-schemes and subsidies. Patent expiry and Entrepreneurship opportunity, Principles of Technology leasing, licensing and transfer, Business incubation support schemes, Successful startups-case study.

05 hours

6. Funding Opportunities

Startup schemes in Indian government Sources of Funding for startups. Crowd funding, Selffunding, Venture Capitalists, Angel Investment. Banking support for startup business. Types of companies: Sole proprietorship company, Partnership company, Private Limited, Limited company etc.

05 hours

Text Books:

- 1. Principles of Management P. C. Tripathi, P.N. Reddy Tata McGraw Hill,
- 2. Entrepreneurship Development S.S.Khanka S.Chand & Co.
- **3**. Project Management by Sahni, Ane Books.

Reference books

1. Management Fundamentals - Concepts, Application, Skill Development - Robers Lusier - Thomson

2. Project Management for Business & Technology, Nicholas, PHI.

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
I	3 Questions to be set of 20 Marks Each	1,2	Solve Any 2 out of 3
II	3 Questions to be set of 20 Marks Each	3,4	Solve Any 2 out of 3
	2 Questions to be set of 20 Marks Each	5,6	Solve Any 1 out of 2

Page of

Year:

Program: Biotechnology				
Course Title: Numerica Equations	I Methods and Differential	Course Code: 20EMAB205		
L-T-P: 4-0-0	Credits: 4.0	Contact Hours: 04 Hours/Week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 40	Examination Duration: 03 Hours			

Unit I

1. Interpolation techniques

Finite differences, Forward, Backward and central difference Operators. Newton Gregory forward and backward interpolation formulae. Stirling's formula for central difference. Newton's divided difference formula for unequal intervals.

08 Hours

2. Numerical Solution of Partial Differential Equations

Introduction, Classification of PDE, Parabolic, Elliptic and Hyperbolic Partial differential equations, Introduction to finite difference approximations to derivatives, finite difference solution of parabolic PDE, explicit and implicit methods, finite difference method to Elliptic PDE-initial –boundary vale problems, Hyperbolic PDE-explicit method. Engineering problems: Temperature distribution in a heated plate, steady-state heat flow and vibration of a stretched string.

12 Hours

Unit II

3. Matrices and System of linear equations

Introduction to system of linear equations, Elementary row transformations, Rank of a matrix, Consistency of system of linear equations, solution of system by (i) Direct methods-Gauss elimination, Gauss Jordon method (ii) Iterative method - Gauss-Seidel method. Eigen values and Eigenvectors of a matrix. Largest Eigen value and the corresponding Eigenvector by power method. Engineering problems. **08 Hours**

4. Introduction to Statistics

Introduction, Scope of biostatistics, Variables, Measurement scales, Ordered array, Graphical representation of data: Bar Chart, Line chart, histogram, frequency curve, Ogive curves. Descriptive statistics: Measure of central tendency (arithmetic mean, median, mode, quartiles); Measures of dispersion (Quartile deviation, Standard deviation, coefficient of variation), Measure of skewness (Pearson and Bowley's) 12 Hours

Unit III

5. Introduction to Laplace transform and Solution of Differential Equations

Definition, transforms of elementary functions- transforms of derivatives and integrals-Properties. Periodic functions, Unit step functions and Unit impulse functions. Inverse Transforms- properties-Convolution Theorem. Applications to differential equations

Year:

10 Hours

Text Books:

- 3. Numerical methods for Engineers, Chapra S C and Canale R P, 5ed, TATA McGraw-Hill, 2007
- 4. Advanced Engineering Methods, Kreyszig E. 8Ed, John Wiley & sons, 2003.
- 5. Applied Statistics and Probability for Engineers, Douglas Montgomery, George Runger, 6Ed, John Wiley, 2014

Reference Books:

- 1. Introduction to Probability and Statistics: Principles and Applications for Engineering and Computing, J.Susan Milton, Jesse C Arnold, , 4, TATA Mc-Graw Hill Edition, 2007
- 2. Fundamentals of Mathematical Statistics, Gupta S.C and Kapoor V.K, 11Ed, Sultan Chand & Sons, New Delhi, 2002
- 3. **Higher Engineering Mathematics**, Grewal B S, 38ed, Khanna Publication, New Delhi, 2001.

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
I	3 Questions to be set of 20 Marks Each	1,2	Solve Any 2 out of 3
II	3 Questions to be set of 20 Marks Each	3,4	Solve Any 2 out of 3
III	2 Questions to be set of 20 Marks Each	5	Solve Any 1 out of 2

Page of

Year:

Program: Biotechnology			
Course Title: Biostatist	Course Code: 20EMAB210		
L-T-P: 3-1-0	Credits: 4.0	Contact Hours: 03 Hours/Week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40	Examination Duration: 03 Hours		

Unit I

1. Bivariate Distribution Fitting of curves

Introduction to biostatistics, Review of Central tendency and Dispersion, Correlation, linear regression, Curve fitting (Nonlinear and Exponential curves) 05 Hours

2. Probability

Definition of probability, addition rule, conditional probability, multiplication rule, Baye's rule, sensitivity, specificity, predictive value positive and negative, Probability in Genetics: Punnett square, Hardy - Weinberg law, Wahlund's Principle **05 Hours**

3. Probability distributions

Discrete probability distributions - Binomial, Poisson, Continuous Probability Distribution – Normal, Exponential, Gamma distribution

05 Hours

Unit II

4. Sampling and Statistical Inference

Introduction, Sampling, Sampling distribution, sample size determination, Confidence intervals, Tests of hypothesis, p-value, t-test for single mean, difference of mean (with equal variance and unequal variance), paired t-test, Chi Square test for goodness of fit and independence of attributes, analysis of variance (one-way and two-way classifications). Case studies of statistical designs of biological experiments (RCBD, RBD)

08 Hours

5. Design of Experiments-1

Introduction, OFAT, 2² and 2³ factorial experiments: Data table, Graphical representation, Main and interaction effects, ANOVA Table **07 Hours**

Unit III

6. Design of Experiments -2

Fractional factorial design, Placket-Burman design, Response Surface Methods-Central Composite Design

7. Population Growth Models

05 Hours

Year:

Introduction, Discrete time and continuous growth, Density Independent growth model: Geometric and Exponential growth model, Density dependent growth: Logistic growth model **05 Hours Text Books:**

- 6. **Applied Statistics and Probability for Engineers,**Douglas Montgomery, George Runger, 6Ed, John Wiley, 2014
- 7. Introduction to Probability and Statistics: Principles and Applications for Engineering and Computing, J.Susan Milton, Jesse C Arnold, , 4, TATA Mc-Graw Hill Edition, 2007
- 8. Mathematical Models in Biology and Medicine, Kapoor J.N, EWP New Delhi, 2000

Reference Books:

4. **Fundamentals of Mathematical Statistics**, Gupta S.C and Kapoor V.K, 11Ed, Sultan Chand & Sons, New Delhi, 2002

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
I	3 Questions to be set of 20 Marks Each	1,2,3	Solve Any 2 out of 3
II	3 Questions to be set of 20 Marks Each	4,5	Solve Any 2 out of 3
	2 Questions to be set of 20 Marks Each	6,7	Solve Any 1 out of 2

Page 1 Year:2018-23

Program: ArchitectureCourse Title: BUILDING CONSTRUCTION & MATERIALS - ICourse Code: 18AATC102L-S-P: 0-6-0Credits: 4Contact Hours: 6CIE Marks: 50SEE Marks: 50Total Marks: 100Teaching Hours: 96Examination Duration: NA

UNIT I:

Basic building components, material convention, brick work & mortar building components - Introduction to and their functions in brief, like foundation, plinth, coping, DPC, floor, walls, lintels, D&W, weather shade, roof, parapet etc.

Material convention- Convention of construction materials, like brick & stone masonry, timber, ply wood, steel, glass, concrete, mortar, metal etc, used for representing, in plan, section and elevations

Tools- Introduction to various tools commonly used for excavation, masonry and carpentry works

Bricks and blocks- Introduction to burnt clay bricks, properties of good bricks, molding methods, and application.

Blocks used as an alternative to bricks, such as i) adobe (stabilized mud), ii) hollow clay, iii) cement concrete iv) fly ash v) autoclaved aerated concrete (AAC), etc.

Brick masonry- Types of bonds used in brick masonry, for walls & pilasters of varying thickness.

Mortar- Types, uses, & properties of bonding materials like clay, lime, cement, gypsum etc. Sources and qualities of good sand & alternatives in preparing mortars.

UNIT II:

Stone, stone masonry, foundation, plinth formation, lintels & arches

Stones – Geological classification, types, properties and uses of stones for building. By-products of stones such as ballast, aggregate, graded crushed stone & powder (M- sand).

Stone masonry- Types of bonds used in stone masonry.

Foundation: Introduction to excavation- types & behavior of soil. Types of shallow foundations in brick and stone & purpose, for load bearing structure.

Plinth formation- Construction and formation of plinth for building with masonry walls, using i) bricks ii) stones iii) CC blocks including refilling in and consolidation.

Lintel and arches- Introduction to, types and functions for spanning of openings in building. Method of construction using various materials like stone slab, timber, metal, brick and stone masonry, concrete etc. UNIT III:

Coping, dpc, plastering, guniting& cladding

Coping & dpc- Introduction to and use of coping & DPC in building using various materials.

Plastering – Types, preparation and application in interior & exterior, like i) mud ii) lime iii) cement iv) gypsum with different finishes.

Guniting& grouting- To fill in cracks, voids in masonry, concrete and for repairs.

Cladding - Using tiles such as clay, stone, decorative cement, etc. for walls & roof

Note – The Portfolio covering the above topics shall be presented for Term work. Site visits shall be arranged by studio teacher. Study of material application shall be submitted in the form notes, sketches and photo brief as a part of portfolio

Scheme for Internal semester assessment (ISA)

Regular Assignments, models.

Term work: Evaluation of Portfolio, assignments by internal examiner

Scheme for End Semester Assessment (ESA)-

Term work: Evaluation of Portfolio, assignments by internal and external examiners

Mode of assessment : Portfolio .

Page 2

Year:2018-23

Text Books - Nill Reference Books:

McKay J.K Building Construction Metric Vol 1-4, 4thedi Orient Longman Pvt. Ltd, Mumbai,2002

"Construction Technology" volume-I by R Chudley, ELBS & Longman group Ltd.

Barry R, "The construction of buildings" , Vol-2, 5th Edi, East West Press, New Delhi 1999.

Bindra S.P and Arora S.P, Building Construction-Planning Techniques and Method of Construction, 19thedi, Dhanpat Rai Pub ,NewDelhi, 2000

"Building Construction" by JanardhanJha, Khanna New-Delhi.

RangawalS.C ,"Building Construction" 22nd Edi, charotar Publishing house, Anand, 2004

"Engineering Materials" by Surendra Singh, Vikas Delhi.

"Building Materials" by S K Duggal, IBH New Delhi.

Sushil Kumar T.B of Building Construction 19thedi, Standard Pub House, NewDelhi, 2003.

Chowdhary K.P. Engineering Materials used in India, 7th Edi, Oxford and IBH Pub Itd New Delhi, 1990.

Building Construction Hand book : By R Chudly& R Greeno, Bullerworth Heinemann, New-Delhi.

Year:2018-23

Page 3

Program : Architecture Course Title: Skill Development Workshop-I Course Code: 18AATC104 L-S-P: 0-2-0 Credits: 2 Contact Hours: 3 ISA Marks: 50 ESA Marks: 50 Total Marks: 100 Teaching Hours: 48 Examination Duration: NA Image: Contact Hours (Contact Hours)

Course contents:

Unit-I:

Free hand and objects drawing: Observation and recording through free hand drawing by using various drawing and sketching tools like pencil, pen, charcoal crayons etc.

Architectural Model Making :Introduction to Basics of the Model making skills like cutting, pasting etc.

Unit-II

Architectural sketching: Drawing of human figures, vehicles, small buildings, furniture, simple and complex geometrical objects with an emphasis on the perception of details and expressing them in lines, colour texture etc. Architectural Model Making: Introduction to Basics of the following associated skills to enhance and understand spatial, scale, material, and aesthetical requirements of design, construction and presentation.

Unit-III

PAINTING: Understanding of colour wheel, components, types of colour, colour schemes, value and intensity by using painting tools and materials like brushes, paper, water color, poster colour etc.

Sessional Work (Internal semester assessment)

Regular Assignments, Architectural sketches, drawings and models

Scheme for Semester End Assessment (ESA)

Term work: Evaluation of Portfolio, assignments by internal and external examiners

Mode of assessment: Portfolio/ Models.

References: Book: Robert Gill: Rendering with pen &ink, Thames & Hudson New York 1984. Robert Gill: Basic Rendering, Thames& Hudson New York 1991. John Chen: Architecture in pen & ink, McGraw-Hill Inc- USA 1995. Colin Saxton: Art School, Chart well Books Inc New Jersey.

Page 4 Year:2018-23

Program : Architecture						
Course Title: Prehistoric Architecture		Course Code: 18AATC105				
L-S-P: 2-0-0	-S-P: 2-0-0 Credits: 2 Contact Hours: 2					
ISA Marks: 50	ESA Marks: 50	Total Marks: 100				
Teaching Hours:32	ching Hours:32 Examination Duration: 3Hours					
on architecture. Evolution of mankind-its impact Evolution of shelter forms in diff Growth of Human settlements a Influence of religion and culture Unit-1 Pre-Historic world	 on primitive arts and crafts in various erent regions. 	s of construction and influence of art and culture countries.				
Ex: Oval Hut, Nive, Dolmen Tor stone Henge.		uses at CatalHuyuk, LepensikiVir settlements,				
planning types, method of build Indus valley civilization- Layout of Mohenjo-Daro, House Egyptian-	ept of settlement, impact of climate, soc ng structures and detailing. Study of bu Plans, Community well, Great Bath, G Mastaba Tombs, Pyramid of Cheops, Te	ranary.				
Sessional Work (Internal semes	,	Tombs. and 10 marks for sketch book submission.				
Scheme for Internal semester Regular Assignments, models. Term work: Evaluation of Portfo	assessment (ISA) lio, assignments by internal examiner					
Scheme for End Semester Assessment (ESA)						
External examination-3 hrs						
Mode of assessment : Portfolio& Theory Exam						
Text Books:NIL						
References : "History of Architecture Sir Banister Fletcher's "	in India "byTadgell Christopher. History of Architecture					

Page 5 Year:2018-23

SI.No	8 Questions to be set of 20 Marks Each	Chapter Number	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.NO – 5 Q.No6,	4, 5,6	Solve Any 2 out of 3
ш	Q.No7, Q.No8	7,8	Solve Any 1 out of 2

Page 6 Year:2018-23

Program : Architecture		
Course Title: Basic Design		Course Code: 18AATC106
L-S-P: 0-3-0	Credits: 3	Contact Hours: 4
SA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 64	Examination Duration: NA	
Course contents: To understand and interpret elements o To develop creative skills to address de To explore art forms and understand im Unit-I:	sign principles in Architecture.	
paintings, compositions, murals, sculptu	standing role of the following basic elem ires, building and in a nature – Dots, Line Fenestration's. Study of Textures and Te	es, Planes, Patterns, Shapes, Forms,
	ddress design principles in architecture. al point, Symmetry, Asymmetry, Backgro	• • • •
EXPLORATION OF ART FORMS- stud architecture from earliest times to prese	y of traditional and contemporary art form nt.	ns, relation between art and
Sessional Work (Internal semester asse Regular Assignments, Architectural mo		
Scheme for Semester End Assessment Term work: Evaluation of Portfolio, assig	(ESA) gnments by internal and external examin	ers
Mode of assessment: Portfolio, Model.		
References :		
	ring ,Thames & Hudson New York 1991 in pen & ink, McGraw-Hill Inc- USA 1998	5

Page 7 Year:2018-23

Program : Architecture			
Course Title: Skill Development Work	kshop- II	Course Code: 18AATC112	
L-S-P: 0-2-0	Credits: 2	Contact Hours: 3	
ISA Marks: 50	50 ESA Marks: 50 Total Marks: 100		
Teaching Hours: 48	Examination Duration: NA		
Course contents: Unit-I: Allied skills for Architecture			
Tools and materials			
models, sculpting etc. (Paper, card she	aking and working tools. Various types o et, mount board, Art card, foam, metal, p development, glue welding and joinery.	6	
1. Hands on rendering of Architect	ng skill and mobile photography, Soft tural plan, elevation and sections. of models, buildings, furniture, vehicles e speaking, reading & writing.		
 Unit-III 1. Introduction to scanning of rend 2. Introduction to Adobe Photosho 3. Using above skills create own in 	op software for photo processing and con	nposition	
Sessional Work (Internal semester as Regular Assignments, Architectural mod Scheme for Semester End Assessme Term work: Evaluation of Portfolio, assig	dels, rendered sheets and photos	er	
Mode of assessment: Portfolio / Mode			
References : Robert Gill : Rendering with pen & ink , Robert Gill : Basic Render John Chen : Architecture i		5	

Page 8

Year:2018-23

Program : Architecture		
Course Title: ARCHITECTURAL DESIGN – III		Course Code: 18AATC201
L-S-P: 0-6-0	Credits: 6	Contact Hours: 9
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 144	Examination Duration: NA	

Course contents:

To understand/engage with the basic issues of socio-cultural and physical context of built environment and experiencing rural contexts of diverse typologies and in transformation.

To abstract the various elements of the village and their relationships, which influence design.

To study basic materials, technologies in design and question the notion of sustainability

UNIT 1

Understanding the rural ecosystem through anthropocentric surveys and architectural documentation Drawings Project to Rural studio exploring elements of a village - with brief report - on Contemporary challenges, villages in transformation, typologies of villages.

UNIT 2

Analyzing the physical, socio-economic, environmental, visual and spatial characteristics of rural settlements towards identifying problems and potentials requiring strategic goals and objectives for implementation

Documentation Project (in-situ- travel to site and in Studio) - Drawings to understand dwelling typologies, materials, way of life, technologies, community spaces and natural resources. Drawings Analysis of the rural settlements - based on social, cultural, history, occupation, bio-diversity, institutions, settlement layout, dwelling typologies, local materials and technologies. With brief Report. character of institution, growth, materials and structure

UNIT 3

Providing appropriate architectural design solution to solve identified problems and harness available potentials.

Design Project to explore an innovative rural institution/ or a cluster of dwellings/ rural community center /cottage industry/sanitation/ women's self-help groups/, of an appropriate scale and area, etc.

Scheme for Internal semester assessment (ISA)

Regular assignments , Models , Reviews.

Term work: Evaluation of Portfolio and assignments by internal examiner.

Scheme for End Semester Assessment (ESA)

Term work: Evaluation of Portfolio and assignments by internal and external examiners/Viva

Mode of assessment: Portfolio, Physical models ,manual hand drafted drawings.

Text Books: NIL

Reference Books:

- 1. Time Saver Standard for Architectural Data by John Hancock.
- 2. Architectural Graphic Standards by Ramsey and Sleeper.
- 3. Architecture: Form, Space and Order, Ching, Francis DK
- 4. Design and Form: The basic course at the Bauhaus, Itten, Johannes.
- 5. Elements of space forming, Yatin Pandya.

Page 9

Year:2018-23

6 NIASA Document - Rural Studies Program, Council of Architecture Publication, 2015

7 David Robson, Geoffrey Bawa: Complete Works, Thames & Hudson (November 17, 2002)

8 Elizabeth Baker, The other side of Laurie Baker, DC Books Pvt. Ltd, 2007

 $9\;$ Dr Parr, New Directions in sustainable Design, Routledge Press, 2012

10. Architectural Composition, Krier, Rob

11 Daniel Williams "Sustainable Design: Ecology, Architecture & Planning", John Wiley & sons,2007

Scheme for Semester End Examination (ESA)

Evaluation of Portfolio of Term Work / Viva

Title: Curriculum Content- Course wise

Page 10 Year:2018-23

Program : Architecture				
Course Title: SERVICES – I (WATER SUPPLY & SANITATION)		Course Code: 18AATC203		
L-S-P: 2-0-0	Credits: 2	Contact Hours: 2		
ISA Marks:50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 32	Examination Duration: 3HOURS			
Course contents UNIT I:				
Purificationfiltration, disinfection, sof 2: Domestic water supply Water requirement for different types showers, jets, faucets. Cold and hot wa heating systems, geysers.	ater supply, pollution and preventive mea tening, miscellaneous methods of wate of buildings, pipes, valves, wash basi ter supply for ground and multi-storied b	r treatment. ins, sink, bath tubs, flushing cisterns, uildings. Provision for fire fighting, solar		
UNIT II:				
fixtures and materials. Sanitary requirer 4: Drainage systems Principles, location of sanitary units, se ground and multistoried buildings incl drainage of roads, drainage on sloping view. Layout design and details of sewage a water harvesting system design for a build UNIT III: 5:Recycling Sewage pumping stations, waste water 6: Solid waste Management: Prevale segregation, transportation of waste. Di	ypes of refuse, collection and disposal nents for various types of buildings. eparate and combined systems, septic t uding. storm water drainage, rain wate sites, sub soil drainage. Site planning fr nd drainage system for different building illding project. Course may be integrated treatment, oxidation. recycling of sewag ent SWM practices and deficiencies: S sposal of solid wastes: Sanitary land filli stem and Modern renewable energy sys	anks, aqua privy. Drainage system for er harvesting. Roads and pavements, rom drainage and water supply point of g types. Storm water drainage and rain with concurrent architectural design e water. torage of waste at source, collection, ng, Composting, Incineration, Pyrolysis		
Scheme for Internal semester assess Regular Assignments.	sment (ISA)			
Scheme for End Semester Assessme External examination-3 hrs	ent (ESA)			
Mode of assessment: Portfolio& Theorem	ry Exam.			

Page 11

Year:2018-23

Text Books: NIL

Reference Books:

- 1. Husain, S. K. T. B. of water Supply and Sanitary Engineering, 3rd ed. Oxford and IBH Pub. Ltd. New Delhi, 1994.
- 2.Kshirsagar,S.R. Water Supply Engineering, 6th ed. Roorkee Pub, Roorkee, 1980.
- 3. Rangawala, S.C. Water Supply and Sanitary Engineering ;Environmental Engineering, 19th ed. Charotar Pub. House, Anand, 2004.
- 4.S.C. Rangawala, fundamentals of water supply and sanitary engineering. Charotar Pub. House, Anand,
- 5. Ilussain S. K. water supply and sanitary engineering, Dhanapat Rai and Sons, Delhi Relevant I.S. Codes
- 6. Basic Plumbing techniques, Orthobooks, Chevron Chemical Company, Consumer products Div., Box 5047, San Ramon, CA 94583
- 7.G.M. Fair, J.C. Geyer and D.A. Oku, Water and Waste Water Enineering, vol.II, John Wiley and Sons, Inc. New York, 1968
- 8. Manual of water Supply and Treatment , 2nd edition , CPHEEO, Ministry of works And HOUSING New DELHI , 1980
- 9. Manual ON sewage Treatment , CPHEEO, Ministry of works And HOUSING New DELHI , 1977

SI.No	8 Questions to be set of 20 Marks Each	Chapter Number	Instructions
I	Q.No1, Q.No2,	1, 2	Solve Any 1 out of 2
П	Q.No3, Q.NO – 4,	3, 4	Solve Any 1 out of 2
111	Q.No5, Q.No6	4,5	Solve Any 1 out of 2

Program : Architecture		
Course Title: CLIMATOLOGY		Course Code: 18AATC204
L-S-P: 2-0-0	Credits: 2	Contact Hours: 2
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 32	Examination Duration: 3hrs	

UNIT I:

Introduction – Elements of Climate, Enumerating and representing climatic data. Classification of Climate, major Climatic Zones of the World, tropical Climate further Classification. Climatic Zones of India, Classifications, case study of one city within each Zone.

UNIT II:

Thermal Comfort, effect of Climatic Elements on thermal Comfort, Heat Exchange Process, Effective Temperature Natural Ventilation, effect of openings in internal and external features, Design Considerations etc. Effect of Landscape elements and site topography, reading climate data, climate analysis and data validation through climate consultant software.

UNIT III:

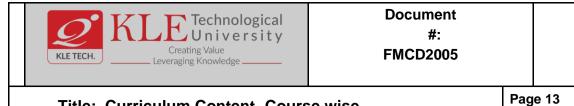
Bioclimatic chart, Design Consideration for various climatic zones of INDIA, with respect to Shading devices, Day Lighting Factors, Components of day light factor and its design considerations, Rainfall considerations etc.

Construction Techniques for Improving Thermal Performance of Walls and roofs at various climatic Zones in India. Climate data representation through flow design and Ecotect software. Design project of not more than 500sqm. built up incorporating all the components of climate responsive architecture.

Scheme for Internal semester assessment (ISA)

Regular Assignments, Architectural models, rendered sheets and photos

Scheme for End Semester Assessment (ESA) External examination-3 hrs

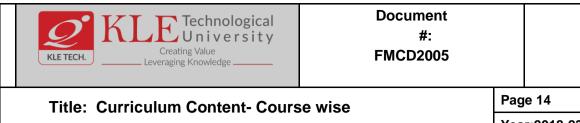

Mode of assessment :

Portfolio& Theory Exam.

Reference Books : NIL

Text Books:

1. Arvind Kishan , Baker & Szokolay, Climate Responsive Architecture.


Rev: 1.0

Title: Curriculum Content- Course wise

Year:2018-23

- 2. Manual of Tropical Housing & Buildings (PartII)" Koenigsberger.
- 3. Buildings in the tropics by Maxwell Fry
- 4. Housing , Climate and Comfort by Martin Evans

SI.No	8 Questions to be set of 20 Marks Each	Chapter Number	Instructions
I	Q.No1, Q.No2,	1, 2	Solve Any 1 out of 2
П	Q.No3, Q.NO – 4,	3, 4	Solve Any 1 out of 2
Ш	Q.No5, Q.No6	4,5	Solve Any 1 out of 2

Program : Architecture		
Course Title: Architectural Design -	IV	Course Code: 18AATC208
L-S-P:0-6-0	Credits: 6	Contact Hours:9
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 144	Examination Duration: NA	

Course contents:

To develop skills for comprehensive understanding and dealing with Climate Responsive Architecture. Provide skills for designing multi-user and multi level spaces.

The design issues to be addressed are

- **Climate Responsive** •
- Integration of environment & built form.
- Integration the horizontal and vertical circulation
- Correlation of the materials and the resulting form.

The list of suggested spaces to be covered as design Public Libraries, Public and Semipublic Office Spaces, Resorts, Recreational Clubs, Automobile Showrooms etc.

Necessary theoretical inputs to be given highlighting the norms and design issues. At least one major exercise and one minor design/ time problem should be given. The topics covered as design projects will have to be covered by the studio faculty members through lecture/slide show session and site visits.

Scheme for Internal semester assessment (ISA)

The Portfolio covering the given topics and the study models shall be presented.

The evaluation shall be through periodic internal reviews.

The students have to present the entire semester work for assessment along with Models.

Regular Assignments, Architectural models, rendered sheets and photos

Scheme for Semester End Assessment (ESA)

Term work: Evaluation of Portfolio, assignments by internal and external examiners/ Viva

Mode of assessment :

Portfolio

Text Books: NIL

Reference Books:

- 1. Joseph De Chiara & John Hancock Calendar, Time Saver Standards for Building Types
- 2. Various books and magazines about architectural design
- 3. Architecture: Form, Space and Order, Ching, Francis DK

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	Document #: FMCD2005		Rev: 1.0
Title: Curriculum Content- Cours	e wise	Paç	je 15
		Yea	nr:2018-23

Course Title: Elective -Art App	reciation	Course Code: 18AATE201
L-S-P: 0-2-0	Credits: 01	Contact Hours:02
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 02	Examination Duration: NA	
Unit I		
Various art forms		
Scope in the various works of a	rts	
Unit II		
Analysis & aesthetic judgment		
Every sector of individual law state		
Expression of individual /society	/ values	
Unit III		
Unit III Personal reaction to works in th	e art	
Personal reaction to works in th		
Personal reaction to works in th Scheme for Internal semester	assessment (ISA)	
Personal reaction to works in th Scheme for Internal semester The evaluation shall be through	r assessment (ISA) periodic internal assignments	
Personal reaction to works in th Scheme for Internal semester The evaluation shall be through Scheme for Semester End As	r assessment (ISA) periodic internal assignments	examiners
Personal reaction to works in th Scheme for Internal semester The evaluation shall be through Scheme for Semester End As	r assessment (ISA) periodic internal assignments sessment (ESA)	examiners
Personal reaction to works in th Scheme for Internal semester The evaluation shall be through Scheme for Semester End As Term work: Evaluation of Portfo	r assessment (ISA) periodic internal assignments sessment (ESA)	examiners
Personal reaction to works in th Scheme for Internal semester The evaluation shall be through Scheme for Semester End As Term work: Evaluation of Portfo Mode of assessment :	r assessment (ISA) periodic internal assignments sessment (ESA)	examiners
Personal reaction to works in th Scheme for Internal semester The evaluation shall be through Scheme for Semester End As Term work: Evaluation of Portfo Mode of assessment : Portfolio	r assessment (ISA) periodic internal assignments sessment (ESA)	examiners
Personal reaction to works in th Scheme for Internal semester The evaluation shall be through Scheme for Semester End As Term work: Evaluation of Portfo Mode of assessment : Portfolio Text Books: NA Reference Books:	r assessment (ISA) periodic internal assignments sessment (ESA)	examiners
Personal reaction to works in the Scheme for Internal semester The evaluation shall be through Scheme for Semester End As Term work: Evaluation of Portfo Mode of assessment : Portfolio Text Books: NA Reference Books: 1. Books of	r assessment (ISA) periodic internal assignments sessment (ESA) lio, assignments by internal and externa	l examiners
Personal reaction to works in the Scheme for Internal semester The evaluation shall be through Scheme for Semester End As Term work: Evaluation of Portfo Mode of assessment : Portfolio Text Books: NA Reference Books: 1. Books of	r assessment (ISA) periodic internal assignments sessment (ESA) lio, assignments by internal and externa	examiners

Page 16 Year:2018-23

Program : Architecture		
Course Title: Elective – Human Centered Design - I		Course Code: 18AATE202
L-S-P: 0-1-0	Credits: 1	Contact Hours: 2
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 32	Examination Duration: NA	

Course contents

Understanding Design as a very old human capability that has been forgotten by the mainstream educational system and traditionalist alike. A modern human activity that can help the products, services and policies of the future within the constraints of our contexts.

UNIT I:

What is Design? Multiple Dimensions of Design, Processes and Applications What is Human Centered Design? 1 Looking: Observing Human Experience 2 Understanding: Analyzing challenges and opportunities 3 Making: Envisioning Future Possibilities

UNIT II:

HCD to identify problem.

UNIT III:

Field Work, Define, Ideate, Prototype (Concept design, Detailed Design) ,Test, Feedback

Scheme for Internal semester assessment (ISA)

Field work Ideation, Concept design, Final Design Periodic reviews presentations of finding , concerns, Development stage of product and justification

Scheme for End Semester Assessment (ESA) Final Report Prototype design

Mode of assessment :

Field work attendance

Assignment

Text Books:NIL

Reference Books:

1. Harold Nelson: The Design Way Intensions / Compositions / Value

2. John Heskett : Toothpics and Logos

Page 17

Year:2018-23

Objects/Communication/Environments/Identities/Systems/Contexts/Future

3. Klaus Krippendorff: The Semantic Turn , Meaning of Artifact in : Use/Language/Life Cycle/Ecology

Program:		
Course Title: Elective –ARCHITECTU	TAL PAINTING	Course Code: 18AATE206
L-S-P: 0-2-0	Credits: 01	Contact Hours:02
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 02	Examination Duration: NA	
Unit I		•
	ree natural and geometric forms in penci tables, fruits and flowers, etc., are to be heres should be used.	
Unit II		
Painting Composition:		
Simple exercises of basic design in var and colours to understand designs as o	riation of geometric and rhythmic shapes organised visual arrangements.	s in geometrical and decorative designs
Unit III		
Portfolio Assessment:		
Five selected nature and object study life exercises.	exercises in any media done during the	e session including minimum of two still
Scheme for Internal semester asses	sment (ISA)	
The evaluation shall be through periodi	ic internal assignments	
Scheme for End Semester Assessme Term work: Evaluation of Portfolio, ass	ent (ESA) ignments by internal and external exami	ners
Mode of assessment :		
Portfolio		
Text Books: NA		
Reference Books:		
	f Indian ArtDr.Vasudevsharan Agarwa	al.

Date: 15-03-2021

Dept. of MCA: Change Summary Document

Change summary between 2015-16 and 2016-17 admitted batches (i.e. 2015 to 18 batch 2016 to 19 batch)

				%	Year of
Semester	Course Name	Total Hours	Revision Hrs	Change	Implementátio
I				100	2016-17
	Problem Solving using C				
	15ECAC708	42	42		
	PHP Programming			100	2016-17
	15ECAC711	48	48		
	Web Services Lab			100	2016-17
	15ECAP708	48	48		
	15ECAC706 - Software			20	2016-17
	Engineering	48	10		-
	Python Programming			100	2017-18
111	16ECAC803	50	50		
	Mini Project -1	50	50	100	2017-18
	16ECAP803				
	PL / SQL Lab.			1000	2017-18
	16ECAP805	36	36		
	16ECAC806 - Programming in			20	2017-18
	C# With . Net	48	10		
	Mini Project-2			100	2017-18
	16ECAP806	50	50		
	Web Content Management		· · · · ·	100	2017-18
	16ECAE804	50	50		
	Cyber Security and Forensics			100	2017-18
IV	16ECAE806	50	50		
	IT Infrastructure &			100	2017-18
	Management				
	16ECAE807	48	48		
	16ECAE802 - NoSQL	48	48	100	2017-18
	16ECAE803 - Database	48	48	100	2017-18
	Administration	40	40	100	2017-18
	Administration				
	Cloud Computing 16ECAE808	50	50 -	100	2017-18
	Mobile Application			100	2018-19
	Development				
	16ECAC903	50	50		
	Mini Project-3			100	2018-19
	16ECAP901	50	50		
	Wireless & Mobile Computing			100	2018-19
V	16ECAE905	50	50		
	Machine Learning			100	2018-19
	165045006	50	50		

16ECAE906	50	50		
16ECAE903 - Information	48	10	20	2018-19
Security		1-		

REGISTRAR H KLE Technological University HUBBALLI-560 031

Head of the Department Department of Master of Computer Applications KLE TECHNOLOGICAL UNIVERSITY HUBBALLI-580 031.

Semester	Course Name	Total Hours	Revision Hrs	% Change	Year of Implementation
	16ECAE904 - Service Oriented			20	2018-19
	Architecture				
		48	10		
		0	0		
VI		0	0		
		0	0		
		0	0		
VII		0	0		
		0	0		
VIII		0	0		
		0	0		
		0	0		
	Number of Course Revised: 21	1010	858		

Evidence enclosed:

Schemes of 2015-18 batch and 2016-19 batch with changes shown in different colour.

Total Number of Courses Revised: 21

Total Number of Course in the Programme: 41

Percentage of course Changed : 51.00

Signature of HoS/HoD

Head of the Department Department of Master of Computer Applications KLE TECHNOLOGICAL UNIVERSITY HUBBALLI-580 031.

REGISTRAR

REGISTRAR KLE Technological University HUBBALLI-560 031

Change summary between 2016-17 and 2017-18 admitted batches (i.e. 2016 to 19 batch 2017 to 20 batch)

Semester	Course Name	Total Hours	Revision Hrs	% Change	Year of Implementation
	17ECAC701 Web Programming	42	42	100	2017-18
1	17ECAP703 - UNIX Lab	48	16	30	2017-18
		0	0		
11	17ECAP706 Mini Project -1	48	48	100	2017-18
111		0	0		
	17ECAP802 OOAD Lab	36	36	100	2018-19
IV	17ECAE801 - Information Storage & Management	48	48	100	2018-19
N	17ECAE803 Digital Image Processing	50	50	100	2018-19
	17ECAE802 Linux Administration	50	50	100	2018-19
	17ECAP901 ASP .Net Lab	24	24	100	2019-20
	17ECAE903 RESTful Web Services	48	48	100	2019-20
V	17ECAE902 Full Stack Development-MEAN	48	48	100	2019-20
	17ECAE901 Block Chain Technologies	48	48	100	2019-20
		0	0		
VI	17ECAP904 Robotic Process Automation (Certification Course)	30	30	100	2019-20
		0	0		
		0	0		
VII		0	0		
VIII		0	0		
VIII		0	0		
	Number of Course Revised: 12	520	488		

Evidence enclosed:

Schemes of 2016 to 19 batch 2017 to 20 batch with changes shown in different colour

Total Number of Courses Revised: 12

Total Number of Course in the Programme: 41'

Percentage of course Changed : 29.26

REGISTRAR KLE Technological University HUBBALLI-580 031

Signature of HoS/HoD Head of the Department Department of Master of Computer Applications KLE TECHNOLOGICAL UNIVERSITY HUBBALLI-580 031.

Change summary between 2017-18 and 2018-19 admitted batches (i.e. 2017 to 20 batch 2018 to 21 batch)

Semester	Course Name	Total Hours	Revision Hrs	% Change	Year of Implementation
	17ECAC702 - Web Programing	42	5	10	2018-19
1.		0	0		
	Software Engineering Lab. 18ECAP701	48	48	100	2018-19
П	15ECAC704 - Operating Systems	48	10	20	2018-19
111	17ECAC801 - JAVA Programming	48	10	20	2019-20
IV	18ECAE802 User Interface Design	48	10	20	2019-20
	18ECAE807 RESTful Web Services	50	50	100	2019-20
	17ECAC805 - Data Mining	48	10	20	2019-20
	18ECAE808 DevOps	50	50	100	2019-20
	16ECAC902 - Advanced Java Programming	48	10	20	2020-21
v	18ECAE907 - Machine Learning	48	48	100	2020-21
	18ECAE903 – Web Mapping	48	48	100	2020-21
	18ECAE908 - E-Commerce	48	10	20	2020-21
VI		0	0	1.00	
		-0	0		
VII		. 0 .	0		
		0	0		
VIII		0	0		
	Number of Course Revised:12	574	309		

Evidence enclosed:

Schemes of 2017 to 20 batch 2018 to 21 batch with changes shown in different colour

Total Number of Courses Revised: 12

Total Number of Course in the Programme: 41

Percentage of course Changed : 29.26

Signature of HoS/HoD Head of the Department

Department of Master of Computer Applications KLE TECHNOLOGICAL UNIVERSITY HUBBALLI-580 031.

REGISTRAR KLE Technological University HU8BALLI-580 031.

Change summary between 2018-19 and 2019-20 admitted batches (i.e. 2018 to 21 batch 2019 to 22 batch)

				%	Year of
Semester	Course Name	Total Hours	Revision Hrs	Change	Implementation
	19ECAC701 Data Structures			20	2019-20
	using C	50	10		
	19ECAP702 Rich Internet			50	2019-20
	Application Lab.	36	18		
	19ECAP703 Unix & Shell			30	2019-20
	Programming Lab.	48	12		
	19ECAP706			100	2019-20
11	Computer Networks Lab.	36	36		
		0	0		
	19ECAC802			100	2020-21
111	Information Security	50	50		
		0	0		
	19ECAE803			20	2020-21
	GIS Data Management	50	10		· · ·
	19ECAC801 - Cloud Computing	48	10	20	2020-21
IV	15ECAC901 - Big Data Analytics	48	10	20	2020-21
	16ECAE906 - Machine Learning	48	10	20	2020-21
		0	0		
	19ECAE901 - LINUX			100	2021-22
	Administration	48	48		
V	19ECAE902 - Cyber Security			100	2021-22
	and Forensics	48	48		
		0	0		
		0	0		
VI		0	0		
VII		0	0		
		0	0	-	
		0	0		
VIII		0	0		
VIII					
		0	0		
/idence er	Number of Course Revised: 11	. 290	136		

Evidence enclosed:

Schemes of 2018 to 21 batch 2019 to 22 batch with changes shown in different colour

Total Number of Courses Revised: 11

Total Number of Course in the Programme: 41

Percentage of course Changed : 26.82

REGISTRAR KLE Technological University HUBBALLI-580 031

Signature of HoS/HoD Head of the Department Department of Master of Computer Applications KLE TECHNOLOGICAL UNIVERSITY HUBBALLI-580 031.

Change summary between 2019-20 and 2020-21 admitted batches (i.e. 2019 to 22 batch 2020 to 22 batch)

Semester	Course Name	Total Hours	Revision Hrs	% Change	Year of Implementation
	20ECAC701 Data Structures			20	2020
	using C	50	10		2020
	20ECAC702 Data Base			20	2020
	Management System	50 .	10		
1	20ECAC703 Computer			20	2020
	Networks	50	10		
	20ECAC705 Web Technology	50	10	20	2020
	20ECAP701 Python			20	2020
	Programming Lab.	48	10		
	20ECAC706 OOPS using Java	50	50	100	2020
	20ECAC707 Data Mining	50	10	20	2020
	20ECAC709 Cloud Computing	50	10	20	2020
11	20ECAC711 Design & Analysis			20	2020
	of Algorithms	50	10		
		0	0		
		0	0		
		0	0		
III		0	0		
		0	0		
IV		0	0		
10		0	0		
v		0	0		
×		0	0		
		0	0		
VI		0	0		
		0	0		
٧II		0	0		
		0	0	1	
		0	0		
		0	0		
VIII		0	0		
		0	0		
	Number of Course Revised: 9	448	130		

Evidence enclosed:

Schemes of 2019 to 22 batch 2020 to 22 batch with changes shown in different colour

Total Number of Courses Revised: 9

Total Number of Course in the Programme: 22

Percentage of course Changed : 40.90

REGISTRAR KLE Technological University HUBBALLI-560 031 Signature of HoS/HoD Head of the Department Department of Master of Computer Application KLE TECHNOLOGICAL UNIVERSITY HUBBALLI-580 031.

2

K. L. E Society's KLE Technological University School of Management Studies and Research

Course Code: 16MBAP702 L-T-P: 0-0-1 Credits: 1 ISA Marks: 100 ESA Marks: --Teaching Hrs: 28 hrs Course Title: Rural Immersion Phase - I Contact Hrs: 02hrs/week Total Marks: 100

Rural set up with regard to:

- \circ Education
- o PEST
- Health Care: Oral Health and Hygiene
- Social evils
- Infrastructure: Road, Electricity, Water, Transportation, Housing Conditions, Banking, Postal services,
- Agri-business/SHG's(micro finance)/Business
- o Weather

Village Mapping

Business prospects and development

• Innovative skills and excellence in planning, decision-making, organization and implementation in the sector. RURBAN model

K. L. E Society's KLE Technological University School of Management Studies and Research

Course Code: 16MBAP704				
L-T-P : 0-0-2	Credits: 2			
ISA Marks: 100	ESA Marks:			
Teaching Hrs: 56 hrs				

Course Title: Managerial Communication and Aptitude Contact Hrs: 04hrs/week Total Marks: 100

Part 1: Managerial Communication

Topic 1: Discussions and Debates

- Understanding discussion
- Parameters measured in Group Discussions
- Video Analysis of Group Discussions

Topic 2: Writing Skills

- Business letters
- Covering letter
- Resume writing
- Email etiquette

Topic 3: Interview Skills

- What companies expect
- Showing Commitment and Learning Ability
- Handling difficult questions
- Understanding interviewer psychology
- Situation Reaction and Presence of Mind
- Dressing right
- Interview etiquette

Part 2: Managerial Aptitude

Arithmetical Reasoning:

- Number Systems and Speed Math
- Factors and Multiples
- Combinations
- Probability

10 hrs

10 hrs

10hrs

K. L. E Society's KLE Technological University School of Management Studies and Research

- Percentages
- Interest
- Alligations and Averages
- Man-Hour Calculations

Analytical Thinking

- Data Analysis
- Data Interpretation
- Data Sufficiency
- Puzzles

Verbal Logic

- Verbal Analogy
- Verbal Classification
- Letter and Number Series
- Decoding the Codes

Non – Verbal Logic

- Non Verbal Analogy
- Non Verbal Classification
- Pattern Completion
- Pattern Comparison

02 hrs

References:

- Vilanilam J V, More Effective Communication: A Manual for Professionals, Sage Publications.
- Shirley Taylor, 2005, Communication for Business: A Practical Approach, 4th Edition, Pearson Longman.
- John M Penrose, Robert W. Rasberry, and Robert J. Myers, Advanced Business Communication, 3rd edition, Thomson South-Western.
- Raymond V. Lesikar, Basic Business Communication: Irwin/McGraw-Hill, 1999
- Sam Phillips, 3000 Synonyms and Antonyms 1st Edition, Goodwill Publishing House
- John Jackman and Wendy Wren, Nelson English Evaluation Pack Book 5, Thomas Nelson

14 hrs

06 hrs

04 hrs

Course Code: 16MBAC714 L-T-P: 1-0-1 Credits: 2 ISA Marks: 100 ESA Marks: --Teaching Hrs: 14 hrs

Course Title: Indian Society and Citizenship Contact Hrs: 03hrs/week Total Marks: 100

Indian society

- Structure of Indian Society
- Indian caste system
- Upbringing and family values
- Suppressive and pro-active to progressive and reactive society, paradigm shift in Indian societal behavior
- Factors that influence the social behavior of an Indian in today's day and age

Active Citizenship

- Civic Sense
- College Profile and Community Profile
- Local Government
- Right to Information
- Democracy and Freedom
- Celebrating our diversity, pluralism
- Our constitution and respect for law
 - Rights and Duties
 - Green Environment
 - Voting

14 hours

References:

- J. Dreze and A. Sen, India: Development and Participation, (New Delhi: Oxford University Press, 2002)
- Levinson, B. 2011. Towards an Anthropology of (Democratic) Citizenship Education
- Vicki S. Helgeson, Psychology of Gender (Carnegie Mellon University)

- David G. Myer, Exploring Social Psychology (Michigan's Hope College)
- Eric Shiraev & David Levy, Cross Cultural Psychology: Critical Thinking & Contemporary Application (Eric - George Mason University, Northern Virginia Community College. David -Pepperdine University)
- Frank W.Schneider, Jamie A. Gruman, Larry M. Coutts, Applied Social Psychology: Understanding & Addressing Social and practical Problems.
- T.R Raghunandan, Decentralisation & Local Governments: The Indian Experience
- Mukul Sharma, Green & Saffron: Hindu Nationalism & Indian Environmental Politics
- Green, Duncan (2012) From Poverty to Power (2nd edition) How active citizens & effective states can change the world, Oxfam London.
- Honohan, I.(2005) Active Citizenship in contemporary democracy, in Harris, C.(ed.) The Report of the Demcracy Commission: Engaging Citizens, the Case for Democratic Renewal in Ireland, Dublin: TASC and Democratic Dialogue
- Mody, Pillo (2003) Democracy Means Bread & Freedom. Abhinav Publications New Delhi.
- Branson, M.S. (1998) The Role of Civic Education A Forthcoming Education Policy Task Force Position Paper from the Communitarian Network
- Galston, William (2001) Political Knowledge, Political Engagement and Civic Education in Annual Review of Political Science. University of Michigan.
- Shelley E. Taylor, Letitia Anne Peplau, David O. Sears, Social Psychology (12th Edition)
- Bipan, Chandra.1989. India's Struggle for Independence. Delhi: Penguin Books
- Deasi, A.R.1978. Rural Sociology in India. Delhi: South Asia Books
- Dumont, L. 1980. Homo Hierarchicus. University of Chicago Press
- Gupta Dipankar. 1992. Social Stratification. New Delhi: Oxford University Press
- Srinivas, M.N. 1987. The Dominant Caste and Other Essays. Delhi: Oxford University Press.
- Srinivas, M.N. 1995. Social Change in Modern India. Delhi: Orient Longman
- The Nestle Maggi fiasco in India, 2015
- The Uber Scandal India, 2014
- Vijay Mallya Willful defaulter case India, 2016

Course Code: 16MBAC712		Course Title: Human Resource Management
L-T-P : 2-0-0	Credits: 2	Contact Hrs: 02hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching hrs: 28 hrs		Exam Duration: 3 hrs

Module 1:

Introduction, characteristics, scope, objectives, functions and role of Human Resource Management(HRM), HRM versus personnel management, difference between HRM and HRD (Human Resource Development), qualities of Human Resource (HR) manager, HR manager as a strategic partner.

Module 2:

Module 4:

Job design, analysis, description, specification, enrichment, enlargement and rotation, Introduction to compensation and benefits management - purpose, meaning, factors, challenges

Module 3: Acquisition of human resources: Man power planning, objectives, Recruitment, sources of recruitment, selection techniques, Placement, Induction.

Employee engagement, competency mapping, Managing careers, welfare facilities, industrial relations, work life balance, Introduction to IHRM (International Human Resource Management), HR Ethical issues, contemporary HRM

References:

- Gary Dessler, Human Resource Management, 10th edition, Prentice Hall
- Cynthia D. Fisher, Lyle F. Schoenfeldt, and James B. Shaw, Human Resource Management, Biztantra.
- Ashwatappa K, Human Resource and Personnel Management, 4th edition, Tata McGraw Hill.
- Rao V S P, Human Resource Management, Excel Books

06 hrs

08 hrs

06 hrs

Course Code: **16MBAP706** L-T-P: **0-0-1** Credits: **1** ISA Marks: **100** ESA Marks: --Teaching Hrs: **28 hrs**

Course Title: Rural Immersion Phase - II Contact Hrs: 02hrs/week Total Marks: 100

- a) Review of RI Phase I
- b) Identify area of improvement
- c) Solution to an area of improvement
- d) Recommendations and implementation plan

Course Code: 16MBAC802		Course Title: Climate change & Sustainability
L-T-P : 2-0-0	Credits: 2	Contact Hrs: 02 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 28hrs		Exam Duration: 3 hrs

Module 1

Climate science and potential impacts:

Impacts of climate change on India, India in the Intergovernmental Panel on Climate Change, The UN Framework Convention on Climate Change.

8 hrs

Module 2

The international climate negotiations: stakes, debates and dilemmas

International climate negotiations and India's role, Equity in climate change : the range of metrics and views, Climate change debate: the rationale of India's position, India's official position: a critical view based on science , Views from the outside : international perspectives on India's climate positions. **Environmental Economy**

Module 3 Domestic politics of climate change Climate politics in India, Climate change and Indian environmental movement, Climate change and

parliament, Climate change and the private sector, Corporate responses to climate change in India. Political Economy 8 hrs

Module 4

Integrating climate change and development: a sectoral view

Energy, development and climate change, Climate change and urbanization in India, Agriculture in the environment: sustainable climate friendly systems in India , Framework for India's strategic water resource management under a changing climate, The technology agenda.

Looking to the future

The geopolitics of climate change, Climate change regional perspective, Sustainable Development

7 hrs

Reference text book:

Navroz K, Dubash, Handbook of Climate Change and India, Oxford •

Course Code: 16MBAC804		Course Title: Technology: an enabler
L-T-P : 1-0-0	Credits: 1	Contact Hrs: 01 hrs/week
ISA Marks: 100	ESA Marks:	Total Marks: 100
Teaching Hrs: 14 hrs		Exam Duration: 3 hrs

Module 1

Introduction

Data and information, Concepts of management information systems, Information systems in organization, information as resource of competitive advantage, Decision making with MIS, Contemporary approaches to MIS, Data Warehouse, ethical and social issues related to systems.

08 hrs

Module 2

Technology Management

Technology management, Internet on things (IoT), Smart city, GPS & RFID.

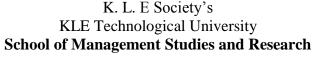
06 hrs

References:

- Rahul De, *Managing Information Systems in Business, Government and Society*, Wily India Publication; 1st Edition
- Gordon B. Davis and Margrethe H. Olson, *Management Information Systems (Conceptual foundations, Structure and Development)*McGraw Hill Education India Private Limited; 2 edition
- James O'Brien and George Marakas, *McGraw Hill Education India Private Limited*; 10 edition

 Course Code:
 16MBAP707

 L-T-P:
 0-0-1
 Credits:
 1


 ISA Marks:
 100
 ESA Marks:
 --

 Teaching Hrs:
 28 hrs
 -- --

Course Title: Rural Immersion - III Contact Hrs: 02hrs/week Total Marks: 100

List of activities planned:

- Review of RI Phase I and II
- Review of identified area of improvement
- Measure the impact of the improvement
- Continue the same improvement area or identify new, if necessary
- Working on the RI phase III with the support of SIIT/ industry/NGO/Government partner
- Possible solution to an area of improvement
- Recommendations and implementation plan

Course Code:	16MBAE801	Course Title: Sales Management
L-T-P : 2-1-0	Credits: 03	Contact Hrs: 04hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 2	28 hrs	Exam Duration: 3 hrs

Module 1:

KLF TFCH

Introduction to Sales Management:

Technological University

Creating Value

Leveraging Knowledge

Introduction, Evolution of sales management, nature importance of sales management, role and skills of modern sales people, sales management positions/sales as a career, responsibilities (social, ethical, legal) of sales person

Module 2: Planning sales team:

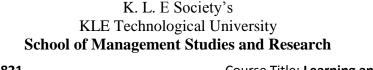
Nature of organization, types, characteristics of the organization, sales budget, designing of sales territories, sales objectives, quotas and targets, role of ICT in sales organization

Sales-force Management: recruitment and placement, training and development, personal selling, motivation, leadership, analysis and evaluation

Module 4:

Module 3:

Contemporary topics: Global Sales-force management, Role of technology in Sales-force and Distribution channel management, ethical, social and technological issues in sales-force management.


References:

- Spiro, Stanton, Rich, Management of Sales force, 11th Edition Tata McGRAW Hill
- Krishna K Havaldar, M Cavale, *Sales and Distribution Management: Text and Cases*, McGRAW Hill
- Tapan K Panda, Sunil Sahadev, *Sales and Distribution Management*, 2nd Edition, Oxford Higher Education.

10 hrs

07 hrs

06 hrs

Course Code: 16MBAE821		Course Title: Learning and Development
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40 hrs		Exam Duration: 3 hrs

Module 1:

Introduction to learning, training and development, Meaning and significance of learning, theories of learning, learning process, Training meaning, significance, purpose and process, Training Department and Trainers' Roles

Module 2: Training Needs Analysis: Meaning and significance of training needs, types of needs, components of

Module 3: Training methods: on the- job and off -- the- job training Management Development Program (MDP): Need, factors affecting MDP, methods, process

10 hrs

Evaluating Training Programs: Meaning, significance, Donald Kirkpatrick's evaluation model, data collection for training evaluation, designs of training evaluation, process, Return on Investment in training, a search for best practices in evaluation

Module 5:

Module 4:

Trends of learning and development, E-learning and use of technology for training, creativity and its role in Learning and Development, knowledge management, Career in Training

References:

Noe A Raymond, Employee Training & Development, McGraw Hill Publication.

needs, data collection, analysis and interpretation. Training design and development

- Rolf Lynton & Udai Pareek, Training for organizational transformation, Sage Publications, New Delhi.
- Jackie Clifford & Sara Thorpe, Workplace Learning & Development: Delivering Competitive Advantage for your organisation, Kogan Page Limited (2007)
- Tony Bingham, The New Social Learning, 1st Edition, , 2012, Cengage Learning India Pvt. Ltd, New Delhi
- Rao T.V, Performance Appraisal Theory and Pract ice
- Jack J. Phillips, Butterworth-Heinemann Return on Investment in Training and Performance Improvement Programs, 2nd Edition

KLF TECH.

Technological University

Creating Value

Leveraging Knowledge

08 hrs

08 hrs

08 hrs

Course Code: 16MBAE823		Course Title: HR Operations
L-T-P : 2-1-0	Credits: 3	Contact Hrs: 04 hrs/week
ISA Marks: 5 0	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 28hrs		Exam Duration: 3 hrs

Module 1:

Introduction to HR Operations, HR Policies, importance, types of HR Policies, On boarding: importance, objectives, process, HRIS (human resource information system) – concept, objectives, how Managers Use the HRIS?, Implications on local organizations, Digitalization of HR

Module 2:

Compensation Management (CM):

Introduction to Compensation Management: Overview of HRM, role of compensation in organizations, introduction to compensation management, Factors influencing employee remuneration, Process of Compensation Management, Architecture of Compensation, Performance appraisal

Module 3:

Indian Industrial Relations (IR) - An overview, need and objectives. Importance of harmonious IR, Conditions for congenial IR, IR in the post Independence period, Industrial relations in the region

Grievance procedure and Discipline management: Grievance, meaning and forms, approaches to grievance machinery, Grievance procedures, Industrial Discipline and Misconduct, Domestic Enquiry, Code of Discipline in Industry, Retention, Attrition, Exit interviews

Module 4:

Collective Bargaining in India: Definition, Essential conditions for the success of collective bargaining, collective bargaining process, prerequisites for collective bargaining.

Contemporary topics

References:

- Monappa Arun Industrial Relations, Tata McGraw Hill Publishing Company Ltd, 1/e, 2002. •
- Mishra S.N.Labour and Industrial Laws, Central Law Publications, Allahabad •
- Michael J. Kavanagh (Editor), Mohan Thite, Human Resource Information Systems: Basics, • Applications, and Future Directions, SAGE Publications
- Piyali Ghosh, Shefali Nandan, Industrial Relations and Labour Laws, Mc Graw Hill Education(India) Private Ltd

06 hrs

07 hrs

08 hrs

Course Code: 16MBAE806		Course Title: Digital Marketing
L-T-P : 2-1-0	Credits: 03	Contact Hrs: 04hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 28 hrs		Exam Duration: 3 hrs

Module 1:

Introduction to digital marketing: Need and relevance for digital marketing, evolution of digital marketing, challenges/issues concerning digital marketing and future of digital marketing.

06 hrs Module 2:

Ethical components in digital marketing

Social media campaigns: analyzing successful green campaigns, Social media and customer engagement: the social feedback cycle, open access to information and the connected customers.

The social web and engagement: the engagement process

Introduction to social media as a business tool: use of face book, YouTube, twitter and LinkedIn as modern tools for business operations and communications.

12 hrs Module 3: The new role of the customer: social interactions on social media.

Customer Relationships: Social CRM.

Overview of social business: building a social business ecosystem, social profiles, social applications, using brand outposts and communities

Module 4:

Contemporary topics

References:

- Dave Evans, Social Media Marketing: The Next Generation of Business Engagement Wiley **Publication Inc**
- Sameer Deshpande and Nancy R Lee, Social Marketing in India, Sage Publications ٠
- Diane Martin and John Schouten, Sustainable Marketing, Prentice Hall Publications •
- Robert Dahlstorm, Green Marketing: Theory, Practice, and Strategies (English) 1st Edition • South Western Publications

05 hrs

Course Code: 16MBAE834		Course Title: Inventory Management
L-T-P : 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week
ISA Marks: 5 0	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40hrs		Exam Duration: 3 hrs

Module 1

Dependent and independent demand, Demand Forecasting, Need for inventory, types of inventory, effect of inventory on profitability. **08hrs**

Module 2

Basic inventory Model, Inventory model with continuous replenishment, inventory model with discounts, Inventory model with uncertain demand, Inventory model with variable demand and fixed lead time, Inventory model with fixed demand and variable lead time, inventory model with variable demand and lead time **12 hrs**

Module 3

Selective inventory control, dependent inventory management(MRP), Collaborative Planning, Forecasting and Replenishment, JIT systems **06 hrs**

Module 4

Inventory as substitute for capacity, Multilocation inventory models –one origin several destinations, several origin several destinations system **10 hrs**

Module 5

Role of inventory in food security, impact of real time data communication on inventory management

04 hrs

References

- Buffa and Sarin , Operations Management
- Max Muller , Essentials of Inventory Management
- NarasimhanSitaramn and Mcleavey Dennis, Production Planning and Inventory Control

Course Code: 16MBAE835	Course Title:	Logistics and Warehouse Management
L-T-P : 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week
ISA Marks: 5 0	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40hrs		Exam Duration: 3 hrs

Module 1

Introduction

Inventory Flow, Information Flow, Planning and Coordination flows, Operational flows, Difference between Logistics and Supply Chain Management Linkage of Logistics to other functions, Objectives of Logistics Management, 5Ps and & 7 Rs of Logistics. Modes of transportation and documentation

10 hrs

Module 2

Location Selection and Network Design Transportation – Location Trade-offs, , Location Models, Locating Service Organisations Transportation Modeling, Routing, Transshipment, Multi location and multi item ware house modeling. 12 hrs

Module 3

Warehouse Management

Warehouse Operations, Material Handling and Packaging, Parts and Service Support, Bar coding, RFID, Electronic Data Interchange (EDI), Automated material handling, Warehouse Management Systems (WMS) 08 hrs

Module 4

Strategic Logistic Practices International Logistics, Third party and Fourth party logistics, ERP and Ecommerce & Logistics

06 hrs

Module 5

Reverse Logistics and its impact on Environment Definition, evolution and trends. Economic and environmental impact

References

- G. Raghuram and Rangaraj, *Logistics and Supply Chain Management: Cases and Concepts* Laxmi Publications (2015)
- Christopher, M; Richard Irwin Logistics and Supply Chain Management
- Chopra and Mendal, Supply Chain Management

Course Code: **16MBAP708** L-T-P: **0-0-1** Credits: **1** ISA Marks: **100** ESA Marks: --Teaching Hrs: **28 hrs** Course Title: **Rural Immersion - IV** Contact Hrs: **02hrs/week** Total Marks: **100**

List of activities planned:

- Review of RI Phase III
- Measure the impact of the improvement
- Study RI phase IV with the support SIIT/ industry/NGO/Government partner
- Solution to an area of improvement
- Recommendations and implementation plan

Course Code: 17MBAC704		Course Title: Business Research and Statistics
L-T-P : 3-1-0	Credits: 4	Contact Hrs: 05 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40 hrs		Exam Duration: 3 hrs

Module 1:

Introduction to business research:

Meaning and objectives of research, Types of research, Stages in research process, Characteristics of Good Research

Philosophy of Research Methodology: Ontology, Logic of Procedure, epistemology, Research Gap

Module 2:

Concepts in Research:

Variables, Qualitative and Quantitative Research Research design: Meaning, Importance, Steps in research design, Types- Descriptive, Exploratory and causal

Sampling :meaning of sample and sampling, methods of sampling-

i)Non- Probability Sampling Convenient, Judgment, Quota, Snow ball,

ii) Probability – Simple Random, Stratified, Cluster, Multi Stage.

Module3:

Types of Data& Data Collection:

Primary and secondary

Methods of Data collection– Personal Interviews, Telephonic or Internet Interview, Observation, Focus group interviews, Expert opinions, self administered questionnaire

Schemes of analysis Secondary data analysis, Qualitative data analysis

Introduction to business statistics: Importance of statistics in managerial decision-making, the nature of study, limitations and misuse of statistical data, subdivisions within statistics.

Data: types, Frequency Distribution, Representation, Measures of Central Tendency, Measures of dispersion

Module 4:

Types of measurement and Scales:

Nominal, Ordinal, Interval, Scale,

Types of Measurement Scales, Attitude rating, Likert, Thurstone, Semantic Differential

Module 5:

Hypothesis and Probability distribution:

Meaning, Nature, Significance, Types of Hypothesis,

06 hrs

07 hrs

14 hrs

Normal distribution, Correlation and Regression Analysis, Test for means and Proportions, Test for equality of population means, confidence interval, introduction to Chi-square test. Report writing, ethical issues, and plagiarism

09 hrs

References:

- Cooper and Schlinder, Business Research Methods, TMH
- William Zikmund, Business Research Methods, Cengage Publication
- G. C. Ramamurthy, *Research Methodology*, Dreamtech Press
- Uma Sekaran and Roger Bougie, Research Methods for Business, Wiley Publications
- Uwe Flick, An Introduction to Qualitative Research, Sage Publications
- Gerard Guthrie, Basic Research Methods, Sage Publications
- G. C. Beri, 2005, *Business Statistics*, 2nd edition, Tata McGraw-Hill.
- R I Lewin and David S Rubin, *Statistics for Management*, 7th edition, Pearson.
- Robert E. Stine, Dean Foster, *Statistics for Business: Decision Making and Analysis*, 1st edition, Pearson
- Bruce Bowerman, Emly S. Murphree, Richard O'Connell*Business Statistics in Practice*, 5th edition, Tata McGraw-Hill.
- J K Sharma, *Business Statistics*, 2rd edition, Pearson

Course Code: 17MBAP803 L-T-P: 0-0-2 Credits: 2 ITA Marks: 100 ETA Marks: --Teaching Hrs: 56hrs Course Title: **MS Excel for Managers** Contact Hrs: **04Sessions/week** Total Marks: **100**

MS Excel

- MS Excel Basics
- Editing Worksheet
- Formatting Cells
- Formatting Worksheets
- Working with Formula
- Advanced Operations
- MS Excel Resources

Course Code: 17MBAW802 L-T-P: 0-0-2 Credits: 2 ITA Marks: 100 ETA Marks: --Teaching Hrs: 56hrs

Course Title: **Project work Phase - I** Contact Hrs: **04Sessions/week** Total Marks: **100**

Student has to execute the below mentioned tasks about the industry related to his/her SIIT firm

Task s:

- Review of literature (Strategic Management models and tools)
- Value chain study
- Internal value chain and identification of drivers
- Report writing

Course Code: 17MBAW803 L-T-P: 0-0-3 Credits: 3 ITA Marks: 100 ETA Marks: --Teaching Hrs: 56hrs

Course Title: Entrepreneurship Project -Phase III Contact Hrs: 06Sessions/week Total Marks: 100

Tasks

- Finalization of business model
- Prepare for commercial launch
- Report on Business plan and reflections on experience

Course Code: 17MBAR802 L-T-P: 0-0-3 Credits: 3 ITA Marks: 100 ETA Marks: --Teaching Hrs: 56hrs Course Title: Research Experience - Phase III Contact Hrs: 06 Sessions/week Total Marks: 100

Pre-requisite: Research Experience - Phase I

Tasks:

- Data analysis and Interpretation
- Findings and suggestions
- Report writing and presentation

Course Code: 17MBAW804 L-T-P: 0-0-2 Credits: 2 ITA Marks: 50 ETA Marks: 50 Teaching Hrs: 56hrs Course Title: Project work Phase - II Contact Hrs: 04Sessions/week Total Marks: 100 Viva-voce: 3 hrs

Project work Phase – I is prerequisite

Student has to execute the below mentioned tasks Tasks

- Industry value chain and identification of drivers
- Compare and contrast Company value chain with industry value chain
- Industry Trends and futuristic outlook
- Report writing

Course Code: 18MBC710

L-T-P: 1-1 Credits: 3 ITA Marks: 100 ETA Marks: --Teaching Hrs: 28hrs Course Title: Society, Citizenship & Rural Immersion Phase -I Contact Hrs: 05 Sessions /week Total Marks: 100

Indian society

Structure of Indian Society, Indian caste system, Upbringing and family values, Suppressive and proactive to progressive and reactive society, paradigm shift in Indian societal behavior, Factors that influence the social behavior of an Indian in today's day and age

Active Citizenship

Civic Sense, College Profile and Community Profile, Local Government: Village Panchayat/Town or City Municipality/ City Corporation, Taluk Panchayat, Zilla Panchayat, State and Central Government, Right to Information, Democracy and Freedom, Celebrating our diversity, pluralism, Our constitution and respect for law, Rights and Duties, Green Environment, Voting

Tasks in Rural Immersion

- Environment and infrastructure studying (Village mapping)
- Social Development and Business prospects

References:

- J. Dreze and A. Sen, India: *Development and Participation*, (New Delhi: Oxford University Press, 2002)
- Levinson, B. 2011. Towards an Anthropology of (Democratic) Citizenship Education
- Vicki S. Helgeson, *Psychology of Gender* (Carnegie Mellon University)
- David G. Myer, *Exploring Social Psychology* (Michigan's Hope College)
- Eric Shiraev& David Levy, Cross Cultural Psychology: Critical Thinking & Contemporary Application (Eric - George Mason University, Northern Virginia Community College. David - Pepperdine University)
- Frank W.Schneider, Jamie A. Gruman, Larry M. Coutts, *Applied Social Psychology: Understanding* & *Addressing Social and practical Problems*.

Course Code: 18MBAE805	Course Title: Integrated Marketing Communications
L-T-P: 2-1-0	Credits: 03Contact Hrs: 04 Sessions/week
ITA Marks: 50	ETA Marks: 50 Total Marks: 100
Teaching Hrs: 28 hrs	Exam Duration: 3 hrs

Module 1:

Integrated marketing communication: Integrated marketing communication: The evolution of IMC, reasons for growing importance of IMC, the promotional mix- advertising, direct marketing, internet marketing, sales promotion, publicity, public relations, personal selling, promotion management, IMC planning process

Module 2:

Organizing for advertising and promotion: The role of advertising agencies, agency compensation, evaluating agencies, developing the integrated marketing communication program, Importance of creative advertising

Media planning & strategy: An overview on media planning, developing media plan, market analysis and target market identification, establishing media objective, developing and implementation media strategies, evaluation and follow up.

Internet and IMC: Measuring the effectiveness of Internet advertising, advantages of Internet marketing, direct marketing on Internet budgeting for marketing communication.

Module 3: Consumer Decision Making Process: Steps of effective communication, communication objectives, consumer decision making process, how advertising works- AIDA and hierarchy effects model, convincing senior executives on the marketing communication budget.

Module 4:

Contemporary topics: Shift to Mobile and Beyond, Social Media Impact on Communication and Brand Journalism

References:

- Belch, M.A., and Belch, G.E., Advertising and Promotion, Tata Mc-Graw Hill Publication •
- Keller Kevin, Strategic Brand Management, Pearson Publication, Third Edition
- Shah, K. and D'souza, A., Advertising & Promotion, Tata Mc-Graw Hill Publication ٠

06hrs

05hrs

05hrs

Course Code: 18MBAE807 L-T-P: 2-1-0 Credits: 03 ITA Marks: 50 ETA Marks: 50 Teaching Hrs: 28 hrsExam Duration: 3 hrs

Module1:

Basic concept of Industrial Marketing: Industrial Marketing, consumer and industrial products, consumer and industrial marketing, differences of consumer and industrial marketing.

Industrial markets: Industrial customers, specificities of industrial markets, the environment of Industrial Marketing. The specificities and the risks in international markets. The trends in globalization of industrial markets

Module 2:

Organization's purchasing behaviour, system of purchasing decisions: System of taking decisions in the Industrial Marketing. The poles in the system of taking purchasing decisions in Industrial Marketing. Factors that affect the purchasing decision in Industrial Marketing.

Process of taking purchasing decisions for industrial products. Types of purchasing activities in Industrial Marketing. Marketing Strategies for the purchasing activities and the stages of the process of taking purchasing decisions. Information sources that are used from members of the Taking purchasing decisions' system

Module 3:

Pricing and Promotion in Industrial Marketing: The importance of pricing in Industrial Marketing. Inhouse and external factors determine the price. Procedures, processes and pricing policies. The mixture promotion in industrial marketing. Sales promotion, advertising, direct marketing, public relations and personal selling.

Distribution of industrial products: The importance of industrial products. Administration and revitalization of existing industrial products. The Marketing distribution functions, main forms of intermediate, forms of industrial channels. Design, selection and management of distribution channels.

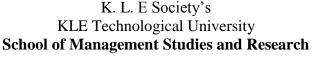
Module 4:

Contemporary topics

Systematic approach to the management and control of supplier/customer relationships, interactive strategic marketing planning: A new approach. Smart Business to business strategy.

05 hrs

08 hrs


References:

- 1. Tomaras P. (2009). Industrial Marketing. Published by the author. Athens, (ISBN: 978-960-90674-3-0). (in Greek)
- 2. Ralph S Alexander, Richard M Hill, Industrial Marketing-Edition-3

Course Title: Industrial Marketing Contact Hrs: 04 Sessions/week Total Marks: 100

10 hrs

Course Code: 18MBAE808	Course Title: Product and Brand Management
L-T-P : 2-1-0	Credits: 03Contact Hrs: 04hrs/week
ITA Marks: 50	ETA Marks: 50 Total Marks: 100
Teaching Hrs: 28hrs	Exam Duration: 3 hrs

Module 1:

KLF TFCH

Introduction to Product Management, Role and Functions of Product Managers, Product Mix and SBU Strategies, Portfolio analysis (BCG / GE Multifactor Matrix), Marketing Planning

Module 2:

Product Decisions over the PLC, New Product Development Process, Pricing and Promotion strategies, channel management

Module 3: Introduction to Brand Management- Branded House Vs House of Brands, Corporate Brand, Brand prism by Kapferer Model, Brand Anatomy, Branding Decisions- Line Extensions, Category Extension, Brand

Equity - Concept and measure 10hrs

Module 4: **Contemporary Practices**

References:

- Donald R Lehamann, Product management 4th Edition, Mcgrow Higher Ed •
- Marc Annacchino, New Product Development, 2003 Ed, Elsevier Butterworh-Heinemann •
- Saaksvuori Antti, Product Lifecycle management, Springer- Verlag •
- Kevin Lane Keller, M G Parameswaran, Isaac Jacob, Strategic Brand Management, 2008, Person publication
- David Aaker, Brand Management, TMH publication
- YLR Murthy, Brand management Indian prospective, Vikas Publications •

7 hrs

7 hrs

04hrs

Technological University Creating Value Leveraging Knowledge

Course Code: 19MBAE811	Course Title: Security Analysis and Portfolio Management	
L-T-P: 2-1-0	Credits: 3	Contact Hrs: 04 Sessions/week
ITA Marks: 50 ETA Marks: 50		Total Marks: 100
Teaching Hrs: 28 hrs		Exam Duration: 3 hrs

Module 1:

Introduction to Investments

Introduction to Investments: Concepts of investment-characteristics and objectives of investment, investment Vs speculation, forms of investment, alternative investments, marketable and non marketable financial assets, Foreign Portfolio Investment (FPI), Sovereign Wealth Funds (SWFs). Analysis of risk & return, concept of total risk, elements of risk – systematic and unsystematic risk, business risk, interest rate risk, market risk, management risk, purchasing power risk. Measuring Risk and Return.

Module 2:

Introduction of fundamental and technical analysis

Fundamental analysis, equity valuation, balance sheet techniques, discounted cash flow technique, dividend discount model, zero growth model, constant growth, two stage growth, earning multiplier approach Bond characteristics, bond price, bond yield, Price, yield relationship, risk in bonds, rating, yield theories, segmentation theory.

Technical analysis: introduction, the concept of Dow Theory, trend and trend reversals, chart patterns, Eliot wave theory, mathematical indicators

Module 3:

Efficient market hypothesis and portfolio Management

Behavior of market, efficient market hypothesis, portfolio Analysis, return and risk of portfolio, portfolios with more than two securities Portfolio Selection, feasible set of portfolios, optimal portfolio, Markowitz model, single index model, multi index model, CAPM, Arbitrage Pricing Theory.

Module 4: Portfolio Performance, Evaluation and Revision

Portfolio revision, meaning and constraints, revision strategies portfolio evaluation, need and meaning, differential return, Treynor ratio pros and cons, residential and other forms

References:

- Punithavati Pandyan, Security Analysis and Portfolio Management, Latest edition, VikasPubl,
- Kevin S, Portfolio Management, 2nd edition, Prentice H,
- Alexander, Sharpe, Bailley, Fundamentals of Investment, Pearson,
- ChndraPrasanna, Investment Analysis and Portfolio Management, 3rd Edition, TMH

05 hrs

08 hrs

09 hrs

Course Code: **19MBAW802** L-T-P**: 0-0-7** ITA Marks: **50** ETA Marks: **50** Teaching Hrs: **98 hrs** Course Title: Internship and Project work Credits: 7Contact Hrs: 14Sessions/week Total Marks: 100 Viva-voce: 3 hrs

PART I

- Broad overview pertaining industry and detailed organization profile in the framework of foundation courses (Human Resource Management, Marketing Management, Operations Management and Financial Management)
- Student has to work on the research area
- Data collection
- Analysis and Interpretation
- Findings, recommendations and conclusion
- Report writing
- Experience worth noting

PART II

Detailed industry profile based on secondary source

Tasks

- Data collection
- Analysis
- Interpretation using tools leading to Challenges, Megatrends and Impact in the global context
- Scope and Opportunities in local prospective

 Course Code:
 19MBAW803

 L-T-P:
 0-0-5
 Credits:
 5

 ITA Marks:
 100
 ETA Marks:
 --

 Teaching Hrs:
 70 hrs
 --

Course Title: Entrepreneurship Project -Phase II Contact Hrs: 10 Sessions/week Total Marks: 100

Pre-requisite: Entrepreneurship Project - Phase I

Tasks:

- Report of feasibility study in the framework of effectuation
- Preliminary survey
- Developing alternative business models
- Selection of resources
- finalization of business model
- Prepare for commercial launch
- Report on Business plan and reflections on experience

Course Code: 19MBAR802 L-T-P: 0-0-5 Credits: 5 ITA Marks: 100 ETA Marks: --Teaching Hrs: 70 hrs Course Title: Research Experience - Phase II Contact Hrs: 10 Sessions/week Total Marks: 100

Pre-requisite: Research Experience - Phase I

Tasks:

- Instrument development
- Data collection, tabulation, coding
- Data analysis and Interpretation
- Findings and suggestions
- Report writing and presentation