

Course Title: Data Structure and Algorithms Lab		Course Code: 19ECSP201
L-T-P: 0-0-2	Credits: 2	Contact Hrs: 4 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs:56 hrs	Exam Duration: 3 hrs	

Tentative plan of lab Implementation

Week No	Lab Assignments
1	
2	02 Programming Assignments on Basic Data structures
3	
4	02 Assignments on Algorithm Efficiency Analysis
5	
6	02 Assignments on Trees
7	
8	02 Assignments on Sorting and Searching
9	
10	
11	04 Assignments on Graphs and Design Techniques
12	
13	Open Ended Experiment

Materials and Resources Required:

Text Books:

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press. 2009.
- 2. Anany V. Levitin. 2002. Introduction to the Design and Analysis of Algorithms. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Reference Books:

- 1. Hemant Jain, Problem Solving in Data structures and Algorithms Using C, TaranTechnologies Private Limited, 2016
- 2. Online Sites: HackerRank / CodeChef

Program: Bachelor of Engineering			
Course Title: Object Oriented Programming with C++		Course Code: 18ECSC207	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40			

Unit –	I		
1	Chapter No. 1: Introduction: Introduction to object oriented programming.		
	Characteristics of object oriented languages, Programming Basics, arrays,		
	Functions in C++ (parameter passing techniques.)	4 hrs	
2	Chapter No. 2: Classes and Objects: Introduction to Classes and Objects,		
	encapsulation visibility modifiers, constructor and its types, nested classes, String		
	class. UML diagrams to describe classes and relationships.	6 hrs	
3	Chapter No. 3:Inheritance: Introduction, types of Inheritance, constructors,		
	Abstract class, Aggregation: classes within classes	6 hrs	
	Unit –II		
4	Chapter No. 4: Virtual Functions and Polymorphism: Virtual functions,		
	Friend functions, static functions, The 'this' pointer	6 hrs	
5	Chapter No. 5:Templates and Exception Handling: Function and class		
	templates.Introduction to exceptions, Throwing an Exception, Try Block,		
	Exception Handler (Catching an Exception), Multiple exceptions. Exceptions		
	with arguments	6hrs	
6	Chapter No. 6:Design Patterns: Creational, Structural and Behavioural design		
	patterns.	4 hrs	
Unit –	III		
7	Chapter No. 7:Streams and Files: Stream classes, File I/O with streams.		
		4 hrs	
8	Chapter No. 8:Standard Template Library: container classes: Sequence and		
	Associative Containers	4 hrs	
Textbooks			
1. Robert Lafore, "Object oriented programming in C++", 4 th Edition, Pearson education,			
Reference Books			
1.	1. Lippman S B, Lajorie J, Moo B E, C++ Primer, 5ed, Addison Wesley, 2013.		

2. Herbert Schildt: The Complete Reference C++, 4th Edition, Tata McGraw Hill

Program: Bachelor of Engineering			
Course Title: Object Oriented Programming with Course Code:			
C++ Lab		18ECSP203	
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3	
		hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hrs: 39	Exam Duration: 3hrs		

Experiments	Lab assignments/experiment	
2-Demonstration	Introduction to Code Blocks IDE (Integrated Development	
	Environment), C++ programming basics.	
4–Exercise	Classes and objects, Inheritance, Polymorphism, Templates and	
	Exceptions Handling	
2-Structured	Classes and objects, Inheritance, Polymorphism, Templates and	
Enquiry	Exceptions Handling	
1-Open Ended	Data types, Classes and Objects, Inheritance polymorphism,	
	Exception Handling. Design patterns	

Text Book:

1. Robert Lafore, "Object oriented programming in C++", 4thEdition, Pearson education.

Reference Books:

- 1. Lippman S B, Lajorie J, Moo B E, C++ Primer, 5ed, Addison Wesley, 2013.
- 2. Herbert Schildt: The Complete Reference C++, 4th Edition, Tata McGraw Hill

1.

Evaluation :

Students Assessment Through CIE (80%) + SEE (20%)

Continuous Internal	Assessment	Weightage in Marks

Department of Computer Science & Engineering

Evaluation (80%)	Exercises	40
	Structured Enquiry	20
	Open Ended Experiment	20
Semester End Examination	Structured Enquiry	20
(20%)	Total	100

Program: Bachelor of Engineering			
Course Title Scripting Languages Lab Course Code: 18ECSP201			
L-T-P: 0-0-2	Credits: 2	Contact Hrs: 4hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hrs: 30	Exam Duration: 3 hrs		

1	Introduction to UNIX Utilities	
	Architecture, Commands, File Attributes, vi Editor, Process, Simple Filter, File	
	System, Handling Files and Basic File Attributes.	06hrs
2	UNIX shell Scripting	
	Shell Basics, Shell Environment, Shell Script Programming Concepts,	
	Decision Structures, Looping Structures, and Command line arguments, Functions	
	and Arrays, Regular Expression & Filters, Processes.	06hrs
3	Python Scripting	
	Python: Types, Variables, and Simple I/O, Branching and Looping, String	
	Manipulation, Numbers, Lists and Dictionaries, Regular Expressions, Functions,	
	Files and Exceptions, Programming using numpy and scipy libraries.	12hrs
4	System Administration	
	Common administrative tasks, creating and mounting file system, File system	
	management, managing users and group accounts, monitoring system	
	performance, accessing system information, backup and restore files,	
	reconfiguration hardware with kudzu, installing and removing packages.	06 hrs

Tentative plan of lab implementation

Expt./ Job No.	Lab assignments/experiment	No. of Lab. Slots per batch (estimate)
1-2	Introduction to UNIX Utilities	02
3-4	Shell Script	03
5-10	Python programming	05
11-12	System Administration	02

Text Books

- 1. Sumitabha Das, UNIX Concepts and Applications", 4th Edition, McGraw-Hill, 2017.
- 2. Mark Lutz, "Programming Python", 4th Edition, O'Reilly, 2010.

Reference Books

- 1. Noah Gift, Jeremy Jones, Python for Unix and Linux System Administration, 2008.
- 2. <u>RytisSileika</u>m, Pro Python System Administration, 2nd Edition, 2014
- Michael Dawson, Python Programing for the Absolute Beginner, Premier Press, 3rd Edition 2010.

Program: Bachelor of Engineering			
Course Title: Operating System Principles and Course Code:			
Programming 18ECSC202			
L-T-P: 4-0-1	Credits: 5	Contact Hrs:	
		4+2hrs/week	
ISA Marks: 50 ESA Marks: 50		Total Marks: 100	
Teaching Hrs: 74Exam Duration: 3 hrs			

Unit –I		
1	Chapter No. 1. Introduction and Systems structures	04
		hrs +
	Operating system definition; Operating System operations;	02
	Modules of OS, Overview of UNIX Operating System, UNIX APIs	hrs
		(lab)
2	Chapter No. 2. Process Management	10
	Drassas concert: Drassas achadulian: Orarationa an prossass	hrs
	Process concept, Process scheduling; Operations on processes;	
	Inter-process communication (Pipes and PIPOs). Inteads,	+
	Scheduling algorithms	08
		hrs
	Process management using UNIX APIs: Process Management	(lab)
	Functions, User IDs and Group IDs, Creating process, parent child	、
	relationship.	
3	Chapter No. 3. Process Synchronization	06
		hrs +

Synchronization: The Critical section problem; Peterson's solution;	02
Semaphores, Classical problems of synchronization, Process	hrs
synchronization UNIX APIs.	(lab)
Unit –II	
4 Chapter No. 4. Deadlocks	06
	hrs +
Deadlocks: System model; Deadlock characterization; Methods	02
for handling deadlocks; Deadlock prevention; Deadlock	hrs
avoidance; Deadlock detection and recovery from deadlock.	(lab)
5 Chapter 5 : File management	07
File concepts Directory structure File Types File systems File	hrs
Attributes. Inodes in UNIX . UNIX Kernel Support for Files.	+ 04
Directory Files, Hard and symbolic names. General File APIs: File	hrs
and record lock API, Symbolic file API	(lab)
6 Chapter No. 6. Memory Management	07
Memory Management Strategies: Background; Swapping;	hrs
Contiguous memory allocation; Paging; Segmentation. Virtual	+ 02
Memory Management: Background; Demand paging; Page	hrs
replacement.	(lab)
Unit –III	I
7 Chapter No. 7. Secondary Storage Management	5hrs
Mass storage structures: Disk structure: Disk attachment: Disk	
scheduling: Disk management.	
8 Chapter No. 8. Case study	5hrs
Architecture of Mobile OS - Introduction, .Overall Architecture.	
Linux Kernel, various components, Network OS, Applications.	
Text Books	1
1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne: Operating	

System Principles, 9th edition, Wiley-India, 2006.

2. W. Richard Stevens, Stephen A. Rago, "Advanced Programming in the UNIX Environment", 3rd Edition, Addison Wesley Professional, 2013

References

- William Stallings,"Operating System Internals and Design Principles", 5th edition, Pearson Education, Asia, 2005
- 2. Gary Nutt," Operating System"3rd edition, Pearson Education,2004
- 3. Terrence Chan, "Unix System Programming Using C++", 1 ed., Prentice Hall India, 2007
- 4. Marc J. Rochkind, "Advanced Unix Programming", 2nd Edition, Pearson Education, 2005.

Program: Bachelor of Engineering		
Course Title: Product RealizationCourse Code: 17ECSP203		
L-T-P: 0-0-2	Credits: 02	Contact Hrs: 03 Hrs
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs:	Exam Duration:	

Experiments	Lab assignments/experiment
Week 1	IOT workshop: Introduction to Android studio, Introduction to
And	Arduino programming, PHP
Week 2	
Week 3	Selection of UI and Core Component of Android
Week 4	UI implementation using XML
Week 5	UI implementation and validation
Week 6	Android core component implementation and Unit Testing
Week 7	Android core component implementation and Unit Testing
Week 8	Android core components integration and testing
Week 9	Configuration of IoT Server
Week 10	Integratesubsystems for prototype testing, Analyze the test results,
	System modification, and System integration.
Week 11	System Testing

Reference:

1. Beginning Android Programming with Android Studio by J.F. DiMarzio

Program: Bachelor of Engineering		
Course Title: Engineering Design Practice [Part B]		
[Part A – Central Level]		Course Code. 17ECSI 202
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3 hrs/week
ISA Marks: 40	ESA Marks: 0	Total Marks: 40
Teaching Hrs: 39 hrs	Exam Duration: 3 hrs	

Experiments	Lab assignments/experiment		
Phase 1 (Plannig)	Introduction to Eclipse –IDE		
	Requirement modeling :		
	 Identifying use cases and actors 		
	Apply UML notations to draw use case diagram		
Phase 2 (Conceptual	Behaviour Modeling using DFD		
Design)	 List behavior of system/sub-system 		
	• List states, tasks and their dependencies		
	Illustrate DFD :		
	Identify data flow and processes of a system		
	Draw data flow diagrams for system/sub-system		
	• Draw system diagram to show interaction of all domain		
	(Draw state and sequence diagram for identified tasks)		
Phase 3(System Design)	Software Architectures:		
Thase 5(System Design)	List components of architecture		
	List components of architectures		
	List type of architectures Choose appropriate, architecture for given system		
Phase 4 (Detail Design)	UI Design using GUI wireframe:		
Thase 4 (Detail Design)	• Design function prototyping for event diagrams(DED)		
	 Design function prototyping for event diagrams(DFD) Identify user interface components 		
	Identify user interface components Chaose appropriate property of component		
	Use wirefrome to design a user interface		
Taxt books:	• Ose when alle to design a user interface		
IGAL DOOKS.			

1. Ian Somerville, Software Engineering, 9th, Pearson Ed, 2015

2. Clive L Dym and Patrick Little, "Engineering Design: A Project Based Introduction", John Wiley & Sons

Reference books:

1. Roger S. Pressman, Software Engineering: A Practitioners Approach, 7th, McGraw, 2007

2. Shari Lawrence Pfleeger and Joanne M. Atlee, Software Engineering Theory and Practice,

- 3rd, Pearson Ed, 2006
- 3. Jalote, P, An Integrated Approach to Software Engineering, 3rd, Narosa Pub, 2005

Program: Bachelor of Engineering			
Course Title: Database Management System Course Code: 15ECSC208			
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4 hrs/week	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 50	Exam Duration: 3 hrs		

Unit –		
1	Introduction and ER Model:	
	Introduction to DBMS and an example ; Data models, schemas and instances;	
	Three-schema architecture; Database languages; Using High-Level Conceptual	
	Data Models for Database Design; An Example Database Application; Entity	
	Types, Entity Sets, Attributes and Keys, Relationship types, Relationship Sets.	
	Roles and Structural Constraints; Weak Entity Types; Refining the ER Design;	07hrs
	ER Diagrams, Naming Conventions and Design Issues.	071115
2	Relational Data Model and Relational Algebra	
	Relational Model Concepts; Relational Model Constraints and Relational	
	Database Schemas; Update Operations and dealing with constraint violations;	
	Unary Relational Operations: SELECT and PROJECT; Binary Relational	
	Operations: CARTESIAN PRODUCT, JOIN: Additional Relational Operations;	08hrs
2	sor	
3	SQL	
	SQL Data Definition and Data Types; Specifying basic constraints in SQL;	
	Basic queries in SQL IOIN operations Complex SQL Queries	06hrs
Unit –	Lasie queries in 5QE,3011 operations, complex 5QE Queries.	
4	Database Design	
	Informal Design Guidelines for Relation Schemas: Functional Dependencies:	
	Normal Forms Based on Primary Keys; Boyce-Codd Normal Form.	06 hrs
5	PL/SQL	
	Features of PL/SQL; Advantages of PL/SQL; PL/SQL Basic syntax; PL/SQL	
	Data types; PL/SQL variables; PL/SQL Constraints and Literals; PL/SQL	
	Operators; PL/SQL Conditions; PL/SQL Loops; PL/SQL Strings; PL/SQL	
	Arrays; PL/SQL Procedures; PL/SQL Functions; PL/SQL Cursors; PL/SQL	07 hrs
	Records; PL/SQL Triggers.	07 11 5
6	Introduction to Transaction Processing	
	Introduction to Transaction Processing; Transactions and System concepts;	
	Desirable Properties of Transactions; Characterizing schedules based on-	06 hrs
T T •4	recoverability, Serializibility.	
Unit –		
7	Concurrency control techniques	

Department of Computer Science & Engineering

	Introduction, Two-phase locking techniques for concurrency control, dealing	
	with dead-lock and starvation, Concurrency control based on Time stamp	05 hrs
	ordering.	05 113
8	Database Security	
	Introduction to DB security issues, Discretionary access control based	
	on granting and revoking privileges, Mandatory access control and role-based	05 h.m.
	access control, Mandatory Access Control.	05 nrs
Text B	ooks:	
1.	Elmasri R. and Navathe S., Fundamentals Database Systems, 6th edition,	Pearson
	Education, 2011.	
2.	Steven Feuerstein, Bill Pribyl Oracle PL/SQL Programming, 6th Edition,	O'Reilly
	Media,2014.	-
Refere	nces:	
1.	Ramakrishnan S. and Gehrke J., Database Management Systems, 3rd edition, N	McGraw
	Hill, 2007.	
2.	Silberschatz A., Korth H.F. and Sudharshan S., Data base System Concepts, 5th	Edition,
	Mc- GrawHill, 2006.	

3. PL/SQL User's Guide and Reference 10g Release 1 (10.1) December 2003.

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
ш	Q.No7	7	Solve Any 1 out of 2
111	Q.No8	8	201101111912000012

Program: Bachelor of Engineering			
Course Title: Database application Lab Course Code: 15ECSP2			
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3 hrs/week	
CIE Marks: 80	SEE Marks:20	Total Marks: 100	
Teaching Hrs: 36	Exam Duration: 3 hrs		

Experiments	Lab assignments/experiment
2-Demonstration	SQL and PL/SQL
5-Exercise	Cartesian Product, Aggregate Functions, Nested Queries, Procedures & Functions
2-Structured Enquiry	Database Design, Cursors and Triggers

- 1. Elmasri R. and Navathe S., Fundamentals Database Systems, 6th edition, Pearson Education, 2011.
- 2. Steven Feuerstein, Bill Priby<u>l</u> Oracle PL/SQL Programming, 6th Edition, O'Reilly Media, 2014.
- 3. Ramakrishnan S. and Gehrke J., Database Management Systems, 3rd edition, McGraw Hill, 2007.
- 4. Silberschatz A., Korth H.F. and Sudharshan S., Data base System Concepts, 5th Edition, Mc- GrawHill, 2006.
- 5. PL/SQL User's Guide and Reference 10g Release 1 (10.1) December 2003.

Program: Bachelor of Engineering				
Course Title: Digital System Design Course Code: 15ECSC202				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 3 hrs			

	Unit –I	
1	Boolean Function Minimization	
	Canonical representation of expressions, Complete and Incomplete Boolean	
	Functions and significance of don't Care Conditions. Minimization of logic	
	functions using Karnaugh -map- Prime Implicants, Essential Prime Implicants	0.0
	and implicates.	06hrs
2	Combinational Circuit Design	
	Design of combinational circuits using combinational ICs: Code convertors,	
	decoders encoders, comparators, multiplexers, de-multiplexers, Adders: Ripple	
	adders and Parallel adders and Subtractors.	06hrs
3	Introduction to Sequential Circuits	
	The basic bistable element, latches, flip flops and Characteristic equations	04hrs
Unit –II		
4	Sequential Circuit Design	
	Design of shift registers and counters.	06 hrs
5	Synchronous Sequential Networks	
	Structure and Operation of Clocked Synchronous Sequential Networks, Analysis	
	of clocked Synchronous Sequential Networks.	06 hrs
6	Asynchronous Sequential Networks	
	Structure and Operation of Asynchronous Sequential Networks, Analysis of	
	Asynchronous Sequential Networks.	04 hrs
Unit –III		
7	Logic Design with PLDs	
	Introduction to Programmable Devices, Architecture of PLDs.	04 hrs
8	The 555 Timer:	04 hrs

Department of Computer Science & Engineering

Monostable Multivibrator, Astable Multivibrator.

Text Books:

1. Donald D. Givone "Digital Principles and Design" Tata McGraw Hill edition 2003.

Reference Books:

- 1. M. Morris Mano and C. R. Kime "Logic and Computer Design Fundamentals" 2nd Edition Updated Publishers Pearson Education 2005.
- 2. Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss, "Digital Systems Principles and Applications" 10th Edition, PHI/Pearson Education, 2007.

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2 & 3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4, 5 & 6	Solve Any 2 out of 3
ш	Q.No7	7	Solve Any 1 out of 2
	Q.No8	8	,, ,,, ,, ,, ,, ,, ,, ,, ,

Program: Bachelor of Engineering			
Course Title: Object Oriented Programming Course Code: 15ECSC204			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3 hrs		

Unit –	I		
1	Introduction to Java		
	Introduction to Object Oriented concepts. Features of Java, Java Development		
	Kit, Java Source File Structures, Basic Data Types, Arrays, Strings, StringBuffer,		
	Class diagrams-UML notations.	4 hrs	
2	Classes and Objects		
	Class Fundamentals, Declaring objects, Assigning object reference variables,		
	Introducing methods, Constructors, this key word, Garbage collection: The		
	finalize method. A closer Look at Methods and Classes: Overloading: Methods,		
	Constructors. Using objects as Parameters, Returning objects, Access control.		
	Understanding static and final keywords. Introducing nested and inner classes.	6 hrs	
3	Inheritance and Polymorphism		
	Inheritance: Basics, types of inheritance, implementing inheritance, Method		
	overriding, Dynamic method dispatch, Abstract classes, Object class.	6 hrs	
Unit –	п		
4	Packages, Interfaces & Exception handling		
	Packages and Interfaces: Packages: creating and importing, Access protection.		
	Interfaces: creating, implementing. Exception Handling: Fundamentals,	6 hrs	

	Exception Types, Uncaught Exceptions, Using try, catch, throw, throws and	
	finally, Multiple catch, Nested try statements, User defined exceptions.	
5	Java Design Patterns	
	Creational, Structural and Behavioral design patterns.	4 hrs
6	GUI Design using AWT and Swings	
	Introduction: AWT Classes, Window Fundamentals, Working with Frame	
	Windows, Using AWT Controls, Layout managers and Menus: Control	
	Fundamentals, Labels, Buttons, CheckBoxes, List, TextField, TextArea, Layout	
	managers, Menu Bars and Menus. Event Handling: Event Handling Mechanism,	
	Delegation Event Model. Swings: introduction to swings, swing features,	
	U abal image Icon ITextEigld IPutton Check Power Padio Putton II ist and	
	JLabel, image icon, JTexiField, JButton, Check Boxes, Radio Button, JList, and IComboBox	6 hrs
Unit _		
7		
/	Collections Framework Set Interface Set Implementation Classes List	
	Interface List Implementation Classes. The Man Interface Man Implementation	
	Classes.	4 hrs
8	Generics	
	Introduction, Type safety, Generic class with two type parameters, general form	
	of generic class, Bounded types, Wild card arguments, generic method.	4 hrs
Text B	looks:	
1.	Herbert Schildt, The Complete Reference, 7, McGraw-Hill.	
Refere	nce Books:	
1.	Kathy Sierra and Bert Bates, Head First JAVA, 2, O'Reilly Media, 2005.	

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2 and 3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4, 5 and 6	Solve Any 2 out of 3
ш	Q.No7	7	Solve Any 1 out of 2
	Q.No8	8	~

Program: Bachelor of Engineering			
Course Title: Digital System Design Lab Course Code: 15ECSP202			
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3 hrs/week	
CIE Marks: 80	SEE Marks: 20	Total Marks: 100	
Teaching Hrs: 42	Exam Duration: 3 Hrs		

Tentative plan of lab implementation

Week	Lab Assignments	
No		
1.	Introduction to digital trainer kit.	
2	Design of combinational circuits using SSI and MSI components/ Verilog	
3	programming.	
4	Code converters	
5	Arithmetic Circuits	
6	Decoders/encoders	
	Mutliplexers/Demultiplers	
7	Design of Sequential circuits using SSI and MSI components/ Verilog programming.	
8	Shift registers	
9	• Counters	
10		
11	Structured Enquiry	
12		
13		

Materials and Resources Required:

Reference Books:

- 1. Donald D. Givone "Digital Principles and Design" Tata McGraw Hill edition 2002.
- 2. Hamacher C., Vranesic Z., and Zaky S., "Computer Organization", 5th Edition, McGraw Hill, 2012.
- 3. HDL Programming (VHDL and Verilog)-NazeithM.Botros- Creamtech Press 2006 edition.
- John P. Hayes "Computer Architecture and Organization" Tata McGraw Hill 3rd Edition, 2012.
- M. Morris Mano and C. R. Kime "Logic and Computer Design Fundamentals" 2nd Edition Updated Publishers Pearson Education 2005.
- 6. Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss, "Digital Systems Principles and Applications" 10th Edition, PHI/Pearson Education, 2007.

Manuals: Lab Manual available in Lab.

Program: Bachelor of Engineering				
Course Title: Principles of Compiler Design Course Code: 15ECSC205				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 03 hrs			

Unit –	[
1	Introduction to compilers	
	Brief History of Compilers, Translation process, Major data structures in	
	Compilers, Chomsky hierarchy, Lexical analysis: Scanning process, Regular	
	expressions for tokens, lexical errors, applications of Regular expressions.	06 hrs
2	Finite Automata	
	Introduction: Language, automata, From regular expressions to Deterministic	
	Finite Automata (DFA): C-Nondeterministic Finite Automata (C-NFA), NFA,	
	DFA, Equivalence of Deterministic Finite Automata, Nondeterministic Finite Automata Finite automata as reasonizar Implementation of Finite Automata	06 hrs
2	Automata, Finite automata as recognizer, implementation of Finite Automata.	00 11 5
3	Introduction to Syntax Analysis Bolo of partor Bagular Grammars Contact Free Grammars (CEGs) Barcars	
	Role of parser, Regular Oranimars, Context-Free Oranimars (CFOS), Faisers,	
	recovery strategies	04 hrs
Unit _		
4	Top Down Parsing	
	Top Down parsing: Recursive Parsing, Left Recursion, Left factoring, LL(1) Parsing FIPST and FOLLOW sats, arrow recovery in Top Down Parsing	08 hrs
5	Patsing, FIRST and FOLLOW sets, error recovery in Top Down Patsing.	00 11 3
5	Dottom Up ratsing Bottom Up parsing: Overview, SLP(1) parsing General LP(1) and LALP(1)	
	Doublin Op paising. Overview, SLK(1) paising, General LK(1) and LALK(1) Darsing arrow recovery in bottom up parsing	
Unit _	III	
6	Somentie Analysis	
U	Attributes and Attributes grammars. Algorithm for attribute computation	
	Symbol table data types and Data checking	04 hrs
7	Intermediate Code Generation	
,	Intermediate Code and data structure for code generation. Code generation of	
	data structure references, code generation of control statements and expressions.	04 hrs
Text B	ooks:	
1.	Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D Ullman, Compilers - Pr.	inciples,
	Techniques and Tools, 2nd Edition, Pearson, 2007	_
2.	Kenneth C Louden, Compiler Construction Principles & Practice, 1997, G	Cengage
	Learning, 1997	
Refere	nce Books:	
1.	Andrew W Apple, Modern Compiler Implementation in C, Cambridge Universit	y Press,
	1998	
2.	Charles N. Fischer, Richard J. leBlanc, Jr, Crafting a Compiler with C, Pearson, 2	010.
3.	Peter Linz, An Introduction to formal languages and Automata, IV edition, Naros	a, 2009.

4. Basavaraj S Anami,, Karibasappa K.G, Formal Languages and Automata Theory, First, Wiley India, 2011.

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2 and 3	Solve Any 2 out of 3
II	Q.No4, Q.No5	4 and 5	Solve Any 2 out of 3
ш	Q.No6	6	Solve Any 1 out of 2
111	Q.No7	7	Solve Ally 1 Out of 2

Program: Bachelor of Engineering		
Course Title: Computer Organization and Architecture Course Code: 15ECSC206		
L-T-P: 3-1-0	Credits: 4	Contact Hrs: 04 hrs/week
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hrs: 40	Exam Duration: 03 hrs	

Unit –	I	
1	Basic Structure of Computers and Machine Instructions	
	Basic operational concepts; Bus structures; Performance; Numbers, arithmetic operations & characters; memory locations and addresses.	
	Basic Processing Unit	
	Fundamental concepts; Instruction Execution, Hardware Components	
	Instruction Fetch and Execution Steps, Control Signals, Hardwired Control, CISC-Style Processors.	06 hrs
2	Pipelining	
	Basic Concept, Pipeline Organization, Pipelining Issues, Data Dependencies,	
	Memory Delays, Branch Delays, Resource Limitations, Performance Evaluation.	05 hrs
3	Input /Output Organization	
	Accessing i/o devices; interrupts	
	Bus Structure, Bus Operation, Arbitration, Interface Circuits, Interconnection	
	Standards.	05 hrs
Unit –	П	
4	The Memory System	
	Basic Concepts, Semiconductor RAM Memories, Read-only Memories	
	Direct Memory Access, Memory Hierarchy, Cache Memories, Performance	
	Considerations, Virtual Memory, Memory Management Requirements,	
	Secondary Storage.	06 hrs
5	Arithmetic	
	Addition and Subtraction of Signed Numbers, Design of Fast Adders,	
	Multiplication of Unsigned Numbers, Multiplication of Signed Numbers	
	Fast Multiplication, Integer Division, Floating-Point Numbers and Operations.	06 hrs

~		
6	The ARM architecture	
	The Acorn RISC machine, Architectural inheritance, The ARM programmers	
	model, ARM development tools, 3-stage pipeline ARM organization, ARM	
	instruction execution, Addressing Modes, Examples.	04 hrs
Unit –	Ш	
7	The ARM Instruction Set	
	Data processing instructions, Data transfer instructions, Control flow	
	instructions, Examples.	04 hrs
8	ARM Assembly Programming	
	Exceptions, Conditional execution, Branch instructions.	04 hrs
Text B	ooks:	
1.	Hamacher C., Vranesic Z., and Zaky S., Computer Organization, 6 ed., McGr	aw Hill,
	2012.	
2.	Steve Furber, ARM System-on-chip Architecture, 2, Pearson, 2000	
Refere	nce Books:	
1.	William Stallings, "Computer Organization & Architecture", 8th Edition, Education, 2010.	Pearson
2.	Miles Murdocca and Vincent Heuring, "Computer Architecture and Organiza Integrated Approach", 2nd Edition, WSE, 2010.	ation an

Scheme for Semester End Examination (SEE)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2 & 3	Solve Any 2 out of 3
Π	Q.No4, Q.No5, Q.No6	4, 5 & 6	Solve Any 2 out of 3
ш	Q.No7	7	Solve Any 1 out of 2
	Q.No8	8	,, ,

Tentative plan of Tutorial implementation

Sl. No	Assignments
1.	Introduction to ARM architecture
2.	Programming on Data transfer instructions
3.	Programming on Data processing instructions: arithmetic and logical instructions
4.	Programming on Control flow instructions
5.	Interfacing techniques

Materials and Resources Required:

Text Books:

1. Steve Furber, "ARM System-on-chip Architecture" LPE, 2nd Edition, 2000.

Reference Books:

1. David E. Simon, "An Embedded Software Primer", Addison-Wesley Professional, 1st

- Edition, 1999.
- 2. William Hohl, "ARM Assembly Language Fundamentals and techniques" CRC Press, 2009.

Program: Bachelor of Engineering			
Course Title: Principles of Compiler Design Course Code: 17ECSC202			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 03 hrs		

Unit –	I	
1	Introduction to compilers	
	Brief History of Compilers, Translation process, Major data structures in	
	Compilers, Chomsky hierarchy, Lexical analysis: Scanning process, Regular	
	expressions for tokens, lexical errors, applications of Regular expressions	08 hrs
2	Top Down Parsing	
	Top Down parsing: Recursive Parsing, Left Recursion, Left factoring, LL (1)	
	Parsing, FIRST and FOLLOW sets, error recovery in Top Down Parsing	08 hrs
Unit –	П	
3	Bottom up Parsing	
	Bottom Up parsing: Overview, SLR (1) parsing, General LR (1) and LALR (1)	
	Parsing, error recovery in bottom up parsing	08 hrs
4	Semantic Analysis	
	Attributes and Attributes grammars, Algorithm for attribute computation,	
	Symbol table, data types and Data checking.	08 hrs
Unit –	Ш	
5	Intermediate Code and data structure for code generation, Code generation of	
	data structure references, code generation of control statements and expressions.	04 hrs
6	Machine Independent Code optimizer	
	Principal sources of optimization, Data flow analysis, Redundancy elimination,	
	Loops in flow graphs.	04 hrs

Text Book:

- 1. Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D Ullman: Compilers Principles, Techniques and Tools, 2nd Edition, Pearson, 2008.
- Kenneth C Louden: Compiler Construction Principles & Practice, Cengage Learning, 1997.

References:

- 1. Andrew W Apple: Modern Compiler Implementation in C, Cambridge University Press, 1997.
- 2. Charles N. Fischer, Richard J. leBlanc, Jr.: Crafting a Compiler with C, Pearson, 1991.

Program: Bachelor of Engineering			
Course Title: Computer Organization and Architecture Course Code: 17ECSC205			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 03 hrs		

Unit –	I	
1	Basic GPU Structure	
	Basic operational concepts. Bus structures. Performance. Numbers, arithmetic	
	operations. Memory locations and addresses. Fundamental concepts: Instruction	
	Execution, Hardware Components. Instruction Fetch and Execution Steps,	
	Control Signals. CISC-Style Processors.	06 hrs
2	Pipelining	
	Basic Concepts. Pipeline Organization. Pipelining Issues: Data DependenISAs,	
	Memory Delays, Branch Delays, and Resource Limitations. Performance	
	Evaluation.	05 hrs
3	Input /Output Organization	
	Accessing i/o devices. Interrupts. Bus Structure/Operation, Arbitration. Interface	
	Circuits. Interconnection Standards.	05 hrs
Unit –	Π	
4	The Memory System	
	Basic Concepts. Semiconductor RAM Memories. Read-only Memories. Direct	
	Memory Access. Memory Hierarchy. Cache Memories. Performance	
	Considerations. Virtual Memory. Memory Management Requirements.	
	Secondary Storage	06 hrs
5	Arithmetic	
	Addition and Subtraction of Signed Numbers. Design of Fast Adders.	
	Multiplication of Signed and Unsigned Numbers. Fast Multiplication. Integer	
	Division. Floating-Point Numbers and Operations	06 hrs

6	The ARM architecture	
	The Acorn RISC machine. Architectural inheritance. The ARM programmer's	
	model. ARM development tools. 3-stage pipeline ARM organization. ARM	
	instruction execution. Addressing Modes.	04 hrs
Unit –	Ш	
7	The ARM Instruction Set	
	Data processing instructions. Data transfer instructions. Control flow	
	instructions.	04 hrs
8	ARM Assembly Programming	
	Exceptions. Conditional execution. Branch instructions. Programming Examples.	04 hrs
Text B	ooks:	
1.	1Hamacher C., Vranesic Z., andZaky S., Computer Organization, Sixth, McGraw	Hill,
	2012.	
2.	2. Steve Furber, ARM System-on- chip Architecture, Second, Pearson Education, 2000	
Refere	nce Books:	
1.	William Stallings., Computer Organization & Architecture, Eighth, Pearson Educ	ation,
	2010.	
2.	2. Miles Murdocca and Vincent Heuring, Computer Architecture and Organization an	
	Integrated Approach, Second, WSE, 2010.	

Scheme for Semester End Examination (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
Ш	Q.No7	7	Solve Any 1 out of 2
	Q.No8	8	~~~~~

Tentative plan of Tutorial implementation

Sl. No	Assignments
6.	Introduction to ARM architecture
7.	Programming on Data transfer instructions
8.	Programming on Data processing instructions: arithmetic and logical instructions
9.	Programming on Control flow instructions
10.	Interfacing techniques

Materials and Resources Required:

Text Books:

2. Steve Furber, "ARM System-on-chip Architecture" LPE, 2nd Edition, 2000.

Reference Books:

3. David E. Simon, "An Embedded Software Primer", Addison-Wesley Professional, 1st

- Edition, 1999.
- 4. William Hohl, "ARM Assembly Language Fundamentals and techniques" CRC Press, 2009.

Program: Bachelor of Engineering				
Course Title: Computer Organization and Architecture Course Code: 18ECSP202				
Lab				
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3 hrs/week		
ISA Marks: 80	ESA Marks: 20	Total Marks: 100		
Teaching Hrs: 42	Exam Duration: 3 Hrs			

Tentative plan of lab implementation

Experiments	Lab assignments/experiment	Hrs
1-	Exercises on Combinational Logic	03 hrs
2-	Exercises on Sequential Circuit Design	08 hrs
3-	Structured Enquiry	
	Applications of Computer Organization concepts	03 hrs

Materials and Resources Required:

Text Books:

- 1. Donald D. Givone "Digital Principles and Design" Tata McGraw Hill edition 2003.
- 2. Hamacher C., Vranesic Z., and Zaky S., Computer Organization, 5ed., McGraw Hill,2002.

Reference Books:

- 3. John P. Hayes. Computer Architecture and Organization, 3rd Edition, McGraw Hill
- 4. M. Morris Mano and C. R. Kime "Logic and Computer Design Fundamentals" 2nd Edition, Updated Publishers Pearson Education 2005.
- 5. Ronald J. Tocci, Neal S. Widmer, Gregory L. Moss, "Digital Systems Principles and Applications" 10th Edition, PHI/Pearson Education, 2007.

Course Code: 18ECSC206 Course Title: Microcontroller Programming& Interfacing		ng&	
L-T-P-SS: 3-0-1	Credits: 4	Contact Hrs: 3+2 hrs	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40 Exam Duration: 3			3 hrs
Content			Hrs
Unit – I	[1	
Chapter No. 1.The 8051 Architecture Introduction, 8051 Microcontroller hardware, input/o memory,	utput pins, ports & circuits,	External	04 hrs
Chapter No. 2. Assembly Programming Introduction, addressing modes, External Data Moves, Code Memory Read Only Data Moves / Indexed Addressing mode, PUSH and POP opcodes, Data exchanges, assembler directives, example programs. Byte level logical Operations, Bit level Logical Operations, Rotate and Swap Operations, Example Programs. Arithmetic Operations: Flags, Incrementing and Decrementing, Addition, Subtraction, Multiplication and Division, Decimal Arithmetic, Example Programs. The JUMP and CALL Program range, Jumps, Call and Subroutines, Example programs			12hrs +08 hrs (Lab)
Unit – II			
Chapter No. 3. Timer/Counter & Serial Port Prog C Data Types and Time delay computation in 8051 C Timers/counters in different modes, Basics of Serial C connection to RS232, 8051 serial port Programming.	gramming. Jounters and Timers, Program Communication, RS232 star	nming 8051 Idards, 8051	12 hrs
Chapter No. 4. Interrupts Programming 8051 Interrupts, Programming Timer Interrupts, Programming external hardware interrupts, Programming the Serial Communication Interrupts, Interrupt Priority in the 8051, Interrupt programming.			04 hrs
Unit – III			
Chapter No. 5. Interfacing to Peripheral Devices Interfacing 8051 to LEDs, DIP switches, BCD Decoder display, 7 Segment Display, LCD, Keypad, DAC, ADC, Stepper Motor and DC Motor			08hrs +12 Hrs (Lab)

Text Books (List of books as mentioned in the approved syllabus)

- 2. Ayala.K.J, "The 8051 Microcontroller", 3rd., CENGAGELearning, 2007.
- Mazidi.M.A, Mazidi.J.G and McKinlay.R.D, "The 8051 Microcontroller and Embedded Systemsusing Assembly and C", 2ed, PHI 2006/Pearson, 2006.

References

- Ayala.K.J., Gadre D.V., "The 8051 Microcontroller & Embedded Systems using Assembly and C", 1ed., CENGAGE Learning, 2010
- 2. V. Udayashankara, M.S. Mallikarajunaswamy, "8051 Microcontroller Hardware, Software and Applications", 1ed., Tata McGraw Hill, 2009.

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1 & 2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	3 &4	Solve Any 2 out of 3
ш	Q.No7	5	Salva Any 1 out of 2
111	Q.No8	5	Solve Any I out of 2

Program: Bachelor of Engineering				
Course Title: Software Engineering Course Code: 15ECSC301				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 3 hrs			

Unit –	I	
1	Chapter No. 1. Software Engineering process	
	Professional software development Software engineering ethics, Case studies,	
	Software processes: Software process models, Process activities, Coping with	
	change, The rational unified process, Continuous Integration and Continuous	
	Deployment and Tools.	06 hrs
2	Chapter No. 2. Agile Software Development	
	Agile methods, Plan-driven and agile development, Extreme programming, Agile	
	project management.	04 hrs
3	Chapter No. 3. Requirement Engineering	
	Functional and Non-functional requirements; The software requirements	
	Document, Requirement specification, Requirements Engineering Processes,	
	Requirements elicitation and analysis; Requirements validation; Requirements	
	management	06 hrs
Unit –	П	
4	Chapter No. 4. System Modeling	
	Context models, Interaction Models, Structural models, Behavioral models.	06 hrs
5	Chapter No. 5. Architectural Design	
	Architectural Design Decision, Architectural views, Architectural patterns,	05 hrs

	Application Architectures	
6	Chapter No. 6. Object-Oriented design and implementation	
	Object oriented design using UML, design patterns, Implementation Issues, Open	
	source development.	05 hrs
Unit –	Ш	
7	Chapter No. 7. Software Testing	
	Development Testing, Test Driven Development, Release Testing, User Testing	04 hrs
8	Chapter No. 8. Configuration management	
	Change management, Version management, System building, Release	
	management	04 hrs
Text B	ooks	
1.	Ian Somerville, Software Engineering, 9th, Pearson Ed, 2015	
Refere	nce Books:	
1.	Roger S. Pressman, Software Engineering: A Practitioners Approach, 7th, McGraw	/- , 2007
2.	Shari Lawrence Pfleeger, Joanne M. Atlee, Software Engineering Theory and I	Practice,
	3rd, Pearson Ed, 2006	

3. Jalote, P, An Integrated Approach to Software Engineering, 3rd, Narosa Pub, 2005

UNIT	8 Questions to be set of 20 Marks Each	Chapter	Instructions
		Numbers	
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
ш	Q.No7	7	Solve Any 1 out of 2
111	Q.No8	8	Solve Ally 1 out of 2

Program: Bachelor of Engineering				
Course Title: Computer Networks - I Course Code: 17ECSC301				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 3 hrs			

Unit –	Ι		
1	Introduction		
	Internet, The Network Edge and Core, Protocol layer and service models: OSI		
	and TCP/IP, Networks attacks, History of computer network and Internet	08 hrs	
2	Application Laver		
	Principles of Network Applications, HTTP, SMTP, DNS		
Unit –II			
3	Transport-Layer Services		
	Introduction, connectionless transport, principles of reliable data transfer	10 hrs	

Department of Computer Science & Engineering

	protocol, connection-oriented and connectionless transport, principle of		
	congestion control, TCP congestion control		
4	Network Layer: Data plane		
	Introduction to data and control plane and, virtual circuit and datagram networks,		
	Internet protocol: datagram format, fragmentation, IP addressing	06 hrs	
Unit –	III		
5	Network Layer: Data plane		
	NAT, IPv6, generalized forward and SDN	04hrs	
6	Network tools		
6	Network tools HTTP, DNS, SMTP tools, packet analysis	04 hrs	
6 Text B	Network tools HTTP, DNS, SMTP tools, packet analysis cooks:	04 hrs	
6 Text B 1.	Network tools HTTP, DNS, SMTP tools, packet analysis cooks: J. F. Kurose, K. W. Ross, "Computer Networking, A Top-Down Approach", 7 th	04 hrs Edition,	
6 Text B 1.	Network tools HTTP, DNS, SMTP tools, packet analysis cooks: J. F. Kurose, K. W. Ross, "Computer Networking, A Top-Down Approach", 7 th Pearson Education, 2017.	04 hrs Edition,	
6 Text B 1. Refere	Network tools HTTP, DNS, SMTP tools, packet analysis sooks: J. F. Kurose, K. W. Ross, "Computer Networking, A Top-Down Approach", 7 th Pearson Education, 2017. Ence Books:	04 hrs Edition,	
6 Text B 1. Refere	Network tools HTTP, DNS, SMTP tools, packet analysis cooks: J. F. Kurose, K. W. Ross, "Computer Networking, A Top-Down Approach", 7 th Pearson Education, 2017. cnce Books:	04 hrs Edition,	
6 Text B 1. Refere 1.	Network tools HTTP, DNS, SMTP tools, packet analysis sooks: J. F. Kurose, K. W. Ross, "Computer Networking, A Top-Down Approach", 7 th Pearson Education, 2017. Ence Books: Peterson, Larry L, "Computer networks : a systems approach", 5th Edition, The Mo	04 hrs Edition,	

2. Behrouz Forouzan, Data Communications and Networking, McGraw Hill 4ed., 2007

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3
Ш	Q.No7	5	Solve Any 1 out of 2
	Q.No8	6	,

Program: Bachelor of Engineering		
Course Title: System Software Course Code		Course Code: 17ECSC302
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40	Exam Duration: 3 hrs	

	Unit –I	
1	Introduction to a Machine Architecture	
	Introduction, System Software and Machine Architecture, Simplified	
	Instructional Computer (SIC) - SIC Machine Architecture, SIC/XE Machine	
	Architecture, SIC and SIC/XE Programming Examples.	06hrs
2	Assembler	
	Basic Assembler Function - A Simple SIC Assembler, Assembler Algorithm and	
	Data Structures, Machine Dependent Assembler Features - Instruction Formats &	
	Addressing Modes, Program Relocation.	09hrs

	Unit –II		
3	Assembler M/c Independent Features and Design options		
	Machine Independent Assembler Features: Literals, Symbol Defined Statements,		
	Expression, Program Blocks, Control Sections and Programming Linking,		
	Assembler Design Options: One Pass Assembler, Multi Pass Assembler, Implementation Examples: Assembler(8086): MASM	07 hrs	
4	Loaders and Linkers	07 mb	
-	Basic Loader Functions: Design of an Absolute Loader. A Simple Bootstrap		
	Loader, Machine Dependent Loader Features: Relocation, Program Linking.		
	Algorithm and Data Structures for a Linking. Loader M/c Independent		
	Features: Automatic Library Search, Loader Options, Loader Design Options -		
	Linkage Editor, Dynamic Linkage, Bootstrap Loaders, Implementation		
	Examples: 8086 Linker.	08 hrs	
	Unit –III		
5	Macro Processor		
	Basic Macro Processor Functions: Macro Definitions and Expansion, Macro		
	Processor Algorithm and Data Structures, Machine Independent Macro		
	Processor Features: Concatenation of Macro Parameters, Generation of Unique		
	Labels, Conditional Macro Expansion, Keyword Macro Parameters		
	Implementation Examples: 8086 Macro Processor.	05 hrs	
6	Back end of Compiler: Code generation and Machine dependent features.		
	Review of phases of compilers, code generation routines, machine dependent		
	features.	05 hrs	
Text E	Books:		
4	Leland.L.Beck and D. Manjula: System Software, 3 ed, Pearson Education, 2007		
2	Ayala: The 8051 Microcontroller, 3rd ed, Cenagage Learning- 2009		
Refere	ence Books:		
1	. Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D Ullman, "Compilers- Pr	inciples,	
	Techniques and Tools". 2nd Edition. Addison-Wesley, 2007.		

Pechniques and Tools", 2nd Edition, Addison-Wesley, 2007.
 Muhammad Ali Mazidi et al: The 8051 Microcontroller and Embedded systems, 2nd Edition, Pearson education, 2009.

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
Π	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3
Ш	Q.No7	5	Solve Any 1 out of 2
	Q.No8	6	, - out of -

Program: Bachelor of Engineering			
Course Title: Data Mining & AnalysisCourse Code: 18ECSC301			
L-T-P: 3-0-1	Credits: 4	Contact Hrs: 5 hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3hrs		

Unit –	I	
1	Data Pre-Preprocessing	
	Introduction to data mining, Data Warehouse and OLAP Technology for	
	Data mining: Data Warehouse, Multidimensional Data Model, Data	
	Warehouse Architecture, Major tasks in data preprocessing- data	
	reduction, data transformation and data Discretization, data cleaning and	
	data integration.	08 hrs
2	Frequent Pattern Mining	
	Frequent item sets and association rules; Item set mining algorithms;	
	Generating association rules; Summarizing item sets: maximal and	
	closed frequent item sets; Interesting patterns: pattern evaluation	
	methods;	08 hrs
Unit –	П	
3	Classification Techniques	
	Probabilistic classification: naïve Bayes classifier, K-nearest neighbours;	
	Decision tree classifier: decision tree induction, tree pruning; Model evaluation	
	and selection: metrics, cross validation, random sampling, ROC curves;	08 hrs
4	Cluster Analysis	
	Cluster Analysis- Partitioning methods, Hierarchical Methods, Density based	
	methods, Outlier Detection.	08 hrs
Unit –		
5	Advanced Mining Techniques	
	Popular data pre-processing techniques: One hot encoding, stacking; Techniques	
	to improve classification accuracy: ensemble methods, random forests,	
	XGBoosting; Bias-variance trade-off; Post processing: Visualization and	
	Interpretation;	08 hrs
Text B	ooks:	
2.	Jiawei Han, Micheline Kamber and Jian Pei, Data Mining: Concep	ots and
	Techniques, 3rd edition, Morgan Kaufmann, 2012.	
Reference Books:		
7.	Ian H. Witten, Eibe Frank, Mark A. Hall and Christopher J. Pal, Data N	Mining:

Practical Machine Learning Tools and Techniques, Morgan Kaufmann; 4th edition, 2016.

- 8. Pang-Ning, Michael Steinbach and Vipin Kumar, Introduction to Data Mining, Pearson, International edition, 2013.
- 9. Mohammed J. Zaki and Wagner Meira, Jr., Data Mining and Analysis: Fundamental Concepts and Algorithms, Cambridge University Press, 2014.
- 10. M. H. Dunham, Data Mining: Introductory and Advanced Topics, Pearson Education, 1st edition, 2006.

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 3 out of 4
П	Q.No4, Q.No5, Q.No6	3, 4,5	Solve Any 3 out of 4
III	Lab exam	6	Lab exam evaluation

Program: Bachelor of Engineering			
Course Title: Machine Learning		Course Code: 17ECSC306	
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 30	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 30	Exam Duration: 3 hrs		

Content	Hrs
Unit – 1	1
Chapter No 1. Introduction to machine learning Introduction to Machine Learning, Applications of Machine Learning, Types of Machine Learning: Supervised, Unsupervised and Reinforcement learning, Dataset formats, Features and observations.	5 hrs
Chapter No 2. Supervised Learning: Linear Regression, Logistic Regression Linear Regression: Single and Multiple variables, Sum of squares error function, The Gradient descent algorithm, Application, Logistic Regression, The cost function, Classification using logistic regression, one-vsall classification using logistic regression, Regularization.	7 hrs

Unit – 2 Chapter No 3. Supervised Learning: Neural Network 6 hrs Introduction to perceptron learning, Model representation, Gradient checking, Back propagation algorithm, Multi-class classification, and Application- classifying digits. Support vector machines, Chapter No 4. Unsupervised Learning : Dimensionality reduction and Learning 6 hrs Theory Expectation Maximization (EM), Factor Analysis, The dimensionality reduction, PCA : PCA for compression, Incremental PCA, Randomized PCA, Kernel PCA, ICA (Independent Component Analysis). Bias/variance tradeoff, Union and Chernoff / Hoeffding bounds VC dimension. Unit – 3 **Chapter No 5. Reinforcement Learning** 6 hrs Reinforcement Learning: Introduction, Applications, Model of the environment, Policy search, Learning to optimize rewards and value functions, Evaluating actions: The credit assignment problem, Policy gradients, Markov decision processes, Olearning.

Text Book

- 1. Tom Mitchell., Machine Learning, Mc Graw Hill, McGraw-Hill Science, 3rd edition.
- 2. Christopher Bishop., Pattern Recognition and Machine Learning, Springer, 2006.

References:

- Hands-On Machine Learning with Scikit-Learn and TensorFlow, Concepts, Tools, and Techniques to Build Intelligent Systems, AurelianGerona, Publisher: O'Reilly Media , July 2016.
- 2. Advanced Machine Learning with Python Paperback, 28 Jul 2016 by John Hearty.

Program: Bachelor of Engineering			
Course Title: System Software Lab Course Code: 15ECSP30			
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3 hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hrs: 36	Exam Duration: 3 hrs		

<u>Sl No</u>	<u>Experiments</u>	<u>Slots/Hrs</u>
1.	Practice programs on user defined functions, structures and programs on	3 hrs
	file handling	

2.	Introduction to basics of given assembly language Programs	3 hrs
3.	Evaluation on given assembly language Program	3 hrs
4.	Implementation of Pass 1 Assembler	3 hrs
5.	Implementation of Pass 2 Assembler	6 hrs
6.	Implementation of Pass 1 Linking loader	3 hrs
7.	Implementation of Pass 2 linking loader	6 hrs
8.	Course Project on Identifying machine to implement assembler , learning its architectural features and design Pass 1 Assembler or Pass2 Assembler	6 hrs

Reference Books:

- 1. Leland.L.Beck and D. Manjula: System Software, 3 ed, Pearson Education, 2007
- 2. Alfred V Aho, Monica S. Lam, Ravi Sethi, Jeffrey D Ullman, "Compilers- Principles, Techniques and Tools", 2nd Edition, Addison-Wesley, 2007.

Program: Bachelor of Engineering			
Course Title: Mini Project		Course Code: 15ECSW301	
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 3 hrs/week	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 39	Exam Duration: 3 Hrs		

Student Evaluation Matrix

Sl. No	Continuous Internal Evaluation	Assessment	Weightage in Marks
1	Review 1 :	Problem identification & Defining a problem statement, test plan and Construction of software system	15
2.	Review 2 :	Software Requirement Specification (SRS)	10
3.	Review 3 :	Software Design	05
4.	Review 4 :	Construction (as per design) & testing	10
5.	Review 5 & peer review:	Final Demo & exhibition Peer review will be done after review 1 & review 4)	10
		Total	50

Program: Bachelor of Engineering				
Course Title: Computer Networks-II Course Code: 17ECSC304				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 3 hrs			

Unit –	Unit –I			
1	Introduction:			
	Overview of IP addressing, Network layer control plane: routing algorithms,			
	routing in internet, broadcast and multicast routing, SDN control plane, Network			
	management and SNMP	08 hrs		
2	Data Link Layer			
	Error-Detection and -Correction Techniques, Parity Checks, Check summing			
	Methods, Cyclic Redundancy Check (CRC), multiple access links and protocols	08 hrs		
Unit –	Ш			
3	Switched Local Area Networks			
	Link-Layer Addressing and ARP, Ethernet, Link-Layer Switches, Virtual Local			
	Area Networks (VLANs), Multiprotocol Label Switching (MPLS), Data Center			
	Networking.	08 hrs		
4	Wireless Networks			
	Wireless Links and Network Characteristics, 802.11 Wireless LANs,			
	Architecture, MAC Protocol, Frame, Mobility, Advanced Features, Personal			
	Area Networks: Bluetooth and Zigbee, Cellular networks and internet access	08 hrs		
Unit –III				
6	Mobility Management			
	Mobility, mobile IP, managing mobility in cellular network, wireless and mobile:			
	impact on higher layer protocols	04 hrs		
7	Multimedia Networking:			
	Applications, Voice-over-IP, Protocols for real-time applications.	04 hrs		
Text Books:				
1.	J. F. Kurose, K. W. Ross, "Computer Networking, A Top-Down Approach", 7th	Edition,		
	Pearson Education, 2017.			
Reference Books:				
1.	Peterson, Larry L, "Computer networks : a systems approach", 5th Edition, The	Morgan		
2	Kaufmann series in networking, 2012 Debroug Forgugen Dete Communications and Networking, McCrew Hill 4-4, 20	007		
2.	Behrouz Forouzan, Data Communications and Networking, McGraw Hill 4ed., 20	007		

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3
III	Q.No7	5	Solve Any 1 out of 2
	Q.No8	6	borvernig i out of 2

Program: Bachelor of Engineering			
Course Title: Distributed and Cloud Computing Course Code: 17ECSC305			
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 04 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 30	Exam Duration: 03 hrs		

Unit –	I	
1	Distributed System Models and Enabling Technologies	
	Scalable Computing over the Internet, Technologies for Network-Based	
	Systems, System Models for Distributed and Cloud Computing.	04 hrs
2	Virtual Machines and Virtualization of Clusters and Data Centers	
	Implementation Levels of Virtualization, Virtualization Structures/Tools and	
	Mechanisms, Virtualization of CPU, Memory, and I/O Devices, Virtual Clusters	
	and Resources Management.	04 hrs
3	Cloud Platform Architecture over Virtualized Data Centers	
	Cloud Computing and Service Models, Architectural Design of Compute and	
	Storage Clouds, Public Cloud Platforms.	04 hrs
Unit –	П	
4	Cloud Programming and Software Environments	
	Features of Cloud and Grid Platforms, Parallel and Distributed Programming	
	Paradigms, Programming Support of Google App Engine.	04 hrs
5	Cloud Resource Management	
	Policies and mechanisms for resource management, Applications of control	
	theory to task scheduling on a cloud, Stability of a two-level resource allocation	
	architecture, Feedback control based on dynamic thresholds, Coordination of	
	specialized autonomic performance managers.	04 hrs
6	Cloud Resource Scheduling	
	Resource bundling; combinatorial auctions for cloud resources, Scheduling	
	algorithms for computing clouds. Fair queuing, Start-time fair queuing,	
	Borrowed virtual time, Cloud scheduling subject to deadlines, Scheduling	
	MapReduce applications subject to deadlines.	04 hrs
Unit –	III	

6	Cloud Security			
	Cloud security risks, Security; the top concern for cloud users, Privacy; privacy			
	impact assessment, Trust, Operating system security, Security of virtualization.	03 hrs		
7	Hypervisor & Operating System security			
	Security risks posed by shared images, Security risks posed by a management			
	OS, Xoar - breaking the monolithic design of the TCB, A trusted virtual machine			
	monitor.	03 hrs		
Text Books:				
3.	Kai Hwang, Geoffrey C. Fox, Jack J. Dongarra, "Distributed and Cloud Computi	ng from		
	Parallel Processing to the Internet of Things", Morgan Kaufman, Elsevier- 2012.			
4.	4. Dan C. Marinescu "Cloud Computing Theory and Practice", Morgan Kaufman, Elsevie			
	2013.			
Refere	Reference Books:			
5	Raikumar Buyya, Christian Vecchiola, S Thamarai Selvi "Mastering Cloud Com	nuting"		

- Rajkumar Buyya, Christian Vecchiola, S. Thamarai Selvi "Mastering Cloud Computing", McGraw Hill Education (India) Pvt. Limited, 2013.
- 6. Anthony T. Velte, Toby J. Velte, Robert Elsenpeter: Cloud Computing, A Practical Approach, McGraw Hill, 2010.

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2, 3	Solve Any 2 out of 3
Π	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
ш	Q.No7	7	Solve Any 1 out of 2
111	Q.No8	8	Solve Any 1 Out of 2

Expt./Job	Brief description about the experiments	No. of Lab slots per
No.		batch (estimate)
1.	Hypervisors (Type-I and Type-II)	01
2.	Instance building using Infrastructure as a Service	01
3.	Application hosting using Platform as a Service	01
4.	Private cloud setup	01
5.	Developing Task Model Applications using Aneka	
	Management Studio	02
6.	Developing Thread Model Applications using Aneka	
	Management Studio	02
7.	VMware Online Hands on Lab (HOL)	01

Program: Bachelor of Engineering			
Course Title: Professional Aptitude and Logical Reasoning Course Code:15EHSC301			
L-T-P:3-0-0	Credits: 3	Contact Hrs: 03 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	

Unit –	Unit –I			
1	Arithmetical Reasoning	10hrs		
2	Analytical Thinking	4hrs		
3	Syllogistic Logic	3hrs		
Unit –	П			
4	Verbal Logic			
5	Non-Verbal Logic			
Unit –III				
6	Lateral Thinking			
Text Books:				
1. A Modern Approach to Verbal and Non – Verbal Reasoning – R. S. Aggarwal,				
Sultan	Sultan Chand and Sons, New Delhi			
 Quantitative Aptitude – R. S. Aggarwal, Sultan Chand and Sons, New Delhi Evaluation Scheme 				
 Verbal and Non – Verbal Reasoning – Dr. Ravi Chopra, MacMillan India Lateral Thinking – Dr. Edward De Bono, Penguin Books, New Delhi 				

Scheme for End Semester Assessment (ESA)

ISA Scheme

Assessment	Weight age in Marks
Minor Exam 1	15
Minor Exam 2	15
Assignments	

Department of Computer Science & Engineering

Written	10
Class Tests	10
Total	50

Program: Bachelor of Engineering			
Course Title: Computer Networks Lab		Course Code: 15ECSP302	
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3 hrs/week	
CIE Marks: 80	SEE Marks: 20	Total Marks: 100	
Teaching Hrs: 36	Exam Duration: 3hrs		

Expt.	Brief description about the experiment/job
/Job No.	
1.	Introduction to Hardware components and Ethernet LAN set up.
2.	Introduction to socket programming
3.	Implementation of FTP
4.	Implementation of error control techniques.
5.	Implementation of flow control ARQs
6.	Introduction to NOS.
7.	Subnet design
8.	VLAN setup
9.	OSPF and RIP configuration and performance analysis
10.	eBGP and iBGP configuration and performance analysis
11.	Wireless network performance analysis
12.	Wireless network performance analysis

Program: Bachelor of Engineering			
Course Title: Web Technologies Lab		Course Code:15ECSP303	
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3 hrs/week	
CIE Marks: 80	SEE Marks: 20	Total Marks: 100	
Teaching Hrs: 42	Exam Duration: 3 hrs		

	Tutorial	
1	Javascript Frameworks	
	Angular2: Introduction, Navigation: Angular router, Dependency injection,	
	Bindings, observables, and pipes, component communications, forms,	
	Interacting with servers using HTTP and WebSockets, Bundling and deploying	
	applications.	
	Node.js Introduction to Node.js Building servers using the http and net	
	modules, Node modules and events, Express, Accessing Data.	12 hrs

2	Python Frameworks	
	Introduction to Python Frameworks, components of frameworks,-building	
	RESTful web services.	06 hrs
3	Using Python full stack frameworks	
	Django: Introduction to Django, Django's take on MVC: Model, View and	
	Template, Django Forms: Form classes, Validation, Authentication, Advanced	
	Forms processing techniques, working with databases, Integrate with RESTful	
	web services.	06 hrs
4	Building Enterprise Web Applications.	
	Ruby on Rails: An Overview Of Ruby on Rails, Rails and HTML Forms, Form	
	Helpers and Validation, Databases and Rails, Adding Style to an Application,	
	Sessions.	06 hrs

Tentative Lab Plan

Expt./ Job No.	Lab assignments/experiment	No. of Lab. Slots per batch
		(estimate)
1	Demonstration on Angular.js	01
2	Exercise on Angular.js	01
3	Demonstration on Node.js	01
4	Exercise on Node.js	01
5	Demonstration on Django	01
6	Exercise on Django	01
7	Demonstration on Ruby on Rails	01
8	Exercise on Ruby on Rails	01
9	Structured enquiry 1 – JavaScript	02
10	Structured enquiry 2 – Django	02
11	Structured enquiry 3 – Ruby on Rails	02

Reference Books:

- 1. Yakov Fain, Anton Moiseev, "Angular 2 Development with TypeScript", Manning Publications Company, 2016.
- 2. Azat Mardan, "Practical Node.js: Building Real-World Scalable Web Apps", Apress, 2014.
- Jeff_Forcier, "Python Web Development with Django", 1st edition, Pearson Education, 2008.
- 4. Michael Hartl, "Ruby on Rails Tutorial: Learn Web Development with Rails (2nd Edition) (Addison-Wesley Professional Ruby)".

Program: Bachelor of Engineering			
Course Title: Minor Project Course Code: 15ECSW302			
L-T-P: 0-0-6	Credits: 6	Contact Hrs: 3 hrs/week	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 39	Exam Duration: 3 hrs		

Student Evaluation Matrix

	Assessment	Weightage in Marks
Continuous Internal	Problem Definition & Literature survey	05
Evaluation Review -1	Requirement analysis and System design	05
	Synopsis and SRS report	07
	Presentation skills and team work	03
	Total	20
Continuous Internal	Implementation and testing	15
Evaluation Review -2	Presentation skills and team work	05
	Total	20
Continuous Internal	Result Analysis	03
Evaluation Review -3	Project Report	05
	Presentation skills and Viva-voce	02
	Total	10

Program: Bachelor of Engineering			
Course Title: Computer Vision Course Code:17ECSE30			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 30		Exam Duration: 3 hrs	

Unit – 1		
1	Introduction	4hrs
	Computer Vision Overview, Pixels and image representation, Filters:	
	Linear systems, Convolutions and cross-correlations; Lab: Basics, Filters	

2	Features and filtering	8hrs
	Edge detection: Gaussian, Sobel filters, Canny edge detector, Features and	
	fitting: RANSAC Local features, Harris corner detection, Feature descriptors:	
	Difference of gaussians, Scale invariant feature transform; Lab: Filters, Edges,	
	Features	
Unit – 2	2	
3	Semantic segmentation	6 hrs
	Perceptual grouping, Agglomerative clustering, Super pixels and over	
	segmentation; Clustering: K-means, Mean shift; Visual Bag of Words: Texture	
	features, Visual bag of words; Lab: Resizing, clustering, recognition	
4	Motion	6hrs
-	Optical Flow, Lucas-Kanade method, Horn-Schunk Method, Pyramids for	01115
	large motion, Tracking: Feature Tracking, Lucas KanadeTomasi (KLT)	
	tracker: Lab: Object detection. optical flow	
TL.M.	·····, ·····, ····, ····	
Unit – .	§	
	Advanced Techniques	6hrs
5	Image stitching, Image pyramids, Object recognition, Dimensionality	
	reduction, Face identification, Detecting objects by parts	
Referen	ice Books:	
1.	Richard Szeliski, Computer Vision: Algorithms and Applications, Springer, 201	1.
2.	. D. Forsyth and J. Ponce, Computer Vision: A Modern Approach, Pearson Education India	
	2 nd Ed, 2015.	
3.	R. I. Hartley and A. Zisserman, Multiple View Geometry in Computer Vis	sion, Cambridge
	University Press, 2nd Edition, 2004.	C C

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2	Solve Any 3 out of 4
Π	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 3 out of 4
III	Q.No-7,Q.No-8	5	Solve Any 1 out of 2

Program: Bachelor of Engineering				
Course Title: Algorithmic Problem Solving Course Code: 17ECSE309				
L-T-P: 0-0-6	Credits: 6	Contact Hrs: 74		
ISA Marks: 70	ESA Marks: 30	Total Marks: 100		
Teaching Hrs: 74	Exam Duration: 2 to 3 days			

Course Content

Unit – 1	
Chapter 0: Building Blocks	06 hrs
Understanding coding platforms and tools, Data Structures and Algorithms	
revisited	
Chapter 1: Strategies and Performance	06 hrs
Warm up problems, Parsing and Formatting text, Code performance analysis and	
tools	
Chapter 2: Advanced Data Structures	10 hrs
Matrix, Grids, Trees and variants, Lists, Skip lists, Hash, Trie and variants	
Chapter 3: Dynamic Programming	08 hrs
Memory functions, Optimization problems	
Unit – 2	
Chapter 4: Graph algorithms	25 hrs
Traversal Algorithms, Shortest Path Algorithms, Spanning Tree Algorithms and	
variants	
Chapter 5: Introduction to Computational Geometry	05 hrs
Points, Line Segments, Polygons and Basics of Geometric Problems	
Unit – 3	
Chapter 6: Problem Solving	14 hrs
Assortment of problems and techniques.	

Text Book

1. Levitin A., "Introduction to the Design and Analysis of Algorithms", Third Edition, Pearson Education, 2017.

2. Levitin A, Levitin M, "Algorithmic Puzzles", First Edition, Oxford University Press, 2011.

3. Online Coding Platforms

References

1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, "Introduction to Algorithms", Third Edition, MIT Press, 2010.

Program: Bachelor of Engineering			
Course Title: Internet of Things Course Code: 17ECSE303			
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 30 hrs	Exam Duration: 3 hrs		

	Unit –I	
1	Introduction to Internet of Things (IoT)	
	Definition & Characteristics of IoT, Things in IoT, IoT protocols, IoT functional	
	blocks, communication models and APIs.	04 hrs
2	IoT Architecture	
	Enabling technologies: Sensors, Zigbee, Bluetooth, IoT ecosystem, Data Link	
	protocols: IEEE 802.15.4e, IEEE 802.11.ah, DASH7, Low Power Wide Area	
	Network (LoRaWAN).	04 hrs
3	Network protocols	
	Routing Protocol for Low-Power and Lossy Networks (RPL), cognitive RPL	
	(CORPL), Channel-Aware Routing Protocol (CARP), Low power Wireless	
	Personal Area Networks (LoWPAN).	04 hrs
	Unit –II	
4	Application and Security protocols	
	Message Queue Telemetry Transport (MQTT), MQTT for Sensor Networks,	
	Secure MQTT, Advanced Message Queuing Protocol (AMQP), Constrained	
	Application Protocol (CoAP), OPC UA, 6LoWPAN), Routing Protocol for Low-	
	Power and Lossy Networks (RPL).	04 hrs
5	IoT Platforms Design Methodology	
	IoT Design Methodology, Case Study on IoT System for Weather Monitoring	
	etc., Basic building blocks of an IoT device, Raspberry Pi, interface (serial, SPI,	
	I2C), IoT Operating Systems: Contiki, RIOT.	04 hrs
6	Programming with Raspberry Pi	
	XML, JSON, SOAP and REST-based approach, WebSocket protocol.	04 hrs
	Unit –III	
7	IoT prototyping	
	Business models, example applications: Case studies on Home automation,	
	Cities, Environment, Energy, Agriculture, Health with emphasis on data analytics	06 has
	and security.	vo nrs

Text Books:

- 2. Arshdeep Bahga, Vijay Madisetti "Internet of Things (A Hands-on-Approach)" Universities Press- 2014.
- 3. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things: Key Applications and Protocols" John Wiley & Sons 2012.

Reference Books:

1. Subhas Chandra Mukhopadhyay "Internet of Things Challenges and Opportunities" Springer- 2014.

Scheme for Semester End Examination (SEE)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
III	Q.No7	7	Solve Any 1 out of 2

Expt./Job	Brief description about the experiments	No. of Lab slots per
No.		batch (estimate)
1.	Programming with Raspberry Pi	3
2.	Cloud service interface for data storage and retrieval	2
3.	Performance analysis of Data link protocols, routing and application protocols	3
4.	Open Ended Experiment with focus on data analytics and security	2

Program: Bachelor of Engineering				
Course Title: Active Directory Domain Services Course Code: 17ECSE304				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 03 hrs			

Unit –	I	
1	Introduction to Microsoft Active Directory Introduction to Microsoft Active Directory, Roles of Active directory services	
	Features in ADDS.	06 hrs
2	Domains and Forests Active Directory Structure Storage and Technologies, Data Store Components,	05 hrs

Department of Computer Science & Engineering

	Active Directory Domains and Forests, The Logical Structure of Active		
	Directory.		
3	Physical Structure		
	The Physical Structure of Active Directory, Network Ports used by Domains and		
	Forests.	04 hrs	
Unit –	П		
4	Installation of R2 server		
	Requirements for installing ADDS, Understanding of Active Directory Domain		
	Services Functional levels.	06 hrs	
5	Administration		
	Guidelines for raising domain and forests functional levels, Introduction to		
	various AD Snap-ins and their functions 04 hrs		
6	Domain Services		
	Active Directory Users and Computers, Active Directory Domains and Trusts,		
	Active Directory Sites and Services.		
Unit –	III		
7	Backup/Restore		
	Backing Up Directory Domain Services Active, Recovering Active Directory		
	Domain Services. Authoritative restore, Methods of authoritative restore	10 hrs	
Text B	Books:		
1.	1. Introduction to MICROSOFT Active Directory Domain Services (ADDS), Microsoft		
	reference materials.		

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2,3	Solve Any 2 out of 3
Π	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
III	Q.No7, 8	7	Solve Any 1 out of 2

Program: Bachelor of Engineering			
Course Title: Parallel Computing Course Code: 17ECSE307			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 43	Exam Duration: 03 hrs		

Unit –	I		
1	Introduction to Parallel Computing & Parallel Programming Platforms:		
	Motivating Parallelism, Scope of Parallel Computing, Implicit Parallelism:		
	Trends in Microprocessor Architectures, Limitations of Memory System		
	Performance, Dichotomy of Parallel Computing Platforms, Physical		
	Organization of Parallel Platforms, Communication Costs in Parallel Machines,		
	Routing Mechanisms for Interconnection Networks, Impact of Process-		
	Processor Mapping and Mapping Techniques	07 hrs	
2	Principles of Parallel Algorithm Design:		
	Preliminaries, Decomposition Techniques, Characteristics of Tasks and		
	Interactions, Mapping Techniques for Load Balancing, Methods for Containing		
	Interaction Overheads, Parallel Algorithm Models	09 hrs	
Unit –	Ш		
3	Analytical Modeling of Parallel Programs:		
	Sources of Overhead in Parallel Programs, Performance metrics for parallel		
	systems, The effect of Granularity on performance, Scalability of Parallel		
	Systems, Minimum execution time and minimum cost optimal execution time,		
	Asymptotic analysis of Parallel programs, Other Scalability Metrics		
4	Programming Using the Message Passing Paradigm:		
	Principles of Message - Passing Programming, The Building Blocks, MPI: The		
	Message passing Interface, Overlapping Communication with Computation,		
	Collective Communication and Computation Operations, Groups &		
	Communicators	07 hrs	
Unit –	III		
5	Programming Shared Address Space Platforms: Thread Basics, POSIX		
	Thread API, Synchronization Primitives in Pthreads, Controlling Thread and		
	Synchronization Attributes, Thread Cancellation, Composite Synchronization		
	Constructs, OpenMP: A standard for Directive Based Parallel Programming.	06 hrs	
6	Case Study/ Projects and Recent Trends: Case Study/ Projects and Recent		
	Trends	05 hrs	

Text Books:

1. Ananth Grama, George Karypis, Vipin Kumar and Anshul Gupta, Introduction to Parallel Computing, Second Edition, Pearson India, 2013

References:

1. Michael Quinn, Parallel Computing Theory and Practice, Tata McGraw Hill, 2003

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3
III	Q.No7, 8	5,6	Solve Any 1 out of 2

Program: Bachelor of Engineering				
Course Title: Quantum Computing Course Code:17ECSE306				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 50	Exam Duration: 3hrs			

Unit –I		
1	Introduction and Background:	
	Overview, Computers and the Strong Church–Turing Thesis, The Circuit Model of	
	Computation, A Linear Algebra Formulation of the Circuit Model, Reversible	
	Computation, A Preview of Quantum Physics, Quantum Physics and Computation.	07hrs
2	Linear Algebra and the Dirac Notation:	
	The Dirac Notation and Hilbert Spaces, Dual Vectors, Operators, The Spectral	
	Theorem, Functions of Operators, Tensor Products, The Schmidt Decomposition	
	Theorem, Some Comments on the Dirac Notation.	05hrs
3	Introduction to Quantum Toolbox in Python:	
	Installation, Basics and Quantum mechanics	04 hrs
Unit –II		
4	Qubits and the Framework of Quantum Mechanics:	
	The State of a Quantum System, Time-Evolution of a Closed System, Composite	
	Systems, Measurement, Mixed States and General Quantum Operations, Mixed	

	States, Partial Trace, General Quantum Operations.	08hrs
5	A Quantum Madel of Computation	
3	A Quantum Model of Computation:	
	The Quantum Circuit Model, Quantum Gates, 1-Qubit Gates, Controlled-U Gates,	
	Universal Sets of Quantum Gates, Efficiency of Approximating Unitary	
	Transformations, Implementing Measurements with Quantum Circuits.	05hrs
6	Exploring Python for Solving Problems / Projects using Quantum Computing	03 hrs
Unit –II	I	
7	Introductory Quantum Algortihms:	
	Probabilistic Versus Quantum Algorithms, Phase Kick-back, The Deutsch	
	Algorithm, The Deutsch-Jozsa Algorithm, Simon's Algorithm.	04hrs
8	Case Studies and Projects done during the course:	
	Image processing, Data Sciences, Machine Learning, Networking	04 hrs
Text Bo	oks	
2.	Phillip Kaye, Raymond Laflamme and Michele Mosca "An Introduction to	
	Quantum Computing ", Oxford University, Press, 2007	
3.	User Guide - Quantum Toolbox in Python, Release 4.2.0 – Qutip.org	
Referen	ces:	
1.	Internet References, toolbox and other relevant software's.	

Scheme for Semester End Examination (ESA)

Г

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
Π	Q.No4, Q.No5, Q.No6	4, 5, 6	Solve Any 2
III	Q.No7	7	Solve Any 1
	Q.No8	8	

Program: Bachelor of Engineering				
Course Title: Embedded Intelligent Systems Course Code: 18ECSE302				
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 6hrs/week		
ISA Marks: 80	ESA Marks: 20	Total Marks: 100		
Teaching Hrs: 60	Exam Duration: 3 hrs			

1	Basics of embedded systems	
	Linux Application Programming, System V IPC, . Linux Kernel Internals and	
	Architecture, Kernel Core, Linux Device Driver Programming, Interrupts &	10 hrs

٦

	Timers , Sample shell script, application program, driver source build and execute	
2	Heterogeneous computing Basics of heterogeneous computing with various hardware architectures designed for specific type of tasks, Advanced heterogeneous computing with a. Introduction to Parallel programming b.GPU programming (OpenCL) c. Open standards for heterogeneous computing (Openvx), Basic OpenCL examples - Coding, compilation and execution	12 hrs
3	ML Frameworks lab with the target device Caffe, tensorflow, TF Lite machine learning frameworks & architecture ,Model parsing, feature support and flexibility ,Supported layers , advantages and disadvantages with each of these frameworks, Android NN architecture overview , Full stack compilation and execution on embedded device	16 hrs
4	Model Development and Optimization Significance of on device AI ,Quantization , pruning, weight sharing, Distillation ,Various pre-trained networks and design considerations to choose a particular pre-trained model ,Federated Learning , Flexible Inferencing	8 hrs
6	Android Anatomy Android Architecture ,Linux Kernel , Binder , HAL Native Libraries , Android Runtime, Dalvik Application framework , Applications, IPC	8 hrs

Progr	ram: Bachelor of Enginee	ering		
Course Title: JAVA Programming		Course Code: 19ECSP301		
L-T-P	:1-0-1.5	Credits: 2.5	Contact Hrs: 4 Hrs/week	
ISA M	1arks: 80	ESA Marks: 20	Total Marks: 100	
Teach	ing Hrs: 52	Exam Duration: 3hrs		
Unit -	-I			
1	1 JAVA Language Fundamentals: Java Features, Programming basics, Arrays and Strings, classes and objects			4 Hrs
2	2 Inheritance : Introduction, types of inheritance, static and dynamic polymorphism.			2 Hrs
Unit -	-II			
3	Interfaces and Exception Handling: Introduction,Create and implement interfaces, Exception handling,			2 Hrs
4 Generics and Collections Frame work: Introduction to generic programming, Collections: Interfaces: List, Set, Queue Classes: ArrayList, LinkedList and HashSet, Map			2 Hrs	
Unit -	-III			
5	Lambda Expressions: operations on collection	Functional programming, Func s	tional interface, Bulk	2hrs

6	Java Database Connectivity (JDBC): Introduction, Drivers, Interfaces and classes to develop data base applications, case study	2 Hrs
Text l	Books:	
1	. JAVA The Complete Reference, Herbert Schildt, 10th Ed, 2017, McGraw-Hill	

Reference Book

- 1. Kathy Sierra and Bert Bates, Head First Java: A Brain-Friendly Guide, 2nd Edition, O'Reilly Media
- 2. Introduction to Java Programming, Liang Y D, Pearson, 11th Edition

Program: Bachelor of Engineering				
Course Title: Semantic Web		Course Code:19ECSE303		
L-T-P: 3-0-0 Credits: 3		Contact Hrs: 3hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 03 hrs			

Unit -	-I			
1	Introduction to Semantics			
	History of the Web, Limitations, Vision of Semantic Web, Principles, Data			
	Integration Across Web, Data Modeling Methods, Semantic Relationships,			
	Metadata, Perpetual Data	4 hrs		
2	Expressing Meaning			
	Triple Store, Merging Graphs, Querying: Case Study	4 hrs		
3	Using Semantic Data			
	Query Language, Feed Forward Inference, Searching for Connections, Linked			
	Data, Freebase	8 hrs		
Unit -	-II			
4	Working with Semantics			
	RDF—The Basis of the Semantic Web, OWL, Metadata with RDF, Metadata			
	Taxonomies, Ontology	8 hrs		
5	Reasoning and Social Web			
	Reasoning types: Approximate Reasoning and Bounded Reasoning, Social			
	Semantic Web, Semantic Crawlers	8 hrs		
Unit -	-III			
6	Semantic Modeling			
	Semantic Modeling, Semantic Web Applications, Logic for Semantic Web, Case			
	Studies: Dr. Watson, Yahoo! SearchMonkey	8 hrs		
Text	Text Books			
1	. Grigoris Antoniou, Paul Groth, Frank van Harmelen and Rinke Hoekstra, A Sem	antic Web		
	Primer, MIT Press; 3rd edition, 2012.			
2	2. Toby Segaran, Colin Evans, and Jamie Taylor, Programming the Semantic W	/eb: Build		
	Flexible Applications with Graph Data, O'Reilly Media; 2 edition, July 2009.			
Refer	rence Books:			

- Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph, Foundations of Semantic Web 1. Technologies, Chapman and Hall; 1st edition, 2009.
- Dean Allemang, and James Hendler, Semantic Web for the Working Ontologist, Effective 2. Modeling in RDFS and OWL, Morgan Kaufmann; 2nd edition, 2011.
- John Hebeler, Matthew Fisher, Ryan Blace, Andrew Perez-Lopez, and Mike Dean 3. (Foreword), Semantic Web Programming, Wiley Publishers, 1 edition 2009.

Scheme fo	or End Semester Assessment (ESA)		
UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2
II	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2
III	Q.No7	6	Solve Any 1
	Q.No8	6	Solve Ally I

Course Title: Block Chain Technology		Course ode:19ECSE301	
L-T-P: 2-0-1 Credits: 3		Contact Hrs: 3hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3 hrs		

	Unit –I			
1	Introduction			
	Overview of Blockchain, History: Digital Money to Distributed Ledgers, Design	08 hrs		
2	Blockchain Architecture and Design	00 11 3		
-	Crypto primitives- Hash, Signature, Hashchain to Blockchain, basic consensus			
	mechanisms, Requirements for the consensus protocols, Proof of Work, Proof of			
	State, Scalability issues of consensus protocols	08 hrs		
	Unit –II			
3	Blockchain Contracts			
	Financial Services, Crowdfunding, Bitcoin Prediction Markets, Smart Property,			
	Smart Contracts, Blockchain Development Platforms and APIs, Blockchain			
	Ecosystem: Decentralized Storage, Communication, and Computation	08 hrs		
4	Etherium			
	Etherium transactions, accounts, smart contracts, smart contract development,			
	Solidity basics, basic contracts, distributed storage, Etherium scaling	08 hrs		
Unit –III				
5	Blockchain Applications			
	Blockchain in Financial Software and Systems: Settlements, KYC,			
	InsuranceBlockchain for Government: Digital identity, land records and other kinds			
	of record keeping between government entities, public distribution system social			
	welfare systems	08hrs		

Text Books:

1. Melanie Swan, "Blockchain: Blueprint for New Economy", 1st Edition, O'Reilly Media, 2014.

Reference Books:

1. ArshdeepBhaga, Vijay Madisetti, "Blockchain Applications: A Hands-On Approach", Paperback– January 31, 2017

UNIT	8 Questions to be set of 20 Marks	Chapter Numbers	Instructions
	Each		
Ι	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
III	Q.No7, 8	5	Solve Any 1

Course Title: The ARM Architecture		Coursecode:19ECSE302
L-T-P: 2-1-0 Credits: 3		Contact Hrs: 3hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 30	Exam Duration: 3 hrs	

Unit –I			
1	ARM Embedded Systems and Processor Fundamentals	06 hrs	
	The RISC Design Philosophy, The ARM Design Philosophy, Embedded System		
	Hardware, Embedded System Software, Registers, Current Program Status Register,		
	Pipeline, Exceptions, Interrupts, and the Vector Table, Core Extensions,		
	Architecture Revisions, ARM Processor Families		
2	Introduction to the ARM Instruction Set & Assembly Programming	06 hrs	
	Data Processing Instructions, Branch Instructions, Load-Store Instructions,		
	Software Interrupt Instruction, Program Status Register Instructions, Loading		
	Constants, ARMv5E Extensions, Conditional Execution, Thumb instruction set.		
	Unit –II		
3	Efficient C Programming	06 hrs	
	Overview of C Compilers and Optimization, Basic C Data Types, C Looping		
	Structures, Register Allocation, Function Calls, Pointer Aliasing, Structure		
	Arrangement, Bit-fields,		
	Unaligned Data and Endianness, Division.		
4	Writing and Optimizing ARM Assembly Code	06 hrs	
	Writing Assembly Code, Profiling and Cycle Counting, Instruction Scheduling,		
	Register Allocation, Conditional Execution, Looping Constructs, Bit Manipulation,		
	Efficient Switches, Handling Unaligned Data.		
Unit –III			
5	Introduction to LPC-2148 controller	03 hrs	

control and control registers, introduction to interfacing standards	
6 ARM Interfacing ARM interfacing to peripherals like LED, LCD, Seven segments, Motors, Converters, Keypad. 0.	03 hrs

Text Books

1. Andrew N.Sloss et al, ARM System Developer's Guide- Designing and Optimizing System Software

Reference Books:

- 1.Marilyn Wolf, Computers as Components: Principles of embedded computing system design, Morgan Ka, 2012
- 2.Steve Furber, ARM System-on-chip Architecture, 2, Pearson, 2000

Tutorial Plan

Expt./	assignments/experiment	No. of Lab.
Job No.		Slots per batch
		(estimate)
1	ALP on arithmetic instructions set	01
2	ALP on logical instructions set	01
3	ALP on loop and branch instructions	01
4	Interface LED and Seven segments to ARM for displaying	01
•	message.	
5	Interface LCD to ARM for displaying message.	01
6	Interface Keypad to read the characters	01
7	Rotate DC and stepper motor for variable speed and direction	01
8	Interface DAC to ARM controller	01

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2 out of 3
Π	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3
III	Q.No7, 8	5	Solve Any 1 out of 2

Program: Bachelor of Engineering				
Course Title: Big Data and Analytics Course Code: 17ECSC401				
L-T-P: 2-0-1	Credits: 03	Contact Hrs: 04 hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 54	Exam Duration: 03 hrs			

Uni	it –]	[
1		Understanding Big Data - What is Big Data?, Data Analytics, Data Analytics	
		Life Cycle, Big Data Characteristics, Different Types of Data.	04hrs
2		Big Data Storage Concepts - Clusters, File Systems and Distributed File	
		Systems, NoSQL, Sharding, Replication, Combining Sharding and Replication.	06 hrs
3		Big Data Processing Concepts - Parallel Data Processing, Distributed Data	
		Processing, Hadoop.	03 hrs
Uni	it –]	П	
4		Big Data Processing Concepts - Map Reduce - Processing Workloads, Cluster,	
		Processing in Batch Mode, Processing in Real-time Mode.	06hrs
5		Introduction to MongoDB- What is MongoDB?, WhyMongoDB?, Terms Used	
		in RDBMS and MongoDB, Data Types in MongoDB, MongoDB Query	
		Language.	06hrs
Uni	it –		
6		Introduction to Hive - What is Hive?, Hive Architecture, Hive Data Types,	
		Hive File Format, Hive Query Language (HQL), RCFile Implementation, User-	0.51
Tor	,+ D	Defined Function (UDF).	UShrs
Tex	1 I	Thomas Erl. WaiidKhattak and Paul Ruhler "Rig Data Fundamentals Concents. I	Trivers
	1.	* Tackrigues" Drantice Hell 2015	51110215
	2	α rechniques, Prenice Hail, 2015.	
	2.	SeemaAcharya, SubhashiniChellappan, "Big Data and Analytics", wiley India P	vt Lta,
		2014.	
Ref	ere	nce Books	
	1.	Frank J Ohlhorst, "Big Data Analytics: Turning Big Data into Big Money", W	iley and
		SAS Business Series, 2012.	
	2.	Colleen Mccue, "Data Mining and Predictive Analysis: Intelligence Gathering an	d Crime

Analysis", Elsevier, 2007.

Scheme for End Semester Assessment(ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2 out of 3
III	Q.No7, Q.No8	6	Solve Any 1 out of 2

Program: Bachelor of Engineering			
Course Title: Canstone Project		Course Code:	
Course Thie. Cupstone Project		18ECSW401	
L-T-P: 0-0-14	Credits: 6	Contact Hrs: 3 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
	Exam Duration: 3hrs		

Project themes:

Networking	Data Engineering	System Engineering
 Internet of Things Cloud Computing Software Defined Network Social Network Analysis 	 Data Analytics Image and video processing Computer Vision and Graphics Natural Language Processing 	 Parallel Computing High Performance Computing Parallel system design

<u>Evaluation:</u> Students Assessment through ISA (50%) + ESA (50%)

	Assessment	Weightage in Marks
Internal Semester Assessment* (50%)	Periodic reviews by Project Guide	25
	Periodic reviews by Committee	25
	Final Review	50
End Semester Assessment (50%)	Total	100

Program: Bachelor of Engineering			
Course Title: Industry Training Course Code: 18ECSI493			
Credits: 6	ISA Marks: 50	ESA Marks: 50	
Total Marks: 100	Exam Duration: 3 hrs	L-T-P: 0-0-6	

Overview of the Course

Industry Training is a supervised, practical training periods for which Undergraduate, final year students earn academic credits. Industry Training provide excellent opportunities for students to put into practice much of the knowledge and skills acquired during their studies and to gain firsthand knowledge of the software industry. It is also an opportunity for employers to observe the student in the work environment and evaluate their potential for possible future employment.

The companies selected for the Industry Training can range from start-ups to large scale industries. The students who got placed in campus interviews may be offered Industry Training depending upon the need of the company. Other students who wish to do internship are responsible to find a company on their own for the Training.

Course Learning Outcomes.

CO 1. Apply the knowledge and skills acquired on campus in a real-life work situation. CO 2. Provide students with opportunities for practical, hands-on learning from practitioners.

CO 3. Enhance the employability skills of the students.

CO 4. Practice ethical standards appropriate to Internship site.

CO 5. Ability to write technical documents and give oral presentations of the work completed.

Scheme for In Semester Assessment(ISA) and End Semester Assessment (ESA)

Course	Course Code	Max ISA marks	Max ESA marks	Minimum Passing Marks
Industry Training	18ECSI493	50	50	Students must secure minimum of 40% marks in both ISA and ESA.

Program: Bachelor of Engineering			
Course Title: Industry Project Course Code: 18ECSW494			
Credits: 14	ISA Marks: 50	ESA Marks: 50	
Total Marks: 100	Exam Duration: 3 hrs	L-T-P: 0-0-14	

Overview of the Course

The purpose of providing the Industry Project is to give you the opportunity for students, to apply the knowledge, skills and competencies they have acquired, in real life practice. An Industry Project involves a stay in a relevant company or organization.

The students who got placed in campus interviews may be offered Industry Project depending upon the need of the company. Other students who wish to do Industry Project are responsible to find a company on their own.

Course Learning Outcomes.

CO 1. Identify the problem and perform requirement analysis

CO 2. Design potential solutions and evaluate to select optimal solution

CO 3. Apply professional norms of project implementation to meet specified requirements

CO 4. Apply fundamental activities of module, integration and system testing to validate the system

CO 5. Analyze results and present technical/scientific findings effectively through written and oral mode

Scheme for In Semester Assessment(ISA) and End Semester Assessment (ESA)

Co	urse	Course Code	Max ISA marks	Max ESA marks	Minimum Passing Marks
Industr Projec	y t	18ECSW494	50	50	Students must secure minimum of 40% marks in both ISA and ESA.

Program: Bachelor of Engineering				
Course Title: Cyber Security Course Code: 18ECS				
L-T-P: 2-0-1	T-P: 2-0-1 Credits: 3 Contact Hours: 04 hrs		/week	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hours: 40 Examination Duration: 03 Hrs				
	Unit I			
Chapter No. 1. Introduction to Cybercrime, Cyber offenses & Cybercrime: Cybercrime definition and origins of the world, Cybercrime and information security, Classifications of cybercrime, A global Perspective on cybercrimes. Cyber attack plans, Social Engineering, Cyber stalking, Cyber cafe and Cybercrimes, Botnets, Proliferation of Mobile and Wireless Devices, Credit Card Frauds in Mobile and Wireless Computing Era.				
Chapter No. 2. Cybercrimes an Why do we need Cyber law: The the Indian IT Act, Amendments t	d Cyber security: The Legal Persp Indian Context, The Indian IT Act, o the Indian IT Act, Cybercrime and	ectives: Digital Signature and Punishment.	06 hrs	
	Unit II			
Chapter No. 3. Understanding computer forensic: Historical background of cyber forensic, Forensic analysis of email, Digital forensic life cycle, Network forensic, Setting up a computer forensic Laboratory, Forensic analysis of digital media.				
Chapter No. 4. Cyber security: Organizational Implications: Cost of Cybercrimes and IPR Issues, Protecting People's Privacy in the Organization, Organizational Guidelines for Internet Usage, Intellectual Property in the Cyberspace of Cyber security.			06 hrs	
Unit III				
Chapter No. 5. Cybercrime: Illustrations, Examples and Case studies: Introduction, Real-Life Examples, Case Studies: Illustrations of Financial Frauds in Cyber Domain, Digital Signature-Related Crime Scenarios, Online Scams.				
Text Books: 1. Nina Godbole&SunitBelapure, "Cyber Security", Wiley India, 2012.				
 Reference Books: Harish Chander, "Cyber laws & IT protection", PHI learning pvt.ltd, 2012. Dhiren R Patel, "Information security theory & practice", PHI learning pvt.ltd, 2010 Ms.M.K.Geetha&Ms.Swapne Raman, "Cyber Crimes and Fraud Management", Mo MILLAN, 2012. Bill Nelson, "Guide to Computer Forensics and Investigations", 4th Edition, CENG. Publication. 2009.). AGE	

Tentative list of lab experiments: 1. Crime Scene / Field Response Evidence Preservation -1 Hr

Department of Computer Science & Engineering

2.	System Image Restoration and Target drive preparation	-1Hr
3.	Removable/External Media Imaging	-1 Hr
4.	Evidence Search	-1 Hr
5.	Forensic analysis on Image documents	-2 Hr
6.	Forensic analysis on Audio files	-2 Hr
7.	Forensic analysis on Video files	-2 Hr
8.	Forensic analysis on Text Document	-2 Hr

UNIT	8 Questions to be set of 20 Marks Each	Chapter	Instructions
		Numbers	
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2 out of 3
III	Q.No7, Q.No8	5	Solve Any 1 out of 2

Program: Bachelor of Engineering				
Course Title: Social Network Analysis Course Code: 18ECSE402				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 03 hrs			

	Unit –I			
1	Introduction Introduction : Motivation, different sources of network data, types of networks, tools for visualizing network data.	06 hrs		
2	Structural properties of networks Structural properties of networks : Notions of centrality, cohesiveness of subgroups, roles and positions, structural equivalence, equitable partitions, stochastic block models.	10 hrs		
Unit –II				
3	Cascading properties of networks Cascading properties of networks : Information/influence diffusion on networks, maximizing influence spread, power law and heavy tail distributions, preferential			
	attachment models.	10 hrs		
4	Small world phenomenon Small world phenomenon : Six Degrees of Separation, Structure and Randomness, Decentralized Search, Empirical Analysis and Generalized Models, Core- Periphery Structures and Difficulties in Decentralized Search, Advanced Material:			
	Analysis of Decentralized Search.	06 hrs		

	TT*4 TTT				
	Unit –III				
5	Mining Graphs- I				
	Mining Graphs- I : Community and cluster detection: random walks.	04 hrs			
6	Mining Graphs- II				
	Mining Graphs- II : Spectral methods; link analysis for web mining.	04 hrs			
Text B	ooks				
1.	Stanley Wasserman, Katherine Faust, Social network analysis: methods and appli	cations,			
	Cambridge University Press, 1994.				
2.	David Easley and Jon Kleinberg, Networks, Crowds, and Markets: Reasoning Ab	out a			
	Highly Connected World., Cambridge University Press, 2010.				
Refere	nce Books:				
1.	Peter R. Monge, Noshir S, Contractor, Theories of communication networks, Ox	ford			
	University Press, 2003.				

2. Duncan Watts, Six degrees: the science of a connected age. Norton, 2004.

Scheme for Semester End Examination (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
Π	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2 out of 3
Ш	Q.No7	5	Solve Any 1 out of 2
111	Q.No8	6	Solve Ally I out of 2

Program: Bachelor of Engineering				
Course Title: Unix Network Programming Course Code: 18ECSE404				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 3 hrs			

Unit –	I	
1	Communication Protocols	5 hrs
	Introduction TCP/IP - Internet Protocols XNS SNA NetBIOS UUCP Protocol	
	comparisons.	
2	Elementary Socket Programming	5 hrs
	Introduction Overview UNIX Domain Protocols Socket Addresses Elementary	
	Socket system calls A simple example.	

3	Advanced Socket Programming	6 hrs		
	Advanced Socket System calls Reserved Ports Stream Pipes Passing file			
	descriptors Socket options Asynchronous I/O Input/output Multiplexing Out-of-			
	Band Data Sockets and Signals Internet Super server Socket implementation.			
Unit	-II			
4	Time and Date Routines	5 hrs		
	Introduction Internet Time and Date Client Network Time Synchronization.			
5	Ping Routines	5 hrs		
	Introduction Internet Ping Client XNS Echo Client.			
6	Trivial File Transfer Protocol	6 hrs		
	Introduction Protocol Data Formats Connections Client user interface UDP			
	implementation TCP implementation.			
Unit	-III			
7	Remote Command Execution	4 hrs		
	Introduction Security Issues rcmd function and rshd Server rexec function and			
	rexecd Server.			
8	Remote Login	4 hrs		
	Introduction Terminal Line disciplines A simple Example.			
Text	Books			
	1. W.R. Stevens, Unix Network Programming, PHI 2003.			
	2. M. J. Rochkind, Advanced Unix Programming, 2nd Edition, Pearson Education	n 2004.		
Refe	rence Books			
	1. Sumitabha Das, Unix Concepts and Applications, 3rd Edition, Tata McGraw-F	Hill		
	2006			

UNIT	8 Questions to be set of 20 Marks Each	Chapter	Instructions
		Numbers	
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
ш	Q.No7	7	Solve Any 1 out of 2
111	Q.No8	8	Solve Ally 1 out of 2

Program: Bachelor of Engineering				
Course Title: Software Testing Course Code:18ECSE407				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 3 hrs			

Content	Hrs		
Unit - 1			
Chapter No. 1.Software Testing Principles: Need for testing ,The Psychology and	04hrs		
Economics of Program Testing Program ,Inspections, Walkthroughs, and Reviews.			
Chapter No. 2. Test-Case Design: Overview, White box testing, Error Guessing,	06hrs		
strategies, Module (Unit) Testing-Incremental Testing, Top-down versus Bottom-up			
Testing, Performing the Test.			
Chapter No. 3. Higher-Order Testing: Function testing, System testing,	06hrs		
Acceptance testing, Installation testing, Test planning and Control, Test completion			
criteria, Extreme testing.			
Unit - 2			
Chapter No. 4. Testing Tools and Standards: Automated Tools for Testing - Static	10hrs		
code analyzers - Test case generators - GUI Capture/Playback - Stress Testing -			
Testing Client - server applications - Testing compilers and language processors -			
Testing web-enabled applications.			
Chapter No 5 : CMM Model and its stages – Introduction to PCMM, CMMI and 06hrs			
Six Sigma concept – ISO 9000.			
Unit - 3			
Chapter No. 6. Software Quality and Testing: Introduction to software quality and	04hrs		
quality control - Benefits of quality control - Quality assurance - quality circles and			
quality improvement.			
Chapter No. 7. Introduction to quality cost – Measuring quality cost – Total	04hrs		
Quality Management (TQM). Architecture, Process, memory and file management in			
Mobile OS, Network OS.			
Text Books			
1. Glenford J. Myers, Tom Badgett, Corey Sandler, and Todd M. Thomas, "The	e Art of		
 Software Testing", John Wiley & Sons, Second edition, 2004. Roger S. Pressman, "Software Engineering. A Practitioners Approach", McGraw-Hill 			
International Edition, Seventh edition, 2009.			
References			
1. William E. Perry, "Effective Methods for Software Testing", John Wiley & Sons,			
 Boris Beizer, "Techniques for Functional Testing of Software and Systems", John Wiley & Sons, 1995. 			
3. P.C. Jorgensen, "Software Testing - A Craftman's Approach", CRC Press, 19	995.		

4. Boris Beizer, "Software Testing Techniques", Van Nostrand Reinhold, Second edition, 1990.

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2, 3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4, 5	Solve Any 2 out of 3
III	Q.No7, Q.No8	6, 7	Solve Any 1 out of 2

Program: Bachelor of Engineering					
Course Title: C# Programming and .NET Course Code: 18ECSE409					
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3hrs/week			
ISA Marks: 50	ESA Marks: 50	Total Marks: 100			
Teaching Hrs: 40 Exam Duration: 3 hrs					

	Unit –I	
1	The Philosophy of .NET Understand the motivation behind the .NET platform, Common Language	
	Infrastructure (CLI). Know the role of the Common Type System (CTS), the	
	Common Language Specification (CLS) and the Common Language Runtime	
	(CLR), Understand the assembly, metadata, namespace, type distinction,	
	Contrast single-file and multi-file assemblies, Know the role of the Common	
	Intermediate Language (CIL), Platform independent .NET(Mono / Portable	
	.NET distributions).	5hrs
2	C# Language Fundamentals Language Fundamentals, Reference and value Types, primitive types the	
	Nullable and enum types, Classes and objects, Defining classes Creating objects,	
	Using static members, Overloading Methods, Various Constructors.	
	Encapsulating data, access modifiers, properties, indexers arrays and readonly	
	fields. Structures. String and DateTime classes, three pillars of OOPs	7 hrs
3	Exceptions and Object Life Time Ode to Errors, Bugs and Exceptions, The Role of .NET Exception handling, the	
	System. Exception base class, Throwing a generic Exception, Catching	
	Exceptions, CLR System-Level Exceptions (System.SystemException), Custom	
	Application-Level Exceptions (System.ApplicationException). Handling	4 hrs

Department of Computer Science & Engineering

	Multiple Exception, The Finally Block, The Last Chance Exception,		
	Understanding Object Life time. The CIL of "new", The Basics of Garbage		
	Collection		
	Unit –II		
4	Event handling paradigm Interfaces and Collections		
-	Understanding the .NET Delegate type, Multicast Delegate and events.		
	Interfaces, overriding interface implementation. Explicit interface		
	implementation, Collection, IEnumerable, IEnumerator, IList, IComparer and		
	their Generic equivalent. Working with generic List, Stack, Dictionary and		
	Queue	6 hrs	
5	Programming Window Forms Applications		
	Anatomy of a Form, Component Class, Control Class, Control Events,		
	Responding to Keyboard Events, Form Class, Building Menus with Windows		
	Forms, Building your Menu System, Creating Pop-Up Menu, Adding Controls to		
	Forms (IDE-Free), Adding Controls to Forms (via VS.NET), Working with		
	Basic Controls like Buttons, Configuring Tab Order.	5 hrs	
6	Working with Database		
	Introduction to ADO.NET, Connecting to a database, Understanding		
	Navigating records Adding editing and deleting records Building an		
	ADO NET example	5 hrs	
		5 11 5	
7	7 Understanding the .NET Assemblies		
	Problems with Classic.COM Binaries, An overview of .NET Assembly, Building		
	a single file test assembly, A C# Client Application, A Visual Basic .NET Client		
	Application, Cross-Language Inheritance, Exploring the Car Library's Manifest,	1 hrs	
0	Exploring the Car Library's Types.	4 111 5	
0	Building a multi file assembly. Using the Multifile Assembly. Understanding the		
	private Assemblies, Probing for private Assemblies (The Basics), Private		
	Assemblies and XML Configuration Files, Probing for Private Assemblies(The		
	details), Understanding Shared Assemblies, Understanding Shared Names,		
	Building a Shared Assembly, Understanding Delay Signing, Installing/Removing	4 hm	
Tort D	Shared Assembly, Using a Shared Assembly.	4 mrs	
1. 1.	Herbert Schildt, "The Complete Reference C# 4.0", Tata McGraw –Hill, 2010		
2.	Andrew Troelsen, "Pro C# with .NET 3.0", Special Edition, Dream tech Press, In	dia,	
	2007.		
Reference Books:			
	1. Stephen C. Perry, AtulKahate, Stephen Walther, Joseph Mayo, "Essential of .net	and	

Related Technologies with a focus on C#, XML, ASP.net and ADO.net", 2nd Edition, Pearson, 2009.

- Paul J. Deitel, Harvey Deitel, "Visual C# 2010 for Programmers", 4th Edition, Pearson, 2010.
- 3. Joseph Albahari and Ben Albhari, "C# 3.0/4.0 in Nutshell", 3rd Edition, O'Rilley, 2007.

UNIT	8 Questions to be set of 20 Marks Each	Chapter	Instructions
		Numbers	
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
ш	Q.No7	7	Solve Any 1 out of 2
111	Q.No8	8	Solve Any I out of 2

Program: Bachelor of Engineering				
Course Title: Database Management System Course Code: 15ECSO402				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 3 hrs			

	Unit –I		
1	Introduction to Database: Introduction to DBMS and an example, Characteristics of	6 Hrs	
	Database approach, Actors On and Behind the Scene, Advantages and Disadvantages of		
	using DBMS, Data models, schemas and instances, Three-schema architecture and data		
	independence, Database languages and interfaces, The database system environment.		
2	Data Modeling Using ER Model: Using High-Level Conceptual Data Models for	6 hrs	
	Database Design, An Example Database Application, Entity Types, Entity Sets, Attributes		
	and Keys, Relationship types, Relationship Sets. Roles and Structural Constraints, Weak		
	Entity Types, Refining the ER Design, Degree of Relationship type, ER Diagrams, Naming		
	Conventions and Design Issues.		
3	Relational Data Model : Relational Model Concepts, Relational Model Constraints and	4 hrs	
	Relational Database Schemas, Update Operations, Transactions and dealing with constraint		
	violations.		
Unit –II			
4	Structured Query Language(SQL): SQL Data Definition and Data Types, Specifying	6 hrs	
	basic constraints in SQL, Schema change statements in SQL, Views in SQL, Basic queries		
	in SQL.		

Department of Computer Science & Engineering

r			
5	Basics of Functional Dependencies and Normalization for Relational Databases:	6 hrs	
	Informal Design Guidelines for Relation Schemas, Functional Dependencies, Normal		
	Forms Based on Primary Keys, General Definitions of Second and Third Normal Forms,		
	Boyce-Codd Normal Form.		
6	Introduction to Transaction Processing: Introduction to Transaction Processing,	4 hrs	
	Transactions and System concepts, Desirable Properties of Transaction, Transaction		
	support in SQL.		
	Unit –III		
7	Emerging Database Technologies: Introduction, cloud computing and data management,	4 hrs	
	Mobile databases, Multimedia Databases.		
8	Emerging Database Technologies: GIS Database, Biological Database, Dealing with	4 hrs	
	massive datasets-MapReduce and Hadoop.		
Тех	t Books:		
1.	Elmasri R. and Navathe S., Fundamentals of Database Systems, 6th Edition, Pearson Education, 2	2011.	
Ref	erence Books:		
1.	1. Ramakrishnan S. and Gehrke J., Database Management Systems, 3rd Edition, McGraw Hill, 2007.		
2.	Silberschatz A., Korth H.F. and Sudharshan S., Database System Concepts, 6th Edition, Mc- GrawHill,		
	2010		

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
ш	Q.No7	7	Salar Anna 1 ant af 3
111	Q.No8	8	Solve Any 1 out of 2

Program: Bachelor of Engineering				
Course Title: High Performance C Applications	Course Code:15ECSO404			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 3hrs			

Unit –I

-					
1		Introduction to High Performance Computing:			
		Computational Science and Engineering Applications; characteristics and			
		requirements, Review of Computational Complexity, Performance: metrics and			
		measurements, Granularity and Partitioning, Locality:			
		temporal/spatial/stream/kernel, Basic methods for parallel programming, Real-			
		world case studies like CFD, Bioinformatics, Flow analysis etc.			
2		High Performance Computing Systems:			
		Memory Hierarchies, Multi-core Processors: Homogeneous and Heterogeneous,			
		Shared-memory Symmetric Multiprocessors, Vector Computers, Distributed			
		Memory Computers, Supercomputers and Petascale Systems, Application			
		Accelerators / Reconfigurable Computing, Novel computers: Stream,			
		multithreaded, and purpose-built	08hrs		
		· · ·			
Un	it –	ll de la constant de			
3		Parallel Algorithms:			
		Parallel models: ideal and real frameworks, Basic Techniques: Balanced Trees,			
		Pointer Jumping, Divide and Conquer, Partitioning, Regular Algorithms; Matrix			
		operations and Linear Algebra. Irregular Algorithms: Lists, Trees, Graphs,			
		Randomization: Parallel Pseudo-Random Number Generators Sorting Monte			
		Carlo techniques			
5		Parallel Programming:			
		Revealing concurrency in applications. Task and Functional Parallelism. Task			
		Scheduling, Synchronization Methods, Parallel Primitives (collective operations).			
	SPMD Programming (threads, OpenMP, MPI)		08hrs		
Un	.;+ 1				
	ut –		r		
5		Achieving Performance:			
		Measuring performance, Identifying performance bottlenecks, Restructuring			
		applications for deep memory nierarchies, Partitioning applications for	04hrs		
6		Case Studies and Projects done during the course:	041113		
U		Various case studies from various engineering discipline	04 hrs		
То	vt B		04 11 5		
10	4.	Introduction to Parallel Computing, AnanthGrama, Anshul Gupta, George Karypis	and		
		Vipin Kumar, 2nd edition, Addison-Welsey, 2003.			
	5.	5. Petascale Computing: Algorithms and Applications, David A. Bader (Ed.), Chapman &			
	Hall/CRC Computational Science Series, 2007				
Re	fere	nce Books:			
	2.	G.E. Karniadakis, R.M. Kirby II, Parallel Scientific Computing in C++ and MPI: A	4		
		Seamless Approach to Parallel Algorithms and their Implementation, Cambridge			
		University Press,2003.			
	2	University Press,2003.	04		

Scheme for Semester End Examination (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
Ш	Q.No7	5	Solve Any 1
	Q.No8	6	501.01111/1

Program: Bachelor of Engineering				
Course Title: Essential of Information Technology Course Code: 15ECSO405				
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 6hrs/week		
ISA Marks: 80	ESA Marks: 20	Total Marks: 100		
Teaching Hrs: 60	Exam Duration: 3 hrs			

Unit - I				
1	Introduction to computer systems:	06		
	Components of computer systems, program execution cycle, computer	hrs		
	networks, software and its classification, Operating System: introduction,			
	memory management, process management, file management.			
2	Programming basics:			
	Introduction to problem solving, SDLC overview and need for object	06		
	oriented approach, object oriented concepts, introduction to java, control	hrs		
	structures, arrays, strings.			
3	Classes and Objects:	04		
	Class fundamentals, access specifiers, constructors and its types, method	hrs		
	overloading, static members.			
Unit - II				
4	Data structures:	05		
	Introduction, Linear data structures: stack, queue, linked lists, Non-	hrs		
	Linear data structures: trees, binary search tree, illustration using java			
	collection framework.			
5	Inheritance and Polymorphism:	05		
	Inheritance: basics, types of inheritance, method overloading and	hrs		
	overriding, dynamic method dispatch.			

6	Packages, Interfaces and Exceptions:	06
	Introduction to packages, access protection, interfaces, exception	hrs
	handling mechanism, and user defined exceptions.	
	Unit - III	
7	Database Design Process:	04
	Characteristics of DBMS, ER model, mapping ER model to relational	hrs
	schema, normalization.	
8	Structured Query Language:	04
	SQL data types, database languages, operators, aggregate functions,	hrs
	order by and group by clause, joins and sub queries.	
Text	Books	
1.	Infosys Campus Connect Foundation Program Volume: 1–3, Education and	
	Research Department, Infosys Technologies Ltd, 2013.	
2.	Herbert Schildt, "Java The Complete Reference", 8th Edition, McGraw-Hill,	2012.
Refe	rence Books:	
1. Elmasri. and Navathe, "Fundamentals of Database Systems", 6th Edition, Per		
Education, 2011.		
2.	Silberschatz, Galvin, and Gagne, "Operating System Concepts", 8th Edition, 2009.	Wiley,

UNIT	Experiments to be set of 10 Marks Each	Chapter	Instructions
		Numbers	
Ι	Project Examination	4 - 8	Project implementation
			and demonstration
			20 marks

Program: Bachelor of Engineering					
Course Title: Natural Language Processing Course Code: 18ECSE403					
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 04 hrs/week			
ISA Marks: 50	ESA Marks: 50	Total Marks: 100			
Teaching Hrs: 30	Exam Duration: 3 hrs				

Unit –I						
1	Introduction to NLP and Deep Learning					
	Introduction to Natural Language Processing, Applications of Natural Language					
	Processing, Word2vec introduction, Word2vec objective function gradients					
2	Dependency Parsing, Recurrent Neural Networks					
	Dependency Grammar, Neural dependency parsing, Recurrent Neural Networks					
	and Language Models, Vanishing Gradients, Fancy RNNs	07 hrs				

	Unit –II				
3	Machine Translation, Seq2Seq and Attention				
	Machine Translation, Seq2Seq and Attention, Advanced Attention	06 hrs			
4	Transformer Networks, Coreference Resolution, Memory Networks				
	Transformer Networks and CNNs, Tree Recursive Neural Networks and				
	Constituency Parsing, Advanced Architectures and Memory Networks	06 hrs			
	Unit –III				
5	Reinforcement Learning				
	Reinforcement Learning for NLP, Semi-supervised Learning for NLP, Future of				
	NLP Models, Multi-task Learning and QA Systems	06 hrs			
Text l	Books:				
1	1. Yoav Goldberg. A Primer on Neural Network Models for Natural Language Processing,				
	2016.				
Refer	ence Books:				
Γ	Dan Jurafsky and James H. Martin. Speech and Language Processing (3rd ed. draft).				
I	Ian Goodfellow, YoshuaBengio, and Aaron Courville. Deep Learning. MIT Press.				

UNIT	8 Questions to be set of 20 Marks Each	Chapter	Instructions
		Numbers	
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5	Solve Any 2 out of 3
ш	Q.No7	6	Solve Any 1 out of 2
111	Q.No8		Solve Ally 1 out of 2

Program: Bachelor of Engineering					
Course Title: Wireless Ad Hoc and Sensor Networks Course Code: 18ECSE406					
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3hrs/week			
CIE Marks: 50	SEE Marks: 50	Total Marks: 100			
Teaching Hrs: 40 hrs	Exam Duration: 3 hrs				

Unit –I				
1	Introduction: Fundamentals of wireless communication technology,			
	Characteristics of wireless channel, Multiple Access Techniques, IEEE802.11			
	Standards, Bluetooth, Cellular Concept, Cellular Architecture.	07 hrs		
2	Ad hoc Networks: Introduction, Issues in Ad hoc wireless networks, Ad hoc			
	wireless internet.	04 hrs		

Department of Computer Science & Engineering

3		MAC Protocols: Introduction, Issues in Designing MAC protocol, Design goals,	
		Classification, Contention Based Protocols with Reservation Mechanisms.	
		Contention-Based MAC Protocols with Scheduling Mechanism.	05 hrs
Un	it –	П	
4		Routing Protocols: Introduction, Issues in designing a routing protocol,	
		classification, Table drive routing protocol, On-demand routing protocol, Hybrid	
		routing protocol, Hierarchical routing protocols, Power aware routing protocols.	06 hrs
5		Energy Management: Introduction, Need for Energy Management,	
		Classification, Battery Management Scheme, Transmission Power Management	
		Schemes, System Management Scheme.	05 hrs
6		Sensor Networks: Introduction, Architecture, Data Dissemination, Data	
		Gathering, MAC Protocols (schedule based protocols).	05 hrs
Un	it _1	III.	00 1115
-		Destine Destande for General Networks Desting Classic ist	
7		Routing Protocols for Sensor Networks, Routing Unaracteristics	
7		Routing Protocols for Sensor Networks: Routing Characteristics, Routing Strategies, LEACH, SPIN	
7		Routing Protocols for Sensor Networks: Routing Characteristics, Routing Strategies, LEACH, SPIN.	04 hrs
7 8		Routing Protocols for Sensor Networks: Routing Characteristics, Routing Strategies, LEACH, SPIN. Sensor Network Applications: Case Study: Traffic Control, Health Care, Green	04 hrs
7 8		Routing Protocols for Sensor Networks: Routing Characteristics, Routing Strategies, LEACH, SPIN. Sensor Network Applications: Case Study: Traffic Control, Health Care, Green House Monitoring.	04 hrs 04 hrs
7 8 Tez	xt B	Routing Protocols for Sensor Networks: Routing Characteristics, Routing Strategies, LEACH, SPIN. Sensor Network Applications: Case Study: Traffic Control, Health Care, Green House Monitoring.	04 hrs 04 hrs
7 8 Ter	xt B 1.	Routing Protocols for Sensor Networks: Routing Characteristics, Routing Strategies, LEACH, SPIN. Sensor Network Applications: Case Study: Traffic Control, Health Care, Green House Monitoring. Sooks: C. Siva Ram Murthy and B. S. Manoj, "Ad hoc Wireless Networks",2 nd Edition,	04 hrs 04 hrs Pearson
7 8 Tex	xt B 1.	Routing Protocols for Sensor Networks: Routing Characteristics, Routing Strategies, LEACH, SPIN. Sensor Network Applications: Case Study: Traffic Control, Health Care, Green House Monitoring. C. Siva Ram Murthy and B. S. Manoj, "Ad hoc Wireless Networks",2 nd Edition, Education, 2006.	04 hrs 04 hrs Pearson
7 8 Tex	xt B 1. 2.	Routing Protocols for Sensor Networks: Routing Characteristics, Routing Strategies, LEACH, SPIN. Sensor Network Applications: Case Study: Traffic Control, Health Care, Green House Monitoring. C. Siva Ram Murthy and B. S. Manoj, "Ad hoc Wireless Networks",2 nd Edition, Education, 2006. KazemSohraby, Daniel Minoli, TaiebZnati, "Wireless Sensor Networks: Tech	04 hrs 04 hrs Pearson mology,
7 8 Te	xt B 1. 2.	 Routing Protocols for Sensor Networks: Routing Characteristics, Routing Strategies, LEACH, SPIN. Sensor Network Applications: Case Study: Traffic Control, Health Care, Green House Monitoring. cooks: C. Siva Ram Murthy and B. S. Manoj, "Ad hoc Wireless Networks",2nd Edition, Education, 2006. KazemSohraby, Daniel Minoli, TaiebZnati, "Wireless Sensor Networks: Tech Protocols, and Applications", John Wiley and Sons, 2007. 	04 hrs 04 hrs Pearson nnology,
7 8 Tez	xt B 1. 2.	 Routing Protocols for Sensor Networks: Routing Characteristics, Routing Strategies, LEACH, SPIN. Sensor Network Applications: Case Study: Traffic Control, Health Care, Green House Monitoring. Cooks: C. Siva Ram Murthy and B. S. Manoj, "Ad hoc Wireless Networks",2nd Edition, Education, 2006. KazemSohraby, Daniel Minoli, TaiebZnati, "Wireless Sensor Networks: Tech Protocols, and Applications", John Wiley and Sons, 2007. nce Books: 	04 hrs 04 hrs Pearson mology,
7 8 Tey Ref	xt B 1. 2. fere 1.	 Routing Protocols for Sensor Networks: Routing Characteristics, Routing Strategies, LEACH, SPIN. Sensor Network Applications: Case Study: Traffic Control, Health Care, Green House Monitoring. C. Siva Ram Murthy and B. S. Manoj, "Ad hoc Wireless Networks",2nd Edition, Education, 2006. KazemSohraby, Daniel Minoli, TaiebZnati, "Wireless Sensor Networks: Tech Protocols, and Applications", John Wiley and Sons, 2007. nce Books: Ozan K. Tonguz and Gianguigi Ferrari, "Ad hoc Wireless Networks", John Wiley 	04 hrs 04 hrs Pearson mology, , 2006.
7 8 Tez	xt B 1. 2. fere 1. 2.	 Routing Protocols for Sensor Networks: Routing Characteristics, Routing Strategies, LEACH, SPIN. Sensor Network Applications: Case Study: Traffic Control, Health Care, Green House Monitoring. cooks: C. Siva Ram Murthy and B. S. Manoj, "Ad hoc Wireless Networks",2nd Edition, Education, 2006. KazemSohraby, Daniel Minoli, TaiebZnati, "Wireless Sensor Networks: Tech Protocols, and Applications", John Wiley and Sons, 2007. nce Books: Ozan K. Tonguz and Gianguigi Ferrari, "Ad hoc Wireless Networks", John Wiley C.K. Toh, "Adhoc Mobile Wireless Networks", Protocols and Systems, Prent 	04 hrs 04 hrs Pearson nology, , 2006. tice-Hall
7 8 Ter	xt B 1. 2. fere 1. 2.	 Routing Protocols for Sensor Networks: Routing Characteristics, Routing Strategies, LEACH, SPIN. Sensor Network Applications: Case Study: Traffic Control, Health Care, Green House Monitoring. ooks: C. Siva Ram Murthy and B. S. Manoj, "Ad hoc Wireless Networks",2nd Edition, Education, 2006. KazemSohraby, Daniel Minoli, TaiebZnati, "Wireless Sensor Networks: Tech Protocols, and Applications", John Wiley and Sons, 2007. nce Books: Ozan K. Tonguz and Gianguigi Ferrari, "Ad hoc Wireless Networks", John Wiley C.K. Toh, "Adhoc Mobile Wireless Networks", Protocols and Systems, Prent PTR, 2002. 	04 hrs 04 hrs Pearson nnology, , 2006. tice-Hall

UNIT	8 Questions to be set of 20 Marks Each	Chapter	Instructions
		Numbers	
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	4,5,6	Solve Any 2 out of 3
ш	Q.No7	7	Solve Any 1 out of 2
111	Q.No8	8	Solve Ally 1 out of 2

Program: Bachelor of Engineering				
Course Title: Advanced Parallel Computing Course Code: 18ECSE4				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 3 hrs			

Unit –	I	
1	Introduction and History	
	GPUs as Parallel Computers; Architecture of a Modem GPU; Parallel	
	Programming Languages and Models; Overarching Goals; Evolution of Graphics	
	Pipelines; The Era of Fixed- Function ; Graphics Pipelines; Evolution of	
	Programmable Real-Time Graphics; Unified Graphics and Computing	
	Processors; GPGPU; An Intermediate Step; GPU Computing; Scalable GPUs	
	Recent Developments; Future Trends.	07 hrs
2	Introduction to CUDA	
	Data Parallelism; CUDA Program Structure; A Matrix-Matrix Multiplication	
	Example; Device Memories and Data Transfer; Kernel Functions and Threading;	
	Function declarations; Kernel launch; Predefined variables; Runtime API.CUDA	
	Thread Organization; Using block Id x and thread Id x ; Synchronization and	
	Transparent Scalability; Thread Assignment ; Thread Scheduling and Latency	
	Tolerance.	09 hrs
Unit –	Π	
3	CUDA Memories	
	Importance of Memory Access Efficiency; CUDA Device Memory Types; A	
	Strategy for Reducing Global Memory Traffic; Memory as a Limiting Factor to	
	Parallelism; Global Memory Bandwidth; Dynamic Partitioning of SM Resources;	
	Data Perfetching; Instruction Mix; Thread Granularity; Measured Performance.	07 hrs
4	Introduction to OPENCL	
	Introduction to OPENCL; Background; Data Parallelism Model; Device	
	Architecture; Kernel Functions; Device Management and Kernel Launch;	
	Electrostatic Potential Map in OpenCL.	09 hrs
Unit –		
5.	Case Study	
	Concepts of Game Design, Applications like Matrix multiplication, MRI	
	reconstruction Molecular Visualization and Gaming.	04 hrs
6.	Parallel Programming and Computational Thinking	
	Goals of Parallel Programming, Problem Decomposition, Algorithm Selection,	
	Computational Thinking.	04 hrs

Text Books:

3. David B. Kirk, Wen-mei W. Hwu, "Programming Massively Parallel Processors: A Hands on Approach", Morgan Kaufmann/Elsevier India reprint, 2010.

Reference Books:

1. Benedict R Gaster, Lee Howes, David Kaeli, Perhaad Mistry and Dana Schaa, "Heterogeneous Computing with OpenCl", Morgan Kaufmann/Elsevier reprint, 2012.

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3
ш	Q.No7	5	Solve Any Lout of ?
111	Q.No8	6	Solve Mily 1 Out of 2

Program: Bachelor of Engineering				
Course Title: Software Architecture and Design Thinking Course Code: 18ECSE410				
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3hrs/week		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 3 hrs			

Unit –	I	
1	Chapter No. 1 What Is Software Architecture?	
	What Software Architecture Is and What It Isn't ,Architectural Structures and	
	Views, Architectural Patterns, What Makes a "Good" Architecture?	
		5 hrs
2	Chapter No. 2 Why Is Software Architecture Important?	6hrs
	Inhibiting or Enabling a System's Quality Attributes, Reasoning About and	
	Managing Change, Predicting System Qualities, Enhancing Communication	
	among Stakeholders, Carrying Early Design Decisions, Defining Constraints on	
	an Implementation, Influencing the Organizational Structure, Enabling	
	Evolutionary Prototyping, Improving Cost and Schedule Estimates, Supplying a	
	Transferable, Reusable Model, Allowing Incorporation of Independently	
	Developed Components, Restricting the Vocabulary of Design Alternatives,	
	Providing a Basis for Training	
3	Chapter No. 3 The Many Contexts of Software Architecture	5 hrs
	Architecture in a Technical Context, Architecture in a Project Life-Cycle	
	Context, Architecture in a Business Context, Architecture in a Professional	
	Context, Stakeholders, How Is Architecture Influenced?, What Do Architectures	
	Influence?	
Unit –	II	

4	Chapter No. 4. Understanding Quality Attributes	
	Architecture and Requirements, Functionality, Quality Attribute Considerations,	
	Specifying Quality Attribute Requirements, Achieving Quality Attributes	
	through Tactics, Guiding Quality Design Decisions	5 hrs
5	Chapter No. 5. Quality Attributes	6hrs
	Tactics for Availability, Tactics for Interoperability, Tactics for Modifiability,	
	Tactics for Performance, Tactics for Security, Tactics for Testability, Tactics for	
	Usability,	
6	Chapter No. 6. Architectural Tactics and Patterns	5 hrs
	Architectural Patterns, Overview of the Patterns Catalog, Relationships between	
	Tactics and Patterns, Using Tactics Together	
Unit –	III	
5.	Chapter No. 7 Architecture and Requirements	
	Gathering ASRs from Requirements Documents, Gathering ASRs by	
	Interviewing Stakeholders, Gathering ASRs by Understanding the Business	
	Goals, Capturing ASRs in a Utility Tree, Tying the Methods Together	4 hrs
6.	Chapter No. 8 Designing an Architecture, Implementation, Testing and	
	EvaluationDesigning:	
	Design Strategy, The Attribute-Driven Design Method, The Steps of ADD,	
	Implementation, and Testing: Architecture and Implementation, Architecture and	
	Testing, Evaluation: Evaluation Factors, The Architecture Tradeoff Analysis	
	Method, Lightweight Architecture Evaluation	4 hrs
Text E	Books:	
1	Len Bass, Paul Clements, Rick Kazman, Software Architecture in Practic	e (3rd
-	Edition) Addison Wasley Professional: 2 adition	0 (010
	Eulion), Addison-wesley Professional, 5 edition	
Refere	ence Books:	

UNIT	8 Questions to be set of 20 Marks Each	Chapter Numbers	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
Π	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2 out of 3
ш	Q.No7	5	Solve Any Lout of 2
111	Q.No8	6	Solve Any I out of 2

Course Title: Model Thinking	Course Code: 18ECSE411		
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 30	
CIA Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 40		Exam Duration: 3 hrs	

Content	40 Hrs

Unit – 1	
1. Why Model Model Thinking - The need, Advantages and disadvantages, Segregation/Peer Effects, Case study	4 hrs
2. Modeling People, Tipping Points & Economic Growth Rational models, Behavioral models, Rule based models, Percolation Models, Growth and its kinds	6 hrs
3. Special Topics Standing ovation model, Game of Life, Lyapunov Functions: Equilibrium, A cycle, Randomness or complexity, Coordination and culture. Urn models, Polya process, paths and networks, Prisoners' Dilemma, Collective Action & Mechanism Design	6 hrs
Unit – 2	
4. Randomness and Learning Models Luck as randomness, Random Walks & Colonel Blotto, Replicator Dynamics, Fisher's fundamental theorem, Prediction and the Many Model Thinker	8 hrs
5. Model Checking and Modelling Concurrent Systems Model Checking, Characteristics of Model Checking, Transition Systems, Parallelism and Communication, The State Space Explosion	8 hrs
Unit – 3]
6. Linear-Time Properties Linear-Time behavior, Safety Properties and Invariants, Liveness Properties, Fairness	4 hrs
7. Regular Properties Automata on Finite Words, Model-Checking Regular Safety Properties, Automata on Infinite Words, Model Checking with omega-regular properties	4 hrs

Text Books

- 1. Scott E Page, The Model Thinker, Basic Books Publication, 2018
- 2. ChristelBaier and Joost-Pieter Katoen, Principles of Model Checking (Representation and Mind Series), The MIT Press, 2008

References

1. Model Thinking Coursera online course from Michigan University.

Program: Bachelor of Engineering		
Course Title: Cyber Security		Course Code: 19ECSE401
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 04 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks:100
Teaching Hrs: 40	Exam Duration: 03hrs	

1	Introduction to Cybercrime	08hrs
-	Cybercrime definition and origins of the world. Cybercrime and information	00110
	security, Classifications of cybercrime, A global Perspective on cybercrimes. Cyber	
	attack plans, Social Engineering, Cyber stalking, Cyber cafe and Cybercrimes,	
	Botnets, Proliferation of Mobile and Wireless Devices, Credit Card Frauds in	
	Mobile and Wireless Computing Era.	
2	Methods used in Cybercrime	08hrs
	Phishing, password Cracking, Keyloggers and Spyware, Virus and Worms, Trojan	
	and backdoors, Steganography, DOS and DDOS attack, SQLinjection, Buffer	
	Overflow, Attack on wireless networks, Identity theft	
Unit	П	
3	Cybercrimes and Cyber security: The Legal Perspectives	08hrs
	Why do we need Cyber law: The Indian Context, The Indian IT Act, Digital	
	Signature and the Indian IT Act, Amendments to the Indian IT Act, Cybercrime and	
	Punishment.	
4	Cybercrime: Illustrations, Examples and Case studies Introduction, Real-Life	08hrs
	Examples, Case Studies: Illustrations of Financial Frauds in Cyber Domain, Digital	
	Signature-Related Crime Scenarios, Online Scams.	
Unit	III	
5	Digital Forensics	
	Historical background of cyber forensic, Forensic analysis of email, Digital forensic	
	life cycle, Network forensic, Setting up a computer forensic Laboratory, Forensic	
	analysis of digital media.	
Text	Books:	
	1. Nina Godbole&SunitBelapure, "Cyber Security", Wiley India, 2012.	
Refer	rence Books:	
4	5. Dhiren R Patel, "Information security theory & practice", PHI learning pvt.ltd, 201	0.
	5. Bill Nelson, "Guide to Computer Forensics and Investigations", 4 th Edition, CENG	AGE
	Publication. 2009.	

List of Experiments

Expt./Job No.	Experiment	No. of Lab. Slots (2hrs)
1.	Password cracking and recovery	1
2.	DDOS attack detection	1
З.	Firewall and IPS	1
4.	SQL Injection	1
5.	Forensic analysis of email	1
6.	Forensic analysis on digital media	1

Department of Computer Science & Engineering

7.	Removable/External Media Imaging	1
8.	Course Project	3

Scheme for End Semester Assessment(ESA)

UNIT	8 Questions to be set of 20 Marks	Chapter	Instructions
	Each	Numbers	
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
II	Q.No4, Q.No5, Q.No6	3, 4	Solve Any 2 out of 3
III	Q.No7, Q.No8	5	Solve Any 1 out of 2

Program: Bachelor of Engineering			
Course Title: Capstone Project		Course Code: 18ECSW401	
L-T-P: 0-0-14	Credits: 6	Contact Hrs: 3 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
	Exam Duration: 3hrs		

Project themes:

Networking	Data Engineering	System Engineering
 Internet of Things Cloud Computing Software Defined Network Social Network Analysis 	 Data Analytics Image and video processing Computer Vision and Graphics Natural Language Processing 	 Parallel Computing High Performance Computing Parallel system design

Evaluation:

Students Assessment through ISA (50%) + ESA (50%)

Assessment	Weightage in Marks
Periodic reviews by Project	25
Guide	23
Periodic reviews by	25
Committee	23
Final Review	50
	Assessment Periodic reviews by Project Guide Periodic reviews by Committee Final Review

|--|

Program: Bachelor of Engineering				
Course Title: Fuzzy Set The	eory	Course Code: 19ECSE402		
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks:100		
Teaching Hrs: 40	Exam Duration: 3hrs			

Unit	-I				
1	Introduction : Introduction to Fuzzy Logic, Fuzzy Membership Functions, Operations on Fuzzy Sets	8hrs			
2	Fuzzy Measures: Fuzzy Relations, Fuzzy Proposition, Fuzzy	8hrs			
	Implications, Fuzzy Inferences				
Unit	-II				
3	Fuzzy Relations and Fuzzy Graphs: Fuzzy Relations, Compositions of				
	Fuzzy Relations, Properties of the Min-Max Composition,				
	DefuzzificatinTechniques,Lambda-cut method, Weighted average method,	0.1			
_	Maxima methods, Centroid methods, Output of a Fuzzy System	8 nrs			
4	Uncertainty Modeling: Application-oriented Modeling of Uncertainty,	8hrs			
	Causes of Uncertainty, Uncertainty Methods, Possibility Theory				
Unit	-III				
5	Fuzzy Data Bases and Queries: Introduction, Fuzzy Relational Databases,	4 hrs			
	Fuzzy Queries in Crisp Databases				
6	Fuzzy Sets and Expert Systems: Introduction to Expert Systems,	4 hrs			
	Uncertainty Modeling in Expert Systems, Applications				
Text	Books:				
	 H. J. Zimmermann ., Fuzzy Set Theory-and Its Applications, Fourth Edi Springer Science Business Media, LLC, 2001 	tion, 4th Ed.,			
	 Chander Mohan, An Introduction to Fuzzy Set Theory and Fuzzy Logic Books pvt ltd, 2015 	,2nd ed. Vivo			
Refe	rence Books:				
1.	Timothy J. Ross, Fuzzy Logic With Engineering Applications, 3ed., 2010, and Sons, Ltd., Publication	A John Wiley			
2.	Kumar S. Ray,Soft Computing and Its Applications: Fuzzy Reasoning and I 1st Edition, Apple Academic Press 2014	Fuzzy Control,			
3.	Ahmed M. Ibrahim, Fuzzy Logic for Embedded Systems Applications, I 2004.	Elesvier Press,			

Scheme for End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter	Instructions
		Numbers	
Ι	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2
II	Q.No4, Q.No5, Q.No6	3,4	Solve Any 2
ш	Q.No7	5	Salva Any 1
111	Q.No8	6	

Course	e Code: 15ECSC702	Course Title: Software	e Engineering	
L-T-P: 4-0-0		Credits: 4	Contact Hrs:4 hrs/week	
CIE M	larks: 50	SEE Marks: 50	Total Marks: 100	
Teachi	ing Hrs: 55 hrs		Exam Duration: 3 hrs	
1	Introduction :			
	Introduction to Softwa	are Engineering and AG	eneric view of process	04 hrs
2	Process models:			
	Prescriptive Models	s, The waterfall model,	, Incremental process models, Evolutionary process	
	models, Specialized p	rocess models, The Unifi	ed process. Agile view of process.	09 hrs
3	Requirements enginee	ring:		
	Requirements Engin	eering tasks, Initiat	ting Requirements Engineering Process Eliciting	
	Requirements, Elicita	tion Work Products ,D	eveloping Use-Cases ,Analysis Model, Negotiating	
	Requirements and Validating Requirements.			09 hrs
4	Design Engineering :			
	Design within the context of SE, Design process and design quality, Design concepts, The design			
	Model, Pattern based	l software design, Arch	itectural design: Software Architecture, Data design,	
	Architectural styles and patterns, Architectural design,			
5	Testing Strategies:			
	A strategic approach to software testing, Test strategies for conventional software, validation testing,			
	system testing.			07 hrs
6	Testing tactics:			
	White box testing, b	basis path testing, contr	rol structure testing, black box testing, testing for	
	specialized environme	ents, architectures and app	plications.	08 hrs
7	Project Management a	and Metrics :		
	Management spectrum	n, The people, product,	process , metrics in the process and project domains,	
	soft ware measuremen	ts, metrics for software c	quality.	05 hrs
8	Project Estimation:			
	Observations on estim	nation, the project planni	ng process, software scope and feasibility, resources,	
	software project estim	ation, Decomposition tec	chniques, empirical estimation models	06 hrs
Text b	 Text book: 1. Software Engineering : A practitioner's Approach, Roger S Pressman, seventh edition. McGrawHill International Edition, 2009. 			
1. 2. 3.	Software Engineering Software Project Man Software Engineering Elsevier Publications	, Ian Sommerville, seven agement, Bob Hughes & – Architecture Driven S	th edition, Pearson education,2004. Mike Cotterell, fourth edition,Tata McGraw Hill,2006 oftware Development, RICHARD F. SCHMIDT,	

Cours	e Code: 15ECSC703	Course Title: Database M	anagement System		
L-T-P	2: 4-0-0	Credits: 4	Contact Hrs:4 hrs/week		
CIE Marks: 50		SEE Marks: 50	Total Marks: 100		
Teaching Hrs: 55 hrs			Exam Duration: 3 hrs		
1	Introduction to DBMS	and Data Modeling Using	the ER Model:		
	Introduction: Data me	odels, schemas and instar	nces, Three-schema architecture and data		
	independence. Data Mo	deling: An Example Databa	se Application, Entity Types, Entity Sets,		
	Attributes and Keys, Relationship types, Relationship Sets, Roles and Structural Constraints,				
	Weak Entity Types, Re	fining the ER Design, ER	Diagrams, Naming Conventions and Design		
	Issues.			09 Hrs	
2	Relational Data Model	and Relational Database C	onstraints:		
	Relational model constr	aints and relational database	schema; Update operations, transactions and		
	dealing with constraint v	violations.		06 Hrs	
3	Database Design:				
	Database Design Using ER- to-Relational Mapping, Informal Design Guidelines for Relation				
	Schemas; Functional Dependencies; Normal Forms Based on Primary Keys; General Definitions				
	of Second and Third Normal Forms; Boyce-Codd Normal Form.				
4	Query Processing				
	Translating SQL queries to Relational Algebra, Algorithms for External sorting, Algorithms for				
	SELECT, JOIN, PROJECT and SET operations. Implementing Aggregate and OUTER JOINS,				
	Overview of Query optimization				
5	Transaction Management:				
	The ACID Properties; Transactions and Schedules; Concurrent Execution of Transactions; Lock-				
	Based Concurrency Control; Performance of locking; Transaction support in SQL; Introduction to				
	crash recovery; 2PL,	Serializability and Recovera	bility; Lock Management; Introduction to		
	ARIES; The log; Other	recovery-related structures; 7	The write-ahead log protocol; Check pointing;		
	Recovering from Syste	em Crash; Media Recover	y; Other approaches and interaction with		
	concurrency control			10 Hrs	
6	Database Security				
	Introduction to Database security, Discretionary Access control based on granting and revoking				
	privileges, Mandatory access control and role based access control for multilevel security,				
	Introduction to statistical database security, Introduction to flow control, Encryption and public				
	key infrastructures, Challenges in database security			08 Hrs	
7	Object and Object-Rel	ational Databases:			
	Overview of Object-	Oriented Concepts, Object	t Identity, Object Structure and Type		
	Constructors, Encapsulation of operations, Methods and persistence, Type and class hierarchies			08 Hrs	

and inheritance, Object model of ODMG, Object definition Language ODL, Object Query Language OQL, Conceptual design of Object database.

Text Book

1. Elmasri and Navathe: Fundamentals of Database Systems, 5th Edition, Pearson Education, 2008.

- Raghu Ramakrishnan and Johannes Gehrke: Database Management Systems, 3rd Edition, McGraw-Hill, 2003.
- Abraham Silberschatz, Henry F. Korth, S. Sudarshan: Database System Concepts, 4th Edition, McGraw Hill, 2002.

Cou	rse Code: 15ECSC704	Course Title: Operatin	g Systems		
I -T-F	P. 4-0-0	Credits: 4	Contact Hrs: 4 hrs/week		
	. 1 0 0 Aarke: 50	SEE Marks: 50	Total Marks: 100		
Taaak	sing Ura: 55 hrs	SEE Marks. 50	Even Duration: 2 br		
Teach	Exam Duration: 3 hrs				
1	Operating System Over	view			
	Operating System objectives and functions, Evolution of OS, Major achievements, Developments				
	leading to modern OS,	Overview of Microsoft Wi	ndows and Linux	06 Hrs	
2	Processes and Threads				
	Processes- Definition,	States, Description, C	ontrol, Security issues, Threads, Symmetric		
	multiprocessing, Microl	kernel, Process and thread	management in Windows & Linux	08 Hrs	
3	Concurrency				
	Principles of concurrent	cy, Mutual exclusion, Se	maphores, Monitors, Message passing, Readers		
	problem, Deadlock- Prevention, Avoidance and Detection; Integrated deadlock strategy, Dining				
	philosophers problem, Concurrency mechanism in Windows & Linux				
4	Memory Management and Virtual Memory				
	Memory management-	Requirements, Partitioning	, Paging, Segmentation, Security issues		
	Virtual memory - Hardy	vare and control structures	, Operating System software		
	Memory management in Windows & Linux				
5	Scheduling				
	Uniprocessor scheduling- Types of processor scheduling, Scheduling algorithms, Multiprocessor				
	scheduling, Real time so	cheduling, Scheduling in V	Vindows & Linux	06 Hrs	
6	Design Techniques with	n Examples			
	Design considerations, Monolithic kernels, Modular organization, Extensible nucleus, Layered				
	Organizations, Operating Systems for distributed systems				
7	File Management				
	Overview, Organization, Directories, Sharing, Record blocking, File system security 0			06 Hrs	
8	RTOS				
	Characteristics, Case study- TinyOS, eCOS				
Text	Book				
1.	Text Book: William S	Stallings: Operating Syste	ms- Internals and Design Principles, 6 th Edition	, Prentice	

Hall, 2008.

2. Gary Nutt, Nabendu Chaki, Sarmistha Neogy: Operating Systems, 3rd Edition, Pearson Education, 2004 *References:*

1. Abraham Silberschatz, Galvin, Gagne: Operating System Concepts, 8th Edition, Wiley, 2008.

2. Andrew S. Tanenbaum, Albert S. Woodhull: Operating Systems, Design and Implementation, 3rd Edition, Prentice Hall, 2006.

3. Charles Crowley: Operating System, design oriented approach, 2004.

Cours	e Code: 15FCSF707	Course Title: Web Techno	logy		
L-1-F: 3-1- 0		Credits: 4	Contact Hrs: 5 hrs/week		
CIE N	1arks: 50	SEE Marks: 50	Total Marks: 100		
Teach	ing Hrs: 42 hrs		Exam Duration: 3 hrs		
1	Introduction to Web T	echnology: Introduction to	the Internet, The World Wide Web, Web		
	Browsers, Uniform R	esource Locator, The Hy	pertext Transfer Protocol, Security, Web		
	programmers Toolbox.			04 Hrs	
2	HTML 5: Canvas, vi	ideo, local storage, web	workers, offline applications, geolocation,		
	placeholders, input type	s. What does it all mean – do	octype, root, headers, articles, dates and times,		
	navigation and footers.	Let's call it a drawing sur	face - Simple shapes, canvas, Paths, texts,		
	gradients and images. The	he past, present and future of	local storage for web applications, A Form of		
	madness – place holders	, autofocus fields, email, wel	o addresses, numbers as spinboxes and sliders,		
	date and color pickers, s	earch boxes.	_	08 Hrs	
3	CSS3: What is CSS3? Animation with CSS3. Borders with CSS3. Backgrounds with				
	CSS3, Fonts with CSS3, Text effect, transition effects. User Interface and 2D				
	transform.				
4	IQuery: Iquerysyntax iquery selectors, IQuery events, Basic functions using Iquery			06 Hrs	
5	Duthon: Design symtax, using variables, design and looping, function used to manipulate date			00 1115	
5	rython. Dasies syntax, using variables, decision and looping, function used to manipulate data			05 IIma	
-		·'		05 HIS	
0	PHP: PHP Basics, Func	tions, Form Handling, Files,	Cookies, Session Tracking, Database Access		
	with PHP and MySQL			05 Hrs	
7	XML: Introduction,	Basic XML, DOM,, Synt	tax, Elements, Attributes, CDATA, DTD,		
	Namespaces ,Schema, XSLT, HTTP Request, DOM, Querying XML , SAX, Xlink, PHP and				
	XML, RSS Basics 0			05 Hrs	
8	JSON:JSON – Array,	object, mixing literals, synt	ax, encoding/decoding, JSON versus XML,		
	server-side JSON tools			05 Hrs	
Text I	Text Books:				
1.	1. Robert W. Sebestra, "Programming the World Wide Web", 4th Edition, Addison Wesley, 2008.				
2.	Albert Lukaszewski, "M	MySQL for Python", Packt P	ublishing, 2010		

3. Rob Crowther, "Hello! HTML5 & CSS3", Manning Publications 2012.

References:

1. P. J. Deitel and H.M. Deitel, Internet & World Wide Web How to Program", 4th Edition, Pearson 2009.

2. Mark Summerfield, "Programming in python 3", 2nd Edition, Addison-Wesley, 2009.

3. Mark Lutz, "Python Packet Reference", O'Reilly Media, 4th Edition, 2009

Course Code: 15ECSP708			Course Title: Data Structu	res and Alg	orithms Lab	
L-T-P	: 0-0-1.5		Credits: 1.5		Contact Hrs:3hrs/week	
CIE Marks: 80			SEE Marks: 20	Total Marks: 100		
Teach	ing Hrs: 3	86 hrs			Exam Duration: 3hours	
	Course I	Learning Outcor	nes-CLO			
	At the end of the course students will be able to:					
	Impleme	ent standard data	a structures like stack, queues	, lists and tre	es in C language.	
	Choose a	appropriate data	structures to effectively mod	el the inform	nation in a problem.	
	Demonst	trate testing and	debugging skills for given ap	oplication.		
	Impleme	ent the data struc	cture as a component.			
	Use the o	data structure co	omponent to build the applica	tions		
2	Course (Content				
	Sl No.	Topic			No. of Lab Slots	
	1	Over view : Ir	nplementation of data structu	res	1	
	Basic data structures :					
	2	Stack, Queues (Array implementation) 1				
	3	Linked lists			1	
	4	Trees			1	
	Advanc	ced Data Structu	ires :			
	5	Skip lists, Red	Black and B-Trees		1	
	6	B-Trees, Splay	y trees and hash functions		1	
	7	Heaps and Leftist heaps. 1			1	
	Algorithmic Techniques :					
	8	Greedy Techn	ique		1	
	9	Divide and Co	onquer		1	
	10	Dynamic Prog	Dynamic Programming		1	
	11	Back Tracking	g		1	
	12	CIE Test			1	

Course Code: 15ECSP709		15ECSP709	Course Title: DBMS Lab			
L-T-P: 0-0-1.5			Credits:1.5	Contact Hrs: 3 hrs/week		
CIE N	Iarks: 80		SEE Marks: 20	Total Marks: 100		
Teaching Hrs: 36		36		Exam Duration: 3 hrs		
No	Content					
	This co	ourse explores database	programming using stand	ard Structured Query Language (SQL). Topics		
	include	database management	systems, database middlew	are, data definition language, data manipulation		
1	languag	ge, data control langua	ge; database queries repor	ting, query optimization, and database views.		
assignments include database creation, query design and programming, and database man				l programming, and database manipulation via		
	embedded SQL calls from programming language					
Books	Referen	ces:				
	i)	Elmasri and Navathe:	Fundamentals of Database S	ystems, 5 th Edition, Pearson Education,2008.		
	ii)	Introduction to Relati	onal Databases and SQL Pr	rogramming, Christopher Allen, Simon Chatwin,		
	Catherine A. Vreary Tata McGraw-Hill					
	iii) Oracle SQL and PL/SQL Hand book, John Adolph Palinski, Pearson Education			h Palinski, Pearson Education		
	iv) Oracle 9i PL/SQL Programming, Scott Urman, Tata McGraw-Hill			ta McGraw-Hill		
	v) MySQL: The Complete Reference, Vikram Vaswani, Tata Mcgraw-Hill			ni, Tata Mcgraw-Hill		
	vi)	MySQL Bible, Steve S	Suehring, Wiley			

Cour	Course Code: 15ECSC712 Course Title: Computer Communication and Networks				
L-T-	P: 4-0-0	Credits: 4 Contact Hrs:4 hrs/week			
CIE	Marks: 50	SEE Marks: 50	Total Marks: 100		
Teac	hing Hrs: 55 hrs		Exam Duration: 3 hrs		
1	Review of Basic Con	cepts			
	Building a Network;	Applications; Requirement	nts; Network Architecture; Implementing Network		
	software; Performance	2.		06 Hrs	
2	The Application Layer	r			
	Principles of Application-Layer Protocols, The World Wide Web: HTTP, File Transfer: FTP,				
	Electronic Mail in the Internet, The Internet's Directory Service: DNS, P2P file sharing.				
3	The Transport Layer				
	Introduction and Tra	nsport-Layer Services, M	ultiplexing and De-multiplexing , Connectionless		
	Transport: UDP, Principles of Reliable Data Transfer, Connection oriented Transport: TCP,				
	Principles of Congestion Control, and TCP Congestion Control 0				
4	The Network Layer				
	Introduction and Network Service Models, Virtual Circuit and data gram Networks, inside a router,				
	IP: the Internet Protocol, Routing algorithms, Routing in the Internet, Broad cast and multicast				
	routing.				
5	Data Link Layer				
	Error Detection and Correction: Introduction, Block coding, Linear block codes, Cyclic Codes:				
	Cyclic Redundancy Check, Hardware Implementation, Polynomials; checksum; Multiple access:				
	Random Access, Controlled Access, Channelization; PPP.				
	Ethernet and Connecti	ing Devices			
	Standard Ethernet, Pa	ssive Hubs, Repeaters, Ac	ctive Hubs, Bridges, Two layer switches, Routers,		
	Three layer switches a	and Gateways.		10 Hrs	
6	Wireless Networks				
	Introduction, WiFi: 802.11 Wireless LANs, Cellular Internet Access.			06 Hrs	
7	Mobile Networks				
	Mobility Management: Principles, Mobile IP, Managing Mobility in Cellular Networks, Wireless				
	and Mobility: Impact on Higher layer protocols. 07				
Text Book					
1. J. F. Kurose, K. W. Ross, Computer Networking, A Top-Down Approach Featuring the Internet, 3 rd Ed,					
Addison-Wesley 2005.					
2	2. Behrouz Forouzan, Data Communications and Networking, McGraw Hill, 4th ed. 2007				

3. Larray L Peterson & Bruce S Davien Computer Networks ,Morgan Kaufmann (Elsevier), fifth edition, 2011.

- 1. W. Stallings, Data and Computer Communications, Prentice Hall, Sixth Edition, 2000.
- 2. Alberto Leon-Garcia & Indra Widjaja Communication Networks-Fundamental concepts and Key Architectures, 2nd edition, Tata McGraw-Hill. 2006
- Michael A. Gallo & William M Han cock ,Computer Communication and Networking Technologies, Cengage Learning 2008

Course Code: 15ECRC701	Course Title: Philosophy a	and Practice of Engineering Education
L-T-P: 2-0-1	Credits: 3	Contact Hrs:4 hrs/week
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hrs: 28 hrs		Exam Duration: 3 hrs

Course Overview

Course Information

This course intends to provide an overview of the Principles and Practices of Engineering Education. Specifically, the focus of this course revolves around how engineering is best taught and learnt. The overarching goal of this course is to equip prospective engineering faculty members with the tools and techniques that can enhance the effectiveness and efficiency of their teaching practice.

Learning objectives

After successful completion of this course, participants will be able to:

- 1. Understand fundamental principles of teaching and learning
- 2. Apply instructional design principles in engineering learning environments
- 3. Integrate technological tools to enhance learning
- 4. Analyse learning styles and theories relevant to engineering education
- 5. Evaluate different types of assessment and evaluation techniques
- 6. Create engineering learning modules

Reference Materials

Articles from the Engineering Education literature and other Internet resources will be explored in order to meet the course learning objectives.

Schedule of Activities

1 st Workshop: Fundamental Principles of Teaching and Learning				
DATE:	TIME	TOPICS		
Session-1	9.30 - 11.00	Introductions, Expectations, Pre-Work, Team Formations		
	11.00 - 11.10	Break		
Session-2	11.10 - 12.40	Fundamental Principles of Teaching and Learning		
	12.40-13.20	Lunch Break		
Session-3	13.20-14:50	Teaching Philosophy Statements – Individual		
	14.50-15.00	Break		
Session-4	15.00-16.30	Course Goals and Objectives: Taxonomies		

Assignments due before 2nd Workshop:

- 1. Revise Teaching Philosophy Statements Individual work
- 2. Review Learning Objectives of at least 1 existing course Teamwork
- 3. Explain Learning Styles Team Presentations
- 4. Explain Learning Theories Team Presentations

2 nd Workshop: Learning Styles and Theories				
DATE:	TIME	TOPICS		
Session-1	9.30 - 11.00	Teaching Philosophy Statements Revisited – Peer Review		
	11.00 - 11.10	Break		
Session-2	11.10 - 12.40	Learning Styles – Team Presentations		
	12.40-13.20	Lunch Break		
Session-3	13.20-14:50	Learning Theories – Team Presentations		
	14.50-15.00	Break		

Session-4

15.00-16.30

Learning Theories – Team Presentations

Assignments due before 3rd Workshop:

- 1. Discuss Instructional Design Models and their Application Team Presentations
- 2. Discuss what role can technology play in the teaching-learning process 1 page reflection paper Individual work

3 rd Woi	3 rd Workshop: Instructional Design Models and Technology Enhanced Learning				
DATE:	TIME	TOPICS			
Session-1	9.30 - 11.00	Instructional Design Models – Team Presentations			
	11.00 - 11.10	Break			
Session-2	11.10 - 12.40	Technology Enhanced Learning – Explore			
	12.40-13.20	Lunch Break			
Session-3	13.20-14:50	Technology Enhanced Learning – Explore			
	14.50-15.00	Break			
Session-4	15.00-16.30	Technology Enhanced Learning – Team Presentations			

Assignments due before 4th Workshop:

- 1. Develop Formative Assessments Strategies Team Presentations
- 2. Critique rubrics for at least 1 existing course- Individual work

4 th Workshop: Assessment and Evaluation			
DATE:	TIME	TOPICS	
Session-1	9.30 - 11.00	Basics of Assessment and Evaluation	
	11.00 - 11.10	Break	
Session-2	11.10 - 12.40	Formative Assessments – Team Presentations	
	12.40-13.20	Lunch Break	
Session-3	13.20-14:50	Develop Rubrics – Practice and Peer Review	
	14.50-15.00	Break	
Session-4	15.00-16.30	Develop Rubrics for Team Final Presentations	

Assignments due before 5th Workshop:

1. Each team will select a topic/subject area for a teaching demo (microteaching). This demo should incorporate the fundamental principles and best practices of Engineering Education

5 th Workshop: Engineering Learning Modules				
DATE:	TIME	TOPICS		
Session-1	9.30 - 11.00	Microteaching – Team Presentations		
	11.00 - 11.10	Break		
Session-2	11.10 - 12.40	Microteaching – Team Presentations		
	12.40-13.20	Lunch Break		
Session-3	13.20-14:50	Microteaching – Team Presentations		
	14.50-15.00	Break		
Session-4	15.00-16.30	Microteaching – Team Presentations		

Assessment, Evaluation, and Grading

After every workshop, there will be follow-up assignments due before the next workshop. There will be total 4 assignments of 10 points each. For active participation in workshop activities, maximum of 40 points will be allocated. The last workshop in the course will be teaching demos by participants (microteaching) worth 20 points.

Points

Assignments: 40 Participation: 40

Microteaching: 20 <u>Grades</u> 91-100: S 81-90: A 71-80: B 61-70: C Below 60: Unacceptable

Cours	Course Code: 15ECSE714 Course Title: Mobile Application Development			
L-T-P	L-T-P: 3-1-0 Credits: 4 Contact Hrs: 5 hrs/week			
CIE M	CIE Marks: 50 SEE Marks: 50 Total Marks: 100			
Teach	Teaching Hrs: 42 hrs Exam Duration: 3 hrs			
1	Introduction to mobile	communication and computi	ng: Introduction to mobile computing, Novel	
	applications, limitations	s and GSM architecture, M	Aobile services, System architecture, Radio	
	interface, protocols, Ha	ndover and security. Smart	phone operating systems and smart phones	
	applications.			08 Hrs
2	Fundamentals of Andro	oid Development: Introduction	on to Android: The Android 4.1 Jelly Bean	
	SDK, Understanding the	e Android Software Stack, In	nstalling the Android SDK, Creating Android	
	Virtual Devices, Creati	ng the First Android Project	ct, Using the Text View Control, Using the	
	Android Emulator, The	Android Debug Bridge (AD	B), Basic Widgets Understanding the Role of	
	Android Application Co	mponents, Event Handling,	Displaying Messages Through Toast, Creating	
	and Starting an Activity, Using the Edit ext Control . 10 Hours			10 Hrs
3	The Android Debug Bridge (ADB): Basic Widgets Understanding the Role of Android Application			
	Components, Event Handling , Displaying Messages Through Toast, Creating and Starting an			
	Activity, Using theEdit ext Control Building Blocks for Android Application Design, Laying Out			
	Controls in Containers,	Utilizing Resources and Me	dia, Using Selection Widgets and Debugging	
	Displaying and Fetching	Information Using Dialogs a	and Fragments	08 Hrs
4	Widgets and Debuggin	g: Using Selection Widget	s and Debugging Displaying and Fetching	
	Information Using D	ialogs and Fragments A	dvanced Android Programming: Internet,	
	Entertainment, and Serv	ices, Implementing drawing a	and animations	08 Hrs
5	Displaying web pages a	nd maps: Displaying web pa	ages and maps communicating with SMS and	
	emails. Creating and	using content providers: C	reating and consuming services, Publishing	
	android applications.			08 Hrs
Text I	Text Book:			
1.	1. Mobile Computing: technologies and Applications- N. N. Jani S chand2009.			
Refere	References:			
1.	1. B.M.Hirwani- Android programming Pearson publications-2013 M. Tekalp, "Digital Video Processing,"			
	Prentice Hall, USA, 1995.			

Course Code: 16ECSC713 Course Title: Software Testing			
L-T-P :3-0-0 Credits: 4 Contact Hrs: 4 hrs/w		hrs/week	
ISA Marks: 50 ESA Marks: 50 Total Marks: 1			00
Teaching Hrs: 42	n: 3 hrs		
Content			Hrs
Chapter No. 1. Principles of Testing Context of testing in producing software: About the of Doctrine, A test time, The cat and the saint, Test the convoy and the rags, The police man on the bridge, T Automation syndrome, Putting it all together.	3 hrs		
Chapter No. 2. Software Development Life Cycle Models Phases of Software Project: Requirements gathering and analysis, Planning, Design, Development or coding, Testing, Development and Maintenance, Quality, Quality assurance, and Quality Control, Testing, Verification and validation, Process model to represent different phases: Life cycle Models, Waterfall model, Prototyping and Rapid Application Development models, Spiral or Iterative model, The V model, Comparison of various life cycle models, References			5 hrs
Chapter No. 3. Defect Testing White Box Testing: What is white box testing, Static testing, Static testing by humans, Static analysis tools: Structural testing, Unit /code fundamental testing, Code coverage testing, Code complexity testing, Black Box Testing: What is black box testing?, Why black box testing?, When to do black box testing?, How to do black box testing?, Requirement based testing, Positive and negative testing, Boundary value analysis, Decision tables, Equivalence participating, State based or graphic based testing, Compatibility testing, User documentation testing.			5 hrs
Chapter No. 4. Regression Testing What is regression testing?, Types of regression testing, When to do regression testing?, How to do regression testing?, Performing an initial "smoke" or "sanity" test, Understanding the criteria for selecting the test cases, Classifying the test cases, Methodology for selecting test cases, Resetting the test cases for regression testing, Concludes the results of regression testing, Best practices in regression testing.			4 hrs
Chapter No. 5. Unit Testing & Integration Testing What is integration testing?, Types of integration testing, Top-down integration, Bottom– up integration, Bi-directional integration, System integration, Choosing integration method, Integration testing as a phase of testing, Scenario testing, System scenarios, Use case scenarios, Defect bash, Choosing the frequency and duration of defect bash, Selecting right product build, Communicating the object of defect bash, Setting up monitoring lab, Taking action and Fixing issues, Optimizing the effort involved in defect bash.			5 hrs
Chapter No. 6. System and Acceptance Testing System Testing overview: Why is System testing done?, Functional versus Non-Functional testing, Functional system testing, Design/Architecture verification, Business vertical testing, Development testing, Beta testing, Certification, Standards and testing compliance, Non – Function testing, Setting up the configuration, Coming up with entry/exit criteria, Balancing key resources, Scalability testing, Reliability testing, Stress testing, Interoperability testing, Acceptance testing, Acceptance criteria, Selecting test cases for acceptance testing, Executing acceptance tests, Summary of testing phases, Multiphase testing model.			5 hrs

Chapter No. 7. Performance Testing Introduction, Factors governing performance testing, Methodology for performance testing, Collecting requirements, Writing test cases, Automating performance test cases, Executing performance test cases, Analyzing the performance test results, Performance tuning, Performance bench marking, Capacity planning, Tools for performance testing, Processes for performance testing, Challenges, Problems and Exercises.	5 hrs	
Chapter No. 8. Test Planning, Management and Execution Introduction, Test planning, Preparing a test plan, Scope management – deciding features to be tested / not tested, Deciding test approach/strategy, Setting up criteria for testing, Identifying responsibilities, Staffing, and Training needs, Identifying resource requirements, Identifying test deliverables, Testing tasks – Size and effort estimation, Activity breakdown and scheduling, Communication management, Risk management: Test management, Choice of standards, Test infrastructure management, Test people management, Integration with product release, Test process, Putting together and base lining a test plan, Test case specifications, Update of traceability matrix, Identifying possible candidates for automation, Developing and base lining test cases. Executing test cases and keeping traceability matrix current, Collecting and analyzing matrix	5 hrs	
Chapter No. 9. Reporting and Software Test Automation Preparing test summary report, Recommending product release criteria: Test reporting, Recommending product release, Best practices, Process related best practices, People related best practices, Technology related best practices, What is Test automation?, Terms used in automation, Skills needed for automation, What to automate?, Scope of automation- Identifying the types of testing amenable to automation, Automating areas less prone to change, Automate tests that pertain to standards, Management aspects in automation, Design and architecture for automation.	5 hrs	
 Text Book: Desikan Srinivasan and Gopalswamy, Ramesh, Software Testing- Principles and Practices, Published by Person Education, 2nd edition, Pearson Education, 2007. References: Edward Kit, Software Testing in the Real World Improving the Process, Published by Person Education, 1995. Ron, Patton, Software Testing, 2nd edition Person Education, 2004. Marnie, Hutcheson L., Software Testing Fundamentals, Wiley India, 2003. Roger S. Pressman, Software Engineering A Practitioners Approach, 5th edition McGraw Hill. 		

Program: Master of Technology			
Course Title: Big Data Analytics		Course Code: 17ECSE801	
L-T-P: 3-0-1	Credits: 4	Contact Hrs: 5 per week	
ISA Marks: 50+50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 42hrs	Exam Duration: 3 hrs		

1	Big Data Overview		
	Data Structures, Analyst Perspective on Data Repositories, State of the Practice in Analytic, BI		
	Versus Data Science, Current Analytical Architecture, Drivers of Big Data, Emerging Big Data		
	Ecosystem and a New Approach to Analytics, Key Roles for the New Big Data Ecosystem,		
	Examples of Big Data Analytics.	05hrs	
2	Data Analytics Lifecycle		
	Data Analytics Lifecycle Overview, Key Roles for a Successful Analytics		
	Project, Background andOverview of Data Analytics Lifecycle, Phase		
	Discovery, Phase 2: Data Preparation, Phase 3: Model Planning, Phase 4: Mode		
	Building, Common Tools for the Model Building Phase.	05 hrs	
3	Review of Basic Data Analytic Methods Using R		
	Introduction to R :R Graphical User Interfaces , Data Import and Export ,Attribute and Data		
	Types, Descriptive Statistics , Exploratory Data Analysis, Visualization Before Analysis,		
	DirtyData, Visualizing a Single Variable , Examining Multiple Variables, Data Exploration		
	Versus Presentation, Statistical Methods for Evaluation, Hypothesis Testing.	07 hrs	
4	Advanced Analytical Theory and Methods : Clustering		
	Overview of Clustering: K-means, Use Cases, and Overview of the Method, Determining the		
	Number of Clusters, Diagnostics, Reasons to Choose and Cautions	05 hrs	
5	Advanced Analytical Theory and Methods : Regression		
	Linear Regression, Use Cases, Model Description, Diagnostics, Logistic Regression, Model		
	Description, Diagnostics, Reasons to Choose and Cautions, Additional Regression Models.	05 hrs	
6	Advanced Analytical Theory and Methods: Time Series Analysis		
	Overview of Time Series Analysis, Box-Jenkins Methodology, ARIMA Model,		
	Autocorrelation Function (ACF), Autoregressive Models, Moving Average Models, ARMA		
	and ARIMA Models, Building and Evaluating an ARIMA Model.	07 hrs	
7	Advanced Analytical Theory and Methods: Text Analysis		
	Text Analysis Steps, A Text Analysis Example, Collecting Raw Text, Representing Text,		
	Term Frequency—Inverse Document Frequency (TFIDF), Categorizing Documents by		
	Topics, Determining Sentiments.	041	
0		04 hrs	
ð	Advanced Analytics—Technology and Tools: MapKeduce and Hadoop		
	Analytics for Unstructured Data , Use Cases ,MapReduce , Apache Hadoop ,The		
	Hadoop Ecosystem, Pig, Hive, HBase, Mahout, NoSQL.	04 hrs	
Tout Dealer			

Text Books:

1. EMC Education Services, Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data, Wiley Publications.

- Frank J Ohlhorst, —Big Data Analytics: Turning Big Data into Big Moneyl, Wiley and SAS Business Series, 2012.
- 2. Colleen Mccue, —Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysisl, Elsevier, 2007.
- 3. Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer, 2007.
- 4. Bill Franks, —Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics^{II}, Wiley and SAS Business Series, 2012.

Program	m: Master of Technology			
Course '	Title: Applied Mathematics		Course Code: 18ECSC	701
L-T-P: 3	3-0-1	Credits: 4	Contact Hrs: 3 hrs/wee	ek
ISA Marks: 50ESA Marks: 50Total Marks: 100				
Teachin	g Hrs: 42	Exam Duration: 3 hrs		
1				
1	Introduction to Statistics			
	Statistical Thinking, Collecting	data, Statistical Modeling Framework	, Measure of Central	
	Tendency and Variance, Impor	tance of Data symmetry and Display, C	Fraphical and Tabular	
	Display.			04 hrs
2	Discrete Random Variables a	and Probability Distribution		
	Discrete Random variables,	Probability distributions and Prob	ability mass function,	
	Cumulative distribution function	on, Mean and Variance of a discrete ra	ndom variable, Discrete	
	Uniform distribution, Binomi	al distribution, Geometric distribution	n, Poisson distribution,	
	Applications.			07 hrs
3	Continuous Random Variable	es and Probability Distributions		
	Continuous random variables,	, Probability distributions and probab	bility density functions,	
cumulative distribution functions, Mean and Variance of a continuous random variable,				
Uniform distribution, Normal Distribution, Normal approximation to Binomial and Poisson				
	distribution, Exponential distribution.			07 hrs
4	Testing of Hypothesis			
	Estimation theory, Hypothesis	testing, Inference on the mean of population	ulation (variance known	
	and unknown) Inference on th	e variance of a normal population, In	ference on a population	
	proportion, Testing for Goodne	ess of fit, Inference for a difference in N	feans(variances known),	
	Interence for a difference in Information on the Marianasa	n means of two normal distributions	s (variances unknown),	
	proportions	or two normal populations, inferen	be on two population	
5				08 hrs
5	Simple Linear Regression an	d Correlation		
	Simple Linear Regression, Prop	perties of Least square Estimators and I	Estimation of Variances,	
	Transformations to a Straight li	ine, Correlation, Multiple linear regress	ion model, Least square	
	Estimation of parameters, Mat	trix approach to multiple linear regres	sion, Properties of least	
(square estimators and estimatio	on or variance.		06 hrs
0	Queuing Theory 1 :			
Basics of queuing models, Model I (M /M/ 1): (∞/FIFO), Single Server with Infinite Capacity,				
	Model II (M/M/s): (∞/FIFO), Multiple Server with Infinite Capacity			05 hrs
7	Queuing Theory 2:			
	Model III (M/M/1): (k/FIFO), Single Server with Finite Capacity, Model IV (M/M/s):			
	(k/FIFO), Multiple Server with Finite Capacity.			05 hrs

Text Books:

- 1. Douglas C Montgomery, George C Runger, Applied Statistics for Engineers, 2nd Edition, John Wiley and Sons, ISBN-0-471-170027-5.
- 2. Richard I Levin, David S Rubin, Statistics for Management, 6th Edition, Prentice Hall India.
- 3. Willian W Hines, Douglas C Montgomery, Probability and Statistics in Engineering, 2nd Edition, John Wiley and Sons.
- 4. V. Sundarapandian, Probability, Statistics and Queuing theory, PHI, 2009.
- 5. Arnold Oral Allen, Probability, statistics, and queuing theory: with computer science applications, Gulf Professional Publishing, Edition: 2 ,28-Aug-1990

Program: Master of Technology			
Course Title: Internet Of Things		Course Code: 18ECSC702	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 42	Exam Duration: 3 hrs		

1	Introduction to Internet of Things (IoT):	
	Definition & Characteristics of IoT, Physical Design of IoT: IoT protocols, Logical Design of	
	IoT: IoT functional blocks, communication models and APIs.	04 hrs
2	IoT Enabling Technologies:	
	Wireless Sensor Networks, Cloud Computing, Big Data Analytics, Communication Protocols,	
	Embedded Systems, IoT Levels and Deployment Templates.	06 hrs
3	Domain specific IoTs:	
	Home Automation, Cities, Environment, Energy, Retail, Logistics, Agriculture, Industry,	
	Health and Lifestyle.	06 hrs
4	IoT Platforms Design Methodology:	
	IoT Design Methodology, Case Study on IoT System for Weather Monitoring.	04 hrs
5	IoT systems – Logical design using Python:	
	Introduction to Python, Data types, data structures, Control of flow, functions modules,	
	packages, file handling, data/time operations, classes, Python packages - JSON, XML,	
	HTTPLib, URLLib, SMTPLib.	06 hrs
6	IoT Physical Devices and Endpoints:	
	Basic building blocks of an IoT device, Exemplary device: Rasyberry Pi, interface (serial,	
	SPI, I2C), Programming Rasyberry Pi with Python.	06 hrs
7	IoT Physical Servers & Cloud Offerings:	
	Introduction to Cloud Storage models and communication APIs ,Webserver – Web server for	
	IoT, Cloud for IoT, Python web application framework, Designing a RESTful web API	05 hrs
8	Case Studies Illustrating IoT Design:	
	Home Automation-smart lighting, home intrusion detection, Cities-smart parking.	05 hrs
Text Books:		
1.	Internet of Things - A Hands-on Approach, Arshdeep Bahga and Vijay Madisetti, Universities Pr	ress,

2015, ISBN: 9788173719547

References:

1. Getting Started with Raspberry Pi, Matt Richardson & Shawn Wallace, O'Reilly (SPD), 2014, ISBN: 9789350239759

Program: Master of TechnologyCourse Title: Computer NetworksCourse Code: 18ECSC704L-T-P: 3-0-1Credits: 4Contact Hrs: 5 hrs/weekISA Marks: 50ESA Marks: 50Total Marks: 100Teaching Hrs: 42Exam Duration: 3 hrs

1	Fundamental Concepts of computer Networks			
	Basic Definitions in Data Networks, Applications, Requirements, Network Architecture, Packet			
	Size and Optimizations, Performance.	04 hrs		
2	Data Link Laver			
	Perspectives on Connecting, Encoding (NRZ, NRZI, Manchester, 4B/5B), Framing, Error			
	Detection, Reliable Transmission, Ethernet and Multiple Access Networks	08 hrs		
3	The Network Laver: Data Plane			
-	Overview of Network Laver, Router Architecture, The Internet Protocol (IP): IPv4,			
	Addressing, IPv6, Generalized Forwarding and SDN	08 hrs		
4	The Network Layer: Control Plane			
•	Introduction, Routing Algorithms, Intra-AS Routing in the Internet: OSPF, Routing Among the			
	ISPs: BGP The SDN Control Plane ICMP: The Internet Control Message Protocol Multicast			
	Multiprotocol Label Switching (MPLS)	08 hrs		
5	Transport Laver			
-	Introduction and Transport-Laver Services. Multiplexing and De-multiplexing, connectionless			
	Transport: UDP. Connection-Oriented Transport: TCP. Principles of Congestion Control. TCP			
	Congestion Control	08 hrs		
6	Application Laver			
	Principles of Network Applications, The Web and HTTP, Electronic Mail in the Internet,			
	DNS—The Internet's Directory Service Peer-to-Peer Applications, Video Streaming and			
	Contant Distribution Networks	06 hrs		
		00 111 5		
Text Bo	Text Books:			
1.	1. J. F. Kurose and K. W. Ross, , Computer Networking, A Top-Down Approach, 7th Ed, , Pearson , 2017			

2. Larry L Peterson & Bruce S Davien, Computer Networks A System Approach, 5th Ed , Morgan Kaufmann (Elsevier), 2011

- 1. Nader F. Mir, Computer and Communication Networks, 2nd Edition, Pearson Prentice-Hall, 2015
- 2. Behrouz Forouzan, Data Communications and Networking, 5th Ed, McGraw Hill, 2012.
- 3. A S Tanenbaum, D J Wetherall, Computer Networks, 5th Ed., Prentice-Hall, 2010.

Program: Master of Technology			
Course Title: Data Structures and Algorithms Lab Course Code: 18ECSP706			
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 6 hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hrs: 72	Exam Duration: 3 hrs		

1	Introduction		
	Introduction to data structures, abstract data types and analysis of algorithms.	04 hrs	
2	Creation and manipulation of data structures		
	Stacks and Queues : Array implementation of stacks, queue, Circular queue and Applications of stacks and queues		
	Linked Lists: Singly linked list, doubly linked list. Circular Singly and doubly Linked lists and Applications of linked list.		
	Trees and Graphs: Introduction to trees, Binary search trees, binary tree and tree traversals, Basics of graphs, graph traversals and Applications of trees and graphs.		
3	Algorithms		
	Brute force and Decrease and conquer method : selection sort, insertion sort, radix sort and searching.		
	Hashing: Direct Address Table, Hash Table, Hash Function and Collision Resolution		
	Techniques.		
4	Variants of Tree Data Structures:		
	Dictionaries, Skip lists, Priority queues, Heaps, Leftist trees, AVL, Red Black, B-Trees,		
	Alternative decision tree, Radix trees and Applications	04 hrs	

List of Sample Assignments:

- 1. Computer systems must often provide a "holding area" for messages between two processes, two programs, or even two systems. This holding area is usually called a "buffer" and is often implemented as a queue. Simulate the I/O operation of buffer.
- 2. When you phone the toll-free number for your bank, you may get a recording that says, "Thank you for calling A-1 Bank. Your call will be answered by the next available operator. Please wait". Simulate the process of answering the calls.
- 3. Simulate the phonebook feature of mobile.(find name, add entry, owner number and delete all options)
- 4. Simulate the process of Baggage Scanning machine in the airport.
- 5. Implement to list the possible correct words when you search for a word in a file or misspell a word
- 6. An application requires a structure where new nodes can easily added to the front and back of a given node in O(1)
- 7. Any node can be a starting point. We can traverse the whole list by starting from any point. We just need to stop when the first visited node is visited again.
- 8. Round robin scheduling by CPU
- 9. Back word key operation to visit web pages
- 10. Issuing tickets at the counter in railway station
- 11. WAP to generate the following pyramid of digits.
 - 232 34543 4567654 567898765

67890109876 7890123210987 890123454321098 90123456765432109 0123456789876543210

Evaluation:

Students Assessment through CIE (80%) + SEE (20%)

ISA (80%)	Assessment	Weightage in Marks	
	Minor 1	15	
	Minor 2	15	
	Hacker Rank Test/ Code chef	20	
	Structured Enquiry(2	20	
	evaluations)		
	Hackathon (Industry standard	10	
	tool based evaluation)		
ESA (20%)	Refined output of Hackathon	20	
	evaluation		
	Total	100	Reference Book

1. Mark Allen Weiss, Data Structures and Algorithm Analysis in C, 2, Pearson Education, 2003

2. Aron M. Tenenbaum, Data Structures using C, 2, PHI, 2006

3. Sartaj Sahni, Data Structures, Algorithms and applications in C++, 2, Universities Press, 2008

4. Horowitz, Sahni, Rajasekaran, , Fundamentals of Computer Algorithms, 1, Galgotia Publications, 2010

5. Michael T. Goodrich, Roberto Tamassia, Algorithm Design and Applications, Wiley Publications, 2015

Program: Master of Technology			
Course Title: Python Programming Lab		Course Code: 18ECSP707	
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3 hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hrs: 12	Exam Duration: 3 hrs		

1	Python Basics	
	Types, Variables, and Simple I/O, Branching and Looping, Numbers, Arrays, Lists,	
	Comprehensions, tuples, and Dictionaries, Regular Expressions, Functions, Files and	
	Exceptions,	03 hrs
2	Python libraries :	
	Data manipulation and processing using numpy, scipy and pandas. Data visualization using	
	matplotlib.	04 hrs
3	Python Frameworks	
	Introduction to Python Frameworks, components of frameworks, building RESTful web	
	services.	02 hrs
4	Django framework	
	Introduction to Django, Django's take on MVC: Model, View and Template, Django Forms:	
	Form classes, Validation, Authentication, Advanced Forms processing techniques, working	
	with databases, Integrate with RESTful web services.	03 hrs
-	•	
Referen		

- Jeff_Forcier, "Python Web Development with Django", 1st edition, Pearson Education, 2008.
 Mark Lutz, "Programming Python", 4th Edition, O'Reilly, 2010.
- 3. Michael Dawson, Python Programing for the Absolute Beginner, Premier Press, 3rd Edition 2010.

Evaluation:

Students Assessment through ISA (70%) + ESA (30%)

ISA (70%)	Assessment	Weightage in Marks
	Exercises (4-Evaluation)	40
	Hacker-rank	20
	Structured Enquiry(1-evaluations)	10
ESA (30%)	Course Project	30
	Total	100

Program: Master of Technology				
Course Title: Design and Analysis of Algorithms Course Code: 18ECSCP709				
L-T-P: 2-0-2	Credits: 4	Contact Hrs: 4 hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 42	Exam Duration: 3 hrs			

1	Introduction		
-	Analysis Framework Asymptotic Notations and Basic Efficiency Classes Mathematical		
	Analysis of Non Recursive Algorithms and Mathematical Analysis of Recursive Algorithms	06 hrs	
	Analysis of Non-Recursive Algorithmis and Mathematical Analysis of Recursive Algorithmis.	00 1115	
2	Hashing Technique		
	Direct Address Table, Hash Table, Hash Function and Collision Resolution Techniques.	06 hrs	
3	Algorithm design techniques:		
	Divide and conquer: General Method, Merge sort, quick sort, Matrix Computations		
	Greedy Technique: General Method, Huffmann Coding, knapsack problem, Task Scheduling		
	and minimum spanning tree.		
	Dynamic Programming: General Method, Floyd-Warshall algorithm, String Editing, Longest		
	Common Subsequence and shortest paths	15 hrs	
4	Combinatorial Problem solving Techniques:		
	Backtracking Method: General Method, Sum of subsets, knapsack Problem and Game		
	strategies		
	Branch and Bound method: General Method, knapsack Problem,		
	Approximation algorithms and Randomized algorithms.		
	NP- Hard and NP Complete: Examples, proof of NP-hardness and NP-completeness.	15 hrs	
Reference	ce Books:		
1 1			

- Introduction to Design and Analysis of Algorithms Anany Levitin 3rd Edition, Pearson, 2012 1.
- T.H.Cormen, C.E.Leiserson, R.L.Rivest, C. Stein, Introduction to Algorithms, 3nd edition, MIT, 2009. 2.
- Michael T. Goodrich, Roberto Tamassia, Algorithm Design and Applications, Wiley Publications, 2015 3.

CIA Scheme		
Assessment	Weightage in Marks	
Minor -1	15	
Minor 2	15	
DAA Lab Manual Evaluation coding challenge websites (topcoder/Hackerrank)	10+10	
Total	50	

Evaluation Scheme

Program: Master of Technology			
Course Title: Distributed and Cloud Computing		Course Code: 18ECSC710	
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 42	Exam Duration: 3 hrs		

1	Distributed System Models and Enabling Technologies	
	Scalable Computing over the Internet, Technologies for Network-Based Systems, System	
	Models for Distributed and Cloud Computing	04 hrs
2	Virtual Machines and Virtualization of Clusters	
	Implementation Levels of Virtualization, Virtualization Structures/Tools and Mechanisms,	
	Virtualization of CPU, Memory, and I/O Devices, Virtual Clusters and Resources	
	Management.	06 hrs
3	Cloud Platform Architecture over Virtualized Data Centers	
	Cloud Computing and Service Models, Architectural Design of Compute and Storage Clouds,	
	Public Cloud Platforms.	06 hrs
4	Cloud Programming and Software Environments	
	Challenges and Opportunities in cloud application, architectural styles, workflows: co-	
	ordination of multiple activities, MapReduce programming model.	06 hrs
5	Cloud Resource Management	
	Policies and mechanisms for resource management, Applications of control theory to task	
	scheduling on a cloud, Stability of a two-level resource allocation architecture, Feedback	
	control based on dynamic thresholds, Coordination of specialized autonomic performance	001
	managers.	08 hrs
6	Cloud Resource Scheduling	
	Resource bundling; combinatorial auctions for cloud resources, Scheduling algorithms for	
	computing clouds. Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud	0.61
	scheduling subject to deadlines, Scheduling Map Reduce applications subject to deadlines.	06 hrs
7	Cloud Security	
	Cloud security risks, Security; the top concern for cloud users, Privacy; privacy impact	
	assessment, Trust, Operating system security, Security of virtualization, Security risks posed	
	by shared images, Security risks posed by a management OS, Xoar - breaking the monolithic	06 h
	design of the TCB, A trusted virtual machine monitor.	06 nrs
Text B	poks:	
1.	1. Kai Hwang, Geoffrey C. Fox, Jack J. Dongarra, Distributed and Cloud Computing from Paralle	1
	Processing to the Internet of Things, 1, Elsevier, 2012	
2.	Dan C. Marinescu, Cloud Computing Theory and Practice, 1, Elsevier, 2013	
D.f.		
Keiere		***1
1.	RajkumarBuyya, Christian Vecchiola, S.ThamaraiSelvi, Mastering Cloud Computing, 1, McGrav	v Hil,
	2013	

2. 2. Anthony T. Velte, Toby J. Velte, Robert Elsenpeter, Cloud Computing, A Practical Approach, 1, McGraw Hil, 2010

Cours	e Title: Machine Learning		Course Code: 18ECSC	711
L-T-P	: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week	
SA N	1arks: 50	ESA Marks: 50	Total Marks: 100	
Feach	ing Hrs: 42	Exam Duration: 3 hrs		
	- 1			
L	Introduction & Data Pre-Prep	processing		
	Introduction to data mining, 1	Introduction to Machine Learning, App	lications of Machine	
	Learning, Major tasks in data	preprocessing - data reduction, data tra	nsformation and data	001
	Discretization, data cleaning and	d data integration.		08 hrs
2	Mining Frequent Patterns, As	sociations and Correlations: Concepts a	and Methods	
	Basic Concepts, Efficient and S	calable Frequent Item set Mining Metho	ds, finding interesting	
	Patterns, Pattern Evaluation Methods, Applications of frequent pattern and associations, Advanced Frequent Pattern Mining- Frequent Pattern and Association Mining: A Road Map,			
	Mining Various Kinds of Association Rules. Pattern Mining in Multilevel, Multidimensional		. – -	
	Space.			07 hrs
\$	Supervised Learning: Classification Model Evaluation and Selection, Techniques to Improve Classification Accuracy: ensemble Methods; Bayesian belief networks, Introduction to perceptron learning, Back propagation			
	algorithm.			08 hrs
4	Unsupervised Learning: Cluster Analysis			
	Partitioning methods, Hierarchical Methods, Density based methods, Outlier Detection.		07 hrs	
5	Regression Analysis			
	ANOVA, Linear Discriminant Analysis, Support Vector Machines 06		06 hrs	
5	Reinforcement Learning Introduction to Reinforcement Learning (RL), Sequential Decision Problems, Passive RL,			
	Active RL, Generalization in RI	L, Applications of RL		06 hrs
lext I	Books:			-
4.	Jiawei Han, MichelineKamber,	and Jian Pei. Data Mining: Concepts	and Techniques. 3rd	. Morg
				,

5. Pang-Ning, Michael Steinbach, Vipin Kumar, Introduction to Data Mining, Pearson Education, 2007

References:

1. Ian H. Witten, Eibe Frank, Mark A. Hall, Data Mining - Practical Machine Learning Tools and Techniques, 3rd, Elsevier Inc, 2011.

2. M. H. Dunham, "Data Mining: Introductory and Advanced Topics", Pearson Education. 2008.

Program: Master of Technology			
Course Title: Image and Video Processing		Course Code: 18ECSC713	
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 42	Exam Duration: 3 hrs		

1	Fundamentals of Image processing and Image Transforms: Basic steps of Image	
	processing system sampling and quantization of an Image – Basic relationship between pixels.	
	Image Transforms: 2 D Discrete Fourier Transform, Discrete Cosine Transform (DCT),	
	Discrete Wavelet transforms.	07 hrs
2	Image Enhancement: Spatial Domain methods: Histogram Processing, Fundamentals of	
	Spatial Filtering, Smoothing Spatial filters, Sharpening Spatial filters. Frequency Domain	
	methods: Basics of filtering in frequency domain, image smoothing, image sharpening,	
	selective filtering.	08 hrs
3	Image Analysis: Spatial feature extraction, Transform features, Edge detection Boundary	
	Extraction, Boundary representation, Region representation, Moment representation, Structure,	
	Shape features, Texture, Scene matching & detection, Image segmentation and Classification	
	Techniques.	08 hrs
4	Basics of Video Processing: Analog video, Digital Video, Time varying Image Formation	
	models : 3D motion models, Geometric Image formation, Photometric Image formation,	
	sampling of video signals, filtering operations	07 hrs
5	2-D Motion Estimation: Optical flow, pixel based motion estimation, Block matching	
	algorithm, Mesh based motion Estimation, global Motion Estimation, Region based motion	
	estimation, multi resolution motion estimation.	06 hrs
6	Video Segmentation and Tracking : Change detection, Spatiotemporal change detection,	
	Motion segmentation, Motion tracking in video : Rigid object tracking and articulated object	
	tracking	06 hrs
Text B	Books:	

Ltd/Prentice Hall of India, 2009.

2. M. Tekalp, "Digital Video Processing", 2nd edition, Prentice Hall, USA, 2015.

- 1. Anil K. Jain, "Fundamentals of Digital Image Processing," Pearson Education (Asia) Pte. Ltd./Prentice Hall of India, 2004.
- 2. Alan C Bovik "Essential Guide to Video Processing", AP Elsevier publication, 2009
- 3. Z. Li and M.S. Drew, "Fundamentals of Multimedia," Pearson Education (Asia) Pte. Ltd., 2004.

Program: Master of Technology T. 1 C. L J No4-4 J- C

Course Title: Cryptography and Network Security		Course Code: 18ECSC714
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 42	Exam Duration: 3 hrs	

1	Network Security Overview	
	Computer Security Principles, The OSI Security architecture: Security attacks, services and	
	mechanisms, A model for Network Security, Classical Encryption techniques: Substitution	
	ciphers- Caesar, Monoalphabetic, Playfair and Hill ciphers, Substitution ciphers, Taxonomy of	
	Cryptography and Cryptanalysis.	08 hrs
2	Data Encryption Algorithms	
	Traditional block cipher structure, Data Encryption Standard, DES example, strength of DES,	
	Multiple DES, block cipher design prinicples, Advanced Encryption Standard, block-cipher	
	modes of operation, Stream Ciphers: RC4 and A5/1.	08 hrs
3	Public-Key Cryptography and Key Management	
	Elementary Concepts and Theorems In Number Theory, principles of public-key	
	cryptosystems, The RSA algorithm, Diffie-Hellman Key Exchange, Elliptic curve arithmetic,	
	Elliptic key cryptography, Key Distributions and Management, X.509 certificates, public key	
	infrastructure	08 hrs
4	Data Authentication	
	Cryptographic Hash Functions: applications and requirements, Hash functions based on cipher	
	block chaining, Secure Hash algorithm, SHA3, Message authentication codes: requirements	
	and functions, HMAC, Digital Signatures, and Digital Signature Standard.	06 hrs
5	Application, Transport and Network layer Security	
	Web security considerations, Pretty Good Privacy and S/MIME, Secure Sockets Layer,	
	HTTPs, Kerberos, SSH, DomainKeys Identified Mail (DKIM), IPSec overview,	
	Encapsulating security payload, combining security associations, Internet key exchange	06 hrs
6	Wireless Network Security	
	Wireless security threats and measures, mobile device security, IEEE 802.11 WLAN	
	Standard, IEEE 802.11i Wireless Lan Security: Services and phases of operation, WPA and	
	WPA2	06 hrs
Text Books:		

1. William Stallings, Cryptography and Network Security Principles And Practices, 6th Edition, Pearson, 2014.

References:

- Behrouz A. Forouzan, "Cryptography and Network Security", 6th Edition, Tata McGraw-Hill, 2014.
 Mark Stamp, "Information Security: Principles and Practices", 2nd Edition, John Wiley and Sons, 2011.

Expt./Job No.	Brief description about the experiment/job	No. of Lab. Slots
1.	Demo and practice on Crypto Library	1
2.	Implementation of symmetric key algorithm algorithms	1
3.	Implementation of asymmetric key algorithm algorithms, Hash algorithms	2
4.	Web Security using SSL certificates	1

Lab Plan

School of Computer Science and Engineering

5.	Secure access to resources to Kerberos	2
6.	Web server security using CAPTCHA	1
7.	Implementation of access Control	1
8.	Configuring Firewall, IDS	1

Program: Master of Technology			
Course Title: Principles and Practices o	Course Code: 18FCPC701		
Education		Course Coue. ISECKC/VI	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3 hrs		

1	Module 1. Basics of Assessment and Evaluation	
	Different Methods, Techniques.	04 hrs
2	Module 2. Fundamental Principles of Effective Teaching and Learning	
	Teaching Philosophy, How Learning Works, Classroom Communication Skills, Teaching	
	and Learning Styles, Bloom's Taxonomy.	06 hrs
3	Module 3. Fundamentals of Instructional Design	
	Different Instructional Design Models.	07 hrs
4	Module 4. Technology Enhanced Learning	
	Role of Technology, TPACK Model, Technology Tools.	04 hrs

Text Books:

- 4. Ambrose, S., Bridges, M., DiPietro, M., Lovett, M., & Norman, M, How learning works: 7
- 5. Research-Based principles for smart teaching. San Francisco: Jossey-Bass. , San Francisco: Jossey-Bass, 2010

Suggested Web Resources:

- 1. https://cft.vanderbilt.edu/guides-sub-pages/blooms-taxonomy/
- 2. <u>http://educationaltechnology.net/instructional-design/</u>
- 3. https://www.nwea.org/blog/2014/33-digital-tools-advancing-formative-assessmentclassroom/
- 6. http://oedb.org/ilibrarian/101-web-20-teaching-tools/

Program: Master of Technology		
Course Title: Distributed and Cloud Computing		Course Code: 19ECSC710
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 42	Exam Duration: 3 hrs	

1	Distributed System Models and Enabling Technologies		
	Scalable Computing over the Internet, Technologies for Network-Based Systems, System		
	Models for Distributed and Cloud Computing	04 hrs	
2	Virtual Machines and Virtualization of Clusters		
	Implementation Levels of Virtualization, Virtualization Structures/Tools and Mechanisms,		
	Virtualization of CPU, Memory, and I/O Devices, Virtual Clusters and Resources		
	Management.	06 hrs	
3	Cloud Platform Architecture over Virtualized Data Centers		
	Cloud Computing and Service Models, Architectural Design of Compute and Storage Clouds,		
	Public Cloud Platforms.	06 hrs	
4	Cloud Programming and Software Environments		
	Challenges and Opportunities in cloud application, architectural styles, workflows: co-		
	ordination of multiple activities, MapReduce programming model.	06 hrs	
5	Cloud Resource Management		
	Policies and mechanisms for resource management, Applications of control theory to task		
	scheduling on a cloud, Stability of a two-level resource allocation architecture, Feedback		
	control based on dynamic thresholds, Coordination of specialized autonomic performance	0.0.1	
	managers.	08 hrs	
6	Cloud Resource Scheduling		
	Resource bundling; combinatorial auctions for cloud resources, Scheduling algorithms for		
	computing clouds. Fair queuing, Start-time fair queuing, Borrowed virtual time, Cloud	0.01	
	scheduling subject to deadlines, Scheduling Map Reduce applications subject to deadlines.	06 nrs	
7	Cloud Security		
	Cloud security risks, Security; the top concern for cloud users, Privacy; privacy impact		
	assessment, Trust, Operating system security, Security of virtualization, Security risks posed		
	by shared images, Security risks posed by a management OS, Xoar - breaking the monolithic	06 has	
	design of the TCB, A trusted virtual machine monitor.	UO IIIS	
Text Bo	Text Books:		
3.	1. Kai Hwang, Geoffrey C. Fox, Jack J. Dongarra, Distributed and Cloud Computing from Paralle	el	
	Processing to the Internet of Things, 1, Elsevier, 2012		
4.	Dan C. Marinescu, Cloud Computing Theory and Practice, 1, Elsevier, 2013		
References:			
3	RaikumarBuyya Christian Vecchiola S ThamaraiSelvi Mastering Cloud Computing 1 McGra	w Hil	

- RajkumarBuyya, Christian Vecchiola, S.ThamaraiSelvi, Mastering Cloud Computing, 1, McGraw Hil, 2013
- 4. 2. Anthony T. Velte, Toby J. Velte, Robert Elsenpeter, Cloud Computing, A Practical Approach, 1, McGraw Hil, 2010

Program: III Semester Bachelor of Engineering (Electronics & Communication Engineering)			Teaching
Course Title: Circuit Analysis		Course Code: 15EECC201	Hours
L-T-P-SS: 4-0-0-0	Credits: 4	Contact Hours: 4Hrs/week	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hours: 50Hrs	Examination Duration:3 Hrs		
	Unit I		
Chapter 1: Basics Active and passive circuit node, Mesh Analysis, Sup [Text 1: Chapter 4,5, 7]	elements, Voltage & current sources, Re er mesh, Star – Delta Transformation.	sistive networks, Nodal Analysis, Super	06
Chapter 2: Network Theo	orems		
Homogeneity, Superposit Theorem, Miller's theore [Text 1 : Chapter 5]	tion and Linearity, Thevenin's & Norton's m, Reciprocity principle.	Theorems, Maximum Power Transfer	08
Chapter 3: Network topol	ogies		
Graph of a network, Concept of tree and co-tree, incidence matrix, tie set and cut set schedules, Formulation of Equilibrium equations in matrix form, Solution of resistive networks.[Text 1: Chapter 5]			04
	Unit II		
Chapter 4: Two Port Net	Chapter 4: Two Port Networks		
Two port variables, Z,Y, H,G, A- Parameter representations, Input and output impedance calculation, Series, Parallel and Cascade network connections, and their (suitable) models. [Text 2 : Chapter 11]			06
Chapter 5: Time and Free	quency domain Representation of Circuit	s	06
Order of a system, Concept of Time constant, System Governing equation, System Characteristic equation, Initial conditions, Transfer Functions (Fourier and Laplace domain representation) [Text 2: Chapter 4]			
Chapter 6: First order circuits Transient response of R-C and R-L networks (with Initial conditions) Concept of phasor, Phasor diagrams, Frequency response characteristics, Polar plots R-C, R-L circuits as differentiator and integrator models, time and frequency domain responses R-C, R-L circuits as Low pass and high pass filters [Text 2: Chapter 5, Text 1: Chapter 8,9,10]			08
Unit III			
Chapter 7: Higher order circuits Higher order R-C, R-L, and R-L-C networks, time domain and frequency domain representation, Phasor diagrams, Polar and logarithmic plots, Series R-L-C circuit, Transient response, Damping factor, Quality factor, Frequency response curve, Peaking of frequency curve and its relation to damping factor, Resonance Parallel, R-L-C circuit, Tank circuit, Resonance, Quality factor and Bandwidth [Text 2: Chapter 7,8]			12

Text Books

- 1. W H Hayt, J E Kemmerly, S M Durban, Engineering Circuit Analysis, 7th edition, McGraw Hill.
- 2. M E. Van Valkenburg, Network Analysis, 3rd edition, Pearson Education..

Reference Books

- 1. Joseph Edminister, MahmoodNahavi, Electric Circuits, 3rd edition, Tata McGraw Hill.
- 2. V. K. Aatre, "Network Theory and Filter Design", 2nd edition, Wiley Western Limited.

Program: III Semester Bachelor of Engineering (Electronics & Communication Engineering)			Teaching
Course Title: Analog Electronic Circuits Cours		Course Code: 15EECC202	Hours
L-T-P-SS: 4-0-0-0	Credits: 4	Contact Hours: 4Hrs/week	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		
	Unit I		
Chapter 1: Applications of a Junction diode: Recap of diode models: piece-wise linear model, constant voltage drop model, ideal diode model, small signal model. Applications of diodes as a Clipping circuit and clamping circuits Voltage doubler. (T1 : 2.2,2.3.1 to 2.3.8,2.6.1to 2.6.3.)			06
Chapter 2: MOSFETs structure and physical operation: Device structure, operation with no gate voltage, creating a channel for current flow, applying small vds, operation as vds is increased, derivation of the idvds relationship, the P-channel MOSFET, complementary MOS or CMOS, operating the mos transistor in the sub threshold region.Current-voltage characteristics: circuit symbol, the id vs vds characteristics, finite output resistance in saturation, characteristics of the p-channel MOSFET, the role of the substrate-the body effect, temperature effects, breakdown and input protection. MOSFET circuits at DC.			12
	Unit II		
Chapter 3:Current mirrors			08
Basic current mirror, Widlar, Cascode and Wilson : Output impedance and Voltage swing.			
Chapter 4: MOSFET amplifi	ers		
Biasing in mos amplifier circ MOSEET internal canacitance	cuits, small signal operation and model re and high frequency model frequence	s, single stage MOS amplifiers, the v response of CS amplifier (CD and	
CG),Cascode Connection: In	plications on gain and Bandwidth		12
(T1:4.4,4.5, 4.6.1 to 4.6.7 ; 4	1.7.1, 4.7.2, 4.7.3, 4.7.5, 4.7.6, 4.7.7;4.8	3.1,4.8.2, 4.8.3,4.8.4, 4.9.1 to 4.9.3)	
	Unit III		
Chapter 5: Feedback Amplifiers : General feedback structure (Block schematic), Feedback desensitivity factor, positive and negative feedback Nyquist stability Criterion, RC phase shift oscillator, wein bridge Oscr, merits of negative feedback, feedback topologies: series-shunt feedback amplifier, series-series feedback amplifier, and shunt-shunt and shunt-series feedback amplifier with examples (T1:7.1 to 7.6)		06	
Chapter 6: Large Signal Amplifiers : Classification of amplifiers: (A, B, AB and C); Transformer coupled amplifier, push-pull amplifier Transistor case and heat sink. (T1:12.1 to 12.6;12.8.4)			06

B. V. B. College of Engineering & Technology

Text Books

1. A.S. Sedra & K.C. Smith, "Microelectronic Circuits", 5th Edition, Oxford Univ. Press, 1999.

References

- 1. Jacob Millman and Christos Halkias, "Integrated Electronics", McGraw Hill.
- 2. David A. Bell, "Electronic Devices and Circuits" 4th edition , PHI publication 2007.
- 3. Grey, Hurst, Lewis and Meyer, "Analysis and design of analog integrated circuits," 4thedition.
- 4. Thomas L. Floyd, "Electronic devices", Pearson Education, 2002
- 5. Richard R. Spencer & Mohammed S. Ghousi, "Introduction to Electronic Circuit Design", Pearson Education, 2003
- 6. J. Millman & A. Grabel, "Microelectronics"-2nd edition, McGraw Hill, 1987.
- 7. Behzad Razavi, "Fundamentals of Microelectronics", reprint 2015 Wiley publications.

Earlier known as B. V. B. College of Engineering & Technology

Program: III Semester Bachelor of Engineering (Electronics & Communication Engineering)			
Course Title: Digital Circuits lab		Course Code: 15EECP201	
L-T-P: 0-0-1	Credits: 1	Contact Hours: 2Hrs/week	
CIE Marks: 80	SEE Marks: 20	Total Marks: 100	
Teaching Hours: 28Hrs Examination Duration: 3 Hrs			
List of Experiments:			

- 2. Design and implement binary to gray, gray to binary, BCD to Ex-3 and Ex-3 to BCD code converters.
- 3. Design and implement BCD adder and Subtractor using 4 bit parallel adder.
- 4. Design and implement given functionality using decoders and multiplexers.
- 5. Design and implement n bit magnitude comparator using 4- bit comparators.
- 6. Design and implement Ring and Johnson counter using shift register.
- 7. Design and implement mod-6 synchronous and asynchronous counters using flip flops.
- 8. Design and implement a digital system to display a 3 bit counter on a 7 segment display. Demonstrate the results on a general purpose PCB.

Design and implement 1-bit serial adder. Demonstrate the results on a general purpose PCB.

Reference Books

1. K.A.Krishnamurthy "Digital lab primer", Pearson Education Asia Publications, 2003." Electronic Principles" by A.P.Malvino, TaTa MGH,5th ED

Earlier known as B. V. B. College of Engineering & Technology

Program: III Semester Bachelor of Engineering (Electronics & Communication Engineering)			
Course Title: Analog Electronic Circuits Lab		Course Code: 15EECP202	
L-T	-P: 0-0-1	Credits: 1	Contact Hours: 2Hrs/week
CIE	Marks: 80	SEE Marks: 20	Total Marks: 100
Теа	ching Hours: 28Hrs	Examination Duration: 3 Hrs	
List	of Experiments:		
1.	Design & Testing of Diode Clip	ping (single/double ended) circuits	
2.	Design & Testing of Clamping	circuits for Positive and Negative Clamping.	
3.	MOSFET characteristics		
4.	4. Design of a single stage CS (MOSFET) amplifier & determination of the gain – frequency response.		
5.	. Design of source follower using MOSFET.		
6.	5. Design of Darlington Emitter follower with and without Bootstrapping and determination of the gain, i/p and o/p impedance		
7.	7. Design and testing Current mirror circuit with MOSFET		
8.	 Design of two stage voltage series feed-back amplifier & determination of the gain, frequency response, i/p &o/p impedance with &without feedback 		
9.	 Design and testing of Transformer-less push-pull class B power amplifier 		
**Note-All above experiments are to be conducted along with simulation.			
*Analog Electronic Circuits Lab: Simulation of MOSFET based circuits using netlist based Spice Simulators (Avoid using drag n drop), with the spice models of MOSFETs in the same netlist file before using hardware using breadboard.			

Reference Books

- 1. "Electronic Devices & circuit Theory " by Nashelsky & Boylstead, PHI,9th Ed
- 2. "Integrated Electronics" By 'Jacob Millman and Christos Halkias', McGraw Hill,
- 3. "Electronic Principles" by A.P. Malvino, TaTa MGH,5th Ed

Program: III Semester Bachelor of Engineering (Electronics & Communication Engineering)			Lab.+	
Course Title: Microcontroller Architecture & Programming Course Code: 15EECE202		Teaching		
L-T-F	P: 0-0-2	Credits: 2	Contact Hours: 4Hrs/week	Hours
CIE	Marks: 80	SEE Marks:20	Total Marks: 100	
Теас	hing + Lab. Hours: 48Hrs	Examination Duration:3 Hrs		
1.	Overview of Architecture of a	8051:		02+02
	Processor Core and F	unctional Block Diagram		
	Description of mem	ory organization		
	Overview of ALL SFR	's and their basic functionality		
2.	Low Level programming Con	cepts:		02+02
	Addressing Modes			
	Instruction Set and A	ssembly Language programmin	g(ALP)	
	Developing, Building	, and Debugging ALP's		
3.	Middle Level Programming C	Concepts:		04+04
	Cross Compiler			
	Embedded C languag	ge implementation, programmir	ng, & debugging	
	Differences from AN	SI-C		
	Memory Models			
	Library reference			
	Use of directives			
	Functions, Paramete	r passing and return types		
4.	On-Chip Peripherals Study,Pr	ogramming, and Application:		04+04
	Ports: Input/Output			
	Timers & Counters			
	• UART			
	Interrupts			
5.	External Interfaces Study,Pro	gramming and Applications :		04+04
	LEDS			
	Switches(Momentary	y type, Toggle type)		
	 Seven Segment Disp Multiplexing) 	lay: (Normal mode, BCD mode, I	nternal Multiplexing & External	

Earlier known as

B. V. B. College of Engineering & Technology

	LCD (8bit, 4bit, Busy flag, custom character generation)		
	Keypad Matrix		
6.	Selective Discussion during Project Development	08+08	
	A/D & D/A Converter		
	Stepper Motor, DC Motor		
	• ZIGBEE		
	GSM/GPS		
	• USB		
	MMC & SD		
	Ethernet MAC		
Text	 Books: Kenneth J. Ayala ; "The 8051 Microcontroller Architecture, Programming & Applications" 2e, Penram International, 1996 / Thomson Learning 2005 		
	E. Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinlay; "The 8051 Microcontroller Embedded Systems – using assembly and C "- PHI, 2006 / Pearson, 2006	and	
Refe	ences Books:		
:	Predko ; "Programming and Customizing the 8051 Microcontroller" –, TMH		
:	 Raj Kamal, "Microcontrollers: Architecture, Programming, Interfacing and System Design", Pearson Education, 2005 		
:	Ajay V.Deshmukh; "Microcontrollers- Theory and Applications", TMH, 2005		
	 Dr.RamaniKalpathi and Ganesh Raja; "Microcontroller and its applications", Sanguine Technical publishers, Bangalore-2005 		

Program: IV Semester Bachelor of Engineering (Electronics & Communication Engineering)			Teaching
Course Title: Control systems Cou		Course Code: 15EECC206	Hours
L-T-P: 4-0-0-0	Credits: 4	Contact Hours: 4Hrs/week	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		
	Unit – I		
Chapter 1: Control S Concepts of Control S Examples, System rep Modeling : Electrical	ystem representation Systems- Open Loop And Closed Loop Contro presentation : Differential Equations, Transfe Mechanical, Electro mechanical , Rotational	l Systems, Feed-Back characteristics, r function, Impulse response , System Mechanical Systems.	06
Chapter 2: Block Diagram And Signal Flow Graphs Transfer Functions, Block Diagram Algebra and Representation By Signal Flow Graph - Reduction Using Mason's Gain Formula.			06
Chapter 3: Stability Analysis In S-Domain The Concept Of Stability(BIBO, all system poles on LHS, Impulse response is convergent, Marginal stability- necessary conditions) – Routh's Stability Criterion – Limitations of Routh's Stability Criterion (Applications only).			08
	Unit II		
Chapter 4: Frequency Response Analysis Introduction, Correlation Between Time And Frequency Response, Bode Diagrams-Determination Of Frequency Domain Specifications And Transfer Function From The Bode Diagram-Phase Margin And Gain Margin-Stability Analysis From Bode Plots, All Pass And Minimum Phase Systems. Root Locus Technique: The Root Locus Concept - Construction Of Root Loci-Effects Of Adding Poles And Zeros To G(S)H(S) on Root Loci.			06
Chapter 5: Stability Analysis In Frequency Domain Polar Plots, Nyquist Plots Stability Analysis, Assessment Of Relative Stability Using Nyquist Criterion.			06
Chapter 6: Time Response Analysis Standard Test Signals (impulse, step, ramp, parabola)-Order and Type of System, Concept of Dominant pole, Time Response of First Order Systems – Characteristic Equation of Feedback Control Systems, Transient Response of Second Order Systems - Time Domain Specifications – Steady State Response - Steady State Errors and Error Constants – Effects Of Proportional Derivative, Proportional Integral Systems			08

nit _	
Chapter 7: Introduction to Controller Design	06
The Design Problem. Preliminary Consideration Of Classical Design, Realization Of Basic Compensators(Lag	1
,Lead and dominant pole compensation), P, I, PI, PD & PID Controllers.	1
Chapter 8: State Space Analysis	1
Concepts Of State, State Variable And State Models For Electrical Systems, Solution Of State Equations.	1
	04
Text Books:	
1. Control Systems Engineering, 5 th edition – by I. J. Nagrath and M. Gopal, New Age International (P) Limited,	
Publishers.2011	
2. Modern Control Systems, 11 th edition- Richord C Dorf and Robert H. Bishop, Pearson, 2013	
3. Automatic Control Systems, 8th edition(9 th edition)– by B. C. Kuo 2003– John wiley and Son's.	
4.Control System by Dazo-3 rd edition	
Reference Books	
1. Automatic Control Systems, 8th edition– by B. C. Kuo 2003– John wiley and Son's.	
2. Modern Control Engineering, 3rd, edition – by Katsuhiko Ogata, Prentice Hall of India Pyt. 1td.	
3. Control Systems Engg, by NISE, 4 th Edition – John wiley	
4. Control Systems Engg. by S Palani, 2 Edition—McGraw Hill	

Program: IV Semester Bachelor of Engineering (Electronics & Communication Engineering)			Teaching
Course Title: ARM Processor & Applications Course Code: 15EECC207			Hours
L-T-P: 3-0-0-0 Credits: 3		Contact Hours: 4Hrs/week	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		

Content	
Unit I	
Chapter 1: ARM Architecture Architectural inheritance, Architecture of ARM7TDMI, ARM programmers model, ARM development tools, 3 stage pipeline ARM organization, ARM instruction execution.	06
Chapter 2: ARM Assembly language programming	
ARM Instruction Set:	
Introduction, ARM instruction set-Data processing instruction, Branch instruction, Load store instruction, Software interrupt instruction, Program status register instruction, Conditional execution, Example programs.	
Thumb instruction set	
The Thumb programmer model, Thumb branch instructions, Thumb software interrupt instructions, Thumb data processing instructions, Thumb breakpoint instruction, Thumb implementation, and Thumb applications. Example programs	
	08
Unit II	
Chapter 3: Assembler rules and Directives	
Introduction, structure of assembly language modules, Predefined register names, frequently used directives, Macros, Miscellaneous assembler features.	04
Chapter 4: Exception handling	
Introduction, Interrupts, error conditions, processor exception sequence, the vector table, Exception handlers, Exception priorities, Procedures for handling exceptions.	05
Chapter 5: Architectural support for high level languages	
Abstraction in software design, data types, floating point data types, The ARM floating point architecture, use of memory, run time environment.	05
Unit – III	
Chapter 8: LPC 2129/2148 Controller Architectural overview	
On-chip memory, GPIOs, Timers, UART, ADC, I2C, SPI , RTC, ARM interfacing techniques and programming: LED, LCD, Stepper Motor, Buzzer, Keypad, ADC	10

B. V. B. College of Engineering & Technology

Text Book:

- 1. "ARM System- on-Chip Architecture" by 'Steve Furber', LPE, Second Edition.
- 2. "ARM Assembly Language fundamentals and Techniques" by William Hohl, CRC press, 2009.

References:

- 1. "ARM system Developer's Guide"- Hardbound, Publication date: 2004 Imprint: MORGAN KAUFFMAN 2. User manual on LPC21XX.
- "The 8051 Microcontroller Architecture, Programming and Applications", Kenneth J. Ayala, 3rd E.

B. V. B. College of Engineering & Technology

Program: IV Semester Bachelor of Engineering (Electronics & Communication Engineering)				Lab+
Course Title: Digital System Design using Verilog Course Code: 15EECC208			Teaching	
L-T-P: 0-0-2		Credits: 2	Contact Hours: 4Hrs/week	Hours
CIE Ma	urks: 80	SEE Marks:20	Total Marks: 100	
Teachi	ng + Lab. Hours: 48 Hrs	Examination Duration:3 Hrs		
1.	Introduction to verilog:		·	02+02
	Verilog as hdl, levels of d	esign description, simulation and synt	hesis, digital design flow.	
2.	Programming on Data flo	ow description:		02+02
	Structure of data-flow de	escription, data type – vectors. Simple	combinational circuit design like	
3.	Programming on Behavi	oral Descriptions:		04+04
Behavioral Description highlights, sequential statements. Introduction to Testbench. Design of				
	sequence multiplier, Booth multiplier. Introduction to FPGAs, Synthesis			
4.	4. Programming on Structural Descriptions:			02+02
Highlights of structural Description, Organization of the structural Descriptions, state Machines, Generate, Generic, statements. Design of 16 bit RCA and CLA				
5.	5. Programming on Tasks and Functions:			04+04
	Highlights of Tasks, and Functions, FSM, design like counter, Mealy and Moore machine, Sequence Detector.			
6.	Programming on Interfa	cing :		04+04
Interfacing with 7-segment display and push buttons. Interfacing with PS/2 Keyboard and VGA display.				
7.	7. Programming on Advanced HDL Descriptions:			02+04
Block RAMs on an FPGA and understand memory interfacing, File operations in Verilog, File processing examples.				
8.	8. Open ended Experiment: Bowling Score Keeper / Floating Point Unit Arithmetic Units/pipelined processor/traffic light			06
controller				

B. V. B. College of Engineering & Technology

Text Book

1. Nazeih M. Botros , "HDL Programming VHDL and Verilog", Dreamtech Press, 2006

Earlier known as

2. J. Bhaskar, "A Verilog Primer", BSP, 2nd edition 2003. References

Reference Books

- 1. Samir Palnitkar, "Verilog HDL", Pearson Education, 2nd Edition, 2003.
- 2. Thomas and Moorby, "The Verilog Hardware Description Language", kluwer academic publishers, 5th edition, 2002.
- 3. Stephen Brown and Zvonko Vranesic, "Fundamentals of Logic Design with Verilog", TMH publications, 2007.
- 4. Charles.H.Roth,Jr., Lizy Kurian John "Digital System Design using VHDL", Thomson, 2nd Edition, 2008.

Program: IV Semester Bachelor of Engineering (Electronics & Communication Engineering)			
Course Title: Data acquisition and Controls Lab Course Code: 15EECP203		Course Code: 15EECP203	
L-T-P: 0-0-1	Credits: 1	Contact Hours: 2Hrs/week	
CIE Marks: 80	SEE Marks: 20	Total Marks: 100	
Teaching Hours: 25Hrs	Examination Duration: 2 Hrs		
Data acquistion Experiments:			
1) Resistive, Capacitive and	Inductive transducer characterization		
2) Voltage series, voltage sl	hunt feedback amplifier.		
3) Transconductance and T	Fransresistance amplifier.		
4) Comparator. (ZCD & Sch	mitt trigger), Precision rectifier.		
5) Waveform generators.			
Sample and hold circuit.			
7) Instrumentation Amplifi	er using op-amp.		
8) Data converters to deter a. 4-bit R-2R D-A (b. 2-Bit flash ADC/	 8) Data converters to determine their performance parameters. a. 4-bit R-2R D-A Converter. b. 2-Bit flash ADC/8-Bit ADC (Using 0808IC) 		
9) 1 st and 2 nd order Low pa	ass and High pass filter.		
10) DAQ system for measuri	ng given parameter.		
Controls Experiments:			
11) Determine Transient Response of RLC circuits, Lag, Lead and Lag-Lead networks			
12) Stability Analysis:	12) Stability Analysis:		
a) Poles and Zeros	a) Poles and Zeros		
b) Open loop and Clo	osed Loop Gain.		
c) Comparative stud	y of Bode, Nyquist and Root locus with respect	to Stability.	
13) P, PI, PD and PID contro	llers.		

Program: IV Semester Bachelor of Engineering (Electronics & Communication Engineering)				
Course Title: ARM Microcontroller Lab Course Code: 15EECP204				
L-T-P: 0)-0-1	Credits: 1	Contact Hours: 2Hrs/week	
CIE Ma	rks: 80	SEE Marks: 20	Total Marks: 100	
Teachir	ng Hours: 25Hrs	Examination Duration: 2 Hrs		
List of E	Experiments:			
1.	Write a C language prog	rams to perform Basic ARM contr	oller based applications.	
	 Addition of n nu 	umber in an array		
	 Sort a list of val 	ues		
	Finding largest	no in an array Write a program to	count up in from 00 to 99	
2.	Write a C language prog	rams to perform following operat	ions.	
	Count no of chars in a string.			
	 Concatenating 	two strings.		
	Compare two strings for equality.			
	 Replace charact 	ter in a string		
3.	Write a program to turn	on led on the mbed board using o	online compiler.	
4.	Write a program to inter	face 7-seg to mbed board and wr	ite a program to count 0 to 99	
5.	Write a program to inter	face LCD to mbed board and writ	e a program to display the string on the LCD	
6.	Write a program to generate interrupts to serve two tasks			
7.	Write a program for sch	eduling of a thread in RTOS using	ARM cortex M3	
8.	Design and develop an E transfer the same seriall	Data monitoring system using ARN y to PC through hyper terminal	I controller for access the data from the sensor and	

B. V. B. College of Engineering & Technology

Program: III Semester Bachelor of Engineering (Electronics & Communication Engineering)			
Course Title: Engineering Design Course Code: 17EECF201			Teaching
L-T-P: 0-0-3	Credits: 3	Contact Hours: 03 Hrs/week	Leure
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	Hours
Teaching Hours:	Examination Duration: 2 Hrs		
	PART A		
Planning Introduction to Engineer Objectives, Design Specif	ing Design, Problem Definition, De fications	sign attributes Gantt Chart, Design	02
Conceptual Design Functional Analysis, Cond	cept generation, Concept Evaluatio	n	03
System Level Design Product Architecture, Configuration Design, Parametric Design			03
Detail Design			03
Sub-system Design, Design Verification			
	PART B		
OrCAD			
Functional simulation of basic Analog and Digital application circuits using OrCAD eCAD tool			01
Schematic Capture of the	e reference design using using OrC	AD eCAD tool.	01
Layout Design of the refe	erence design using using OrCAD e	CAD tool.	01
Creation of Symbols/Cell/Part			01
LabVIEW			01
Introduction to LabVIEW and functional simulation of basic Analog and Digital application circuits in LabVIEW			
Functional Simulation of	the circuit for selected problem st	atement	01
Co-simulation of the circ	uit for selected problem statement	t	01

Text Book

- 1. Simon Haykin, Barry Van Veen, Signals and Systems, John Wiley, 2002
- 2. Peter V. O'neil, Advanced Engineering Mathematics, Thmoson Books/Cole, Singapore
- 3. AdvancedEngineeringMathematics,3ed,DennisGZillandMichaelRCullin, NarosaPublishingHouse,NewDelhi,2009

References

- 1. Kreyszig E., Advanced Engineering Mathematics, 8ed, John Wiley & sons, 2003.
- 2. Stanley J Farlow, Partial differential equations for Scientists and Engineers, Dover publications, INC, New York, 1993

Semester: IV

Course Title: Product Realization		Course Code: 17EEC	-203	
Total Contact (0-0-2)	Total Contact Credits: 2 (0-0-2)		Duration of SEE Credits: -	
ISA Marks: 80		ESA Marks: 20		
Week #	Particulars	Template #	Venue	
Week 1	> Introduction to Prototyping		Studio Engagement	
and	> Defining-		Lingugement	
Week 2	Specifications, Part Drawings, Assembly Drawings PCB Layout, Wireframe , Pseudocode, BOM Process Plan, Fabrication and Test Plan Validation	, ,		
	> IOT Workshop			
Week 3	 Identifying sub-assemblies (minimum of 3) 		Makers Space/	
	 Selection of materials for all the parts and joining techniques 			
Week 4	Process plan			
	Identifying the proper machines and tools required for prototyping.			
	Preparing of raw materials for prototyping.			
	Plan and procure the bought out parts.			
Week 5	> Fabricate the parts for sub assembly 1			
Week 6	> Fabricate the parts for sub assembly 2			
Week 7	 Fabricate the parts for sub assembly 3 			
Week 8	 Assemble the sub assemblies and check for interference and functionality 	J		
Week 9	> Test the functional prototype using proper identified test			

Earlier known as B. V. B. College of Engineering & Technology

	methods.	
Week 10	Analyse the test results	
	System modification	
Week 11	 Final concluding review 	Studio/ Makers Space
	Product catalogue	

References

1. Pahl, G., Beitz, W., Feldhusen, J. and Grote ; "Engineering Design-A Systematic Approach" by, K.-H- Springer; 3rd ed. 2007

Program: V Semester Bachelor of Engineering (Electronics & Communication Engineering)			Teaching
Course Title: Communicat	tion Systems	Course Code: 17EECC302	Hours
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4 Hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		
	Content	:	
	Unit – 1		
Chapter No. 1. Principles	of Amplitude modulation		
Introduction to AM : DSBF wave, Generation and det	C,DSBSC,SSB,VSB- Frequency domain ection of VSB modulated wave, Frequ	and time-domain description of modulated ency division multiplexing (FDM)	06
Chapter No. 2. Principles of Angle modulation		06	
Basic definitions: Phase and frequency modulation, phase and frequency deviation, narrow and wide band frequency modulation, spectrum and phase diagram of FM, transmission band width of FM waves, effect of			
modulation index on bandwidth, generation of FM Waves: indirect FM, direct FM and demodulation.			
Chapter No. 3. Noise and its characteristics/ Effects of Noise on Receiver		08	
noise in FM receivers, pre-emphasis and de-emphasis in FM.			
	Unit – 2		
Chapter No. 4. Introduction	on to Sampling process		08
Sampling theorem, quad samples,signal distortion switching technologies, SC	rature sampling of band pass signa in sampling, practical aspects of sa DNET.	als, reconstruction of a message from its ampling and signal recovery, PAM, digital	
Chapter No. 5. Quantizati	on and coding techniques		06
Pulse Code modulation (P DPCM, DM. adaptive DM.	CM), coding techniques, PCM, quantiz	ation noise and SNR, robust quantization,	
Chapter No. 6. Binary Dig	ital Modulation Techniques		08
Geometric interpretation of signals, Gram-Schmidt orthogonalization procedure, digital modulation formats, coherent binary modulation techniques: ASK, FSK, PSK.			
	Unit - 3		
Chapter No. 7. Quadratur	e Digital Modulation Techniques:		08
Coherent quadrature and demodulation techniques	M-QAM modulation/ demodulation to , comparison of binary and quaternary	echniques, non-coherent binary v modulation techniques.	

B. V. B. College of Engineering & Technology

Text Book:

- 1. Simon Haykin, Communication Systems, 4th edition, John Wiley 2003.
- 2. Simon Haykin, Digital communications, 4th edition, JohnWiley, 2003.

Reference Books:

1. K.Sam Shanmugam, Digital and analog communication systems, John Wiley, 1996.

Earlier known as

- 2. Simon Haykin, An introduction to Analog and Digital Communication, John Wiley, 2003
- 3. B.P. Lathi and Zhi Ding, Modern Digital and Analog Communication Systems, 4th edition, 2016

Program: V Semester Bachelor of Engineering (Electronics & Communication Engineering)			Teaching	
Course Title: Digital Signal Processing Course Code: 17EECC303			Hours	
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4Hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs			
	Content	•		
	Unit - 1			
Chapter No. 1. Discrete Four	rier Transforms			
Brief review of signals and systems: Basic definitions, properties and applications. Discrete Fourier Transforms (DFT): Frequency domain sampling and reconstruction of discrete time signals. DFT as a linear transformation, its relationship with other transforms. Properties of DFT, multiplication of two DFTs- the circular convolution, additional DFT properties, use of DFT in linear filtering, overlap-save and overlap-add method.			12	
Chapter No. 2. Fast-Fourier-	Transform (FFT) algorithms		08	
Fast-Fourier-Transform (FFT) algorithms: Direct computation of DFT, Need for efficient computation of the DFT (i.e. FFT algorithms), Radix-2 FFT algorithm for the computation of DFT and IDFT: Decimation-in-time and Decimation-in-frequency algorithms. Composite FFT.				
	Unit - 2			
Chapter No. 3. Design of Digital FIR Filters				
Design of digital filters: Considerations and characteristics of practical digital filters. design of digital filters: symmetric and anti-symmetric FIR filters, design of linear phase FIR filters using windowing method-Rectangular, Hamming, Hanning, Bartlet and Kaiser windows. Design of linear phase FIR filters using frequency sampling technique.			10	
Chapter No. 4. Design of IIR	filters from analog filters			
Design of IIR filters from analog filters: approximation of derivative, impulse invariance method, bilinear transformation, Characteristics of commonly used analog filters: Butterworth and Chebyshev filters, frequency transformation in the digital domain.			10	
	Unit - 3			
Chapter No. 5. Realization o Implementation of Digital sy frequency sampling and latti	f Digital FIR Systems stems: structures for FIR systems: d ce structure, Comparison of the rea	irect form I, direct form II, cascade, lization techniques.	05	
Chapter No. 6. Realization o	f Digital IIR Systems	·		
Structures for IIR systems - direct form I, direct form II, cascade, parallel and lattice structure, Comparison of the realization techniques.			05	
Text Books	Text Books			
 Proakis&Manolakis, Digital signal processing Principles Algorithms & Applications, 4th edition, PHI, New 2007 			v Delhi,	
2. S.K. Mitra, Digital Signal Processing, 2nd edition, Tata Mc-Graw Hill, 2004				
References				
1. Oppenheim& Schaffer,	Discrete Time Signal Processing, 5th	edition, PHI, New Delhi, 2000		

B. V. B. College of Engineering & Technology

Program: V Semester Bachelor of Engineering (Electronics & Communication Engineering)			Teaching
Course Title: Operating Syste	m and Embedded System Design	Course Code: 17EECC304	Hours
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3Hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40 Hrs	Examination Duration: 3 Hrs		
	Unit I		
Chapter 1: Introduction and S	System structures		03
what is an operating system?	Goals of an operating system. Ope	ration of an os .Resource allocation and	
related functions. Classes of	an operating system. Operating System	stem Services . System Calls and Types.	
Operating system Structure –	Simple, Layered, Microkernels, Mod	ules and Hybrid systems. System Boot	
Chapter 2: Process Managem	ent		05
Process concept- operating of	n process, inter process communicat	ion. process scheduling- CPU scheduler-	05
preemptive scheduling, sche	duling criteria, scheduling algorithr	ns- first come first served scheduling,	
shortest job first scheduling, p	priority scheduling, round robin sche	duling.	
			00
Chapter 3: Memory Managen	nent		06
Memory Management Strates	zies: process address space static vs (dynamic loading. Swapping, memory	
allocation; fragmentation Pag	ing; Structure of page table; Segmen	tation, Virtual Memory.	
	Unit II		
Chapter 4: Introduction To Re	eal-Time Operating Systems		08
Introduction To Real-Time O	perating Systems: Introduction to C	OS, Introduction to real time embedded	
system- real time systems, o	characteristics of real time systems	and the future of embedded systems.	
Introduction to RTOS, key of	characteristics of RTOS, its kernel,	components in RTOS kernel, objects,	
scheduler, services, context s	witch, Scheduling types: Preemptive	e priority-based scheduling, Round-robin	
and preemptive scheduling.			
Chapter 5: Tasks, Semaphore	s and Message Queues:		00
Tasks, Semaphores and Mes	sage Queues: A task, its structure	, A typical finite state machine, Steps	08
showing the how FSM works	. A semaphore, its structure, binar	y semaphore, mutual exclusion (mutex)	
semaphore, Synchronization	between two tasks and multiple	e tasks, Single shared-resource-access	
synchronization, Recursive s	hared- resource-access synchroniza	ition. A message queue, its structure,	
Message copying and memor	y use for sending and receiving mes	sages, Sending messages in FIFO or LIFO	
order, broadcasting messages	•		
	Unit III		
Chapter 6: Typical Embedded	System:		05
Classification and purposes of	empeaded system, Characters and C	duality attributes of embedded system,	
Core and Supporting compon	ents of embedded system, Embedde	d firmware	
Chapter 7: Wired and Wireles	s Protocols: Bus communication pro	tocol (USB,I2C,SPI), Wireless and mobile	
system protocol (Bluetooth, 8	02.11 and its variants, ZigBee), Embe	dded design cycle-case study-ACVM	05

Text Books

- Silberschatz ,Galvin and Gagne ,IOperating system conceptsI,9th edition, WILEY Publication. 1.
- 2. Qing Li with Caroline Yao, Real-Time Concepts for Embedded Systems, 1E, Published, 2011
- Shibu K V, IIntroduction to Embedded systems I,6th reprint 2012 3.
- Raj Kamal, Embedded Systems , McGraw-Hill Education 4. References
- Dhananjay Dhamdhere, Operating Systems a Concept Based Approachl,2nd edition, McGraw-Hill Education 1.

Earlier known as B. V. B. College of Engineering & Technology

Program: V Semester Bachelor of Engineering (Electronics & Communication Engineering)					
Course Title: Communication and Signal Processing Lab		Course Code: 17EECP301	Hours		
L-T-P: 0-0-1 Credits: 1		Contact Hours:2 Hrs/week			
ISA Marks: 80	ESA Marks: 20	Total Marks: 100			
Teaching Hours: 24Hrs	Examination Duration: -				

List of Experiments

Proof of concept on Discrete ICs

- 1. DSBSC modulator and demodulator.
- 2. Frequency modulator and demodulator
- 3. Frequency Shift Keying (FSK) modulator and demodulator.
- 4. Time Division Multiplexing with minimum four channels

Mathematical Modeling and Simulation

- 1. Design Square Law Modulator and detect the signal using square law and envelop schemes.
- 2. Design Frequency Modulator and Demodulator and analyze the performance without and with noise.
- 3. Design, analyze and compare the BER for different digital modulation techniques.
- 4. Develop a model and simulate BPSK using Costas loop.

Implementation on Real Time Hardware

- 1. Design and Implement a complete real-time RF transceiver on Advanced Omni Software Radio Transceiver (AOSRT) for Narrow Band Frequency Modulation and Wide band Frequency Modulation and performanalysis.
- 2. Design and Implement a real-time RF transceiver for audio input using M-array PSK modulation scheme and analyze performance in terms of SNR and BER.

Open Ended Experiment

1. Explore the features of SDR to design an appropriate and robust frequency selective system to eliminate noise present in an audio signal.

Earlier known as B. V. B. College of Engineering & Technology

Program: V Semester Bachelor of Engineering (Electronics & Communication Engineering)			
RTOS Laboratory Experiments Course Code: 17EECP302		Course Code: 17EECP302	
ISA Marks: 80	ESA Marks: - 20	Total Marks: 100	
Teaching Hours: 24Hrs	Examination Duration: -	Contact Hours: 2 Hrs/week	
List of Exporimonts:			

List of Experiments:

- 1. Analyze and Demonstrate debugging skills for programs given.
- 2. Program & demonstrate interfaces I2C-memory to LPC2148 Microcontroller.
- 3. Program & demonstrate interfaces SPI-RTC to LPC2148 Microcontroller.
- 4. Program & demonstrate concept of H/W Interrupts interface to LPC2148 Microcontroller.
- 5. Program & demonstrate concept of Task Scheduling.
- 6. Program & demonstrate concept of Semaphore.
- 7. Program & demonstrate concept of Mailbox.
- Program & demonstrate concept of S/W Interrupts. 8.
- 9. Program & demonstrate concept of interrupts.
- 10. Program & demonstrate concept of Inter Task Communication.

Reference Books

- 1. -ARM System- on-Chip Architecture by 'Steve Furber , LPE, Second Edition.
- -Embedded Systems- Architecture, Programming and Design by Raj Kamal, TMH 2.
- Dr. K.V.K.K. Prasad, -Embedded/Real-time systems: concepts, Design & Programming , published by dreamtech 3. press.

Manual

- 1. LPC2148 datasheet by NXP.
- 2. LPC2148 board manual by ALS, Bangalore.

Laboratory Title: Mini Project	Lab. Code: 17EECW301
Total Hours: 60	Duration of ESA Hours: 3 Hours
ISA Marks: 50	ESA Marks: 50

1. The project needs to encompass the concepts leant in a subject/s studied in the previous four

semesters, so that the student will learn to integrate, the knowledge base acquired to provide a solution to the identified need.

- 2. Project should be able to exhibit sensing, controlling and actuation sections.
- 3. The mini project essentially will comprise of two components:
 - The hardware design
 - The graphical user interface (GUI) for application and data analysis with report generation.

4. Student can select a project which leads to a product or model or prototype related to following areas (not limited to these areas).

- Pulse and digital circuits: simulate the working of one or more circuits
- Signals and systems: simulate the behavior of a system by considering different signals
- Analog Electronic: simulate working of different devices
- Control systems: simulate the behavior of a control system
- Linear Integrated Circuits: simulate working of one or more circuits
- Micro-controllers: simulate the ALU/control unit of microcontroller
- 5. Time plan: Effort to do the project should be between 120-150 Hrs per team, which includes self study of an individual member (80-100 Hrs) and team work (40-50 hrs).
- 6. Learning overhead should be 20-25% of total project development time.

Evaluation Process

Continuous Internal Assessment (CIA) is carried out through reviews and there exist

2 Committee reviews and 4 Guide reviews

Review schedule

Students will have a meeting with guide every week to update the progress and assessment will be carried on as per review schedule

Review No	Type of review	Marks allotted	Timeline
1	Committee	5	2 nd week of semester
2	Guide	5	3rd week of semester
3	Guide	10	7th week of semester
4	Guide	10	15th week of semester
5	Committee	15	13th week of semester
6	Guide	5	16th week of semester

Program: VI Semester Bachelor of Engineering (Electronics & Communication Engineering) Teaching Hours **Course Title: Computer Communication Networks** Course Code: 17EECC306 L-T-P: 4-0-0 Credits: 4 Contact Hours: 4 Hrs/week ISA Marks:50 ESA Marks: 50 Total Marks: 100 **Teaching Hours: 50Hrs Examination Duration: 3 Hrs** Content Hrs Unit - 1 08 Chapter No. 1. Computer Networks and the Internet What is Internet?The Network Edge, the network Core,delay -loss—throughput in packet switched networks. Protocol layers (OSI layers) and their service models, networks under attack. **Chapter No. 2. Application Layer** 12 Principles of network applications, the web and HTTP, DHCP, file transfer-FTP, electronic mail in the internet, DNS, peer-to-peer applications, socket programming-creating network applications Unit - 2 Chapter No. 3. Transport Layer 10 Introduction and transport-layer services-relationship between transport and network layers overview of the transport layer in the internet, multiplexing and de multiplexing, connectionless transport: UDP, principles of reliable data transfer, connection oriented transport TCP, TCP congestion control. Chapter No. 4. Network layer 10 Introduction, virtual circuit and datagram networks, what's inside router? The Internet protocol (IP): forwarding and addressing in the internet, routing algorithms, routing in the internet, broadcast and multi cast routing. Unit - 3 Chapter No. 5. The link layer: Links, Access networks, and LANs 10 Introduction to the link layer, error-detection and correction techniques, multiple access links and protocols, switched local area networks, link virtualization: A network as a link layer, data center networking, retrospective: A day in the life of a web page request. Text Book 1. Kurose & Ross, Computer Networking A Top-Down Approach, 6th editionPEARSON, 2013. References 1. Larry L. Peterson & Bruce S. Davie, Computer Networks: A Systems Approach, 4th edition, Elsevier, 2004 Behrouz A. Forouzan, Data Communication and Networking, 4th edition, TMG, 2002 2.

B. V. B. College of Engineering & Technology

Program: VI Semester Bachelor of Engineering (Electronics & Communication Engineering)			
Course Title: Machine Learning Course Code: 17EECC307			Hours
L-T-P: 2-0-1	Credits: 3	Contact Hours: 4 Hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		
		-	
	Content		
	Unit – 1		
Chapter No. 1. Introduction	1		05
Introduction what is machin supervised, unsupervised ar	e learning? Applications of machin nd reinforcement learning, dataset	e learning, types of machine learning: formats, basic terminologies.	
Chapter No. 2. Supervised I	earning		10
Linear regression, logistic re	gression linear regression: single a	nd multiple variables, sum of squares error	
function, the gradient desce	ent algorithm, application, logistic r	egression, the cost function, classification	
using logistic regression, on	e-v/s-all classification using logistic	regression, regularization.	
Unit – 2			
Chapter No. 3. Supervised Learning: Neural Network			10
Introduction to perception learning, implementing simple gates XOR, AND, OR using neural network. Model representation, gradient checking, back propagation algorithm, multi-class classification,			
application-			
Chapter No. 4. Unsupervise	05		
Introduction. K means cluste	ering, algorithm, cost function, apr	lication.	
	Unit – 3		
Chapter No. 5. Unsupervise	ed Learning: Dimensionality reduct	ion	04
Dimensionality reduction. P	CA- principal component analysis.	applications, clustering data and PCA.	
Text Book			
1. Tom Mitchell, Machine Learning, 1 st edition, McGraw-Hill. , 1997			
2. Christopher Bishop, Pattern Recognition and Machine Learning, 1 st edition, Springer, 2007			
References			
1. Trevor Hastie, Robe and Prediction, 2 nd	ert Tibshirani, Jerome Friedman, Th edition, Springer, 2009	e Elements of Statistical Learning : Data Min	ning, Inference

Course Title: Analog Circuit Design Course Code: 17EECE301 L-T-P-SS: 3-0-0-0 Credits: 3 **Contact Hours: 3** CIE Marks: 50 SEE Marks: 50 Self-Study : --**Teaching Hours: 40 Examination Duration: 3 hours** Total Marks: 100 UNIT I 1. Basic MOS Device Physics: General considerations, MOS I/V characteristics, second order effects and MOS device models. 04 Current Mirrors: Basic current Mirror, Widlar, Cascode and Wilson Current Mirrors. 2. 04 3. Single Stage Amplifiers: CS, CG, CD, Cascode and Folded Cascode. Frequency response curves 08 UNIT II Differential Amplifiers: Differential Amplifier, 5 pack differential Amplifier, CMRR, PSRR 4. 05 Op-Amp: Performance parameters, Two stage (7-pack) Op-amp, Slew rate, PSRR , Noise in Op-amps 5. 05 6. Compensation Technique: Nyquist stability Criterion, Gain and Phase margins, Compensation of Two stage 06 op-amp and Dominant pole compensation technique. UNIT III 04 7. Reference Circuits: Current reference, startup circuits, Bandgap reference circuit, Current mode Bandgap reference. 04 8. Comparators: Basic Comparator architecture, non-idealities-offset error, bandwidth consideration, Dynamic comparator, **Text Books** 1. B Razavi 'Design of Analog CMOS Integrated Circuits' First Edition McGraw Hill 2001 Phillip. E. Allen, Douglas R. Holberg, "CMOS Analog circuit Design" Oxford University Press, 2002. 2. 3. Baker, Li, Boyce, "CMOS: Circuit Design, Layout and Simulation", Prentice Hall of India, 2000

Earlier known as B. V. B. College of Engineering & Technology

Reference Books

- 1. N. Weste and K. Eshranghian, Principles of CMOS VLSI Design, Addison Wesley. 1985.
- 2. J. Rabaey, Digital Integrated Circuits: A Design Perspective, Prentice Hall India, 1997

Earlier known as B. V. B. College of Engineering & Technology

Course Title: Advanced Digital Logic Design	Course code: 17EECE302		
L-T- P: 0-0-3	Credits: 03	Contact Hrs: 04hrs/week	
CIE Marks: 100	SEE Marks: 00	Total Marks: 100	
Teaching Hrs: 16hrs			
Lab Hrs: 24 hrs			
Chapter No. 1. Digital Integrated Circuits			8 hrs
Challenges in digital design, Design metrics, Cost of Integrated circuits, ASIC, Evolution of SoC ASIC Flow Vs SoC Flow, SoC Design Challenges. Introduction to CMOS Technology, PMOS & NMOS Operation, CMOS Operation principles, Characteristic curves of CMOS, CMOS Inverter and characteristic curves, Delays in inverters, Buffer Design, Power dissipation in CMOS, CMOS Logic, Stick diagrams and Layout diagrams. Setup time, Hold Time, Timing Concepts.			
Chapter No. 2. Digital Building Blocks			6 hrs
Decoder, encoder, code converters, Priority encoder, multiplexer, demultiplexer, Comparators, Parity check schemes, Multiplexer, De-multiplexer, Pass Transistor Logic, application of multiplexer as a multi-purpose logical element. Asynchronous and synchronous up-down counters, Shift registers. FSM Design, Mealy and Moore Modelling, Adder & Multiplier concepts, Memory Concept			
Chapter No. 3. Logic Design Using Verilog			10 hrs
Evolution & importance of HDL, Introduction to Verilog, Levels of Abstraction, Typical Design Flow, Lexical Conventions, Data Types Modules, Nets, Values, Data Types, Comments, arrays in Verilog, Expressions, Operators, Operands, Arrays, memories, Strings, Delays, parameterized designs Procedural blocks, Blocking and Non-Blocking Assignment, looping, flow Control, Task, Function, Synchronization, Event Simulation. Need for Verification, Basic test bench generation and Simulation			
Chapter No. 4. Principles of RTL Design			8 hrs
Verilog Coding Concepts, Verilog coding guide lines: Combinational, Sequential, FSM. General Guidelines, Synthesizable Verilog Constructs, Sensitivity List, Verilog Events, RTL Design Challenges, Clock Domain Crossing. Verilog modeling of combinational logic and sequential logic			
Chapter No. 5. Design and simulation of Architectural building	blocks		8 hrs
Basic Building blocks design using Verilog HDL: Arithmetic Components – Adder, Subtractor, and Multiplier design, Data Integrity – Parity Generation circuits, Control logic – Arbitration, FSM Design – overlapping and non-overlapping Mealy and Moore state machine design			

Reference Books:

- 1. Digital Design by Morris Mano M, 4th Edition.
- 2. Verilog HDL: A Guide to Digital Design and Synthesis by Samir Palnitkar, 2nd Edition.
- 3. Principles of VLSI RTL Design: A Practical Guide by Sapan Garg, 2011.

Tools: Questa Sim, NC Verilog, NC Sim, CVER + GTKWave, VCSMX, Modelsim for Verilog

Course Title: Embedded Intelligent Systems		Course Code: 17EECE310
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 6hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs: 60	Exam Duration: 3 hrs	

Unit - I				
1	Basics of embedded systems Linux Application Programming, System V IPC, . Linux Kernel Internals and Architecture , Kernel Core ,			
	driver source build and execute	10 hrs		
2	Heterogeneous computing			
Basics of heterogeneous computing with various hardware architectures designed for specific type of tasks, Advanced heterogeneous computing with a. Introduction to Parallel programming b.GPU programming (OpenCL). Open standards for heterogeneous computing (Openvx), Basic OpenCL examples - Coding, compilation and execution		12 hrs		
Unit - II				
3	ML Frameworks with the target device	16 hrs		
	Caffe, tensorflow, TF Lite machine learning frameworks & architecture ,Model parsing, feature support and flexibility ,Supported layers , advantages and disadvantages with each of these frameworks, Android NN architecture overview , Full stack compilation and execution on embedded device			
4	Model Development and Optimization	8 hrs		
	Significance of on device AI ,Quantization , pruning, weight sharing, Distillation ,Various pre-trained networks and design considerations to choose a particular pre-trained model ,Federated Learning , Flexible Inferencing			
Unit - III				
5	Android Anatomy	8 hrs		
	Android Architecture ,Linux Kernel , Binder , HAL Native Libraries , Android Runtime, Dalvik Application framework , Applications, IPC			
Text Boo	ks			
 Linux System Programming , by Robert Love , Copyright © 2007 O'Reilly Media Heterogeneous Computing with OpenCL, 2nd Edition by Dana Schaa, Perhaad Mistry, David R. Kaeli, Lee Howes, Benedict Gaster , Publisher: Morgan Kaufmann 				
Reference Books:				
1. Deep Learning , MIT Press book , Goodfellow, Bengio, and Courville's				
2. Beginning Android , by Wei-Meng Lee , Publisher: Wrox , O'Reilly Media				

Scheme for End Semester Assessment (ESA)

UNIT	Experiments to be set of 10 Marks Each	Chapter Numbers	Instructions
1	Project Examination	1,2,3,4,5	Project implementation and demonstration 20 marks

Earlier known as B. V. B. College of Engineering & Technology

Program: VI Semester Bachelor of Engineering (Electronics & Communication Engineering)				
Automotive Electronics Laboratory Experiments(17EECP304)				
ISA Marks: 80	ESA Marks: - 20 Total Marks: 100			
Teaching Hours: 24Hrs	Examination Duration:-	Contact Hours: 2 Hrs/week		

List of Experiments

- 1. Demonstration of cut section modules: Engine, Transmission, Steering, Braking, Suspension Automobile dept.
- 2. Electronic engine control system: Injection and Ignition control system Transmission trainer modules
- 3. Modeling a vehicle motion on a flat surface during hard acceleration, deceleration and steady acceleration.
- 4. Simulation and modeling of a system and realization on the hardware platform.
- 5. Modeling Seat belt warning system, and Vehicle speed control based on the gear input.
- 6. EGAS modeling and simulation using Simulink and realization on the hardware platform.
- 7. Interior lighting control modeling with state flow.
- 8. Gear input transmission over CAN bus using ARM Cortex m3 and signal analysis using CANalyzer/BusMaster software.
- 9. Realize Steer by wire system using model based design.
- 10. Realize cruise application using model based design

Text Books

- 1. Ribbens, Understanding of Automotive electronics, 6th , Elsevier, 2003
- 2. Denton.T, Automobile Electrical and Electronic Systems, Elsevier, 3rd Edition, 2004

Program: VI Semester Bachelor of Engineering (Electronics & Communication Engineering)					
Computer Communication Networks Laboratory Experiments(17EECP303)					
ISA Marks: 80 ESA Marks: - 20 Total Marks: 100			Total Marks: 100		
Teachin	g Hours: 24Hrs	Examination Duration:-	Contact Hours: 2 Hrs/week		
List of E	<u>xperiments</u>				
1.	Introduction to Ha	ardware components and Ethernet LAN se	et up.		
2.	Introduction to so	cket programming			
3.	Implementation of	f FTP			
4.	Implementation of	f error control techniques.			
5.	Implementation of flow control ARQs				
6.	5. Introduction to Network operating system.				
7.	'. Subnet design				
8.	VLAN setup				
9.	OSPF and RIP configuration and performance analysis				
10.	10. eBGP and iBGP configuration and performance analysis				
Text Bo	Text Book				
1.	Kurose & Ross, Co	mputer Networking A Top-Down Approac	h, 6 th edition PEARSON, 2013.		
Referen	ces				
1.	Cisco networking academy, https://www.netacad.com/				
2.	Juniper networkin	g academy, https://learningportal.junipe	r.net/		

Earlier known as B. V. B. College of Engineering & Technology

Laboratory Title: Minor Project	Lab. Code: 17EECW302	
Total Hours: 60	Duration of SEE Hours: 3	
SEE Marks: 50	CIE Marks: 50	

Experiment wise Plan

List of experiments/jobs planned to meet the requirements of the course.

Category: Open Ended		Total Weightage: 50.00		No. of lab sessions: 4.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	Review1. Read, understand and interpret the scope of the given problem.	1.00	10.00	
	 Dearning Outcomes: The students should be able to: Perform need analysis Identify and define a problem in so Perform literature survey Identify multiple solutions for a give suited solution with justifications 	ocietal context ven problem and selec	t the best	
2	Review 2 1.Project Planning (Gantt chart) and WBS (Work Breakdown Structure) 2.Functional block diagram (black box and white box), Morphological chart, Design specifications and Bill of Materials (BOM	1.00	10.00	
	 Dearning Outcomes: The students should be able to: 1. Do project Planning (Gantt ch Structure) Write functional block diagrar Morphological chart, Design specification 	art) and WBS(Work n (black box and ons and Bill of Materia	Breakdown white box), Is (BOM)	

2	Poviow 2	1.00	10.00	
5	1 Detailed block diagram algorithm	1.00	10.00	
	and programming 2. Simulation and			
	Implementation			
	3. Initial discussion on optimization			
	4. Draft of report			
	In the second			
	The students should be able to:			
	1. Develop detailed block diagram, algo	rithm and programmi	ng	
	2. Simulate and demonstrate the partia	l results.		
	3. Plan for the optimization.			
	4. Document the work done.			
4	Review 4	1.00	20.00	
	1. Demonstration of working			
	2 Analysis of results			
	3 Ontimization			
	4 Benort			
	Learning Outcomes:			
	In the students should be able to:Demonstrate the working of designed proptotye.			
	2. Analyse the results			
	3. Comment on the optimization techni	que.		
	3. Write technical report with report			

Course Title: Product Design Realization	Course Code: 17EECO401	
Total Contact Credits: 3	Duration of SEE Credits: -	
(0-0-3)		
ISA Marks: 80	ESA Marks: 20	

 Week # 	Particulars	 Template # 	 Venue
 Week 1 and Week 2 	 Introduction to Prototyping Defining- Specifications, Part Drawings, Assembly Drawings, PCB Layout, Wireframe , Pseudocode, BOM, Process Plan, Fabrication and Test Plan Validation IOT Workshop 	•	 Studio Engagemen t
Week 3	 Identifying sub-assemblies (minimum of 3) Selection of materials for all the parts and joining techniques 	•	 Makers Space/
• Week 4	 Process plan Identifying the proper machines and tools required for prototyping. Preparing of raw materials for prototyping. Plan and procure the bought out parts. 	•	
Week 5	Fabricate the parts for sub assembly 1	•	
 Week 6 	Fabricate the parts for sub assembly 2		
 Week 7 	Fabricate the parts for sub assembly 3		
 Week 8 	Assemble the sub assemblies and check for interference and functionality	•	

 Week 9 	Test the functional prototype using proper identified test methods.	•	
 Week 10 	Analyse the test resultsSystem modification	•	
 Week 11 	Final concluding reviewProduct catalogue	•	 Studio/ Makers Space

References

1. Pahl, G., Beitz, W., Feldhusen, J. and Grote ; "Engineering Design-A Systematic Approach" by, K.-H- Springer; 3rd ed. 2007

Laboratory Title: C Programming (for Diploma)	Lab. Code: 18EECF204
Total Hours: 20	Duration of Exam: 02
ESA Marks: 20	Total ISA. Marks: 80

Experiment wise plan

Expt./Job No.	Experiment/job Details	No. of Lab. Session/s per batch (estimate)	Marks/Experiment
1.	Write a C program to perform addition , subtraction , multiplication and division of two numbers .	01	8.00
2.	 Write a C program to i) Identify greater number between two numbers using C program. ii) To check a given number is Even or Odd . 	01	8.00
3.	Write a C program toi) To find the roots of a quadratic equation.ii) Find the factorial of given number.	01	8.00
4.	Write a C program to i) To find the sum of n natural numbers. ii) Print the sum of 1 + 3 + 5 + 7 + + n	01	8.00
5.	Write a C program to i) Print the pattern . * ** *** **** ii) Print the pattern 1 12 123 1234	01	8.00

1. List of experiments/jobs planned to meet the requirements of the course.

8.00

8.00

8.00

8.00

8.00

Earlier known as B. V. B. College of Engineering & Technology

	12345	
6.	Write a C program to To test whether the given character is Vowel or not. (using switch case)	01
7.	Write a C program to To accept 10 numbers and make the average of the numbers using one dimensional array.	01
8.	Write a C program to Find out square of a number using function.	01

9	Write a C program to	01
	To find the summation of three numbers using function.	
10	Write a C program to	01
	Find out addition of two matrices.	

1. Materials and Resources Required:

Text Book

1. Programming in ANSI C, E Balagurusamy

Earlier known as B. V. B. College of Engineering & Technology

Program: III Semester Bachelor of Engineering (Electronics & Communication Engineering)				
Cours	e Title: Data Structure using	С	Course Code: 18EECF201	
L-T-P: 0-0-3		Credits: 3	Contact Hours: 6Hrs/week	Teaching
ISA Marks: 80 ESA Marks:- 20 Total Marks: 100		Total Marks: 100	+ Lab Hours.	
Teach	ing + Lab. Hours: 72 Hrs			
1.	Programming on pointer common memory management function	oncepts: Pointer concepts,1 tions	LD and 2D arrays, pointers to functions,	02+06
2. Programming on string handling functions using pointers, structures, bit-fields : Perform string handling functions like String length, String concatenate, Strings compare, String copy and Strings reverse, Implementing Structures, union andbit-field.			02+06	
3. Programming on files: Open, Close, Read, Write and Append the file.			02+04	
4. Programming on stack data structures and applications: Insert delete and display an integer in a stack, Conversion from Infix to postfix & Infix to Prefix, Recursion.			04+04	
5. Programming on queue data structures: Insert at rear end ,delete at front end and display the integers in queue, Deque and circular queue.			04+04	
6.	6. Programming on linked lists: Insert, delete and display a node in Singly Linked List, Doubly Linked List and Circular Linked List.			04+06
7.	Programming on trees: Perform various operations on binary trees, find max, min value in a binary search trees, find the height of a tree, count nodes in a tree, delete a node in a tree.			04+04
8.	8. Programming on sorting: Merge sort, Quick sort, Heap sort, Shell sort, Radix sort.			04+04
9. Programming on hashing tables: Implement different methods of hash tables.			02+02	
10.	10. Open ended experiment: Implement given Data structures.			02+02

Text Book

- 1. Horowitz, Sahani, Anderson-Feed, Fundamentals of Data Structures in C , 2ed, Universities Press, 2008
- 2. Richard F. Gilberg, Behrouz A. Forouzan Data Structures: A Pseudocode Approach With C , 2nd Edition , Course Technology, Oct 2009.

References

- 1. E Balaguruswamy, —The ANSI C programming Language , 2ed., PHI, 2010.
- 2. YashavantKanetkar, —Data Structures through C , BPB publications 2010

Earlier known as B. V. B. College of Engineering & Technology

Program: IV Semester Bachelor of Engineering (Electronics & Communication Engineering)			
Course Title: Electromagnetic Fields and Waves Course Code: 18EECC209			
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/week	Teaching
ISA Marks: 40	ESA Marks: 50	Total Marks: 100	Hours
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		
	Content		Hrs
	Unit – 1		
Chapter No. 1. Int	roduction to Electromagnetic (EM) Waves	5	08
Study of Maxwell's equations, applications of EM waves. Basic quantities and laws of electromagnetic, Maxwell's Equations, modified Ampere's law surface charge and surface current, boundary conditions at mediainterface			
Chapter No. 2. Uniform Plane Wave		07	
Homogeneous unbound medium, wave equation for time harmonic fields, solution of the wave equation, uniform plane wave			
	Unit - 2		
Chapter No. 3. Un	iform Plane Wave Propagation		08
Wave Polarization, wave propagation in conducting medium, skin depth, phase velocity of a wave, power flow & pointing vector, surface current & power loss in a conductor			
Chapter No. 4. Plane Waves at Media Interface		07	
Plane wave in arbitrary direction, plane wave at dielectric interface, reflection and refraction of waves at dielectric interface, normal and oblique incidence of plane waves, Brewster's Angle			
Unit - 3			
Chapter No. 5. Radio Wave Propagation		10	
Modes of propagation, surface wave propagation, space wave of lonospheric propagation, structure of troposphere and ionosphere, characteristic of lonospheric layers, wave bending mechanism, sky wave propagation, critical frequency, virtual height, MUF, skip distance, duct propagation, fading, multi-hop propagation.			

Text Book(List of books as mentioned in the approved syllabus)

- 1. William Hayt. Jr. John A. Buck, Engineering Electromagnetics , 6th edition, TMH., 2001
- 2. John D. Kraus, Ronald J. M.and Ahmad S. Khan, Antennas and Wave Propagation: 4th Edition, THM, 2010.

References

- 1. EdwardC.JordanandKeithGBalmain,-ElectromagneticWavesAndRadiating Systems, Prentice– HallofIndia/ Pearson Education, 2nd edition, 1968.Reprint2002
- 2. R. K. Shevgaonkar, Electromagnetic Waves, Tata McGraw-Hill Company Ltd, 2006.
- 3. Mathew N. O. Sadiku, Elements of Electromagenics, 4th Edition, Oxford University Press, 2007
- 4. David J. Griffiths, Introduction to Electrodynamics, 3rd Edition, PHI,2012
- 5. J A Edminister, Electromagnetics, 2nd Edition, McGraw-Hill ,2006
- 6. DavidKCheng,-FieldandWaveElectromagnetics PearsonEducationAsia, 2ndedition,-1989,IndianReprint –2001.
- 7. JohnKraussBndDahlerAmeischi, Ereleren Sameries With Apprention Big Mig 800 All, 5thedition, 1999
- 8. K.D.Prasad, Antenna WavePropagation ,Satyaprakash Publications

Earlier known as B. V. B. College of Engineering & Technology

Program: IV Semester Bachelor of Engineering (Electronics & Communication Engineering)			Lab+
Course Title: Data Structures Application Lab Course Code: 18EECC210			Teaching
0-0-2	Credits: 2	Contact Hours: 4Hrs/week	Hours
arks: 80	ESA Marks:20	Total Marks: 100	
ng + Lab. Hours: 48 Hrs	Examination Duration:2 Hrs		
Hashing Hash, Hash function, Hash Table, Collision resolution techniques, Hashing Applications			12Hrs
2. Trees Computer representation, Tree properties, Binary Tree properties, Binary search trees properties and implementation, Tree traversals, AVL tree, 2-3 Tree			20Hrs
3. Graphs			
Computer representation, Adjacency List, Adjacency Matrix, Graph properties, Graph traversals			16Hrs
	Im: IV Semester Bachelor of Title: Data Structures Appl 0-0-2 arks: 80 Ing + Lab. Hours: 48 Hrs Hashing Hash, Hash function, Hash Trees Computer representation, implementation, Tree trav Graphs Computer representation,	Im: IV Semester Bachelor of Engineering (Electronics & Communica 2 Title: Data Structures Application Lab 0-0-2 Credits: 2 arks: 80 ESA Marks:20 ing + Lab. Hours: 48 Hrs Examination Duration:2 Hrs Hashing Hash, Hash function, Hash Table, Collision resolution techniques, H Trees Computer representation, Tree properties, Binary Tree properties implementation, Tree traversals, AVL tree, 2-3 Tree Graphs Computer representation, Adjacency List, Adjacency Matrix, Graph	IN Semester Bachelor of Engineering (Electronics & Communication Engineering) 2 Title: Data Structures Application Lab Course Code: 18EECC210 0-0-2 Credits: 2 Contact Hours: 4Hrs/week arks: 80 ESA Marks:20 Total Marks: 100 ng + Lab. Hours: 48 Hrs Examination Duration:2 Hrs Image: Collision resolution techniques, Hashing Applications Hashing Hash, Hash function, Hash Table, Collision resolution techniques, Hashing Applications Image: Computer representation, Tree properties, Binary Tree properties, Binary search trees properties and implementation, Tree traversals, AVL tree, 2-3 Tree Graphs Computer representation, Adjacency List, Adjacency Matrix, Graph properties, Graph traversals

<u>Book</u>

1. Data Structures A Psedocode Approach with C, Richard F. Gilberg & Behrouz A. Forouzan, second edition, CENGAGE Learning.

2. Data Structures Using C. Author, Aaron M. Tenenbaum. Publisher, Pearson Education.

Program: VII Semester Bachelor of Engineering (Electronics & Communication Engineering)			
Course Code: 18EECC401	Course Title: Wireless & Mobile Communication		
L-T-P-SS: 3-0-0-0	Credits: 3	Contact Hrs: 40	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 40		Exam Duration: 3 hrs	

Content	Hrs
Unit - 1	I
Chapter No. Chapter 01 Radio Propagation Free space propagation model, Relating power to electric field., Relation, ground reflection, scattering, Practical link budget design using path loss model, Outdoor propagation models, Signal penetration into buildings, Ray tracking and site specific modeling, Small scale Multipath measurements, Parameters of mobile Multipath channels, Types of small scale fading.	16
Unit - 2	Ι
Chapter No. Chapter 02 Diversity techniques Concept of Diversity branch and signal paths, Combining and switching methods, C/N, C/I performance improvements, RAKE receiver.	4
Chapter No. Chapter 03 Cellular concept Frequency reuse, Channel assignment strategies, Handoff strategies, Interference and system capacity, Trucking and grade of service, Improving coverage, Capacity in cellular systems, FDMA, TDMA, Spread spectrum multiple access, SDMA packet radio. Capacity of cellular systems.	12
Unit - 3	I
Chapter No. Chapter 04 Personal Mobile satellite Communications Integration of GEO, LEO satellite, MEO satellite, Terrestrial mobile systems and Personal satellite communication programs.	4
Chapter No. Chapter 05 CDMA system implementation IS-95 system architecture, Soft handoff, Power control in IS-95 CDMA, CDMA 2000 system.	4

Text Book (List of books as mentioned in the approved syllabus)

1. T.S. Rapport, Wireless Communication, 2, Pearson Education, 2002

References

1. Kamil O Feher, Wireless digital communications: Modulation and spread spectrum Techniques, Prentice Hall of India, 2004

2. Vijay K Garg, IS_95 CDMA and cdma 2000, Pearson publication pvt. Ltd, 2004

3. Xiaodong Wang and Vincent Poor, wireless Communicating system: Advanced Techniques for signal Reception, Pearson publication pvt. Ltd, 2004

Course	Title: Advanced Digital Logic Verification	Course code: 18EECE418		
L-T- P: (D-O-3	Credits: 03	Contact Hrs: 06hrs/week	
CIE Mar	rks: 100	SEE Marks: 00	Total Marks: 100	
Teachin Lab Hrs	ng Hrs: 16hrs : 24 hrs			
Chapter No. 1. Verification Concepts: Concepts of verification, importance of verification, Stimulus vs Verification, functional verification, test bench generation, functional verification approaches, typical verification flow, stimulus generation, direct testing, Coverage: Code and Functional coverage, coverage plan.				8 hrs
Chapter No. 2 . Language Constructs System Verilog constructs: Data types: two-state data, strings, arrays: queues, dynamic and associative arrays, Structs, enumerated types. Program blocks, module, interfaces, clocking blocks, modports.				6 hrs
Chapter No. 3. Classes & Randomization SV Classes : Language evolution, Classes and objects, Class Variables and Methods, Class instantiation, Inheritance, and encapsulation, Polymorphism. Randomization: Directed Vs Random Testing. Randomization: Constraint Driven Randomization.			10 hrs	
Chapte concurr Cross Co	Chapter No. 4. Assertions & Coverage Assertions: Introduction to Assertion based verification, Immediate and concurrent assertions. Coverage driven verification: Motivation, Types of coverage, Cover Group, Cover Point, Cross Coverage, Concepts of Binning and event sampling.			8 hrs
Chapter No. 5. Building Testbench: Layered testbench architecture. Introduction to Universal Verification Methodology, Overview of UVM Base Classes and simulation phases in UVM and UVM macros. Unified messaging in UVM, UVM environment structure, Connecting DUT- Virtual Interface			8 hrs	
References:				
2.	 System vering Environmental System Verilog for verification - a guide to learning the testbench language feature Springer, 2012 			e features -
3.	 Step-by-Step Functional Verification with SystemVerilog and OVM by Sasan Iman SiMantis Inc. Santa Clara, CA Spring 2008 			CA Spring
Tools: (Tools: Questa Sim, NC Verilog, NC Sim, CVER + GTKWave, VCSMX, Modelsim for Verilog			

			Teaching
Course Title: Multimedia Co	ommunication	Course Code: 18EECE410	Hours
L-T-P-SS: 2-0-1-0	Credits: 3	Contact Hours: 3 Hrs/week	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hours: 42Hrs	Examination Duration: 3 Hrs		
	Unit I		
Chapter 1 : Introduction to software tools.	o Multimedia: Multimedia and Hyper r	nedia, WWW, overview of multimedia	02Hrs
Chapter 2: Graphics and Ima	age representation: Graphics / Image dat	a types, Popular file formats.	02Hrs
Chapter 3 : Fundamental concepts in video: Types of video signals, analog video, digital video.			06Hrs
Chapter 4: Basics of digital a	udio: Digitization of sound, MIDI, Quanti	zation and transmission of audio.	05Hrs
	Unit II		
Chapter 4: Lossless compression algorithms: Introduction, run-length coding, variable length coding, dictionary based coding, arithmetic coding, lossless image compression.			05Hrs
Chapter 5: Lossy compres coding, wavelet based codir	sion algorithms: Introduction, distoring, wavelet packets, embedded zero tree	tion measures, quantization, transform of wavelet coefficients.	06Hrs
Chapter 6: Image compression standards: The JPEG standard, The JPEG2000 standard, The JPEG-LS standard, Bi level image compression standard.			06Hrs
	Unit III		
Chapter 7 : Basics video compensation, H.261	compression techniques: Overview,	video compression based on motion	08Hrs
Chapter 8 : Overview of MP	FG-1 24 and 7		02Hrs

Earlier known as B. V. B. College of Engineering & Technology

Text Books

2. Ze-Nian Li & Mark S Drew, "Fundamentals of multimedia", Pearson Education, 2004.

References

- 8. Ralf Steinmetz & Kalra Nahrstedt , "Multimedia: Computing, Communication & Applications", Pearson Education, 2004
- 9. K R Rao, Zoran S Bojkovic, Dragord A Milovanvic, Pearson education, "Multimedia communication systems: Techniques, Standards, & Networks", Second Indian reprint, 2004.

Course Title: Physical Design-Analog	Course code: 18EECE419		
L-T- P: 0-0-3	Credits: 03	Contact Hrs: 06hrs/week	
CIE Marks: 100	SEE Marks: 00	Total Marks: 100	
Teaching Hrs: 16hrs Lab Hrs: 24 hrs			
Chapter No 1. Standard cell Layout creation Layout Practice Sessions (DRC/LVS Dirty layout), Understanding verification errors, Error debugging skills, Hands on experience of using layout editor, Quality of the layout, Half DRC rules, Mega module creation.			8 hrs
Chapter No 2. Analog layout Importance of performance in Analog layout, Importance of floor planning and placement, Attributes need to be taken care during routing stage, Introduction to DRC, LVS, Density and RCX.			8 hrs
Chapter No 3. Matching and Guard rings, Matching: Introduction to mismatch concepts, Causes for mismatch, Types of mismatch, Rules for matching, Activities. Guard ring : What is guard ring, Usage of guard ring			6 hrs
Chapter No 4. Reliability issues Introduction to failure mechanism, Causes of reliability issues, considerations to reduce reliability issues	Process enhancemen	t techniques and Layout	8 hrs
Chapter No 5. Physical design of amplifier and buffer Applying the studied concepts and doing layout, Prioritising the constraints given, Quality checks, Buddy reviews and implementations, Documentation			10 hrs
Reference: The Art of Analog Layout – Alan Hastings CMOS IC layout – Dan Clien IC Layout Basics – Chris saint and Judy saint			

Course Title: Active Directory Domain Services		Course Code:18EECE413
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40	Exam Duration: 03 hrs	

Unit –I		
1	Introduction to Microsoft Active Directory	
	Introduction to Microsoft Active Directory, Roles of Active directory services, Features in ADDS.	06 hrs
2	Domains and Forests	
	Domains and Forests, The Logical Structure of Active Directory.	05 hrs
3	Physical Structure	
•	The Physical Structure of Active Directory, Network Ports used by Domains and Forests.	04 hrs
Unit –II		
4	Installation of R2 server Requirements for installing ADDS, Understanding of Active Directory Domain Services Functional	
	levels.	06 hrs
5	Administration	
	Guidelines for raising domain and forests functional levels, Introduction to various AD Snap-ins and	
	their functions	04 hrs
6	Domain Services	
	Active Directory Users and Computers, Active Directory Domains and Trusts, Active Directory Sites and	
	Services.	05 hrs
Unit –III		
7	Backup/Restore	
	Backing Up Directory Domain Services Active, Recovering Active Directory Domain Services.	10 h.m.
	Authoritative restore, Methods of authoritative restore	10 nrs
Text Boo	ks:	
1.	Introduction to MICROSOFT Active Directory Domain Services (ADDS), Microsoft reference materials.	

Course Code: 18EECE409	Course Title: Design and Analysis of Algorithms	
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 50
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
	Semester: III	Exam Duration: 3 hrs

Content	
Unit - 1	Hrs
Chapter No. 1 : Framework for Analysis of Algorithm Efficiency Analysis Framework, Asymptotic Notations and Basic Efficiency Classes, Mathematical Analysis of Non-Recursive Algorithms, Mathematical Analysis of Recursive Algorithms.	4
Chapter No 2: Trees and Graphs Overview of Trees. AVL Trees. Red – Black Trees. Graphs, DFS and its applications, BFS and its applications. Topological Sorting. Shortest path algorithms. Minimum Spanning Tree.	8
Chapter No 3 : Hashing Direct Address Table, Hash Table, Hash Function, Collision Resolution Techniques.	3
Unit - 2	
Chapter No 4 : Substring Matching and Sorting Techniques. Brute-force method, Boyer-Moore – Hoorspool Algorithm, Knuth-Morris-Pratt Algorithm, Bubble sort, selection sort. Divide and Conquer: insertion sort, merge sort, quick sort and heap sort	8
Chapter No 5: Greedy Technique Introduction, Interval Scheduling, Proof Strategies, Huffmann Coding, 0/1 knapsack	2
Chapter No 6: Dynamic Programming Introduction and Definition. Memorization, Fibonacci Series, Edit Distance, Longest Increasing Subsequence, Longest Common Subsequence, Matrix multiplication, Coin Change problem, Subset Sum problem.	5
Unit - 3	
Chapter No 7 : Backtracking Introduction. N-Queens Problem, Generating string permutation, Hamiltonian Cycle.	5
Chapter No 8 : Branch and Bound	5

Introduction. Travelling Salesman problem, Job Assignment Problem.

Text Books:

- 1. Data Structures with C -- Seymour Lipschutz, Schaum's Outline Series
- 2. Introduction to Design and Analysis of Algorithms Anany Levitin 3rd Edition

Reference Books:

- 1. Introduction to Algorithms Thomas H. Cormen 3rd edition
- 2. Data Structures, Algorithms and Applications In C++ -- Satraj Sahani
- 3. Data Structures and Algorithms Made Easy Narshiman Karumunchi, Career Monk

Course	Course Title: CMOS ASIC Design Course code: 18EECE420		420		
L-T- P: (0-0-3	Credits: 03	Contact Hrs: 06hrs/week		
CIE Ma	rks: 100	SEE Marks: 00	Total Marks: 100		
Teachir Lab Hrs	Teaching Hrs: 16hrs Lab Hrs: 24 hrs				
Chapte charact	er No. 1. Introduction: Design of combinational and scenization of standard cells. Verilog for representing gate lev	sequential logic gates el netlists.	s in CMOS. Layout and	8 hrs	
Chapter No. 2. Timing Analysis: Sequential circuit timing and static timing analysis. Cell and net delays and cross-talk. Rationale and implementation of scan chains for testing standard-cell based logic circuits. Timing Verification: Setup Timing Check, Hold Timing Check, Timing across Clock Domains				10hrs	
Chapter No. 3: Physical design Physical design of standard-cell based CMOS ASICs: scan insertion, placement, and clock tree synthesis and routing. Netlist transformations at each step of the physical design process. Net parasitic and parasitic extraction. Use of PLLs for clock generation and de-skew.				12 hrs	
Chapte Standar power (Design	er No. 4. Standard Data formats: rd data formats for representing technology and design: LEI gating for reduction of device power consumption. for reliability: electro- migration, wire self heat and ESD che	F, Liberty, SDC, DEF ar	nd SPEF. Clock gating and	6 hrs	
Chapte An over	er No. 5. Packaging rview of package design and implementation and system lev	vel timing.		4 hrs	
Referer	nce Books:				
 The Design & Analysis of VLSI Circuits, L. A. Glassey & D. W. Dobbepahl, Addison Wesley Pub Co. 1985. H. Bhatnagar, Advanced ASIC Chip Synthesis Using Synopsys Design Compiler Physical Compiler and Prime edition, 2001. 			īime, 2nd		
3. Static Timing Analysis for Nanometer Designs A Practical Approach, J. Bhasker • Rakesh Chadha, 🛙 Springer Science+Business Media, LLC 2009			-		
Tools: 0	Cadence Innovous, Encounter				

			Teaching
Course Title: Embedded Lin	ux	Course Code: 18EECE405	Hours
L-T-P-SS: 3-0-0-0	Credits: 3	Contact Hours: 3 Hrs/week	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hours: 42Hrs	Examination Duration: 3 Hrs		
	Unit I	·	
Chapter 1: Introduction to A Brief History of Linux -B Devices and Drives in Linux	Embedded Linux : Senefits of Linux -Acquiring and Using -Components: Kernel, Distribution, Sawi	Linux -Examining Linux Distributions - fish, and Gnome.	04 Hrs
Chapter 2: Overview of Em	bedded Linux :		06 Hrs
Overview: Development-Ke chains in Embedded Linux-C	rnel architectures and device driver mo GNU Tool Chain (GCC,GDB, MAKE, GPRO	del- Embedded development issues-Tool F & GCONV)- Linux Boot process.	06 Hrs
Chapter 3: System Management and user interface Boot sequence-System loading, sys linux, Lilo, grub-Root file system-Binaries required for system operation-Shared and static Libraries overview-Writing applications in user space-GUI environments for embedded Linux system			
	Unit II		
Chapter 4: File system in Linux: File system Hierarchy-File system Navigation -Managing the File system –Extended file systems-INODE- Group Descriptor-Directories-Virtual File systems- Performing File system Maintenance -Locating Files –			06 Hrs
Registering the File systems- Mounting and Un-mounting –Buffer cache-/proc file systems-Device special files			04 Hrs
Chapter 5:Configuration: Configuration, Compilation & Porting of Embedded Linux-Examining Shells -Using Variables -Examining Linux Configuration Script Files -Examining System Start-up Files -Creating a Shell Script			
Chapter 6: Process management and Inter process communication: Managing Process and Background Processes -Using the Process Table to Manage Processes -Introducing Delayed and Detached Jobs - Configuring and Managing Services -Starting and Stopping Services - Identifying Core and Non-critical Services -Configuring Basic Client Services -Configuring Basic Internet Services –Working with Modules. IPC-Benefits of IPC- Basic concepts-system calls-creating pipes-creating a FIFO-FIFO operations-IPC identifiers-IPC keys-IPCS commands- Message queues-Message buffer-Kernel Ring Buffer semaphores- semtools-shared memory semtools- signals-sockets			08 Hrs

Unit III	
Chapter 7: Linux device drivers	08 Hrs
Devices in Linux- User Space Driver APIs- Compiling, Loading and Exporting- Character Devices- Tracing Debugging- Blocking and Wait Queues- Accessing Hardware- Handling Interrupts- Accessing PCI hardware USB Drivers- Managing Time- Block Device Drivers- Network Drivers- Adding a Driver to the Kernel Tree.	nd re-
1.1 Text Books	·
3. Embedded Linux – Hardware, Software and Interfacing - Craig Hollabaugh, Addison-Wesley Profession	nal, 2002
 Embedded / Real-Time Systems: Concepts, Design and Programming Black Book, New ed (MISL-DT) 2003. 	Paperback – 12 Nov
1.2 References	
10. Building Embedded Linux Systems, Karim Yaghmour, First edition, April 2003.	
11. Embedded Linux- John Lombardo, Newriders.com	

Earlier known as B. V. B. College of Engineering & Technology

Program: VII Semester Bachelor of Engineering (Electronics & Communication)				
Course Code: 18EECE411 Course Title: Microwave & Antenna				
L-T-P: 3-0-0 Credits: 03 Contact Hrs: 40		Contact Hrs: 40		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hrs: 50 Exam Duration: 03 hrs				

Content	Hrs
Unit - 1	-
Chapter No. 1. Microwave Vacuum Tube Devices Introduction , Reflex Klystron , Problems	04
Chapter No. 2. Microwave components Directional couplers, Circulators, Magic T, Isolator, s-Matrix and Attenuators	08
Unit - 2	
Chapter No. 3. Antenna Parameters Introduction, Basic antenna parameters ,Pattern, Beam width, Radiation intensity, Beam efficiency, Directivity, Gain, Aperture, Effective height, Polarization, Antenna field zone, The radio communication link. Radiation resistance of Short electric dipole and half wave length antenna.	10
Chapter No. 4. Sources and Arrays Introduction, Point sources, Power patterns, Power theorem, Examples on power theorem, Directivity and beam width of point sources, Arrays of two isotropic point sources, Pattern multiplication, Linear array of n isotropic point sources of equal amplitude and spacing, Broad side array, End fire array.	08
Unit - 3	1
Chapter No. 5. Antenna practice Yagi-Uda Antenna, Loop antenna, Horn antenna, Parabolic reflector, Helical antenna, Log periodic antenna, Mobile Station Antennas, Antennas for GPR : Pulse Bandwidth, Embedded Antennas, UWB Antennas for Digital Applications, The Plasma Antenna	10

Text Book (List of books as mentioned in the approved syllabus)

- 1. J.D.Kraus & Khan, MGH publication , "Antennas" , 2006, third edition.
- 2. Samuel Y Liao, "Microwave Devices and Circuits", PHI Pearson Education, Third Edition.

References

- 1. F.E.Terman, "Electromagnetic and radio engineering" by, TMcH publication, second Edition.
- 2. E.C.Jordan', "Electromagnetic waves & radiating systems", PHI publication, second edition
- 3. C.A.Balnis, "Antenna theory and analysis and design" ,1999,third edition.
- 4. K.D.Prasad ,"Antenna and wave propagation" by '1990, first edition.
- 5. Annapurna Das, Sisir K Das, "Microwave engineering", TMH Publications 2001.

Course Code: 18EECE415	Course Title: Cryptography and Network Security	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 42
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 42		Exam Duration: 3 hrs

Content	Hrs
Unit - 1	
Chapter No. 1. Overview Introduction, Services, Mechanisms and attacks of OSI architecture, Model	2 hrs
Chapter No. 2: Introduction to Finite Fields Groups, Rings and fields. Modular Arithmetic, Euclid's Algorithm, Extended Euclid's algorithm, Finite fields of the form GF (p), Finite fields of the form GF(2n), Polynomial arithmetic, Euler's and format's theorem, Chinese remainder theorem	4 hrs
Chapter No. 3: Classical Encryption techniques Symmetric cipher model, substitution technique, Transposition Techniques	5 hrs
Chapter No. 4: Block Ciphers and DES Design and principles of Block Ciphers, DES, Strength of DES, Block Cipher Modes of Operation	5 hrs
Unit - 2	
Chapter No. 5: Advanced Encryption Standards Evaluation Criterion of AES, AES Encryption and AES Decryption	4 hrs
Chapter No. 6: Public Key Cryptography and RSA: Design and principles, Concept of confidentiality and Authentication, RSA algorithm, Other Public Key Crypto Systems, Key Management, Diffie Hellman Key Exchange, Elliptic curve Cryptography	6 hrs
Chapter No. 7: Message Authentication and Hash Functions: Message Authentication codes, Hash functions, Security of Hash and MAC functions	3 hrs
Chapter No. 8: Digital Signature, Authentication and Hash Functions Authentication Protocols, Digital signature Standard, DSS Algorithm	3 hrs

Earlier known as B. V. B. College of Engineering & Technology

Unit - 3	
Chapter No. 9. Electronic Mail Security:	3 hrs
Pretty good privacy, Data Compression, PGP random number generator	
Chapter No. 10. IP Security & Web Security	7 hrs
IP security Architecture, Security Associations, Key management, Web security Considerations, Secure Socket layer, Transport layer security, secure electronic transactions	

Text Book (List of books as mentioned in the approved syllabus)

1. William Stallings, Cryptography and Network Security-Principles and practices, 3rd, PHI, 2003

- 2. Atul Kahate , Cryptography and Network Security , TMH, 2003
- 3. Behrouz A. Forouzan, Cryptography and Network Security, TMH, 2007

References

- 1. Koeblitz, Introduction to Number theory and Cryptography , Springler, 0000
- 2. Bruce Schneider, Applied Cryptography, 2nd , John Wiley, 2001
- 3. Eric Maiwad, Fundamentals of Network security, 2nd , TMH, 2002

L-T-P: 2-0-1 Credits: 3 Contact Hours: 3 Hrs/week ISA Marks: 50 ESA Marks: 50 Total Marks: 100 Teaching Hours: 42Hrs Examination Duration: 3 Hrs Unit 1 Chapter 1: Introduction 2D systems, mathematical preliminaries- FT, Z-transform, Optical and Modulation transfer functions (OTF 04Hrs Chapter 2: Image perception Usit 1 04Hrs Light, luminance, brightness, contrast, MTF of the visual system, visibility function, monochrome vision models, Image fidelity criteria, colour representation, colour models. 04Hrs Chapter 3: Image sampling and quantization 07Hrs 07Hrs 2D sampling theory, limitations in sampling and reconstruction, quantization, optimal quantizer, compandor and visual quaritization. 07Hrs 2D orthogonal and unitary transforms, DFT, DCT, DST, Hadamard, Harr, Slant, KLT transforms. 07Hrs Chapter 5: Image enhancement Unit 11 10Hrs Histograms modeling, spatial operations, transform operations, multispectral image enhancement, color image observation models, Inverse and wiener filtering, fourier domain filters. Smoothing splines and interpolation. SVD and Iterative methods. Maximum entropy restoration, Bayesian methods, co-ordinate iransformation and geometric cortex. 10Hrs Text Books 1. A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd Rafael C. Gonza	Course Title: Digital Image	Processing	Course Code: 18EECE414		
ISA Marks: 50 ESA Marks: 50 Total Marks: 100 Teaching Hours: 42Hrs Examination Duration: 3 Hrs Unit I Chapter 1: Introduction 20 systems, mathematical preliminaries- FT, 2-transform, Optical and Modulation transfer functions (OTF and MTF). 04Hrs Chapter 2: Image perception 04Hrs Light, luminance, brightness, contrast, MTF of the visual system, visibility function, monochrome vision models, Image fidelity criteria, colour representation, colour models. 07Hrs Chapter 3: Image sampling and quantization 07Hrs 20 sampling theory, limitations in sampling and reconstruction, quantization, optimal quantizer, compandor and visual quantization. 07Hrs Chapter 4: Image transforms OTH Unit I Chapter 5: Image enhancement OTH III Chapter 6: Image filtering and restoration Interpolation, SD and iterative methods. Maximum entropy restoration, Bayesian methods, co-ordinate transformation and geometric corrections. Bind deconvolution. THE Secosion 1. A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd References 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image P	L-T-P: 2-0-1	Credits: 3	Contact Hours: 3 Hrs/week		
Teaching Hours: 42Hrs Examination Duration: 3 Hrs Unit I Unit I Unit I 04Hrs Chapter 1: Introduction 04Hrs 04Hrs Chapter 2: Image perception 04Hrs 04Hrs Light, luminance, brightness, contrast, MTF of the visual system, visibility function, monochrome vision models, Image fidelity criteria, colour representation, colour models. 07Hrs Chapter 3: Image sampling and quantization 07Hrs 07Hrs 2D sampling theory, limitations in sampling and reconstruction, quantization, optimal quantizer, compandor and visual quantization. 07Hrs Chapter 4: Image transforms Unit I 10Hrs Chapter 5: Image enhancement 07Hrs 07Hrs Histograms modeling, spatial operations, transform operations, multispectral image enhancement, color image enhancement. 07Hrs Image observation models. Init II 10Hrs Chapter 6: Image filtering and restoration 10Hrs 10Hrs Image observation models. Init III 10Hrs Chapter 6: Image filtering and restoration. 10Hrs 10Hrs Image observation models. Init III 10Hrs 10Hrs Chapter 6: Image filtering and restoration. Init III 10Hrs 10Hrs	ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Unit I Chapter 1: Introduction 2D systems, mathematical preliminaries- FT, Z-transform, Optical and Modulation transfer functions (OTF 04Hrs and MTF). 04Hrs Chapter 2: Image perception 04Hrs Light, luminance, brightness, contrast, MTF of the visual system, visibility function, monochrome vision models, Image fidelity criteria, colour representation, colour models. 04Hrs Chapter 3: Image sampling and quantization 07Hrs 2D sampling theory, limitations in sampling and reconstruction, quantization, optimal quantizer, compandor and visual quantization. 07Hrs Lapter 4: Image transforms 10Hrs 2D orthogonal and unitary transforms, DFT, DCT, DST, Hadamard, Harr, Slant, KLT transforms. 07Hrs Lint II Chapter 5: Image enhancement 10Hrs Histograms modeling, spatial operations, transform operations, multispectral image enhancement, color image observation models. Inverse and wiener filtering, fourier domain filters. Smoothing splines and interpolation. SVD and iterative methods. Maximum entropy restoration, Bayesian methods, co-ordinate transformation and geometric corrections. Blind deconvolution. 10Hrs Text Books 1. A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd References 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education (Asia) Pvt. Ltd 2. Rafael C. Gonzalez, Richard E. Wood	Teaching Hours: 42Hrs	Examination Duration: 3 Hrs			
Chapter 1: Introduction 04Hrs 2D systems, mathematical preliminaries- FT, Z-transform, Optical and Modulation transfer functions (OTF and MTF). 04Hrs Chapter 2: Image perception 04Hrs Light, luminance, brightness, contrast, MTF of the visual system, visibility function, monochrome vision models, Image fidelity criteria, colour representation, colour models. 07Hrs Chapter 3: Image sampling and quantization 07Hrs 2D sampling theory, limitations in sampling and reconstruction, quantization, optimal quantizer, compandor and visual quantization. 07Hrs 2D othogonal and unitary transforms, DFT, DCT, DST, Hadamard, Harr, Slant, KLT transforms. 07Hrs Chapter 5: Image enhancement 07Hrs Histograms modeling, spatial operations, transform operations, multispectral image enhancement, color 07Hrs Image observation models, Inverse and wiener filtering, fourier domain filters. Smoothing splines and interpolation. SUb and iterative methods. Maximum entropy restoration, Bayesian methods, co-ordinate transformation and geometric corrections. Blind deconvolution. 10Hrs Text Books 1. A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd References 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education (Asia) Pvt. Ltd Rafael C. Gonzalez, Richard E. Woods, and Steven L Edidins. "Digital Image Processing Using Matlab", Pearson Education (Asia) Pvt. Ltd		Unit I			
Chapter 1: Introduction 04Hrs 2D systems, mathematical preliminaries- FT, Z-transform, Optical and Modulation transfer functions (OTF and MTF). 04Hrs Chapter 2: Image perception 04Hrs Light, luminance, brightness, contrast, MTF of the visual system, visibility function, monochrome vision models, Image fidelity criteria, colour representation, colour models. 07Hrs Chapter 3: Image sampling and quantization 07Hrs 2D sampling theory, limitations in sampling and reconstruction, quantization, optimal quantizer, compandor and visual quantization. 07Hrs Lotapter 4: Image transforms 10Hrs 2D orthogonal and unitary transforms, DFT, DCT, DST, Hadamard, Harr, Slant, KLT transforms. 07Hrs Chapter 5: Image enhancement 07Hrs Histograms modeling, spatial operations, transform operations, multispectral image enhancement, color image enhancement. 07Hrs Image observation models, Inverse and wiener filtering, fourier domain filters. Smoothing splines and interpolation. SVD and iterative methods. Maximum entropy restoration, Bayesian methods, co-ordinate transformation and geometric corrections. Blind deconvolution. 10Hrs Text Books 1. A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd References 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education (Asia) Pvt. Ltd Rafael C. Gonzalez, Richard E. Woods and Steven L Edidins. "					
2D systems, mathematical preliminaries- FT, 2-transform, Optical and Modulation transfer functions (OTF and MTF). 04Hrs Chapter 2: Image perception 04Hrs Light, luminance, brightness, contrast, MTF of the visual system, visibility function, monochrome vision models, Image fidelity criteria, colour representation, colour models. 07Hrs Chapter 3: Image sampling and quantization 07Hrs 2D sampling theory, limitations in sampling and reconstruction, quantization, optimal quantizer, compandor and visual quantization. 07Hrs Unit II Chapter 4: Image transforms 10Hrs 2D orthogonal and unitary transforms, DFT, DCT, DST, Hadamard, Harr, Slant, KLT transforms. 07Hrs Chapter 5: Image enhancement Histograms modeling, spatial operations, transform operations, multispectral image enhancement, color image enhancement. 07Hrs Invit III Chapter 6: Image filtering and restoration Image observation models, Inverse and wiener filtering, fourier domain filters. Smoothing splines and interpolation. SVD and iterative methods. Maximum entropy restoration, Bayesian methods, co-ordinate transformation and geometric corrections. Blind deconvolution. 10Hrs Text Books 1. A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd <td "digital="" colspatez,="" e.="" image="" proc<="" richard="" td="" woods,=""><td>Chapter 1: Introduction</td><td></td><td></td><td></td></td>	<td>Chapter 1: Introduction</td> <td></td> <td></td> <td></td>	Chapter 1: Introduction			
Chapter 2: Image perception 04Hrs Light, luminance, brightness, contrast, MTF of the visual system, visibility function, monochrome vision 07Hrs Chapter 3: Image sampling and quantization 07Hrs 2D sampling theory, limitations in sampling and reconstruction, quantization, optimal quantizer, compandor and visual quantization. 07Hrs Light 4: Image transforms 10Hrs 2D orthogonal and unitary transforms, DFT, DCT, DST, Hadamard, Harr, Slant, KLT transforms. 07Hrs Chapter 5: Image enhancement 10Hrs Histograms modeling, spatial operations, transform operations, multispectral image enhancement, color image observation models. Inverse and wineer filtering, fourier domain filters. Smoothing splines and interpolation. SVD and iterative methods. Maximum entropy restoration, Bayesian methods, co-ordinate transformation and geometric corrections. Blind deconvolution. 10Hrs Text Books 1. A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd References 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education (Asia) Pvt. Ltd Rafael C. Gonzalez, Richard E. Woods, and Steven L Edidins. "Digital Image Processing Using Matlab", Pearson Education (Asia) Pvt. Ltd	and MTF).	preliminaries- FT, Z-transform, Optical	and Modulation transfer functions (OTF	04Hrs	
Light, luminance, brightness, contrast, MTF of the visual system, visibility function, monochrome vision models, Image fidelity criteria, colour representation, colour models. Chapter 3: Image sampling and quantization 2D sampling theory, limitations in sampling and reconstruction, quantization, optimal quantizer, compandor and visual quantization. Unit II Chapter 4: Image transforms 2D orthogonal and unitary transforms, DFT, DCT, DST, Hadamard, Harr, Slant, KLT transforms. Chapter 5: Image enhancement Histograms modeling, spatial operations, transform operations, multispectral image enhancement, color image observation models, Inverse and wiener filtering, fourier domain filters. Smoothing splines and interpolation. SVD and iterative methods. Maximum entropy restoration, Bayesian methods, co-ordinate transformation and geometric corrections. Blind deconvolution. Text Books 1. A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd References 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education (Asia) Pvt. Ltd	Chapter 2: Image perceptic	on		04Hrs	
models, Image fidelity criteria, colour representation, colour models. 07Hrs Chapter 3: Image sampling and quantization 07Hrs 2D sampling theory, limitations in sampling and reconstruction, quantization, optimal quantizer, compandor and visual quantization. 07Hrs Unit II Chapter 4: Image transforms 10Hrs 2D orthogonal and unitary transforms, DFT, DCT, DST, Hadamard, Harr, Slant, KLT transforms. 07Hrs Chapter 5: Image enhancement 07Hrs Histograms modeling, spatial operations, transform operations, multispectral image enhancement, color image observation models. Inverse and wiener filtering, fourier domain filters. Smoothing splines and interpolation. SVD and iterative methods. Maximum entropy restoration, Bayesian methods, co-ordinate transformation and geometric corrections. Blind deconvolution. 10Hrs Text Books 1. A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd References 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education (Asia) Pvt. Ltd Rafael C. Gonzalez, Richard E. Woods and Steven L Edidins. "Digital Image Processing Using Matlab", Pearson Education (Asia) Pvt. Ltd	Light, luminance, brightne	ss, contrast, MTF of the visual system,	visibility function, monochrome vision	041113	
Chapter 3: Image sampling and quantization 07Hrs 2D sampling theory, limitations in sampling and reconstruction, quantization, optimal quantizer, compandor and visual quantization. 07Hrs Unit II Chapter 4: Image transforms 10Hrs 2D orthogonal and unitary transforms, DFT, DCT, DST, Hadamard, Harr, Slant, KLT transforms. 07Hrs Chapter 5: Image enhancement 07Hrs Histograms modeling, spatial operations, transform operations, multispectral image enhancement, color image enhancement. 07Hrs Chapter 6: Image filtering and restoration 10Hrs Image observation models, Inverse and wiener filtering, fourier domain filters. Smoothing splines and interpolation. SVD and iterative methods. Maximum entropy restoration, Bayesian methods, co-ordinate transformation and geometric corrections. Blind deconvolution. 10Hrs Text Books 1. A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education (Asia) Pvt. Ltd 2. Rafael C. Gonzalez, Richard E. Woods and Steven L Edidins. "Digital Image Processing Using Watlab", Pearson Education (Asia) Pvt. Ltd	models, Image fidelity crite	ria, colour representation, colour mode	els.		
Chapter 3: Image sampling and quantization 07Hrs 2D sampling theory, limitations in sampling and reconstruction, quantization, optimal quantizer, compandor and visual quantization. 01 Unit II Chapter 4: Image transforms 10Hrs 2D orthogonal and unitary transforms, DFT, DCT, DST, Hadamard, Harr, Slant, KLT transforms. 07Hrs Chapter 5: Image enhancement 07Hrs Histograms modeling, spatial operations, transform operations, multispectral image enhancement, color image enhancement. 07Hrs Unit III Chapter 6: Image filtering and restoration 10Hrs Image observation models, Inverse and wiener filtering, fourier domain filters. Smoothing splines and interpolation. SVD and iterative methods. Maximum entropy restoration, Bayesian methods, co-ordinate transformation and geometric corrections. Blind deconvolution. 10Hrs Text Books 1. A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd References 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education (Asia) Pvt. Ltd 2. Rafael C. Gonzalez, Richard E. Woods and Steven L Edidins. "Digital Image Processing Using Matlab", Pearson Education (Asia) Pvt. Ltd					
2D sampling theory, limitations in sampling and reconstruction, quantization, optimal quantizer, compandor and visual quantization. Unit II Unit II Chapter 4: Image transforms 2D orthogonal and unitary transforms, DFT, DCT, DST, Hadamard, Harr, Slant, KLT transforms. Chapter 5: Image enhancement MOTHrs Unit III Chapter 6: Image filtering and restoration IMAGE colspan="2">IMAGE methods. Kaximum entropy restoration, Bayesian methods, co-ordinate transformation and geometric corrections. Blind deconvolution. Text Books 1. A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd References 1. Rafael C. Gonzalez, Richard E. Woods and Steven L Edidins. "Digital Image Processing Using Matlab", Pearson Education (Asia) Pvt. Ltd	Chapter 3: Image sampling	and quantization		07Hrs	
Unit II 10Hrs Chapter 4: Image transforms 10Hrs 2D orthogonal and unitary transforms, DFT, DCT, DST, Hadamard, Harr, Slant, KLT transforms. 07Hrs Chapter 5: Image enhancement 07Hrs Histograms modeling, spatial operations, transform operations, multispectral image enhancement, color image enhancement. 07Hrs Unit III Chapter 6: Image filtering and restoration 10Hrs Image observation models, Inverse and wiener filtering, fourier domain filters. Smoothing splines and interpolation. SVD and iterative methods. Maximum entropy restoration, Bayesian methods, co-ordinate transformation and geometric corrections. Blind deconvolution. 10Hrs Text Books 1. A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd References 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education (Asia) Pvt. Ltd 2. Rafael C. Gonzalez, Richard E. Woods and Steven L Edidins. "Digital Image Processing Using Matlab", Pearson Education (Asia) Pvt. Ltd	2D sampling theory, lim	itations in sampling and reconstruc	tion, quantization, optimal quantizer,		
Unit II 10Hrs Chapter 4: Image transforms 10Hrs 2D orthogonal and unitary transforms, DFT, DCT, DST, Hadamard, Harr, Slant, KLT transforms. 07Hrs Chapter 5: Image enhancement 07Hrs Histograms modeling, spatial operations, transform operations, multispectral image enhancement, color image enhancement. 07Hrs Chapter 6: Image filtering and restoration 10Hrs Image observation models, Inverse and wiener filtering, fourier domain filters. Smoothing splines and interpolation. SVD and iterative methods. Maximum entropy restoration, Bayesian methods, co-ordinate transformation and geometric corrections. Blind deconvolution. 10Hrs Text Books 1. A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd References 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education (Asia) Pvt. Ltd 2. Rafael C. Gonzalez, Richard E. Woods and Steven L Edidins. "Digital Image Processing Using Matlab", Pearson Education (Asia) Pvt. Ltd					
Chapter 4: Image transforms 10Hrs 2D orthogonal and unitary transforms, DFT, DCT, DST, Hadamard, Harr, Slant, KLT transforms. 07Hrs Chapter 5: Image enhancement 07Hrs Histograms modeling, spatial operations, transform operations, multispectral image enhancement, color image enhancement. 07Hrs Lunit III Chapter 6: Image filtering and restoration 10Hrs Image observation models, Inverse and wiener filtering, fourier domain filters. Smoothing splines and interpolation. SVD and iterative methods. Maximum entropy restoration, Bayesian methods, co-ordinate transformation and geometric corrections. Blind deconvolution. 10Hrs Text Books 1. A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd References 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education (Asia) Pvt. Ltd 2. Rafael C. Gonzalez, Richard E. Woods and Steven L Edidins. "Digital Image Processing Using Matlab", Pearson Education (Asia) Pvt. Ltd		Unit II			
2D orthogonal and unitary transforms, DFT, DCT, DST, Hadamard, Harr, Slant, KLT transforms. 07Hrs Chapter 5: Image enhancement 07Hrs Histograms modeling, spatial operations, transform operations, multispectral image enhancement, color image enhancement. 07Hrs Unit III Chapter 6: Image filtering and restoration 10Hrs Image observation models, Inverse and wiener filtering, fourier domain filters. Smoothing splines and interpolation. SVD and iterative methods. Maximum entropy restoration, Bayesian methods, co-ordinate transformation and geometric corrections. Blind deconvolution. 10Hrs Text Books 1. A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd References 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education (Asia) Pvt. Ltd 2. Rafael C. Gonzalez, Richard E. Woods and Steven L Edidins. "Digital Image Processing Using Matlab", Pearson Education (Asia) Pvt. Ltd	Chapter 4: Image transforms			10Hrs	
Chapter 5: Image enhancement 07Hrs Histograms modeling, spatial operations, transform operations, multispectral image enhancement, color image enhancement. 01Hrs Unit III Chapter 6: Image filtering and restoration 10Hrs Image observation models, Inverse and wiener filtering, fourier domain filters. Smoothing splines and interpolation. SVD and iterative methods. Maximum entropy restoration, Bayesian methods, co-ordinate transformation and geometric corrections. Blind deconvolution. 10Hrs Text Books 1. A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd References 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education (Asia) Pvt. Ltd 2. Rafael C. Gonzalez, Richard E. Woods and Steven L Edidins. "Digital Image Processing Using Matlab", Pearson Education (Asia) Pvt. Ltd	2D orthogonal and unitary transforms, DFT, DCT, DST, Hadamard, Harr, Slant, KLT transforms.				
Chapter 5: Image enhancement U/Hrs Histograms modeling, spatial operations, transform operations, multispectral image enhancement, color image enhancement. Unit III Chapter 6: Image filtering and restoration 10Hrs Image observation models, Inverse and wiener filtering, fourier domain filters. Smoothing splines and interpolation. SVD and iterative methods. Maximum entropy restoration, Bayesian methods, co-ordinate transformation and geometric corrections. Blind deconvolution. 10Hrs Text Books 1. A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd References 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education (Asia) Pvt. Ltd 2. Rafael C. Gonzalez, Richard E. Woods and Steven L Edidins. "Digital Image Processing Using Matlab", Pearson Education (Asia) Pvt. Ltd				0711	
Histograms modeling, spatial operations, transform operations, multispectral image enhancement, color image enhancement. Unit III Chapter 6: Image filtering and restoration 10Hrs Image observation models, Inverse and wiener filtering, fourier domain filters. Smoothing splines and interpolation. SVD and iterative methods. Maximum entropy restoration, Bayesian methods, co-ordinate transformation and geometric corrections. Blind deconvolution. 10Hrs Text Books 1. A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd References 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education (Asia) Pvt. Ltd 2. Rafael C. Gonzalez, Richard E. Woods and Steven L Edidins. "Digital Image Processing Using Matlab", Pearson Education (Asia) Pvt. Ltd	Chapter 5: Image enhancer	nent		U/Hrs	
Unit III Chapter 6: Image filtering and restoration 10Hrs Image observation models, Inverse and wiener filtering, fourier domain filters. Smoothing splines and interpolation. SVD and iterative methods. Maximum entropy restoration, Bayesian methods, co-ordinate transformation and geometric corrections. Blind deconvolution. 10Hrs Text Books 1. A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd References 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education (Asia) Pvt. Ltd 2. Rafael C. Gonzalez, Richard E. Woods and Steven L Edidins. "Digital Image Processing Using Matlab", Pearson Education (Asia) Pvt. Ltd	Histograms modeling, spatial operations, transform operations, multispectral image enhancement, color image enhancement.				
Chapter 6: Image filtering and restoration 10Hrs Image observation models, Inverse and wiener filtering, fourier domain filters. Smoothing splines and interpolation. SVD and iterative methods. Maximum entropy restoration, Bayesian methods, co-ordinate transformation and geometric corrections. Blind deconvolution. 10Hrs Text Books 1. A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd References 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education (Asia) Pvt. Ltd 2. Rafael C. Gonzalez, Richard E. Woods and Steven L Edidins. "Digital Image Processing Using Matlab", Pearson Education (Asia) Pvt. Ltd		Unit III			
Image observation models, Inverse and wiener filtering, fourier domain filters. Smoothing splines and interpolation. SVD and iterative methods. Maximum entropy restoration, Bayesian methods, co-ordinate transformation and geometric corrections. Blind deconvolution. Text Books 1. A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd References 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education (Asia) Pvt. Ltd 2. Rafael C. Gonzalez, Richard E. Woods and Steven L Edidins. "Digital Image Processing Using Matlab", Pearson Education (Asia) Pvt. Ltd	Chapter 6: Image filtering a	and restoration		10Hrs	
interpolation. SVD and iterative methods. Maximum entropy restoration, Bayesian methods, co-ordinate transformation and geometric corrections. Blind deconvolution. Text Books 1. A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd References 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education (Asia) Pvt. Ltd 2. Rafael C. Gonzalez, Richard E. Woods and Steven L Edidins. "Digital Image Processing Using Matlab", Pearson Education (Asia) Pvt. Ltd	Image observation models	, Inverse and wiener filtering, fourie	r domain filters. Smoothing splines and		
Text Books 1. A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd References 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education (Asia) Pvt. Ltd 2. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education (Asia) Pvt. Ltd 2. Rafael C. Gonzalez, Richard E. Woods and Steven L Edidins. "Digital Image Processing Using Matlab", Pearson Education (Asia) Pvt. Ltd	interpolation. SVD and iter transformation and geome	ative methods. Maximum entropy rest tric corrections. Blind deconvolution.	coration, Bayesian methods, co-ordinate		
Text Books 1. A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd References 1. 1. Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education (Asia) Pvt. Ltd 2. Rafael C. Gonzalez, Richard E. Woods and Steven L Edidins. "Digital Image Processing Using Matlab", Pearson Education (Asia) Pvt. Ltd					
 A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd References Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education (Asia) Pvt. Ltd Rafael C. Gonzalez, Richard E. Woods and Steven L Edidins. "Digital Image Processing Using Matlab", Pearson Education (Asia) Pvt. Ltd 	Text Books				
 Rafael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education (Asia) Pvt. Ltd Rafael C. Gonzalez, Richard E. Woods and Steven L Edidins. "Digital Image Processing Using Matlab", Pearson Education (Asia) Pvt. Ltd 	1. A.K. Jain, "Fundamentals of Digital Image Processing", Pearson Education (Asia) Pvt. Ltd				
 Ratael C. Gonzalez, Richard E. Woods, "Digital Image Processing", Pearson Education (Asia) Pvt. Ltd Rafael C. Gonzalez, Richard E. Woods and Steven L Edidins. "Digital Image Processing Using Matlab", Pearson Education (Asia) Pvt. Ltd 		References			
Education (Asia) Pvt. Ltd	References				
	References 1. Rafael C. Gon: 2. Pafael C. Gon:	zalez, Richard E. Woods, "Digital Image	Processing", Pearson Education (Asia) Pvt.	. Ltd Matlah'' Poarson	

Course Title: Analog & Mixed M	ode Circuits	Course Code: 18EECE402	
L-T-P-: 3-0-0	Credits: 3	Contact Hours: 3Hrs/week	
CIE Marks: 50	SEE Marks: 50	Total Marks:100	
Teaching Hours: 40Hrs	Examination Duration:3Hrs		
	Unit I.		
Chapter 01: Basic Current refe Current mode bandgap referenc	rence, and Voltage (Bandgap) reference e	circuits, OPAMP based references,	06 Hrs
Chapter 02: DAC architecture, based DAC	weighted R and R-2R network models	, their Limitations, Current source	03 Hrs
Chapter 03: Bidirectional analoide idealities (offset error, bandwidt	og switch, Sample and Hold circuit, Ba h consideration), Dynamic comparator ,	sic Comparator architecture, non- Sense amplifier	07 Hrs
Unit II			
Chapter 04: ADC basics, Flash ADC, Tracking ADC, Dual slope ADC, SAR ADC, and their applications			10 Hrs
Chapter 05: Pipeline ADC architecture and algorithm .			
			06 Hrs
Unit III			08 Hrs
Chapter 06: PLL-operating principles, Phase detector and VCO; Phase frequency Detector, Charge pump models, stability issues, Jitter in PLL.			
Text Books			
1. Phillip. E. Allen, Douglas R. H	lolberg, "CMOS Analog circuit Design" O	xford University Press, 2002.	
2. Baker, Li, Boyce, "CMOS: Circuit Design, Layout and Simulation", Prentice Hall of India, 2000			
Reference Books			
1. N. Weste and K. Eshranghian, Principles of CMOS VLSI Design, Addison Wesley. 1985.			
2. J. Rabaey, Digital Integrated Circuits: A Design Perspective, Prentice Hall India, 1997			
3. C. Mead and L. Conway, Introduction to VLSI Systems, Addison Wesley, 1979.			
4. B Razavi 'Design of Analog CMOS Integrated Circuits' First Edition McGraw Hill 2001			

Course Title: Automotive El	ectronics	Course Code: 18EECO403	
L-T-P: 3-0-0	L-T-P: 3-0-0 Credits: 3 Contact Hours: 3Hrs/week		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40 Hrs	Examination Duration: 3 Hrs		
Unit I Chapter 1: Introduction: Automotive Systems, Design cycle and Automotive industry overview : Overview of Automotive industry, Vehicle functional domains and their requirements, automotive supply chain, global challenges. Role of technology in Automotive Electronics and interdisciplinary design Introduction to modern automotive systems and need for electronics in automobiles and application areas of electronic systems in modern automobiles, Introduction to power train, Automotive transmissions system ,Vehicle braking fundamentals, Steering Control, ,Overview of Hybrid Vehicles, ECU Design Cycle : Types of model development cycles(V and A) , Components of ECU, Examples of ECU on Chassis, Infotainment, Body Electronics and cluster.			
Chapter 2: Embedded system in Automotive Applications & Automotive safety systems Automotive grade microcontrollers: Architectural attributes relevant to automotive applications, Automotive grade processors ex: Renesas, Quorivva, Infineon. EMS: Engine control functions, Fuel control, Electronic systems in Engines, Development of control algorithm for EMS, Look-up tables and maps, Need of maps, Procedure to generate maps, Fuel maps/tables, Ignition maps/tables, Engine calibration, Torque table, Dynamometer testing Safety Systems in Automobiles: Active and Passive safety systems: ABS, TCS, ESP, Brake assist, Airbag systemsetc.			08
	Unit II		
Chapter 3: Automotive Sensors and Actuators			
Sensor characteristics, Sensor response, Sensor error, Redundancy of sensors in ECUs, Avoiding redundancy, Smart Nodes, Examples of sensors: Accelerometer (knock sensors), wheel speed sensors, Engine speed sensor, Vehicle speed sensor, Throttle position sensor, Temperature sensor, Mass air flow (MAF) rate sensor, Exhaust gas oxygen concentration sensor, Throttle plate angular position sensor, Crankshaft angular position/RPM sensor, Manifold Absolute Pressure (MAP) sensor. Actuators: ENGINE CONTROL ACTUATORS, Solenoid actuator, Exhaust Gas Recirculation Actuator			08
Chapter 4: Automotive com LIN , Flex Ray, MOST	munication protocols :Overview of Auto	motive communication protocols : CAN,	07
	Unit III		
Chapter 5:Advanced Driver Assistance Systems (ADAS) and Functional safety standards : Advanced Driver Assistance Systems (ADAS):Examples of assistance applications: Lane Departure Warning, Collision Warning, Automatic Cruise Control, Pedestrian Protection, Headlights Control, Connected Cars technology and trends towards Autonomous vehicles. Functional Safety: Need for safety standard-ISO 26262, safety concept, safety process for product life cycle, safety by design, validation.			05
Chapter 6: Diagnostics : Fundamentals of Diagnostics, Basic wiring system and Multiplex wiring system, Preliminary checks and adjustments, Self-diagnostic system. Fault finding and corrective measures, Electronic transmission checks and Diagnosis, Diagnostic procedures and sequence, On board and off board diagnostics in Automobiles, OBDII,			05

Earlier known as B. V. B. College of Engineering & Technology

Concept of DTCs, DLC, MIL, Freeze Frames, History memory, Diagnostic tools, Diagnostic protocols KWP2000 and UDS

Text Books

- 1. Ribbens, Understanding of Automotive electronics, 6th , Elsevier, 2003
- 2. Denton.T, Automobile Electrical and Electronic Systems, Elsevier, 3rd Edition, 2004
- 3. Denton.T, Advanced automotive fault diagnosis.

References

- 1. Ronald K Jurgen, Automotive Electronics Handbook, 2nd Edition, McGraw-Hill, 1999
- 2. James D Halderman, Automotive electricity and Electronics, PHI Publication ,0000
- 3. Allan Bonnick, Automotive Computer Controlled Systems Diagnostic Tools and Techniques, Elsevier Science,2001
- 4. Nicholas Navet , Automotive Embedded System Handbook ,2009

Earlier known as B. V. B. College of Engineering & Technology

Course Code: 18EECO404	Course Title: Embedded System	
L-T-P-Self Study: 3-0-0-0	Credits: 3	Contact Hrs: 40
CIA Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hrs: 40		Exam Duration: 3 hrs

Content	Hrs		
Unit - 1			
Chapter No. 1 Introduction to embedded system Introduction, Classification of Embedded System, Major Application Areas, Purpose of Embedded System. Characteristics and quality attributes of Embedded Systems, Design Metric and Optimizing the metrics.	6 hrs		
Chapter No. 2 Typical Embedded Systems Core of Embedded System, Memory, Sensor and Actuators, Communication Network, Embedded Firmware, Components of Embedded System	5 hrs		
Chapter No. 3 Devices and Communication Buses for Devices Networks-I I/O types and examples, Serial communication devices, parallel device ports, sophisticated interfacing, Features in device ports, Wireless devices.	5 hrs		
Unit - 2			
Chapter No. 4 Devices and Communication Buses for Devices Networks II Timer and counting devices, Watchdog timer, Real time clock, Networked embedded systems, Serial bus communication protocols, Parallel bus device protocols, Internet enabled systems, Wireless and mobile system protocols.	8 hrs		
Chapter No. 5 Device Drivers and Interrupts Service Mechanism Device access without interrupts, ISR concept, Interrupt sources, Interrupt servicing mechanism, Multiple interrupts, Context and the periods for context-switching, interrupt latency and deadline, Classification of processors' interrupt service mechanism from context-saving angle.			
Unit - 3			
Chapter No. 6 Programming concepts and embedded programming in C Software programming in assembly and high level language, C program elements and program elements.			
Chapter No. 7 Embedded Design Cycle Embedded product development life cycle, Trends in Embedded Industry Case Study: Small & large embedded system like Washing Machine, AVCM	4 hrs		

Text Books (List of books as mentioned in the approved syllabus)

• Shibu K V, Introduction to Embedded Systems , 1E, McGraw Hil, 2014

• Rajkamal, Embedded Systems Architecture: Programming and Design , 2E, McGraw Hil, 2008

References

- Frank Vahid and Tony Givargis, Embedded System Design, 2E, John Wiley, 2002
- Steve Heath, Embedded Systems Design , 2E, , Elsevier, 2003

B. V. B. College of Engineering & Technology

Course	Code: 18EECO402	O402 Course Title: MEMS				
L-T-P: 3	-0-0	Credits: 3	Contact Hrs: 40			
ISA Mar	rks: 50	ESA Marks: 50	Total Marks: 100			
Teachin	g Hrs: 40		Exam Duration: 3 hrs			
No	Unit I		Hrs			
	Overview of MEMS and Microsystems					
1	Evolution of Microsystems, Miniaturization, Applications of Microsystems in Automotive, Aerospace, Health Care Industry, Industrial Products, Consumer Products and Telecommunications.			05		
2	Working principles of Microsystems					
	Micro-sensors: Acoustic wave sensor, Biomedical Sensors and Biosensors, Chemical Sensors Optical Sensors, Pressure Sensors, Thermal Sensors.					
	Micro-actuation: Actuation Using Thermal Forces, Shape Memory Alloys (SMA), Piezoelectric Crystals and Electrostatic Forces.					
	Applications of Micro-actuations: Micro-grippers, Micro-motors, Micro-valves, Micro-pumps.					
	Micro-accelerometers, Micro-fluidics, Numerical Problems.					
Unit II						
3	Scaling laws in miniaturization: Introduction to scaling, Scaling in Geometry, Rigid-Body Dynamics, Electrostatic Forces, Electromagnetic Forces, Electricity, Fluid Mechanics, Heat Transfer, Numerical problems.			10		
4	Materials for MEMS and Microsystem: Substrate and Wafers, Active Substrate Materials, Silicon as Substrate Material, Silicon Compounds, Silicon Piezo resistors, Gallium Arsenide, Quartz, Piezoelectric Crystals, Polymers, Packaging Materials.			05		

	Unit – III	
5	Microsystems Fabrication Processes: Photolithography, Ion Implantation, Diffusion, Oxidation, Chemical Vapor Deposition (CVD), Physical Vapor Deposition (PVD), Etching.	05
6	Micro-manufacturing: Bulk Micro-manufacturing, Surface Micromachining, The LIGA Process.	05

Text Book:

"MEMS and Microsystems – Design and Manufacture", Tai-Ran Hsu, TMH Edition 2002.

Earlier known as B. V. B. College of Engineering & Technology

References:

"Micro system Design", Stephen D. Senturia, Kluwer Academic Publishers, 2001.

"Foundations of MEMS", Chang Liu, Pearson Edition 2012.

"RF MEMS: Theory, Design, and Technology", Gabriel M. Rebeiz, John Wiley & Sons Publication, 2003.

Course Code: 18EECO405	Course Title: Industrial Automa	ation		
L-T-P-SS: 3-0-0-0	Credits: 03	Contact Hrs: 40		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40		Exam Duration: 3 h	rs	
Content			Hrs	
Unit - 1				
Chapter No. 1.Introduction to Process control Process control block diagram, control system evaluation, final control elements, P & ID symbols and diagrams:			5 hrs	
Chapter No. 2.Controller Principles Introduction, process characteristics, control system para control modes and composite control modes, problems	meters, discontinuous control	modes, continuous	5 hrs	
Chapter No. 3.Analog Controllers Introduction, general features, electronic controllers, pneum	atic controllers, problems		5 hrs	
Unit - 2				
Chapter No. 4.Introduction to Automation & Programmable Logic Controllers Introduction and evolution of Automation, Hierarchical levels of automation, introduction to plant automation. Expectations from automation, basic functions, historical developments, current trends in computer control of plants, Introduction to PLC operation-The digital concept, Analog signals, input status file, output status file, Sixteen point I/O modules, Input modules: Discrete input modules, Discrete AC and DC input modules. Output Modules: Discrete output modules PLC memory, Logic, Conventional Ladder v/s LPLC ladder, Analysis of rung, OR, AND, NOT logic, Ex Or logic.			5 hrs	
Chapter No. 5.PLC Programming and Instructions The basic relay instructions normally open and normally closed instructions, output latching instructions, interfacing start stop pushbutton and motor to PLC, On delay and Off delay and retentive timer instructions. PLC counter up and down instructions, combining counters and timers, Comparison and data handling instructions: Data handling instructions, Sequencer instructions: programming sequence output instructions, developing ladder diagram with analytical problems.			5 hrs	
Chapter No. 6.Different BUS configurations used for industrial automation GPIB, HART and OLE protocol, Industrial field bus- FIP (Factory Instrumentation protocol), PROFIBUS (Process field bus), Bit bus, Dive Net, Control Net and Ether CAT.			5 hrs	
Unit - 3				
Chapter No. 7. SCADA Introduction to supervisory control and data acquisition (SCA engineering units, data processing, distributed SCADA system	NDA), block diagram, channel sca n, Remote Terminal Unit.	nning, conversion to	5 hrs	
Chapter No. 8.Industrial Control Applications			5 hrs	

B. V. B. College of Engineering & Technology

Introduction to cement plant automation, thermal power plant automation, water treatment, Irrigation canal management

Text Book (List of books as mentioned in the approved syllabus)

- 1. C D Johnson, Process Control Instrumentation Technology, 8, Prentice hall of India, 2002
- 2. Garry Dunning, Introduction to Programmable Logic Controllers, 3, Cengage Learning Indian edition, 2000
- 3. Krishna Kant, Computer Based Industrial control, 2, P H I, 2001

- 1. B G Liptak, Instrument Engineers Handbook, Process Control, 1, Butterworth-Heine mall Ltd, Linacre house, Oxford, 0000
- 2. M. Chidambaram, Applied Process Control, 2, Allied Publisher. Ltd, 0000

Program: III Semester Bachelor of Engineering (Electronics & Communication Engineering)			
Course Title: Digital Circuits		Course Code: 19EECC201	
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4Hrs/week	Teaching
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	Hours
Teaching Hours: 50 Hrs	Examination Duration: 3 Hrs		
Unit-I			
Chapter No. 1. Logic Familie	25		03
Logic levels, output switchin	g times, fan-in and fan-out, comparison	of logic families	
Chapter No. 2. Principles of	Combinational Logic		
Definition of combinational Karnaugh maps-3,4 variab equations, Quine-McCluske Prime Implicant Tables.	l logic, canonical forms, Generation of les, Incompletely specified functions(E y minimization technique- Quine-McClu	switching equations from truth tables, bon't care terms),Simplifying Maxterm uskey using don't care terms, Reduced	10
Chapter No. 3. Analysis and	design of combinational logic		
General approach, Decoders-BCD decoders, Encoders, Digital multiplexers- Using multiplexers as Boolean function generators. Adders and subtractors-Cascading full adders, Look ahead carry adders, Binary comparators.		08	
Unit-II			
Chapter No. 4.Introduction	to Sequential Circuits		
Basic Bistable Element, Latc gated SR Latch, The gated Slave SR Flip-Flops, The Ma Flip-Flop, Negative-Edge Trig	hes, A SR Latch, Application of SR Latch, D Latch, The Master-Slave Flip-Flops (F ster-Slave JK Flip-Flop, Edge Triggered F ggered D Flip-Flop; Characteristic Equatic	A Switch De bouncer, The SR Latch, The Pulse-Triggered Flip-Flops): The Master- lip- Flop: The Positive Edge-Triggered D ons	10
Chapter No. 5. Analysis of S	equential Circuits		
Registers and Counters, Binary Ripple Counters, Synchronous Binary counters, Ring and Johnson Counters, Design of a Synchronous counters, Design of a Synchronous Mod-n Counter using clocked JK Flip-Flops Design of a Synchronous Mod-n Counter using clocked D, T or SR Flip-Flops.		10	
Unit-III			
Chapter No. 6. Sequential C	ircuit Design		
Introduction to Sequential (Sequential Circuit Analysis, (Circuit Design, Mealy and Moore Model Construction of state Diagrams and coun	s, State Machine notations, Synchronous ter design.	05
Chapter No. 7. Introduction	n to memories		
Introduction and role of me MROM, PROM, EPROM, EEP	mory in a computer system, memory typ ROM, Random access memory, SRAM, D	pes and terminology, Read Only memory, RAM, NVRAM.	04

Earlier known as B. V. B. College of Engineering & Technology

Text Books

- 1. Donald D Givone, Digital Principles and Design, Tata McGraw Hill Edition, 2002
- 2. John M Yarbrough, Digital Logic Applications and Design, Thomson Learning, 2001
- 3. A Anand Kumar, Fundamentals of digital circuits, PHI,2003

- 1. Charles H Roth, Fundamentals of Logic Design, Thomson Learning,
- 2. ZviKohavi, Switching and Finite Automata Theory, 2nd, TMH
- 3. R.D. Sudhaker Samuel, Logic Design, Sanguine Technical Publishers, 2005
- 4. R P Jain, Modern Digital Electronics, 2nd, Tata McGraw Hill , 2000

Program: III Semester Bachelor of Engineering (Electronics & Communication Engineering)			
Course Title: Signals and Sys	stems	Course Code: 19EECC202	
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4Hrs/week	Teaching
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	HOUIS
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		
	Unit I		
Chapter No. 01: Signal Rep	resentation		
Definition of a signals and sy deterministic and random signals(independent variabl signals (Impulse, step, ramp cascade), properties of linear superposition, linearity and	vstems, classification of signals, (analog ar signals, even and odd signals, ener e, dependent variable , time scaling, m n, sinusoidal, complex exponential), Syste r systems. (homogeneity time invariance, stability, memory, causa	nd discrete signal, periodic and aperiodic, gy and power) , basic operation on ultiplication, time reversal), elementary ems Interconnections(series, parallel and ality)	10
Chapter No. 02 : ITI System	Representation		
Impulse response representation and properties, Convolution, convolution sum and convolution integral. Differential and difference equation Representation, Block diagram representation		10	
	Unit II		
Chapter No. 03:Fourier rep	resentation for signals		
Introduction, Discrete time Fourier series(derivation of series excluded) and their properties. Discrete Fourier transform (derivation of transform excluded) and properties		10	
Chapter No. 04:Application	s of Fourier transform		
Introduction, frequency response of LTI systems, Fourier transform representation of periodic signals, Fourier transform representation of discrete time signals. Sampling of continuous time signals.		10	
	Unit III		
Chapter No. 05: Z-transform Definition of z-transform, Properties of ROC, Properties of Z-transforms: Inverse z-transforms (Partial Fraction method, long division method), Unilateral Z-transform, Transform of LTI.		10	
Text Book (List of books as	mentioned in the approved syllabus)		
1. Simon Haykin and Ba	arry Van Veen , Signals and Systems, Seco	nd, John Wiley & Sons,2002	
2. Alan V Oppenheim ,A	Alan S Willsky and S. Hamid Nawab , Signa	als and Systems, Second, PHI public,1997	
References			
1. H. P Hsu, R. Ranjan, S	Signals and Systems , TMH,2006		
2. GaneshRaoandSatish	Tunga,,SignalsandSystems,SanguineT,20	04 	
3. M.J.Roberts, Fundam	nentals of Signals and Systems, first Edition	on, TMH	

Program: IV Semester Bachelor of Engineering (Electronics & Communication Engineering)			
Course Title: Linear Integrat	ed circuits	Course Code:19EECC203	Teaching
L-T-P: 4-0-0 Credits: 4 Contact Hours: 4Hrs/week		Contact Hours: 4Hrs/week	Hours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 50Hrs	Examination Duration: 3 Hrs		
	Unitl		<u></u>
Chapter No 1. Current Mirro	rs		
Current Mirror circuits, Curre Widlar, Cascode and Wilson c	ent source and current sink, Figure urrent Mirrors.	s of merit (output impedance, voltage swing),	4
Chapter No 2 Basic OPAMP	architecture		
Basic differential amplifier, Co design, 7-pack operational am	ommon mode and difference mode nplifier, Slew rate limitation, Bandwi	e gain, CMRR, 5-pack differential amplifier with dth and frequency response curve.	6
Chapter No 3. OPAMP charac Ideal and non-ideal OPAMP t signal and Large signal bandw	c teristics erminal characteristics, Input and o ridth.	utput impedance, output Offset voltage, Small	8
	Unit II		
Chapter No 4. OPAMP with F	eedback		
OPAMP under Positive and impedances, Offset voltage un operation	Negative feedback, Impact Negativ nder negative feedback, Follower pr	ve feedback on Bandwidth, Input and Output operty & Inversion Property under linear mode	10
Chapter No 5. Linear applica	itions of OPAMP		
DC and AC Amplifier, Summing, Scaling and Averaging amplifiers (Inverting, Non-inverting and Differential configuration), Instrumentation amplifier, Integrator, Differentiator, Active Filters –First and second order Low pass & High pass filters. V to I and I to V converters.		12	
	UnitIII		
Chapter No 6. Nonlinear appl	lications of OPAMP		
Crossing detectors (ZCD. C generators, Waveform genera Wein Bridge Oscillator, Data steering DAC, Pipeline DAC, A	Comparator), Inverting Schmitt t ator, Voltage controlled Oscillator, S Converters: Digital to Analog Conv Analog to Digital Converters: Flash, F	rigger circuits, Triangular/rectangular wave ample and Hold circuits, Phase Shift Oscillator, erters: Weighted resistor R -2R DAC, Current Pipeline ADC, SAR	10

Earlier known as B. V. B. College of Engineering & Technology

Text Book

- 1. BehzadRazavi, Fundamentals of Microelectronics , 2ndEdition.
- 2. Phillip E. Allen, Douglas R. Holberg, CMOS Analog CircuitDesign.
- 3. Ramakant A. Gayakwad, Op Amps and Linear IntegratedCircuits.

- 1. A.S. Sedra& K.C. Smith, MicroelectronicCircuits,
- 2. Sergio Franco, Design with Operational Amplifiers and Analog IntegratedCircuits.
- 3. David A. Bell, Operational Amplifiers and LinearIC's.
- 4. B. Razavi, Design of Analog CMOS Integrated Circuits McGraw-Hill, 2001

Course Code: 19EECF201Course Title: Data Structures Applications LabL-T-P-PR/OR: 0-0-2Credits: 2Contact Hrs: 4Hrs/WeekISA marks: 80ESA marks: 20Total Marks: 100Teaching + Lab Hrs: 48Duration of ESA: 2 hrs

Content	Hrs
Unit - 1	
Chapter No 1. Applications of basic data structures	10 hrs
Applications of Stacks, Queues, Linked lists	
Chapter No 2. Trees	18 hrs
Computer representation, Tree properties, Binary Tree properties, Binary search trees properties and implementation, Tree traversals, AVL tree.	
Unit - 2	
Chapter No 3. Graphs	10 hrs
Computer representation, Adjacency List, Adjacency Matrix, Graph properties, Graph traversals.	
Unit - 3	1
Chapter No 4. Hashing	10 hrs
Hashing, Hash function, Hash Table, Collision resolution techniques, Hashing Applications	

Text Books (List of books as mentioned in the approved syllabus)

1. Richard F. Gilberg & Behrouz A. Forouzan, Data Structures A Pseudocode Approach with C, Second Edition.

2. Aaron M. Tenenbaum, Data Structures Using C.

B. V. B. College of Engineering & Technology

Earlier known as

Progr	am: III Semester Bachelor of	FEngineering (Electronics 8	& Communication Engineering)	
Cours	Course Title: Data Structure (Diploma) Course Code: 19EECF202		Course Code: 19EECF202	
L-T-P:	: 0-0-2	Credits: 2	Contact Hours: 4Hrs/week	Teaching
ISA N	ISA Marks: 80 ESA Marks:- 20 Total Marks: 100		+ Lab Hours.	
Teach	ning + Lab. Hours: 72 Hrs			
1.	Programming on pointer c memory management fund	oncepts: Pointer concepts, ctions	1D and 2D arrays, pointers to functions,	02+06
2. Programming on string handling functions using pointers, structures, bit-fields : Perform string handling functions like String length, String concatenate, Strings compare, String copy and Strings reverse, Implementing Structures, union andbit-field.		02+06		
3. Programming on files: Open, Close, Read, Write and Append the file.		02+04		
4. Programming on stack data structures and applications: Insert delete and display an integer in a stack, Conversion from Infix to postfix & Infix to Prefix, Recursion.		04+04		
5. Programming on queue data structures: Insert at rear end ,delete at front end and display the integers in queue, Deque and circular queue.		04+04		
6.	6. Programming on linked lists: Insert, delete and display a node in Singly Linked List, Doubly Linked List and Circular Linked List.		04+06	
7.	7. Programming on trees: Perform various operations on binary trees, find max, min value in a binary search trees, find the height of a tree, count nodes in a tree, delete a node in a tree.		04+04	
8.	Programming on sorting: Merge sort, Quick sort, Heap sort, Shell sort, Radix sort.		04+04	
9. Programming on hashing tables: Implement different methods of hash tables.		02+02		
10.	Open ended experiment:	mplement given Data struc	tures.	02+02

Text Book

3. Horowitz, Sahani, Anderson-Feed, — Fundamentals of Data Structures in C , 2ed, Universities Press, 2008

4. Richard F. Gilberg, Behrouz A. Forouzan — Data Structures: A Pseudocode Approach With C , 2nd Edition , Course Technology, Oct 2009.

References

3. E Balaguruswamy, — The ANSI C programming Language , 2ed., PHI, 2010.

4. YashavantKanetkar, - Data Structures through C , BPB publications 2010

B. V. B. College of Engineering & Technology

Earlier known as

Program: V Semester Bachelor of Engineering(Electronics & Communication Engineering)		Teaching	
Course Title: CMOS VLSI Circ	uits	Course Code: 19EECC301	Hours
L-T-P: 4-0-0	Credits: 04	Contact Hours: 4 Hrs/week]
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 50 Hrs	Examination Duration: 3 Hrs		
	Content		
Chapter No. 1. Introduction	Unit I to VLSI and IC fabrication technology	achroleki mathad of growing Silicon	
Introduction to Unit Process Silicon gate process, n-Well root cause of short channel FinFET and a new scaling pat	es (Oxidation, Diffusion, Deposition, Ion- process, p-Well process, Twin-tub Proce effects in twenty-first century MOSFETS h for MOSFETS, Ultra-thin body FET, Rece	implantation), Basic CMOS technology - ess, Oxide isolation. FinFET device, The S, The thin body MOSFET concept, The ent trends in fabrication technology.	08
Chapter No. 2. Electronic Analysis of CMOS logic gates			
DC transfer characteristics of CMOS inverter, Beta Ratio Effects, Noise Margin, MOS capacitance models. Transient Analysis of CMOS Inverter, NAND, NOR and Complex Logic Gates, Gate Design for Transient Performance, Switch-level RC Delay Models, Delay Estimation, Elmore Delay Model, Power Dissipation of CMOS Inverter, Transmission Gates & Pass Transistors, Tristate Inverter.		14	
	Unit II		
Chapter No. 3. Design of CM	OS logic gates		06
Stick Diagrams, Euler Path, La	ayout design rules, DRC, Circuit extraction	n, Latch up – Triggering Prevention.	
Chapter No. 4. Designing Combinational Logic Networks Gate Delays, Driving Large Capacitive Loads, Delay Minimization in an Inverter Cascade, Logical effort. Pseudo nMOS, Clocked CMOS, Dynamic CMOS Logic Circuits, Dual-rail Logic Networks: CVSL, CPL.		14	
	Unit – III		
Chapter No. 5. Sequential Cl	MOS Circuit Design		08
Sequencing static circui	ts, Circuit design of latches and flip-flops, distribution.	Clocking- clock generation, clock	

Text Books (List of books as mentioned in the approved syllabus)

- 1. John P.Uyemura, Introduction to VLSI Circuits and Systems, 1, Wiley, 2007
- 2. Neil Weste, David Harris & Ayan Banerjee, CMOS VLSI Design, 3, Pearson Ed 2005
- 3. Sung-Mo Kang & Yusuf Leblebici, CMOS Digital Integrated Circuits: Analysis and Design, 3, Tata McGra, 2007

- 1. FinFET Modeling for IC Simulation and Design: Using the BSIM-CMG Standard By Yogesh Singh Chauhan, Darsen Duane Lu, VanugopalanSriramkumar, SourabhKhandelwal, Juan Pablo Duarte, NavidPayvadosi, Ai Niknejad, Chenming Hu, Elsevier Publication, 2015
- 2. Wayne, Wolf, Modern VLSI design: System on Silicon, 3, Pearson Ed, 2005
- 3. Douglas A Pucknell and Kamran Eshraghian, Basic VLSI Design, 3, PHI,2005
- 4. Phillip. E. Allen, Douglas R. Holberg, CMOS Analog circuit Design, 1, Oxford University, 2002

Earlier known as

B. V. B. College of Engineering & Technology

CMOS VLSI Circuits Laboratory	Experiments	Course Code: 19	EECP301	
ISA Marks: 80	ESA Marks: 20		Total Marks: 100	
Teaching Hours: 25Hrs	Examination Duration: 2 H	rs	Contact Hours: 2Hrs/week	
		•		
List of Experiments:				
1 Introduction to Codeno				
1. Introduction to Cadenc	e EDALOOI.			
Static and Dynamic Cha	aracteristic of CMOSinverter.			

- Layout of CMOS Inverter(DRC,LVS)
- Static and Dynamic Characteristic of CMOS NAND2 andNOR2.
- 5. Layout of NAND2, NOR2, XOR2 gates (DRC,LVS).

Structured Enquiry

1. Design a Phase Detector usingD-FF

Open Ended

1. Design complex combinational circuits and analyze the performance using Cadencetool.

Books/References:

- 1. JohnP.Uyemura,-IntroductiontoVLSICircuits and SystemsII,Wiley.
- 2. Neil Weste and K. Eshragian, IPrinciples of CMOS VLSI Design: A System Perspective, II 2nd edition, Pearson Education (Asia) Ptv. Ltd., 2000.

Course Code: 19EECC302	Course Title: OOPS using C++	
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 42
ISA: Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs: 42		Exam Duration:

Content	Hrs
Unit - 1	
Chapter 1: Fundamental concepts of object oriented programming: Introduction to object oriented programming, Programming Basics (keywords, identifiers, variables, operators, classes, objects), Arrays and Strings Functions/ methods (parameter passing techniques),	04 hrs
Chapter 2: OOPs Concepts: Overview of OOPs Principles, Introduction to classes & objects ,Creation & destruction of objects, Data Members, Member Functions , Constructor & Destructor , Static class member, Friend class and functions, Namespace	08hrs
Unit - 2	
Chapter 3: Inheritance: Introduction and benefits, Abstract class, Aggregation: classes within classes Access Specifier, Base and Derived class Constructors, Types of Inheritance. Function overriding	8 hrs
Chapter 4: Polymorphism: Virtual functions, Friend functions, static functions, this pointer	6 hrs
Unit - 3	
Chapter 5: Exception Handling: Introduction to Exception, Benefits of Exception handling, Try and catch block, Throw statement, Pre-defined exceptions in C++,Writing custom Exception class	8 hrs
Chapter 6: I/O Streams: C++ Class Hierarchy, File Stream, Text File Handling, Binary File Handling Error handling during file operations, Overloading << and >> operators	6 hrs

Earlier known as B. V. B. College of Engineering & Technology

Books	/References:	
DOOKS	increnences.	

Text Book

1. Robert Lafore, "Object oriented programming in C++", 4th Edition, Pearson education, 2009.

- 1. Lippman S B, Lajorie J, Moo B E, C++ Primer, 5ed, Addison Wesley, 2013.
- 2. Herbert Schildt: The Complete Reference C++, 4th Edition, Tata McGraw Hill

Course Code: 19EECE322 / 19EECE422	Course Title: Introduction to Deep Learning		
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 42		Exam Duration: 3 hrs	
Conten	t		Hrs
Unit - 1			
Chapter 1: Introduction to Deep Learning: What is Deep Learning?, Applications of deep learning, Differences between machine learningand deep learning, Basics of Neural Networks, Supervised Learning with Neural Networks, Logistic regression as a neural network, Computation graph, shallow neural networks, Deep neural networks. Introduction to metric tensors and tensorflow.			8 hrs
Chapter 2: Hyper-Parameter Tuning, Regularization and Optimization: Basics of Hyper-parameters, Regularization, Need for regularization, dropout regularization, gradient checking, mini-batch gradient descent, exponentially weighted averages and its biascorrection, Gradient descent with decay, Adam's optimization algorithm, The problem of localminima, weight initialization in neural networks, Normalizing activations in a network, Fitting Batch norm into a network, Softmax regression, Softmax classifier.			8 hrs
Unit -	2		
Chapter 3: Convolutional Neural Networks Introduction to Computer Vision and Image Processing, 2D Convolutions, Strided convolution, convolution over volume, One layer of a convolution network, ReLu and pooling, Example of aConvNet, Classic CNN Networks, ResNet architecture, Inception Networks, Transfer learning, Data Augmentation, Residual networks, Object Localization, Landmark and object detection, Convolutional implementation of sliding windows, YOLO algorithm, Car detection algorithm using YOLO. One shot learning, Face recognition algorithm.			12 hrs
Chapter 4: Recurrent Neural Networks Backpropogation through time, RNN model, Types of RNN, Vanishing gradients with RNN,Gated Recurrent Unit, LSTM, Bidirectional RNN, Deep RNN, basics of NLP and Concept ofword embedding, speech recognition.			04 hrs
Unit - 3			
Chapter 5: Unsupervised Deep Learning Concepts of Unsupervised deep learning, RBM (Restricted E Auto encoders, collaborative filtering with RBM, Deep belie	Boltzman Machine) and auto en f networks.	coders, structure of	10 hrs

Text Books

- Deep Learning, Ian Goodfellow, Yoshua Bengio and Aaron Courville, MIT Press, ٠ http://www.deeplearningbook.org, 2016.
- Neural Networks and Deep Learning by Michael Nielsen. •

- Deep Learning with Python, Francois Chollet, by Manning Publications, 2018. ٠
- Deep Learning by Microsoft Research .
- Deep Learning Tutorial by LISA lab, University of Montreal •

Course Code: 19EECC302	Course Title: OOPS using C++	
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 42
ISA: Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs: 42		Exam Duration:

Content	Hrs
Unit - 1	
Chapter 1: Fundamental concepts of object oriented programming: Introduction to object oriented programming, Programming Basics (keywords, identifiers, variables, operators, classes,	04 hrs
objects),Arrays and Strings Functions/ methods (parameter passing techniques),	
Chapter 2: OOPs Concepts: Overview of OOPs Principles, Introduction to classes & objects ,Creation & destruction of objects, Data Members, Member Functions , Constructor & Destructor , Static class member, Friend class and functions, Namespace	08hrs
Unit - 2	
Chapter 3: Inheritance: Introduction and benefits, Abstract class, Aggregation: classes within classes Access Specifier, Base and Derived class Constructors, Types of Inheritance. Function overriding	8 hrs
Chapter 4: Polymorphism: Virtual functions, Friend functions, static functions, this pointer	6 hrs
Unit - 3	1
Chapter 5: Exception Handling: Introduction to Exception, Benefits of Exception handling, Try and catch block, Throw statement, Pre-defined exceptions in C++,Writing custom Exception class	8 hrs

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi 580031. Karnataka (India) Tel. : +91 - 836 - 2378123 Fax : +91 - 836 - 2374985. www.kletech.ac.in

Chapter 6: I/O Streams:		6 hrs
C++ Clas	ss Hierarchy, File Stream, Text File Handling, Binary File Handling	
Error ha	ndling during file operations, Overloading << and >> operators	
Books/I Text Bo	References: ok	
1.	Robert Lafore, "Object oriented programming in C++", 4th Edition, Pearson education, 2009.	
References		
1.	Lippman S B, Lajorie J, Moo B E, C++ Primer, 5ed, Addison Wesley, 2013.	
2.	Herbert Schildt: The Complete Reference C++, 4th Edition, Tata McGraw Hill	

B. V. B. College of Engineering & Technology

Course Code: 19EECE416	Course Title: Biosensor	
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 72
ISA Marks: 00	ESA Marks: 100	Total Marks: 100
Teaching Hrs: 72		Exam Duration: 3 hrs

Content	Hrs
Unit - 1	_
Chapter No. 1. Basic Introduction to sensors	5 hrs
Introduction to sensors: fundamental characteristics such as Sensitivity, linearity, repeatability, hysteresis, drift. Sensing Principles: optical sensors, electrochemical sensors, micromechanical sensors, surface Plasmon sensors, colorimetric Sensors, acoustic sensors	
Chapter No. 2. Active Electrical Transducers	10 hrs
Thermoelectric transducers, thermoelectric phenomenon, common thermocouple systems, piezoelectric transducers, piezoelectric phenomenon piezoelectric materials, piezoelectric force transducers, piezoelectric strain, piezoelectric torque transducers, piezoelectric pressure transducers, piezoelectric acceleration transducers. Magnetostrictive transducers Magnetostrictive force transducers, Magnetostrictive acceleration transducers, Magnetostrictive torsion transducers, Hall Effect transducers, and application of Hall transducer.	
Electromechanical transducers-Tachometers, variable reluctance tachometers Electrodynamic vibration transducers, Electromagnetic pressure electromagnetic flowmeter. Photoelectric transducers- photoelectric phenomenon, photoelectric transducers, Photo volatile transducers, Photo emissive transducers.	
Electrochemical transducers- basics of electrode potentials, reference electrodes, indicator electrodes, measurement of PH, measurement of bioelectric signals.	
Unit - 2	
Chapter No. 3. Passive electrical transducer Introduction, Resistive transducers- resistance thermometers, hot wire resistance transducers, Resistive displacement transducer, Resistive strain transducer, resistive pressure transducer, resistive optical radiation transducers. Inductive transducers-Inductive thickness transducers, Inductive displacement transducers, Movable core-type Inductive transducers, eddy current type Inductive transducers. Capacitive transducers-Capacitive thickness transducers, capacitive displacement transducers, student transducers, capacitive displacement transducers, capacitive displacement transducers, capacitive moisture transducers Substrate and Wafers, Active Substrate Materials, Silicon as Substrate Material, Silicon Compounds, Silicon Piezo resistors, Gallium Arsenide, Quartz, Piezoelectric Crystals, Polymers, Packaging Materials.	5 hrs
Chapter No. 4. Microfabrication Technology Design of proces s flow for device fabrication for application in biology and medicine: Introduction to the Clean room	10 hrs

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi 580031. Karnataka (India) Tel. : +91 - 836 - 2378123 Fax : +91 - 836 - 2374985. www.kletech.ac.in

and contaminants, Wafer cleaning processes (DI water, RCA, metallic impurities, etc.), Substrate materials: Silicon, polymer and PCB, Thermal oxidation: Wet and dry oxidation, thin film deposition techniques: PVD- DC and RF Magnetron Sputtering, thermal evaporation, e-beam evaporation, LPCVD, PLD.

Types of masks: Hard and soft Lithography, Lithography – UV Photolithography, Soft lithography, additive manufacturing. Mask design and fabrication - Photo resists and mechanical mask such as stencils. Types of etching-Wet etching- anisotropic and Isotropic and dry etching RIE and DRIE. Device fabrication and inspection in the clean room.

Unit - 3	
Chapter No. 5. Biosensors	5 hrs
Introduction: Biosensors and its applications in health care, agriculture, drug discovery and environmental monitoring. Devices for biology and medicine: Microfluidic channels, flow cytometry/ sorting, microchip using electrophoresis, force measurement with cantilevers, micro engineered devices for medical therapeutics, blood pressure sensors, devices for drug delivery, and devices for minimally invasive surgery.	
Chapter No. 6. Biological components for detection	5 hrs
Enzymes, antigen-antibody reaction, biochemical detection of analysts, organelles, whole cell, receptors, DNA probe, pesticide detection, sensors for pollutant gases. Surface chemistry: Immobilization of biorecognition element, Antigen-Antibody functionalization, and assay labels including radioisotopes, fluorophores, dyes.	

Text Books (List of books as mentioned in the approved syllabus):

- 1. Fundamentals of Microfabrication and Nanotechnology by Marc J. Madou, 3rd edition. Taylor and Francis group.
- 2. Transducers and Instrumentation D.V.S. Murthy, 2nd Edn, PHI Ltd, 2010.
- 3. A.P.F. Turner, I. Karube & G.S. Wilson: Biosensors: Fundamentals & Applications, Oxford University Press, Oxford, 1987.

- 1. Ernest O. Doeblin : Measurement Systems, Application and Design, McGraw-Hill, 1985.
- 2. Richard S.C. Cobbold : Transducers for Biomedical Measurements: Principles and Applications, John Wiley & Sons, 1974
- 3. John G. Webster (ed.) : Medical Instrumentation Application and Design; Houghton Mifflin Co., Boston, 1992.
- 4. Stephen D. Senturia : "Micro system Design", Kluwer Academic Publishers, 2001

Course Code: 19EECC302	Course Title: OOPS using C++	
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 42
ISA: Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs: 42		Exam Duration:

Content	Hrs
Unit - 1	
Chapter 1: Fundamental concepts of object oriented programming: Introduction to object oriented programming, Programming Basics (keywords, identifiers, variables, operators, classes, objects),Arrays and Strings Functions/ methods (parameter passing techniques),	04 hrs
Chapter 2: OOPs Concepts: Overview of OOPs Principles, Introduction to classes & objects ,Creation & destruction of objects, Data Members, Member Functions , Constructor & Destructor , Static class member, Friend class and functions, Namespace	08hrs
Unit - 2	
Chapter 3: Inheritance: Introduction and benefits, Abstract class, Aggregation: classes within classes Access Specifier, Base and Derived class Constructors, Types of Inheritance. Function overriding	8 hrs
Chapter 4: Polymorphism: Virtual functions, Friend functions, static functions, this pointer	6 hrs
Unit - 3	
Chapter 5: Exception Handling: Introduction to Exception, Benefits of Exception handling, Try and catch block, Throw statement, Pre-defined exceptions in C++,Writing custom Exception class	8 hrs
Chapter 6: I/O Streams: C++ Class Hierarchy, File Stream, Text File Handling, Binary File Handling Error handling during file operations, Overloading << and >> operators	6 hrs

Books/References:		
Text Bo	ok .	
1.	Robert Lafore, "Object oriented programming in C++", 4th Edition, Pearson education, 2009.	
References		
1.	Lippman S B, Lajorie J, Moo B E, C++ Primer, 5ed, Addison Wesley, 2013.	
2.	Herbert Schildt: The Complete Reference C++, 4th Edition, Tata McGraw Hill	

Course Code: 19EECE402Course Title: Information Theory and CodingL-T-P-SS: 2-0-1Credits: 3Contact Hrs: 40ISA Marks: 50ESA Marks: 50Total Marks: 100Teaching Hrs: 40Exam Duration: 3 hrs

Content	Hrs
Unit - 1	
Chapter No. Chapter 1:Information Theory:	7 hrs
Information Theory: Introduction, Measure of information, Average information content of symbols in long independent sequences, Average information content of symbols in long dependent sequences. Mark-off statistical model for information source, Entropy and information rate of mark-off source	
Chapter No. Chapter 2: Source Coding:	8 hrs
Encoding of the source output, Shannon's encoding algorithm. Communication Channels, Discrete communication channels, Continuous channels. Source coding theorem,, Huffman coding	
Unit - 2	
Chapter No. Chapter 3: Channel coding Discrete memory less Channels, Mutual information, Channel Capacity Channel coding theorem, Differential entropy and mutual information for continuous ensembles, Channel capacity Theorem.	4 hrs
Chapter No. Chapter 4: Introduction to Error Control Coding: Introduction, Types of errors, examples, Types of codes Linear Block Codes: Matrix description, Error detection and correction, Standard arrays and table look up for decoding.	7 hrs
Chapter No. Chapter 5: Binary Cycle Codes Algebraic structures of cyclic codes, Encoding using an (n-k) bit shift register, Syndrome calculation.	4 hrs
Unit - 3	
Chapter No. Chapter 6: BCH codes RS codes	10 hrs
Golay codes, Shortened cyclic codes, Burst error correcting codes. Burst and Random Error correcting codes. Convolution Codes, Time domain approach. Transform domain approach. Systematic Convolution codes	

Text Book (List of books as mentioned in the approved syllabus)

1. K. Sam Shanmugam, Digital and analog communication systems, John Wiley, 1996

2. Simon Haykin, Digital communication, John Wiley, 2003

- 1. Ranjan Bose, ITC and Cryptography, TMH(reprint 2007), 2002
- 2. Glover and Grant, Digital Communications , 2, Pearson, 2008
- 3. D Ganesh Rao, K N Haribhat, Digital Communications, Sanguine, 2009

B. V. B. College of Engineering & Technology

Course	Code: 19EECE403	Course Title: Testing & Characterization		
L-T-P- S	S: 0-0-3	Credits:6	Contact Hrs: 3Hrs/week	
CIE Mai	rks: 50	SEE Marks: 50	Total Marks: 100	
Teachir	ng Hrs: 40		Exam Duration: 3 Hrs	
		Unit I	i	
No		Content		Hrs
1	Introduction: in VLSI design process; Issues in test and v Basics of Basic Semiconductor, Overview Load, Basics of Resistor, Capacitor and Massurement Instruments and Specificati	erification of complex chips; embedd of Datasheet Parameters, Generic De d Inductor, Diode, Op-Amp, AC/Do	Scope of testing and verification ed cores and SOCs. etails about IC , Concept of Source and C, Power Supply and Specifications,	
	measurement instruments and specificati	ons, voltage regulators		4
2	Fundamentals of VLSI testing Fault models. Automatic test pattern generation, Design for testability, Scan design, Test interface and boundary scan. Measuring Methods: 2 Wire/4 Wire Connections, Basics of Digital, LA/PG, Generic details of Digital IC		12	
		Unit II		
3	Testing System testing and test for SOCs, IDDQ automation.	testing, Delay fault testing, BIST for	r testing of logic and memories, Test	8
4	Design verification techniques Design verification techniques based on si Tests: 1. Continuity Tests	mulation, analytical and formal appro	paches, Functional verification	
	 Device power supply lests: Output voltage, Input Current, Leakage Current Power Supply Current Test 			
	4. Digital output Voltage and Co	urrent Tests		8

B. V. B. College of Engineering & Technology

	5. Digital Input Leakage Current Tests	
	Unit – III	
	Verification techniques Timing verification, Formal verification, Basics of equivalence checking and model checking, Hardware emulation.	
	1. Functional Testing and Verification of ICs (Buffer IC, Transceiver)	
5	2. Writing or Reading Data from Memory Device (I2C, SPI)	
	3. Characterization V_{min}/f_{max} of Memory Device.	
		8
Text B	pok:	
1.	M. Abramovici, M. A. Breuer and A. D. Friedman, "Digital Systems Testing and Testable Design", IEEE Press, 1990.(Av JAICO Publication)	ailable as
2.	M. Bushnell and V. D. Agarwal, "Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits Academic Publishers, 2000.	", Kluwer
3.	T .Kropf, "Introduction to Formal Hardware Verification", Springer Verlag, 2000.	
Refere	nces:	
1.	P. Rashinkar, Paterson and L. Singh, "System-on-a-Chip Verification-Methodology and Techniques", Kluwer Academic P 2001.	ublishers,
2.	M. Abramovici, M. A. Breuer, A. D. Friedman, "Digital Systems Testing and Testable Design" Piscataway, New Jersey: If 1994	EEE Press,
3.	J.DiGiacomo, editor, "VLSI Handbook", McGraw-Hill, 1989.	
4.	Samiha Mourad and Yervant Zorian, "Principles of Testing Electronic Systems", Wiley (2000).	
5.	D. K. Pradhan (Editor). Fault-Tolerant Computing: Theory and Techniques, Prentice Hall, NJ, 1986.	
6.	Miczo. Digital Logic Testing and Simulation, John Wiley & Sons, 1987.	
7.	Barry Johnson. Design and Analysis of Fault-Tolerant Digital Systems, Addison Wesley, 1989.	

B. V. B. College of Engineering & Technology

Earlier known as

Course Code: 19EECE322 / 19EECE422	Course Title: Introduction to Deep Learning		
L-T-P: 2-0-1	Credits: 3	Contact Hrs: 4	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 42		Exam Duration: 3 hrs	
Content	Content		Hrs
Unit - 1			
Chapter 1: Introduction to Deep Learning: What is Deep Learning?, Applications of deep learning, Difference Neural Networks, Supervised Learning with Neural Networks, Log shallow neural networks, Deep neural networks. Introduction to r tensorflow.	es between machine learningand d istic regression as a neural networ metric tensors and tensorflow, Bas	eep learning, Basics of k, Computation graph, ic programs in	8 hrs
Chapter 2: Hyper-Parameter Tuning, Regularization and Optimization: Basics of Hyper-parameters, Regularization, Need for regularization, dropout regularization, gradient checking, mini-batch gradient descent, exponentially weighted averages and its biascorrection, Gradient descent with decay, Adam's optimization algorithm, The problem of localminima, weight initialization in neural networks, Normalizing activations in a network, Fitting Batch norm into a network, Softmax regression, Softmax classifier.		8 hrs	
Unit -	2		
Chapter 3: Convolutional Neural Networks Introduction to Computer Vision and Image Processing, 2D Convolutions, Strided convolution, convolution over volume, One layer of a convolution network, ReLu and pooling, Example of aConvNet, Classic CNN Networks, ResNet architecture, Inception Networks, Transfer learning, Data Augmentation, Residual networks, Object Localization, Landmark and object detection, Convolutional implementation of sliding windows, YOLO algorithm, Car detection algorithm using YOLO, One shot learning, Face recognition algorithm.		12 hrs	
Chapter 4: Recurrent Neural Networks Backpropogation through time, RNN model, Types of RNN, Vanishing gradients with RNN,Gated Recurrent Unit, LSTM, Bidirectional RNN, Deep RNN, basics of NLP and Concept ofword embedding, speech recognition.		04 hrs	
Unit - 3			
Chapter 5: Unsupervised Deep Learning Concepts of Unsupervised deep learning, RBM (Restricted Boltzm encoders, collaborative filtering with RBM, Deep belief networks.	an Machine) and auto encoders, s	tructure of Auto	10 hrs

Text Books

- Deep Learning, Ian Goodfellow, Yoshua Bengio and Aaron Courville, MIT Press, ٠ http://www.deeplearningbook.org, 2016.
- Neural Networks and Deep Learning by Michael Nielsen. •

- Deep Learning with Python, Francois Chollet, by Manning Publications, 2018. ٠
- Deep Learning by Microsoft Research .
- Deep Learning Tutorial by LISA lab, University of Montreal •

Earlier known as B. V. B. College of Engineering & Technology

Course Code: 20EECE340	Course Title: Multicore Architecture and Programming	
L-T-P : 2-0-1	Credits: 3	Contact Hrs: 4Hr/week
ISA Marks:50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 52		Exam Duration: 3

Content	Hrs
Unit - 1	r
Chapter No. 1: Introduction to Multicore Drivers for Multicore Architectures: Low power, Performance/Throughput and need for memory bandwidth – Limits of single core computing – Moore's law - Limits to Instruction Level Parallelism (ILP) – Power and heat dissipation issue – Increased amount of data to process – Evolution from traditional System-On-Chip (SoC) to MPSoCs (Multi processor System-On-Chips) - Need for Multicore controllers in Automotive domain	4hrs
Chapter No. 2: Multicore Architecture Dependent Multicore software and hardware architectures –Multicore hardware architecture overview: Heterogeneous and Homogenous Multicore hardware – Communication between hardware processing elements: Point-to-point connections, Shared buses, On-chip cross bar, Network-On-Chip (NoC) - Memory access in Multicore architectures: Symmetric Multi-Processing (SMP), Asymmetric Multi processing aka NUMA (Add pros and cons)– Multicore architecture specific to applications - Example Multicore hardware used in Automotive – Infineon Tricore series, ST devices	12hrs
Unit - 2	1
Chapter No. 3: Scheduling concepts and OS aspects What is Scheduling? – Static and Dynamic Scheduling - Scheduling algorithms: Rate Monotonic Scheduling (RMS), Fixed priority preemptive scheduling, Round robin scheduling, Earliest deadline first, First come First serve – Process and threads - What is pre-emption? Why is it needed?- Types of Multicore Scheduling: Global, Semi-partitioned and Partitioned –OS for General purpose and Real time systems - Scheduling in Single core vs Scheduling in Multicore – Timing Jitter	10 hrs
Chapter No. 4:Concurrency and Parallelism Amdahl's law – Need for Parallelism – Concurrency Fundamentals – Data parallelism, Functional Parallelism, loop Parallelism – Dependencies – Producer consumer`— Need for Synchronization, Loop dependencies–Shared resources – Caching aspects - Problems with no synchronization - Synchronization primitives – Semaphore, Mutex, spinlocks, Test and Set, Compare and swap–Synchronization related issues and how to avoid them: Data races, Livelocks, Deadlock, Non-atomic operations –	10hrs

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi 580031. Karnataka (India) Tel. : +91 - 836 - 2378123 Fax : +91 - 836 - 2374985. www.kletech.ac.in

B. V. B. College of Engineering & Technology

Unit - 3	
Chapter 5: Advanced Multicore topics – Introduction/Overview Multicore timing analysis - Timing simulation: Why it is needed? – WCET (Worst Case Execution Time) analysis –	4hrs
Schedulability analysis – Additional challenges in Multicore - Tools used in automotive: Timing architect, ChronSIM, Sym TA/S- Deterministic behavior – Logical Execution Time (LET)	l

References:

Highly Recommended: Real world Multicore embedded systems - Bryon Moyer

Highly Recommended for Embedded system and Real Time basics -Programming Embedded Systems with C and GNU Development Tools – Michael Barr

References in the internet for Multicore timing analysis:

Why is timing analysis important: http://embedded.cs.uni-saarland.de/publications/EnablingCompositionalityRTNS2016.pdf

Multicore timing simulation solutions:

https://www.vector.com/int/en/events/global-de-en/webinars/2020/timing-analysis-for-multicore-ecus/ https://www.rapitasystems.com/multicore-timing https://www.inchron.com/tool-suite/chronsim/ https://www.absint.com/ait/symtas.htm https://www.danlawinc.com/wp-content/uploads/MC-BR-006-Multicore-Timing-Analysis-Solution-For-Aerospace-v3.pdf

Logical Execution Time (LET)

https://ieeexplore.ieee.org/document/5577967

Laboratory Title: Senior Design Project	Lab. Code:20EECW401
Credit : 0-0-6 Total Hours: 70 hours/week	Duration of exam: 2 hours
Total Exam Marks: 100	ISA Marks: 50

Application Areas are,

- Smart City
- Connected Cars
- Home Automation
- Health care
- Smart energy
- Automation of Agriculture

Guide lines for selection of a project:

- The project needs to encompass the concepts learnt in the previous semesters, so that the student will learn to integrate, the knowledge base acquired to provide a solution to the defined problem statement of the project work.
- Student can select a project which leads to a product or model or prototype.
- Time plan: Effort to do the project should be between 60-70Hrs per team, which includes self-study of an individual member (80-100 Hrs) and team work (40-50hrs).
- Learning overhead should be 20-25% of total project development time.

Criteria for group formation:

- 3-4 students in a team.
- Role of teammates: Team lead and members.

Allocation of Guides and Mentors for the projects:

Every Project batch will be allocated with one faculty.

Details of the project batches:

- Number of faculty members: 50
- Number of students:3-4 students in a team.

Role of a Guide

The primary responsibility of the guide is to help students to understand the meaning and need of various stages in the implementation of the project. At every stage of the project development, guide should help towards its successful completion as per the predefined standards.

How student should carry out a project:

- Define the problem.
- Specify the requirements.
- Specify the design in the understandable form (Block Diagram, Flowchart, Algorithm, etc).
- Analyze the design and identify hardware and software componentsseparately.
- Select appropriate simulation tool and development board for the design.
- Implement the design.
- Optimize the design and generate the results.
- Result representation and analysis.
- Prepare a document and presentation.

Report Writing

- The format for report writing should be downloaded from ftp://10.3.0.3/projects
- The report needs to be shown to guide and committee for each review.

Evaluation Scheme

- Internal semester assessment (ISA)
- Evaluation is done based on the evaluation rubrics given in Table 1
- Project shall be reviewed and evaluated by the concerned Guide for 50% of the marks.
- Project shall be evaluated by the review committeefor 50% of the marks.

B. V. B. College of Engineering & Technology

Earlier known as

Course Code: 20EECE406	Course Title: AUTOSAR	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40
CIA Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hrs: 40		Exam Duration: 3 hrs

Content	Hrs
Unit - 1	
Chapter No. 1: AUTOSAR Fundamentals	8 hrs
Evolution of AUTOSAR – Motivations and Objectives AUTOSAR consortium – Stake holders – work Packages, AUTOSAR Partnership, Goals of the partnership, Organization of the partnership, AUTOSAR specification, AUTOSAR Current development status, BSW Conformance classes: ICC1, ICC2, ICC3, and Drawbacks of AUTOSAR.	
Chapter No. 2: AUTOSAR layered Architecture	7 hrs
AUTOSAR Basic software, Details on the various layers, Details on the stacks Virtual Function Bus (VFB) Concept Overview of AUTOSAR Methodology, Tools and Technologies for AUTOSAR AUTOSAR Application Software Component (SW-C), Types of SW-components AUTOSAR Run Time Environment (RTE): RTE Generation Process: Contract Phase, Generation Phase, MCAL, IO HW Abstraction Layer, Partial Networking, Multicore, J1939 Overview, AUTOSAR Ethernet, AUTOSAR E2E Overview, AUTOSAR XCP, Metamodel, From the model to the process, Software development process.	
Unit - 2	
Chapter No. 3: Methodology of AUTOSAR and Communication in AUTOSAR	10 hrs
CAN Communication, CAN FD, CANape, Application Layer and RTE, intra and inter ECU communication, Client-Server Communication, Sender-Receiver, Communication, CAN Driver, Communication Manager (ComM), Overview of Diagnostics Event and Communication Manager	
Chapter No. 4: Overview about BSW constituents	5 hrs
BSW Constituents: Memory layer, COM and Services layer, ECU abstraction, AUTOSAR, Operating system, Interfaces: Standard interface, AUTOSAR standardized interface, BSW-RTE interface, (AUTOSAR interface), BSW-ECU hardware interface, Complex device drivers and BSW module configuration, AUTOSAR Integration.	
Unit - 3	
Chapter 5: MCAL and ECU abstraction Layer	5 hrs
Microcontroller Drivers, Memory drivers: on-chip and off chip drivers, IO drivers(ADC, PWM, DIO), Communication drivers: CAN driver, LIN drivers, Flexrfay	
Chapter 6: Service Layer	5 hrs

B. V. Bhoomaraddi College Campus, Vidyanagar, Hubballi 580031. Karnataka (India) Tel. : +91 - 836 - 2378123 Fax : +91 - 836 - 2374985. www.kletech.ac.in

Diagnostic Event Manager, Function inhibits Manager, Diagnostic communication manager, Network management, Protocol data unit router, Diagnostic log and trace unit, COMM manager.

Text Books (List of books as mentioned in the approved syllabus)

Ronald K. Jurgen, Infotainment systems, 2007, SAE International, 2007

Laboratory Title: Project Work	Lab. Code:20EECW402
Credit : 0-0-11 Total Hours: 22 hours/week	Duration of exam: 2
Total Exam Marks: ISA : 50	ESA Marks: 50

Application Areas are,

- Smart City
- Connected Cars
- Home Automation
- Health care
- Smart energy
- Automation of Agriculture

Guide lines for selection of a project:

- The project needs to encompass the concepts leant in a subject/s studied in the previous seven semesters, so that the student will learn to integrate, the knowledge base acquired to provide a solution to the defined problem statement of the project work.
- Student can select a project which leads to a product or model or prototype.
- Time plan: Effort to do the project should be between 120-150 Hrs per team, which includes self-study of an individual member (80-100 Hrs) and team work (40-50 hrs).
- Learning overhead should be 20-25% of total project development time.

Criteria for group formation:

- 3-4 students in a team.
- Role of teammates: Team lead and members.

Allocation of Guides and Mentors for the projects:

Every Project batch will be allocated with one faculty.

Details of the project batches:

- Number of faculty members : 64
- Number of students:3-4 students in a team-46 Teams
- Internship Students:93

Role of a Guide

The primary responsibility of the guide is to help students to understand the meaning and need of various stages in the implementation of the project. At every stage of the project development, guide should help towards its successful completion as per the predefined standards.

How student should carry out a project:

- Define the problem
- Specify the requirements
- Specify the design in the understandable form (Block Diagram, Flowchart, Algorithm, etc)
- Analyze the design with hardware and software components saparately.
- Select appropriate simulation tool and development board for the design.
- Implement the design
- Optimize the design and generate the results
- Result representation and analysis
- Prepare a document and presentation.

Report Writing

- The format for report writing should be downloaded from ftp://10.3.0.3/projects
- The report needs to be shown to guide and committee for each review.

Evaluation Scheme

Internal semester assessment (ISA)

Evaluation is done based on the evaluation rubrics given in Table 1

- Project shall be reviewed and evaluated by the concerned Guide for 50% of the marks.
- Project shall be evaluated by the review committee for 50% of the marks.

Course Title: Research Experience for undergraduates(REU)	Course Code: 17EECE490
L-T-P: 0-0-6	Duration of SEE: 1hr
ESA Marks: 50	ISA Marks: 50

To enable the bright students to reach their fullest potential, several course offerings are made available. These courses are primarily aimed at stimulating the intellectual effort of students to reach higher goals. One of them is **Research Experience for Undergraduates (REU)**

Research Experience for Undergraduates (REU) is a 6 credit course designed to provide authentic research experience to undergraduate students. It helps them to experience and learn how to identify and define the problems and solve them, how to find and evaluate evidence, how to consider and assess competing interpretations, how to form and test their own analysis and interpretations and how to communicate their ideas and findings. This learning's enable them to take part in the research missions in their future career beyond academic curriculum. This has resulted in large number of student publications in reputed journals and conferences.

Course Title: Institutional Research Project(IRP)	Course Code: 17EECE491
L-T-P: 0-0-6	Duration of SEE: 1hr
ESA Marks: 50	ISA Marks: 50

To enable the bright students to reach their fullest potential, several course offerings are made available. These courses are primarily aimed at stimulating the intellectual effort of students to reach higher goals. One of them is **Institutional Research Projects (IRP**)

Institutional Research Projects (IRP) is a 6 credit course where students get an opportunity to take part in Institutional Research projects funded by the University. IRP provides an exposure of solving a real time projects involving current technologies using KLE Tech ecosystem as live lab.

School of Electronics & Communication Engineering

B. V. B. College of Engineering & Technology

Earlier known as

Course Title: Internship- Training	Course Code: 18EECI493
L-T-P: 0-0-6	Duration of SEE: 2hr
ESA Marks: 50	ISA Marks: 50

Engineering graduates unlike graduates from other fields require a strong industry connect during the course. This experience is provided through industry internships during VIII Semester of the program. Internships make students more competitive in the job market. During internship the student gains competency while working on live projects meeting all the deadlines related to project work. The students of the VIII semester are permitted to opt for full-time Industry Internship. Students having placement offers usually undergo internship at their respective industries, while others choose industry, based on their competency in consultation with the department.

The implementation details and impact of internships in the department are discussed below.

The internship has 2 mandatory components; i) InternshipTraining, and ii) Internship – Project.

- Internship Training: Industry offers training in learning tools/ framework / programming language / Industrial practices to carry out the Internship project.
- Internship-Project: Industry assigns a well-defined problem statement for the project and provides an industry mentor to execute the project. The University guide in consultation with Industry Guide reviews the project progress at regular intervals using Skype/ Webex or personal visit to the industry.

At the end of the Internship, student has to submit Internship Training Report & Internship Project report to the University. Contents of the Reports shall be decided in consultation with Industry Guide. Industry shall issue Internship Certificate to student-intern.

The expectations from most of the problem statements were either to develop a subsystem of a bigger system or development of a relatively smaller system itself. Students developed either a working prototype or proof of concept as part of their project work. Students worked on simulation projects as well.

School of Electronics & Communication Engineering

B. V. B. College of Engineering & Technology

Earlier known as

Course Title: Internship- Project	Course Code: 20EECW494
L-T-P: 0-0-11	Duration of ESA: 2hr
ESA Marks: 50	ISA Marks: 50

Engineering graduates unlike graduates from other fields require a strong industry connect during the course. This experience is provided through industry internships during VIII Semester of the program. Internships make students more competitive in the job market. During internship the student gains competency while working on live projects meeting all the deadlines related to project work. The students of the VIII semester are permitted to opt for full-time Industry Internship. Students having placement offers usually undergo internship at their respective industries, while others choose industry, based on their competency in consultation with the department.

The implementation details and impact of internships in the department are discussed below.

The internship has 2 mandatory components; i) Internship Training, and ii) Internship – Project.

- Internship Training: Industry offers training in learning tools/ framework / programming language / Industrial practices to carry out the Internship project.
- Internship-Project: Industry assigns a well-defined problem statement for the project and provides an industry mentor to execute the project. The University guide in consultation with Industry Guide reviews the project progress at regular intervals using Skype/ Webex or personal visit to the industry.

At the end of the Internship, student has to submit Internship Training Report & Internship Project report to the University. Contents of the Reports shall be decided in consultation with Industry Guide. Industry shall issue Internship Certificate to student-intern.

The expectations from most of the problem statements were either to develop a subsystem of a bigger system or development of a relatively smaller system itself. Students developed either a working prototype or proof of concept as part of their project work. Students worked on simulation projects as well.

Course Title: Start-up Internship Experience (SIE)	Course Code: 17EECE492
L-T-P: 0-0-6	Duration of SEE: 1hr
ESA Marks: 50	ISA Marks: 50

STUDENT INTERNSHIP EXPERIENE refers to work experience that is relevant to professional development prior to graduation. Industrial Training is an essential component in the development of the practical and professional skills required for an Engineer and an aid to prospective employment. It should also be noted that developing an awareness of general workplace behavior and interpersonal skills are important objectives of the Industrial Training experience. At the end of the Industrial Training,

students should be able to improve their knowledge and skills relevant to their areas of specialization and at the same time able to relate, apply and adapt relevant knowledge, concepts and theories within an industrial organization, practice and ethics. With this experience and exposure the students should be able to acquire knowledge and skills to compete in the job market.

Program: Digital Electronics			
Course Title: Principles and Practices of Engineering Education		Course Code: 15ECRC701	
L-T-P: 2-0-1	Credits: 3	Contact Hours: 3	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40	Examination Duration: 3 hrs		
 Fundamental Principles of Teach Learning Styles and Theories Instructional Design Models and Assessment and Evaluation Engineering Learning Modules 	ching and Learning d Technology Enhanced Learning	8 Hou 8 Hou 8 Hou 8 Hou 8 Hou 8 Hou	rs Irs Irs Irs

Program: Digital Electronics				
Cours	e Title: Fault diagnoses and te	sting for VLSI circuits	Course Code: 15EDEC708	
L-T-P:	4-0-0	Credits: 4	Contact Hours: 4	
CIE Ma	arks: 50	SEE Marks: 50	Total Marks: 100	
Teach	ing Hours: 50	Examination Duration: 3 hours		
1.	Threshold Logic:Introduction,	Synthesis of threshold networks.		5 hrs
2.	2. Reliable Design And Fault Diagnosis: Different types of Faults, Fault Detection in Combinational Circuits, Fault Location Experiments, Different approaches used in fault diagnosis of Combinational Circuits, Failure Tolerant Design, Quadded Logic.		15 hrs	
3. Capabilities, Minimization and Transformation of Sequential Machines: Finite State Model (FSM) used in Machine design, Capabilities & Limitations of finite state machines, State equivalence and machine minimization, Simplification of incompletely specified machines.		10hrs		
4. Structure of Sequential Machines:				
State Assignments Using Partitions, The Lattice of Closed Partitions, Reduction of the Output Dependency, Input Independence and Autonomous Clocks, Covers and Generation of Closed Partitions by State Splitting, Information Flow in Sequential Machines, Machine Decomposition.		10 hrs		
5.	State-Identification And Faul	t-Detection		
	Fault detection / location Experiments, Machine Identification, Fault-Detection Experiments, Design of Diagnosable Machines, Second Algorithm for the Design of Fault-Detection Experiments, Fault-Detection Experiments for Machines, Which have no Distinguishing Sequences.			10 hrs
Text B	ooks			
1.	Khohavi ZVI Switching and Fin	ite Automata Theory, 2ed., TMH, 1999,		
Refere	nce Books:			
2.	Samuel Lee Digital Circuits & L	ogic Design, PHI, 1990		

Program: Digital Electronics			
Course Title: Real Time Embedded	l System lab	Course Code: 15EDEP706	
L-T-P: 0-0-1	Credits: 1	Contact Hours: 2	
CIE Marks: 80	SEE Marks: 20	Total Marks: 100	
Lab Hours: 20	Examination Duration: 3 hours		

Experiments

- I Advanced Embedded Systems
- 1. Use any EDA (Electronic Design Automation) tool to learn the Embedded Hardware Design and for PCB design.
- 2. Familiarize the different entities for the circuit diagram design.
- **3**. Familiarize with the layout design tool, building blocks, component placement, routings, design rule checking etc.
- II Embedded Programming Concepts (RTOS)
- 4. Create "n" number of child threads. Each thread prints the message " I"m in thread number …" and sleeps for 50 ms and then quits. The main thread waits for complete execution of all the child threads and then quits. Compile and execute in Linux.
- 5. Implement the multithread application satisfying the following :

i.Two child threads are crated with normal priority.

ii. Thread 1 receives and prints its priority and sleeps for 50ms and then quits.

iii.Thread 2 prints the priority of the thread 1 and rises its priority to above normal and retrieves the new priority of thread 1, prints it and then quits.

iv The main thread waits for the child thread to complete its job and quits.

- 6. Implement the usage of anonymous pipe with 512 bytes for data sharing between parent and child processes using handle inheritance mechanism.
- 7. Test the program below using multithread application-

i.The main thread creates a child thread with default stack size and name Child_Thread".

ii. The main thread sends user defined messages and the message "WM_QUIT" randomly to the child thread.

iii. The child thread processes the message posted by the main thread and quits when it receives the "WM_QUIT" message.

iv. The main thread checks the termination of the child thread and quits when the child thread complete its execution.

v. The main thread continues sending the random messages to the child thread till the "WM_QUIT" message is sent to child thread.

vi. The messaging mechanism between the main thread and child thread is synchronous.

Program: Digital Electronics	
Course Title: Data Structure using C	Course Code: 17EDEC701

L-T-P: 0-0-1	Credits: Audit	Contact Hours: 2	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hours: 25	Examination Duration: -		
Chapter 01:C language feature	es		5 Hrs
Pointers revisited, Strings, Struct	tures – Basics, Structures and functi	ons, Arrays of structures, Pointers to	
structures, Self Referential Struc	tures, Unions and bit fields, Files.		E Line
Definition Representation and A	nuications of stack Definitions real	resentation and applications of linear	SHIS
circular queues multiple queues	s priority queue Recursion	resentation and applications of inteal,	
Chapter 03:Lists	s, phoney queue. Recursion		5 Hrs
Linked lists, singly, doubly, circul	ar lists, definitions, representations.	Implementation of list operations,	•••••
applications - polynomial additio	n, addition of long integers. Linked s	stacks, Linked Queues	
Chapter 04:Trees			5 Hrs
Binary trees – Definitions, travers	sals (recursive and iterative versions	s), Building and searching, Threaded	
Binary trees, Trees and their app	blications		
Exchange sorts, Selection and tr	ee sorts, Merge and radix sorts		5 Hrs
Text Book			
1 Aaron M Tenenbaum e	t al. Data Structures using C. Il Editi	on PHI 2006	
2. Horowitz, Sahani, Ander	son-Feed. Fundamentals of Data St	ructures in C. II Edition. University.	
2008			
References			
1. E Balaguruswamy, The	ANSI C programming Language, II E	dition, PHI, 2010	
2. Yashavant Kanetkar, Da	ta Structures through C, II Edition, E	A Resudeede Appreset With C. II	
3. Richard F. Gilberg, Benrouz A. Forouzan, Data Structures: A Pseudocode Approach With C, II Edition, Course Tec. 2009			
Lab:			
1. Programs on Pointer cor	ncepts.		
2. Programs on string hand	lling functions, structures union And	bit-files.	
Programming on files			
4. Programming on stacks	data structures		
5. Programs on implementation of different queue data structures.			
6. Programs on implementation of different types of Linked lists			
7. Programs on Implementation of trees			
8. Programs to implement (amerent sorting techniques.		
9. Programming on graph 10. Drogramming on bashing toblog			
11 Design and implement e	tack queue data structures		
12. Design and implement in	nked list data structures		
13. project			

Program: I Semester Master of Technology (Digital Electronics)			Teaching
Course Title: Principles of	Embedded Systems	Course Code: 17EDEC703	Hours
L-T-P: 0-0-2	Credits: 2	Contact Hours: 4 Hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hours: 42 Hrs	Examination Duration:		

1. Introduction to embedded system: Introduction, Classification of Embedded System, Major Application Areas, Purpose of Embedded System. Characteristics and quality attributes of Embedded Systems, Design Metric and Optimizing the metrics.	06 Hrs
2. Typical Embedded Systems: Core of Embedded System-processor fundamentals, up vs uc, risc vs cisc, vonneumann vs Harvard, 8051 controller architecture and programmer model, Memory, Sensor and Actuators, Communication Network, Embedded Firmware	08 Hrs
3. Low Level programming Concepts: Addressing Modes, Instruction Set and Assembly Language programming(ALP), Developing, Building, and Debugging ALP's	08 Hrs
4. Middle Level Programming Concepts: Cross Compiler, Embedded C language implementation, programming, & debugging, Differences from ANSI-C, Memory Models, Use of directives, Functions, Parameter passing and return types	02 Hrs
5. On-Chip Peripherals Study, Programming, and Application: Ports: Input/Output, Timers & Counters, UART, Interrupts	08 Hrs
6. External Interfaces Study, Programming and Applications : LEDS, Switches(Momentary type, Toggle type), Seven Segment Display: (Normal mode, BCD mode, Internal Multiplexing & External Multiplexing), LCD (8bit, 4bit, Busy flag, custom character generation), Keypad Matrix, Stepper Motor, DC Motor	10 Hrs
Text Books	
1. Introduction to Embedded Systems 1E by Shibu K V.	
 Kenneth J. Ayala ; "The 8051 Microcontroller Architecture, Programming & Applications" 2e, Penram In 1996 / Thomson Learning 2005 	ternational,
3. Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinlay; "The 8051 Microcontroller a Embedded Systems – using assembly and C "- PHI, 2006 / Pearson, 2006	ind
References	
 References 1. Embedded System Design: A Unified Hardware/Software Introduction – Frank Vahid, Tony Givargis, Je Sons, Inc.2002 	ohn Wiley &

- 2. Predko ; "Programming and Customizing the 8051 Microcontroller" –, TMH
- 3. Raj Kamal, "Microcontrollers: Architecture, Programming, Interfacing and System Design", Pearson Education, 2005

Program: Digital Electronics		Teaching	
Course Title: Fundamenta	Is of signal processing	Course Code: 17EDEC704	Hours
L-T-P: 3-0-1	Credits: 4	Contact Hours: 5 Hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40 Hrs	Examination Duration: 3 hrs		
Chapter No. 1. Introduction			
Definition of a signals and systems, classification of signals, basic operation on signals, elementary signals, Systems viewed as Interconnection of operation, properties of systems.			08 Hrs
Chapter No. 2. Time-Domain representation for LTI systems			
Convolution, Impulse response representation, convolution sum and convolution integral. Properties of impulse response representation.			08 Hrs

Chapter No. 3. Discrete Fourier Transforms	
Discrete Fourier Transforms (DFT): Frequency domain sampling and reconstruction of discrete time signals. DFT as a linear transformation, its relationship with other transforms. use of DFT in linear filtering, overlap-save and overlap-add method. Fast-Fourier-Transform (FFT) need for efficient computation of the DFT (i.e. FFT algorithms). Radix-2 FFT algorithm for the computation of DFT and IDFT: decimation-in-time and decimation-in-frequency algorithms. Composite FFT.	08 Hrs
Chapter No. 4. Design of digital filters	
Design of digital filters: Considerations and Characteristics of practical digital filters. Design of digital filters: symmetric and anti symmetric FIR filters, design of linear phase FIR filters using windowing method- Rectangular, Hamming, Hanning, Bartlet and Kaiser windows. Design of linear phase FIR filters using frequency sampling technique.	08Hrs
Chapter No. 5. Design of IIR filters from analog filters	
Design of IIR filters from analog filters: Approximation of derivative, Impulse invariance method, bilinear transformation. Characteristics of commonly used Analog Filters: Butterworth and Chebyshev filters. Frequency transformation in the digital domain	08Hrs
Text Books	
1. Simon Haykin and Barry Van Veen, Signals and Systems, second, John Wiley & Sons, 2002	
 Proakis & Monalakis, Digital signal processing Principles Algorithms & Applications, 4th Edition, PHI. 2007 	, New Delhi,
References	
 Alan V. Oppenheim, Alan S Willsky and S. Hamid Nawab, Signals and Systems, second, Pearson E 1997 	ducation Asia,
Implementation Assignments:	
1. Implementation assignments are designed using Python. Ex:	
o Generate different elementary signals and perform mathematical operations on them.	
 Calculate N point DFT and find the cost of computation, justify the use of FFT algorithr DFT. 	ns to calculate
 Design Filters (FIR/IIR) for given specifications. 	
2. Explore the feature of SDR to build signal processing applications like,	
• Noise cancellation	

 $\circ \quad \text{Audio file editing} \quad$

Program: I Semester Master of Technology (Digital Electronics)			
Course Title: Machine learning		Course Code: 17EDEC705	Hours
L-T-P: 3-0-1	Credits: 4 Contact Hours: 5 Hrs/week		
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200	
Teaching Hours: 40 Hrs	hing Hours: 40 Hrs Examination Duration: 3 hrs		
Chapter No. 1: Introduction	on		
Introduction What is Machine Learning? Applications of Machine Learning, Types of Machine Learning: Supervised, Unsupervised and Reinforcement learning, Dataset formats, Basic terminologies.			05 Hrs

г

Chapter No. 2: Supervised Learning			
Linear Regression, Logistic Regression Linear Regression: Single and Multiple variables, Sum of squares error function, The Gradient descent algorithm, Application, Logistic Regression, The cost function, Classification using logistic regression, one-vs-all classification using logistic regression, Regularization.	10 Hrs		
Chapter No. 3: Supervised Learning: Neural Network			
Introduction to perception learning, Implementing simple gates XOR, AND, OR using neural network. Model representation, Gradient checking, Back propagation algorithm, Multi-class classification, Application- classifying digits, SVM.	10 Hrs		
Chapter No. 4: Unsupervised Learning: Clustering	0511		
Introduction, K means Clustering, Algorithm, Cost function, Application.	05Hrs		
Chapter No. 5: Unsupervised Learning: Dimensionality reduction	0511		
Dimensionality reduction, PCA- Principal Component Analysis. Applications, Clustering data and PCA.	05Hrs		
Chapter No. 6: Machine Learning System Design			
Evaluating a hypothesis, Model selection, Bias and variance, error analysis, error metrics for skewed classes. Building a Model.			
Text Book (List of books as mentioned in the approved syllabus)			
1. Tom Mitchell, Machine Learning, 1, McGraw-Hill., 1997			
2. Christopher Bishop, Pattern Recognition and Machine Learning, 1, Springer, 2007			
1. Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning : Data Mini and Prediction, 2, Springer, 2009	ng, Inference		
Implementation Assignments:			
 Assignments are designed to explore the concepts like 			
Supervise and unsupervised learning,			
Clustering,			
Regression and estimation			
2. Motivate students to take up open challenges like Kaggle, walmart, ect			

Program: I Semester Master of Technology (Digital Electronics)			
Course Title: RISC Architectures Course Code: 17EDEC706			Hours
L-T-P: 3-0-1 Credits: 4		Contact Hours: 3 Hrs/week	
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200	
Teaching Hours: 46 Hrs	Examination Duration:		

1. The 32 bit RISC Architecture: The Acorn RISC machine, Architectural inheritance, Architecture of ARM7TDMI, ARM programmers model, ARM development tools, 3 stage pipeline ARM organization, ARM instruction execution.	06 Hrs
2. 32 bit Instruction set: Data processing instruction, Branch instruction, Load store instruction, Software interrupt instruction, Program status register instruction, Conditional execution, Example programs, 16bit Instruction set- The Thumb programmer model, ARM-Thumb interworking, other branch instructions, Data processing instructions, Single/Multiple register load store instruction, Stack operation, Software interrupt instructions, example programs.	06 Hrs
3. Exception Handling: Introduction. Interrupts, error conditions, processor exception sequence, the vector table. Exception	04 Hrs
handlers, Exception priorities, Procedures for handling exceptions.	
4. Memory Hierarchy Design: Cache basics, Miss rate and penalty, Cache Hierarchy, Memory Organizations, Memory Hierarchy.	06 Hrs
5. Pipelining:	
Linear pipeline processor, Nonlinear pipeline processor, Instruction pipeline design, Branch handling techniques, Arithmetic pipeline design, Computer arithmetic principles, Static arithmetic pipeline, Multifunctional arithmetic pipeline.	08 Hrs
6. Cortex M4 :	
Functional description, programmer's model, memory protection unit, nested vectored interrupt controller.	06 Hrs
7. Multi-Core Architectures :	
Introduction to Intel Architecture, How an Intel Architecture System works, Basic Components of the Intel Core 2 Duo Processor: The CPU, Memory Controller, I/O Controller.	07 Hrs
8. Current Trends in Intel Architectures and Applications :	03 Hrs
Seminar on current trends in Intel Architectures	051115

- 1. "ARM System- on-Chip Architecture" by 'Steve Furber', LPE, Second Edition.
- 2. "ARM Assembly Language fundamentals and Techniques" by William Hohl, CRC press, 2009.
- 3. D. A. Patterson and J. L. Hennessey "Computer Organization and Design", Morgan , Kaufmann, 2002
- 4. H. Jonathan Chao and Bin Liu, "High performance switches & routers", Wiley Interscience, 2007.
- 5. Kai Hwang, "Advanced Computer Architecture TMH 1993
- 6. Web resources for Example Architectures of INTEL and Texas Instruments: http://download.intel.com/design/intarch/papers/321087.pdf

References

- 1. Kai Hwang, Faye A. Briggs, Computers Architecture and Parallel Processing MGH 1985
- 2. David E Culler, Jaswinder Pal Singh, Anoop Gupta "Parallel Computer Architecture", Harcourt Asia Pte Ltd 2000
- 3. Stalling W." Computer Organization and Architecture- Designing for performance" PHI,2005
- 4. D. Sima, T. Fountain, P.Kasuk," Advanced Computer Architecture-A Design Space Approach" Addisson Wesley, 1997.
- 5. M. J. Flynn,"Computer Architecture, Pipelined And Parallel Processing", Narosa Publications, 1998.

List of Experiments:

- 1. Write an ALP to verify data transfer w.r.t memory to achieve following
 - i. 8 bit data transfer
 - ii. 16 bit data transfer
 - iii. 32 bit data transfer
- 2. Write an ALP for Tables and lists to do following:
 - i. Add an entry to a list
- ii. Remove an element from the queue
- 3. Write an ALP to pass parameters to a subroutine.
 - i. Ascending order
 - ii. Descending order
- 4. Write a 'C' program & demonstrate an interfacing of Alphanumeric LCD 2X16 panel to LPC2148Microcontroller
- 5. Write a 'C' program & demonstrate concept of Interrupts interface to LPC2148 Microcontroller.
- 6. Write a 'C' program & demonstrate an interfacing of DAC to LPC2148 Microcontroller.
- 7. Write a 'C' program & demonstrate an interfacing of UART to LPC2148 Microcontroller.
- 8. Write a 'C' program & demonstrate an interfacing of ADC to LPC2148 Microcontroller.
- 9. Write a 'C' program & demonstrate an interfacing of RTC to LPC2148 and read time, date and year.
- 10. Write a 'C' program & demonstrate interface I2C to LPC2148
- 11. Develop a code for college bell system. (Use the following interfaces LCD, RTC and Buzzer).

Reference Books

- 1. "ARM System- on-Chip Architecture" by 'Steve Furber", LPE, Second Edition.
- 2. "Embedded Systems- Architecture, Programming and Design" by Raj Kamal, TMH
- Dr. K.V.K.K. Prasad, "Embedded/Real-time systems: concepts, Design & Programming", published by dreamtech press.

Manual

- 1. LPC2148 datasheet by NXP.
- 2. LPC2148 board manual by ALS, Bangalore.

Program: Digital Electronics			Teaching
Course Title: Electronic System Design Course Code: 17EDEC707		Hours	
L-T-P: 0-0-3	Credits: 3	Contact Hours:6 Hrs/week	

ISA Marks: 100	ESA Marks:	Total Marks: 100		
Teaching Hours: 25 Hrs	Examination Duration:			
To level specifications, Block level specifications, Timing of micro architecture, Verification and test 05 Hrs plan, Schematic capture				
Simulation, Advanced simulation, Signal Integrity			05 Hrs	
PCB layout- Floor planning, component pre planning, PCB printing- 2 layer			05 Hrs	
Functionality and performance check, Failure analysis, Validation and system integration			05 Hrs	
System Analysis			05 Hrs	
References				

- 1. A. S Sedra and KC Smith, Microelectronic circuits, Oxford, 1998.
- 2. G.L. Ginsberg, Printed Circuit Design, McGraw Hill, 1991.

Program: Digital Electronics			
Course Title: Automotive Electronics Course Code: 17EDE			EC708
L-T-P: 3-0-1	Credits: 4	Contact Hours: 5	
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200	
Teaching Hours: 40	Examination Duration: 3 hrs		
Chapter No. 1. Automotive Fun	damentals Overview		8Hrs
Introduction to Automotive Ir classifications and specifications electronics in the automobiles Fo plug, Spark pulse generation, Ign System.	ndustry and Modern Automotiv need for electronics in automobiles our Stroke Cycle, Engine Control, I nition Timing, Drive Train, Transmis	e Systems Vehicle s, Application areas of gnition System, Spark sion, Brakes, Steering	7Hrs
Chapter No. 2. Sensors and Ac	tuators		
Oxygen (O2/EGO) Sensors, Thr Position (CKP) Sensor, Magnet Ignition Timing Sensor, Hall effe Manifold Absolute Pressure (MA (ECT) Sensor, Knock Sensor, Actuator			
Chapter No. 3. Electronic Engi	ne Control		
Engine parameters, variables, Engine Performance terms, Electronic Fuel Control System, Electronic Ignition control, Idle sped control, EGR Control			SHIS
Chapter No. 4. Vehicle Motion	Control and Safety Systems		
Cruise Control, Antilock Brake System (ABS), Electronic Steering Control, Power Steering, Traction Control, Electronic Stability Program.			6Hrs
Chapter No:5. Automotive communication protocols			3Hrs
Overview of Automotive communication protocols : CAN, LIN.			
Chapter No. 6. Advanced Driver Assistance Systems (ADAS) Lane Departure Warning, Collision Warning, Automatic Cruise Control, Pedestrian Protection, Headlights Control, Connected Cars technology and trends towards Autonomous vehicles.			5Hrs
Chapter No. 7. Automotive safety standards ISO26262 and Diagnostics			

Fur pro Fur Pre me	Functional Safety: Need for safety standard-ISO 26262, safety concept, safety process for product life cycle, safety by design, validation. Fundamentals of Diagnostics: Basic wiring system and Multiplex wiring system, Preliminary checks and adjustments, Self-diagnostic system. Fault finding and corrective neasures, OBD & off board diagnostic.					
Те	xt b	poks:				
	1.	Denton.T - Automobile Electrical and Electronic Systems, Edward Arnold publication	n, 1995.			
Re	fere	nces:				
	1.	William T.M – Automotive Electronic Systems, Heiemann Ltd., London ,1978.				
	2. Nicholas Navet – Automotive Embedded System Handbook, CRC Press, 2009.					
	3.	BOSCH Automotive Handbook, Wiley Publications, 8th Edition, 2011.				
	4.	Co-Verification of hardware & software for ARM SoC Design – Jason.R.Andrews, N	ewnes Publications, 2004.			
	5. Hardware Software co-design of embedded systems, F.Balarin, Kluwer Academic Oublishers, 1987.					
Lał):					
1.	De	nonstration of cut section modules: Engine, Transmission, Steering, Braking, Suspe	nsion - Automobile dept.			
2.	2. Electronic engine control system: Injection and Ignition control system Transmission trainer modules					
3.	Мо	deling an engine Vehicle model simulation with Simulink using PI CONTROLLER				
4.	. Basic gate logic simulation and modeling using Simulink and realization on the hardware platform.					

- 5. Seat belt warning system simulation and modeling using Simulink and realization on the hardware platform. Vehicle speed control based on the gear input simulation and modeling using Simulink and realization on the hardware platform.
- 6. Throttle control modeling and simulation using Simulink and realization on the hardware platform.
- 7. Accelerator pedal interfacing software modeling and simulation using Simulink and realization on the hardware platform.
- 8. Develop matlab code for stepper motor control and convert it to Simulink model and port it to embedded hardware

Cou	rse Code:	Course Title:		Teaching Hrs: 40 Hrs	
17EDEC710		Multimedia and Signal Processing			
L-T-	L-T-P: 3-0-1 Credits: 4 Contact Hrs: 5 Hrs/wee		Contact Hrs: 5 Hrs/week	í	
ISA	Marks: 50+100Exam Duration: 3HrsESA Marks: 50Total Marks: 200		Total Marks: 200		
1	Introduction to M	ultimedia:			02Urs
	Multimedia and Hy	per media, WWW, overview of	multimedia software	tools.	02115
2	Graphics and Ima Image data types,	ge representation: Popular file formats.		Graphics /	02Hrs
3	Fundamental concepts in video: Types of video signals, analog video, digital video.			06Hrs	
4	Basics of digital audio: Digitization of sound, MIDI, Quantization and transmission of audio.			05Hrs	
5	Lossless compression algorithms: Introduction, run-length coding, variable length coding, dictionary based coding, arithmetic coding, lossless image compression.			05Hrs	
6	Lossy compression	on algorithms:			
	Introduction, distortion measures, quantization, transform coding, wavelet based coding, wavelet packets, embedded zero tree of wavelet coefficients.			06Hrs	
7	Image compression standards: The JPEG standard, The JPEG-LS standard, Bi level image compression standard.			06Hrs	
8	Basics video com video compression	pression techniques: based on motion compensatio	on, H.261 .	Overview,	08Hrs
Text	t books				

1. Ze-Nian Li & Mark S Drew, "Fundamentals of multimedia", Pearson Education, 2004.

References books

- 1. Ralf Steinmetz & Kalra Nahrstedt, "Multimedia: Computing, Communication & Applications", Pearson Education, 2004
- 2. K R Rao, Zoran S Bojkovic, Dragord A Milovanvic, Pearson education, "Multimedia communication systems: Techniques, Standards, & Networks", . Second Indian reprint, 2004.

Cou	rse Code:	Course Title:		Teaching Hrs: 40 Hrs	
17EDEE701		Image and Video Processing			
L-T-	L-T-P: 2-0-1 Credits: 3 Contact Hrs: 4 Hrs/we		Contact Hrs: 4 Hrs/weel	k	
ISA	ISA Marks: 50+100 Exam Duration: 3Hrs ESA Marks: 50 Total Marks: 100				
Introduction: 2D systems, Mathematical Preliminaries- FT, Z-transform, Optical and Modulation Transfer Functions (OTF and MTF). Matrix theory, Image perception: Light, Luminance, Brightness, Contrast, MTF of the visual system, Visibility function, Monochrome Vision Models, Fidelity criteria, Color Representation, Color Vision Models, Temporal Properties of Vision.					2 hrs
2	Image sampling Compander and Vi	and Quantization: 2D San sual Quantization.	npling theory, Quanti	zation, Optimal Quantizer,	2 hrs
3	Image Transforms	s: 2D orthogonal and unitary tra	ansforms, DFT, DCT, H	larr, KLT	4hrs
4	4 Image Enhancement: Histograms Modeling, Spatial operations, Transform operations, Multispectral Image Enhancement,			4hrs	
5	5 Image Filtering and Restoration: Image Observation Models, Inverse and Weiner filtering , Frequency Domain Filters. Smoothing Splines and Interpolation.			4hrs	
6	Basics of Video: A	Analog Video, Digital Video			2 hrs
7	7 Two dimensional motion estimation: Optical flow methods, Block based methods, Bayesian methods.			7 hrs	
Tex	t books				
1. Jain, A.K., Fundamentals of Digital Image Processing, 3 rd Edision, Pearson Education (Asia) 2013					
2. A. Murat Tekalp, Digital Video processing Pearson Education (Asia) Pte. Ltd.					
3. Li and, Z. Drew, M.S. Fundamentals of Multimedia, Pearson Education (Asia) Pte. Ltd,. 2010.					
References books					
 Gonzalez, Rafael C., Woods, Richard E. and Eddins Steven L., Digital Image Processing Using Matla Education (Asia) Pvt. Ltd., 			b, Pearson		
2.	2. Al. Bovik, Essential guide to Video Processing, Academic Press				

Program: III Semester Master of Technology (Digital Electronics)			
Course Title: Embedded S	Software Design	Course Code: 17EDEC801	Hours
L-T-P: 0-0-3	Credits: 3	Contact Hours: 6 Hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hours: 40 Hrs	Examination Duration:		
1. Introduction To Re Introduction to OS, Introduc real time systems, and the to Introduction to RTOS, key scheduler, services, context robin and preemptive scheduler	eal-Time Operating Systems: tion to real time embedded system- future of embedded systems. characteristics of RTOS, its kernel, tt switch, Scheduling types: Preemp duling.	real time systems, characteristics of components in RTOS kernel, objects, tive priority-based scheduling, Round-	08 Hrs
2. Tasks, Semaphores and Message Queues:: A task, its structure, A typical finite state machine, Steps showing the how FSM works. A semaphore, its structure, binary semaphore, mutual exclusion (mutex) semaphore, Synchronization between two tasks and multiple tasks, Single shared-resource-access synchronization, Recursive shared-resource-access synchronization. A message queue, its structure, Message copying and memory use for sending and receiving messages, Sending messages in FIFO or LIFO order, broadcasting messages			08 Hrs
 3. Typical RTOSs: Study of VX works, RT Linux and Android OS and comparisons. Real time programming using RTX/free RTOS. Applications and Common Design Problems: Embedded RTOS for Image Processing & Control Systems, and common problems encountered in these applications. 			04 Hrs
4. Introduction to embedded linux:			
Embedded Linux overview: Development-Kernel architectures and device driver model-Embedded development issues-Tool chains in Embedded Linux-GNU Tool Chain (GCC,GDB, MAKE, GPROF & GCONV)- Linux Boot process			02 Hrs
 Boot sequence-Sys system operation-S environments for en 	stem loading, sys linux, Lilo, grub-l hared and static Libraries overview- nbedded Linux system	Root file system-Binaries required for Writing applications in user space-GUI	02 Hrs
6. File system in Linu	ıx:		
File system Hierarchy-File INODE-Group Descriptor-D Locating Files –Registering systems-Device special files	system Navigation -Managing the Directories-Virtual File systems-Pei g the File systems-Mounting and s	File system –Extended file systems- forming File system Maintenance - Un-mounting –Buffer cache-/proc file	08 Hrs
7. Program design a	nd Analysis :		
Components of Embedded buffers, queues. Models of loading. Basic compilation optimization: Expression transformations, register all Program level performance power analysis, analysis an testing, black box testing, ev	d system: State machines; stream programs: data flow graph and cont techniques: Statement translation, simplification, dead code elin location, scheduling, instruction sele analysis, software performance of d optimization of program size. Pro valuating function tests.	n oriented programming and circular rol flow graphs, Assembly, linking and procedures, data structures. Program nination, procedure inlining, loop ection, interpreters and JIT compilers. otimization, program level energy and gram validation and testing: Clear box	08 Hrs

- 1. Qing Li with Caroline Yao, "Real-Time Concepts for Embedded Systems", Published by CMP Books, 2011
- 2. Dr. K.V.K.K. Prasad, "Embedded/Real-time systems: concepts, Design & Programming", published by dreamtech press .
- 3. "Embedded Systems- Architecture, Programming and Design" by Raj Kamal, TMH

References

- 1. Philip.A.Laplante, "Real Time System Design and Analysis", Prentice Hall of India, 3rd Edition, April 2004.
- 2. "Programming embedded systems" in C and C++ Micheal Barr orielly

List of Experiments:

- 1. Write a 'C' program & demonstrate concept of Task Scheduling.
- 2. Write a 'C' program & demonstrate concept of Semaphore.
- 3. Write a 'C' program & demonstrate concept of Mailbox.
- 4. Write a 'C' program & demonstrate concept of S/W Interrupts.
- 5. Write a 'C' program & demonstrate concept of interrupts.
- 6. Write a 'C' program & demonstrate concept of Inter Task Communication.

Reference Books

1. Dr. K.V.K.K. Prasad, "Embedded/Real-time systems: concepts, Design & Programming", published by dreamtech press.

Manual

1. LPC2148 datasheet by NXP.

LPC2148 board manual by ALS, Bangalore.

Program: Digital Electronics				
Course Title: Automotive Communication		Course Code: 17EDEC802		
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3		
CIA Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hrs: 40	Exam Duration: 3 hrs			
	Content		Hrs	
Chapter No. 1: Controller Area Network Introduction to CAN, Basic Concepts, Message Transfer, Frame Types, Message Validation, Error Handling, Fault Confinement, Bit Timing Requirements, Increasing Can Oscillator Tolerance, Protocol Modifications.			15 hrs	
Chapter No. 2: Local Interconnect Network Overview of LIN protocol, LIN Workflow ,LIN Physical Layer ,LIN Communication, Synchronization of the LIN nodes, LIN Message & Scheduling, Message Types, Status & Network Management, Introduction to LIN slave diagnostics Introduction to LIN slave configuration			5 hrs	
Chapter No. 3: Flexray Communication protocol Introduction to Fleray, Basic Concepts, Message Transfer, Static and dynamic data transmission, Flexray BUS, FlexRay controller states, Frame Types, Message Validation, Error Handling, Fault Confinement, Bit Timing Requirements, Fault tolerant and time triggered services implemented in hardware.			5 hrs	

Chapter No. 4: Media oriented system transport protocol Technology background, MOST25, MOST50, MOST150, MOST topology, different masters in MOST network, control channel, synchronous channel, asynchronous channel, MOST application frame work, addressing scheme, frame formats,	5 hrs
Chapter No. Chapter 5: Keyword 2000 protocol Overview of KWP protocol, KWP Workflow, Physical topology, message structure, frame format,	5 hrs
Chapter No. Chapter 6: SENT, I2C, SPI and UART Overview about SENT, I2C, SPI and UART, frame formats, application of I2C, SPI, SENT and UART in automotive.	5 hrs
Text Books (List of books as mentioned in the approved syllabus) Ronald K. Jurgen, Infotainment systems, 2007, SAE International, 2007	

Program: III Semester Master of Technology (Digital Electronics)			Teaching		
Course Title: Internet of Things Course Code: 17EDEE801			Hours		
L-T-P: 2-0-1 Credits: 3		Contact Hours: 5 Hrs/week			
ISA Mar	ˈks: 50+100	ESA Marks: 50	Total Marks: 200		
Teachin	g Hours: 25 Hrs	Examination Duration:			
1	Introduction to Ir	nternet of Things (IoT)			
	Definition & Cha communication m	aracteristics of IoT, Things in Io ⁻ odels and APIs.	Γ, IoT protocols, IoT functional bloc	ks, 04 hrs	
2	IoT Architecture				
	Enabling technolo 802.15.4e, IEEE 8	ogies: Sensors, Zigbee, Bluetooth, I 302.11.ah, DASH7, Low Power Wide	oT ecosystem, Data Link protocols: IE Area Network (LoRaWAN).	EE 04 hrs	
3	Network protoco	ls			
	Routing Protocol for Low-Power and Lossy Networks (RPL), cognitive RPL (CORPL), Channel- Aware Routing Protocol (CARP), Low power Wireless Personal Area Networks (LoWPAN).			04 hrs	
4	Application and Security protocols				
	Message Queue Telemetry Transport (MQTT), MQTT for Sensor Networks, Secure MQTT, Advanced Message Queuing Protocol (AMQP), Constrained Application Protocol (CoAP), OPC UA, 6LoWPAN), Routing Protocol for Low-Power and Lossy Networks (RPL).			ГТ, РС 04 hrs	
5	IoT Platforms Design Methodology				
	IoT Design Methodology, Case Study on IoT System for Weather Monitoring etc., Basic building blocks of an IoT device, Raspberry Pi, interface (serial, SPI, I2C), IoT Operating Systems: Contiki, RIOT.			ing ns: 04 hrs	
6	Programming with Raspberry Pi				
	XML, JSON, SOAP and REST-based approach, WebSocket protocol.			04 hrs	
7	IoT prototyping				
	Business models, example applications: Case studies on Home automation, Cities, Environment, Energy, Agriculture, Health with emphasis on data analytics and security.			ent, 06 hrs	
Text Bo	Text Books:				

- 1. Arshdeep Bahga, Vijay Madisetti "Internet of Things (A Hands-on-Approach)" Universities Press- 2014.
- 2. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things: Key Applications and Protocols" John Wiley & Sons 2012.

Reference Books:

1. Subhas Chandra Mukhopadhyay "Internet of Things Challenges and Opportunities" Springer- 2014.

Lab:

- 1. Programming with Raspberry Pi
- 2. Cloud service interface for data storage and retrieval
- 3. Performance analysis of Data link protocols, routing and application protocols
- 4. Open Ended Experiment with focus on data analytics and security

Course Code: 17EDEE802	Course Title: AUTOSAR		
L-T-P : 2-0-1	Credits: 3	3 Contact Hrs: 3 Hours	
ISA Marks: 50	ESA Marks: 50	Total Marks:	100
Teaching Hrs: 40		Exam Duratio	on: 3
Content			Hrs
Unit - 1			
Chapter No. 1: AUTOSAR Fundamentals Evolution of AUTOSAR – Motivations and Objectives AU [–] Packages, AUTOSAR Partnership, Goals of the partr AUTOSAR specification, AUTOSAR Current development ICC2, ICC3, and Drawbacks of AUTOSAR.	TOSAR consortium – Stake ho nership, Organization of the t status, BSW Conformance cl	olders – work partnership, lasses: ICC1,	8 hrs
Chapter No. 2: AUTOSAR layered Architecture AUTOSAR Basic software, Details on the various layers, Details on the stacks Virtual Function Bus (VFB) Concept Overview of AUTOSAR Methodology, Tools and Technologies for AUTOSAR AUTOSAR Application Software Component (SW-C), Types of SW-components AUTOSAR Run Time Environment (RTE): RTE Generation Process: Contract Phase, Generation Phase, MCAL, IO HW Abstraction Layer, Partial Networking, Multicore, J1939 Overview, AUTOSAR Ethernet, AUTOSAR E2E Overview, AUTOSAR XCP, Metamodel, From the model to the process, Software development process.			7 hrs
Unit - 2			
Chapter No. 3: Methodology of AUTOSAR and Commu CAN Communication, CAN FD, CAN in Automation, CAN inter ECU communication, Client-Server Communication Driver, Communication Manager (ComM), Overview of Manager	nication in AUTOSAR lape, Application Layer and R n, Sender-Receiver, Commun f Diagnostics Event and Co	TE, intra and ication, CAN ommunication	10 hrs
Chapter No. 4: BSW Development and Integration BSW Constituents: Memory layer, COM and Services lay system, Interfaces: Standard interface, AUTOSA interface,(AUTOSAR interface), BSW-ECU hardware inter module configuration, AUTOSAR Integration.	er, ECU abstraction, AUTOSA R standardized interface, erface, Complex device drive	R, Operating BSW-RTE rs and BSW	5 hrs
Unit - 3			

Chapter No. Chapter 5: Infotainment Systems in Automobiles Infotainment Systems Fundamentals: Radio, Multimedia, and Navigation: Introduction to In Vehicle Infotainment (IVI) systems, Use of operating systems in IVI, GENIVI Alliance, Tuner: AM/FM, XM/Sirrus, DAB/DMB, Software Defined Radio; Concepts of HD, radio, Ensemble, Traffic Announcements, Spread Spectrum, d. Multimedia: Types of Media; Music, Video, Podcasts, etc. Media management; Playback, Track Control, Metadata, Playlists, Categories, Trick play, Audio/Video Source Management, Navigation: Points of Interests, Routes, Waypoints, Dead Reckoning position, Traffic Info, GLONASS, GNSS, RTK, GPS, and SBAS/GBAS,INS f. Media types: CD, DVD, CDDA, USB, SDCARD, Media Formats:MP3, WMV, RealAudio/Video, QTP, Architecture – Design Patterns - Proxies, Adaptors, Interfaces, Singleton, Factory method	5 hrs
Chapter No. Chapter 6: Communication Systems in Automobiles Automotive & Consumer Electronic Communication Systems: Introduction to Bluetooth – Pairing, HFP, A2DP, PAN, PBAP, DUN, Concepts of MOST network, DLNA, AVB, Concepts of TCP/IP, Ethernet, WiFi, WiFi Direct, MyWiFi and CAN, Mirror link, Tethering	5 hrs
 Text Book (List of books as mentioned in the approved syllabus) 1. Ribbens, Understanding of Automotive electronics, 6th Edition, Elsevier, 2003 2. Denton.T, Automobile Electrical and Electronic Systems, Elsevier, 3rd Edition, 2004 3. Denton.T, Advanced automotive fault diagnosis, 2000 	
 References 1. Ronald K Jurgen, Automotive Electronics Handbook, 2nd Edition, McGraw-Hill, 1999 2. James D Halderman, Automotive electricity and Electronics, PHI Publication, 2000 3. Allan Bonnick, Automotive Computer Controlled Systems Diagnostic Tools and Techniques, Elsevier Science, 2001 4. Nicholas Navet, Automotive Embedded System Handbook, 2009 	

Program: Digital Electronics			Teaching
Course Title: Advanced Computer Architecture & Course Code: 17EDEC801 Programming			Hours
L-T-P: 2-0-1	Credits: 3	Contact Hours: 4 Hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40 Hrs	Examination Duration: 3 hrs		
Chapter 1: Instructions: Representing Instructions in the Computer, ARM Addressing for 32-Bit Immediates and more complex addressing modes, Parallelism and Instructions: Synchronization,			
Translating and Starting a Program.			05
Chapter 2: Arithmetic for Computers			
Addition and Subtraction, Multiplication, Division, Floating Point, Parallelism and Computer Architecture: Associativity.			05
Chapter 3: The Processor Introduction, Logic Design overview of pipelining, Pip Control hazards, Exceptions opteron pipeline, Advance	: Conventions, Building a Datapath , , elined datapath and control, Data s , Parallelism and advanced instruc Fopic: an introduction to describe and	A Simple Implementation Scheme, An Hazards: Forwarding versus Stalling, tion level parallelism, Real Stuff: AMD d model a pipeline and more pipelining	10

illustrations.	
Chapter 4: Large and Fast: Exploiting Memory Hierarchy	10
Introduction, The Basics of Caches, Measuring and Improving Cache Performance, Virtual Memory	10
A Common Framework for Memory Hierarchies, Virtual machines, using a finite state machine to control a simple cache, Parallelism and memory hierarchy: cache coherence ,Advanced material: Implementing cache controllers, Real Stuff: AMD Opteron & Intel Nehalem Memory hierarchies	
Chapter 5: Storage, Networks, and Other Peripherals	10
Introduction, Dependability, Reliability and Availability, Disk Storage, Flash storage, Connecting Processors, Memory, and I/O Devices, Interfacing I/O Devices to the Processor, Memory and Operating System, I/O Performance Measures: Examples from Disk and File Systems, Designing an I/O System, Parallelism and I/O: Redundant arrays of inexpensive disks, Real Stuff: Sun firwe x4150 server, Advanced topics: Networks	
Chapter 6: Multicores, Multiprocessors and Clusters	
Introduction, Difficulty of creating parallel processing programs, Shared memory multiprocessors	
Clusters and other message passing multiprocessors, Hardware multithreading, SISD, MIMD, SIMD, SPMD, and vector, Introduction to graphics processing units, Introduction to multiprocessor network topologies, Multiprocessor benchmarks, Roofline : A simple performance model, Real Stuff: Benchmarking four multicores using the roofline model.	10
Text Books:	
1. Computer Organization and Design, The hardware/Software interface, ARM edition- David A. Patter	rson, John
L.Hennessy. 4 th edition,MK publishers,2009	
Reference Books:	
1. Computer Architecture and Organization- John P. Hayes, 3rd edition, McGraw-Hill, 1998	

Program: Digital Electronics			
Course Title: AUTOSAR and Infotainment	t Systems	Course Code: 17EDEC802	
L-T-P : 2-0-1	Credits: 3	Contact Hrs: 4	
CIA Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 24	Exam Duration: 3 hrs		
Chapter No. 1: AUTOSAR Fundamental Evolution of AUTOSAR – Motivations and Packages, AUTOSAR Partnership, Go AUTOSAR specification, AUTOSAR Curr ICC2, ICC3, and Drawbacks of AUTOSAR	Is d Objectives AUTOSAR cor als of the partnership, Or rent development status, BS R.	nsortium – Stake holders – work rganization of the partnership, W Conformance classes: ICC1,	4 hrs
Chapter No. 2: AUTOSAR layered Architecture AUTOSAR Basic software, Details on the various layers, Details on the stacks Virtual Function Bus (VFB) Concept Overview of AUTOSAR Methodology, Tools and Technologies for AUTOSAR AUTOSAR Application Software Component (SW-C), Types of SW-components AUTOSAR Run Time Environment (RTE): RTE Generation Process: Contract Phase, Generation Phase, MCAL, IO HW Abstraction Layer, Partial Networking, Multicore, J1939 Overview, AUTOSAR Ethernet, AUTOSAR E2E Overview, AUTOSAR XCP, Metamodel, From the model to the process, Software development process			4 hrs

Unit - 2	
Chapter No. 3: Methodology of AUTOSAR and Communication in AUTOSAR CAN Communication, Application Layer and RTE, intra and inter ECU communication, Client-Server Communication, Sender-Receiver, Communication, CAN Driver, Communication Manager (ComM), Overview of Diagnostics Event and Communication Manager	4 hrs
Chapter No. 4: BSW Development and Integration BSW Constituents: Memory layer, COM and Services layer, ECU abstraction, AUTOSAR, Operating system, Interfaces: Standard interface, AUTOSAR standardized interface, BSW-RTE interface, (AUTOSAR interface), BSW-ECU hardware interface, Complex device drivers and BSW module configuration, AUTOSAR Integration.	4 hrs
Chapter No. Chapter 5: Infotainment Systems in Automobiles Infotainment Systems Fundamentals: Radio, Multimedia, and Navigation: Introduction to In Vehicle Infotainment (IVI) systems, Use of operating systems in IVI, GENIVI Alliance, Tuner: AM/FM, XM/Sirrus, DAB/DMB, Software Defined Radio; Concepts of HD, radio, Ensemble, Traffic Announcements, Spread Spectrum, d. Multimedia: Types of Media; Music, Video, Podcasts, etc. Media management; Playback, Track Control, Metadata, Playlists, Categories, Trick play, Audio/Video Source Management, Navigation: Points of Interests, Routes, Waypoints, Dead Reckoning position, Traffic Info, GLONASS, GNSS, RTK, GPS, and SBAS/GBAS,INS f. Media types: CD, DVD, CDDA, USB, SDCARD, Media Formats:MP3, WMV, RealAudio/Video, QTP, Architecture – Design Patterns - Proxies, Adaptors, Interfaces, Singleton, Factory method	4 hrs
Chapter No. Chapter 6: Communication Systems in Automobiles Automotive & Consumer Electronic Communication Systems: Introduction to Bluetooth – Pairing, HFP, A2DP, PAN, PBAP, DUN, Concepts of MOST network, DLNA, AVB, Concepts of TCP/IP, Ethernet, WiFi, WiFi Direct, MyWiFi and CAN, Mirror link, Tethering	4 hrs
Text Books 1. Ronald K. Jurgen, Infotainment systems, 2007, SAE International, 2007	

Program: Digital Electronics				
Course Title: Principles and Practices of Engineering Education		Course Code: 15ECRC701		
L-T-P: 2-0-1	Credits: 3	Contact Hours: 3		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 40	Examination Duration: 3 hrs			
1. Fundamental Principles of Tea	ching and Learning		8 Hours	
2. Learning Styles and Theories			8 Hours	
3. Instructional Design Models ar	d Technology Enhanced Learning		8 Hours	
4. Assessment and Evaluation			8 Hours	
5. Engineering Learning Modules				
			8 Hours	

Program: Digital Electronics			
Course Title: Data Structure using C Course Code: 17EVE		Course Code: 17EVEC701	
L-T-P: 0-0-1	Credits: Audit	Contact Hours: 2	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hours: 25	Examination Duration: -		
Chapter 01:C language features Pointers revisited, Strings, Structures – Basics, Structures and functions, Arrays of structures, Pointers to structures, Self Referential Structures, Unions and bit fields, Files			5 Hrs
Chapter 02:Stacks and Queues Definition, Representation and Ap circular queues multiple queues	pplications of stack. Definitions, rep	resentation and applications of linear,	5 Hrs
Chapter 03:Lists Linked lists, singly, doubly, circular lists, definitions, representations. Implementation of list operations,			5 Hrs
Chapter 04:Trees Binary trees – Definitions, traversals (recursive and iterative versions), Building and searching, Threaded			5 Hrs
Exchange sorts, Selection and tre	ee sorts, Merge and radix sorts		5 Hrs
Text Book 1. Aaron M. Tenenbaum, et 2. Horowitz, Sahani, Anders 2008	al, Data Structures using C, II Editi son-Feed, Fundamentals of Data St	on, PHI, 2006 ructures in C, II Edition, University,	
References			
 E Balaguruswamy, The ANSI C programming Language, II Edition, PHI, 2010 Yashavant Kanetkar, Data Structures through C, II Edition, BPB public, 2010 Richard F. Gilberg, Behrouz A. Forouzan, Data Structures: A Pseudocode Approach With C, II Edition, Course Tec, 2009 			
Lab:			
 Programs on Pointer con Programs on string handl 	cepts. ling functions, structures union And	bit-files.	

- 3. Programming on files
- 4. Programming on stacks data structures
- 5. Programs on implementation of different queue data structures.
- 6. Programs on implementation of different types of Linked lists
- 7. Programs on Implementation of trees
- 8. Programs to implement different sorting techniques.
- 9. Programming on graph
- **10.** Programming on hashing tables
- 11. Design and implement stack queue data structures
- 12. Design and implement linked list data structures
- 13. project

Program: I Semester Master of Technology (Digital Electronics)			Teaching
Course Title: Principles of Embedded Systems Course Code: 17EVEC703		Hours	
L-T-P: 0-0-2	Credits: 2	Contact Hours: 4 Hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hours: 42 Hrs	Examination Duration:		
1. Introduction to emb Introduction, Classification System. Characteristics and metrics.	bedded system: of Embedded System, Major Appl quality attributes of Embedded Syste	ication Areas, Purpose of Embedded ems, Design Metric and Optimizing the	06 Hrs
2. Typical Embedded Systems: Core of Embedded System-processor fundamentals, up vs uc, risc vs cisc, vonneumann vs Harvard, 8051 controller architecture and programmer model, Memory, Sensor and Actuators, Communication Network, Embedded Firmware		08 Hrs	
3. Low Level programming Concepts: Addressing Modes, Instruction Set and Assembly Language programming(ALP), Developing, Building, and Debugging ALP's			08 Hrs
4. Middle Level Programming Concepts: Cross Compiler, Embedded C language implementation, programming, & debugging, Differences from ANSI-C, Memory Models, Use of directives, Functions, Parameter passing and return types		02 Hrs	
5. On-Chip Peripherals Study, Programming, and Application: Ports: Input/Output, Timers & Counters, UART, Interrupts		08 Hrs	
6. External Interfaces LEDS, Switches(Momentary Internal Multiplexing & Exter Keypad Matrix, Stepper Moto	Study, Programming and Applicati type, Toggle type), Seven Segmen rnal Multiplexing), LCD (8bit, 4bit, Bu or, DC Motor	ons : t Display: (Normal mode, BCD mode, sy flag, custom character generation),	10 Hrs

- 1. Introduction to Embedded Systems 1E by Shibu K V.
- Kenneth J. Ayala ; "The 8051 Microcontroller Architecture, Programming & Applications" 2e, Penram International, 1996 / Thomson Learning 2005
- 3. Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinlay; "The 8051 Microcontroller and Embedded Systems using assembly and C "- PHI, 2006 / Pearson, 2006

References

- 1. Embedded System Design: A Unified Hardware/Software Introduction Frank Vahid, Tony Givargis, John Wiley & Sons, Inc.2002
- 2. Predko ; "Programming and Customizing the 8051 Microcontroller" -, TMH
- 3. Raj Kamal, "Microcontrollers: Architecture, Programming, Interfacing and System Design", Pearson Education, 2005

Program: I Semester Master of Technology (Digital Electronics)			Teaching
Course Title: RISC Architectures Course Code: 17EVEC705		Hours	
L-T-P: 3-0-1	Credits: 4	Contact Hours: 3 Hrs/week	
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200	
Teaching Hours: 46 Hrs	Examination Duration:		
1. The 32 bit RISC Architecture: The Acorn RISC machine, Architectural inheritance, Architecture of ARM7TDMI, ARM programmers model, ARM development tools, 3 stage pipeline ARM organization, ARM instruction execution.			06 Hrs
2. 32 bit Instruction s Data processing instruction Program status register ins The Thumb programmer mo instructions, Single/Multiple instructions, example program	et: , Branch instruction, Load store inst truction, Conditional execution, Exa odel, ARM-Thumb interworking, othe e register load store instruction, ams.	ruction, Software interrupt instruction, imple programs, 16bit Instruction set- r branch instructions, Data processing Stack operation, Software interrupt	06 Hrs
3. Exception Handling: Introduction, Interrupts, error conditions, processor exception sequence, the vector table, Exception handlers, Exception priorities, Procedures for handling exceptions.			04 Hrs
4. Memory Hierarchy Design: Cache basics, Miss rate and penalty, Cache Hierarchy, Memory Organizations, Memory Hierarchy.			06 Hrs
5. Pipelining: Linear pipeline processor, Nonlinear pipeline processor, Instruction pipeline design, Branch handling techniques, Arithmetic pipeline design, Computer arithmetic principles, Static arithmetic pipeline, Multifunctional arithmetic pipeline.			08 Hrs
6. Cortex M4 : Functional description, programmer's model, memory protection unit, nested vectored interrupt controller.			06 Hrs
7. Multi-Core Architectures : Introduction to Intel Architecture, How an Intel Architecture System works, Basic Components of the Intel Core 2 Duo Processor: The CPU, Memory Controller, I/O Controller.			07 Hrs
8. Current Trends in Seminar on current trends ir	Intel Architectures and Application	ns :	03 Hrs

- 1. "ARM System- on-Chip Architecture" by 'Steve Furber', LPE, Second Edition.
- 2. "ARM Assembly Language fundamentals and Techniques" by William Hohl, CRC press, 2009.
- 3. D. A. Patterson and J. L. Hennessey "Computer Organization and Design", Morgan , Kaufmann, 2002
- 4. H. Jonathan Chao and Bin Liu, "High performance switches & routers", Wiley Interscience, 2007.
- 5. Kai Hwang, "Advanced Computer Architecture TMH 1993
- 6. Web resources for Example Architectures of INTEL and Texas Instruments: http://download.intel.com/design/intarch/papers/321087.pdf

References

- 1. Kai Hwang, Faye A. Briggs, Computers Architecture and Parallel Processing MGH 1985
- 2. David E Culler, Jaswinder Pal Singh, Anoop Gupta "Parallel Computer Architecture", Harcourt Asia Pte Ltd 2000
- 3. Stalling W." Computer Organization and Architecture- Designing for performance" PHI,2005
- 4. D. Sima, T. Fountain, P.Kasuk," Advanced Computer Architecture-A Design Space Approach" Addisson Wesley, 1997.
- 5. M. J. Flynn,"Computer Architecture, Pipelined And Parallel Processing", Narosa Publications, 1998.

List of Experiments:

- 1. Write an ALP to verify data transfer w.r.t memory to achieve following
 - i. 8 bit data transfer
 - ii. 16 bit data transfer
 - iii. 32 bit data transfer
- 2. Write an ALP for Tables and lists to do following:
 - i. Add an entry to a list
- ii. Remove an element from the queue
- 3. Write an ALP to pass parameters to a subroutine.
 - i. Ascending order
 - ii. Descending order
- 4. Write a 'C' program & demonstrate an interfacing of Alphanumeric LCD 2X16 panel to LPC2148Microcontroller
- 5. Write a 'C' program & demonstrate concept of Interrupts interface to LPC2148 Microcontroller.
- 6. Write a 'C' program & demonstrate an interfacing of DAC to LPC2148 Microcontroller.
- 7. Write a 'C' program & demonstrate an interfacing of UART to LPC2148 Microcontroller.
- 8. Write a 'C' program & demonstrate an interfacing of ADC to LPC2148 Microcontroller.
- 9. Write a 'C' program & demonstrate an interfacing of RTC to LPC2148 and read time, date and year.
- 10. Write a 'C' program & demonstrate interface I2C to LPC2148
- 11. Develop a code for college bell system. (Use the following interfaces LCD, RTC and Buzzer).

Reference Books

- 1. "ARM System- on-Chip Architecture" by 'Steve Furber", LPE, Second Edition.
- 2. "Embedded Systems- Architecture, Programming and Design" by Raj Kamal, TMH
- 3. Dr. K.V.K.K. Prasad, "Embedded/Real-time systems: concepts, Design & Programming", published by dreamtech press.

Manual

- 1. LPC2148 datasheet by NXP.
- 2. LPC2148 board manual by ALS, Bangalore.

Program: Digital Electronics			Teaching
Course Title: Electronic Sy	stem Design	Course Code: 17EVEC707	Hours
L-T-P: 0-0-3	Credits: 3	Contact Hours:6 Hrs/week	
ISA Marks: 100	ESA Marks:	Total Marks: 100	
Teaching Hours: 25 Hrs	Examination Duration:		
To level specifications, Block level specifications, Timing of micro architecture, Verification and test plan, Schematic capture			05 Hrs
Simulation, Advanced simulation, Signal Integrity			05 Hrs
PCB layout- Floor planning, component pre planning, PCB printing- 2 layer			05 Hrs
Functionality and performar	ice check, Failure analysis, Validatio	n and system integration	05 Hrs
System Analysis			05 Hrs
References 1. A. S Sedra and KC Smith, Microelectronic circuits, Oxford, 1998. 2. G.L. Ginsberg, Printed Circuit Design, McGraw Hill, 1991.			

Program: Digital Electronics			
Course Title: Automotive Electronics Course Code: 17EVE		EC708	
L-T-P: 3-0-1	Credits: 4	Contact Hours: 5	
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200	
Teaching Hours: 40	Examination Duration: 3 hrs		
Chapter No. 1. Automotive Fun	damentals Overview		8Hrs
Introduction to Automotive Industry and Modern Automotive Systems Vehicle classifications and specifications need for electronics in automobiles, Application areas of electronics in the automobiles Four Stroke Cycle, Engine Control, Ignition System, Spark plug, Spark pulse generation, Ignition Timing, Drive Train, Transmission, Brakes, Steering System			7Hrs
Chapter No. 2. Sensors and Actuators			
Oxygen (O2/EGO) Sensors, Throttle Position Sensor (TPS), Engine Crankshaft Angular Position (CKP) Sensor, Magnetic Reluctance Position Sensor, Engine Speed Sensor, Ignition Timing Sensor, Hall effect Position Sensor, Optical Crankshaft Position Sensor, Manifold Absolute Pressure (MAP) Sensor Strain gauge, Engine Coolant Temperature (ECT) Sensor, Knock Sensor, Throttle angle sensor, Fuel Injector Actuator, Ignition Actuator			
Chapter No. 3. Electronic Engi	ne Control		
Engine parameters, variables, Engine Performance terms, Electronic Fuel Control System, Electronic Ignition control, Idle sped control, EGR Control			5Hrs
Chapter No. 4. Vehicle Motion Control and Safety Systems			
Cruise Control, Antilock Brake System (ABS), Electronic Steering Control, Power Steering, Traction Control, Electronic Stability Program.			6Hrs
Chapter No:5. Automotive com	munication protocols		3Hrs

Ove Cha Cor Cha Fur pro Fur Pre mea	erview of Automotive communication protocols : CAN, LIN . apter No. 6. Advanced Driver Assistance Systems (ADAS) Lane Departure rning, Collision Warning, Automatic Cruise Control, Pedestrian Protection, Headlights atrol, Connected Cars technology and trends towards Autonomous vehicles. apter No. 7. Automotive safety standards ISO26262 and Diagnostics actional Safety: Need for safety standard-ISO 26262, safety concept, safety process for duct life cycle, safety by design, validation. damentals of Diagnostics: Basic wiring system and Multiplex wiring system, liminary checks and adjustments, Self-diagnostic system. Fault finding and corrective asures, OBD & off board diagnostic.	5Hrs 6Hrs		
Te	xt books:			
	1. Denton.T – Automobile Electrical and Electronic Systems, Edward Arnold publicatio	n, 1995.		
Ret	erences:			
	 William T.M – Automotive Electronic Systems, Heiemann Ltd., London ,1978. Nicholas Navet – Automotive Embedded System Handbook, CRC Press, 2009. BOSCH Automotive Handbook, Wiley Publications, 8th Edition, 2011. Co-Verification of hardware & software for ARM SoC Design – Jason.R.Andrews, N Hardware Software co-design of embedded systems, F.Balarin, Kluwer Academic C 	ewnes Publications, 2004. Dublishers, 1987.		
Lab	:			
1. 2. 3. 4.	Demonstration of cut section modules: Engine, Transmission, Steering, Braking, Suspective Electronic engine control system: Injection and Ignition control system Transmission trais Modeling an engine Vehicle model simulation with Simulink using PI CONTROLLER Basic gate logic simulation and modeling using Simulink and realization on the hardward	ension - Automobile dept. iner modules e platform.		
5.	5. Seat belt warning system simulation and modeling using Simulink and realization on the hardware platform. Vehicle speed control based on the gear input simulation and modeling using Simulink and realization on the hardware platform.			
6.	Throttle control modeling and simulation using Simulink and realization on the hardware	platform.		
7.	7. Accelerator pedal interfacing software modeling and simulation using Simulink and realization on the hardware platform.			
8.	Develop matlab code for stepper motor control and convert it to Simulink model and por	t it to embedded hardware		

Program: II Semester Master of Technology (VLSI Design & Embedded Systems)				
Course Title: Real Time Embedded System Course Code: 17EVEC709			Hours	
L-T-P: 3-0-1 Credits: 4		Contact Hours: 3 Hrs/week		
ISA Marks: 50+100 ESA Marks: 50		Total Marks: 200		
Teaching Hours: 45 Hrs Examination Duration:				
UNIT I				

1 Duilding blocks	
Real Time System, Types, Real Time Computing, Design Issue, Sample Systems, Hardware Requirements- Processor in a system, System Memories, System I/O, De-bouncing, Other Hardware Devices (A/D, D/A, USART, Watchdog Timers, Interrupt Controllers). Device Drivers, Interrupt Servicing Mechanism & Interrupt Latency.	12 Hrs
2. Advanced Processors: Automotive Grade Processors: AEC-Q100 qualification, Qorivva 32-bit Microcontrollers, MPC577XK for ADAS, AURIX from Infineon, Tricore Architecture, Renasas RL78/D1x (Automotive Only)	10 Hrs
UNIT II	
3. Real Time Operating System:	
Interrupt driven systems, foreground/background systems, full featured rtos, POSIX, buffering data, mailboxes, critical regions, semaphores, event flags & signals, deadlock, process stack management, dynamic allocation.	04 Hrs
4. Case Studies:	
Mucos/ VX Works Functions – System level, task service, time delay, memory allocation, semaphore, mailbox, queue.	06 Hrs
Example systems: Coding for Automatic chocolate vending machine using MUCOS & Coding for sending application layer byte streams on a TCP/IP Network using Vx Works.	
UNIT III	
5. Process of Embedded System Development:	
Development process, requirements engineering, design, implementation, integration & testing, packaging, configuration management, managing embedded system development, embedded system fiascos.	08 Hrs
6. Current trends, ethical & environmental issues	
The students shall give seminars on current trends in the field of RTES, ethical, & environmental issues.	05 Hrs
Text Books	

- 1. Philip. A. Laplante, "Real-Time Systems Design and Analysis- an Engineer's Handbook"- Second Edition, PHI Publications.
- 2. Rajkamal, "Embedded Systems: Architecture, Programming and Design", Tata McGraw Hill, New Delhi, 2003.
- 3. Dr. K.V.K K Prasad, "Embedded Real Time Systems: Concepts Design and Programming", Dreamtech Press New Delhi, 2003.

References

- Joseph Yiu, "The Definitive guide to ARM CORTEX –M3 & CORTEX-M4 Processors", Elsevier, Newnes, 2014. 1.
- Steve Furber "ARM System -on Chip Architecture" Second Edition, Pearson Education 2.
- David E. Simon, "An Embedded software primer", Pearson Education, 1999... 3.
- 4. David A. Evesham, "Developing real time systems A practical introduction", Galgotia Publications, 1990
- William Hohl, "ARM Assembly Language Fundamentals & Techniques", CRC Press 5.
- C. M. Krishna, "Real Time Systems" MGH, 1997 6.
- Jane W.S. Liu, "Real-Time Systems", Pearson Education Inc., 2000 7.

Course Code: 17EVEC710	Course Title: Advanced Digital Logic De	esign	
L-T-P: 1-0-3	Credits: 4		
ISA Marks: 50+100	ESA Marks: 50		
Teaching Hrs: 40			
Chapter No. 1. Digital Integrated Circuits Moore's law, Technology Scaling, Die size of Challenges in digital design, Design metrics, Cost SoC ASIC Flow Vs SoC Flow, SoC Design Challe PMOS & NMOS Operation, CMOS Operation pri CMOS Inverter and characteristic curves, Dela dissipation in CMOS, CMOS Logic, Stick diagrams Time, Timing Concepts.	growth, Frequency, Power dissipation, of Integrated circuits, ASIC, Evolution of nges. Introduction to CMOS Technology, nciples, Characteristic curves of CMOS, nys in inverters, Buffer Design, Power s and Layout diagrams. Setup time, Hold	10 hrs	
Chapter No. 2. Digital Building Blocks Basic Gates, Universal Gates, nand & nor Imp converters, Priority encoder, multiplexer, dem schemes, Multiplexer, De-multiplexer, Pass Transi multi-purpose logical element. Asynchronous and registers. FSM Design, Mealy and Moore Modellin Concept	blementations. Decoder, encoder, code aultiplexer, Comparators, Parity check stor Logic, application of multiplexer as a d synchronous up-down counters, Shift ng, Adder & Multiplier concepts, Memory	10 hrs	
Chapter No. 3. Logic Design Using Verilog Evolution & importance of HDL, Introduction to Design Flow, Lexical Conventions, Data Types Comments, arrays in Verilog, Expressions, Operato , Delays , parameterized designs Procedura Assignment, looping, flow Control, Task, Function, for Verification, Basic test bench generation and Si	Verilog, Levels of Abstraction, Typical Modules, Nets, Values, Data Types, ors, Operands, Arrays, memories, Strings I blocks, Blocking and Non-Blocking Synchronization, Event Simulation. Need mulation	12 hrs	
Chapter No. 4. Principles of RTL Design Verilog Coding Concepts, Verilog coding guide General Guidelines, Synthesizable Verilog Constru Design Challenges, Clock Domain Crossing. Veril sequential logic	lines: Combinational, Sequential, FSM. ucts, Sensitivity List, Verilog Events, RTL log modelling of combinational logic and	8 hrs	
Chapter No. 5. Design and simulation of Architectural building blocks Basic Building blocks design using Verilog HDL: Arithmetic Components – Adder, Subtractor, and Multiplier design, Data Integrity – Parity Generation circuits, Control logic – Arbitration, FSM Design – overlapping and non-overlapping Mealy and Moore state machine design			
Reference Books:			
 Digital Design by Morris Mano M, 4th Edition Verilog HDL: A Guide to Digital Design and Synthesis by Samir Palnitkar, 2nd Edition Principles of VLSI RTL Design: A Practical Guide by Sapan Garg, 2011 Tools: 1. NC Ver NC Sim, CVER + GTKWave, VCSMX, Modelsim for Verilog 2. Microwind for layout. 			

Course Code: 17EVEC711	Course Title: Testing & IC Characterization		
L-T-P: 3-0-1	Credits: 4 Contact Hrs: 5 hrs/we		ek
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200	
Teaching Hrs: 40		Exam Duration: 03 hr	S
	Content		Hrs
CHAPTER NO. 1. VERIFICA	TION CONCEPTS		10 hrs
Concepts of verification, im verification, test bench gene flow, stimulus generation, coverage plan.	portance of verification, Stimulus vs ration, functional verification approach direct testing, Coverage: Code and	Verification, functional es, typical verification Functional coverage,	
CHAPTER NO. 2. SYSTEM	/ERILOG – LANGUAGE CONSTRUCT	s	10 hrs
System Verilog constructs - and associative arrays, Stru clocking blocks, modports.	Data types: two-state data, strings, arr cts, enumerated types. Program block	ays: queues, dynamic s, module, interfaces,	
CHAPTER NO. 3. SYSTEM VERILOG – CLASSES & RANDOMIZATION			12 hrs
SV Classes: Language evolution, Classes and objects, Class Variables and Methods, Class instantiation, Inheritance, and encapsulation, Polymorphism. Randomization: Directed Vs Random Testing. Randomization: Constraint Driven Randomization.			
CHAPTER NO. 4. SYSTEM VERILOG – ASSERTIONS & COVERAGE			8 hrs
Assertions: Introduction to assertions. Coverage driven Cover Point, Cross Coverage	Assertion based verification, Immed verification : Motivation, Types of co , Concepts of Binning and event sampling	diate and concurrent verage, Cover Group, ng.	
CHAPTER NO. 5 . BUILDING TESTBENCH LAYERED TESTBENCH ARCHITECTURE. INTRODUCTION TO UNIVERSAL VERIFICATION METHODOLOGY, OVERVIEW OF UVM BASE CLASSES AND SIMULATION PHASES IN UVM AND UVM MACROS. UNIFIED MESSAGING IN UVM, UVM ENVIRONMENT STRUCTURE, CONNECTING DUT- VIRTUAL INTERFACE			10 hrs
 REFERENCES: SYSTEM VERILOG LRM CHRIS SPEAR, GREGORY J TUMBUSH - SYSTEMVERILOG FOR VERIFICATION GUIDE TO LEARNING THE TESTBENCH LANGUAGE FEATURES - SPRINGER, 2 STEP-BY-STEP FUNCTIONAL VERIFICATION WITH SYSTEMVERILOG AND OVI SASAN IMAN SIMANTIS INC. SANTA CLARA, CA SPRING 2008 TOOLS: 1. NC VE NC SIM, VCSMX FOR SYSTEM. 			I - A 2012 A BY ERILOG,

Course Code: 17EVEE703	Course Title: Standard Cell Design and Layout	
L-T-P: 2-0-1	Credits: 3	Contact Hrs:
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200
Teaching Hrs: 50		Exam Duration: 3 hrs

Chapter No. 1. Introduction IC design flows . Use of standard cell elements vs. custom design and Gate array paradigms. Introduction to memory types and construction of memory elements.	15 hrs
Chapter No. 2. Standard cell library composition and usage Types of standard cell elements. Logical and functional elements, primitives and complex macros. Sequential elements and register files. (Flip flop and latch design). Data path elements. Library size vs. usage in standard flows. Drive strength and cell families. Layout of library elements – single height, double height cells. Power Management cells.	17hrs
Chapter No. 3. Standard cell characterization Usage of standard cells by various tools. Information needed at each stage of design flow. Characterization parameters, setup and runs across PVT corners. Library representation formats. (Gate level simulation, synthesis, timing, layout, timing, LVS, DRC)	18 hrs
References: Standard cell and memory library documentation by Vendors 90nm EDK libra	ary

Program: VLSI Design & Embedded	Systems		
Course Title: Low Power VLSI Circuits Course Code: 17EV			
L-T-P: 2-0-1	Credits: 4	Contact Hours:4	
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200	
Teaching Hours: 40	Examination Duration: 3 hours		
1: Introduction to low power VLSI de dissipation. Device and Technology Estimation.	sign: Need for Low Power VLSI Chips, s impact on Low Power, dynamic power d	sources of power issipation in CMOS. Power	6Hrs
2: Power analysis: Simulation Power Probabilistic power analysis	Analysis, Spice circuits simulator, gate le	evel logic simulator,	SHIS
3: A new CMOS driver model for transient analysis and power dissipation analysis, low power design of off- chip drivers and transmission lines: a branch and bound approach.			SHIS
4: Different levels of power optimization			7Hrs
Low Power Design; circuit Level, logic Level, Low Power Architecture.			
5: Floor plan design with low power considerations, optimal drivers of high-speed low power ics, retiming sequential circuits for low power			5Hrs
6: Clock Distribution: Low Power Clock distribution, single driver versus distributed buffers. Power management: Power & performance management, switching activity reduction, parallel architecture.			4Hrs
7:Algorithmic level methodologies for power reduction: Algorithm and architectural level methodologies- algorithmic level analysis & optimization, architecture level estimation and synthesis, Current trends			8Hrs
Text Books			

- 1. Gary K. Yeap, "Practical Low Power Digital VLSI Design", KAP, 2002.
- 2. Rabaey, Pedram, "Low power design methodologies" Kluwer Academic, 1997.

Reference Books:

- 1. A. Chandrakasan and R. Brodersen, "Low Power CMOS Design".
- 2. Sung Mo Kang & Yosuf Leblebici, "CMOS Digital Integrated Circuits: Analysis and Design", TMH, 2003 (Third Edition).
- 3. Laung-Terng Wang, Charles E. Stroud, Nur A. Touba, "System-on-chip Test Architectures", 2008.
- 4. Kaushik Roy, Sharat Prasad, "Low-Power CMOS VLSI Circuit Design" Wiley, 2000.

Pro	ogra	m: VLSI Design & Embedde	ed Systems		
Co	Course Title: Analog and Mixed mode VLSI Circuits Course Code: 17EVEE705				
L-1	Г -Р :	2-0-1	Credits: 3	Contact Hours: 6	
ISA	A Ma	arks: 50	ESA Marks: 50		
Те	achi	ng Hours: 50	Examination Duration: 3 hours	Total Marks: 100	
1.	Inti sigi Sou	roduction to CMOS analog c nal model, Common source urce follower, Common gate	ircuits, MOS transistor DC and AC sr amplifier with resistive load, diod amplifier, Cascode amplifier, Frequen	nall signal parameters from large e load and current source load, icy response of amplifiers.	12 hrs
2.	Cui Cas	rrent source/sink/mirror, Ma scode current source, Differe	atching, Wilson current source, Widl ntial amplifier.	ar current source and Regulated	08 hrs
3.	Ор	-Amp: CMOS Op-Amp, Comp	ensation of Op-Amp,Design of two st	age Op-Amp.	06 hrs
4.	Bas mo	sic Current reference, and Vo de bandgap reference.	oltage (Bandgap) reference circuits, C	DPAMP based references, Current	06 hrs
5.	Bid (of Log	lirectional analog switch, Sa fset error, bandwidth cons gic(Buffer and Latch)	mple and Hold circuit, Basic Compa ideration), Dynamic comparator, Se	arator architecture, non-idealities ense amplifier, Current Mode	08 hrs
6.	Dat	ta Converter Fundamentals	DAC architectures and ADC architectu	ires	10 hrs
Te:	xt B	ooks			
1. 2.	Phi Bal	llip. E. Allen, Douglas R. Holb ker, Li, Boyce, "CMOS: Circuit	erg, "CMOS Analog circuit Design" Ox Design, Layout and Simulation", Pre	ford University Press, 2002. entice Hall of India, 2000	
Re	fere	nce Books			
1. 2. 3.	 N. Weste and K. Eshranghian, Principles of CMOS VLSI Design, Addison Wesley. 1985. J. Rabaey, Digital Integrated Circuits: A Design Perspective, Prentice Hall India, 1997 B Razavi 'Design of Analog CMOS Integrated Circuits' First Edition McGraw Hill 2001 				
La	b:				
	1.	Design and implement Com	mon source MOS amplifier with resist	ive load, diode load and current sou	urce load.
	2.	Design and implement a Ca	scode amplifier.		
	3.	Design and implement a Sir	nple current mirror		
	4.	Design and implement a Dif	ferential amplifier		
	5.	Design and implement a Op	perational amplifier		
	6.	Design and implement a bas	sic comparator		
	7.	Design and implement a R-2	2R DAC		

Program: III Semester Master of Technology (VLSI Design & Embedded Systems)			Teaching
Course Title: Embedded S	Course Title: Embedded Software Design Course Code: 17EVEC801		Hours
L-T-P: 0-0-3	Credits: 3	Contact Hours: 6 Hrs/week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hours: 40 Hrs	Examination Duration:		
1. Introduction To Re Introduction to OS, Introduct real time systems, and the f Introduction to RTOS, key scheduler, services, contex robin and preemptive scheduler	eal-Time Operating Systems: tion to real time embedded system- r future of embedded systems. characteristics of RTOS, its kernel, t switch, Scheduling types: Preemp duling.	real time systems, characteristics of components in RTOS kernel, objects, tive priority-based scheduling, Round-	08 Hrs
 2. Tasks, Semaphores and Message Queues:: A task, its structure, A typical finite state machine, Steps showing the how FSM works. A semaphore, its structure, binary semaphore, mutual exclusion (mutex) semaphore, Synchronization between two tasks and multiple tasks, Single shared-resource-access synchronization, Recursive shared-resource-access synchronization. A message queue, its structure, Message copying and memory use for sending and receiving messages, Sending messages in FIFO or LIFO order, broadcasting 			08 Hrs
 3. Typical RTOSs: Study of VX works, RT Linux and Android OS and comparisons. Real time programming using RTX/free RTOS. Applications and Common Design Problems: Embedded RTOS for Image Processing & Control Systems, and common problems encountered in these applications. 			04 Hrs
4. Introduction to em Embedded Linux overview development issues-Tool ch GCONV)- Linux Boot proces	bedded linux: : Development-Kernel architectures nains in Embedded Linux-GNU Tool ss	and device driver model-Embedded Chain (GCC,GDB, MAKE, GPROF &	02 Hrs
 Boot sequence-Sys system operation-S environments for en 	stem loading, sys linux, Lilo, grub-l hared and static Libraries overview- nbedded Linux system	Root file system-Binaries required for Writing applications in user space-GUI	02 Hrs
6. File system in Linu	ıx:		
File system Hierarchy-File INODE-Group Descriptor-D Locating Files –Registering systems-Device special files	system Navigation -Managing the Directories-Virtual File systems-Per g the File systems-Mounting and	File system –Extended file systems- forming File system Maintenance - Un-mounting –Buffer cache-/proc file	08 Hrs
7. Program design ar	nd Analysis :		
Components of Embedded system: State machines; stream oriented programming and circular buffers, queues. Models of programs: data flow graph and control flow graphs, Assembly, linking and loading. Basic compilation techniques: Statement translation, procedures, data structures. Program optimization: Expression simplification, dead code elimination, procedure inlining, loop transformations, register allocation, scheduling, instruction selection, interpreters and JIT compilers. Program level performance analysis, software performance optimization, program level energy and power analysis, analysis and optimization of program size. Program validation and testing: Clear box testing, black box testing, evaluating function tests.			08 Hrs

- 1. Qing Li with Caroline Yao, "Real-Time Concepts for Embedded Systems", Published by CMP Books, 2011
- 2. Dr. K.V.K.K. Prasad, "Embedded/Real-time systems: concepts, Design & Programming", published by dreamtech press .
- 3. "Embedded Systems- Architecture, Programming and Design" by Raj Kamal, TMH

References

- 1. Philip.A.Laplante, "Real Time System Design and Analysis", Prentice Hall of India, 3rd Edition, April 2004.
- 2. "Programming embedded systems" in C and C++ Micheal Barr orielly

List of Experiments:

- 1. Write a 'C' program & demonstrate concept of Task Scheduling.
- 2. Write a 'C' program & demonstrate concept of Semaphore.
- 3. Write a 'C' program & demonstrate concept of Mailbox.
- 4. Write a 'C' program & demonstrate concept of S/W Interrupts.
- 5. Write a 'C' program & demonstrate concept of interrupts.
- 6. Write a 'C' program & demonstrate concept of Inter Task Communication.

Reference Books

1. Dr. K.V.K.K. Prasad, "Embedded/Real-time systems: concepts, Design & Programming", published by dreamtech press.

Manual

1. LPC2148 datasheet by NXP.

LPC2148 board manual by ALS, Bangalore.

Course Code: 17EVEC802	Course Title: Advanced Digital logic Verification			
L-T-P: 1-0-3	Credits: 4	Contact Hrs: 6hrs/week		
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200		
Teaching Hrs: 50		Exam Duration: 3 hrs		
Chapter No. 1. Verification Concepts Concepts of verification, importance of verification, Stimulus vs Verification, functional verification, test bench generation, functional verification approaches, typical verification flow, stimulus generation, direct testing, Coverage: Code and Functional coverage, coverage plan.				
Chapter No. 2. System Verilog – Language Constructs System Verilog constructs - Data types: two-state data, strings, arrays: queues, dynamic and associative arrays, Structs, enumerated types. Program blocks, module, interfaces, clocking blocks, modports.				
Chapter No. 3. System Verilog – Classes & Randomization SV Classes: Language evolution, Classes and objects, Class Variables and Methods, Class instantiation, Inheritance, and encapsulation, Polymorphism. Randomization: Directed Vs Random Testing. Randomization: Constraint Driven Randomization.				
Chapter No. 4. System Verilog – Assertions & Coverage Assertions: Introduction to Assertion based verification, Immediate and concurrent assertions. Coverage driven verification : Motivation, Types of coverage, Cover Group, Cover Point, Cross Coverage, Concepts of Binning and event sampling.				
Chapter No. 5 . Building Testbench Layered testbench architecture. Introduction to University	sal Verification Methodology,	Overview of UVM	10 hrs	

Base Classes and simulation phases in UVM and UVM macros. Unified messaging in UVM, UVM environment structure, Connecting DUT- Virtual Interface				
Refere	nces:			
1.	System Verilog LRM			
2.	Chris Spear, Gregory J Tumbush - SystemVerilog for verification - a guide to learning the			
	testbench language features - Springer, 2012			
3.	Step-by-Step Functional Verification with SystemVerilog and OVM by Sasan Iman SiMantis			
	Inc. Santa Clara, CA Spring 2008 Tools: 1. NC Verilog, NC Sim, VCSMX for System.			

Program: III Semester Master of Technology (VLSI Design & Embedded Systems) T				Teaching		
Course Title: Internet of Things Course Code: 1		Course Code: 17EVEE801	Hours			
L-T-P: 2	-0-1	Credits: 3 Contact Hours: 5 Hrs/week				
ISA Mar	SA Marks: 50+100 ESA Marks: 50 Total Marks: 200					
Teachin	g Hours: 25 Hrs	Examination Duration:				
1	Introduction to Internet of Things (IoT)					
	Definition & Characteristics of IoT, Things in IoT, IoT protocols, IoT functional blocks, communication models and APIs.					
2	IoT Architecture					
	Enabling technologies: Sensors, Zigbee, Bluetooth, IoT ecosystem, Data Link protocols: IEEE 802.15.4e, IEEE 802.11.ah, DASH7, Low Power Wide Area Network (LoRaWAN).					
3	Network protocols					
	Routing Protocol for Low-Power and Lossy Networks (RPL), cognitive RPL (CORPL), Channel- Aware Routing Protocol (CARP), Low power Wireless Personal Area Networks (LoWPAN).					
4	Application and Security protocols					
	Message Queue Telemetry Transport (MQTT), MQTT for Sensor Networks, Secure MQTT, Advanced Message Queuing Protocol (AMQP), Constrained Application Protocol (CoAP), OPC UA, 6LoWPAN), Routing Protocol for Low-Power and Lossy Networks (RPL).					
5	IoT Platforms Design Methodology					
	IoT Design Methodology, Case Study on IoT System for Weather Monitoring etc., Basic building blocks of an IoT device, Raspberry Pi, interface (serial, SPI, I2C), IoT Operating Systems: Contiki, RIOT.					
6	Programming wit	th Raspberry Pi				
	XML, JSON, SOA	P and REST-based approach, WebS	Socket protocol.	04 hrs		
7	IoT prototyping					
	Business models, Energy, Agricultur	example applications: Case studies e, Health with emphasis on data ana	on Home automation, Cities, Environme lytics and security.	ent, 06 hrs		
Text Books:						

- 1. Arshdeep Bahga, Vijay Madisetti "Internet of Things (A Hands-on-Approach)" Universities Press- 2014.
- 2. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things: Key Applications and Protocols"

John Wiley & Sons – 2012.

Reference Books:

1. Subhas Chandra Mukhopadhyay "Internet of Things Challenges and Opportunities" Springer- 2014.

Lab:

- 1. Programming with Raspberry Pi
- 2. Cloud service interface for data storage and retrieval
- 3. Performance analysis of Data link protocols, routing and application protocols
- 4. Open Ended Experiment with focus on data analytics and security

Course Code: 17EVEE802	Course Title: AUTOSAR		
L-T-P : 2-0-1	Credits: 3	Contact Hrs:	3 Hours
ISA Marks: 50	Marks: 50 ESA Marks: 50 Total Marks: 100		100
Teaching Hrs: 40		Exam Duratio	on: 3
Content			Hrs
Unit - 1			
Chapter No. 1: AUTOSAR Fundamentals Evolution of AUTOSAR – Motivations and Objectives AUT Packages, AUTOSAR Partnership, Goals of the partr AUTOSAR specification, AUTOSAR Current development ICC2, ICC3, and Drawbacks of AUTOSAR.	TOSAR consortium – Stake ho nership, Organization of the status, BSW Conformance cl	olders – work partnership, asses: ICC1,	8 hrs
Chapter No. 2: AUTOSAR layered Architecture AUTOSAR Basic software, Details on the various layers, Details on the stacks Virtual Function Bus (VFB) Concept Overview of AUTOSAR Methodology, Tools and Technologies for AUTOSAR AUTOSAR Application Software Component (SW-C), Types of SW-components AUTOSAR Run Time Environment (RTE): RTE Generation Process: Contract Phase, Generation Phase, MCAL, IO HW Abstraction Layer, Partial Networking, Multicore, J1939 Overview, AUTOSAR Ethernet, AUTOSAR E2E Overview, AUTOSAR XCP, Metamodel, From the model to the process, Software development process.		7 hrs	
Unit - 2			
Chapter No. 3: Methodology of AUTOSAR and Commu CAN Communication, CAN FD, CAN in Automation, CAN inter ECU communication, Client-Server Communication Driver, Communication Manager (ComM), Overview of Manager	nication in AUTOSAR lape, Application Layer and R n, Sender-Receiver, Commun f Diagnostics Event and Co	TE, intra and ication, CAN mmunication	10 hrs
Chapter No. 4: BSW Development and Integration BSW Constituents: Memory layer, COM and Services layer, ECU abstraction, AUTOSAR, Operating system, Interfaces: Standard interface, AUTOSAR standardized interface, BSW-RTE interface,(AUTOSAR interface), BSW-ECU hardware interface, Complex device drivers and BSW module configuration, AUTOSAR Integration.		5 hrs	
Unit - 3			
Chapter No. Chapter 5: Infotainment Systems in Autom Infotainment Systems Fundamentals: Radio, Multimedia, Infotainment (IVI) systems, Use of operating systems XM/Sirrus, DAB/DMB, Software Defined Radio; Con Announcements, Spread Spectrum, d. Multimedia: Type	nobiles and Navigation: Introduction in IVI , GENIVI Alliance, Tu cepts of HD, radio, Enser s of Media; Music, Video, P	to In Vehicle ner: AM/FM, nble, Traffic odcasts, etc.	5 hrs

Media management; Playback, Track Control, Metadata, Playlists, Categories, Trick play, Audio/Video Source Management, Navigation: Points of Interests, Routes, Waypoints, Dead Reckoning position, Traffic Info, GLONASS, GNSS, RTK, GPS, and SBAS/GBAS, INS f. Media types: CD, DVD, CDDA, USB, SDCARD, Media Formats:MP3, WMV, RealAudio/Video, QTP, Architecture – Design Patterns - Proxies, Adaptors, Interfaces, Singleton, Factory method	
Chapter No. Chapter 6: Communication Systems in Automobiles	5 hrs
Automotive & Consumer Electronic Communication Systems: Introduction to Bluetooth – Pairing, HFP, A2DP, PAN, PBAP, DUN, Concepts of MOST network, DLNA, AVB, Concepts of TCP/IP, Ethernet, WiFi, WiFi Direct, MyWiFi and CAN, Mirror link, Tethering	
Text Book (List of books as mentioned in the approved syllabus)	
1. Ribbens, Understanding of Automotive electronics, 6th Edition, Elsevier, 2003	
2. Denton.T, Automobile Electrical and Electronic Systems, Elsevier, 3rd Edition, 2004	
3. Denton.T, Advanced automotive fault diagnosis, 2000	
References	
1. Ronald K Jurgen, Automotive Electronics Handbook, 2nd Edition, McGraw-Hill, 1999	
2. James D Halderman, Automotive electricity and Electronics, PHI Publication, 2000	
3. Allan Bonnick, Automotive Computer Controlled Systems Diagnostic Tools and Techniques, Elsevier Science, 2001	
4. Nicholas Navet , Automotive Embedded System Handbook , 2009	

Course Code: 17EVEE803 Course Title: ASIC Design			
L-T-P: 2-0-1	Credits: 4 Contact Hrs: 50		
ISA Marks: 50+100	ESA Marks: 50 Total Marks: 200		
Teaching Hrs: 50		Exam Duration: 3 h	nrs
Content	t		Hrs
Chapter No. 1. Introduction to ASIC ASIC types, design flow, economics of ASIC			8 hrs
Chapter No. 2. ASIC design library and Logic cell Transistor as register, transistor parasitic capacitance, Logic Effort, Data Path Elements, Adders, Multiplier, Sequential logic cells, I/O cell.			10 hrs
Chapter No. 3. Logic Synthesis and Simulation Logic synthesis, FSM synthesis, structural simulation, static timing analysis, delay models			10 hrs
Chapter No. 4. ASIC Construction Floor planning and placement and routing Physical Design, System Partitioning, Estimating ASIC size, partitioning methods.			10 hrs
Chapter No. 5. Floor planning and placement and routing Floor planning tools, I/O and power planning, clock planning, placement algorithms, iterative placement improvement, Time driven placement methods. Physical Design flow global Routing, Local Routing, Detail Routing, Special Routing, Circuit Extraction and DRC.			12 hrs
Text Books:			-
1.M.J.S .Smith, - "Application - Specific Integrated Circuits" – Pearson Education, 2003.			e" McGraw

2.Randall L Geiger, Phillip E. Allen, "Noel K.Strader, VLSI Design Techniques for Analog and Digital Circuits", McGraw Hill International Company, 1990.

References:

- 1. Jose E.France, Yannis Tsividis, "Design of Analog-Digital VLSI Circuits for Telecommunication and signal processing", Prentice Hall, 1994.
- 2. Andrew Brown, "VLSI Circuits and Systems in Silicon", McGraw Hill, 1991.
- 3.S.D. Brown, R.J. Francis, J. Rox, Z.G. Uranesic, "Field Programmable Gate Arrays"- Kluwer Academic Publishers, 1992.
- 4. Mohammed Ismail and Terri Fiez, "Analog VLSI Signal and Information Processing ", McGraw Hill, 1994.
- 5.S. Y. Kung, H. J. Whilo House, T. Kailath, "VLSI and Modern Signal Processing", Prentice Hall, 1985.

Program: Digital Electronics		Teaching	
Course Title: Machine lear	ning	Course Code: 17EVEC705	Hours
L-T-P: 3-0-1	Credits: 4	Contact Hours: 5 Hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40 Hrs	Examination Duration: 3 hrs		
Chapter No. 1: Introduction	on		
Introduction What is Mach Learning: Supervised, Un terminologies.	hine Learning? Applications of Mansupervised and Reinforcement	achine Learning, Types of Machine learning, Dataset formats, Basic	05 Hrs
Chapter No. 2: Supervised	d Learning		
Linear Regression, Logistic Regression Linear Regression: Single and Multiple variables, Sum of squares error function, The Gradient descent algorithm, Application, Logistic Regression, The cost function, Classification using logistic regression, one-vs-all classification using logistic regression, Regularization.			10 Hrs
Chapter No. 3: Supervised Learning: Neural Network			
Introduction to perception learning, Implementing simple gates XOR, AND, OR using neural network. Model representation, Gradient checking, Back propagation algorithm, Multi-class classification, Application- classifying digits, SVM.		10 Hrs	
Chapter No. 4: Unsupervised Learning: Clustering			
Introduction, K means Clustering, Algorithm, Cost function, Application.		05Hrs	
Chapter No. 5: Unsupervised Learning: Dimensionality reduction			
Dimensionality reduction, PCA- Principal Component Analysis. Applications, Clustering data and PCA.		05Hrs	
Chapter No. 6: Machine Learning System Design			
Evaluating a hypothesis, Model selection, Bias and variance, error analysis, error metrics for skewed classes. Building a Model.			05 Hrs
Text Book (List of books as mentioned in the approved syllabus)			
1. Tom Mitchell, Machine Learning, 1, McGraw-Hill., 1997			
2. Christopher Bishop, Pattern Recognition and Machine Learning, 1, Springer, 2007			
Reterences			
1. Video lectures by : And Baidu Al Group/Google	rew Ng, Co-founder, Coursera; Adjur Brain https://www.coursera.org/learn	nct Professor, Stanford University; forme /machine-learning#	erly head of

2. Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning : Data Mining, Inference and Prediction, 2, Springer, 2009

Implementation Assignments:

- 1. Assignments are designed to explore the concepts like
 - Supervise and unsupervised learning,
 - Clustering,
 - Regression and estimation
- 2. Motivate students to take up open challenges like Kaggle, walmart, ect
- 3. To explore different Machine Learning Tools/ Libraries.

Program: Digital Electronics				
Course Title: Advanced Computer Architecture Course Code: 17EVEC801			01	
L-T-P-	SS: 4-0-0	Credits: 4	Contact Hours: 4	
CIE Ma	arks: 50	SEE Marks: 50	Self Study :	
Teach	ing Hours: 50	Examination Duration: 3 hours	Total Marks: 100	
 Parallel Computers Models: Introduction. State of Computing and classification of parallel Computers, Multiprocessors and multi computers. Multivector and SIMD Computers. 			7 hrs	
2.	Program properties: Conc parallelism, Program partitionin	litions of Parallelism Data & resource De ng, Scheduling Grain size & latency, program	pendences, H/W & S/W n flow Mechanisms.	6 hrs
3. System Interconnect Architecture: Network Properties and routing, Static & dynamic interconnection networks, Multiprocessor system interconnects, Hierarchical bus systems, Crossbar switch, Multipart memory, Multistage & combining network.		5 hrs		
 Advanced processors : Advanced processor technology, instruction-set architectures, CISC scalar processors, RISC scalar processors, Superscalar processors, VLIW architectures, VLIW architectures. 			6 hrs	
5. Pipelining : Linear pipeline processor, Nonlinear pipeline processor, Instruction pipeline design, Branch handling techniques, Arithmetic pipeline design, Computer arithmetic principles, Static arithmetic pipeline, Multifunctional arithmetic pipeline			8 hrs	
6. Memory Hierarchy Design: Cache basics, Miss rate and penalty, Cache Hierarchy, Memory Organizations, Memory Hierarchy		6 hrs		
 Multiprocessor Architecture and Programming: Symmetric shared memory architectures, Distributed shared memory architectures, Models of memory consistency, Cache coherence protocols (MSI, MESI and MOESI), Scalable cache coherence 		6 hrs		
8.	 Scalable & multithreaded architecture : Latency Hiding Techniques, Principles of multithreading, Scalable multithreadeded architectures 		2 hrs	
9.	Introduction to Intel architectur	res Intel core Duo processor, CPU, Memory c	controller, I/O Controller	4 hrs
Text Books				
1. Kai Hwang, Faye A. Briggs, "Computers Architecture and Parallel Processing MGH – 1985				

- **2.** Kai Hwang, "Advanced Computer Architecture TMH 1993
- D. Sima, T. Fountain, P.Kasuk," Advanced Computer Architecture-A Design Space Approach" Addisson Wesley, 1997.
- 4. M. J. Flynn,"Computer Architecture, Pipelined And Parallel Processing", Narosa Publications, 1998

Reference Books:

1. Neil D. A. Patterson and J. L. Hennessey "Computer Organization and Design", Morgan , Kaufmann, 2002

Stalling W. "Computer Organization and Architecture- Designing for performance", PHI,2005.
 D.E. Culler and J.P.Singh " Parallel Computer Architechure", Harcourt Asia PTE Ltd,2000

Program: VLSI Design & Embedded Systems			
Course Title: Automotive Electronic	ronics	Course Code: 19EVE	C701
L-T-P: 3-0-1	Credits: 4	Contact Hours: 5	
ISA Marks: 50+100	ESA Marks: 50	Total Marks: 200	
Teaching Hours: 40	Examination Duration: 3 hrs		
Chapter No. 1. Automotive Fun	damentals Overview		8Hrs
Introduction to Automotive Industry and Modern Automotive Systems Vehicle classifications and specifications need for electronics in automobiles, Application areas of electronics in the automobiles Four Stroke Cycle, Engine Control, Ignition System, Spark plug, Spark pulse generation, Ignition Timing, Drive Train, Transmission, Brakes, Steering System.			7Hrs
Chapter No. 2. Sensors and Act	tuators		
Oxygen (O2/EGO) Sensors, Throttle Position Sensor (TPS), Engine Crankshaft Angular Position (CKP) Sensor, Magnetic Reluctance Position Sensor, Engine Speed Sensor, Ignition Timing Sensor, Hall effect Position Sensor, Optical Crankshaft Position Sensor, Manifold Absolute Pressure (MAP) Sensor Strain gauge, Engine Coolant Temperature (ECT) Sensor, Knock Sensor, Throttle angle sensor, Fuel Injector Actuator, Ignition Actuator			
Chapter No. 3. Electronic Engi	ne Control		C I I
Engine parameters, variables, Engine Performance terms, Electronic Fuel Control System, Electronic Ignition control, Idle sped control, EGR Control			5Hrs
Chapter No. 4. Vehicle Motion Control and Safety Systems			
Cruise Control, Antilock Brake System (ABS), Electronic Steering Control, Power Steering, Traction Control, Electronic Stability Program.			6Hrs
Chapter No:5. Automotive com	munication protocols		3Hrs
Overview of Automotive communication protocols : CAN, LIN .			
Chapter No. 6. Advanced Driver Assistance Systems (ADAS) Lane Departure Warning, Collision Warning, Automatic Cruise Control, Pedestrian Protection, Headlights Control, Connected Cars technology and trends towards Autonomous vehicles.			5Hrs
Chapter No. 7. Automotive safety standards ISO26262 and Diagnostics Functional Safety: Need for safety standard-ISO 26262, safety concept, safety process for product life cycle, safety by design, validation.			6Hrs
Fundamentals of Diagnostics: Basic wiring system and Multiplex wiring system, Preliminary checks and adjustments, Self-diagnostic system. Fault finding and corrective measures, OBD & off board diagnostic.			
Text books:			
2. Denton.T – Automobile Electrical and Electronic Systems, Edward Arnold publication, 1995.			n, 1995.
References:			
6. William T.M – Automotive Electronic Systems, Heiemann Ltd., London ,1978.			
7. Nicholas Navet – Automotive Embedded System Handbook, CRC Press, 2009.			
8. BOSCH Automotive Handbook, Wiley Publications, 8th Edition, 2011.			
 Co-Verification of hardware & software for ARM SoC Design – Jason.R.Andrews, Newn Publications, 2004. 			s, Newnes

10. Hardware Software co-design of embedded systems, F.Balarin, Kluwer Academic Oublishers,

1987.

Lab:

- 9. Demonstration of cut section modules: Engine, Transmission , Steering, Braking, Suspension Automobile dept.
- 10. Electronic engine control system: Injection and Ignition control system Transmission trainer modules
- 11. Modeling an engine Vehicle model simulation with Simulink using PI CONTROLLER
- 12. Basic gate logic simulation and modeling using Simulink and realization on the hardware platform.
- 13. Seat belt warning system simulation and modeling using Simulink and realization on the hardware platform. Vehicle speed control based on the gear input simulation and modeling using Simulink and realization on the hardware platform.
- 14. Throttle control modeling and simulation using Simulink and realization on the hardware platform.
- 15. Accelerator pedal interfacing software modeling and simulation using Simulink and realization on the hardware platform.
- 16. Develop matlab code for stepper motor control and convert it to Simulink model and port it to embedded hardware

Program: VLSI Design & Embedded Systems			
Course Title: AUTOSAR and Infotainment Course Code: 19EV		Course Code: 19EVE	E707
L-T-P : 2-0-1	Credits: 3	Contact Hrs: 4	
CIA Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 24	Exam Duration: 3 hrs		
Chapter No. 1: AUTOSAR Fundamentals Evolution of AUTOSAR – Motivations and Objectives AUTOSAR consortium – Stake holders – work Packages, AUTOSAR Partnership, Goals of the partnership, Organization of the partnership, AUTOSAR specification, AUTOSAR Current development status, BSW			4 hrs
Chapter No. 2: AUTOSAR layered Architecture AUTOSAR Basic software, Details on the various layers, Details on the stacks Virtual Function Bus (VFB) Concept Overview of AUTOSAR Methodology, Tools and Technologies for AUTOSAR AUTOSAR Application Software Component (SW-C), Types of SW-components AUTOSAR Run Time Environment (RTE): RTE Generation Process: Contract Phase, Generation Phase, MCAL, IO HW Abstraction Layer, Partial Networking, Multicore, J1939 Overview, AUTOSAR Ethernet, AUTOSAR E2E Overview, AUTOSAR			4 hrs
Unit - 2			
Chapter No. 3: Methodology of AUTOSAR and Communication in AUTOSAR CAN Communication, Application Layer and RTE, intra and inter ECU communication, Client-Server Communication, Sender-Receiver, Communication, CAN Driver, Communication Manager (ComM), Overview of Diagnostics Event and Communication Manager			4 hrs
Chapter No. 4: BSW Development and Integration BSW Constituents: Memory layer, COM and Services layer, ECU abstraction, AUTOSAR, Operating system, Interfaces: Standard interface, AUTOSAR standardized interface, BSW- RTE interface,(AUTOSAR interface), BSW-ECU hardware interface, Complex device drivers and BSW module configuration, AUTOSAR Integration.		4 hrs	
Chapter No. Chapter 5: Infotainmer	nt Systems in Automobil	es	4 hrs

Infotainment Systems Fundamentals: Radio, Multimedia, and Navigation: Introduction to In Vehicle Infotainment (IVI) systems, Use of operating systems in IVI, GENIVI Alliance, Tuner: AM/FM, XM/Sirrus, DAB/DMB, Software Defined Radio; Concepts of HD, radio, Ensemble, Traffic Announcements, Spread Spectrum, d. Multimedia: Types of Media; Music, Video, Podcasts, etc. Media management; Playback, Track Control, Metadata, Playlists, Categories, Trick play, Audio/Video Source Management, Navigation: Points of Interests, Routes, Waypoints, Dead Reckoning position, Traffic Info, GLONASS, GNSS, RTK, GPS, and SBAS/GBAS,INS f. Media types: CD, DVD, CDDA, USB, SDCARD, Media Formats:MP3, WMV, RealAudio/Video, QTP, Architecture – Design Patterns - Proxies, Adaptors, Interfaces, Singleton, Factory method	
Chapter No. Chapter 6: Communication Systems in Automobiles	4 hrs
Automotive & Consumer Electronic Communication Systems: Introduction to Bluetooth – Pairing, HFP, A2DP, PAN, PBAP, DUN, Concepts of MOST network, DLNA, AVB, Concepts of TCP/IP, Ethernet, WiFi, WiFi Direct, MyWiFi and CAN, Mirror link, Tethering	

Syllabus of All Courses

Course Code: 15EMEF201

Experience Engineering @

School of Mechanical Engineering KLETECH Engage | Explore | Excel | Evol

L-T-P: 3-1-0	Credits: 4	Contact Hrs: 5
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50		Exam Duration: 3 hrs

Unit – 1

1. Stresses and Strains

Normal and shear stress, Bearing stress, Strain, deformation, Stress-strain diagram, Hooke's law, working stress and factor of safety, Analysis of bars of constant and varying sections, Principle of super position, Saint-Venant's principle, Stresses in composite section, Volumetric strain, Elastic Constants, Statically Indeterminate structures, Thermal stresses.

2. Torsion and Buckling

Torsion of circular shafts, Torsional equation, Power transmitted by solid and hollow circular shafts.

Buckling: Elastic Instability, Critical load, Euler's equation for columns with different end conditions, Rankine's formula.

Unit – 2

3. Shear Force and Bending Moment in Beams

Types of beams, Supports and Loads, Shear force and bending moment diagrams for simply supported, overhanging and cantilever beams subjected to point loads, uniformly distributed load, uniformly varying load and couple.

4. Stresses in Beams

Bending stress, Flexure formula, Section modulus, Bending stresses in beams of different cross sections, Economic Sections. Shear stresses in beams, Shear stress across rectangular, I and T sections.

6. Deflection of Beams

Deflection and slope of a beam, Differential equation of the elastic curve, Equations for deflection, slope and moment, Double integration and Macaulay's method, Deflection and slope for simply supported, overhanging and cantilever beams subjected to point loads, uniformly distributed load and couple.

Unit – 3

7. Compound stresses State of stress at a point, Transformation of plane stress, Principal planes and Principal stresses, Analytical method for determining principal stresses, maximum shear stress and their planes, Mohr's circle for plane stress.

8. Thin and Thick Cylinders

Thin walled pressure vessels, Cylindrical vessels; hoop stress, longitudinal stress and maximum shear stress, change in dimensions of cylinder (diameter, length and volume). Spherical vessels, Thick cylinders subjected to internal and external pressures (Lame's equation)

Text Book (List of books as mentioned in the approved syllabus)

- 1. Andrew Pytel and Jaan Kiusalaas, Mechanics of Materials, Third Indian Reprint, CENGAGE Le, 2009
- 2. Hibbeler R.C, Mechanics of Materials, Eighth Edition, Prentice H, 2011

References

- 1. Nash, W.A, Strength of Material, Fourth Edition, Schaum Outline Series, 2007
- 2. James M Gere. Mechanics of materials sixth edition THOMSON India edition.2007

10 hrs

Course Title: Mechanics of Materials

6 hrs

6 hrs

5 hrs

5 hrs

4 hrs

4 hrs

1

Course Code: 15EMEC201	Cour	rse Title: Manufacturing Processes
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50		Exam Duration: 3 hrs
	Unit – 1	
1. Introduction to Manufacturing Pro Definition of manufacturing, Manufa Classification of production processes	Decesses acturing sectors and their significance is and systems, Criteria for selection of a section of a selection of a se	2 Hrs to the economy of a country, process for production
2. Casting and Special Casting Proces	ses	12 Hrs
Casting: Introduction, Green sand r materials, Core & core making metho gating ratio. Special Casting Processe Centrifugal casting processes. Meltir furnaces, Induction furnaces. Defects	moulding, Pattern & core making: Pattern & core making: Pattern & core making: Pattern S_2 , Moulding methods and machines, s: CO_2 moulding, Shell moulding, Investing Furnaces and Defects in Castings: (in castings, Cleaning and fettling operation)	Attern types, allowances and Principles of gating, risers and tment casting, Die casting and Crucible furnaces, Electric arc Itions, Testing methods
3. Fabrication processes		6 Hrs
Classification of joining processes, So metal and joint. Arc welding, Gas we welding, Ultrasonic welding, Electron	Idering, Brazing, Mechanical fastening, Iding, TIG, MIG, FCAW, Thermit weldir beam welding and Laser welding	Welding, Preparation of base ng, Spot, seam and projection
	Unit – 2	
4. Machine Tool Operations		8 Hrs
Principles of metal cutting, Introduct Operations, Machining time calculation Grinding, Super finishing, Honing and	ion to Lathes, Drilling and Milling mach ons. Lapping methods; Constructional featu	ines; Constructional features,
5. CNC Machine Tool		6 Hrs
Need for CNC machines, Fundamer controllers, and constructional details	ntals of numerical control, Classificati s of CNC machines. Manual part program	on of numerical control, NC mming
6. Mechanics of Machining		6 Hrs
Geometry of cutting tools, Cutting diagram, Velocity and force relations & wear mechanisms, Tool life, Machin	tool materials, Mechanism of chip nips, Cutting fluids, Thermal aspects of nability & its criteria	formation, Merchant's circle machining, Types of tool wear
	Unit – 3	
7. Forming processes Bulk deformation processes: Forging Selection of equipments	g, Rolling, Extrusion and Drawing. She	5 Hrs eet metal working processes.
8. Advanced Manufacturing Processe Non-traditional Machining Processe processes. Micro-machining and Additive manuf	es s: Mechanical, Thermal, Electrochemi acturing	5 Hrs ical and Chemical machining
Text books		*6
1. Kalpakjian S., and Schmid S.R., M	anufacturing Engineering & Technology	, 7 ^{III} edition, Pearson Education, 2014.

Mikell P. Groover, Fundamentals of Modern Manufacturing, 5th edition, John Wiley & Sons, 2012.

Experience Engineering @ School of Mechanical EngineeringKLETECH Engage | Explore | Excel | Evolve

Reference books

- 1. Rosenthal, P., Heine L., Principles of Metal Casting, Tata McGraw Hill, 1997.
- 2. John A. Schey, Introduction to Manufacturing Processes, 3rd edition, Tata McGraw Hill, 1999.
- 3. Juneja B. L. and Sekhon G. S., Fundamentals of Metal Cutting and Machine Tools, 3rd edition, New Age International Limited, 2008.
- 4. Mikell P. Groover, Automation, Production Systems, and Computer-Integrated Manufacturing, 4th edition, Prentice Hall, 2014.
- 5. Pandey P. C. and Shan H. S., Modern Machining Processes, 1st edition, Tata McGraw Hill, 2013.
- Rao P. N., Manufacturing Technology: Volume-1, 3rd edition, Tata McGraw Hill, 2008.
 Rao P. N., Manufacturing Technology: Volume-2, 3rd edition, Tata McGraw Hill, 2013.

Course Code: 15EMEC204 **Course Title: Machines & Mechanisms** L-T-P: 4-0-0 Credits: 4 Contact Hrs: 4 ISA Marks: 50 ESA Marks: 50 Total Marks: 100 Teaching Hrs: 50 Exam Duration: 3 hrs Unit I **Chapter 1: Kinematics Fundamentals:** 10 Hrs Links, pairs, Mechanisms, machines, structure, and Inversions. Identifying types of links, pairs, Drawing Kinematic Diagram and finding mobility of linkages Numericals on mobility, Inversions of Four bar mechanism, single slider crank mechanism, double slider crank mechanism. Steering gear mechanism and Ackerman gear mechanism Hook's joint analysis with examples, Crank and slotted lever mechanism and whit worth quick return mechanism analysis, Intermediate motion mechanism **Chapter 2: Kinematic Analysis** 10 Hrs Locating instantaneous centers for different mechanisms, Numericals. Velocity and acceleration analysis of links. velocity and acceleration analysis of 4 bar mechanisms and slider crank mechanisms. Velocity and acceleration analysis of guick return motion mechanisms Numericals Velocity analysis and Acceleration analysis of four bar mechanism and engine mechanism by complex algebra. Numericals Unit II **Chapter 3: Static and Dynamic analysis of Mechanisms** 8 Hrs Static force analysis of 4 bars mechanisms. Static force analysis of slider cranks mechanisms. Numericals Inertia forces and torque, inertia forces on engine mechanism, TMD for different machines, Fluctuation of energy, Flywheel. Numericals **Chapter 4: Kinematic analysis of Gear and Gear Trains** 6 Hrs

Classification and terminology of gears Involutometry, backlash in gears Law of gearing, velocity of siding, length of path of contact, arc of contact, Contact ratio Numericals. Epicyclic gear train with numericals

Chapter 5: Balancing of masses

Necessity of balancing, Static and Dynamic balancing, Balancing of revolving mass in single and multiple planes, Balancing of several masses in single planes, Balancing of several masses in multiple planes, Balancing of reciprocating masses, Balancing of multi cylinder inline engine. Numericals

Unit – III

Chapter 6: Belts and Chain drives

Velocity ratio, effect of belt thickness and slip, Power transmitted by belt driving tension, centrifugal tension and initial tension, Belts. Numericals Classification of chains, length of chains, initial tension, creep. Numericals

Chapter 7: Cams and Gyroscope

Introduction, classification of followers and cams. Displacement diagrams for roller follower with SHM and analysis, displacement diagrams for followers with UV&R and analysis. Numericals Gyroscopic couple and precessional motion, effect of gyroscopic couple on airplane and Naval Ship during steering and Rolling.

Reference Book:

- 1. Machines and Mechanisms by Myzcka.
- 2. Theory of Machines and Mechanisms 4th Edition, by John Uicker , Gordon Ennock , Joseph Shigley
- 3. Design of Machinery by Robert L. Norton.
- 4. Theory of machines by S S Rattan.

www.kletech.ac.in

6 Hrs

6 Hrs

4 Hrs

Contact Hrs: 4

Total Marks: 100

Exam Duration: 3 hrs

Course Title: Engineering Materials

Course Code: 15EMEF202

L-T-P: 4-0-0 ISA Marks: 50 Teaching Hrs: 50 Credits: 4 ESA Marks: 50

Unit – 1

Chapter 1: Introduction:

An overview of materials science and engineering, classes of engineering materials, functional and advanced materials, Materials history and character, Design-limiting properties, Material property charts, Matching materials to design, Selection strategy- translation, screening, ranking and documentation.

Chapter 2: Structures of Metals and ceramics:

Macro-Micro-Nano: The scale of structures, Crystal Structures- BCC, FCC, HCP structures; coordination number, atomic packing factor, Imperfections in solids and their roles in affecting the behavior of materials., Plastic deformation of single crystal by slip and twinning, dislocation theory.

Chapter 3: Mechanical Behavior of materials:

Stress-strain diagrams to show ductile and brittle behavior of materials, linear and non linear elastic behavior of materials, mechanical properties in elastic and plastic range, Effect of strain rate and temperature on tensile properties, **Fatigue**: Types of fatigue loading with example, mechanism of fatigue, fatigue properties, fatigue testing and SN diagram; **Creep**: Description of phenomenon with examples, stages of creep, creep properties, stress relaxation; **Fracture**: Failure of engineering materials.

Unit – 2

Chapter 4: Solidification and phase diagrams: Mechanism of solidification, Homogeneous and 07 Hrs heterogeneous nucleation, crystal growth, cast metal structures, Solid solutions, Hume Rothery rules, substitutional and interstitial solid solutions, intermediate phases, Gibbs phase rule, construction of equilibrium diagrams, equilibrium diagrams involving complete and partial solubility, lever rule, Iron carbon equilibrium diagram, description of phases, solidification of steels and cast irons, invariant reactions, Numericals.

Chapter 5: Ferrous and Non ferrous materials:

Properties, composition and uses of cast irons and steels, AISI and BIS designation of steels. Aluminum, Magnesium and Titanium alloys.

Chapter 6: Heat treatment of metals:

Objectives, Annealing and its types, normalizing, hardening, tempering, austempering, martempering, hardenability, surface hardening methods like carburizing, cyaniding, nitriding, flame hardening and induction hardening; Age hardening of Aluminum -Copper alloys. Time-temperature-transformation (TTT) curves, continuous cooling curves.

Unit – 3

Chapter 7: Ceramic and Polymer Materials:

An overview of ceramic materials, mechanical and thermal properties of ceramics, An overview of polymeric materials, thermoplastics and thermosets, elastomers, engineering applications of ceramic and polymer materials.

Chapter 8: Advanced materials:

The need for advanced materials; Composite materials- classification, types of matrix materials and reinforcements, fundamentals of production of FRP's and MMC's, applications of composites, Smart materials, Nano materials and Exotic alloys.

Text Books:

- 1. Engineering Materials: An Introduction to Properties, Applications and Design- Michael Ashby and D R H Jones.
- 2. The Science and Engineering of Materials Donald Askeland and Pradeep Phule, Thompson Learning.
- 3. Materials Science and Engineering William Callister, John Wiley & Sons. Inc.

B V Bhoomaraddi Campus, Vidyanagar, Hubballi – 580 031, Karnataka, India. Ph.: +91 0836 2378280

05 Hrs

10 Hrs

05 Hrs

- 06 Hrs
- 07 Hrs
- 05 Hrs

05 Hrs

Course Code: 15EMEP201

L-T-P: 0-0-1 ISA Marks: 80 Credits: 1 ESA Marks: 20

Course Title: Production Technology Lab Contact Hrs: 2 Total Marks: 100 Exam Duration: 2 hrs

Content

1 Machining practices involving machining time calculations and estimation of machining costs for the jobs for turning, milling, drilling, grinding. (3 slots)

2 Simulation of CNC programming on machining processes. (2 slots)

3 CNC programming practices on machining processes. (2 slots)

4 Machinability studies in turning, milling, drilling. (3 slots)

5 Design, Modeling and Analysis of Bulk deformation and Sheet Metal forming processes. (2 slots)

Text books

- Kalpakjian S., and Schmid S.R., Manufacturing Engineering & Technology, 7th edition, 1. Pearson Education, 2014.
- Mikell P. Groover, Fundamentals of Modern Manufacturing, 5th edition, John Wiley & 2 Sons, 2012.

Reference books

- 1. John A. Schey, Introduction to Manufacturing Processes, 3rd edition, Tata McGraw Hill, 1999.
- 2. Juneja B. L. and Sekhon G. S., Fundamentals of Metal Cutting and Machine Tools, 3rd edition, New Age International Limited, 2008.
- Mikell P. Groover, Automation, Production Systems, and Computer-Integrated 3. Manufacturing, 4th edition, Prentice Hall, 2014.
- 4. Pandey P. C. and Shan H. S., Modern Machining Processes, 1st edition, Tata McGraw Hill, 2013.

ourse Code[.] 15FMFP204 C

Course Code: 15EMEP204		Course Title: Machines & Mechanisms Lab
L-T-P: 0-0-1	Credits: 1	Contact Hrs: 2
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
		Exam Duration: 2 hrs

SI No	Content	Туре
1	Converting a machine in to its Kinematic model	Structured enquiry
2	Velocity and Acceleration of complex mechanisms	Structured enquiry
3	Analysis of Gear and Gear trains	Structured enquiry
4	Design of cam profile	Exercise
5	Balancing of rotating masses	Exercise
6	Balancing of reciprocating masses	Exercise
7	Belt Drive	Structured enquiry
8	Dynamic force analysis	Structured enquiry
9	Develop the mechanism for the given objective	Open Ended problem

Reference Book:

- 1. MSC ADAMS Manual.
- 2. Machines and Mechanisms by Myzcka.
- 3. Theory of Machines and Mechanisms 4th Edition, by John Uicker, Gordon ennock, Joseph Shigley
- 4. Design of Machinery by Robert L. Norton.
- 5. Theory of machines by S S Rattan

Course Code: 15EMEP202		Course Title	: Engineering Materials La	зb
L-T-P: 0-0-1		Credits: 1	Contact Hrs:	2
ISA Ma	rks: 80	ESA Marks: 20	Total Marks: 10)0
			Exam Duration: 2 h	rs
Expt. No.	Brie	f description about the experiment	No. of Lab Slots).
01	Introduction to the Labora methods. (Awareness abou	tory-Overview of Destructive and Non Destr t the ASM hand books and ASTM standards)	uctive Testing 01	
02	Non destructive test experi a. Ultrasonic flaw de b. Magnetic particle i c. Dye penetration te To study the defects of cast	ments :ection. nspection. :sting, ings and welded specimens.	01	
03	Evaluation of the tensile s	trength, Compression strength, Shear stren	gth, Bending/ 01	
04	Torsion strength and Impac Ex: Should be able to Deso metal sample and that of p test on two different mater	t strength. cribe the differences between the tensile be olymer sample, considering that the student ials family.	01 ehavior of the performs the	
05	To study wear characteris different loading. Computation of wear par- frictional force, coefficient	tics of ferrous, non-ferrous and composite ameters: wear rate, wear resistance, specif of friction, wear coefficient.	materials for 01 fic wear rate,	
06	To study the microstructure size analysis and volume fra • Familiarization with microscopic examina • Familiarization with c • Examination of surfac • Grain size determination	e of the ferrous and nonferrous alloy and to action analysis. the procedure for preparation of a material tion. compound optical microscopes and metallogra ce characteristics of engineering materials. tion of metals and analysis.	perform grain 01 specimen for aphy.	
07	To analyze given SEM Micro and conclude on the structo (Familiarization with the a microscopy).	ographs (Microstructure and fracture surface are and mode of fracture. Idvanced characterization of metals by Scar	e morphology) 01	
08	Computer Modeling of Stre Understand the occurrence Determine the stress conce	ss Concentration, Crack Opening and Crack Pr of stress concentration at geometrical discon ntration factor at a geometrical discontinuity.	ropagation 01 htinuities.	
09	Design an experiment to in	vestigate the spring characteristics of any give	en spring. 02	
10	Synthesize a novel compo- polymer matrix and perfor mechanical properties, whi Perform a parametric anal composites using a statistic with properties of composite	site material which is reinforced with a nation form the mechanical characterization for invict ch is desirable for specified engineering applic ysis which affects the mechanical propertie cal approach and find the correlation of thos tes.	ural fiber in a 02 vestigation of cations. is of prepared se parameters	

Course Code: 15EMEP203		Course Title: Engineering Design Practice
L-T-P: 0-1.5-1.5	Credits: 3	Contact Hrs: 6
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
		Exam Duration: 3 hrs

Part - A

1. Introduction to Engineering Design Process

Introduction to engineers design, Generic design process, good design and bad design, types of design process, managing project and professionalism

2. Need analysis and problem definition

Need Analysis- Why-Why analysis, VOC- Interaction with stake holders- Customers, experts etc. (through well-defined questionnaires), and Market analysis- How to Conduct a Market Analysis, Relevant Information Resource, Intellectual property rights (Patents, Copyrights etc.)

3. Functional analysis

Identifying functions, Functional Decomposition, Function Structure -Procedure to Establish Functional Structures, Methods- Black box & transparent box, reverse engineering

4. Design specifications

VoE: Establishing product specifications - QFD Method, Human Factors in design and Safety Considerations

5. Conceptualization

Brainstorming, Develop Concepts from Function- Morphological analysis, Expanding design space, applying metrics to objectives: Selecting the preferred design

6. Evaluating design alternatives/ alternative concepts

Sketch Assembly of Alternatives, Conceptual design evaluation and decisions- Decision Matrix- Pugh method

7. Detailed design & costing

Product Drawings, Bill of Materials, Prototyping techniques Cost estimating in design- Cost Classifications, Cost Estimate Methods, Product Pricing

8. Concept testing& Documentation

Purpose of concept test, choose survey population/format, and communicate the concept to measure customer response, interpret the results and document

Part – B

	Content				
Part – B1(2D Drafting)					
1.	Orthographic Projections – Sectional [MANUAL drawings] Conversion of pictorial views into orthographic projections, Sectional views such as half section, full section, local section, removed section and offset section.[1 st and 3 rd angle projection]	08 Hours / 4 sessions			
2.	 Thread forms and Threaded Fasteners: [MANUAL drawings] Thread forms: Thread terminology, thread profiles, [ISO Metric, BSW, Square and Acme, Sellers thread, American Standard thread]. Fasteners: Hexagonal headed bolt and nut with washer (assembly), square headed bolt and nut with washer (assembly). 	08 Hours / 4 sessions			
3.	2D Assembly Drawings: Part and Assembly Drawings, Generating bill of materials for assembly. [Creating sectional views of parts and assembly of protected type flanged coupling, machine vice, screw jack etc.]	10 Hours / 5 sessions			
	Part – B2(3D Modeling)				
4.	Introduction to 3D Modeling and different work benches: Sketcher Workbench: Demonstration of sketch tools, modifying tools, geometrical constraints and dimensional constraints.	4 Hours / 2 sessions			
5.	Part Modeling: Shape toolbar for adding materials, shape toolbar for removing materials, modifying tools, types of views etc.,	10Hours / 5 sessions			
6.	Assembly: Component placement, Placement types (Surface, Axis, and Planes), Feature settings etc.	4 Hours / 2 sessions			
7.	Drawing: Drawing properties, Adding drawing models, View types, Scale factors, Section apply, View display	4 Hours / 2 sessions			

Text Book/Reference Books:

- 1. YosefHaik, Engineering Design process, 2004, Cengage Learning India Pvt. Ltd
- 2. Clive L. Dym& Patrick Little, Engineering design, 3rd edition, John Wiley and Sons
- 3. Engineering Design Principles Ken Herst, Elsevier Publication, 2010, Indian Edition
- 4. Product Design and Development Karl T Ulrich & Steven D Eppinger, Tata McGraw Hill 3rd Edition 2004

Course Code: 15EMEC202

L-T-P: 3-0-0	Credits: 3
ISA Marks: 50	ESA Marks: 50
Teaching Hrs: 40	

Chapter No. 1. Introduction

Basic concepts, Zeroth law, 1st law of thermodynamics applied to non flow system and flow system

Unit – 1

Chapter No. 2. Second Law of Thermodynamics

Devices converting heat to work; (a) in a thermodynamic cycle, (b) in a mechanical cycle. Thermal reservoir. Direct heat engine; schematic representation and efficiency. Devices converting work to heat in a thermodynamic cycle; reversed heat engine, schematic representation, coefficient of performance. Classical statements of second law of thermodynamics, PMM I and PMM II, factors that make a process irreversible, reversible heat engines, Carnot cycle, Carnot theorem, thermodynamic temperature scale. Entropy, a property of a system, Clausius theorem and Clausius inequality, Principle of increase of entropy, calculation of entropy change during various processes, Tds relations, Exergy and Aenergy, Exergy analysis

Unit – 2

Chapter No. 3. Gas and Vapour Power Cycles

Gas power cycles: Otto, Diesel, Dual cycles, expression for mean effective pressure and cycle efficiency, comparison of Otto, Diesel and Dual cycles. Vapour power cycle: Carnot cycle, work done and cycle efficiency, draw backs, ideal and actual Rankine cycle, network done, cycle efficiency and work ratio, regenerative cycle and reheat cycle

Chapter No. 4. Internal Combustion Engines and their Testing

Introduction to I C engines, Thermodynamic testing of internal combustion engines, measurement of air supplied, fuel supplied to the engines, measurement of power and efficiencies, preparation of heat balance sheet

Unit – 3

Chapter No. 5. Combustion thermodynamics

Stoichiometric air for combustion of fuels, excess air, combustion equations, air - fuel ratio, combustion efficiency, analysis of products of combustion, volumetric and gravimetric basis, enthalpy of formation, enthalpy and internal energy of combustion, adiabatic flame temperature. Energy and environment.

Chapter No. 6. Refrigeration

Vapour compression refrigeration system; description, analysis, refrigerating effect, capacity, power required, units of refrigeration, COP. Refrigerants and their desirable properties. Air cycle refrigeration; reversed Carnot cycle, reversed Brayton cycle. Vapour absorption refrigeration system. Steam jet refrigeration. Cryogenics and applications. Psychrometry: Atmospheric air and psychometric properties; Dry bulb temperature, wet bulb temperature, dew point temperature; partial pressures, specific and relative humidity and the relation between the two. Enthalpy and adiabatic saturation temperature

Text Book (List of books as mentioned in the approved syllabus)

Michael J Moran & Howard N Shapiro, Fundamentals of engineering thermodynamics, 6th, Wiley 1. Stud, 2007

Cenegal Y. A. and Boles M. A, Thermodynamics an Engineering approach, 7th, Tata McGraw Hill, 2011

6 hrs

5 hrs

5 hrs

11

Experience Engineering @

School of Mechanical Engineering KLETECH Engage | Explore | Excel | Evo

Exam Duration: 3 hrs

Course Title: Engineering Thermodynamics

5 hrs

Contact Hrs: 3 Total Marks: 100

10 hrs

9 hrs

6

Course Code: 15EMEC203

Experience Engineering @ School of Mechanical EngineeringKLETECH Engage | Explore | Excel | Evolve

Course Title: Fundamentals of Machine Design

L-T-P: 3-1-0	Credits: 4	Contact Hrs: 5
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50		Exam Duration: 3 hrs
	11	
	Unit – 1	
1 Introduction to Machine Design Machine Design, Basic Procedure of Machin design methods, Design synthesis, Use of Aesthetic considerations in design, Ergonomic	ne Design, Design of Machine Standards in Design, Selection considerations in design, Conci	4 Hrs elements, Traditional n of prepared sizes, urrent Engineering.
2 Design against Static Load		6 Hrs
Modes of failure, factor of safety, eccentr Concentration, Stress Concentration Factors Elastic failure, Maximum Principal Stress Theo Theory, Selection and use of failure Theories.	ric axial loading, design of m s, Reduction of Stress Concer ory, Maximum Shear Stress Theo	achine parts, Stress ntration. Theories of ory, Distortion-Energy
3 Design against Reversing load		5 Hrs
Fluctuating Stresses, Fatigue Failure, Enduran Sensitivity, Endurance Limit- Approximate E Infinite Life	nce Limit, Low cycle and High stimation, Reversed Stresses-E	Cycle Fatigue, Notch Design for Finite and
	Unit II	
4 Design against Fluctuating load		3 Hrs
Cumulative Damage in Fatigue, Soderberg combined stresses. Impact Stresses.	and Goodman equations. Fa	atigue design under
5 Design of Belt Drives		5 Hrs
Introduction to Belt drives, Materials for Belt Velocity ratio, centre distance, ratio of drivin transmitted by flat belt drives, design procedu	s, Flat belt drives, Length of op ng tensions in flat belts, centri ıre for belt drives.	en/ cross belt drives, fugal tension, power
6 Shafts and Keys		8 Hrs
Transmission Shafts, Shaft Design on Strength Code for shaft design, Design of Shafts subject and Sunk keys, Design of square and flat Key.	I Basis, Shaft Design on Torsiona cted to combined bending and to the state of the state of t	al rigidity Basis, ASME wisting. Keys ,Saddle
	Unit III	
7 Temporary Joints Bolted joint –simple analysis, eccentric load praxis of bolt	erpendicular to axis of bolt, ecc	4 Hrs entric load parallel to
8 Permanent Joints		5 Hrs

Welded Joints, Strength of Butt Welds, Strength of Parallel fillet Welds, Strength of Transverse Fillet Welds, Eccentric Loaded welded joints, Riveted Joints, Types of riveted joints, Types of failures, Design of butt and lap joints for Boilers.

Tutorials

Session 01: Load Determination Session 02: Problems on Design against Static Load Session 03: Problems on Design against Static Load (contd.) Session 04: Problems on Design against Static Load (contd.) Session 05: Problems on Design against Reversing Load Session 06: Problems on Design against Reversing Load (contd.) Session 07: Problems on Design against Fluctuating Load Session 08: Problems on Design of Belt Drives Session 09: Problems on Shafts and Keys

B V Bhoomaraddi Campus, Vidyanagar, Hubballi - 580 031, Karnataka, India. Ph.: +91 0836 2378280

Session 10: Problems on Shafts and Keys (contd.) Session 11: Problems on Temporary Joints Session 12: Problems on Permanent Joints Session 13: Problems on Permanent Joints (contd.)

Text Book (List of books as mentioned in the approved syllabus)

1. V.B. Bhandari, Design of Machine Elements, Third Edition, Tata McGraw Hill Publishing Company Ltd., New Delhi, 2010

References

1. T. Krishna Rao, Design of Machine Elements (Volume I), Second Edition, I K International Publishing House Pvt. Ltd., New Delhi, 2011

2. Farazdak Haideri, Mechanical Engineering Design (Volume I), Second Edition, Nirali Prakashan, Pune, 2000

Design Data Hand Book:

Design Data Hand Book by K. Mahadevan and Balaveera Reddy, CBS Publication

Course Code: 15EMEC205	Course Title: Ins	trumentation & Control Engineering
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50		Exam Duration: 3 hrs

1 INTRODUCTION:

Generalized configurations and functional descriptions of measuring instruments, performance characteristics of instruments, instrument categorization, measurement quantities and control.

Unit – 1

2 FORCE, TORQUE, AND SHAFT POWER MEASUREMENT:

Experience Engineering @

School of Mechanical Engineering KLETECH

Engage | Explore | Excel | Evolv

Basic methods of force measurement, characteristics of elastic force transducers, bonded-strain-gage transducers, differential-transformer transducers, piezoelectric transducers, and variable-reluctance/fmoscillator, elastic force meters, load cells, torsion meters, dynamometers, gyroscopic force and torque measurement.

3 PRESSURE, VIBRATION AND SOUND MEASUREMENT:

Basic methods of pressure measurement, deadweight gages and manometers, elastic transducers, dynamic testing of pressure-measuring systems, principles of seismic instruments - vibrometer and accelerometer using this principle, sound measurement.

Unit – 2

4 MATHEMATICAL MODEL:

Concept of automatic controls, open and closed loop systems, concepts of feedback, requirement of an ideal control system. Mechanical system (both translation and rotational), Electrical system, D. C. Motors, Hydraulic systems (liquid level and fluid power systems), Thermal systems.

5 SYSTEM RESPONSE:

First order subjected to step and ramp input, second order system response to step input, concepts of time constant and its importance in speed of response. Mathematical concept of stability-Routh Hurwitz Criterion

6 CONTROL ACTION:

Types of controllers – proportional, integral, proportional integral, proportional integral differential controllers, system compensations.

Unit – 3

7 FREQUENCY RESPONSE TECHNIQUES:

Definition of root loci, Rules for rapid plotting, constructing of root loci, Stability analysis. Problems solving using software.

Bode attenuation diagrams, stability analysis using Bode diagrams, simplified Bode diagrams. Problems solving using software.

8 INTRODUCTION TO STATE VARIABLE CHARACTERISTICS OF LINEAR SYSTEMS:

Introduction to the state concepts, state equation of linear continuous data system. Matrix representation of state equations

4 Hrs

8 Hrs

8 Hrs

8 Hrs

6 Hrs

6 Hrs

5 Hrs

Text Book:

- 1. Ernest O. Doebelin, 'Measurement Systems', McGraw-Hill Publication.
- 2. Dr.D.S.Kumar, 'Measurements Systems: Applications & Design', Anuradha Agencies.
- 3. B.C.Nakara & K.K.Choudhary, 'Instrumentation, measurement & analysis', Tata McGraw-Hill Publication.
- 4. Richard C Dorf and Robert H. Bishop, 'Modern Control Systems', Addison Wesley.
- 5. Control systems' by I. J. Nagarath & M. Gopal, New age International publishers.

References:

- 1. FR K Jain, 'Mechanical and Industrial Measurements', Khanna Publishers.
- 2. A. K. Ghosh, 'Introduction to Instrumentation and Control', PHI Learning Pvt. Ltd.
- 3. B.C. Kuo, F. Golnaraghi, 'Control Systems', John Wiley & Sons.
- 4. Norman S. Nise, 'Control. Systems', John Wiley & Sons
- 5. Eronini Umez, 'System Dynamics & control', Thomson Learning.
- 6. M. Gopal, 'Control Systems Principles and Design', Tata McGraw-Hill Publication.

Course Code: 15EMEC206

L-T-P: 3-0-0 ISA Marks: 50

Teaching Hrs: 40

Credits: 3 ESA Marks: 50 **Course Title: Mechatronics** Contact Hrs: 3 Total Marks: 100

Exam Duration: 3 hrs

Unit – 1

1 Introduction to Mechatronics: Definition & overview of Mechatronics, Key elements, 6 Hrs Mechatronics Design approach, Mechatronics and sustainability, examples of mechatronic systems.

2. Sensors : Proximity Sensor; Displacement/Distance-Potentiometer, encoder, resolver, LVDT, 4 Hrs PZT, ultrasonic, Light Sensor; Force-load cell; Temp etc

3 Signal conditioning: Overview of BJT, MOSFET, SCR, TRIAC, IGBT, Optoisolators; Review of 5 Hrs analog(OP-Amp based) and digital(ADC, DAC, MUX) signal conditioning; Signal Filters (Analog/Digital, Active/Passive); Application of Bridge Circuits- strain measurement; Data Acquisition System(DAQ); virtual instruments.

Unit – 2

4 Microcontroller Introduction to Memory Hierarchy; Address/Data lines; microprocessor and 9 Hrs microcontroller ; Introduction to open Hardware Architecture(Arduino/Rasberipy); Basic programming; interfacing Digital I/O, PWM and Analog inputs. Introduction to communication protocols-RS232, I2C, Ethernet Etc.

5 Programmable logic controller(PLC): Introduction to PLC and it's Architecture; PLC I/O; 6 Hrs examples of applications; Ladder diagrams, logic functions, latching; Programming on industrial applications like conveyor belt control, water/oil level controller, sequencing of 3 motors, washing machine sequencing, automatic bottle filling system etc.

Unit – 3

6 Actuators and its applications: Review of electrical actuators like relay, solenoid etc; Resolver, 5 Hrs DC & AC motors, DC & AC servo motors; power drives, IPM; VFD; Servo drives-AC, DC

7 Machine Vision System&3D printing: Introduction to Machine Vision; Image Acquisition; Image 5 Hrs Processing; Visual Navigation; Introduction to 3D printing Hardware and Software.

Text Books:

- 1. Devdas Shetty, Rechard A. Kolk, Mechatronics System Design, Cengage Learning 2nd edition 2011.
- 2. W. Bolton, 'Programmable Logic Controllers', Elsevier 4th edition 2006.

Reference for Mechatronics:

- 1. David Bradley · David W. Russell, Mechatronics in Action: Case Studies in Mechatronics Applications and Education, Springer 2010
- 2. Robert H Bishop, Mechatronics -an Introduction, Taylor & Francis Group 2006
- 3. W. Bolton, Mechatronics, Pearson Education Asia 2nd edition 2001
- 4. Jacob Fraden, Handbook of Modern Sensor, Springer Science Business Media -Fourth Edition 2010
- 5. http://www.arduino.cc
- 6. Garry Dunning, 'Introduction to Programmable Logic Controllers' Thomson

Course Code: 15EMEP205

Course Title: Mechatronics & Control Engineering Lab

L-T-P: 0-0-2 ISA Marks: 80 Credits: 2 ESA Marks: 20 Contact Hrs: 4 Total Marks: 100

Exam Duration: 2 hrs

Part1

- 1. Introduction to FG, DSO Measurement of frequency, Voltage etc.
- 2. Active Analog Filters (Op-Amp) & Passive Filter
- 3. Arduino Basics and Programming
- 4. Interfacing Pot, Switch, LED and
- 5. LabVIEW_ DAQ : pot, Switch and LED
- 6. Interfacing LM35, Ultrasonic, LCD
- 7. DC motor Speed & Direction and keypad
- 8. Stepper, BLDC motor control and RC servo(pot feedback)
- 9. DC motor speed Control (with Potentiometer/encoder)
- 10. Vfd Drives Induction motor speed control(Demo)
- 11. PLC Basics : Logic gates execution , On delay and Off delay timers, Sequencing of 3 motors using CoDeSys software.

Part 2

- 1. Introduction to MATLAB/ Simulink/ Python
- 2. MATLAB based application- 1st , 2nd & higher order sym response
- 3. System response with additional poles, zeros- MATLAB
- 4. Python based application Telescopic position control
- 5. LabVIEW based control- root locus, bode.
- 6. Compensator Design Via Root locus supported by MATLAB
- 7. Compensator design with Op-Amp
- 8. Demonstration Inverted pendulum control, VTL, PID temperature controller.
- 9. PLC control applications: Automatic water level controller, Bottle filling plant fluid control
- 10. PLC control applications: Automatic conveyor belt controller, Lift Sequencing/DC motor Control

• Books/References:

- \circ Refer to theory
- Manuals:
 - o Mechatronics and Control Lab Manual prepared by Lab-incharge.
- Others:
 - o Course material provided by National Instruments
 - Data Sheets of IC's/ Components.

Experience Engineering @ School of Mechanical Engineering KLETECH Engage | Explore | Excel | Evolve

Course Code: 15EMEC301	Course Title:	Fluid Mechanics and Hydraulic Machi	nes
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4 hrs/we	eek
ISA Marks: 50	ESA Marks: 50	Total Marks: 1	100
Teaching Hrs: 50		Exam Duration: 3	hrs
	Unit – 1		
2. Fluid Continuum Introduction, A brief history of fluid r Properties of fluids, Pascal's law, Hy curved surfaces, Buoyancy and stabilit	mechanics, Classification of fluid flows /drostatic laws, Manometry, Fluid for ty.	8 hrs , Systems and control volume, rces on submerged plane and	5
3. Fluid Kinematics and Fluid Dynam Lagrangian and Eulerian description, F Time lines, Differential analysis of f potential function and Stream functi energy equation, Linear momentum e	ics How patterns – stream lines and strean Huid flow – Conservation of mass – Hon, Rotational and Irrotational flows. Iquation and its application to pipe ben	10 hr n tubes, path lines, streak lines, Continuity equation, Velocity Bernoulli's equation, General ds.	.s
	Unit – 2		
3. Fluid flow measurement Pitot and pitot static probe, Obstructi Energy losses – major and minor losse gradient line.	ion flow meters – orifice, venturi and r es, Darcy- Weisbach equation, Chezy's	8 hrs notches, Laminar flow in pipes, formula, Energy and hydraulic	5
4. Laminar flow and Viscous effects Introduction, Reynold's number, Lami flow over flat plate, Couette flow. Bou	inar flow through circular pipes (Hager Indary layer and separation phenomen	9 hrs י poiseulle's equation), Parallel on.	5
Dimensional analysis: Rayleigh's meth	hod and Buckingham's π theorem, Mod	el testing.	
	Unit – 3		
5. Hydraulic Pumps Centrifugal pumps – Work done, H Multistage centrifugal pumps.	leads and efficiencies, Priming, spec	8 hrs ific speed, NPSH, Cavitations,	5
Reciprocating pumps: Working princip	ole, discharge, work done and power, sl	ip, Air vessels.	
6. Hydraulic Turbines Classification, Heads and efficiencies of	of turbines, Pelton, Francis and Kaplan	7 hrs turbines, Velocity triangles and	5

6. Hydraulic Turbin

Classification. Head work done, specific speed, Unit quantities, Draft tube, Characteristic curves.

Text Book:

1. Yunus A Cengel, John M Cimbala: Fluid Mechanics – Fundamentals and Applications, 3rd Edn, McGraw-Hill Publications, 2014.

References:

- 1. White F M: Fluid Mechanics, 5th Edn, McGraw Hill International Publication, 2003.
- 2. Dr.R.K. Bansal: Fluid Mechanics and Hydraulic Machines, 9th Edn, Laxmi Publications, 2010.

L-T-P: 4-0-0 ISA Marks: 50 Teaching Hrs: 50 Credits: 4 ESA Marks: 50 Course Title: Metrology and Quality Engineering Contact Hrs: 4 hrs/week Total Marks: 100 Exam Duration: 3 hrs

07 hrs

07 hrs

Unit – I

Chapter 1: Fundamentals of Metrology

Objectives of metrology, Standards of physical quantities (mass, length, time, temperature, force, Velocity, density) types of standards, line and end standard, Slip gauges, Angle Gauges, Linear and Angular Measurements, Performance characteristics of measuring instruments, Calibration of instruments, The Process of Measurement, Significance of measurement process, Methods of measurement, generalized measurement system, errors in measurement, gauges, comparators (mechanical and optical), Numericals

Chapter 2: Dimensional Metrology

Measurement of screw thread parameters, Terminology of screw threads, types of threads, Toolmakers microscope, profile projector, Gear terminology, Measurement of gear parameters. Gear tooth vernier, Introduction to Surface Texture, Terminology as per Indian standard, Methods of measurement of surface finish, Working of Tomlinson surface meter, Taylor-Hobson Talysurf, Analysis of surface traces (RMS value, CLA value).

Chapter 3: Limits, Fits and Gauges

Introduction, limits, tolerance, and fits, types of fits, allowance. Hole basis and shaft basis systems, Indian standard system for limits and fits (IS 919-2709), types of gauges, Taylor's principle and gauge design. Numericals

Introduction to GD&T Terminology, Maximum Material control (MMC) & Least Material Control (LMC), Form and orientation tolerances in detail with application examples, Interpretation of drawings with GD & T and exercises,

Unit – II

Chapter 4: Advanced Metrology

CMM Coordinate Measuring Machine: Co-ordinate metrology, CMM configurations, hardware components, Software, Probe sensors, Displacement devices, applications

Laser Metrology: Free electron laser – optical alignment, measurement of distance – interferometry, reversible counting, refractive index correction, surface topography and optical component testing,

Chapter 5: Analysis of Experimental Data

Causes and Types of Experimental Errors, Error Analysis on a Common sense Basis, Uncertainty Analysis and Propagation of Uncertainty, Evaluation of Uncertainties for Complicated Data Reduction, Statistical Analysis of Experimental Data, Probability Distributions, The Gaussian or Normal Error Distribution, 07 hrs Comparison of Data with Normal Distribution, The Chi-Square Test of Goodness of Fit, Method of Least Squares, The Correlation Coefficient, Multivariable Regression, Standard Deviation of the Mean, Students t-Distribution

Chapter 6: Quality Engineering

Quality concepts, Dimensions of quality, Inspection, Objectives of Inspection Difference between Inspection & Quality Control,7 QC tools, Statistical methods for quality control and improvement Basic Principles of control charts, control charts for variables, process capability and six sigma

Unit – III

Chapter 7: Control charts for attributes and acceptance sampling

Control chart for fraction non-conforming, variable sample size, Number of defective chart, Control chart for Non conformities (defects) and Control chart for defects Average number of nonconformities. Types of sampling plans, operating characteristic (OC) curves

Chapter 8: TQM

05 hrs

KLE Technological University

B V Bhoomaraddi Campus, Vidyanagar, Hubballi - 580 031, Karnataka, India. Ph.: +91 0836 2378280

Basic approach, TQM framework, TQM principles-Leadership, Employee involvement, Empowerment, Team and Teamwork, Quality circles ,Continuous process improvement – PDCA cycle, 5S, Kaizen – Supplier partnership – Partnering, TQM techniques- Bench marking, FMEA, QFD, TPM

Text Books:

- 1. Beckwith Marangoni and Lienhard, Mechanical Measurements, Pearson Education
- 2. Doebelin E.O., Measurements Systems, Applications and Design, McGraw –Hill 1990
- 3. Montgomery D. C., Introduction to Statistical Quality Control, John Wiley & Sons, Inc

Reference Books:

- 1. Holman J P, Experimental Methods for Engineers, McGraw-Hill. Eighth edition.
- 2. I.C. Gupta, Engineering Metrology, Dhanpat Rai Publications, Delhi.
- 3. Dotson C. Cengage, Fundamentals of Dimensional Metrology.
- 4. Bosch J A, Giddings and Lewis Dayton, Marcel Dekker. Co-ordinate Measuring Machines and Systems
- 5. Grant and Leavenworth, Statistical Quality Control, McGraw Hill

ISA Marks:50

Teaching Hrs: 40

Experience Engineering @ School of Mechanical Engineering KLETECH Engage | Explore | Excel | Evol

Course Code: 15EMEC303 L-T-P: 3-0-0

Course T	itle: Intro	oduction	to Finit	e Element	Methods

Credits: 3 ESA Marks: 50 Contact Hrs: 3 hrs/week Total Marks: 100 Exam Duration: 3 hrs

Unit - 1

1. Introduction to FEM:

FEM paradigm : History, present/future, Research, Application, stress at a point, stress components on 07 hrs arbitrary plane, Equilibrium equations, compatibility equations, Generalized Hook's law, Plane stress and plain strain, principle of minimum potential energy and virtual work, RR method and Galerkin's methods, FEM steps, Advantages, disadvantages and limitations.

2 Interpolation Functions For General Element Formulation :

Discreatisation process, types of elements, size of elements, location of node, node numbering scheme and mesh requirements in finite element method, polynomial form of interpolation functions, 08 hrs convergence requirements, Pascal triangle, shape functions (1D, 2D, LST, CST, Quad, Higher order elements), Stiffness matrix and its properties.

Unit - 2

3. Basic FEA:

Illustrate the concept of linear static analysis, Non-linear analysis: Material, Geometry and Contact 10 hrs nonlinearity, Linear buckling analysis, Dynamic analysis, and Thermal analysis using practical applications.

4. Advanced FEA:

Optimization - Shape/Material, Crash/Impact/Drop test analysis, Fatigue analysis: Stress based and Strain 07 hrs based approach, Modeling & Analysis of Composite (Coupons, Laminates, particulate form). Isoparametric and Axi-symmetric elements.

Unit - 3

5. Post processing techniques:

Validate and interpret the results, Average and Un-average stresses, Special tricks for post processing, 04 hrs **Design modification, CAE Reports**

6. Experimental Validation and Data Acquisition:

Strain gauge, Photo elasticity, Load cells, Torque Sensors/Transducers, Dynamic tests, Acceleration test, 04 hrs Fatigue life measurement, Natural Frequency measurements.

Text Book

- 1. K. H. Huebner, D. L. Dewhirst, D. E. Smith and T. G. Byrom, The Finite Element Method for Engineers, 4th edition, Wiley, New York, 2001.
- 2. T. R. Chandraputala and A. D. Belegundu, Introduction to Finite Elements in Engineering, Third Edition, Prentice Hall of India, 2004.
- 3. Nitin Ghokale, Practical finite element analysis, Finite to infinite, 2008.

Reference Book:

1. N. S. Ottosen and H. Petersson, Introduction to the Finite Element Method,. Prentice-Hall, Englewood Cliffs, 1992.

Experience Engineering @ School of Mechanical Engineering KLETECH Engage | Explore | Excel | Evol

08 hrs

07 hrs

08 hrs

07 hrs

05 hrs

05 hrs

Course Title: Design of Machine Elements

Course Code: 15EMEC304

		0
L-T-P: 3-1-0	Credits: 4	Contact Hrs: 5
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40+24		Exam Duration: 3 hrs

Unit – 1

Chapter 1: Spur Gears

Mechanical Drives, Gear Drives, Classification of Gears, Selection of Type of Gears, Terminology of Spur Gear, Standard Systems of Gear Tooth, Force Analysis, Gear Tooth Failures, Selection of Material, Number of Teeth, Face Width, Beam Strength of Gear Tooth, Permissible Bending Stress, Effective Load on Gear Tooth, Estimation of Module Based on Beam Strength, Wear Strength of Gear Tooth, Estimation of Module Based on Wear Strength

Chapter 2: Helical and Bevel Gears

Helical Gears, Terminology of Helical Gears, Virtual Number of Teeth, Tooth Proportions, Force Analysis, Beam Strength of Helical Gears, Effective Load on Gear Tooth, Wear Strength of Helical Gears. Bevel Gears, Terminology of Bevel Gears, Force Analysis, Beam Strength of Bevel Gears, Wear Strength of Bevel Gears, Effective Load on Gear Tooth.

Unit – 2

Unit – 3

Chapter 3: Springs

Types of springs, Terminology of Helical spring, styles of ends, stress and deflection equations, series and parallel connections, spring materials, Design of helical springs, spring design -trial and error method, design against fluctuating load, optimum design of helical spring, surge in spring, multi-leaf springs, nipping of leaf springs.

Chapter 4 Clutches and Brakes

Clutches, Torque Transmitting Capacity, Multi-disk Clutches, Friction Materials, Block Brake and Disc Brakes

Chapter 5: Rolling Contact Bearings

Bearings, Types of Rolling Contact Bearings, Selection of Bearing Type, Static Load Carrying Capacity, Dynamic Load Carrying Capacity, Equivalent Bearing Load, Load-Life Relationship, Selection of Bearing Life, Load Factor, Selection of Bearing From Manufacturer's Catalogue, Bearing failure – Causes and Remedies.

Chapter 6: Sliding Contact Bearings

Basic Modes of Lubrication, Viscosity, Measurement of Viscosity, Viscosity Index, Petroff's Equation, Mckee's Investigation, Bearing Design- Selection of Parameters, Comparison of Rolling and sliding Contact Bearings, Bearing failure - Causes and Remedies

Text Book:

- 1. Robert L. Norton, Machine Design, An integrated Approach, , Pearson Education, 2004
- 2. V.B. Bhandari, Design of Machine Elements:, Tata McGraw Hill Publishing Company Ltd., New Delhi, 2nd Edition 2007.

References:

1. S.K. Somani, Machine Design: Hall, Holowenko, Laughlin (Schaum's Outlines series) Tata McGraw Hill Publishing Company Ltd., New Delhi, Special Indian Edition, 2008.

Design Data Hand Books:

1. K. Mahadevan and Balaveera Reddy, Design Data Hand Book, CBS Publication

Course Code: 15EMEP301

Course Title: Metrology and Quality Engineering Lab

L-T-P: 0-0-1	Credits: 1	Contact Hrs: 2 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs: 24		Exam Duration: 2 hrs

Expt. No.	Brief description about the experiment	No. of Lab. Slots
01	Introduction to the Laboratory-Overview of standards of measurement for Linear and angular dimensions.	01
02	Analysis of performance characteristics of measuring instruments using Hypothesis testing.	01
03	Analysis of Repeatability and Reproducibility using gauge R& R test.	01
04	Measurement of Screw thread and Gear parameters, surface roughness	01
05	Machine Tool Alignment Test (Lathe, Drilling, Milling).	01
07	Measurement of Dimensions and GD&T parameters of given components using CMM (Coordinate Measuring Machine).	01
08	Reverse engineering of the given component by extraction of 2-Dimensions of the given part using 3D scanner.	02
09	Testing the goodness of fit for the given quality characteristics by Chi Square test	01
10	Construction of control chart for variables and Analysis of process capability for the different components manufacturing.	01
11	Construction and Analysis of control charts for defectives.	01
12	Open ended experiment- Error analysis, Gauge Design	01

Reference books:

- 1. Hume K.J.& Sharp G.H, "Practical metrology", ELBS & Macdonald
- 2. Montogomery D. C., Introduction to statistical Quality control, John wiley and sons.
- 3. Juran J.M. & F.M. Gryna, Quality Planning & Analysis, TMH

Course Cod	le: 15EMEP302	Course Title: Compu	iter Aided Engineering Lab
L-T-P: 0-0-1		Credits: 1	Contact Hrs: 2 hrs/week
ISA Marks:	80	ESA Marks: 20	Total Marks: 100
Teaching H	rs: 24		Exam Duration: 2 hrs
		LAB Details:	No of tab Cossions
Category: [Demonstration		per batch (estimate)
1	Scientific Resea Methods to se papers, Drafting Introduction to Real time Curre	rch Exposure (Research Education): arch/extract Journal papers (Reputed journal paper), Refer ; a paper. ANSYS Workbench and familiarity. nt/future field issues : Problem Identification	rring 03
Category: E	xercises		
Expt./Job No.	Experiment/job	Details	No. of Lab. Sessions per batch (estimate)
	Static Structura	analysis	
1.	b) Bracke c) Machir	n bar, t, ne Components	01
2.	Non-Linear Stru a) Geome b) Materi c) Contac	ctural Analysis tric Nonlinearity al Nonlinearity t Nonlinearity	01
3.	Dynamic Analys a) Beam (b) Machir	is (Modal/Harmonic/Transient Analysis) Different Boundary Conditions) De components	01
4.	Linear Buckling a) Colum b) Machin	ns & Struts (Different Boundary Conditions) ne Component	01
5.	a) Fins b) Heat E c) Machir	s kchangers ne component	01
6.	Fatigue Analysis a) Plate w b) Machir	& Fatigue life Prediction /ith hole or Bracket ne components such as Shafts, Bearing etc.	01
7.	a) Mobile b) TV, Ref	drop test rigerator etc.	01
8.	Optimization		01
9.	Composite Anal	ysis - Laminate/Dispersed Coupon model	01
Category: S Execute all Identify the Start from s	Structured Enquiry the FEM Analysis m e component (Sub-as scratch	odules which are dealt under the lab exercise. ssembly need have Minimum 3 to 4 components)	
> M	easure the dimensic	ns of component	
> Ge	enerate the Solid Mo port the model in n	deling of components with overall assembly (In any of the CAI eutral form to ANSYS Workbench	O Software)
➤ Co ➤ Ur	nderstand the physic	vant to Material Properties is of the problem (Working Principle with load's and boundary	conditions)

KLE Technological University

B V Bhoomaraddi Campus, Vidyanagar, Hubballi – 580 031, Karnataka, India. Ph.: +91 0836 2378280

> Interpretation of Results with conclusion.

Category: Open ended

Identify field issue pertaining to any component/product in today's industry.

- 1. Collect the information/literature on earlier worked project through external/internal search (Journal Paper/Patent/reports)
- 2. Comprehend the physics of the problem with working principle.
- 3. Prepare the abstract and apply to a national/international conference
- 4. Identify material properties, boundary conditions and load steps.
- 5. Carryout the analysis as per the FEA steps.
- 6. Provide engineering solutions to the identified sub assembly (deformation and stresses, material change, weight reduction, increasing load bearing capacity, fatigue life calculation, prediction of endurance limit of component and damage factor).
- 7. Prepare the draft on the worked out problem and apply to a national/international conference

Materials and Resources Required:

- 1. Books/References: Nitin Ghokale, Practical finite element analysis
- 2. Manuals: Sham Tickoo, ANSYS for Engineers and Designers.

Course Code: 15EMEP303

Experience Engineering @ School of Mechanical Engineering KLETECH Engage | Explore | Excel | Evol

Course Title: Automation Lab

L-T-P: 0-0-2	Credits: 2	Contact Hrs: 4 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs: 48		Exam Duration: 2 hrs

Chapter No. 1. Automation Using Hydraulic Systems

Introduction to Fluid Power, Advantages and application of Fluid Power, Types of Fluid Power System, Properties and Types of Fluids. Pascal's Law, Continuity Equations, Structure of Hydraulic Control System. The Source of Hydraulic Power: Pumps Pumping Theory, Pump Classification, Gear Pumps, Vane Pumps, Piston Pumps, Pump Selection, Hydraulic Actuators and Motors. Control Components In Hydraulic Systems: Symbolic representation as per ISO 1219 and ISO 5599. Directional Control Valves – Symbolic representation, Constructional features, pressure control valves, flow control valves. Hydraulic Circuit Design (Simulation of circuits in Automation studio): Control of single and double – acting Hydraulic Cylinder, regenerative circuit, pump unloading circuit, Double pump Hydraulic system, Counter Balance Valve application, Hydraulic cylinder sequencing circuits, cylinder synchronizing circuits, speed control of hydraulic cylinder, accumulator circuits.

Chapter No. 2. Automation using Pneumatic Systems

Choice of working medium, characteristics of compressed air. Structure of Pneumatic control system. Linear cylinders, Simple Pneumatic Control: Direct and indirect actuation pneumatic cylinders, use of memory valve. Flow control valves and speed control of cylinders supply air throttling and exhaust air throttling, use of quick exhaust valve. Signal processing elements: Use of Logic gates – OR and AND gates pneumatic applications.

Chapter No. 3. Automation Using Electronic Systems

Control of hydraulic and pneumatic elements through PLC, Programmable automation controllers(PAC)

Chapter No. 4. Robot programming & Control

Introduction to robotics, robot anatomy, work volume, robot drive systems, control systems and dynamic performance, precision of movements, end effectors Robot physical configuration and basic robot motions, Types of manipulators- constructional features, servo and non-servo manipulators.

Text Book

- 1. Mikell.O. Groover, Automation, Production system and Computer Integrated Manufacturing, 2nd, PHI, 2002
- 2. Anthony Esposito, Fluid power with applications, 5th, Pearson Ed, 2000
- 3. Mikell P. Groover& Mitchell Weiss, Industrial Robotics, 2nd, Mc Graw H, 2003
- 4. William Bolton, Programmable Logic Controllers, 4th, Newnes, 2006

References

- 1. S R Majumdar, Hydraulic systems, Principles and Maintenance, 5th, TMH, 2002
- 2. S R Majumdar, Pneumatic Systems, 2nd, TMH, 1995
- 3. Labrotaory manual prepared by inhouse team.

Laboratory:

Sl. No	Name of Experiments	Duration
1	Characteristic Curve of Variable Displacement Hydraulic Pump	1/2
2	Carryout pressure intensification of a single-rod cylinder	1/2
3	Carryout Meter-in and Meter-out circuits using Single-rod cylinder and 4/2 DCV	1/2
4	Center Configuration of 4/3 DCV	1/2
5	Application of Regenerative Circuit	1
6	Direct control of Double Acting Cylinder	1/2
7	Indirect control of Double Acting Cylinder	1/2
8	Speed Control of Single Acting Cylinder	1/2
9	Position Dependent Control of a Double Acting Cylinder with Mechanical Limit	1/2

KLE Technological University

B V Bhoomaraddi Campus, Vidyanagar, Hubballi – 580 031, Karnataka, India. Ph.: +91 0836 2378280

www.kletech.ac.in

08 hrs

05 hrs

05 hrs

05 hrs

Switches

10	Design of I meter-in, I	PLC system to control single acting cylinder, double acting cylinder, meter-out and regenerative action.	1
11	To control	extension/retraction with or without delay using ladder logic	1
	Design of	PLC system for,	
12	i.	Clamping and punching operation (punching press machine)	1
	ii.	Clamping and movement of tailstock (CNC machine)	
13	To build a	nd simulate arc/spot welding process in robotic environment	1
14	To build a	nd simulate pick and place mechanism in robotic environment	1

Course Code: 15EMEC305

L-T-P: 3-0-0 ISA Marks: 50 Teaching Hrs: 40 Credits: 3 ESA Marks: 50

Contact Hrs: 3 hrs/week Total Marks: 100 Exam Duration: 3 hrs

05 hrs

Unit –I

Chapter 1.Introductory concepts and definitions: Modes of heat transfer: Basic laws governing conduction, 06 hrs convection, and radiation heat transfer; Thermal conductivity; convective heat transfer coefficient; radiation heat transfer mechanism,

Mass transfer; Definition and terms used in mass transfer analysis, Fick's first law of diffusion. Boundary conditions of 1st, 2nd and 3rd kind Conduction: General 3D- heat conduction equation in Cartesian coordinate, discussion on 3-D conduction in cylindrical and spherical coordinates (No derivation). 1-D conduction through plane and composite walls. Overall heat transfer coefficient. Mathematical formulation

Chapter 2 One dimensional Steady State Conduction: Heat flow and temperature distribution in plane wall. 05 hrs Critical thickness of insulation, Thermal resistance concept. Steady state conduction in slab, cylinder and spheres with heat generation. Heat transfer in extended surfaces of uniform cross-section without heat generation [No Derivations]Fin efficiency and effectiveness. Numericals

Chapter 3.One-dimensional transient conduction: Conduction in solids with negligible internal temperature 04 hrs gradient (Lumped system analysis), Use of Transient temperature charts (Heisler's charts) for transient conduction in slab, long cylinder and sphere Numerical Problems

Unit – II

Chapter 4. Concepts and basic relations in boundary layers:

Flow over a body velocity boundary layer, general expressions for drag coefficient and drag force, thermal boundary layer. general expression for local heat transfer coefficient; Average heat transfer coefficient; Nusselt number. Flow inside a duct, Numerical problems based on empirical relation given in data handbook.

Free or Natural Convection: Dimensional analysis for free convection- significance of Grasshoff number, correlations for free convection over vertical, horizontal and inclined flat plates, vertical and horizontal cylinders and spheres

Chapter 5. Forced Convection: Dimensional analysis for forced convection, significance of Reynolds, Prandtl, 05 hrs Nusselt and Stanton numbers. Correlations for hydrodynamically and thermally developed duct flows, Correlations for flow over flat plate, cylinder and sphere.

Chapter 6.Heat Exchangers: Classification of heat exchangers; overall heat transfer coefficient, fouling and 05 hrs fouling factor; LMTD, Effectiveness-NTU methods of analysis of heat exchangers. Numerical problems

Unit – III

Chapter 7. Condensation and Boiling: Types of condensation (discussion only) Nusselt's theory for laminar 05 hrs condensation on a vertical flat surface [No Derivation]; use of correlations for condensation. Regimes of pool boiling pool boiling correlations [Theory].

Chapter 8. Radiation heat transfer: Thermal radiation; definitions of various terms used in radiation heat 05 hrs transfer; Stefan-Boltzman law, Kirchoff's law, Planck's law and Wein's displacement law. Radiation heat exchange between two parallel infinite black surfaces, between two parallel infinite gray surfaces, intensity of radiation and solid angle; Lambert's law; radiation heat exchange between two finite surfaces configuration factor or view factor. Numerical problems

Text Book

- 1. Nicati Ozisik Heat transfer-A basic approach, Tata Mc Graw Hill, 2002
- 2. M.Tirumaleshwar Fundamentals of Heat & Mass Transfer, Pearson education 2009

References

- 1. Yunus A. Cengel Heat transfer, a practical approach, Tata Mc Graw Hill, 4th Edn, 2011
- 2. Frank Kreith, Raj M. Manglik, Mark S. Bohn, Principles of heat transfer, Cengage Learning, 7th Edn. 2011
- 3. Frank P. Incropera and David P. Dewitt- Fundamentals of Heat and mass transfer, John Wiley, 6th Edn., 2011
- 4. P.K. Nag Heat and Mass transfer, Tata Mc Graw Hill, 3rd Edn.,2002

Course Code: 15EMEC307

L-T-P: 2-0-0 ISA Marks: 50 Teaching Hrs: 26

Credits: 2 ESA Marks: 50

Unit – 1

Chapter 1: Introduction to I C Engines:

Experience Engineering @

School of Mechanical Engineering KLETECH

Engage | Explore | Excel | Evol

Internal Combustion Engine Classification, Operating Cycles, Spark Ignition and Compression-Ignition Engines.

Combustion in Spark Ignition Engines

Ignition limits, Normal combustion, Thermodynamic Analysis of SI Engine Combustion - stages, ignition lag, and effect of engine variables on ignition lag Causes of Cycle-by-Cycle and Cylinder-to-Cylinder Variations and flame propagation phase, detonation, Abnormal Combustion: Knock Fundamentals and fuel factors, Factors affecting knock.SI engine combustion chambers.

Chapter 2: Combustion in Compression Ignition Engines

Types of Diesel Combustion Systems, Direct and Indirect-Injection Systems, Comparison, Combustion Efficiency, Normal combustion - stages, delay period, variables affecting delay period. Diesel knock, comparison between diesel and petrol engine knocks. Cl engine combustion chambers, Fuel spray behavior. HRR analysis.

Unit – 2

Chapter 3: Engine Exhaust Emission Control

Formation of NO_x, HC/CO mechanism , Smoke and Particulate emissions, Green House Effect, Methods of controlling emissions, Three way catalytic converter and Particulate Trap, Emission (HC, CO, NO and NO_x) measuring equipments, Smoke and Particulate measurement, Indian Driving Cycles and emission norms.

Chapter 4: Recent Trends in IC Engines

Dual fuel Engine, Common Rail Direct Injection Diesel Engine (CRDI), Homogeneous Charge Compression Ignition Engine (HCCI), Reactivity controlled compression ignition engine (RCCI) Lean Burn Engine, Surface Ignition alcohol CI Engine, VVT engines, Gasoline Direct Injection Engine.

Unit – 3

Chapter 5: Overall Engine Performance:

Operating Variables that Affect SI Engine Performance, Efficiency, and Emissions: Spark Timing, Mixture Composition, Load and Speed, Compression Ratio. Variables that Affect CI Engine Performance, Efficiency, and Emissions: Load and Speed, Fuel-Injection Parameters.

Chapter 6: Alternate Fuels for IC Engines

Alcohols, bio-diesel, Natural Gas, Hydrogen, Properties, Suitability, Engine Modifications

TEXT BOOK:

1. John B Heywood, Internal Combustion Engine Fundamentals, Tata McGraw-Hill, 1988

2. Heinz Heisler, Advanced Engine Technology, SAE International Publications, USA, 1998

3. Patterson D.J. and Henein N.A, Emissions from combustion engines and their control, Ann Arbor Science publishers Inc, USA, 1978

REFERENCES:

- 1. Ganesan V. Internal Combustion Engines, Third Edition, Tata Mcgraw-Hill, 2007.
- 2. Gupta H.N, Fundamentals of Internal Combustion Engines, Prentice Hall of India, 2006.
- 3. Ultrich Adler, Automotive Electric / Electronic Systems, Published by Robert Bosh GmbH, 1995.

Course Title: I C Engines

Contact Hrs: 2 hrs/week

Total Marks: 100

Exam Duration: 3 hrs

7 hrs

5 hrs

6 hrs

5 hrs

4 hrs

3 hrs

Course Title: CAD Modeling, Analysis & PLM

Course	Code: 17EMEC308	Course Title: CAD Modeling, Ana	lysis & PLM
L-T-P: 2-0-5		Credits: 7 Contact Hrs: 2	15 hrs/week
ISA Marks: 80		ESA Marks: 20 Total	Marks: 100
Teachi	ng Hrs: 80	Exam Du	ration: 2 hrs
Sl no	Work benches	description	No of weeks
1	Sketcher	Brief introduction on Sketcher work bench environment Structure of users and saving of files. Exercises on Sketch Tools, Profile Tool bar and Constraint Tool bar: Generate the following 2D sketches and make them Iso-constrained.	1
2	Part Design	Exercise on 3d models using pad, slot, shaft, groove, hole ,rib and stiffener commands, cut revolve, Dress up commands like chamfer, fillets etc. (Multi-Sections Solid and Removed Multi-Sections Solid Commands)	2
3	Generative Shape Design (GSD)	Exercises using GSD to generate complicate surfaces using sub tool bars: Extrude-Revolution, Offset Var and Sweeps Extrude, Revolve, Trim, Transformation and Fillet tools Exercises on Wireframe, Surfaces and Operations Tool bar: (Conversion of Surface model into Solid model	2
4	Sheet Metal	Setting Sheet Metal Parameters, Bend Extremities Tab, Creating the Base Wall, Creating the Wall On Edge, Creating extrusions, Creating swept walls, Creating Hems on Sheet Metal part, Creating A Bend. Development of sheet metal drawings.	1
5	Assembly design	Introduction to Assembly Design Work bench Bottom-Up and Top-Down assembly approaches Invoking existing components into assembly work Exercise to demonstrate Top-Down assembly approach.	2
6	Drafting	Converting existing 3D models into 2d drawings with all relevant details, sectional views, sheet selection, indicating GD&T symbols and dimensioning.	3
7	Enovia	Introduction to CATIA V6 PLM Import the existing CATIA V5 data and store in V6 Search and identify the data located in V6 database Modify the data in any PLM process Sharing information with users Analyze and Identify impacts of modifications Save the modifications into database	1

Course Code: 15EMEP304

L-T-P: 0-0-1 ISA Marks: 80

Teaching Hrs: 24

Credits: 1 ESA Marks: 20 Contact Hrs: 2 hrs/week Total Marks: 100 Exam Duration: 2 hrs

Course Title: Thermal Engineering Lab.

1. Fluid mechanics and hydraulic machines

- To obtain the performance characteristics of centrifugal blower i.
- ii. To study the effect of speed on the performance of centrifugal pump
- To study the effect of speed / gate opening on the performance of Pelton turbine iii.
- iv To study the effect of speed / gate opening on the performance of Francis turbine

2. Heat transfer

- i. To determine the emissivity of given surface
- ii. To determine the thermal conductivity of metal bar and to study the effect of temperature on thermal conductivity
- iii. To study the performance of pinfin
- iv. To study the performance of vapour compression refrigeration (VCR) system

3. I C Engines

- i. To study the performance of two stroke engine
- ii. To obtain the performance characteristics of multicylinder engine using Morse test
- iii. To study the effect of engine operating variables (Injection pressure/injection timing/ compression ratio)

Materials and Resources Required:

- 1. White, F.M., Fluid Mechanics, 5ed., McGraw Hill International, 2003
- 2. Nicati Ozisik Heat transfer-A basic approach, Tata Mc Graw Hill, 2002
- 3. Yunus A. Cengel Heat transfer, a practical approach, Tata Mc Graw Hill, 4th Edn, 2011
- 4. John B. Heywood, Fundamentals of Internal Combustion Engines, McGrawHill, Singapore.
- 5. Ganesan.V, Internal Combustion Engines, Tata McGraw Hill, 2nd Edition, 2003
- 6. Manuals: Lab manual prepared by the Department

Course Code: 15EMEW303

L-T-P: 0-0-3 ISA Marks: 50 Credits: 3 ESA Marks: 50 Course Title: Mini Project -- II Contact Hrs: 3 hrs/week Total Marks: 100 Exam Duration: 3 hrs

Minor Project Theme

The minor project is designed to help students develop practical ability and knowledge to understand basics of Machine tool design. This course project involves practically designing a given specifications of a machine develop alternate designs carry out design calculations. The theoretical knowledge gained from the MACHINE TOOL DESIGN course helps in providing the necessary foundation/principles to develop effective solutions. Students shall apply methodologies learnt in Engineering Design Course. A batch of 10 students each will be given specifications of a machine or system.

The students will have to develop proficiency in 2D and 3D modeling, Geometrical dimensioning & tolerancing. He/she should be well versed in material selection based on applications and develop assembly and part drawings as per industry standard,

Individual team has to prepare final model in 2D and 3D with proper documentation for the entire project. Progress of the project work will be presented by student's periodically to the panel of reviewers.

The project given will be CNC lathes, CNC milling or any other project like development of a lathe headstock and feedbox etc

Phases of Project Work:

- Students will first be given an assignment to showcase their proficiency in Auto CAD, Solid modeling and application of GD&T on manufacturing drawings.
- For projects, specifications will be provided for each batch of 10 students. They have to prepare layouts of assemblies, and convert the specifications into layouts taking due accounts of standards from ISO, IS, ASTM & Machine testing.
- Prepare alternate designs wherever required and select the most optimal design.
- Carry out design calculations to select various machine tool elements like servo motor, spindle motor, keys, poly-v belts, ball-screws etc.
- Prepare assembly drawings of various assemblies with all part drawings as per industry standards and prepare Bill of Material.
- Carry out aesthetics, ergonomics and safety standards and incorporate them in the drawings.
- Prepare a final detailed report explaining the various stages and give a presentation.

Course Title: Mechanical Vibrations

Course Code: 15EMEE301

L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40		Exam Duration: 3 hrs

Unit – 1

1. Undamped Free Vibrations

Introduction, Importance of vibration and its physical significance, Types of vibrations, Mechanical system components, Equivalent stiffness of spring combinations, Derivation of differential equation and Natural frequency for undamped free vibrations of single degree freedom systems, Newton's method and Energy method, Torsional vibrations, Transverse vibrations of beams.

2.Damped Free Vibrations

Introduction, types of damping, study of response of single degree freedom viscous damped systems for cases of under damping, critical damping and over damping, Logarithmic decrement, Torsional system with viscous damping.

3.Whirling of Shafts

Introduction, Whirling of shafts with and without damping, Discussion of speeds above and below critical 5hrs speeds, Introduction to Noise.

Unit – 2

4. Forced Vibrations

Introduction, Forced vibrations of single degree freedom viscous damped system due to harmonic excitation, Response of a rotating and reciprocating unbalance system, Support excitation, Vibration isolation and transmissibility. 7 hrs

5. Two Degree of Freedom Systems

Introduction, Principal modes and Normal modes of vibration, Vibrations of undamped systems, Torsional vibrations, Forced harmonic vibration, Systems with damping, Co-ordinate coupling; applications in vehicle suspension, Dynamic vibration absorber.

Unit – 3

6. Multi Degree of Freedom Systems

Introduction, Influence coefficients, Maxwell reciprocal theorem, Orthogonality principle, Matrix iteration method to determine all the natural frequencies of multi degree freedom systems, Dunkerley's method, Rayleigh's method.

7. Vibration Measurement and Condition Monitoring

Introduction, Vibrometer and accelerometer, Frequency measuring instruments. Signal analysis: Spectrum analyzers, Dynamic testing of machines and structures, Experimental modal analysis, Machine 5 hrs maintenance techniques, Machine condition monitoring techniques, Vibration monitoring techniques. Demonstration of experimental modal analysis using Sakshat Virtual lab.

Text Book

- 1. S. S. Rao, Mechanical Vibrations, Pearson Education, 6th Edition, 2017
- W.T. Thomson and Marie Dillon Dahleh Theory of Vibration with Applications, Pearson Education 5th edition, 2007

References

- 1. S. Graham Kelly, Adopted by: Shashidhar K Kudari Mechanical Vibrations, Schaum's Outlines, The McGraw-Hill, 2007.
- 2. Mechanical Vibration Practice with Basic Theory- V. Ramamurti, Narosa, 2000

6hrs

5hrs

Course Code: 15EMEE302

L-T-P: 3-0-0 ISA Marks: 50 Teaching Hrs: 50

Credits: 3 ESA Marks: 50 **Course Title: Failure Analysis in Design** Contact Hrs: 3 hrs/week Total Marks: 100 Exam Duration: 3 hrs

Unit – 1

1. Introduction: Study of Failure criteria and its importance, Role of failure prevention analysis in mechanical design, Modes of mechanical failure, Review of failure theories for ductile and brittle 8hrs materials including Mohr's theory and modified Mohr's theory, Numerical examples.

2.Surface Failure: Introduction, Surface geometry, Mating surface, Friction, Adhesive wear, Abrasive wear, Corrosion wear, Surface fatigue spherical contact, Cylindrical contact, General contact, Numerical 7hrs examples.

Unit – 2

3. Fatigue of Materials: History of failure due to fatigue loads and development of fatigue failure, Concepts and terminology, High cycle and low cycle fatigue, Fatigue design models, Fatigue design 5hrs methods, Fatigue design criteria, Fatigue testing, Fatigue fracture surfaces and macroscopic features, Fatigue mechanisms and microscopic features.

4. Stress-Life (S-N) Approach: S-N curves, Statistical nature of fatigue test data, General S-N behavior, Different factors influencing S-N behavior, S-N curve representation and approximations, Constant life 5hrs diagrams, Fatigue life estimation using S-N approach, Case study.

5. Strain-Life (ϵ -N)approach: Monotonic stress-strain behavior . Strain controlled test methods. Cyclic stress-strain behavior ,Strain based approach to life estimation, Determination of strain life fatigue 5hrs properties, Mean stress effects, Effect of surface finish, Life estimation by ϵ -N approach.

Unit – 3

6. Creep deformation: The evolution of creep damage, primary, secondary and tertiary creep. Stress dependence of creep – power law dependence. Comparison of creep performance under different 5hrs conditions - extrapolation and the use of Larson-Miller parameters. Creep-fatigue interactions. Numerical examples.

7. Buckling Analysis of rectangular palates: Governing differential equation and boundary conditions, plate with all edges simply supported, plates with other boundary conditions, buckling under in-plane 5hrs shear, post buckling analysis.

Text Book

- 1. Ralph I. Stephens, Ali Fatemi, "Metal Fatigue in Engineering", John Wiley New York, 2nd edition, 2001.
- 2. Robert L. Norton, Pearson, "Machine Design- An Integrated Approach", 2nd edition, 2000.
- Jack A Collins, Failure of Materials in Mechanical Design John Wiley & Sons, 1993. 3.
- Gambhir, M.L, Stability Analysis and Design of Structures, Springer-Verlag, 2004. 4

Course Content

Course Code: 15MEE303	C	ourse Title: Piping systems Des	ign
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 3		Exam Duration: 3 hrs	
	Jnit - 1		
Chapter No. 01. Introduction to piping Role of piping design engineers, Inputs and ou various industries, trends in piping industry.	tputs of piping department, Scop	2 hrs and prospects in	
Chapter No. 02. Piping systems Basics Process Design, Block Flow diagrams, Process Diagrams(P&ID's), Commonly used symbols i equipments, Fluid codes (process), Insulation.	s flow diagrams (PFD), Piping and n PFD and P & ID, Lines/signals	3 hrs d Instrumentation , Piping: services,	
Chapter No. 03. Codes and Standards		2 hrs	
Standards, major organizations for standards, I	Design code-ASTM standards, ASM	E standards	
Chapter No. 04. Piping elements and symbolic Fittings used to join pipes, Fittings used to ch sizes of pipes, Fittings used for various pur branching, special fittings used for Branching.	r epresentations nange pipe direction, Fittings user poses —such as flange, gaskets,	4 hrs d to join different Fittings used for	
l l	Jnit - 2		
Chapter No. 05. Valves Types of valves, control valves, safety valves, o components, pressure relieving devices, con globe valve, ball valve, check valve, Butterfly v Knife Gate valve.	constructional features. Criteria fo structional features, selection cri valve, Diaphragm Valves, Needle v	3 hrs r selection. Piping teria. Gate valve, alve, Piston valve,	
Chapter No. 06. Process Equipments used in p Pumps, storage tanks, vertical vessels, Ho Industrial boilers, steam turbines, compressors	l ants rizontal dryer, Heat Exchangers, :,	3 hrs filters, blowers,	
Chapter No. 07. Process Instruments Pressure Gauge, Temperature Gauge, Level i breather valves.	ndicators, flow metering/indicato	3 hrs ors, Safety valves,	
Chapter No. 08. Plot Plan Development Plot plan development, Basic data, steps to be of Liquid storage, Layout considerations for exp	e considered while developing the plosive tank farm, Layout of gas St	2 hrs plot plan. Layout prage.	
I	Jnit - 3		
Chapter No. 09. Piping Layouts Introduction to P&I Diagrams, process fla Introduction to various facilities required. Gu equipment layout, piping layout, piping ison layout considerations. Piping arrangements, tower piping,	ow diagrams, standard symbol idelines for plot plan/ plant layou netrics and bill of material. Typi clearances and access, pipe rac	3 hrs and notations. t. Introduction to cal piping system k, valve location,	
Chapter No. 10. Conversion of orthographic to Introduction to isometric view, symbolic repr Pipe layout exercises,	o isometric view resentation of elements in isome	3 hrs tric environment,	
Chapter No. 11. Plant Layout Design software Introduction to CADMATIC Software, 15 m Construction of Pipe line Route, 4 (Pipe D)(re	- LAB nost important shortcut comma efer to the drawing in the next su	12 hrs nds and practice ibsequent pages),	
KLE	Technological University		4

B V Bhoomaraddi Campus, Vidyanagar, Hubballi – 580 031, Karnataka, India. Ph.: +91 0836 2378280

Construction of Pipe line Route 6 (Pipe F) , Construction of Pipe line Route 8.(Pipe H) , Construction of Pipe line Route 9(Pipe I), Construction of Pipe line Route 11 (Pipe K), Construction of Pipe line Route No 14 (Pipe M). Construction of Pipe line Route No 3, 1, 2, (Pipe C, A, B), Construction of Pipe line Route No 5 ,7, 10, (Pipe E, G, J) , More features of software namely ladder, pipeline rack, and cable tray construction. Construction of all the pipeline network and Practice session

Text Books (List of books as mentioned in the approved syllabus)

21. Ed. Baushbacher, Roger Hunt, Process Plant Layout and Piping Design, 1993, Prentice Hall, 1993 References

21. Suvidya Institute of Technology Pvt. Ltd, Manual on Piping Engineering, Suvidya Institute of Technology Pvt. Ltd. Mumbai

22. Yunus A. Cengel, John M. Cimbala,, Fluid Mechanics Fundamental and Applications, 2nd, MGH,, 2006

Course Code: 155M55204

Course Title: Broduct Innovation

Course Coue. ISLIVILLS04		course ritle. Froudet innovation
L-T-P: 2-1-0	Credits: 3	Contact Hrs: 4 hrs/week
ISA Marks: 70	ESA Marks: 30	Total Marks: 100
Teaching Hrs: 24	Tutorial Hrs : 24	Exam Duration: 3 hrs

1. Innovation Types, Drivers and Enablers

Definition and different types of innovations shall be discussed with live examples in the product 8hrs development industry. Innovation drivers and enablers which lead to product innovations shall be elucidated with case studies.

Unit – 2

Unit – 1

2.Innovation Tools and Methods

Though it might sound like contradiction, innovations can be developed systematically by using tools and methods. Innovation methods such as TRIZ, ToC shall be explained with relevant examples. Innovation 8hrs tools to explore opportunities such as brain-storming, contextual mapping, demographic studies and foresighting shall be discussed

Unit – 3

3. Innovation Opportunity - Customer and Market Analysis

Customer mapping, demographics and persona shall be explained with examples and tutorials. Market 5hrs potential and opportunity analysis for different innovations. Technology and demographic trends which shape the market, Competition analysis

4. Intellectual Property

Tools and methods to protect IP – Patents, Design Patents, copyrights etc

References

- 1. Playbook for strategic foresight and Innovation Stanford University
- 2. R. T. Krishnan and V. Dabholkar- 8 Steps of Innovation
- 3. TRIZ and ToC Handouts
- 4. Skogstad, P., Leifer, L.edited by Meinel, C., Leifer, L., Plattner, H. Springer Berlin Heidelberg. 2011: 19-43, A Unified Innovation Process Model for Engineering Designers and Managers (In Design Thinking)

3hrs

Course Code: 15EMEE305

L-T-P: 3-0-0 ISA Marks: 50 Teaching Hrs: 40

Unit – I

Chapter 1: Introduction to Advanced Machining Processes

Engage | Explore | Excel | Evol

Introduction to new methods of production; Need and Capability analysis of various processes, Classification and Selection of Non-Traditional Machining Technologies, Hybrid Processes, Cases.

Credits: 3

ESA Marks: 50

Chapter 2: Mechanical Advanced Machining Processes

Abrasive Jet Machining (AJM): Machining setup, parametric analysis, Process capabilities. Ultrasonic machining (USM): Machining setup, Mechanics of Cutting - Model Proposed by Shaw, Parametric analysis, Process capabilities, Abrasive Flow Machining, Magnetic Abrasive Finishing. Water jet cutting (WJC).

Unit – II

Chapter 3: Thermal Advanced Machining Processes

Plasma Arc Machining (PAM): Working System, Elements of PAM, Process Performance, PAM Parameters, Process Characteristics, Safety Precautions, Electric Discharge Machining (EDM): Working Principle, Analysis, Process Variables, Process Characteristics, Applications

Chapter 4: Thermo-electric Advanced Machining Processes

Electron Beam Machining (EBM): Working Principle, Process Parameters, Characteristics of The Process, Application of EBM, Laser Beam Machining (LBM): Working Principle, Types of Laser, Process Characteristics, Applications, Ion Beam Machining (IBM): Working Principle, Process Parameters, Applications

Unit – III

Chapter 5: Chemical Machining Processes

Chemical Machining: Elements of process, Process Characteristics of CHM. Electro Chemical Machining: Elements and Characteristics and Theory of ECM

Chapter 6: Hybrid Processes

Electro chemical grinding (ECG), Electrochemical spark machining (ECSM), electrochemical arc machining (ECAM) and electro discharge abrasive grinding (EDAG).

TEXT BOOKS:

- 1. Jain V. K. "Advanced Machining Processes", Allied Publishers, Private Limited.
- Pandey P. C. and Shan H. S., "Modern Machining Processes", TATA McGraw Hill Publishing Company Limited, New Delhi.

REFERANCES:

- 1. HMT, "Production Technology", TATA McGraw Hill.
- 2. Adithan M, "Modern Machining Methods", S. Chand & Company, New Delhi.

Contact Hrs: 3 hrs/week

Total Marks: 100

Exam Duration: 3 hrs

Course Title: Advanced Machining Processes

12 hours

03 hours

08 hours

07 hours

05 hours

06 hours

Course Code: 15EMEE306	Course Title	e: Computer Integrated Manufa	acturing
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 h	rs/week
ISA Marks: 50	ESA Marks: 50	Total Ma	rks: 100
Teaching Hrs: 40		Exam Duratic	on: 3 hrs
	Unit – I		
Chapter 1: Manufacturing operations: Production system facilities, manufac manual labor in production systems. and products, product/production rela of manufacturing operations	: cturing support systems, automat Automation principles and strategi tionships, production concepts and	ion in production systems, es, manufacturing industries mathematical models, costs	08 hrs
Chapter 2: Manufacturing systems:			08 hrs
Components, classification, manufact applications. Group Technology Part far	uring process functions, single s milies, classification and coding, proc	station manufacturing cells, duction flow analysis	
	Unit – II		
Chapter 3: Cellular Manufacturing, Flex	xible Manufacturing Systems:		05 hrs
Cellular manufacturing quantitative an implementation, quantitative analysis of	alysis in cellular manufacturing, FM of FMS	IS components, planning and	
Chapter 4: Material handling and stora Material handling equipment, consider handling, material transport systems:, capture, automatic identification metho	age: ations in material handling system storage systems: automated stora ods	design, principles of material age systems, automatic data	05 hrs
Chapter 5: PLM and IIoT: Areas of Product Life cycle Manageme of PLM.	ent (PLM), phases of product life cyc	ele and technologies, benefits	05 hrs
Definition of Industrial Internet of Thin protocols, challenges, future	gs (IIoT), Evolution, Enablers for IIo	T platform, drivers, Benefits,	
	Unit – III		
Chapter 6: Robot fundamentals: Robot anatomy and related attributes, robotics, robot programming	, classification, robot control syster	ms, end effectors, sensors in	05 hrs
Chapter 7: Robot kinematics: Matrix representation, Homogeneous Inverse transformation matrices, forw forward kinematic equations, degenera	transformation matrices, Represe vard and inverse kinematics of ro	entation of transformations, bots, D-H representation of	05 hrs
Text Books:			
 Grover M.P., "Automation, Produce India. 	ction Systems and Computer Integr	rated Manufacturing", Prant	ice Hall,
 Chris McMahon & Jimmie Browne, Reference Books: 	"CAD & CAM Principles", Practice &	Mfg. Mngt.', Pearson Educatio	n.
 Radhakrishnan P., "CAD/CAM/CIM' Zeid Ibrahim, "CAD/CAM", McGraw 	′, New Age International Private Lim v Hill International.	nited.	

- 3. Rao P.N., 'CAD/CAM Principles and Applications', Tata McGraw-Hill.
- 4. Vajpayee S. K., "Principles of CIM", Prentice Hall of India.
- 5. Saeed B. Niku, "Introduction to Robotics", Prentice Hall of India.

Course Code: 15EMEE207	Co	urse Title: Sustainable Energy Convers	ion
	Credite: 3	Contact Hrs: 2 hrs/w	
ISA Marks: 50	ESA Marks: 50	Total Marks:	100
Tooshing Hrs: 10	LSA Marks. SU	Evam Duration: 2	100
reaching mrs. 40		Exam Duration: 3	nrs
	Unit – I		
Chapter No. 1. Energy Analysis of Energy Analysis of flow and non-fl Valves, Mixing Chambers, Heat E devices.	Thermodynamic Systems: ow processes (Nozzles - Diffusors, Turl xchangers, Pipe and Duct flow), Isent	5h bine and Compressors, Throttling ropic Efficiencies of steady flow:	۱rs
Chapter No. 2.Exergy: A Measure Exergy associated with kinetic ar efficiency, Second law analysis for	of Work Potential: nd potential energy, Reversible work non-flow and flow processes.	4h and Irreversibility, Second Law	ırs
Chapter No. 3. Vapour and Combi Criteria for the comparison of cy efficiency, generator efficiency; w Reheat cycle, Regenerative cycle - Cycles, Combined Gas - Vapour Po	ned Power Cycles: rcles; overall efficiency of a plant: co ork ratio; specific steam consumption · with open and closed heaters; Secor wer Cycles.	mbustion efficiency, mechanical ; improvement of Rankine cycle, 6h nd Law analysis of Vapour Power	۱rs
	Unit – II		
Chapter No. 4. Reciprocating Con Machine cycle analysis, work and efficiency, isothermal efficiency, ir	pressors: I heat transfer; performance parame ntercooling, intercooling pressure; reci	6h ters of compressors: volumetric procating expanders.	ırs
Chapter No. 5. Centrifugal compre Velocity diagram, torque, work, p mass flow ratio; special considera pressure ratio and volume flow.	essors: ower and general heat expression; to ations: no prewhirl, radial exit effect	6h otal or stagnation pressure ratio; of blade shape on performance,	ırs
Chapter No. 6. Nozzles: Isentro pressure ratio; effects of varying b	pic flow in convergent and converg ack pressure.	ent - divergent nozzles; critical 3h	۱rs
	Unit – III		
Chapter No. 7. Axial Flow Turbine Velocity diagram; impulse and re flow impulse stage; diagram ef compounded stage.	s: action turbines; h-s diagram for a sta ficiency, blade speed ratio, optimu	5h age; frictionless one dimensional am blade speed ratio; velocity	۱rs
Chapter No. 8. Reaction Turbines: Temperature drop across turbines expression in term of velocity d turbines.	s; isentropic efficiency and expansion iagram parameters; 50% reaction tu	5h ratio; degree of reaction and its rbine; multi - staging; losses in	۱rs
Text Books			

1. Rogers. G.F.C. and Mayhew. Y.R., Engineering Thermodynamics, Longman, 1980.

2. Gordon J. Van Wylen and Richard E. Sonntag, Fundamentals of Classical Thermodynamics, Jenson Books Inc. **Reference Book**

1. Yunus. A. Cengel and Michael. A. Boles, Thermodynamics: An Engineering Approach, McGraw Hill.

Course Code: 15EMEC401

L-T-P: 3-1-0 ISA Marks: 50 Teaching Hrs: 50

1.Introduction to operations research:

Introduction to O. R.: System orientation, use of interdisciplinary teams in OR, necessity of OR in business and industry, scope of OR in modern management, OR and decision-making, overview of OR.

2. Linear programming (LP):

Formulation: identification of decision variables, constructing objective functions and constraints, assumptions, practical examples, methods of solution: graphical method, simplex method (Big M and 2phase methods), by computer, examples.

Unit – II

3. Duality theory and sensitivity analysis:

Duality theory: Existence of dual of a LP problem, economic interpretation of duality, primal dual relationships in formulation and their solutions, Sensitivity analysis or post optimality analysis: Dual simplex method, changes affecting feasibility, changes affecting optimality, examples.

4. Transportation models:

The transportation algorithm: Formulation as a LP problem, determination of initial solution, stepwise improvement to obtain optimal solution, special cases such as multiple, unbalanced, degeneracy etc., the assignment model: Formulation as a LP problem, the Hungarian method of solution examples.

Unit – III

5. Network models:

Critical Path Method (CPM) and Program Evaluation & Review Technique (PERT): Network representation of simple projects, critical path computation, construction of time schedule, crashing of project duration, examples.

6. Game theory:

Formulation of games, two person zero sum game, dominance property, games with and without saddle point, graphical solutions (2 x n, m x 2 game).

Text Book :

1. F.S. Hillier and Lieberman G.J., 'Introduction to Operations Research', 9e, McGraw Hill, India, 2017

- 2. Taha H. A., 'Operations Research: An Introduction', 8e, pearson prentice hall, 2009, . **Reference Book :**
 - 1. Wayne L. Winston, 'Operations Research', Brooks/Cole Thomson Learning.
 - 2. Vohra N. D., 'Quantitative Techniques in Management', Tata McGraw Hill.

School of Mechanical EngineeringKLETECH Engage | Explore | Excel | Evo

Experience Engineering @

Credits: 4 ESA Marks: 50

Unit – I

Course Title: Operation Research Contact Hrs: 5 hrs/week Total Marks: 100 Exam Duration: 3 hrs

03 hrs

12 hrs

08 hrs

08 hrs

05 hrs

05 hrs

Course Code: 15EMEC402

L-T-P: 3-0-0 ISA Marks: 50 Teaching Hrs: 40 Credits: 3 ESA Marks: 50 Course Title: Design of Thermal Systems Contact Hrs: 3 hrs/week Total Marks: 100 Exam Duration: 3 hrs

Unit - I

1 Heat Exchangers Classification and Selection

Introduction, Recuperation and Regeneration, Transfer process, Geometry and Construction, -Tubular Heat Exchanger, Plate Heat Exchanger, Extended Surface heat exchanger, Heat Transfer Mechanisms, Flow arrangements, Applications and Selection of Heat Exchangers

2 Design of Shell and Tube Heat Exchanger

Construction of shell and tube exchanger, specifications and classification of S&T Heat10Exchanger, some Typical operating limits for heat exchangers of S&T Type, Analysis of Shell and10Tube Heat Exchangers for Temperature Distribution, Design of Shell and Tube Heat Exchangers10

Unit - II

3 Modeling of Thermal Equipment

Counter flow heat exchanger, Evaporators and Condensers, Heat exchanger effectiveness, Effectiveness of a counter flow heat exchanger, NTU, Pressure drop and pumping power, Numerical Problems

4 Pump and Piping System Design:

Introduction, Physical Fundamentals, Hydraulic fundamentals, Technical fundamentals-Installation, connection, suction pipe, Delivery pipe, NPSH, suction and delivery conditions, 5 hrs Cavitation, Q-H characteristic diagram, Flow rate, flow head, plant characteristic curve operating point

5 Optimization

Mathematical representation of optimization problems, A water chilling system, Optimization 4 hrs procedure, Setting up the mathematical statement of the optimization problem

Unit - III

5 LagrangeMultipliers The Lagrange multiplier equations, unconstrained optimization, Constrained optimization 5 hrs

6 Dynamic Programming

Characteristic of the Dynamic programming solution, Apparently constrained problem, 5 hrs Application of Dynamic programming to energy system problems

Text Book

- 1. W.F.Stoecker, Design of Thermal Systems, 3rdedn., MGH, 1989.
- 2. Sarit K. Das., Process heat transfer, Narosa Publishing House 1st Edition, 2005
- 3. SadikKakac, Hongtan Liu, Heat Exchanger Selection, Rating and Thermal Design, 2ndedn., CRC Press, 2002.
- 4. Yunus A. Cengel, John M. Cimbala, Fluid Mechanics Fundamental and Applications, 2nd Edition, MGH, 2006.
- 5. Manual for the Design of Pipe Systems and Pumps, GEA Tuchenhagen.

References

- 1. Hodge B.K., Analysis and Design of Thermal Systems, 1stedn., PHI, 1990.
- 2. CRI pump manufacturers catalog.

Course Code: 15EMEE401	Course Title	: Mechanics of Composite Materials
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40		Exam Duration: 3 hrs
Chapter No. 1: Introduction to Comp	Unit - I osite Materials	05 Hrs
Introduction, Matrix materials-polym interactions at the interface, types of	ers, metals and ceramics; Reinforceme bonding at the interface, optimum inter	nts, Interfaces-wettability, facial bond strength.
Chapter No. 2: Polymer Matrix Comp Types, characteristics ,processing of mould process, hand layup technique	osites PMCs, Layup and curing, fabricating s; structural laminate bag molding, proc	05 Hrs process, open and closed duction procedures for bag
molding; filament winding, pultrusion	, pultorming, thermo-forming, injection	molding, blow molding.
Types of MMCs, base metals selectic state processes; interfaces in MMCs CMCs, processing of CMCs-cold press infiltration, directed oxidation, in-sit applications of CMCs.	in; important metallic matrices; proces ; Need for production of MMC's and ing and sintering, hot pressing, reactior cu chemical reaction techniques, sol-g	ssing-liquid state and solid its applications; Types of bonding processes, liquid gel and polymer pyrolysis,
	Unit - II	
Chapter No. 4: Macro Mechanics of a Hooke's law for different types of independent constants for orthotrop stiffness matrix. Hooke's law for tw properties. Numerical problems	Lamina f materials, Number of elastic const pic material, Two - dimensional relation vo-dimensional angle lamina, enginee	08 Hrs tants, Derivation of nine onship of compliance and ring constants - Invariant
Chapter No. 5: Micro Mechanics of a and limitations of micromechanical a stiffness, Transverse young's modulus micromechanical analysis.Numerical p	I Lamina: Introduction, volume and we inalysis, Elastic properties of a lamina, s, major Poisson's ratio and in-plane sh problems.	ight fractions, Assumption 07 Hrs longitudinal strength and ear modulus. Problems on
	Unit - III	
Chapter No.6: Macro Mechanics of La	aminate	05 Hrs
Macro Mechanics of Laminate: Intro Classical Lamination theory, assumpt force and moment resultants related t	duction, Laminate code, Stress–Strain ions of CLT, Stress- Strain equation ar to midplane strains and curvatures , Nu	Relations for a Laminate, nd variation in a laminate, merical problems.
Chapter No.7:Applications:	•	05 Hrs
Aircrafts, missiles, Space hardware, a sports equipment, future potential of	automobile, Electrical and Electronics, composites.	Marine, Recreational and
Text Books		
 Krishan K. Chawla, Composite Mat Robert M.Jones, Mechanics of Con 	erials - Science and Engineering, 3 rd Edit nposite Materials, 2 nd Edition, Tailor & F	tion, Springer, 2012. Francis Inc. 1999.

References

- 1. D. Hull and T. W. Clyne, An Introduction to Composite Materials (Cambridge Solid State Science Series), 2nd Edition, Cambridge University Press, 1996.
- 2. Autar K. Kaw, Mechanics of Composite Materials, 2nd Edition, CRC Press, Taylor and Francis Group, 2006.

Course Code: 15EMEE402	Course Tit	le: Design of Automotive Pow	ver Train
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 h	rs/week
ISA Marks: 50	ESA Marks: 50	Total Ma	arks: 100
Teaching Hrs: 40		Exam Duratio	on: 3 hrs
	Unit – I		
Chapter No.1:Vehicle Performance Pa Vehicle drag, power for propulsion, relation between engine revolutions grade ability and drawbar pull), nume	arameters resistances to vehicle motion, tra s and vehicle speed, road perform ricals.	action and tractive effort, nance curves(acceleration,	5 hrs
ChapterNo.2:General Considerations Selection of type: Process, Cycle, Num acting, Engine Speed, Rotational Spee of Similitude, General Design Consider	in Engine Design nber of Cylinders, Arrangement of Cy ed, Piston Speed, Speed Factor, Stro ration	ylinders, Single and Double oke to Bore Ratio, Principle	4hrs
ChapterNo.3:Cylinder, Cylinder Head Function, construction, materials and piston rings.	and Piston d design of cylinder, cylinder head a	and piston, piston pin and	6hrs
	Unit – II		
ChapterNo.4:Connecting rod and Cra Function, construction, materials and of crankshaft and its types.	nkshaft: design of connecting rod, lubrication	n in connecting rod, design	5hrs
ChapterNo.5: Flywheel Function, construction, material, type	s. Stresses in flywheel rim and arms.	design of flywheel	5 hrs
ChapterNo.6:Manual gear boxes and Necessity of gear box, sliding mesh ge box, gear synchronization and engage	overdrives ar box, constant mesh gear box and ment. Over drive splitter and range §	reverse synchromesh gear gear boxes, Problems.	5 hrs
	Unit – III		
ChapterNo.7:Propeller shaft, Final Dr Construction & types of propeller sh Differential-Principle, conventional differentials. Double reaction axles. T arrangements. Electro/hydraulic limite	ive and Differential afts, universal joints, Final drive – α and non-slip differentials, differe Γwo speed axles. Third (central) diff ed slip differential, Problems	construction details, types, ntial lock. Skid reducing ferential. Four wheel drive	5hrs
ChapterNo.8:Hydrokinetic fluid coup Hydrokinetic fluid couplings. Hydrokir coupling. Hydrokinetic three element Over run clutches. Three stage hydro gear change friction clutches	lings and torque converters netic fluid coupling efficiency and tor torque converter. Torque converter okinetic torque converter. torque co	rque capacity. Fluid friction performance terminology. converter with lock-up and	5hrs
Text Books			

Text Books
1. Heinz Heisler, Advanced Vehicle Technology, 2nd Edition, 2002, Butterworth Heinemann,
2. Sharma & Aggarwal, Machine Design, 12th Edition, 2012, S.K.Kataria & Sons, New Delhi

References

1. Dr. N.K. Giri, Automotive Mechanics, 8th Edition, 2008, Khanna Publication, New Delhi,

Course Code:15EMEE403		Course Title: Design and Analysis of Expe	eriments
L-T-P: 3-0-0	Credits:3	Contac	ct Hrs: 40
ISA Marks: 50	ESA Marks: 50	Total M	arks: 100
Teaching Hrs: 40 hrs		Exam Durat	ion: 3hrs
	Unit	:1	
Chapter 1. Introduction Need for Research, Need for	or Design of Experiments, Expe	rimental Design Techniques, Applications of	04hrs
Chapter 2. Taguchi's Appro Taguchi's Approach to Qua Exploiting Non Linearity, Cla	ach to Quality ality and Quality loss functior Issification of Parameters, Exer	n, Noise Factors and Average Quality Loss, cises.	04hrs
Chapter 3. Analysis of Varia Test of Hypothesis using t Exercises.	ince :-test, Z –test, Chi square an	d F-tests, No-Way and One-Way ANOVA,	08hrs
	Unit	Ш	
Chapter 4. Full Factorial De Two-Factor Complete Facto Factorial Experiments, Exerc Chapter 5. Fractional Facto Half Fraction of 2 ² Factorial	sign of Experiments rial Experiments, Complete Fac cises. rial Design of Experiments Experiments, Half Fraction of	ctorial experiment with Three Factors and 2 ⁿ 2 ³ Factorial Experiments, Half Fraction of 2 ⁴	08hrs 04hrs
Factorial experiments, Exerc	cises.		
Chapter 6. Robust Design Control Factors and their Experiment using Orthogon	· Levels, Matrix Experiment al Array and Data analysis, Exe	and Data Analysis Plan, Conducting the rcises.	04hrs
	Unit -	- 111	
Chapter 7. Response Surfac Central Composite Design a	e Methodology nd Box-Behnken Design, Case S	Studies	04hrs
Chapter 8. Signal to Noise F Relationship between Signa for static problems, Signal to	Ratio Il to Noise Ratio and quality lo o Noise Ratios for dynamic pro	oss after adjustment, Signal to Noise Ratios blems, Exercises.	04hrs
 Douglas C. Montgo Madhav S. Phadke Jersey. R. Panneerselvam 	mery, "Design and Analysis of , "Quality Engineering using Ro "Design and Analysis of Experi	Experiments", John Wiley and Sons. obust Design", Prentice Hall PTR, Englewood Cl ments- R PHI Learning Private Limited New De	iffs, New Ihi.
References:	Design and Analysis of Experi		

- 1. R. H. Myers and D. C. Montgomery and Anderson-Cook C. M. "Response Surface Methodology: Process and Product Optimization Using Designed Experiments", John Wiley & sons, Inc., New York.
- 2. Philips .J. Ross, "Taguchi Techniques for Quality Engineering", McGraw Hill, New York.

Course Code: 15EMEE404

Experience Engineering @

Engage | Explore | Excel | Evolve

L-T-P: 2-1-0 ISA Marks: 70 Teaching Hrs: 24

Product Development Process

Part manufacturing processes, Design and functional review methods, Assembly process and virtual builds, Quality goals and control plans

Credits: 3

ESA Marks: 30

Unit – 1

Unit -2

Unit – 3

Tutorial Hrs: 24

Product Verification and Validation

Load goals and duty cycle definition, Reliability and durability goals, Virtual prototyping techniques, Accelerated product verification methods

Product family management

Product lifecycle management; Evolution of product models and families, Modeling of product family lifecycle, Product Strategy, Product market positioning, Product positioning – psychological, Brand, customer segment.

Technology management

Technology management methods, Technology as a competitive tool, Critical Component Development Process, Technology Development Process

References:

- 1. Karl Ulrich and Steven Eppinge, Product Design and Development
- 2. Kenneth B. Kahn, The PDMA Handbook of New Product Development, Second Edition
- 3. Monica Bordegoni (Editor), Caterina Rizzi (Editor)Innovation in Product Design: From CAD to Virtual Prototyping

School of Mechanical Engineering KLETECH

Course Title: Product Design & Development

Contact Hrs: 5 hrs/week

Total Marks: 100 Exam Duration: 3 hrs

8hrs

8hrs

8hrs

Course Code: 15EMEE405		Course Title: Operations Managen	nent
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/w	veek
ISA Marks: 50	ESA Marks: 50	Total Marks:	100
Teaching Hrs: 40		Exam Duration: 3	3 hrs
	Unit – I		
Chapter 1: Operations management & Introduction, importance of operation Information and Non-manufacturing so operations. Characteristics of decision decision support systems, economic mod	operations decision making ons management in man systems. Factors affecting ns, framework for decision odels and statistical models	ng: nufacturing and service industries, g productivity. The environment of on-making, decision methodology, s. Numericals	08 hrs
Chapter 2: Forecasting demand Forecasting objectives and uses, foreca methods, exponential smoothing, regis forecasts. Numericals	isting variables, opinion ar ression and correlation m	nd judgmental methods, time series nethods, application and control of	06 hrs
Chapter 3: Aggregate planning and mas Introduction- Planning and scheduling methods, master scheduling objectives,	<pre>ster scheduling g, objectives of aggregate , master scheduling metho</pre>	e planning and Aggregate planning ds, Numericals	04 hrs
	Unit – II		
Chapter 4: Material and Capacity Requ Overview: MRP and CRP, MRP: Uno refinements, Capacity management, an	irements Planning Jerlying concepts, Syster d CRP activities. MRP, MRI	n parameters, MRP logic, System P-II and ERP, Numericals	04hrs
Chapter 5: Scheduling, single machine Production activities, PAC objectives an rule, Weighted MFT, EDD rule, minimiz rule for 'n' jobs on 2 and 3 machines. No Job-shop scheduling: Types of schedu Numericals	scheduling & flow –shop & id data requirements, con- ing the number of tardy j umericals. les, heuristic procedure, s	& Job shop scheduling cept, measures of performance, SPT obs. Numerical problems, Johnson's scheduling 2 jobs on 'm' machines.	08 hrs
	Unit – III		
Chapter 6: Lean manufacturing: Introduction, Japanese concept of improvement, need for continuous imp principles, Lean manufacturing history	continuous improvement rovement, steps in implem	(Kaizen), innovation concept of nenting continuous improvement, 5S	05 hrs
Chapter 7: Just in time- an introduction Spread of JIT movement, the new pro practices of JIT, creating continuous ma of JIT.	۱ duction system research a anufacture, Enabling JIT to	association of Japan, core Japanese occur, basic element of JIT, benefits	05 hrs
 Text Books: Monks, J.G., Operations Manageme Pannerselvam. R., Production and Operational Contemport 	ent, McGraw-Hill Internatio Operations Management, I	onal Edition, 1987. Prentice Hall India, 2003.	

Reference Books:

- 1. Krajewski E. J. and Ritzman, 'Operations Management', Strategy and Analysis, Pearson Education, 2002.
- 2. Chary, S.N., 'Production and Operations Management', Tata-McGraw Hill, 2004
- 3. Nicholas J. Aquilano, 'Fundamental of Operations Management', Irwin/McGraw-Hill; 4th edition.

Course Code: 15EMEE406	Course Title	e: Supply Chain Management
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week
ISA Marks: 50	FSA Marks: 50	Total Marks: 100
Teaching Line 40		Even Duration 2 hrs
Teaching Hrs: 40		Exam Duration: 3 hrs
	Unit – I	
1 Understanding supply chain:		05 brs
Meaning of SCM, supply chain stages, of examples of supply chain, competitive expanding strategic scope.	decision phases in supply chain (SC), and supply chain strategies, achievi	process view of SC, ing strategic fit and
2. Supply Chain drivers and metrics:		05hrs
Drivers of SC performance, framew information, inventory, obstacles to ach	ork for structuring drivers, facili ieve strategic fit.	ties, transportation,
3. Designing the supply chain network:		05 hrs
Role of distribution in SC, factors influe distribution network, role of network de	encing distribution network design, c sign in sc, factors influencing networl	lesign options for a k design decisions.
	Unit – II	
4. Transportation in supply chain: Role of transportation in SC & fa transportation and their performance network, trade-offs in transportation de	ctors affecting transportation dec characteristics, design options for sign, tailored transportation.	05 hrs isions, modes of a transportation
5. Logistics metrics:		05 hrs
Logistics data, statistical methods of pro	cess monitoring, logistics performanc	e metrics.
6. Facility location and layout design :		05 hrs
Design aggregation and granularity relationship, illustrative layout design, d	level, space representation, qua ealing with uncertainty, dealing with	alitative proximity an existing design.
	Unit – III	
7. Material handling system:		05 hrs
Ten principles of material handling, i equipment, analytical model for mat	material handling equipment, how terial handling, equipment selection	to choose the right
8. Warehousing:		05 hrs
Warehousing functions, role of wareh storage department description and description, warehouse management.	ouse in supply chain, functional dep operation, sorting, packing, conso	vartments and flows, lidation and staging
Text Books:		
1. Sunil Chopra and Peter Meindl, 'Suppl Education Inc.	y Chain Management – Strategy, Pla	nning and Operation', Pearson
2. G. Don Taylor, 'Introduction to Logistic and James Stock, 'Strategic Logistics Ma	cs Engineering'.CRC press, Taylor & I anagement', Irwin McGraw Hill.	-rancis group Douglas Lambert
Reference Books:		
1. Robert B. Handfield and Ernest L. I	Nichols, 'Supply Chain Redesign-Tra	ansforming Supply Chain into
Integrated Value Systems', Pearson Edu	ication inc.	ling
Jeremy F. Snapiro and Duxbury, Model David Simchi Levi Philin Kaminsky an	ing the supply chain, momson Learn nd Edith Simchi Levi (Designing and	IIIIg. Managing the Supply Chain'
McGraw Hill.	Mc Millon	managing the Suppry Clidili,
 Sanay D.S., Supply Chain Management Bhattacharva S K 'Logistic Manageme 	nt' S Chand Publication	

3. Kapoor, 'Marketing Logistics: A Supply Chain Approach', Pearson Education

KLE Technological University

B V Bhoomaraddi Campus, Vidyanagar, Hubballi – 580 031, Karnataka, India. Ph.: +91 0836 2378280

www.kletech.ac.in

KLE Technological University

CFD applications in Research and Design, CFD Problem set-up-Creation of geometry, Mesh generation, Specification of boundary conditions. CFD Solver- Initialization and Convergence monitoring. Post Processor-Plots, data reports and Animation

Unit - I

2. Governing Equations for CFD:

Course Code: 15EMEE407

L-T-P: 3-0-0

ISA Marks: 50

Teaching Hrs: 40

Continuity Equation, Momentum Equation, Energy Equation- Physical Interpretation and comments. The additional equations for turbulent flow, Generic form of Governing equations, Physical Boundary conditions

Unit – II

3. CFD Techniques:

Discretization of Governing Equations- Finite difference method, Finite volume method, Converting governing equations into algebraic equations, Direct and Iterative solutions, Pressure- velocity coupling-SIMPLE scheme

4. CFD Solution Analysis:

Consistency, Stability, Convergence, Accuracy and Efficiency of CFD solutions. Accelerating convergence, controlling solution errors, verification and Validation. Case studies related to fluid flow through channel and pipe bend

Unit - III

5. Practical Guidelines for CFD Simulation and Analysis:

Grid generation- Guidelines on grid quality and grid design, Local refinement and solution adaption. Guidelines on Boundary conditions – Setting inlet, outlet and wall boundary conditions. Symmetric and Periodic Boundary conditions. Turbulence Modelling- Approaches, selection strategies, Case study: modeling of hydrofoil flows

6. Advanced Topics in CFD:

Advances in Numerical methods and Techniques- Moving grids, Multigrids, Parallel Computing and Immersed boundary methods. Advances in computational models- Direct numerical Simulation(DNS), Large Eddy Simulation(LES), RANS-LES, Lattice Boltzmann method, Monte-Carlo method, Particle methods

Text books:

- 1. Jiyuan Tu, Guan Heng Yeoh, Chaoqun, Computational Fluid Dynamics, Butterworth- Heinemann, 1st Edition 2008
- 2. Dale A. Anderson, John C. Tannehill and Richard H. Platcher.. Computational Fluid Mechanics and Heat Transfer; McGraw Hill Book Company, 2001

References:

- 1. Suhas V. Patankar, Numerical Fluid flow and Heat transfer, Hemisphere Series on Computational Methods in Mechanics and Thermal Science, 2nd Edn. 2000
- 2. Joel H. Ferziger and Milovan Peric, Computational Methods for Fluid Dynamics, 3rd Edition, Springer-Verlag, Berlin, 2001
- 3. Anderson J D, Computational Fluid Dynamics- The Basics with Applications, MGH, 2nd Ed. 2001

EngineeringKLETECH Engage | Explore | Excel | Ev

1. Computational Fluid Dynamics (CFD) Solution Procedure:

Total Marks: 100

Course Title: Computational Heat transfer and Fluid Flow

Credits: 3 Contact Hrs: 3 hrs/week ESA Marks: 50 Exam Duration: 3 hrs

8 hrs

8 hrs

7 hrs

5 hrs

5 hrs

49

6 Prediction of Performance of Simple Gas Turbines

Component characteristics, off design operation of the single shaft gas turbine, off-design operation of free turbine engine.

Unit - III

7 Cooling, Seals and Lubrication System

The cooled turbine, methods of blade cooling, Seals: Non contacting seals - labyrinth seals, ring seals, Mechanical seals, Seal system, and dry gas seals, attrition coatings. Lubrication Systems: Basic oil system, lubrication management program, selection, oil contamination, filter selection, cleaning and flushing, oil sampling and testing

8 Materials of Gas turbine and Maintenance

Introduction, Super alloys-Nickel based iron-nickel, Cobalt, Thermal barrier coating for jet engine alloys, advanced materials for jet engines. Maintenance: Introduction, On-wing maintenance, Scheduled maintenance, Unscheduled maintenance, Condition monitoring, Flight deck indicators, In-flight recorders, Ground indicators, Maintenance precautions, Trouble shooting, Adjustments, Ground testing.

Text Books

- 1. Rolls Royce "The Jet Engine" 5th edition, ISBN 0 902121 2 35, © Rolls-Royce plc 1986
- 2. Saravanamutto H.I.H, Rogers G.F.C., Cohen H, Gas Turbine Theory, 5th Edn., Pearson 2006

Reference Books

1. Meherwan P. Boyce "Aircraft Propulsion and Gas Turbine Engines", CRC press, Taylor and Francis Group, London

the compressor annulus, effect of compressibility, pre-whirl, supersonic flow, degree of reaction, design process, blade design, calculation of stage performance, off-design performance.

3 Fuel System

Fuel specifications, Properties, Manual and automatic control, Fuel control systems, Fuel spray nozzles, Fuel heating, Effect of a change of fuel, Gas turbine fuels, Fuel requirements, Vapor locking and boiling, Fuel contamination control.

4 Combustion System

Introduction, Combustion process, Enthalpy of formation, Fuel supply, Types of combustion chamber, Can-annular combustion chamber, Tube-annular combustion chamber, Annular combustion chamber, Combustion chamber performance, Combustion intensity, Combustion efficiency, Combustion stability Emissions, Materials.

5 Axial Flow Turbines

Types of Turbines, spool shafts in aero engines, Advantages and disadvantages, Turbine geometry, Thermodynamic and Aerodynamic theory, velocity diagrams, Impulse turbine, turbine blade cooling. Exhaust System: Introduction, Exhaust gas flow, environmental considerations, construction and materials.

ISA Marks: 50 Teaching Hrs: 40

Course Code: 15EMEE408

Course Title: Fundamentals of Gas Turbines Contact Hrs: 3 hrs/week Total Marks: 100 Exam Duration: 3 hrs

Unit - I

1 Principles of Gas Turbine and Applications

Introduction to turbo machines, history of gas turbines, gas turbine cycles and applications – (Land, Water/Marine and Air/Aero) Components of Gas Turbines (Compressors, Combustors, Turbines, Exhaust systems). Working of Gas Turbines.

2 Compressor

Types of compressors, (Centrifugal and Axial), relative merits and demerits, Criteria for selecting type of compressors.

Centrifugal Compressors: Principle of operation, work done and pressure rise diffuser, compressibility effects, compressor characteristics and design procedures.

Axial Flow Compressor: Basic operations, elementary theory, factors affecting stage pressure ratio, Blockage in

Unit – II

School of Mechanical

Engineering KLETECH

5 hrs

4 hrs

5 hrs

5 hrs

5 hrs

5 hrs

L-T-P: 3-0-0

4 hrs

7 hrs

New York.ISBN 978-0-8493-9196-5

2. Meherwan P. Boyce "Gas Turbine Engineering Handbook (Fourth Edition)", 2012, Elesevier, ISBN-978-0-12-383842-1

Course Code: 18EMEE301

L-T-P: 0-0-3 ISA Marks: 80 Teaching Hrs: 80 Credits: 3 ESA Marks: 20 Course Title: Advanced CAE - I Contact Hrs: 6 hrs/week Total Marks: 100 Exam Duration: 2 hrs

SI No	Details
1	Introduction to Finite Element Method and Altair Hyper works.
	Hypermesh workbench
2	Getting started with Hypermesh
	Interacting with panels
	Geometry Clean up - Theory
2	Tools used to geometry clean up
3	(Edge edit, Create Surface and Surface edit, Line and Line Edit, Delete)
	Theory and Demo Exercise – 04 No
	2-D mesh Explanation -Theory
	Auto mesh and Different types of auto mesh
4	Types of 2 D mesh (Ruled, Spline, Rotate)
4	Quality Parameters checking.
	Normals and Edge Checking and adjusting.
	Theory and Demo Exercise – 04 No
	3-D mesh Explanation -Theory
	Volume mesh Creation
F	Types of 3 D mesh (Hexa Penta Type, Tetra mesh)
5	Quality Parameters checking.
	Normals and Edge Checking and adjusting.
	Theory and Demo Exercise – 03 No
	1-D mesh Explanation -Theory
	Creation of 1 D elements (Bar, Beam Mass)
6	Creation of Rigid elements (Rbe2 and Rbe3)
	Creation of Weld elements between two adjacent components
	Demo Exercise - 03 No
	Execute Linear Static Analysis using optistruct solver
7	Theory and Demo Exercise - 01 No
	Assignment - 01 No
8	Perform Buckling Analysis using optistruct solver
0	Theory and Demo Exercise - 01 No
9	Carryout Modal Analysis using optistruct solver
5	Theory and Demo Exercise - 01 No
10	Analyze Thermal Analysis using optistruct solver
10	Theory and Demo Exercise - 01 No
	Execute Non Linear Analysis using optistruct solver
11	(Geometry, Material and Contact Non-Linear)
	Theory and Demo Exercise - 03 No

Materials and Resources Required:

1. Books/References: Practical Finite Element Analysis by Nitin Ghokale 3rd Edition Released 05/2015

Course Code: 19EMEE304

Course Title: Advanced CAE- II

L-T-P: 0-0-3 ISA Marks: 80 Teaching Hrs: 80 Credits: 3 ESA Marks: 20 Contact Hrs: 6 hrs/week Total Marks: 100 Exam Duration: 2 hrs

Experiment wise plan

List of exercises planned to meet the requirements of the course.

Serial No.	Details	Category	No. of Sessions
1.	Finite Element Methods: A conceptual introduction, Failure criteria of materials	Demonstration	01
2.	 Ansys workbench ➢ Getting started with Ansys ➢ Interacting with panels <u>Case Study</u>: Beam, Pneumatically Actuated PDMS Fingers, Spur Gears and Micro gripper etc. 	Exercise/Tutorial	02
3.	Design Modeler Geometry clean-up tools: De-features, Projection. <u>Case Study</u> : Bar, Beam, Triangular plate.	Exercise/Tutorial	02
4.	 Case study on One dimensional/Two dimensional/Three dimensional components ▶ 1D: Rod, Bar, Link, Spring, Beam ▶ 2D: Bellows Joints, Gearbox etc. ▶ 3D: Beam bracket, Cover of pressure cylinder, Lifting fork and LCD display support. 	Exercise/Tutorial	03
5.	Convergence study in FEA Quality parameters for 1D/2D/3D elements, Convergence Study of 2D and 3D Solid Elements Pneumatic fingers Cover of pressure cylinder	Exercise/Tutorial	03
6.	 Case study on Static structural analysis Refrigerator handle Shell –Automotive panels (Fender, Bonnet) Assignments Wooden chair Crain hook 	Exercise/Tutorial	03
7.	Case study on Modal analysis Compact disk Machine tool structures- Bed, Column. Guitar string Assignments Human skeleton Car chassis Engine housing	Exercise/Tutorial	02

KLE Technological University

B V Bhoomaraddi Campus, Vidyanagar, Hubballi – 580 031, Karnataka, India. Ph.: +91 0836 2378280

School of Mechanical EngineeringKLETECH

8.	Case study on Structural dynamic Analysis Lifting fork Ball and rod Base of compressor in Refrigerator Assignments Leaf spring Steering wheel Railway track 	Exercise/Tutorial	03
9.	Case study on Non linear analysis Geometry, Material and Contact analysis Fisher rod(Geometry) snap lock(Material) Translational joint(Contact) Assignments Gasket(Contact) Advanced metal plasticity(Material) Visco-plasticity(Material)	Exercise/Tutorial	04
10.	Case study on Explicit Dynamics High-Speed Impact : Bird Crash	Exercise/Tutorial	01
11.	Case study on Buckling and Stress stiffening > 3D Truss > Beam Bracket Assignments > Machine column(Milling/ Drilling) > Dovetail guide way	Exercise/Tutorial	02
12.	Case study on Thermal analysis Steady state thermal analysis Transient thermal analysis > Heat exchanger > Fin Assignments > PCB Panel > Telephone/power cables	Exercise/Tutorial	02
13.	Case study on Fatigue Analysis Stress based approach Strain based approach > Connecting rod > Fin Assignments > Radial tire > Battery of laptop/mobile	Exercise/Tutorial	04
14.	Case study on Sub-Modeling Motor cover	Demo	01
15.	Case study on Multi Body Dynamics (MBD) Applications of Four bar mechanism Sun planet gear mechanism Assignments Power cylinder in a diesel engine Screw jack	Exercise/Tutorial	03
16.	 Analysis of Composite Applications on automotive components(fender, hood, dashboard) Applications on aerospace components (wings, window panels, tale) Assignments 	Exercise/Tutorial	01

KLE Technological University

B V Bhoomaraddi Campus, Vidyanagar, Hubballi – 580 031, Karnataka, India. Ph.: +91 0836 2378280

Engage | Explore | Excel | Evolve

	\checkmark	Polymer matrix composite		
	\checkmark	Metal matrix composite		
	Case study on Optimization			
17.	\triangleright	Triangular plate		
	\succ	Flexible gripper		
	Assignments		Exercise/Tutorial	01
	\succ	Electronic Fuse		
	\succ	Radiating system		
	\checkmark	Tractor trailer		
	Case study on Couple Field Analysis			
	\succ	Electromagnetic-thermal		
		(Induction heating)		
18.	\succ	Electromagnetic-thermal-structural	Domo	02
		(Peltier coolers)	Demo	02
	\succ	Electrostatic-structural, electrostatic-		
		structural-fluidic (MEMS)		

Text Book

1. Nitin Ghokale, Practical finite element analysis, Finite to infinite, 2008.

References

- 1. Chen, Xiaolin_Liu, Yijun-Finite Element Modeling and Simulation with ANSYS Workbench-CRC Press (2014)
- 2. Erdogan Madenci, Ibrahim Guven (auth.)-The Finite Element Method and Applications in Engineering Using ANSYS®-Springer US (2015)
- 3. Barbero, Ever J.-Finite Element Analysis of Composite Materials Using ANSYS®-CRC Press (2013)

Course Code: 18EMEE302

L-T-P: 0-0-3 ISA Marks: 80 Teaching Hrs: 40 Credits: 3 ESA Marks: 20 Course Title: Programming Contact Hrs: 6 hrs/week Total Marks: 100 Exam Duration: 2 hrs

Course Contents: Core Java and Database Management System

Introduction to java: History and Features of Java ,Internals of Java Program, Difference between JDK,JRE and JVM, Variable and Data Type, Naming Convention, JDK installation and configuration

OOP Concepts: Advantage of OOPs, Object and Class, Method Overloading, Constructor, static variable, method and block, this keyword, Package and Access Modifiers, Encapsulation, Object class, Java Array, Call By Value and Call By Reference, Inheritance, Method Overriding, final keyword, Runtime Polymorphism, static and Dynamic binding, Abstract class and Interface, Downcasting with instanceof operator.

String Handling: String, , Immutable String, String Comparison, String Concatenation, Substring, Methods of String class, StringBuffer class, StringBuilder class, toString method, StringTokenizer class.

Exception Handling: Introduction, try and catch block, Multiple catch block, Nested try, finally block, throw keyword, Exception Propagation, throws keyword, Exception Handling with Method Overriding, Custom Exception

Collection framework: ArrayList class, LinkedList class, ListIterator interface, HashSet class, LinkedHashSet class, TreeSet class, PriorityQueue class, ArrayDeque class, Map interface, HashMap class.

Database concepts: SQL(DDL, DML), PL-SQL, JDBC Drivers, Steps to connect to the database, Connectivity with DB, DriverManager, Connection interface, Statement interface, ResultSet interface, PreparedStatement, ResultSetMetaData.

HTML: Tags, Attributes and Elements, Links, Images, Tables, Forms.

JSP: JSP - Overview, JSP - Lifecycle, JSP - Syntax, JSP - Directives, JSP - Actions, JSP - Client Request, JSP - Server Response.

Javascript/Jquery:	JavaScript Output,	JavaScript Statements,	JavaScript Syntax,	
JavaScript Variables,	JavaScript Operators,	JavaScript Arithmetic,	JavaScript Strings,	
JavaScript Events, JavaScript Loop, JavaScript Objects, JavaScript functions.				

CSS: CSS basics, styles, CSS syntax

Design patterns: Singleton pattern, Factory pattern

References

- 1. Herbert Schildt, Java: The Complete Reference, Seventh Edition, The McGraw-Hill.
- 2. E Balagurusamy, Programming with Java, Third edition, McGraw-Hill.
- 3. Ramez Elmasri, Shamkant B. Navathe, FUNDAMENTALS OF Database Systems, Sixth edition, Addison-Wesley.
- 4. Jim Keogh, "J2EE The Complete Reference", Tata McGraw Hill, 28th reprint, 2010.
- 5. Eric Elliott, Programming JavaScript Applications, O'Reilly Media, 2014.

Course Code: 19EMEE305

L-T-P: 0-0-3 ISA Marks: 80 Teaching Hrs: 40

Credits: 3 ESA Marks: 20 Course Title: PLM -Technical Contact Hrs: 6 hrs/week Total Marks: 100 Exam Duration: 2 hrs

Course Contents: PLM- Technical (On Enovia Platform)

Introduction to PLM:Understanding PLM: Product, Product Lifecycle, Product Data, Process Data, ProductRelationshipIssues in Product DevelopmentWhat is PLM?Evolution of PLM PLM VendorsUnderstanding PLM with ExamplePLM Terminologies

Fundamentals: Introduction to ENOVIA Components: Matrix Navigator, Business Modeler, System Manager, MQL Business Objects Attribute, Type, Relationship, Policy User Management: Person, Group, Role, Association Document Management: Files and File Format, File Check-in and Check- out Icon Mail Automating Processes: Triggers & JPOs Vaults & Stores Introduction to 3DEXPERIENCE ENOVIA Modules ENOVIA Architecture ENOVIA Licensing

Installation: Difference between CAS & No-CAS Setup Installation Procedure for No-CAS Mode: Installation of Database (SQL Server), Creation of Tables & User in Database, Installation of Studio Modelling Platform, Installation of 3DSpace, Installation of ENOVIA Modules, No-CAS Deployment of ENOVIA, Post Installation Configurations, Working with ENOVIA Services

Functional

Collaboration & Approvals: People and Organization Setup: Company, Business Unit, Department, Location, Region, User Creation Team Central: Workspaces, Folders, Subscriptions Routes: Route Templates, Routes, Route Tasks

Engineering Part, BOM and Change Management: Part Families Part Series Part Definition: Development Part & Production Part, Equivalent Part, Alternate Part, Spare Parts, Substitute Parts, Manufacturer Equivalent Part (MEP) Part Revisions Part Specifications Bill of Material (BOM) BOM Markups Engineering Change: Fast Track Change, Formal Change

Program and Project Management: Project Templates & Questions Program Project Creation & Scheduling: Phase, Gate & Checklists, Milestone, Task Project Work Calendars Project Task Dependencies & Task Constraints Meetings Project Folders & Documents Project Risk & Issue Management Project Budgets Project Baselines & Project Experiments Project Timesheets

Configuration

Business Modeler: Attribute: Attribute Types & Ranges Dimension Type Policy: Policy States, Access, Signature User Management: Person, Role, Group, Association Relationship Interface

Matrix Navigator:SearchBusinessObjectsCreateBusinessObjectsModify& DeleteBusinessObjectsConnect BusinessObjectsExpandBusinessObjectsViewBusinessObjectBasics& AttributesPromote&DemoteBusinessObjectBusinessObjectFileCheck-inandCheck-outBusinessObjectSignatureApprovals

MQL: Queries for Admin Objects: List, Create, Modify Queries for Business Objects: temp query, print, expand, add, delete, connect, disconnect, promote, demote, eval expression Help Commands

Schema/Data Model: Understanding ENOVIA OOTB Schema Model: PnO, Project Management, Common Document Model Schema Design Symbolic Names & Registration Understanding ENOVIA Access

KLE Technological University

B V Bhoomaraddi Campus, Vidyanagar, Hubballi – 580 031, Karnataka, India. Ph.: +91 0836 2378280

Precedence Auto-Naming Configuration

UI Configuration: Command Menu Categories/Tree Menu Portals & Channels Inquiry Tables: Flat Tables & Structure Browser Tables Editable Tables Settings for Table Columns Web Forms Settings for Web Form Fields Configuration of Create, Edit & View Business Object Details using Web Form

Customization:

ADK: Understanding ENOVIA BusinessObject & DomainObject classes ENOVIA StringList & MapList classes ENOVIA APIs for Business Object Creation, Modification, Deletion ENOVIA APIs for business object querying, for getting business object details, for getting the connected business objects & their details

JPOs: Creating JPOs Exporting & Importing JPOs JPO Macros JPO Method Invocation from JSP, from JPO and from UI Component settings JPO Compilation & Debugging

Triggers: Trigger Configuration in Policy Creation of OOTB Trigger objects Understanding OOTB Events Understanding check, override and action triggers Disabling Triggers

Data Model Customization: Understanding Unified Typing Principles Specialize Data Model: Packages, Types Administrate Data Model Importing & Exporting Packages. & Customer Extensions

Course Code: 15EMEE413

L-T-P: 3-0-0 ISA Marks: 50 Teaching Hrs: 40 Course Title: Aircraft Systems and Design

Credits: 3 ESA Marks: 50 Contact Hrs: 40 Total Marks: 100 Exam Duration: 3 hrs

Unit – 1

Chapter No. 1: Aircraft industry overview

Evolution and History of Flight, Types Of Aerospace Industry, Key Players in Aerospace Industry, Aerospace Manufacturing, Airline deregulation, Structure of the industry, Airline economics, Aircraft design process, Aerospace Industry Trends.

Chapter No. 2: Introduction to Aircrafts

Basic components of an Aircraft, Structural members, Aircraft Axis System, Aircraft Motions, Control surfaces and High lift Devices. Types of Aircrafts - Lighter than Air/Heavier than Air Aircrafts Conventional Design Configurations based on Power Plant Location, Wing vertical location, intake location, Tail Unit 5 hrs Arrangements, Landing Gear Arrangements. Unconventional Configurations-Biplane, Variable Sweep, Canard Layout, Twin Boom Layouts, Span loaders, Blended Body Wing Layout, STOL and STOVL Aircraft, Stealth Aircraft. Advantages and disadvantages of these Configurations.

Chapter No. 3: Introduction to Aircraft Mechanical Systems

Types of Aircraft Systems, Mechanical Systems: Environmental control systems (ECS), Pneumatic systems, Hydraulic systems, Fuel systems, Landing gear systems, Engine Control Systems, Ice and rain protection 8 hrs systems, Cabin Pressurization and Air Conditioning Systems, Steering and Brakes Systems Auxiliary Power Unit.

Unit – 2

Chapter No. 4: Basic Principles of Flight

Significance of speed of Sound, Air speed and Ground Speed, Properties of Atmosphere, Bernoulli's Equation, Forces on the airplane, Airflow over wing section, Pressure Distribution over a wing section, Generation of Lift, Drag, Pitching moments, Types of Drag, Lift curve, Drag Curve, Lift/Drag Ratio Curve, Factors affecting Lift and Drag, Center of Pressure and its effects. Aero foil Nomenclature, Types of Aero foil, Wing Section- Aerodynamic Center, Aspect Ratio, Effects of lift, Drag, speed, Air density on drag,

Chapter No. 5: Overview of the Aircraft Design Process

Introduction, Phases of aircraft Design, Aircraft conceptual Design Process, Conceptual stage, Preliminary Design, Detailed Design, Design Methodologies. Aerodynamic loads, Inertial loads, Loads due to engine, 7 hrs Actuator loads, maneuver loads, VN diagrams, Gust loads, Ground loads, Ground conditions, Miscellaneous loads. Sample problems.

Chapter No. 6: Aircraft materials

Introduction, Basic construction, material forms- Metallic materials and forms. Alloy designations, 3 hrs Mechanical properties- strength, static, stress strain curves, fatigue properties, crack growth.

Unit – 3

Chapter No. 7: Analysis of plates

Theory of plates- Analysis of plates for bending, stresses due to bending, plate deflection under different conditions, Plate buckling, Compression buckling, shear buckling and buckling due to in plane bending moments. Sample exercises.

Chapter No. 8: Analysis of Beams

Theory of beams- Symmetric beams in pure bending, deflection of beams, Unsymmetrical beams in bending. Sample exercises. Torsion in closed section beams, torsion in open section beams, multi cell sections. Sample exercises.

Text Books

1. Daniel P.Raymer, Aircraft Design- A conceptual Approach, 6, AIAA education series, 2012

2. T.H.G. Megson, Aircraft Structures for Engineering Students, 5, Elsevier science publications, 2012

KLE Technological University

B V Bhoomaraddi Campus, Vidyanagar, Hubballi – 580 031, Karnataka, India. Ph.: +91 0836 2378280

www.kletech.ac.in

Course Code: 15EMEE414

L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40		Exam Duration: 3 hrs

Unit – I

1. Industrial engineering and productivity:

Evolution of industrial engineering, industrial engineering functions, recent advances in industrial engineering, productivity of materials, land, buildings, machines and manpower, measurement of productivity, factors affecting the productivity.

2 Methods engineering:

Objective and scope of work-study and method-study. human factor in work-study, work-study and management, work-study and supervisor, work-study and worker.

3 Methods analysis techniques:

Types of recording techniques, process chart symbols, construction of charts (operation process chart, flow process chart, two hand process chart, multiple activity chart, travel chart, string diagram etc.), applications of various charts with examples.

Unit – II

4 Micro motion study:

Purpose of micromotion study, fundamental hand motions, therbligs, micromotion study equipments, cycle graph and chronocyclegraph, simo-chart construction, memomotion study.

5 Work measurement & time Study practice:

Concept of human work, terminology used in work measurement, theory of work measurement, work measurement techniques, definition of time study, time study equipments, basic time study procedure, conducting the time study

6 Performance rating & computing standard time:

Necessity of performance rating, factors influencing rating, rating systems and their details, allowances and their details, problems in time study and time standards, standard time computation with examples.

Unit – III

7 Ergonomics:

Areas of study under ergonomics, system approach to ergonomics model, man-machine system, work capabilities of industrial worker, general principles for carrying out physical activities.

8 Design of man-machine system interface:

Concept of fatigue in industrial worker, relationship between controls and displays, design of work place and effect of environment (influence of climate on human efficiency, influence of noise, vibrations and lighting system).

Text Books:

1. Jhamb L. C., 'Work Study & Ergonomics', Everest Publishing House.

Reference Books:

- 1. ILO, 'Introduction to Work Study'. International Labour Office.
- 2. S Dalela and Sourabh, 'Work Study and Ergonomics', Standard Publishers Distributors.
- 3. Vijay Sheth, 'Industrial Engineering Methods and Practices', Penram International Publishing (India) Pvt. Ltd.

School of Mechanical Engineering KLETECH Engage | Explore | Excel | Evo

06 hrs

04 hrs

05 hrs

05 hrs

06 hrs

Course Title: Industrial Engineering Methods and Practices

04 hrs

05 hrs

05 hrs

Course Code: 15EMEE415Course Title: Advanced Energy TechnologyL-T-P: 3-0-0Credits: 3Contact Hrs: 3 hrs/weekISA Marks: 50ESA Marks: 50Total Marks: 100Teaching Hrs: 40Exam Duration: 3 hrs

Unit - I

1. Solar Radiation, Measurement of Solar Radiation, Solar Radiation Geometry

Energy source, India's production and reserves of commercial energy sources, need for non-conventional energy sources. Solar Radiation : Extra-Terrestrial radiation, spectral distribution of extra terrestrial radiation, solar constant, solar radiation at the earth's surface, beam, diffuse and global radiation, solar radiation data. Measurement of Solar Radiation : Pyrometer, shading ring pyrheliometer, sunshine recorder, schematic diagrams and principle of working. Solar Radiation Geometry : Flux on a plane surface, latitude, declination angle, surface azimuth angle, hour angle, zenith angle, solar altitude angle expression for the angle between the incident beam and the normal to a plane surface (No derivation) local apparent time. Apparent motion of sum, day length, numerical examples.

2. Radiation Flux on a Tilted Surface, Solar Thermal Conversion

Radiation Flux on a Tilted Surface : Beam, diffuse and reflected radiation, expression for flux on a tilted surface (no derivations) numerical examples. Solar Thermal Conversion : Collection and storage, thermal collection devices, liquid flat plate collectors, solar air heaters concentrating collectors (cylindrical, parabolic, paraboloid) (Quantitative analysis); sensible heat storage, latent heat storage, application of solar energy water heating. Space heating and cooling, active and passive systems, power generation, refrigeration. Distillation (Qualitative analysis) solar pond, principle of working, operational problems.

Unit – II

3. Solar Photovoltaic Energy Conversion and PV System Applications

Principles - Physics and operation of solar cells. Classification of solar PV systems, Solar cell energy conversion efficiency, I-V characteristics, effect of variation of solar insolation and temperature, losses. Solar PV power plants.Building-integrated photovoltaic units, grid-interacting central power stations, standalone devices for distributed power supply in remote and rural areas, solar cars, aircraft, space solar power satellites. Socio-economic and environmental merits of photovoltaic systems.

4. Fuel Cell Technology

Fuel cell electrochemistry - Reaction rate - Butler Volmer equation-implications and use of fuel cell polarization curve - Conversion of chemical energy in electricity in a fuel cell. Cogeneration - Fuel cell electric vehicles - Fuel cell vehicles - Motor cycles and bicycles-airplanes - Fueling stations - Fuel cell power plant structure - Fuel processor and fuel cell stack. Advantages and disadvantages. Problems with fuel cells. Research related to fuel cell development in the world and in India.

Unit - III

5. Energy Storage

Introduction, energy demand, energy storage devices, types of battery, basic principle, components, cathode and anode materials, effect of nano-size on energy storage and electrode materials performance, electrochemical energy storage, super-capacitors, advantage of nanotechnology in energy storage devices.

6. Energy Policy

Energy policy issues - Fossil Fuels, renewable energy, power sector reforms, restructuring of energy supply sector, energy strategy for future. Energy conservation act and National electricity policy and plan.

Reference books

- 1. David Merick, Richard Marshall, (2001), Energy, Present and Future Options, Vol. I and II, John Wiley and sons.
- 2. Twidell, J.W. and Weir, A., Renewable Energy Sources, EFN Spon Ltd., 1986
- 3. Peter Gevorkian, Sustainable Energy Systems Engineering, McGraw Hill, 2007
- 4. Bagotsky .V.S, "Fuel Cells", Wiley, 2009.
- 5. Ibrahim Dincer and Marc A. Rosen, "Thermal Energy Storage Systems and Applications", 2nd Edition, John Wiley

KLE Technological University

B V Bhoomaraddi Campus, Vidyanagar, Hubballi - 580 031, Karnataka, India. Ph.: +91 0836 2378280

www.kletech.ac.in

8 hrs

8 hrs

8 hrs

8 hrs

4 hrs

4 hrs

61

and Sons Ltd., 2011.

Course Code: 15EMEE416	Course Title: Ther	mal Management of Electronic Equipme	ent
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/we	ek
ISA Marks: 50	ESA Marks: 50	Total Marks: 10	00
Teaching Hrs: 40		Exam Duration: 3 h	٦rs
	Unit – I		
Chapter No. 1. Introduction Semiconductor Technology Trends, Te Electronics, Thermal Design Process, E Transfer and Heat Transfer, Equation of	emperature-Dependent Failures nergy and Work, Macroscopic a of State.	5 hrs s, Importance of Heat Transfer in and Microscopic Energies, Energy	S
Chapter No. 2. Thermal Resistance Ne Thermal Resistance Concept, Series Th General Resistance Network, Therma Thermal Resistance, Thermal Resistance	e twork Iermal Layers, Parallel Thermal I Contact Resistance, Therma Ce of Printed Circuit Boards (PC	5 hrs Layers, I Interface Materials, Spreading Bs).	S
Chapter No. 3. Thermal Specification of Importance of Packaging, Packaging Package Thermal Resistance Network,	of Microelectronic Packages Types, Thermal Specificatior Parameters Affecting Thermal	5 hrs is of Microelectronic Packages, Characteristics of a Package.	S
	Unit – II		
Chapter No. 4. Cooling methods Conduction Cooling, Convection Coolin Cooling Of CCAs, Cold wall Cooling, Thermoelectric Or Solid State Cooler Micro/Mini Channel Cooling, Cooling Working Fluid; Selection Of Cooling Methods, Selection Criteria.	ing, Selection Of Fan, Liquid Ir Cold Plates, Jet Impingement s, Cooling Using Phase Chang Using Heat Pipes– Working F g Technique– Ranges Of Coo	10 hr nmersion Cooling, Flow-Through : Cooling, Synthetic Jet Cooling, e– Cooling With PCM Materials, Principle, Selection Of Heat Pipe ling Rates Of Different Cooling	rs
Chapter No. 5. Fins and Heat Sinks Fin Equation, Fin Thermal Resistance, Heat Sink Thermal Resistance, Effective	Effectiveness, and Efficiency, F eness, and Efficiency, Heat Sinl	5 hrs ins with Variable Cross Sections, Manufacturing Processes.	S
	Unit – III		
Chapter No. 6. Experimental Techniqu Flow Rate Measurement Technique Measurements, Velocity Measurement Noise Measurements, Importance of E	Jes and Thermal Design Is, System Impedance Measu Int Methods, Temperature Me Experimental Measurements in	5 hrs rement, Fan and Pump Curve asurement Techniques, Acoustic Thermal Design.	S
Chapter No. 7. Computer Simulations Heat Transfer and Fluid Flow Equa Turbulent Flows, Solution of Finite-Diff Commercial Thermal Simulation Tools,	s and Thermal Design ations: A Summary, Fundame ference Equations , Importance of Modeling and S	5 hrs entals of Computer Simulation, Simulation in Thermal Design.	S
Text Books 1. Younes Shabany, Heat Transfer: The 2. Ravi Kandasamy and Arun S. Mujum Publishing, 2010. References	ermal Management of Electroni Idar, Thermal Management of f	cs, CRC Press Inc, 2010. Electronic Components, Lambert Academ	nic

1. Dave S. Steinberg, Cooling Techniques for Electronic Equipment, Wiley, 1991.

- 2. Sung Jin Kim, Sang Woo Lee, Air Cooling Technology for Electronic Equipment, Taylor & Francis, 1996.
- 3. Rao R. Tummala, Fundamentals of Microsystems Packaging, McGraw-Hill, 2001.
- 4. Yunus A. Cengel, Heat Transfer: A Practical Approach. McGraw-Hill, 2003.

Course Code: 15EMEO401 Course Title: Introduction to Nanoscience and Nanotechnology Credits: 3 L-T-P: 3-0-0

ISA Marks: 50 Teaching Hrs: 40

Contact Hrs: 3 hrs/week ESA Marks: 50 Total Marks: 100 Exam Duration: 3 hrs

Unit – I

1 Introduction:

Nanotechnology, Frontier of future- an overview

Length scales, Variation of physical properties from bulk to thin films to nanomaterials, - confinement of electron energy states (LDOS) in 0D, 1D,2D and 3D systems (qualitative treatment); Surface, size, shape and assembly effects.

Bonding and crystal structure in solids, colloids and core-shell structures. Chemical and molecular interaction, functionalziation, basis for biological self-assembly and self-organization.

2 Synthesis of nanomaterials:

Top-down approach: Lithography and soft processes, Ball milling, chemical stamping.

Bottom-Up approach: Chemical Routes for Synthesis of Nanomaterials, Solvo-thermal and Sol-gel synthesis; Microemulsions, micelles and reverse micelles; Physical and Chemical Vapour Deposition, Sputtering, Laser ablation, Epitaxy.

Biological Methods: Role of plants and bacteria in metal (magnetic and non-magnetic) nanoparticle synthesis

3 Characterization:

Electron Microscopy (SEM/TEM); Scanning Probes (STM, AFM), X-ray Photoelectron Spectroscopy (XPS), Optical Spectroscopy -IR/UV/VIS, Raman, Photoluminescence, X-ray Diffraction (including Debye-Scherrer method), Particle Size Analyser-light Scattering, Electrical (I-V and C-V), Porosity (BET method), Zeta potential, nano-indentation.

Unit – II

4 Properties:

- Electronic and optoelectronic properties: Ballistic transport, Coulomb blockade, Diffusive transport,
- Dielectric properties: Polarisation, Ferroelectric behavior.
- Optical Properties: Photoconductivity, Optical absorption & transmission, Plasmons and Excitons, Luminescence and Phosphorescence.
- Magnetic properties: Nanomagnetism, magneto-resistance; Super Para Magnetism
- Thermal and Mechanical properties: changes in thermal transport, thermal transition temperatures, and interfaces with dissimilar materials. Improved hardness and toughness of metals and alloys

Biological: Permeability through biological barriers, molecular recognition and biological assemblies.

5 General Applications:

- Electrical, Electronics & Photonics- Switching glasses, Semiconductor devices including LEDs and ٠ Solar Cells, Photonic Crystals.
- Computer Science- Storage devices and Quantum computing etc
- Mechanical and Civil: Composites and their properties.
- Environmental and Chemical: Porous materials, Catalysis, tracers etc
- Biotechnology- Interaction between bimolecular and nanoparticle surface, nano-bio assemblies, Nanosensors etc

Unit - III

6 Specific Applications:

Part of this can be implemented as a student project that involves: literature-survey, project report and a Seminar (Power-Point) Presentations by groups of two students each (applications and students to be identified by teachers and monitored by one teacher each):

KLE Technological University

B V Bhoomaraddi Campus, Vidyanagar, Hubballi – 580 031, Karnataka, India. Ph.: +91 0836 2378280

www.kletech.ac.in

13 Hrs

64

5 Hrs

6 Hrs

5 Hrs

6 Hrs

5 Hrs

- Carbon and its allotropes: Fullerenes (C₆₀), Carbon nanotubes and Graphene:
- Applications of Carbon Nanotubes: Field emission, Fuel Cells, Display devices, Hydrogen storage.
- Nano-Medicine: Developments and protocols for diagnostics, drug delivery and therapeutics.
- Nanotribology: Friction at nanoscale, Nanotribology and wear-resistance, MEMS and NEMS
- Photo-electronics: Merger of photonics and electronics at nanoscale dimensions
- Single electron devices, molecular circuits
- Nanocomposites (i.e. metal oxide, ceramic, glass and polymer and core-shellbased);
- Biomemitics and Biomaterials, synthetic nanocomposites for bone, teeth replacement, DNA scaffolding.
- Nanosensors: Temperature Sensors, Chemical and gas Sensors, Light and radiation sensors

7 Demonstration through experiments:

- 1. Chemical synthesis of Au and Ag nanoparticles and characterization by Optical spectroscopy of size dependence band-gap
- 2. Debye Scherrer analysis of XRD data of nanoparticles of different sizes.
- 3. Surface area and Pore size distribution of the BET data from a nano-porous material.
- 4. Some experiment to study mechanical strength of nanocomposites (nano-indentation)

8 Guest lectures from industries and research laboratory personnel:

Societal issues of Nanotechnology: Prospects and Dangers; Commercial aspects, emerging industry and employment opportunities.

Text Book:

References:

- 1. Nano Materials- A.K.Bandyopadhyay/ New Age Publishers.
- 2. Nanocrystals: Synthesis, Properties and Applications.
- 3. C. N. R. Rao, P. John Thomas and G. U. Kulkarni, Springer Series In Materials Science.
- 4. Nano Essentials- T.Pradeep/TMH.
- 5. Plenty of Room for Biology at the Bottom-An introduction to bio-nanotechnology, E. Guzit, Imperial College Press

Books Recommended for extra reading:

1. Introduction to Nanotechnology, C P Poole & F J Owens, Wiley, 2003.

2. Understanding Nanotechnology, Scientific American 2002.

3. Nanotechnology, M Ratner & D Ratner, Prentice Hall 2003.

4. Nanotechnology, M Wildon, K Kannagara G Smith, M Simmons & B Raguse, CRC

Press Boca Raton 2002.

Apart from the above, in view of the course being of advanced nature, the content of course will be supplemented with course material from the course instructors.

1 Hrs

4 Hrs

Experience Engineering @ School of Mechanical EngineeringKLETECH _____Engage | Explore | Excel | Evolve

Cours	e Code: 15EMEO402		Course Title: Nanote	chnology
L-T-P:	3-0-0	Credits: 3	Contact Hrs: 3	hrs/week
ISA M	arks: 50	ESA Marks: 50	Total M	arks: 100
Teach	ing Hrs: 40		Exam Durat	ion: 3 hrs
		Unit - I		
1. Ar Histor indust	overview of Nanoscience & N ical background – nature, sc rial, economic and societal imp	anotechnology: ope and content of the subject llications	– multidisciplinary aspects –	4 Hrs
2. Ex For ir probe	perimental Techniques and M westigating and manipulating microscope – optical and othe	ethods: materials in the nano scale – ele r microscopes	ectron microscope – scanning	5 Hrs
3. Fu Discov orderi prope Carbo electr	llerenes: very, synthesis and purification ing – pressure effects – con rties. n Nanotubes – synthesis and onic structure – transport prop	 chemistry of fullerenes in the conductivity and superconductivity purification – filling of nanotube erties – mechanical and physical pr 	ndensed phase – orientational – ferromagnetism – optical es – mechanism of growth – operties – applications	6 Hrs
		Unit – II		
4. Se Mono mono	lf-assembled Monolayers: layers on gold – growth pr layers – applications	ocess – phase transitions – pat	terning monolayers – mixed	5 Hrs
5. Se Synth prope	miconductor Quantum Dots: esis – electronic structure of rties with size – uses	nanocrystals – how quantum dots	s are studied – correlation of	5 Hrs
6. M Metho super	onolayer-protected Metal Nan od of preparation – characteriz lattices	oparticles: ation – functionalized metal nanopa	articles – applications –	5 Hrs
		Unit - III		
7. Na Intera nano- nanot	anobiology: ction between biomolecules a bio assemblies – biological piotechnology – future perspec	nd nanoparticle surfaces – materia applications – nanoprobes fo tives	ls used for synthesis of hybrid or analytical applications –	5 Hrs
8. M Covale single	olecular Nanomachines: ent and non-covalent approacl molecular devices – practical p	nes – molecular motors and machi problems involved	nes – other molecular devices	
Text E 1. N N	Books ANO: The Essentials – Understa 1adras); Tata McGraw-Hill India	anding Nanoscience and Nanotechr (2007)	nology; T Pradeep (Professor, IIT	
Refer	ence Books	r 9. Farl Dougons Willow (2005)		
1. N 2. Ir V 3. N	anotechnology: Richard Booke htroduction to Nanoscale Science entra, et al (Ed); Springer (2004 anotechnology Demystified: Lin	r & Earl Boysen; Wiley (2005). ce and Technology [Series: Nanostri !). nda Williams & Wade Adams; McGr	ucture Science andTechnology]: 	Di
Int	roduction to Nanotechnology:	Charles P Poole Jr, Frank J Owens, N	Wiley India Pvt. Ltd., New Delhi, 2	2007

Experience Engineering @ School of Mechanical EngineeringKLETECH

Cour	se Code: 15EMEO403		Course Title: Design of Exp	eriments		
L-T-P	: 3-0-0	Credits:3	Contact Hrs: 40			
ISA N	/larks: 50	ESA Marks: 50	Total Marks: 100			
Теас	hing Hrs: 40 hrs		Exam Duration: 3hrs			
		Unit I				
1	Chapter 1. Introduction Strategy of experimentation designing the experiments	on, applications of experimental	l design, basic principles, guidelines for	04hrs		
2	Chapter 2. Taguchi's approach to quality Definition of quality, Taguchi's quality philosophy, Quality loss function, off-line and on-line quality					
3	Chapter 3. Motivation for using ANOVA Introduction to analysis of variance (ANOVA), test of hypothesis, limitations of testing of hypothesis for difference between the means of two samples, testing of hypothesis using chi-square, t-test and F-test, one-way ANOVA examples.			08hrs		
		Unit II				
4	Chapter 4. Factorial Exper Two-Factor Factorial Desig	<pre>iments n, General Factorial Design, 2², 2^a</pre>	and 2 ⁴ Full Factorial Designs, Exercises	08hrs		
5	Chapter 5. Fractional Factorial Designs One half fraction of 2 ^k Design, One quarter fraction of 2 ^k Design, General 2 ^{k-p} Fractional Factorial Design, Exercises			04hrs		
6	Chapter 6. Regression App Simple Regression and Mu Behnken design, Exercises	r oach Iltiple regressions, Types of desi	gns, Central composite design and Box-	04hrs		
	Unit – III					
7	Chapter 7. Orthogonal Arr Introduction, Design of Ort	ay Experiments hogonal arrays, ANOVA for Orth	ogonal Array.	04hrs		
8	Chapter 8. Robust Parame Introduction, Signal-to-No	ter Design ise ratio, ANOVA for S/N ratio, St	eps of S/N approach.	04hrs		
Text	Books:					
	1. Douglas C. Montgomery	, "Design and Analysis of Experin	nents", John Wiley and Sons.			

- 2. Madhav S. Phadke, "Quality Engineering using Robust Design", Prentice Hall PTR, Englewood Cliffs, New Jersey.
- 3. R. Panneerselvam, "Design and Analysis of Experiments- R PHI Learning Private Limited, New Delhi.

References:

- 1. Robert H. Lochner and Joseph E. Matar, "Designing for Quality- an Introduction Best of Taguchi and Western Methods or Statistical Experimental Design", Chapman and Hall.
- 2. Philips .J. Ross, "Taguchi Techniques for Quality Engineering", McGraw Hill, New York.

KLE Technological University

Course Code: 15EMEO404

L-T-P: 3-0-0 ISA Marks: 50 Teaching Hrs: 40

Basics of Gasoline (SI) Engine

Introduction, Operating concept, Valve timing, Stages of combustion, Combustion knock, Effect of engine variables on knock, Torque and power, Engine efficiency, Specific fuel consumption, Fuels for spark ignition engines.

Unit - I

Credits: 3

ESA Marks: 50

Gasoline engine management

Technical requirement, Cylinder charge control, Air-charge control, Variable valve timing, controlled charge flow, A/F -mixture formation, Ignition- Battery ignition systems, Electronic ignition system, Inductive ignition system, Ignition coils, Spark plugs.

Gasoline fuel injection

Fuel supply for manifold injection, Operating concept, Electromagnetic fuel injectors, Types of fuel injection, Fuel supply for gasoline direct injection, Operating concept, Rail, High pressure pump, Pressure control valve, High pressure injector, Combustion process, A/F mixture formation, Operating modes Motronic engine management, ME-Motronic, MED-Motronic.

Unit – II

Basics of Diesel Engine

Method of operation, Stages of combustion, Operating statuses, Fuel-injection system, Combustion chambers-Di and IDI, Diesel fuels-properties, Alternative fuels- Alcohols, Vegetable oils. Cylinder Charge Control - Intake air filters, Swirl flaps, Superchargers & Turbochargers, Exhaust Gas Recirculation.

Diesel fuel injection

Requirements of ideal fuel injection system, Basic Principles of fuel supply - Mixture distribution, Start of fuel injection and delivery, Injected fuel quantity, Injection characteristics, Injection pressure, Injection direction and number of injection jets. Fuel supply system.

Fuel injection pumps

Design and method of operation of in-line fuel injection pump systems, Distributor fuel injection pump systems, Unit injector system and unit pump system, Common rail system.

Nozzles and Nozzle holders - Pintle nozzles, Hole type nozzles, future development.

Unit - III

Engine Exhaust Emission Control

Formation of NO_x, HC/CO mechanism , Smoke and Particulate emissions, Methods of controlling emissions- Thermal converter, Catalytic converter and Particulate Trap, Diesel Smoke and its control, Emission (HC, CO, NO and NO_x) measuring equipments, Emission norms.

Recent Trends in IC Engines

Dual fuel Engine, Homogeneous Charge Compression Ignition Engine (HCCI), Reactivity controlled compression ignition engine (RCCI), Lean Burn Engine, VVT engines.

Text Books:

- 1. Gasoline Engine Management Published by Robert Bosch Gmbh, 2004 2nd Edition
- 2. Diesel Engine Management " Published by Robert Bosch Gmbh, 2004 3rd Edition

Reference Books:

- 1. A Course in I.C.Engine – Mathur and Sharma, Dhanpal Rai & sons, New Delhi
- Internal Combustion Engine Fundamentals John B. Heywood, McGraw-Hill 2.

Experience Engineering @ School of Mechanical

5 Hrs

5 Hrs

4 Hrs

5 Hrs

5 Hrs

5 Hrs

5 Hrs

6 Hrs

Contact Hrs: 3 hrs/week

Total Marks: 100

Exam Duration: 3 hrs

Course Title: Engine Management Systems

Course Code: 16EMEC201

Experience Engineering @

School of Mechanical EngineeringKLETECH

L-T-P: 3-1-0	Credits:4	Contact Hrs: 64
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hrs: 40		Exam Duration: 3 hours

Unit - I

1. Introduction to Instrumentation & Control Engineering

Generalized configurations and functional description of measuring instruments, Generalized configurations and functional description of control systems. Control system design, Design examples - Open loop and Close loop automatic control

2. Mathematical Modelling of Physical Systems:

Introduction, Differential equations of physical systems, The Laplace Transform, Order of system; The transfer function of linear and rotational Mechanical systems, Gear Train, Electrical systems, Electromechanical System, Thermal systems, Hydraulic System; Block representation of system elements, Reduction of block diagrams to get transfer function.

Unit - II

3. System Response

Introduction, Poles, Zeros, and System Response, First-order system response to step, ramp and impulse inputs, Second-order system response to step input; Un-damped, Under damped, Critical damped and Over damped systems, Time response specifications. Design of 1st and 2nd order system. Introduction to PID controller design. Types of Controllers, Mathematical modeling of PID, ON-OFF controller, Effect of Proportional, Derivative and Integral elements on system behavior, Design of Controller for given simple applications.

4. System Stability

Introduction to stability and the stability analysis by Routh-Hurwitz Criterion. Defining the Root locus, General rules for constructing root loci, Sketching the Root locus, Effect of gain adjustment, addition of pole and addition of zero on system response and system stability. Frequency Response Techniques: Bode Plots. Stability analysis using bode plots.

Unit - 3

6. Instrumentation

Quality Prameters of an instrument. Static and Dynamic Performance Characteristics instrument. Introduction to Signal Conditioning Processes; Motion measurement - Displacement: Translation and Rotational, Velocity: Translation and Rotational, Acceleration measurements

05 Hrs

10 Hrs

05 Hrs

08 Hrs

07 Hrs

7. Instrument and Display

Temperature measurement, Force, Torque and Power measurement, Pressure and Flow rate measurement. Display: LED, 7-segment, TFT, Plasma.

Text Books

- 1. Katsuhiko Ogata, Modern Control Engineering, 5th edition, Pearson Publications
- 2. T.G Beckwith, R.D Marangoni and J.H Lienhard, Mechanical Measurements, 5th edition, Addison Wesley
- 3. W. Bolton, "Mechatronics", 2nd edition, Pearson Ed, 2001

References

- 1. Richard C Dorf and Robert H. Bishop, Modern Control Systems, 12th edition, Addison Wesley
- Norman S. Nise, Control. Systems, 6th edition, John Wiley & Sons
- 3. R.S Figiola and D.E Beasley, Theory and Design for Mechanical Measurement, 2nd edition, John Wiley
- 4. Ernest Doebelin and Dhanesh Manik, Measurement Systems, 6th edition, Tata McGraw-Hill Education Pvt. Ltd

05 Hrs

Course Code: 16EMEP202

Course Title: Instrumentation & Control Engineering Lab

L-T-P: 0-0-2	Credits:2	Contact Hrs: 48
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs: 48 (24 sessions)		Exam Duration: 2 hours

Sl. No	Content	No. of Sessions
1	MATLAB - UI introduction, Desktop tools, Matrices, Control and condition statements, script Basic plotting, MuPad, Building GUI for few problems like addition of two numbers	3
2	Simulink- addition of numbers, temperature conversion, creation of subsystem, 1st and 2nd order system modeling with elementary block diagram. Input data from workspace.	1
3	Study of Multimeter and use of it to measure voltage, Current, Resistance etc. Simulate and Measure the same from simscape physical modelling	1
4	Physical modelling, analytical and experimental study of Inverting and Non Inverting circuits. Measurement of amplitude and phase.	2
5	Study of system response for Impulse, Step and Ramp inputs	2
6	Physical modelling, analytical and experimental study of 2 nd order systems for varying zeta value	1
7	Physical modelling of electro-mechanical, Gear Train, hydraulic, Hydraulic lift and study the response for step input	2
8	Stability analysis using root locus and Bode plots	2
9	Introduction to virtual instrumentation using LabVIEW	3
10	Strain Measurement with LabVIEW and DAQ.	1
11	P, PI, PID controller design	1
12	Quancer hardware for control application	2
13	Study of LVDT, Load Cell, Tachometer, Thermocouple, Thermometer, Sound measurement	1

Experience Engineering @ School of Mechanical EngineeringKLETECH

Course Code: 16EMEP203

L-T-P: 0-0-3 ISA Marks: 80 Teaching Hrs: 72

Credits: 3 ESA Marks: 20 Course Title: Engineering Design Contact Hrs: 6 hrs/week Total Marks: 100 Exam Duration: 2 hrs

Engineering Design [Part A]

1	Planning: Analyse Need, Formulate a Product Proposal, Clarify the Task, Requirements	6	
	Modeling (SRS), Elaborate Requirements List, Design Specifications		
2	Concept Development: Function to Architecture, Establish Functions Structure, Search for	9	
	Working Principles & Working Structures, Combine & Firm-up into Concept Variants, Evaluate		
	against Technical & Economic criteria, Best Feasible Design		
3	System-level Design: Product Architecture -State Diagrams, Data-flow Diagrams,	9	
	Configuration Design, Parametric Design, Construction Structure, Preliminary BOM, Co-		
	simulation across domains		
4	Detail Design: Geometry, Dimensions, Material, PCB Design, Component Selection,		
	Class Diagrams, Code Generation, Design Verification, Detailed & Assembly Drawings		
	Production & Assembly Instructions, Final BOM, Product Specifications		

Text Books (List of books as mentioned in the approved syllabus)

- 1. Clive L Dym and Patrick Little, "Engineering Design: A Project Based Introduction", John Wiley & Sons
- 2. Yousef Haik, "Engineering Design Process", Cengage Learning India Private Limited, New Delhi

References

1. Pahl, G., Beitz, W., Feldhusen, J. and Grote ; "Engineering Design-A Systematic Approach" by, K.-H- Springer; 3rd ed. 2007

Laboratory Plan

Laboratory Title: Engineering Design[Part B]	Lab. Code: 15EMEP203[Part B]
Total Hours: 40	Duration of ESA Hours: -
ISA Marks: 40	ESA Marks: 0

COURSE CONTENT

Course Title: Course Code: 15EMEP203 [Part B] Engineering Design Practice [Part B] L-T-P: 0-0-1.5 Credits:1.5 Contact Hrs: 3hrs/week ISA Marks: 40 ESA Marks: 00 Teaching Hours: 13 Sessions of 3 hours each (40hrs)

Ра	rt – B1 [Machine Drawing]	13 sessions
8.	 3D Modeling using CAD software 3D modeling of machine parts such as: (1) Body of screw jack (2) Valve body (3) Body of machine vice (4) Flange of protected type flanged coupling (5) Cone pulley 	9 Hours / 3 sessions
9.	Sectional Views Sectional views of machine parts involving half section, full section, offset section, revolved section, and local section	9 Hours / 3 sessions
10	 Threaded Fasteners Drawing of bolts, nuts, screws and their conventional representation. 	6 Hours / 2 sessions
11	 Part and Assembly Drawing Drawing of part and assembly drawing of machines such as: Screw jack Protected type flanged coupling Pipe vice Clapper box Non-return valve Universal coupling Pin and cotter joints 	15 hours / 5 sessions

Books/References:

Text books:

- Machine Drawing by K.R. Gopalakrishna, Subhas Publications, 22nd Edition 2013. 1.
- Machine Drawing by N.D.Bhat&V.M.Panchal, Charotar Publishing House. 2.

Course Code: 16EMEP201

L-T-P: 0-0-1 ISA Marks: 80 Teaching Hrs: 24 Credits: 1 ESA Marks: 20

Course Title: Manufacturing Processes Lab Contact Hrs: 2 hrs/week Total Marks: 100 Exam Duration: 2 hrs

1 Machining practices involving machining time calculations and estimation of machining costs for the jobs for turning, milling, drilling, grinding. (3 slots)

2 Simulation of CNC programming on machining processes. (2 slots)

3 CNC programming turning and machining centres. (5 slots)

4 Design, Modeling and Analysis of Bulk deformation and Sheet Metal forming processes. (2 slots)

5 Demonstration of Non-traditional machines such as laser cutting, plasma cutting, electro discharge machines

Text books

- 1. Kalpakjian S., and Schmid S.R., Manufacturing Engineering & Technology, 7th edition, Pearson Education, 2014.
- 2. Mikell P. Groover, Fundamentals of Modern Manufacturing, 5th edition, John Wiley & Sons, 2012.

Reference books

- 5. John A. Schey, Introduction to Manufacturing Processes, 3rd edition, Tata McGraw Hill, 1999.
- 6. Juneja B. L. and Sekhon G. S., Fundamentals of Metal Cutting and Machine Tools, 3rd edition, New Age International Limited, 2008.
- 7. Mikell P. Groover, Automation, Production Systems, and Computer-Integrated Manufacturing, 4th edition, Prentice Hall, 2014.
- 8. Pandey P. C. and Shan H. S., Modern Machining Processes, 1st edition, Tata McGraw Hill, 2013.

Course Title: Mechatronics Lab

Course Code: 16EMEP204

Credits:3	Contact Hrs: 60
ESA Marks: 20	Total Marks: 100
	Exam Duration: 2 hours
	Credits:3 ESA Marks: 20

Unit - I

1. Introduction to Mechatronics: Definition & overview of Mechatronics, Key elements, Real time 04 Hrs Simualtion, Mechatronics Design approach, examples of mechatronic systems.

2. Sensor, Actuators: Classification and application Sensors and Actuators: DC motor, Stepper motor, 04 Hrs AC and DC Servo motor

3. Signal conditioning: Introduction; Filters(Active/Passive, Analog/Digital); Encoder, Decoder; MUX, 02 Hrs Demux; SR Latch, Flip Flop(SR, JK, D, T), Registers, Counters; ADC, DAC; Data Acquisition System(DAQ) simulation experiments.

Unit - II

4. Basics of Microcontrollers/Microprocessor: Memory Hierarchy in Computer; Address/Data lines; 04 Hrs Micro-controller Vs Microprocessor; RISC vs CISC, Harward Vs. Von neumann, Introduction to 8051 Architecture, Timer, Counter, interrupts; Different Architectures;

5. Communication System

Digital Communications, Centralized, hierarchical and distributed control, Networks, Protocols, Open System Interconnection Communication interface, Serial and Parallel communication interface, Wireless Protocols.

6. Programmable logic controller (PLC): Introduction, Architecture of PLC; Functional Block 02 Hrs Diagram(FBD) and Ladder diagrams for logic functions, latching, interlocking, Timer/counter, web controlled applications. Experiments on the same.

7. Applications of Mechatronics: Robotics: Introduction, Robotic terminology, Robotic configuration, 02 Hrs Robot applications, Robots Co-ordinates System; Experiments.

Machine Vision System: Introduction, Image Acquisition; Image Processing;

Text Book

- 1. W. Bolton, "Mechatronics", 2nd edition, Pearson Ed, 2001
- 2. Petruzella D Frank, "Programming Logic Controllers", 3rd edition, Mc Graw Hill Education, 2010
- 3. Mazidi Muhammd Ali et.al, "The 8051 Microcontroller and Embedded Systems", 2nd edition, Pearson Education India, 2007.

References

- 1. David Bradley and David W., "Mechatronics in Action", 2nd edition, Springer, 2010
- 2. Devdas Shetty, Richard Kolk, "Mechatronics System Design", 2nd edition, Cengage Learning, 2010.
- 3. Robert H. Bishop, "MECHATRONICS an Introduction", 1st edition, Taylor & F, 2006.
- 4. Garry Dunning, Introduction to Programmable Logic Controllers, 3, Thomson/Delmar Learning, 2005.
- 5. W. Bolton, Programmable Logic Controllers, 2, Elsevier, 2013.

Manuals:

1. Mechatronics Lab Manual prepared by Lab-incharge.

Others:

KLE Technological University

B V Bhoomaraddi Campus, Vidyanagar, Hubballi – 580 031, Karnataka, India. Ph.: +91 0836 2378280

02 Hrs

• Relevant Manuals and data sheets of different device/equipment manufacturers.

List of planned Experiments:

SI. No	Name of Experiments	No. of Sessions
1	Realization of Logic gates and arithmetic circuits.	2
2	Realization of combinational circuits like Encoder, Decoder; MUX, Demux using software package. Use these circuit to understand signal conditioning concepts.	3
3	Realization of sequential circuits like SR Latch and Flip Flop (SR, JK, D, T) and build Registers and Counters using software package. Use these as basic building blocks for controller.	2
4	Simulate circuits of Filters (Active/Passive, Analog/Digital), ADC and DAC to understand the intricate details of Data Acquisition System (DAQ).	2
5	PLC software Familiarization and Basic Programming (Latching and interlocking).	1
6	Timer, Counter programming applications using PLC.	2
7	Building applications like Water level controller, Sequencing of 3 motors, Washing machine sequencing, Welding process/ conveyor controller, DCmotor controller using PLC.	2
8	Web server based control technique for remote control applications (give insight to IOT applications).	1
9	Machine vision concept realization using kits built In-house. Write a Program using Matlab to capture image, detect object and find its co- ordinates. Communicate this information to arduino to pick and place it to predefined position.	2
10	Build stand alone systems for image acquisition and processing applications using Raspberry pi. It is programmed using graphical programming (simulink).	2
11	Course Project (Open Ended Experiment.)	1

Experience Engineering @ School of Mechanical Engineering**KLETECH** Engage | Explore | Excel | Evolve

Course Code: 16EMEP205

L-T-P: 0-0-2

Credits:2

Course Title: Product Realization

Contact Hrs: 60

ISA Marks: 80	ESA Marks: 20	Total Marks: 100					
Teaching Hrs: 60	(30 sessions)	Exam Duration: 2 hours					
	Product Realization Week wise Schedule/ Planning:						
Week #	Par	rticulars					
Week 1 and Week 2	 Introduction to Prototyping Specifications, Part Drawings, Assembly D BOM, Process Plan, Fabrication and Test Pla IOT Workshop 	Drawings, PCB Layout, Wireframe , Pseudocode, n Validation					
Week 3	 Identifying sub-assemblies Procurement of logistics for proof of concep Selection of materials for all the parts and jc Selection of UI and Core Component of Andu 	ot testing. Dining techniques roid					
Week 4	 Process plan Identifying the proper machines, tools and o Selection of appropriate raw materials for plan Demonstrate breadboard prototype of energielectronic circuit for PCB design) Ul implementation using XML 	operations required for prototyping. rototyping. tire electronics in the system. (To have tested					
Week 5	 Fabricate the parts for sub assembly Initiate schematic entry in PCB design sof board. UI implementation and validation 	ftware, also refine and optimize thesize of the					
Week 6	 Fabricate the parts for sub assembly Generate gerber files for the optimal PCB de Android core component implementation au 	esign. nd Unit Testing					
Week 7	 Fabricate the parts for sub assembly Fabricate PCB using MITS machine, solder co Android core component implementation at 	omponents and test the design. nd Unit Testing					
Week 8	 Assemble the sub assemblies and check for i Revisit PCB testing for increasing reliability connections, dry soldering, andbad electron Android core components integration and termination 	interference and functionality ty of the design. (test to avoid/eliminate lose ic components) esting					
Week 9	 Test the functional prototype using proper in Demonstrate working of fully functional PCE Configuration of IoT Server 	dentified test methods. 3.					
Week 10	 Integratesubsystems for prototype testing. Analyse the test results System modification System integration 						
Week 11	 Final concluding review Product catalog 						

References

System Tesing.

1. Pahl, G., Beitz, W., Feldhusen, J. and Grote ; "Engineering Design-A Systematic Approach" by, K.-H- Springer; 3rd ed. 2007

www.kletech.ac.in

Unit – I **Chapter 1: Introduction to HVAC Systems and Psychrometry** 05 Hrs Purpose, applications, definition and components of air conditioning - Need and methods of ventilation. Evolution of air properties and psychrometric chart - Basic processes such as sensible heating/cooling, humidification/dehumidification and their combinations, steam and adiabatic humidification, adiabatic mixing, etc. - Bypass factor and Sensible heat ratio, Numerical problems. **Chapter 2: Human Comfort, Summer and winter AC** 05 Hrs Heat transfer from body, convection, radiation, conduction, evaporation, clothing resistance, activity level - Concept of human comfort - Thermal response - comfort factors - Environmental indices - Indoor air quality. - Simple summer AC process, Room sensible heat factor, Coil sensible heat factor, ADP -Precision AC - Winter AC.

Credits: 3

ESA Marks: 50

Chapter 3: AC Systems and Equipment

Classification of air conditioning systems, Filters, types, efficiency – Fan laws, cooling coils and hearing coils, sizing and off design performance - Cooling and dehumidifying coil, dry and wet, sizing, performance.

Chapter 4: Heat Transfer	04 Hrs
Heat transfer in wall and roof, sol-air temperature, insulation, cooling load temperature difference -	
Fenestration, types of glass, sun shade, shading coefficient, maximum radiation, cooling load factor	

Chapter 5: Cooling load and heating load estimation

Thermodynamics of human body and mathematical model, Human comfort chart, Design conditions, outdoor, indoor - External load, wall, roof, glass - Internal load, occupancy, lighting, equipments -Ventilation, air quantity, loads - Load estimation methods. Vapour transfer in wall, vapour barrier, load estimation basics

Chapter 6: Air distribution, diffusion and Ventilation

Ducts, types, energy equation for pipe flow, friction chart, methods of sizing, air distribution systems, ADPI, outlet/inlet selection.

Need, threshold limits of contaminants, estimation of ventilation rates, decay equation, air flow round buildings, Natural, wind effect, stack effect, combined effect - Mechanical, forced, exhaust, combined -**Displacement ventilation**

Steel plants, car parks, plant rooms, mines, etc.

Chapter 8: Ventilation system design

Exhaust ducts, filters, blowers, hoods, chimney, etc.

TEXT BOOK:

1. Faye C. McQuiston, Jerald D. Parker, Jeffrey D. Spitler, Heating, Ventilating and Air Conditioning: Analysis and Design, 6th Edition, July 2004,

Unit – III

2. W P Jones, Air Conditioning Engineering ELBS 3rd edn Edward Arnold (Publishers) ltd. Londan.

REFERENCES:

- Harris, Modern Air Conditioning Practice 3nd Edn McGraw Hill Book Company 1.
- S. N. Sapali, Refrigeration and air conditioning 2nd Edn, PHI learning pvt ltd, Delhi 2016 2.
- C P Arora, Refrigeration and air conditioning 3rd edn 3.

Course Code: 15EMEE308

Experience Engineering @

School of Mechanical Engineering KLETECH

Engage | Explore | Excel | Evol

L-T-P: 3-0-0 ISA Marks: 50 Teaching Hrs: 40

78

Contact Hrs: 3 hrs/week Total Marks: 100 Exam Duration: 3 hrs

06 Hrs

06 Hrs

06 Hrs

04 Hrs

04 Hrs

Course Title: HVAC Systems

Unit – II

Course Code: 18EMEE303			Course Title: Turbo N	/lachines
L-T-P: 3-0-0		Credits:3	Contact Hrs: 50	
ISA Marks: 50		ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40			Exam Duration: 03	
		Unit – I		
1.	Principles of Turbo Machinery			5 Hrs
	Definition of turbo machine, Comparison wit Application of first and second law to turbo-ma- their physical significance, Effect of Reynolds dimensional analysis and model studies.	h positive displacemer chines, Efficiencies. Dim number, Specific speed	nt machine, Classification; ensionless parameters and I, Illustrative examples on	
2.	2. Energy Exchange in Turbo Machines Euler Turbine equation, Alternate form of Euler turbine equation-components of energy transfer, Degree of reaction, General Analysis of a turbo machine-effect of blade discharge angle on energy transfer and degree of reaction, General analysis of centrifugal pumps and compressors-effect of blade discharge angle on performance, Theoretical head-capacity relationship.			5 Hrs
3.	Steam Turbines			6 Hrs
	Classification, single stage impulse turbine, condition for maximum blade efficiency, stage efficiency. Compounding-need for compounding, method of compounding, impulse staging-condition for maximum utilization factor for multi stage turbine with equiangular blades, effect of blade and nozzle losses, Reaction turbine, Parson's reaction turbine, condition for maximum blade efficiency, reaction staging. Problems on single stage turbines only.			
	l	Jnit – II		
4.	. Compressible Flow Fundamentals			5 Hrs
	Energy and momentum equations for compressible fluid flows, various regions of flows, reference velocities, stagnation state, velocity of sound, critical states, Mach number, critical Mach number, types of waves. Mach cope, Mach angle, effect of Mach number on compressibility.			
5.	Centrifugal Compressors		, ,	6 Hrs
	Stage velocity triangles, slip factor, power input factor, Stage work, Pressure developed, stage efficiency and surging and problems. Axial flow Compressors: Expression for pressure ratio developed in a stage work done factor, efficiencies and stalling. Problems			
6.	Axial flow Compressors			5 Hrs
	Axial Flow Compressors: Basic operations, elementary theory, factors affecting stage pressure ratio, Blockage in the compressor annulus, degree of reaction, three-dimensional flow, design process, blade design, calculation of stage performance, compressibility effects, off-design performance.			
	L	Init – III		
7.	Flow through Variable Area Ducts Isentropic flow through variable area ducts, T-s and h-s diagrams for nozzle and diffuser flows, area ratio as a function of Mach number, mass flow rate through nozzles and diffusers, effect of friction in flow through nozzles.		4 Hrs	
8.	Axial flow Turbines			4 Hrs
	Stage velocity triangles, single impulse stage, multi-stage velocity and pressure compounded impulse, reaction stages, blade-to-gas speed ratio, losses and efficiencies. Performance charts, low hub-to-tip ratio stages, partial admission turbine stages, supersonic flow.			
Text	Text Book			

- 1. Shepherd D.G., Principals of Turbo Machinery, Macmillan Publishers, 1st Edn. 1964
- 2. Yadav R., (2007) 'Steam & gas turbines and power plant engineering', Central Publishing House Allahabad, Vol. 1,
- 3. S. M. Yahya, Turbines, Compressors & Fans, Tata McGraw Hill Co. Ltd., 2nd edition, 2002.
- E Rathakrishnan, Gas Dynamics, PHI- 2nd edition, 2009.

References

1. Kadambi V. Manohar Prasad, An Introduction to Energy Conversion, Vol-III Turbo Machinery, New Age International, 1st Edn, 2006.

Saravanamutto H.I.H, Rogers G.F.C., Cohen H, Gas Turbine Theory, 5th edn., Pearson Education, 2006.

KLE Technological University

B V Bhoomaraddi Campus, Vidyanagar, Hubballi - 580 031, Karnataka, India. Ph.: +91 0836 2378280

Course Code: 15EMEE417	Cours	e Title: Modern Trends in Manuf	facturing
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 h	nrs/week
ISA Marks: 50	ESA Marks: 50	Total Ma	arks: 100
Teaching Hrs: 40		Exam Durati	on: 3 hrs
	Unit - I		
1. Systematic Approach for Mar Seven Losses Regarding Producti Four Levels of Manufacturing Stra	nufacturing Strategy: vity and Profitability, Feasibility Study o ategy.	of Productivity Improvement,	4 Hrs
2 . Management and Productivit Definition of Engineering, Mana Productivity, Necessity of Facts a Productivity, Purpose of Produc Levels of Improvement, Points of Utilization to Standard Time.	/ in Engineering: gement and Management Engineering nd Work Measurement. tivity Improvement, Engineering Appr Successful Productivity, Relationship of	g, Industrial Engineering and oach for Productivity, Three f Methods, Performance, and	8 Hrs
3. Concurrent Engineering:			3 Hrs
Introduction, importance of CE , process , communication models,	building blocks of CE, Important facto benefits and its tools.	rs in concurrent engineering	
	Unit – II		
4. Continuous Process Improvem Introduction, Japanese concept improvement, need for continu- implementing continuous improv- quality circles, suggestion system and discussion of few case studie	nent: c of continuous improvement (kaize uous improvement, tools for continu vement, three pillars of continuous im us, kaizen and management, kaizen um s.	en), innovation concept of lous improvement, steps in lprovement, standardization, brella, TPM, Six sigma, FMEA	8 Hrs
5. Pull Production Systems:			7 Hrs
Introduction to TPS, KANBAN so kanban, kanban rules, adapting t example, supplier kanban and sec	/stem, difference between pull and p to fluctuation in demand through kanba quence schedule for kanban.	oush system, other types of an, a detailed kanban system	
	Unit - III		
6. Quality Management System Need for ISO 9000 and Othe Implementation of Quality System Requirements and Benefits. standards, Environmental Manag	s: r Quality Systems, ISO 9000:2000 C m, Documentation, Quality Auditing, Q Occupational Health & Safety Ma ement Certification (ISO 14001) and its	Quality System – Elements, S 9000, ISO 14000 –Concept, anagement (OSHAS -18001) benefits to stakeholders.	5 Hrs
7. Six sigma: Principles of Six sigma, project se six sigma in service and small o application, statistical foundation	lection for six sigma, six sigma problem rganization, six sigma and lean produc on, statistical methodology, design (solving, design for six sigma, ction, statistical thinking and of experiments, analysis of	5 Hrs

variances Text books

- 1. Masaki Imai, 'KAIZEN', McGraw Hill International.
- 2. Shigeyasu Sakamoto, "Beyond World-Class Productivity", Springer-Verlag London Limited 2010.
- 3. Dale H. Besterfield, "Total Quality Management", Pearson Education, Asia.

Reference books

- 1. Richard J. Schonberger, 'Japanese Manufacturing Techniques', The Free Press Macmillan Publication.
- 2. James R. Evans and William M. Lindsay, 'The Management and Control of Quality'.

B V Bhoomaraddi Campus, Vidyanagar, Hubballi - 580 031, Karnataka, India. Ph.: +91 0836 2378280

Experience Engineering @ School of Mechanical EngineeringKLETECH

Course Code: 18EMEW301

L-T-P: 0-0-3 ISA Marks: 50 Credits: 6 ESA Marks: 50 **Course Title: Minor Project**

Contact Hrs: 3 hrs/week Total Marks: 100 Exam Duration: 3 hrs

Themes for Minor Projects

Methodology to be followed for carrying out the projects:

Role of Guide:

- The guide has to provide technical know-how from inception of project to execution
- Help students in identifying proper sources for raw materials, tools and other requirements
- Form a team and encourage students to take roles and responsibilities so that each one of them can enhance their knowledge and skills
- The Guide has to assess the student competencies with regard to his project work. More specifically to assess the student's individual contribution to the project
- Develop the clarity of assessment among the team in every phase of the project and advised to check for the formatting of the presentation and project report
- Continuous monitoring of project at different phases with the help of PLM e-NOVIA to work on paper-less
 office theme.

Evaluation of Minor-Project

The evaluation of project work shall be done in two stages as Continuous Internal Evaluation (CIE) and Semester End Examination (SEE) having equal weightages in marks.

CIE Evaluation:

- The CIE evaluation of project work shall be done in stages by the expert review panel including guide. In addition the guide shall separately evaluate the progress of project till its completion.
- There shall be three reviews by the panel experts and marks shall be allotted as per the weightages given for each review. The student shall showcase the progress of work through the presentation, videos, models, prototypes, etc to the panel members during the reviews.
- Each of the micro activities involved in accomplishing a project have been identified and included in the evaluation criteria as performance indicators. These performance indicators are being made known to students from day one of the project which helps them to plan and be guided to reach the intended goal. The assessment of each of the performance indicators is carried out as per rubrics which are also shared with the students.
- The review panel will be given a detailed assessment rubrics for each review based on which the panel experts will award the marks.
- Project guide shall be having individual responsibility to assess the entire project work and award the marks as per the assessment rubrics.
- During each review the panel experts shall advice the students with various aspects of the work for continuous development and Implementation.

SEE Evaluation:

- Student shall prepare a detailed project report according to approved guidelines and duly signed by the guide(s) and the Head of the Department and submit it to the examiners.
- The SEE evaluation of the project work shall be based on the demonstration of the model/prototype, presentation, project report submitted and a Viva-Voce by a team consisting of the Guide, an Internal examiner (other than the guide) and an External Examiner appointed by the department.
- Student shall submit a copy of the approved project report after the successful completion of viva examinations to the department.

Course Code: 16EMEP201

Course Title: Manufacturing Processes Lab

L-T-P: 0-0-1 ISA Marks: 80 Teaching Hrs: 26 Credits: 1 ESA Marks: 20 Contact Hrs: 2 hrs/week Total Marks: 100 Exam Duration: 2 hrs

Content Lab Exercises

1. Machining practices involving machining time calculation and estimation of machining cost for	6 Hrs
the jobs for turning, taper turning, threading, knurling.	
2. To manufacture and assemble parts for ball valve which involves turning, milling, tapping/slot	14 Hrs
milling, etc.	
3. Design, Modeling and Analysis of Bulk deformation and Sheet Metal forming processes.	4 Hrs
4. Demonstration of CNC machines and Non-traditional machines such as laser cutting, plasma	2 Hrs
cutting, electro-discharge machine.	

Text Books:

- 1. Kalpakjian S., and Schmid S.R., Manufacturing Engineering & Technology, 7th edition, Pearson Education, 2014.
- Mikell P. Groover, Fundamentals of Modern Manufacturing, 5th edition, John Wiley & Sons, 2012.

Reference Books:

- 1. Juneja B. L. and Sekhon G. S., Fundamentals of Metal Cutting and Machine Tools, 3rd edition, New Age International Limited, 2008.
- 2. Rosenthal, P., Heine L., Principles of Metal Casting, Tata McGraw Hill, 1997.
- 3. John A. Schey, Introduction to Manufacturing Processes, 3rd edition, Tata McGraw Hill, 1999.
- 4. Mikell P. Groover, Automation, Production Systems, and Computer-Integrated Manufacturing, 4th edition, Prentice Hall, 2014.
- Pandey P. C. and Shan H. S., Modern Machining Processes, 1st edition, Tata McGraw Hill, 2013.

Course Code: 18EMEP203	Course	Title: Machine Drawing	Lab
L-T-P: 0-0-1	Credits: 1	Contact Hrs: 2 hrs/w	veek
ISA Marks: 80	ESA Marks:20	Total Marks:	100
Teaching Hrs: 26	Exam Duration: 2	Exam Duration: 2 hrs	
	Laboratory Content		
1. Sectional views Sectional views of machine parts in	volving half section, full section, offset section,	revolved section and	8 Hrs
local section (use 1 and 3 angle of	f projection).		
2. Threaded Fasteners			6 Hrs
Drawing of boits, nuts, screws and t	neir conventional representation.		
3. Part and Assembly Drawing	ing of machines such as:		8 Hrs
(1) Screw Jack. (2) Protected type valve. (6)Universal coupling. (7) Pir	flanged coupling. (3) Pipe vice. (4) Clapper box and cotter joints.	x. (5) Non-return	
4. Assembly Drawing using CAD t	ool		4 Hrs
(1) Screw Jack. (2) Protected type valve. (6)Universal coupling. (7) Pir	flanged coupling. (3) Pipe vice. (4) Clapper bov and cotter joints.	κ. (5) Non-return	
Text Books:	nd		
 Machine Drawing by K. R. G 	Sopalakrishna, Subhas Publications, 22 ¹¹¹ Edition	- 2013.	

- Machine Drawing by N. D. Bhat & V. M. Panchal, Charotar Publishing House.
- A Text Book of Computer Aided Machine Drawing, S. Trymbaka Murthy, CBS Publishers, New Delhi, 2007 Edition.

Reference Books:

1. Engineering drawing practice for schools and colleges SP 46:2003 (BIS).

Experience Engineering @ School of Mechanical EngineeringKLETECH Engage | Explore | Excel | Evolve

Course Code: 19EMEC201

Experience Engineering @

School of Mechanical Engineering KLETECH Engage | Explore | Excel | Evol

L-T-P: 2-1-0 ISA Marks: 50 Teaching Hrs: 30

Unit – 1

1. Introduction to Control System

Generalized configurations and functional description of control systems. Control system design. Examples of Control System. Introduction to Linear, Nonlinear, Time Variant and Time Invariant systems.

Credits: 3

ESA Marks: 50

2. Modeling of Physical Systems:

Introduction, Differential equations of physical systems, The Laplace Transform, Order of system; The transfer function of linear and rotational Mechanical systems, Gear Train, Electrical systems, Electro-mechanical System, Thermal systems, Hydraulic System; Block representation of system elements and Reduction of block diagrams.

Unit – 2

3. System Response

Introduction, Poles, Zeros, and System Response. First-order system response to step, ramp and impulse inputs. Second-order system response to step input; Un-damped, Under damped, Critical damped and Over damped systems, Time response specifications. Design of 1st and 2nd order system.

4. System Stability

Introduction to stability. Stability analysis by time response, S-plane and Routh-Hurwitz Criterion. Effect of gain adjustment, addition of pole and addition of zero on system response and system stability. Defining the Root locus, General rules for constructing root loci, Sketching the Root locus.

Unit – 3

5. Frequency Domain Analysis

Nyquist stability criteria, Bode Plots. Stability analysis using bode plots.

6. Control Action

Introduction to PID controller design. Types of Controllers, Mathematical modeling of PID, ON-OFF controller, Effect of Proportional, Derivative and Integral elements on system behavior, Design of Controller for given simple applications. Controller Design using root locus.

Text Book:

1. Richard C Dorf and Robert H. Bishop, Modern Control Systems, 12th edition, Addison Wesley

2. A. Anandkumar, Control Systems, 2nd edition, PHI Learning Private Limited, 2014.

Reference Book:

- 1. Katsuhiko Ogata, Modern Control Engineering, 5th edition, Pearson Publications.
- 2. Norman S. Nise, Control. Systems, 6th edition, John Wiley & Sons

Course Title: Control Systems Contact Hrs: 4 hrs/week Total Marks: 100 Exam Duration: 3 hrs

8 hrs

6 hrs

5 hrs

4 hrs

4 hrs

3 hrs

Course Code: 19EMEP201

Course Title: Control Systems Lab

L-T-P: 0-0-2	Credits: 2	Contact Hrs: 4 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs: 48		Exam Duration: 2 hrs

Experiment Number	Experiments	
01	Scaffolding exercises to explore MATLAB / Simulink software package.	04
02	Modelling of physical systems and its response analysis	06
03	Design and investigate the effects of various controllers on a system.	03
04	Comparative study of Time response, root locus and Bode plot with respect to stability.	02
05	Control system analysis: Case Studies ✓ Hydraulic Lift ✓ DC servo motor	06
06	Case Study (Open Ended)	03

Text Book:

- 1. Richard C Dorf and Robert H. Bishop, Modern Control Systems, 12th edition, Addison Wesley
- 2. A. Anandkumar, Control Systems, 2nd edition, PHI Learning Private Limited, 2014.

Reference Book:

- 1. Katsuhiko Ogata, Modern Control Engineering, 5th edition, Pearson Publications.
- 2. Norman S. Nise, Control. Systems, 6th edition, John Wiley & Sons.
- 3. Data sheets provided by manufactures.

Course Code: 19EMEP301

Course Title: CAD modelling and PLM Lab

L-T-P: 2-0-2	Credits: 4	Contact Hrs:6hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs: 80		Exam Duration: 3 hrs

Sl. No.	Work Benches of 3D PLM	No of weeks
1	Sketcher- Brief introduction on Sketcher work bench environment Structure of users and saving of files. Exercises on Sketch Tools, Profile Tool bar and Constraint Tool bar: Generate the following 2D sketches and make them Iso-constrained.	1
2	Part Design -Exercise on 3d models using pad, slot, shaft, groove, hole ,rib and stiffener commands, cut revolve, Dress up commands like chamfer, fillets etc. <i>(</i> Multi-Sections Solid and Removed Multi-Sections Solid Commands	2
3	Generative shape design (GSD)- Exercises using GSD to generate complicate surfaces using sub tool bars: Extrude-Revolution, Offset Var and Sweeps Extrude, Revolve, Trim, Transformation and Fillet tools Exercises on Wireframe, Surfaces and Operations Tool bar: (Conversion of Surface model into Solid model	3
4.	Assembly Design - Introduction to Assembly Design Work bench Bottom-Up and Top-Down assembly approaches Invoking existing components into assembly work Exercise to demonstrate Top-Down assembly approach.	2

- 5 **Drafting** Converting existing 3D models into 2d drawings with all relevant 3 details, sectional views, sheet selection, indicating GD&T symbols and dimensioning.
- 6 **Enovia** Introduction to CATIA 3D experience PLM Import the existing CATIA 3D 1 experience data and store in Search and identify the data located in 3D experience database Modify the data in any PLM process Sharing information with users Analyze and Identify impacts of modifications Save the modifications into database

Reference Book:

Training material given by EDS on 3D experience

Experience Engineering @ School of Mechanical EngineeringKLETECH

Course Code:19EMEP302

Course Title: FEM Lab

L-T-P: 0-0-1	Credits: 1	Contact Hrs: 2 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs: 24	No of Sessions: 12	Exam Duration: 2 hrs

Category: Der	nonstration	No. of Lab. Sessions per batch (estimate)
1	Scientific Research Exposure (Research Education): Methods to search/extract Journal papers (Reputed journal paper), Referring papers, Drafting a paper. Introduction to ANSYS Workbench and familiarity. Real time Current/future field issues : Problem Identification	03
Category: Exe	rcises	
Expt./Job No.	Experiment/job Details	No. of Lab. Sessions per batch (estimate)
10.	Static Structural analysis d) Uniform bar, e) Bracket, f) Machine Components	01
11.	Linear Buckling a) Columns & Struts (Different Boundary Conditions) b) Machine component	01
12.	Non-Linear Structural Analysis d) Geometric Nonlinearity e) Material Nonlinearity f) Contact Nonlinearity	02
13.	Dynamic Analysis (Modal/Harmonic/Transient Analysis) c) Beam (Different Boundary Conditions) d) Machine components	01
14.	Thermal Analysis d) Fins e) Heat Exchangers f) Machine component	01
15.	Drop Test & Impact Analysis c) Mobile drop test d) TV, Refrigerator etc.	01
16.	Optimization	01
17.	Model Test	01
Category: Stri	ictured Enguiry	

Execute all the FEM Analysis modules which are dealt under the lab exercise.

Identify the component (Sub-assembly need have Minimum 3 to 4 components) Start from scratch

- Measure the dimensions of component
- > Generate the Solid Modeling of components with overall assembly (In any of the CAD Software)
- Import the model in neutral form to ANSYS Workbench
- Collection of data relevant to Material Properties
- Understand the physics of the problem (Working Principle with load's and boundary conditions)

KLE Technological University

B V Bhoomaraddi Campus, Vidyanagar, Hubballi – 580 031, Karnataka, India. Ph.: +91 0836 2378280

www.kletech.ac.in

Interpretation of Results with conclusion.

Category: Open ended

- 8. Identify field issue pertaining to any component/product in today's industry.
- 9. Collect the information/literature on earlier worked project through external/internal search (Journal Paper/Patent/reports)
- 10. Comprehend the physics of the problem with working principle.
- 11. Prepare the abstract and apply to a national/international conference
- 12. Identify material properties, boundary conditions and load steps.
- 13. Carryout the analysis as per the FEA steps.
- 14. Provide engineering solutions to the identified sub assembly (deformation and stresses, material change, weight reduction, increasing load bearing capacity, fatigue life calculation, prediction of endurance limit of component and damage factor).
- 15. Prepare the draft on the worked out problem and apply to a national/international conference

Materials and Resources Required:

- 3. Books/References: Nitin Ghokale, Practical finite element analysis
- 4. Manuals: Sham Tickoo, ANSYS for Engineers and Designers

Course Code:19EMEE302	Course Title:	Advanced Statistics and Machine Learning
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 6 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs: 80		Exam Duration: 2 hrs
	Unit - I	
1. Introduction to Machine Learn Introduction to Supervised, U Exploratory Data Analysis; Use of Python hands on: Installation, In forth)	ing nsupervised, and Reinforcement Lo Python and working with CSV/XLS files troduction to Python libraries (Panda	25 Hrs earning; Statistics for ML; s. s, Numpy, matplotlib and so
	Unit - II	
2. Applied Statistics Statistics for ML; Data Wranglin working with CSV/DB Hands on: Preprocessing techniqu	ng; Exploratory Data Analysis; Visual ues	15 Hrs lization; Use of Python and
		18 Hrs
3. Machine Learning Methods Introduction to ML Life Cycle; Re Metrics for Prediction; Visualization	gression – Predictive Modeling; Regu on;	larization; Feature Selection;
	Unit - III	
4. ML – Classification Introduction to Classification; L Visualization; Use of Python and I	.ogistic Regression; Random Forests DB	22 Hrs ; Metrics for Classification;
Text Books		

- 1. Trevor Hastie, Robert Tibshirani, and Jerome Friedman, "The Elements of Statistical Learning: Data Mining, Inference, and Prediction", Springer, 2017.
- 2. Roger D Peng, "R Programming for Data Science", Learnpub, 2015.

References

- 1. Geetha James, Trevor Hastie, Daniela Whitten, Robert Tibshirani, "An Introduction to Statistical Learning with Applications in R", Springer, 2017.
- 2. Andrew Ng, "Machine Learning Yearning", <u>https://www.mlyearning.org/</u>.
- 3. Michael Nielsen, "Neural Networks and Deep Learning", http://neuralnetworksanddeeplearning.com/.

Course Code: 19EMEE307		Course Title: Machine Learning App	plications
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 6	hrs/week
ISA Marks: 80	ESA Marks: 20	Total M	larks: 100
Teaching Hrs: 80		Exam Dura	tion: 2hrs
	Unit - 1		
1. Unsupervised Learning			18 Hrs
Refresher week, Introduction to Unsuperv DBSCAN, Hierarchical Clustering.	vised Learning, Cluste	ering Analysis: K-Means, K-Medoid,	
_	Unit - 2		
2. Introduction to Deep Learning Frame-Wo	ork		15 Hrs
Introduction to DL, Exploring the popul	lar DL frameworks,	Getting started with TensorFlow,	
Introduction to Keras, Setting up the enviror	nment.		
			21 Hrs
3. Introduction to Deep Neural Network (DI	NN)		
Introduction- What is Deep Learning, Why D	Deep Learning and Wh	y now, Mathematical building blocks	
of NN, Examples on Regression, Classificatio	n.		
	Unit - 3		
4. Deep Learning in practice			12 Hrs
Introduction to Convnets, Understanding Re	current NN, Examples		
Text Books			
1. Deep Learning, Ian Goodfellow, Yos	shua Bengio et.al		
2. Trevor Hastie, Robert Tibshirani, an	d Jerome Friedman, "	The Elements of Statistical Learning: Da	ata

- Irevor Hastle, Robert Tibshirani, and Jerome Friedman, The Elements of Statisti Mining, Inference, and Prediction", Springer, 2017
- 3. Deep Learning with Python, Francois Chollet

References

- 1. Andrew Ng, "Machine Learning Yearning", <u>https://www.mlyearning.org/</u>.
- 2. Michael Nielsen, "Neural Networks and Deep Learning", <u>http://neuralnetworksanddeeplearning.com/</u>.

Experience Engineering @ School of Mechanical EngineeringKLETECH

Course Code: 19EMEE301

L-T-P: 0-0-3

ISA Marks: 80

Teaching Hrs: 80

Course Title: Vehicle Structure and Design Optimization

Credits: 3 ESA Marks: 20 Contact Hrs: 3 hrs/week Total Marks: 100 Exam Duration: 2 hrs

PART A				
	(Study of Vehicle Structure)			
Sl. No.	Content	Teaching Hours		
1	Brief explanation of different types of Loads and its effect;			
	Different types of stresses- Static and Thermal, Different types of beams, Struts	02		
	and Columns, thick and thin cylinders;			
2	Understanding vehicle structure based on application;	04		
2	(e.g. SDOX, 1040 DOUY and Chassis)	03		
<u> </u>	Importance of Joinery:	02		
5		02		
5	Common performance measures for vehicle structures; (Stiffness, Modal, Durability)	03		
6	Understanding Data and Assumptions;	02		
	(e.g. nominal and tolerance, etc.)	02		
7	Baseline data;			
	(Initial collection of data which serves as a basis for comparison with the subsequently acquired data.)	02		
8	Quality control in virtual environment;	03		
9	Example case of static stiffness of BIW, Chassis;			
	(BIW (short for Body in White) is a stage in automotive design and			
	manufacturing. BIW refers to the body shell design of an automotive product such	05		
	as cars. It is just a sheet metal welded structure. BIW will not have doors, engines,			
	chassis or any other moving parts.)			
10	Understanding effect of thermal loads on structure;	02		
11	Understanding how to compute life based on stress results;	02		
Total-Theory				
	Hands on Session			
01	Demonstrate importance of geometric parameters on performance of structure	05		
02	Demonstrate importance of cross members on performance of structure	05		
	Total-Hands-on	10		
		40		
	PART A (Design Ontimization)			
		Teaching		
Sl. No.	Content	Hours		
1	Optimization in the Design Process, Engineering Design Practice, Characteristics of			
	Different Industries, CAE and the Design Cycle, The impact of optimization on CAE,	02		
	What is an Optimum Design?, Optimization terminology in a nutshell, Finding an	02		
	Optimum, Formulation of an Optimization problem;			
2	What is optimization in the context of EV structure;	02		
3	Different types of design optimization;	02		
4	How to plan and approach giving design guidance;	02		
5	What is concept level design guidance (generative designs);	03		
6	How to handle design guidance at a detailed design stage;	03		
7	Examples - design guidance for stiffness attribute;	04		
8	Examples - design guidance for durability attribute;	04		

KLE Technological University

B V Bhoomaraddi Campus, Vidyanagar, Hubballi – 580 031, Karnataka, India. Ph.: +91 0836 2378280

Experience Engineering @ School of Mechanical EngineeringKLETECH Engage | Explore | Excel | Evolve

9	What is MDO, its application; (Medium density overlay-MDO is produced with a high-quality thermosetting resin-impregnated fiber surface bonded to one or both sides under heat and pressure to create an exterior-grade plywood panel.)	02
10	Watch-outs during design guidance process;	02
11	Examples - design guidance for NV & crash attribute;	04
	Total-Theory	30
	Hands on Session	
01	Optimize front control arm of a vehicle for all its performance criteria. FAW up by 10%	05
02	Optimize B-Pillar for roof crush if GVW goes up by 20% due to electrification Effect of wheel base increase on chassis stiffness and how to bring it back, Section optimization using morphing.	05
Total-Hands-on		10
	TOTAL	40

PROJECTS:

Objective: To carry out Baseline Performance, Virtual Testing and Design Countermeasures		
SI. No.	Content	
01	Battery case for EV;	
02	Motor compartment / Passenger compartment - improve performance;	
Objective: To Provide design guidance		
SI. No.	Content	
01	Battery case for EV (Metal vs Composite);	
02	Motor compartment / Passenger compartment - improve performance;	

Experience Engineering @ School of Mechanical EngineeringKLETECH

Course Code:19EMEE401

Course Title: Dynamics & Durability of Vehicles

L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs: 40		Exam Duration: 3 hrs

PART A		
(Dynamics of Vehicles)		

SI. No.	Content	Teaching Hours
1	Introduction - Kinematics & Compliance in vehicles;	02
2	Introduction to Roads and Loads;	02
3	Introduction to Durability in industry;	02
4	Data and Assumptions for multi-body systems - quality control;	03
5	Loads mapping for downstream use with examples;	03
6	Example applications using Multi-Body Dynamic Systems;	03
7	Introduction - Flex Body;	02
8	Durability example with and without Flex body;	03
9	Control systems in Multi-Body;	04
	Total-Theory	24
	Hands on Session	
01	Build a 2/3 wheeler suspension system to carry out K&C	08
02	Build a 3 wheeler suspension system to carry out loads extraction for durability	08
	Total-Hands-on	16
	TOTAL	40
	PART B	
	(Durability of Vehicles)	
Sl. No.	Content	Teaching Hours
1	Conduction, Convection, Steady state, Transient flows, Turbulence and its significance	02
2	Importance of BTMS, Current state of thermal management in EV	02
3	Types of battery packs for xEV	02
4	Heat load calculation for battery packs	02
5	How to approach design assessment of power pack for thermal management	02
6	Importance of data & assumptions (includes baselining)	02
7	Example case of using AcuSolve to assess a design	03
8	How to improve the thermal performance of a power pack design	02
9	Importance of Drag co-eff for vehicles moving at high speeds	02
10	Fast assessment of A-Surface design for drag using VWT	02
11	Introduction to thermal management in electronic circuits	03
	Total-Theory	24
	Hands on Session	
01	Assume 2 different designs and compare the thermal performance	07
02	Prepare 2 vehicle designs (external surface) and compute drag	07
	Total-Hands-on	16
	TOTAL	36

Text Books/Reference Books:

3. Dr. N.K. Giri, Automotive Mechanics, 8th Edition, 2008, Khanna Publication, New Delhi.

4. Nitin Ghokale, Practical finite element analysis, Finite to infinite, 2008.

- 5. Practical Aspects of Structural Optimization, Altair University, 3rd Edition.
- 6. Robin Hardy, Iqbal Husain, "Electric and Hybrid Vehicles". CRC Press, ISBN 0-8493-1466-6.

KLE Technological University

B V Bhoomaraddi Campus, Vidyanagar, Hubballi – 580 031, Karnataka, India. Ph.: +91 0836 2378280

Experience Engineering @ School of Mechanical Engineering KLETECH Engage | Explore | Excel | Evolv

- 7. Ron Hodkinson and John Fenton, "Lightweight Electric/ Hybrid Vehicle Design". SAE International
- John M. Miller, Propulsion Systems for Hybrid Vehicles" Institute of Electrical Engineers, London, ISBNO 8. 863413366.
- 9. Automobile Electrical and Electronic systems, Tom Denton, Third Edition, 2004, SAE International, SAE ISBN 0 7680 147 2, Society of Automotive Engineers. Inc 400 common wealth Drive, Warrendale, PA 15096-0001 USA.

PROJECTS:

Part A

Objective: To carry out Dynamic and Durability of different chassis

SI. No.

Content

Content

01 Compare durability of conventional ICE chassis with Electric version

Part B

Objective: To carry out to analyze the heat produced during EV operation and streamline external airflow

SI. No.

- 01 Compute Delta T for a chosen EV battery pack
- 02 Improve drag performance of a chosen external vehicle element

Course Code: 19EMEE308	Cours	e Title: Applications of Vibrations and Ac	oustics
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hr	s/week
ISA Marks: 50	ESA Marks: 50	Total Ma	rks: 100
Tooshing Line 40		Even Duratio	n. 2 hrs
Teaching Hrs: 40		Exam Duratio	n: 3 nrs
	Unit I		
1. Response of Mechanical Systems to V	ibrations and Shocks		5 Hrs
Characteristics of vibration and shock, r properties of non-linear systems, response response and shock spectra, vibrations in	response of linear mecha se of mechanical systems structures.	anical systems to vibrations, response to stationary random vibrations, shock	
2. Vibration Measuring Instrumentation	and Techniques		5 Hrs
Introduction, displacement, velocity an electronic data sheets, selection of accele considerations in mounting acceleromete cabling practices and signal conditioning,	Id acceleration transduce arometer, calibration and ars, sensor design techni sensor and signal analysi	cers, smart sensors and transducers, I system performance checks, practical ique (FEA), sensor selection, mounting, is.	
3. Fundamentals of Signal Analysis			5 Hrs
Data acquisition and processing, signal of time signals, Fast Fourier transform, FFT analysis of stationary and transient signal	pperations, frequency do Γ analyser setup, leakage ls.	main analysis, sampling of continuous e and windowing, averaging, real-time	
	Unit II		
4. Vibration Monitoring and Analysis Teo	chniques		5 Hrs
Transducer considerations, vibration dat of vibration signals, Lissajous pattern demodulation technique, advanced fault	a collection errors, time 1, frequency domain a diagnostic techniques.	domain analysis, statistical descriptors analysis, quefrency domain analysis,	
5. Modal Analysis	0 1		5 Hrs
Experimental aspects of modal testing, FF FE Correlation, vibration and shock testin and defence, engineering and white good	RF data of SDOF and MDO g, examples of vibration ds, research.	DF systems, Classical, OMA, ODS, SRS & and acoustics – automotive, aerospace	
6. Vibration Control			5 Hrs
Introduction; Vibration Nomo graph and of vibration; Control of natural frequence types of foundation, Shock isolation, A damped dynamic vibration absorber.	vibration criteria; Reduc cies, Introduction of dan Active vibration control,	tion of vibration at the source, Control nping, Vibration isolation for different Vibration absorbers: Undamped and	
	Unit III		
7. Fundamentals of Sound			5 Hrs
Sensor selection, measurement techniq and sound pressure, noise source identi sound quality.	ues, applications-enviror fication: intensity and a	nmental, product noise: sound power coustic holography, building acoustics,	
8. Standards for Noise and Vibration			5 Hrs
Standards for sensors, frequency analy intensity measurement, vibration measurement, vibrat	ysis, sound level meter rement, measurement of	, sound power measurement, sound damping.	
1 C Suisthe Mittation and Assure		vention 2010	
 Singiresu S. Rao, Mechanical Vib 	rations, 6 th Edition, Pears	ion Education, 2018.	

Reference Books:

- M. L. Munjal, Noise and Vibration Control, World Scientific Publishing Co, Pvt. Ltd., 2013
 Bruel and Kjaer, Mechanical Vibration and Shock Measurements, 2nd Edition, Larsen & son, 1984.

Course Code: 20EMEW401

L-T-P: 0-0-3 ISA Marks: 50 Credits: 6 ESA Marks: 50

Course Title: Senior Design Project

Contact Hrs: 3 hrs/week Total Marks: 100 Exam Duration: 3 hrs

About The Course:

Senior Design project course uses User experience design (UX) approach to solve complex engineering problems. In this course students are challenged to solve frontier complex engineering problems in the field of smart manufacturing, green engineering, and Design engineering and advanced materials. The objective of the course is to infuse lifelong qualities in students such as research, design thinking, innovation and entrepreneurial qualities. After this course students are capable to convert customer pain points into business solution.

Course Code: 15EESC701	Course Title: Renewable Energy Systems	
L-T-P: 4-1-0	Credits: 5	Contact Hrs: 6 hrs/week
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hrs: 50 hrs		Exam Duration: 3 hrs

- Thermo-chemical conversion : Thermo-chemical conversion of biomass, biomass processing, briquetting, pelletisation, biomass stoves, biomass carbonization, pyrolysis of biomass, biomass gasification, gasifiers: [updraft(forced draft & Natural draft),downdraft (Open core, throat type & modular)], Gasifier stoves, gasifier thermal applications, gasifier engine applications: dual fuel and 100% gas mode operation, power generation systems: (decentralized grid interactive).
- 2. **Bio-chemical conversion** :. Aerobic, and anaerobic processes, activated sludge process, plug flow reactors, anaerobic fixed film reactor, UASB reactor, anaerobic fluidized bed reactor, estimation of methane yield, anaerobic digestion system for MSW, Vermi-composting, different designs of biogas plants for animal waste, Biogas engine applications.
- 3. Liquid Bio fuels : Liquid biofuels, non-edible oilseeds, oil extraction, preprocessing, transesterification, biodiesel, characterization of liquid fuels, production of syngas from biomass, production of methanol from syngas, production of ethanol from ligno-cellulosic biomass, Liquid biofuel applications.,
- 4. **Wind Energy**: Rotor aerodynamics, aerofoils, rotor design, wind turbine and its subsystems, Induction generator- characteristics, wind farms, power evacuation aspects, site selection, Integration with electric grid.
- 5. **Small Hydropower** : Classification of schemes, siting and economic considerations, System components: weir/intake, channel, desilting, forebay, spillway, penstock, turbine, generator, governor, control.
- 6. **Other Renewable Energy Technologies** : Geothermal, wave energy, tidal energy, ocean thermal energy
- 7. Financial feasibility of renewable energy technologies: case studies

Text / Reference Books

- Donald Klass: Biomass for Renewable Energy, Fuels, and Chemicals, 1st Edn, Entech International Inc., USA, 1998
- 2. Paul Gipe, Wind energy Basics: A guide to Small and Micro-wind, Chelsea Green Publishing, 2008
- Thomas Read, Agua Das, Handbook of Biomass Downdraft Gasifier Engine Systems, The Biomass Energy foundation Press, 1988
- Klaus Von Mitzlaff, Engines for Biogas Theory, Modification, Economic Operation, Division of the Deutsche Gesellschaft Fur Technische Zusammenarbeit (GTZ) GmbH - 1988

Course Code: 15EESC703		Course Title: Energy Management
L-T-P: 4-1-0	Credits: 5	Contact Hrs: 6 hrs/week
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hrs: 50 hrs		Exam Duration: 3 hrs

- 1. **Energy Management**: Scope of energy management, necessary steps in energy management programme, general principles of energy management, qualities of energy manager, functions of energy manager, language of energy manager. Organizing, Initiating and managing an energy management program.
- Energy Auditing: Elements and concepts, Types of energy audits, energy audit Instruments. Energy surveying and auditing, objectives, uses of energy, energy conservation schemes, energy index, cost index, pie charts, Sankey diagrams, load profiles (histograms), preliminary energy audit detailed energy audit, questionnaire, energy audit instruments, Energy audit report writing.
- 3. Economic Analysis: Cash flows, Time value of money, Formulae relating present and future cash flows single amount, uniform series. Payback period, Net present value, and Benefit-cost ratio, Internal-rate of return & Life cycle costs/benefits.
- 4. Energy efficiency in Thermal utilities: Oil-coal and gas Combustors, FBC boilers, Steam and condensate system, Furnaces, Cogeneration, Waste heat recovery equipments, Turbines, and Heat exchangers
- 5. **Insulation and Refractories**: types and application, economic insulation thickness, heat saving criteria, application of refractory, heat loss
- 6. Utilization of Electric energy: Heating methods: Resistance ovens, dielectric heating. Space heating in buildings, Illumination Engineering
- 7. Energy Conservation in Electric Utility: Motors, Fans and blowers, Pumps and Pumping System, Diesel Generating system, HVAC and Refrigeration System, Lighting System, Energy efficient technologies in electrical systems: power factor controllers, energy efficient motors, variable speed drives, energy efficient transformers, electronic ballast.

Text /. Reference Books

- 1. Turner W.C., Doty S., Energy Management Handbook, 8 ed., Wiley Inter Sc., 1982.
- 2. Taylor E. O., Utilization of Electric Energy, 1ed, Orient Longman. 2007
- 3. Reay D.A., Industrial Energy Conservation, 1ed., Pergamon Press. 1980.
- 4. Tripathy S.C.: Electric Energy Utilization and Conservation, TMG Delhi, 1991.
- 5. Indian Bureau of Energy Efficiency Manuals, BEE Publications, 2002

Course Code: 15EESP701		Course Title: Computational Lab
L-T-P: 0-0-1	Credits: 1	Contact Hrs: 2 hrs/week
CIE Marks: 80	SEE Marks: 20	Total Marks: 100
Teaching Hrs:		Exam Duration: 2hr

(Exercises should be executed using relevant Computing and Programming tools)

- 1. zero, first and second order systems
- 2. Uncertainty analysis in the design of experiments-
- 3. Uncertainty analysis in use of manometers for pressure measurement
- 4. Uncertainty analysis in use of thermocouples for temperature measurements
- 5. Uncertainty analysis in use of pitot tube for flow velocity measurement
- 6. Use of the concept of Design of Experiments in simple flow related experiments

Course	e Code: 15EESP702	Course Title: Renewable Energy conversion Lab		
L-T-P	: 0-0-1	Credits: 1	Contact Hrs: 2 hrs/week	
CIE M	Iarks: 80	SEE Marks: 20 Total Marks		
Teach	ing Hrs:		Exam Duration:	
1.	Solar radiation and wind s	radiation and wind speed measurements		
2.	Studies on Solar water hea	iting system		
3.	Studies on solar Air heating System			
4.	Studies on Wind turbine for power generation and water lifting			
5.	Studies of Solar PV system			
6.	Studies on Biomass based Gasification and Bio-digester system			
7.	Use of HOMER for simulation of renewable energy systems			
Course Code: 15EESC706	Course	Title: Computational Fluid Dynamics		
------------------------	---------------	-------------------------------------		
L-T-P: 4-1-0	Credits: 5	Contact Hrs: 6hrs/week		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hrs: 50 hrs		Exam Duration: 3 hrs		

- Computational Fluid Dynamics Solution Procedure: CFD applications in Research and Design, CFD Problem set-up-Creation of geometry, Mesh generation, Specification of boundary conditions. CFD Solver- Initialization and Convergence monitoring. Post Processor-Plots, data reports and Animation
- Governing Equations for CFD: Continuity Equation, Momentum Equation, Energy Equation-Physical Interpretation and comments. The additional equations for turbulent flow, Generic form of Governing equations, Physical Boundary conditions
- CFD Techniques: Discretization of Governing Equations- Finite difference method, Finite volume method ,Converting governing equations into algebraic equations, Direct and Iterative solutions, Pressure- velocity coupling-SIMPLE scheme
- 4. **CFD Solution Analysis:** Consistency, Stability, Convergence, Accuracy and Efficiency of CFD solutions. Accelerating convergence, controlling solution errors, verification and Validation. Case studies related to fluid flow through channel and pipe bend.
- 5. Practical Guidelines for CFD simulation and Analysis: Grid generation- Guidelines on grid quality and grid design, Local refinement and solution adaption. Guidelines on Boundary conditions – Setting inlet, outlet and wall boundary conditions. Symmetric and Periodic Boundary conditions. Turbulence Modelling- Approaches, selection strategies, Case study: modeling of hydrofoil flows.
- Advanced Topics in CFD: Advances in Numerical methods and Techniques- Moving grids, Multigrids, Parallel Computing and Immersed boundary methods. Advances in computational models-Direct numerical Simulation (DNS), Large Edddy Simulation (LES), RANS-LES, Lattice Boltzmann method, Monte-Carlo method, Particle methods.

Text /Reference Books

- Jiyuan Tu, Guan Heng Yeoh, Chaoqun, Computational Fluid Dynamics, Butterworth- Heinemann, 1st Edn., 2008
- Anderson D.A., Tannehill J.C., Platcher.R.H., Computational Fluid Mechanics and Heat Transfer; MGH, 2001.
- Patankar Suhas V., Numerical Fluid flow and Heat transfer, Hemisphere Series on Computational Methods in Mechanics and Thermal Science,2nd Edn. 2000
- 4. Ferziger Joel H., Milovan Peric, Computational Methods for Fluid Dynamics, 3rd Edn., Springer- 2001
- 5. Anderson J D, Computational Fluid Dynamics Basics with Applications, MGH, 2nd Edn., 2001

Cours	e Code: 15EHSC701	Course Title: Mathematical Thinking and Logical Reasoning	
L-T-P	:3-0-0	Credits: 3	Contact Hrs: 3 hrs / week
IS A M	larke: 50	ESA Market 50	Total Marke: 100
ISA N	Idiks. JU	ESA Marks. 50	Total Marks. 100
Teach	ing Hrs: 50		Exam Duration: 180 min
No		Content	Hrs
1	Unit 1: Arithmetical Reaso Chapter 1 – Arithmetical Re 1.1 Number Systems and Sp 1.2 Factors and Multiples 1.3 Combinations 1.4 Probability 1.5 Percentages, Gain and Le 1.6 Interest 1.7 Alligations and Averages 1.8 Man-Hour Calculations 1.9 Time, Speed and Distan Chapter 2 – Analytical Thir 2.1 Data Analysis 2.2 Data Interpretation 2.3 Data Sufficiency 2.4 Puzzle Tests	ning and Analytical Thinkir easoning eed Math oss s s ce sking	ag 34
2	Unit 2: Verbal and Non Ve Chapter 1 – Verbal Logic 1.1 Verbal Analogy 1.2 Verbal Classification 1.3 Letter and Number Serie 1.4 Decoding the Codes Chapter 2 – Non – Verbal 1 2.1 Non – Verbal Analogy 2.2 Non – Verbal Classificat 2.3 Pattern Completion 2.4 Pattern Comparison Chapter 3 – Critical Reaso 3.1 Statements and Assumpt 3.2 Conclusive Reasoning	rbal Logic s Logic ion ning ions	06
Refere 1. 2.	nce Book: R. S. Aggarwal, A Modern Delhi. Chopra, Verbal and Non – V	Approach to Verbal and Non-	- Verbal Reasoning – Sultan Chand and Sons, New

R. S. Aggarwal, Quantitative Aptitude –Sunan Chand and Sons, 1999
 Dr. Edward De Bono, Lateral Thinking –Penguin Books, New Delhi

Course Code: 15EESE706		Course Title: Research Methodology
L-T-P: 4-0-0	Credits: 3	Contact Hrs: 4 hrs/week
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hrs: 40 hrs		Exam Duration: 3 hrs

- 1. **Concepts and importance of Research Methodology:** Meaning of Research-Objectives-Types and Importance of Research-Research approaches, Significance of Research, Research methods versus methodology, Research and Scientific methods, Research Process, Criteria of good research
- 2. **Research Problem Definition**: What is a Research Problem? Selecting the Problem, Necessity of Defining the Problem, Technique Involved in Defining a Problem, An Illustration, and Conclusion.
- 3. **Research Design:** Meaning and Need, Concepts related to Research Design Different Research Designs -Meaning–basic Principles of Experimental Designs, Important Experimental Designs
- 4. Literature Review: Clarity and focus to research problem, Improving Research methodology, Broadening knowledge base in research area, Enabling to contextualize findings, Review of Literature, Searching existing literature, Developing theoretical and conceptual framework, Writing about the literature reviewed
- Data Collection: Introduction, Experiments and Surveys, Collection of Primary Data, Collection of secondary data, Selection of Appropriate Method for Data Collection, Case study method
- 6. **Data Preparation:** Data Preparation Process, Some Problems in Preparation process, Missing Values and Outliners, Types of Analysis, Statistics in research
- 7. Testing of Hypothesis: Basic Concepts of Hypothesis Testing, Test statistics and Critical region, Critical Value and Decision Rule, Hypothesis Testing- Procedure, Testing of Mean, Proportions, Variance, Difference of two Means, Difference of two Proportions, Difference of two variances, Limitations of the Tests of Hypotheses
- 8. **Chi-Square Tests:** test of Difference of more than two Proportions, test of Independence of Attributes, Test of Goodness of Fit, and Cautions in Using Chi-Square tests
- 9. **Interpretation and Writing Research Report:** Meaning of Interpretation, Technique of Interpretation, Precaution in Interpretation, Significance of Report Writing, Different Steps in Writing Report, Layout of the Research Report, Types of Reports, Oral Presentation, Mechanics of Writing a Research Report, Precautions for Writing Research Reports, Conclusions

Text/ Reference Books

- Kothari C. R., Garg Gaurav, Research Methodology Methods & Techniques, 3rd Edn, New Age International Pvt. Ltd, 2014
- 2. Ranjit Kumar, Research Methodology, , Sage Publications, 3rd Edn., 2011

Course Code: 15EESP704		Course Title: CFD Lab		
L-T-P: 0-0-1	Credits: 1	Contact Hrs: 2 hrs/week		
ISA Marks: 80	ESA Marks: 20	Total Marks: 100		
Teaching Hrs:		Exam Duration:		
1. Illustration on mathematic	al behavior of PDEs through si	mple programme		
2. Implicit and Explicit Solut	ion for 1-D steady state heat co	onduction		
3. Solution to transient heat c	onduction problem in 1D and 2	2D		
4. Solution convective heat the	Solution convective heat transfer problem on flow over flat surfaces			
5. Solution of fluid flow in co	onduits like circular pipe and sc	quare ducts		
6. Use of Open source CFD c	odes for simple heat flow prob	lems		
Books and References:				
http://www.featflow.de				
http://www.ansys.com				
http://www.fluent.com				

Course Code:	15EESC801
--------------	-----------

Course Title: Energy Systems Modeling & Analysis

Contact Hrs: 4 hrs/week

Total Marks: 100

Teaching Hrs: 50 hrs

L-T-P: 4-0-0

CIE Marks: 50

Exam Duration: 3 hrs

1. **Designing a Workable System**: Workable and optimum systems, Steps in arriving at a workable system, Creativity in concept selection, Workable Vs Optimum system, Designing of a food freezing plant.

Credits: 4

SEE Marks: 50

- 2. Equation-Fitting: Mathematical modeling, Polynomial representation, Functions of two variables, Exponential forms, Best fit Method of least squares
- 3. Modeling of Thermal Equipment: Counter flow heat exchanger, Evaporators and Condensers, Heat exchanger effectiveness, Effectiveness of a counter flow heat exchanger, NTU, Pressure drop and pumping power
- 4. System Simulation: Classes of simulation, Information flow diagrams, Sequential and simultaneous calculations, Successive substitution, Newton-Raphson method
- 5. **Optimization**: Mathematical representation of optimization problems, A water chilling system, Optimization procedure, Setting up the mathematical statement of the optimization problem
- 6. Lagrange Multipliers: The Lagrange multiplier equations, unconstrained optimization, Constrained optimization, Sensitivity coefficients
- 7. Search Methods: Single variable Exhaustive, Dichotomous and Fibonacci, Multivariable unconstrained Lattice, Univariable and Steepest ascent
- 8. **Dynamic Programming**: Characteristic of the Dynamic programming solution, Apparently constrained problem, Application of Dynamic programming to energy system problems.
- 9. Geometric Programming: One independent variable unconstrained, Multivariable and Constrained optimization with zero degree of difficulty
- 10. Linear Programming: Simplex method, Big-M method, Application of LP to thermal systems

Text Books

1. W.F.Stoecker, Design of Thermal Systems, 3 ed., MGH, 1989

Reference Books:

1.Hodge B.K., Analysis and Design of Thermal Systems, 1ed., PHI, 1990.

2. Nagrath I.J., Gopal M., Systems Modelling and Analysis, 1 ed., TMGH., 2001

3. Wilde D.J., Globally Optimal Design, 1ed., Wiley- Interscience, 1985

Cours	e Code: 15EESE802			Course Title: Sustainable Building Design
L-T-F	P-S: 4-0-0-0	Credits: 4 Contact Hrs: 4 hrs/week		
CIE N	1arks: 50		SEE Marks: 50	Total Marks: 100
Teach	ing Hrs: 40			Exam Duration: 3 hrs
1.	Introduction: Sustainabilit	y an	d Building Design.	
	Site planning: Site assessment, Site selection, Site analysis, site development and layout, sustainabl urban drainage systems, flow attenuation			analysis, site development and layout, sustainable
2.	Efficient water management	nt aı	nd waste water treatm	nent techniques
	Climate change and water	cor	servation, the need	for conservation, basic steps for reducing water
	consumption, Water conserv	consumption, Water conservation in landscape irrigation, Measures for reuse and conservation.		
3.	Solid waste management:	ste management: Introduction, guidelines for waste minimisation, Segregation of wastes,		
	Resources recovery or recyc	ling, Processing of waste.		
4.	Passive solar design: Intro-	oduction, Thermal comfort, building physics, building design, building form,		
	orientation, building components, Advanced soalr passive techniques, passive solar heating, passive			
	cooling strategies, Day lighting, Factors for the design of day lighting, factors affecting daylight factor			
	distribution. Innovative day lighting systems, Hybrid day lighting system.			
5.	Building technologies: Traditional efficient building techniques, walling systems. Traditional stone			g techniques, walling systems. Traditional stone
	masonry, Roofing systems, Doors and windows, High-rise masonry, curtain walls, pre-fabrication,			rise masonry, curtain walls, pre-fabrication,
6.	Energy systems: units of lighting, lighting equipment, system design approach for energy-efficient			
	lighting, Additional paramet	ers f	or design approach for	r lighting, Approach for an energy efficient lighting
	system by sector, Energy con	onservation opportunities in existing lighting systems,		
7.	Building Envelop: Dome	stic	appliances, Non-doi	mestic appliances, Heating ventilation and air
	conditioning systems, Use of renewable energy.			

Text Books

- 1. Sustainable building Design manual volume-2, sustainable building design practices, TERI, New Delhi, 2004. **References:**
- 1. S.P. Sukhatme, Nayak J.K., Solar Energy: Principles of Thermal Collection and Storage, Tata-Mc-Graw Hill Education, 2008
- 2. Garg & Prakash, H. P. Garg, Solar Energy: Fundamentals and Applications, Tata-Mc-Graw Hill Education, 2000
- 3. G.N. Tiwari, Solar Energy:Fundamentals, Design, Modelling and Applications, Alpha Science International Limited, 2002

Course Code: 15EESW801		Course Title: Minor Project
L-T-P-S: 0-0-8-0	Credits: 10	Contact Hrs:
CIE Marks: 100	SEE Marks: 100	Total Marks: 200
Teaching Hrs:		Exam Duration:

Problem statement for the Minor Project is defined by the Guide.

The Minor Project aims at developing professional competency and research aptitude by working in areas which otherwise are not covered in theory or laboratory sessions. The project work motivates the students to apply theoretical and practical tools/techniques to solve real life problems related to industry and current research

The student will execute the project within three months duration during the 3rd semester

Course Code: 15EESW802			Course Title: Major Project
L-T-P-S: 0-0-20-0		Credits: 30	Contact Hrs: 30
CIE Marks: 100		SEE Marks: 100	Total Marks: 200
Teaching Hrs: 40 Hrs			Exam Duration: 3 Hrs
The Major Project aims at developing professional competency and research aptitude by working in areas			
which otherwise are not covered in theory or laboratory sessions. The project work motivates the students to			
apply theoretical and practical tools/techniques to solve real life problems related to industry and current			
research Major Project is for a period of 8 months commencing from start of Industrial Training/Mini Project.			
The Project aims at developing professional competency and research aptitude by working in areas which			
otherwise are not covered in theory or laboratory sessions. The project work motivates the students to apply			
theoretical and practical tools/techniques to solve real life problems related to industry and current research			

Course Code: 17EMEE701	Course	Title: Wind Energy Conversion Systems
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4hr/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50		Exam Duration: 3 hrs

Introduction : Metrology of wind, Wind speed variation with height, Wind speed statistics. Wind Measurements Biological indicators, Rotational anemometers, other anemometers, Wind direction	10hrs
Basic concepts of Wind energy : Power output from an ideal turbine, Aerodynamics, Practical turbines, Transmission and generation efficiency	10hrs
Energy production and capacity factor, Torque at constant speeds, Drive train oscillations, Turbine shaft power and torque at variable speeds.	10hrs
Wind Turbine Connected to the Electrical Network: Methods of generating synchronous power, AC circuits, The synchronous generator, Per unit calculations, The induction machine, Motor starting, Capacity credit, features of electrical network.	10hrs
Asynchronous Electric Generators : Asynchronous systems, DC shunt generator with battery load, Per unit calculation, Self excitation of the induction generators, Single phase operation the induction generator, Asynchronous Loads like Piston/ Centrifugal pumps, Paddle wheel heaters, Batteries	5hrs
Economics of Wind Systems: Capital costs, Economic concepts, Revenue requirements, Value of wind generated electricity, Hidden costs in Industrialized and developing nations	5hrs
 Text Books 1. Gary L Johnson, Wind Energy Systems ,1ed., PHI, New Jersey, 2001 2. D.P.Kothari, I.G.Nagrath, Electrical Machines, 2ed., TMGH, 2004 Reference Books 	
1 Rai G.D., Non-Conventional Energy Sources, 4 ed., Khanna Publications, 2002	

Course Code: 17EMEC705	Course Title:	Energy Audit and Conservation
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4hr/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50		Exam Duration: 3 hrs

1.	Energy Management & Audit: Definition, Energy audit- need, Types of energy audit, Energy management (audit) approach-understanding energy costs, Bench marking, Energy performance, Matching energy use to requirement, Maximizing system efficiencies, Optimizing the input energy requirements, Fuel and energy substitution, Energy audit instruments.	10hrs		
2.	Energy Conservation: Indian energy conservation act-2001, second law of thermodynamics, rules for efficient energy conservation of energy and materials, technologies for energy conservation (reducing demand using alternative supplies, load factor, balancing and energy storage), supply side options, demand side options, maximum demand controller, transmission and distribution side options	10hrs		
3.	Energy Efficient Motors and Power factor: Constructional details, factors affecting efficiency, losses distribution, soft starters, variable speed drives. Power Factor Causes and disadvantages of low power factor, methods to improve power factor, automatic power factor controllers	8hrs		
4.	Energy efficient lighting Terminology, cosine law of luminance, types of lamps, characteristics, design of illumination systems, good lighting practice, lighting control, steps for lighting energy conservation	7hrs		
5.	Heat Recovery Systems: Sources of waste heat, guidelines to identify waste heat, grading of waste heat, feasibility study of waste heat recovery, gas to gas heat recovery, rotary generators, heat pipes, gas to liquid heat recovery, waste heat boilers.	5hrs		
6.	Cogeneration Definition and need, basics of thermodynamic cycles, classification of cogeneration systems, steam turbine, gas turbine, typical heat to power ratio in various industries, operating strategies for cogeneration plant, typical cogeneration performance parameters, relative merits of cogeneration systems.	5hrs		
7.	Compressed air network Types of compressors, compressor selection, monitoring performance, specific power consumption, FAD test, capacity control and power consumption, compressed air distribution system, moisture separation.	5hrs		
Text	Books			
1. 2.	 WC Turner: Energy Management Handbook, Seventh Edition, (Fairmont Press Inc., 2007) LC Witte, PS Schmidt and DR Brown: Industrial Energy Management and Utilization (Hemisphere Publishing Corporation, Washington, 1998). 			
Refe	rence Book			

- 1. George Polimeros: Energy Cogeneration Handbook, (Industrial Press, Inc., NY, 1981)
- 2. W Trinks, MH Mawhinney, RA Shannon, RJ Reed, JR Garvey: Industrial Furnaces, Sixth Edition, (John Wiley & Sons, 2003)

Course Code: 17EMEE706	Course Title: Solar Photovoltaic System Design	
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4hr/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50		Exam Duration: 3 hrs

 Introduction to PV Systems: The PV Cell, The PV Module, The PV Array, Energy Storage, PV System Loads, PV System Availability, Associated System Electronic Components, Generators, Balance of System (BOS) ,Components. Present and Proposed PV Cells and Systems: Silicon PV Cells, Gallium Arsenide Cells, Copper Indium (Gallium) Diselenide Cells, Cadmium Telluride Cells, Emerging Technologies, New Developments in System Design 	10hrs
2. Grid-Connected Utility-Interactive PV Systems: Applicable Codes and Standards, Design Considerations for Straight Grid-Connected PV Systems, Design of a System Based on Desired Annual System Performance, Design of a System Based on Available Roof Space, Design of a Micro-inverter-Based System, Design of a Nominal 21 kW System that Feeds a Three-Phase Distribution Panel, Design of a Nominal 250 kW System, System Performance Monitoring	10hrs
3. Mechanical Considerations: Important Properties of Materials, Establishing Mechanical System Requirements, Design and Installation Guidelines, Forces Acting on PV Arrays, Array Mounting System Design, Computing Mechanical Loads and Stresses, Stand-off, Roof Mount Examples.	10hrs
4. Battery-Backup Grid-Connected PV Systems: Battery-Backup Design Basics, A Single- Inverter 120 V Battery-Backup System Based on Standby Loads, A 120/240 V Battery-Backup System Based on Available Roof Space, An 18 kW Battery-Backup System Using Inverters in Tandem, AC-Coupled Battery-Backup Systems, Battery Connections.	10hrs
5. Stand-Alone PV Systems: The Simplest Configuration: Module and Fan, A PV-Powered Water- Pumping System, A PV-Powered Parking Lot Lighting System, A Cathodic Protection System, A Portable Highway Advisory Sign A Critical-Need Refrigeration System, A PV-Powered Mountain Cabin, A Hybrid-Powered, Off-Grid Residence, Summary of Design Procedures	5hrs
6. Economic Considerations: Life-Cycle Costing, Borrowing Money, Payback Analysis, Externalities and Photovoltaics: Externalities, Environmental Effects of Energy Sources, Externalities Associated with PV Systems	5hrs
Text Books	
1. Roger Messenger, Amir Abtahi, Photovoltaic Systems Engineering, 3 rd Edition, CRC Press, 2010,	
2. Solanki C.S. Solar Photovoltaics : Fundamentals, Technologies and Applications, PHI., 2011	
Reference Books	

- Matthew Buresch, Photovoltaic Energy Systems-Design and Installation, 1ed., MGH, 1983
 Seippel R.G., Photovoltaics, 1 ed., Roston publication, 1986

Г

Course Code:18EESP701	Course Title: Energy System Lab	
L-T-P: 0-0-2	Credits: 2	Contact Hrs: 4 hr/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching hrs: 24		Exam Duration: 02 hrs

 Studies on : a. Operational experience on i) Pyranometer, ii) Sunshine recorder b. Measurement of temperature using Infrared Thermometers d. Measurement of illumination using Lux meter e. Exhaust gas analysis using gas analyzer 	24 hrs
 List of experiments 1. Performance evaluation of a solar flat plate thermo-syphon water heating 2. Conversion efficiency of a solar flat plate forced solar water heating system 3. Conversion efficiency of a solar Concentrating water heating system 4. Determination of conversion efficiency of a solar air heating system 5. Study and analysis of a solar still / distillation plant 6. Performance estimation of photovoltaic water pumping system 7. Investigation on a solar dryer 8. Operational characteristics of P.V. Indoor lighting system 9. Determination of conversion effort a wind generator 10. Performance evaluation of solar cooker 11. P.V. System sizing exercise 12. Data acquisition system for monitoring of P.V system using LABVIEW s/w 13. Performance evaluation of vertical and horizontal axis wind turbine rotors. 	

Course Code:18EESP702	Course Title: Industrial Instrumentation and Control Lab	
L-T-P: 0-0-2	Credits: 2	Contact Hrs: 4 hr/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching hrs: 24		Exam Duration: 02 hrs

1.	Control technologies Local manual, remote electrical, Local pneumatic, Remote analog/digital	
2.	Basic electrical and math concepts : Applications to instruments, Electrical principles and symbols. Series (parallel circuits)	
3.	Pressure instrumentation & measurements : Pressure measurement devices, U-tube	
4	Temperature instrumentation and measurements • Measurement devices and techniques	
т.	Bimetallic temperature measurement Filled capillary and bulb thermocouple resistance	
	temperature detector (RTD), thermistors, thermowells, infrared	
5.	Flow Instrumentation and Measurements: Flow measurement methods, Factors influencing	
	flow measurement, Flow measurement devices: orifice plates, venturi tube, flow nozzle, elbow	
	taps, pitot tube, magnetic flow meter (Mag meter), vortex shedding meter, turbine meter,	
	target flowmeter, ultrasonic, variable area rotameter, coriolis meter	
6.	Level instrumentation and measurements: Level measurement methods: sight glass,	
	differential pressure level measurement, bubbler, displacer level sensor, float level sensors,	
_	capacitance, radiation-based, radar and ultrasonic level sensors	24 hrs
7.	Manipulating the process: Final control element, Actuators, valve positioners, I/P, valves •	
0	Variable frequency drives	
δ.	Controllers: Control modes: proportional, integral, derivative, 1 uning feedback controllers ⁴ / ₄	
0	Control systems: Overview of PLCs, DCS and SCADA systems	
9.	Control systems. Over view of 1 Les, Des and SCADA systems	
	Hands-on Exercises: Sensor checkout, Hookup to calibration stands, Transmitter calibration	
	check, Program/tune controller, Set up of differential pressure, temperature, and other process-	
	simulation devices, Checking current output with Volt-Ohm Mille-ammeter (VOM) & tracing around loop, Simulate and source 4-20mA-DC signals	

Course Code:18EESP703	Course Title: Process Modeling and Simulation Lab	
L-T-P: 0-0-2	Credits: 2	Contact Hrs: 4 hr/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching hrs: 24		Exam Duration: 02 hrs

24 hrs

MATLAB Analysis

1. Declination of earth, hour angle, day length, local apparent time.

2. Monthly average, hourly global and diffuse radiation on a horizontal surface and tilted Surfaces.

3. Power generation from a wind turbine, Variation of wind velocity and power with altitude.

- 4. Solution of ordinary differential equations-4th order R K Method.
- 5. Solution of one-dimensional steady state heat conduction equation.

6. Solution of two-dimensional steady state PDE.

7. Solution of one-dimensional transient PDE.

Finite Element Analysis

8. Two dimensional heat conduction.

- 9. One dimensional transient heat conduction.
- 10. Transient analysis of a casting process.

CFD Analysis

11. Flow through a pipe bend.

12. Flow through a nozzle.

Course Code:18EESP704	Course Title: IoT based Living Space Lab	
L-T-P: 0-0-2	Credits: 2	Contact Hrs: 4 hr/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching hrs: 24		Exam Duration: 02 hrs

1.	Introduction to IoT, Automation, Arduino, Raspberry Pi and IoT.	
2.	Introduction to Arduino programming and interfacing with peripherals and sensors Motor, Servo motor, LDR, PIR sensor, ultrasonic sensor, DHT 11, MQ2 smoke sensor, LCD and RC522 RFID	
3.	Wireless communication with Arduino: GSM Module, Ethernet Shield. Raspberry Pi and Raspbian operating system: Installing operating system ,Starting Raspberry Pi desktop and using Linux commands	
4.	Connecting to the network: Wired networking and Wireless networking, Setting up static IP for raspberry pi, Remote accessing of Raspberry Pi	
5.	Python programming with Raspberry Pi: Introduction to Python, Python commands and Python scripting for programming GPIO	
6.	Interfacing of Arduino with Raspberry Pi: Programming Arduino from Raspberry Pi using IDE Programming Arduino from Raspberry Pi using Python	
7.	Raspberry Pi as web server: Installing Apache Server	24 hrs
8.	Connecting Arduino and Raspberry Pi to cloud service: Uploading Arduino sensor data to cloud. Connecting Raspberry Pi to cloud and interfacing sensors	
9.	Conduction Of Living Space Lab Experiments Design of IoT based weather DAQ system IoT based temperature data monitoring and DAQ IoT based humidity data monitoring and DAQ IoT based solar insolation data monitoring and DAQ IoT based wind speed data monitoring and DAQ	
10.	Design of Energy management system IoT based SPV - Solar generation data monitoring IoT based Wind generation data monitoring IoT based SPV – Wind hybrid generation data monitoring	

Course Code:19EESC703	Course Title: Computational Methods in Engineering Analysis	
L-T-P: 3-1-0	Credits: 4	Contact Hrs: 5
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40		Exam Duration: 3 hrs

1.Approximations and round off errors: Significant figures, accuracy and precision, error definitions, round off errors and truncation errors. Mathematical modelling and Engineering problem solving: Simple mathematical model, Conservation Laws of Engineering.	06 hrs
2.Roots of Equations: Bracketing methods-Graphical method, Bisection method, False position method, Newton-Raphson method, Secant Method. Multiple roots, Simple fixed point iteration.	06hrs
3.Roots of polynomial- Polynomials in Engineering and Science, Muller's method, Bairstow's Method Graeffe's Roots Squaring Method.	06 hrs
4.Numerical Differentiation and Numerical Integration: Newton –Cotes and Guass Quadrature Integration formulae, integration of Equations, Romberg integration, Numerical Differentiation Applied to Engineering problems, High Accuracy differentiation formulae.	06 hrs
5.System of Linear Algebraic Equations and Eigen Value Problems: Introduction, Direct methods, Cramer's Rule, Gauss Elimination Method, Gauss-Jordan Elimination Method, Triangularization method, Cholesky Method, Partition method, error Analysis for direct methods, iteration Methods.	06 hrs
6.Eigen values and Eigen Vectors: Bounds on Eigen Values, Jacobi method for symmetric matrices, Givens method for symmetric matrices, Householder's method for symmetric matrices, Rutishauser method for arbitrary matrices, Power method, Inverse power method.	05 hrs
7.Linear Transformation: Introduction to Linear Transformation, The matrix of Linear Transformation, Linear Models in Science and Engg.	05 hrs
 Reference Books 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Willely India, 2016. 2. S.S.Sastry, Introductory Methods of Numerical Analysis, PHI, 2005. 3. Steven C. Chapra, Raymond P.Canale, Numerical Methods for Engineers, TMGH, 4th Ed, 2002. 4. M K Jain, S.R.K Iyengar, R K. Jain, Numerical methods for Scientific and engg computation, N 	New Age

International, 2003.
 Pervez Moin, Fundamentals of Engineering Numerical Analysis, Cambridge, 2010.
 David. C. Lay, Linear Algebra and its applications, 3rd edition, Pearson Education, 2002.

Cours	Course Code: 15EMDC701 Course Title: Failure Analysis and Design			
L-T-P	2: 4:0:0	Credits: 4	Contact Hrs: 4 / week	
CIE M	CIE Marks: 50 SEE Marks: 50 Total Marks: 100		Total Marks: 100	
Teach	ing Hrs: 50		Exam Duration: 180 min	
No		Content		Hrs
1	Introduction: Role of failure prevention analysis in mechanical design, Modes of mechanical failure, Review of failure theories for ductile and brittle materials including Mohr's theory and modified Mohr's theory. Numerical examples		06	
2	Fatigue of Materials : Introductory concepts, High cycle and low cycle fatigue, Fatigue design models, Fatigue design methods, Fatigue design criteria, Fatigue testing, Test methods and standard test specimens, Fatigue fracture surfaces and macroscopic features, Fatigue mechanisms and microscopic features			06
3	Surface Failure: Introduction, Surface geometry, Mating surface, Friction, Adhesive wear, Abrasive wear, Corrosion wear, Surface fatigue spherical contact, Cylindrical contact, General contact, Dynamic contact stresses, Surface fatigue strength.			08
4	Stress-Life (S-N) Approach: S-N curves, Statistical nature of fatigue test data, General S-N behavior, Mean stress effects, Different factors influencing S-N behaviour, S-N curve representation and approximations, Constant life diagrams, Fatigue life estimation using S-N approach.			06
5	Strain-Life (ϵ-N)approach : Monotonic stress-strain behavior ,Strain controlled test methods ,Cyclic stress-strain behavior ,Strain based approach to life estimation, Determination of strain life fatigue properties, Mean stress effects, Effect of surface finish, Life estimation by ϵ -N approach.			06
6	Notches and their effects: Concentrations and gradients in stress and strain, S-N approach for notched membranes, mean stress effects and Haigh diagrams, Notch strain analysis and the strain – life approach, Neuber's rule, Glinka's rule, applications of fracture mechanics to crack growth at notches.			08
7	Fatigue from Variable Amplitude Loading: Spectrum loads and cumulative damage, Damage quantification and the concepts of damage fraction and accumulation, Cumulative damage theories, Load interaction and sequence effects, Cycle counting methods, Life estimation using stress life approach.			05
8	Load Determination: Loading classes, Load analysis, Vibration loading, Impact loading, Beam loading. 05			05
 <i>Reference Book:</i> 1. Metal Fatigue in engineering, Ralph I. Stephens, Ali Fatemi, Robert .R. Stephens, Henry o. Fuchs, John wiley Newyork, Second edition. 2001. 2. Machine Design, An Integrated Approach, Robert L. Norton, Pearson. Second edition. 2000. 3. Failure of Materials in Mechanical Design, Jack A Collins, John Wiley & Sons; Second edition. 1993. 4. Fatigue of Materials, S. Suresh, Cambridge University Press: Second edition. 1998. 				

4. Fatigue of Materials, S. Suresh. Cambridge University Press; Second edition. 1998.

Cours	e Code: 15EMDC703	Course Title: Finite E	lement Practice in Machine Desi	gn
L-T-P	2: 4:0:0	Credits: 4	Contact Hrs: 4 / week	
CIE N	Aarks: 50	SEE Marks: 50	Total Marks: 100	
Teach	ing Hrs: 50		Exam Duration: 180 min	
No		Content		Hrs
1	Introduction: Introduction to a differential equations: FDM me and Galerkin method Numeric of FEA program, Pre and Post p desirable features of FEA pack variational calculus, minimizate elemental matrix equation, and	FEA, General FEM proce ethod, W-R technique, col al integration, Gauss quad processor, commercially a tages, • Principal of minin tion of functional, Raylei assembly concepts.	dure, • Approximate solutions of location least square sub-domain lrature in 2-D and 3-D, Structure available, standard packages, and mum total potential, elements of gh-Ritz method, Formulation of	10
2	One Dimensional FEM: Coordinate system: Global, local, natural coordinate system, Shape functions: Polynomial shape functions, Derivation of shape functions, Natural co- ordinate and coordinates transformation, Linear quadratic and cubic elements, Shape functions using Lagrange polynomials. Convergence and compatibility requirement of shape functions, One dimensional field problems: structural analysis (step-bar, taper-bar), Structural analysis with temperature effect, Thermal analysis, heat transfer from composite bar fins			10
3	Two Dimensional FEM Tru dimensional finite elements for rectangular element, Four-nod natural coordinates, triangular of elements, Eight-noded quadrila displacement matrix for CST e	isses, Thermal effects in rmulations, Three noded ded quadrilateral element elements, and quadrilatera ateral elements, Nine nod	n truss members, Beams, Two triangular element, Four-noded , derivation of shape functions: l elements, Six-noded triangular ed quadrilateral element, Strain	10
4	Three dimensional element hexahedron, Three Dimensional Three dimensional Truss(space plasticity (Von-Mises Plasticit data to model material behavior Patch test.	s: Tetrahedron, Rectan al polynomial shape funct: e trusses), Introduction to y), Hyper –elasticity. Gen ar, Errors in FEA, sources	igular prism (brick), Arbitrary ions, Natural co-ordinates in 3D, material models: Introduction to nerating and using experimental of errors, method of elimination,	10
5	Penalty Method, Lagrange m entities, Examples of Contact parametric, super-parametric, s Finite element formulation of and consistent mass matrices, H transfer and solid mechanics, C	ethods, Multipoint Const problems, Iso-parametri ub-parametric elements, o Dynamics, application to Eigen value problems, Tra Convergence, Impact of M	raints, Concept of Master/Slave c concepts, basic theorem, Iso- Concept of Jacobian. free-vibration problems, Lump nsient dynamic problems in heat lesh quality on convergence.	10
<i>Refer</i> 1. Rec 2. S.S 3. Des 4. Tir 5. Dav 6. Ken Wiley	ence Book: ddy J. N., "Finite Element Metho .Rao, "The Finite Element Metho sai and Abel, "Introduction to Fin upati R. Chandrupatla and Ashol vid Hutton, "Fundamentals of Finneth Huebner, Donald Dewhirst y-India Edition, 2009	d", McGraw-Hill od in Engineering", 4th H nite Elements Methods", 6 & D.Belegundu, "Introduc inite Element Analysis", 7 , Douglas Smith and Ted	Edition, Academic Press, Elsevier CBS Publication tion to Finite Elements in Enginee Fata McGrawHill, 2005 Byrom, "The Finite Method for En	ring" gineers"

Cours	e Code: 15EMDC705	Course Title: Dynam	ics and Mechanism design	
L-T-P	: 4:1:0	Credits: 5	Contact Hrs: 6 / week	
CIE M	Iarks: 50	SEE Marks: 50	Total Marks: 100	
Teach	ing Hrs: 50		Exam Duration: 180 min	
No		Content		Hrs
1	Geometry of Motion: Introduction, analysis and synthesis, Mechanism terminology, planar, Spherical and spatial mechanisms, mobility, Grashoffs law, Equivalent mechanisms, Unique mechanisms, Kinematic analysis of plane mechanisms: Auxiliary point method using rotated velocity vector, Hall - Ault auxiliary point method, Goodman's indirect method.			08
2	Synthesis of Linkages: Type, number, and dimensional synthesis, Function generation, Path generation and Body guidance, Precision positions, Structural error, Chebychev spacing, Two position synthesis of slider crank mechanisms, Crank-rocker mechanisms with optimum transmission angle Motion Generation: Poles and relative poles, Location of poles and relative poles, polode, Curvature, Inflection circle			10
3	Graphical Methods of Dimensional Synthesis: Two position synthesis of crank and rocker mechanisms, Three position synthesis, Four position synthesis (point precision reduction) Overlay method, Coupler curve synthesis, Cognate linkages.		08	
4	Analytical Methods of Dimensional Synthesis: Freudenstein's equation for four bar mechanism and slider crank mechanism, Examples, Bloch's method of synthesis, Analytical synthesis using complex algebra.			06
5	Spatial Mechanisms: Introduc analysis, Eulerian angles	tion, Position analysis pro	oblem, Velocity and acceleration	04
6	Generalized Principles of Dynamics: Fundamental laws of motion, Generalized coordinates, Configuration space, Constraints, Virtual work, principle of virtual work, Energy and momentum, Work and kinetic energy, Equilibrium and stability, Kinetic energy of a system, Angular momentum, Generalized momentum,		10	
 Lagrange's Equation: Lagrange's equation from D'Alembert's principles, Examples, Hamiltons equations, Hamiltons principle, Lagrange's, equation from Hamiltons principle, Derivation of Hamiltons equations, Examples. 			04	
Reference 1. Th 2. Mail 3. Gree 4. Erd 5. Sort	ence Book: heory of Machines and Mechanism chines and Mechanisms - David I enwood "Principles of Dynamics man Sandor "Advanced Mechani hi A.H "Mechanism synthesis and	m - E.Shigley & J.J.Jicken H. Myszka, PearsonEduca ", Prentice Hall of India, ism Design" Prentice Hall l analysis", McGraw Hill.	McGraw Hill company. ation, 2005. 1988. I.	

Cours	e Code: 15EMDC706	Course Title: Theory	of Vibrations with Application	
L-T-P	: 4:0:0	Credits: 4	Contact Hrs: 4 / week	
CIE M	Iarks: 50	SEE Marks: 50	Total Marks: 100	
Teach	ing Hrs: 50		Exam Duration: 180 min	
No		Content		Hrs
1	Fundamentals of VibrationImportance of the Study of Vibration; Basic Concepts of Vibration-Vibration, ElementaryParts of Vibrating Systems, Number of Degrees of Freedom, Discrete and ContinuousSystems; Classification of Vibration-Free and Forced Vibration, Un-damped and DampedVibration, Linear and Nonlinear Vibration, Deterministic and Random Vibration;Vibration Analysis Procedure; Harmonic Analysis-Fourier Series Expansion, Numerical			08
2	Free Vibration of Single-Degr Introduction; Free Vibration of Using Newton's Second Law Equation of Motion of a Sprin Motion; Free Vibration of an Ur Free Vibration with Viscous Decrement, Energy Dissipated Damping, Solution;	ee-of-Freedom Systems an Un-damped Translatio of Motion, Equation of g-Mass System in Vertio n-damped Torsional Syste Damping-Equation of in Viscous Damping, T	onal System- Equation of Motion Motion Using Other Methods, cal Position, Solution, Harmonic em-Equation of Motion, Solution; Motion, Solution, Logarithmic Forsional Systems with Viscous	08
	Harmonically Excited Vibra	tion		
3	Introduction; Equation of Motion; Response of an Undamped System under Harmonic Force-Total Response, Beating Phenomenon; Response of a Damped System under Harmonic Force- Total Response, Quality Factor and Bandwidth; Response of a Damped System Under Damped System Under the Harmonic Motion of the Base- Force Transmitted Relative Motion; Response of a Damped System Under Rotating Unbalance;			10
	Two-Degree-of-Freedom Sys	tems		
4	Introduction; Equations of Moti- damped System; Torsional Sy Forced-Vibration Analysis; Sen	on for Forced Vibration; I ystem; Coordinate Coup ni definite Systems;	Free Vibration Analysis of an Un- ling and Principal Coordinates;	04
	Multi degree-of-Freedom Sys	stems- Determination of	Natural Frequencies and Mode	
5	Introduction; Influence Coeffici Coefficients, Inertia Influence Properties of Rayleigh s Quotie Fundamental Frequency of Be Spring-Mass Systems; Matrix Frequency, Computation of Inte Eigenvalue Problem-Choleski I	ents-Stiffness Influence C Coefficients; Dunkerley' ent, Computation of the eams and Shafts; Holzer Iteration Method-Conve ermediate Natural Freque Decomposition;	Coefficients, Flexibility Influence s Formula; Rayleigh s Method- Fundamental Natural Frequency, 's Method- Torsional Systems, ergence to the Highest Natural ncies, Jacobi s Method, Standard	10
	Vibration Control			
6	Introduction; Vibration Nomo g Source; Control of Vibration; C Vibration Isolation- Vibration Is System with Base Motion, Vibra	raph and Vibration Crites Control of Natural Freque solation System with Rigi ation Isolation System with	ria; Reduction of Vibration at the encies; Introduction of Damping; d Foundation, Vibration Isolation th Flexible Foundation, Vibration	06

	Isolation System with Partially Flexible Foundation, Shock Isolation, Active Vibration	
	Control; Vibration Absorbers- Undamped Dynamic Vibration Absorber, Damped	
	Dynamic Vibration Absorber;	
	Nonlinear Vibration	
	Introduction; Examples of Nonlinear Vibration Problems-Simple Pendulum, Mechanical	
	Chatter, Belt Friction System, Variable Mass System; Exact Methods, Approximate	
7	Analytical Methods-Basic Philosophy, Lindstedt s Perturbation Method, Iterative Method,	04
,	Ritz-Galerkin Method, Subharmonic and Superharmonic Oscillations- Subharmonic	04
	Oscillations, Superharmonic Oscillations; Systems with Time-Dependent Coefficients	
	(Mathieu Equation); Stability of Equilibrium States-Stability Analysis, Classification of	
	Singular Points, Limit Cycles	
Refere	ence Book:	
1.	Mechanical Vibrations, - S. S. Rao., fourth edition, Pearson Education, 2005.	
2.	Theory of Vibration with Application, - William T. Thomson, Marie Dillon Dahleh, Fife	th edition,
	Pearson Education, 2003.	
3.	Mechanical Vibrations-S Graham Kelly, Adapted by: Shashidhar K Kudari, Schaum's out	lines, The
	McGraw-Hill Companies, 2007.	
4.	Vibrations Problem Solving Companion- Rao V. Dukkipti, J. Srinivas, Narosa, 2007	
5.	Mechanical Vibration Practice with Basic Theory- V. Ramamurti, Narosa, 2000	

Course	Course Code:15EMDC801Course Title:Machine Tool Design and Analysis			
L-T-P	: 4:0:0	Credits: 4	Contact Hrs: 4 / week	
CIE M	1arks: 50	SEE Marks: 50	Total Marks: 100	
Teach	ing Hrs: 50		Exam Duration: 180 min	
No		Content		Hrs
1	Machine design fundamentals, CAD tools-Training on modeling & drafting practice, Limits ,fits & tolerance, Materials & Heat treatment, Metal cutting Theory, CNC Machine Tools and Trends, M/c Design exercise, Design of Spindle Assembly, Design of Spindle Assembly with work holding, Design of hydraulics, Design of X & Z axis assembly of CNC Lathe, Ball Screw & L M guide ways, Design of X & Z Axes assembly, Overall machine Design, FEA approach, Manufacturing drawing, Power requirement Calculations & Controller Selection, Electrical switch gear elements, PLC Programming and Ladder Diagram, Electrical diagram, Vibration analysis, Final Test & avaluation		50	
<i>Refere</i> 1. 2.	ence Book: CMTI Machine Tool Design ha Design of Machine Tools by S	and book, Tata McGraw-Hil K Basu, 5 th edition, 2008	II, 1982.	
3. 4.	Fanuc drives, spindle motors a Material prepared and compile	nd servo motors. d by Mechanical Engineerin	g department (Machine Desigr	ı).

Course Code: 15EMDI801	Course Title: In	nternship/Industrial Training [#]	
L-T-P: 0-0-2	Credits: 2		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
		Exam Duration: 120 min	
Content			

Each student has to undergo internship/industrial training for a period of 6 weeks at a reputed industry/R&D institution after the completion of III semester ESA. At the organization where the student is undergoing training, the student shall be assigned to work under the supervision of a Project Supervisor assigned for this purpose by the Head of the Department / institution. Student is expected to learn about the organization where the student is undergoing training in terms of its vision, mission, objectives, organizational structure, operations etc. At the end of the training, student must submit a report based on training.

The Project Supervisor at the industry shall award In Semester Assessment (ISA) marks out of a maximum of 50. The Department will conduct the End Semester (ESA) for a maximum of 50 marks.

Course Code: 15EMDW801	Course Title: Mi	inor Project/Project Work Phase I*#	
L-T-P: 0-0-8	Credits: 8		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
		Exam Duration: 120 min	
Contents			

Minor Project: The Guide shall define the problem statement for the Project work. The student shall execute the Minor Project within three months duration during the 3rd semester. The student who has opted **Minor Project** shall opt **Major Project** in IV semester. However, Minor Project is independent of Major Project.

Project Work Phase I:

Student must select a research project in consultation with the Guide. Student should identify the problem and conduct an exhaustive literature survey in Project Work Phase I and shall continue the project in IV semester in Phase II. Student has to submit the report at the end of the III Semester based on the following:

- Back ground and significance of the Research Project
- Problem statement
- Objectives and scope of the project
- Literature review
- Methodology
- Future plan of action

Course Code: 15EMDW802	Course Title:	Major Project/Project Work Phase II*	
L-T-P: 0-0-20	Credits: 20		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
		Exam Duration: 180 min	
Contents			

The student who has opted **Minor Project** should opt **Major Project** in IV semester. The **Major Project** shall be carried out by the student under the supervision of guide for a period of 6 months. For successful completion of this course the student should be able to identify the problem, define the objectives of the work as specific points indicating the scope within which the work is to be carried out, conduct the comprehensive literature survey, demonstrate the use of methodology adopted, analyze and interpret the experimental/numerical results obtained.

Project Work Phase II:

The student who has opted Project Work Phase I shall continue the project in IV semester in Phase II.

Phase II is assessed based on the following:

- Quality of literature survey and demonstration of creativity in the research problem
- Clarity in the objectives and scope of the research
- Clarity in the problem definition and feasibility in the problem solution
- Relevance to the current research/industrial trends
- Quality of work
- Analysis and Interpretation of results
- Quality of oral and written presentation
- Publication based on the research work in reputed national/international conference/journal.

Course Code: 17EMDP701		Course Title: Fi	nite Element Analysis Lab	
L-T-P:	0-0-1	Credits: 1	Contact Hrs: 2 hrs /	week
ISA M	larks: 80	ESA Marks: 20	Total Marks: 100	
Teachi	ing Hrs: 24		Exam Duration: 12	0 min
		Content	I	Hrs
	Modeling of any automotive et and three dimensional. Static analysis of above mode elements and materials. Non-Linear Analysis of 3D mode viz -Geometric, Material, and Dynamic Analysis of 3D mode different Boundary Conditions Thermal analysis of 3D model Fatigue Analysis & Fatigue lift Using theoretical concepts vali Report to be submitted in the p	ngine component u illed component us odel created for any Contact. el created by Moda created. e Prediction of created idation of the above prescribed format.	sing modeling software as two ing different possible types o y possible Nonlinearity criteria l or Harmonic or Transient fo ated 3D model. e analysis to be carried out.	24
1. 2. 3.	 <u>Materials and Resources Required:</u> 1. Nitin S. Ghokale, Sanjay Deshapande, Sanjeev Bedekar, "Practical Finite Element Analysis Vikas Book house, Pune, 2008 2. Sham Tickoo, "Ansys Workbench 14.0 for Engineers and Designers-, A Tutorial Approach", Drea Tech Press, 2013 3. Liu G. R. and Quek S. S., "The Finite Element Method" A practical Course, 2nd Edition, Elsevier 2014 			Element Analysis", Approach", Dream ^d Edition, Elsevier,
4. 5.	http://148.204.81.206/Ansys/1 http://abaqus.software.polimi.i	50/ANSYS%20Me t/v6.12/pdf_books/	chanical%20Users%20Guide. CAE.pdf	pdf

Cours	e Code: 17EMDC707	Course Title: Fra	cture Mechanics	
L-T-P	2: 4-0-0	Credits: 4	Contact Hrs: 4 hrs / week	
ISA N	ISA Marks: 50ESA Marks: 50Total Marks: 100		Total Marks: 100	
Teach	ing Hrs: 50		Exam Duration: 180 min	
No		Content		Hrs
1	Introduction: History and overview, Fundamental concepts, Fracture mechanics in Metals, Ductile fracture, Cleavage, The Ductile-Brittle transition, Inter-granular fracture, Modes of Fracture Failure:			04
2	Energy Release Rate: Introduce Instability and the R-Curve, The Release Rele	ction, The Griffith ene nin plate vs Thick plate	rgy balance, The energy release rate, e, Critical Energy release rate;	06
3	Stress Intensity Factor: Introduction, Stress analysis of cracks, The stress Intensity Factor, Relationship between K and Global behavior, Effect of Finite size, Principle of superposition, Weight Functions, Relationship between K and G, Crack tip plasticity, Plane stress versus plane strain K as a failure criterion. Mixed mode fracture			08
4	Elastic Plastic Fracture Mechanics: Crack tip opening displacement, The J Contour Integral, Relationships between J and CTOD, Crack growth resistance curves, J-controlled fracture, Crack tip constraint under large scale yielding, HRR field;			08
5	Mixed Mode fracture: A simple Elliptical Model, Maximum Tensile Stress Criterion, Strain Energy Density Criterion, Maximum Energy Release Rate Criterion, Experimental Verifications;			04
6	Fracture Toughness testing of metals: General Considerations, K _{IC} testing, K-R Curve testing, J testing of metals, CTOD testing, Dynamic and crack arrest toughness, Fracture testing of weldments.			06
7	Fatigue Crack Propagation Similitude in fatigue, Empirica amplitude loading and retardati Experimental measurement of	l fatigue crack growth on, Growth of short cr fatigue crack growth,	equations, Crack Closure, Variable cacks, Micro-mechanisms of fatigue, Damage Tolerance.	08
8	Dynamic and Time-Dependent Fracture Dynamic Fracture and Crack Arrest, Rapid Loading of a Stationary Crack, Rapid Crack Propagation and Arrest, Crack Speed, Elasto dynamic Crack-Tip Parameters, Dynamic Toughness, Crack Arrest, Dynamic Contour Integrals, Creep Crack Growth, The C* Integral Short-Time vs Long-Time Behavior The Ct Parameter Primary Creep			06
Refer	ence Book:			
1.	T.L.Anderson, "Fracture Mec 1995	hanics -Fundamentals	and Applications", CRC Press, 2 nd E	dition,
2. 3.	Prashant Kumar, "Elements of Delhi, 2010. David Broek, Artinus Nijhoff	f Fracture Mechanics" , "Elementary Engine	, Tata McGraw-Hill Education Pvt. L ering Fracture Mechanics", London,	.td. New 1999.
4. 5.	J. F. Knott, "Fundamentals of C.T.Sun and Z.H.Jin, "Fractu	Fracture Mechanics", re Mechanics", Elsevi	Bureworth, 2000. er, 2012.	

Cours	e Code: 17EMDE707	Course Title: Mec	hanical Behavior of Materials	
L-T-P	2: 4-0-0	Credits: 4	Contact Hrs: 4 hrs / week	
ISA N	Aarks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ing Hrs: 50		Exam Duration: 180 min	
No		Content		Hrs
1	Introduction: Materials in design , The Characteristics of Composite Functionally Graded Materials Macro Mechanics of a Lamina elastic constants, Derivation of - dimensional relationship of dimensional angle lamina, e properties. Numerical problem	evolution of engin s, Interfaces in Comp a : Hooke's law for diff f nine independent con compliance and stiff engineering constants is.	heering materials , Fundamental posites, Fracture in Composites, , erent types of materials, Number of stants for orthotropic material, Two hess matrix. Hooke's law for two- - Numerical problems. Invariant	10
2	Plastic Deformation and Dislocation Theory: Lattice defects, deformation in a perfectlattice, dislocation in crystal and deformation, strain hardening of single crystal, low anglegrain boundaries, Stress field of a dislocation, forces between dislocations, dislocationclimb and jog, interaction with vacancy and impurity. Multiplication of dislocation andpile-up; Plastic Deformation in Tension, Plastic Deformation in Compression Testing,Plastic Deformation of Polymers.			10
3	Behavior under Tensile load Engineering and true stress- coefficient and strain hardening gauge length on strength and e properties. Yield point phenom Strengthening, Mechanical Eff	ing: strain curves, yield ng exponent, necking elongation, Effect of sta nenon. Fracture under fects Associated with S	point and strain ageing, strength or instability in tension, Effect of rain rate and temperature on tensile tension and torsion; Solid-Solution colid Solutions.	10
4	Deformation under cyclic characteristics. Fatigue testing Factors affecting fatigue- co overstressing. Effect of metallu	loading: Stress cycle 3 and testing machines ontact under pressure urgical impurities;	e, fatigue curve, fatigue fracture , determination of fatigue strength. e. Under stressing, coaxing and	10
5	Deformation under high tem Creep strain and creep-time cu Fracture at elevated tempera Polymers, Heat-Resistant Ma applications. Effect of metal applications;	perature and Superp rves, low temperature a ture, Stress rupture, terials, Superplasticity llurgical variables an	lasticity of Metals : and high temperature creep theories. Creep-Induced Fracture, Creep in y, Creep parameters and practical d materials for high temperature	10

Reference Book:

- 1. Marc Andre Meyers and Krishan Kumar Chawla: "Mechanical Behavior of Materials", Cambridge University Press, 2nd Edition 2008.
- 2. Norman Dowling, "Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture and Fatigue", Prentice Hall, 4th Edition 2012.
- 3. G.E. Dieter: "Mechanical Metallurgy". McGraw-Hill, 3rd Edition 1988.
- 4. Keith Bowman, "Mechanical Behavior of Materials", Wiley international edition, 2003.
- 5. Thomas Courtney, "Mechanical Behavior of Materials", Waveland Press Inc; 2nd Edition, 2005.
- 6. J. Roesler, H. Harders, M. Baeker, "Mechanical Behavior of Engineering Materials", 1st Edition, Springer, 2007
- 7. Ŵ.F. Hosford, "Mechanical Behavior of Materials", 2nd Edition, Cambridge University Press, 2009.

Course Code: 18EMDP701 Course Title: CAD Modelling Lab			
L-T-P: 0-0-5	Credits: 5	Contact Hrs: 10 hrs / week	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
		Exam Duration: 02 hrs	
	Content	I	Hrs
 Introduction to CAD / CAM Brief introduction to CATIA Introduction to Work benche Brief introduction on Sketch Structure of users and saving Part Design Generative Sheet Metal Des Assembly Design Workbench Drafting Workbench 	I / CAE Software's Software and Industrial a es er work bench environmen g of files. ign (GSMD) Workbench ch	pplications nt	120
<u>Materials and Resources</u>	<u>Required:</u> of Mechanical Engineer	ring KI FTU-Hubballi	
 Sham Tickoo, "Catia V5 Technologies, 2009. 	R20 for Engineers and I	Designers-, A Tutorial Approach", C	CAD CIM

Course Co	de: 18EMDP702		Course Title: Advanced CAE
L-T-P: 0-0-3		Credits: 3	Contact Hrs: 6 hrs/week
ISA Marks	: 80	ESA Marks: 20	Total Marks: 80
Teaching H	Irs: 120		Exam Duration: 2 hrs
Sl. No.		Contents	No of Slots
01	Over View of Abaqus A First Look at Abaqus Linear Static Analysis of a Car	ntilever Beam	02
02	Working with Geometry (Part 1) Working with Native Geometry Creating Native Geometry: Pipe Creep Model		01
03	Working with Geometry (Part 2) Generating a Shell From a Thin Solid Import and Geometry Repair of Intersecting Pipes Importing and Editing an Orphan Mesh Importing and Editing an Orphan Mesh: Pump Model		02
04	Material and Section Properties Creating Materials and Assigning Sections Material and Section Properties: Pipe Creep Model Material and Section Properties: Pump Model		01
05	Assemblies in Abaqus Creating an Assembly Pump Model Assembly		01
06	Steps, Output, Loads, & Boundary Conditions Creating Steps Using the Load Module Step Definition and Loads: Pipe Creep Model Step Definition and Loads: Pump Model		01
07	Meshing Imported and Native Geometry Using the Mesh Module Structured Hex Meshing: Pipe Creep Model Free and Swept Meshing: Pump Model Meshing of Intersecting Pipes		01
08	Job Management and Results Visualization Using the Keywords Editor Creep of a Pipe Intersection		01
Linear and Nonlinear Problems			

09	Analysis Procedures (Part 1) Nonlinear Static Analysis Linear Analysis of a Skew Plate Nonlinear Analysis of a Skew Plate	02	
10	Analysis Procedures (Part 2) Multiple Load Cases Linear Static Analysis of a Cantilever Beam	02	
11	Analysis Procedures (Part 3) Dynamic Analysis of a Skew Plate Pipe Whip Analysis	02	
12	Analysis Continuation Techniques Unloading Analysis of a Skew Plate	01	
13	Constraints and Connections Defining a Rigid Body Tie Constraints: Pump Model	01	
14	Contact Using Automatic Contact Detection and General Contact Nonlinear Static Analysis of a Pump Assembly	02	
	Total	20	
15	Case studies and Various analysis of components (Both created and imported models)	60	
Refere	nce books:		
1. 2.	Material prepared by School of Mechanical Engineering, KLETU-Hubballi. Nitin S. Gokhale, Sanjay S Deshpande, Sanjeev V Bedekar, Anand N thite, "Practi Finite To Infinite, 2008.	cal Finite Element Analysis",	
3.	3. Bryan J Mac Donald "Practical Stress Analysis with Finite Elements", 2nd Edition, Glasnevin Publishing, 2011		

- 4. Abaqus 6.14 documentation, <u>http://abaqus.software.polimi.it/v6.14/index.html</u>
 5. http://ivt-abaqusdoc.ivt.ntnu.no:2080/v6.14/pdf_books/CAE.pdf

Course Code:19EMDC701	IDC701 Course Title:Computational Methods in Engineering Analysis		
L-T-P: 3-1-0	Credits: 4		Contact Hrs: 5
ISA Marks: 50	ESA Marks: 50	То	tal Marks: 100
Teaching Hrs: 40		Exam I	Duration: 3 hrs
	Contents		Hrs
 1.Approximations and round off errors: Significant figures, accuracy and precision, error definitions, round off errors and truncation errors. Mathematical modelling and Engineering problem solving: Simple mathematical model, Conservation Laws of Engineering 			06
2.Roots of Equations: Bracketing methods-Graphical method, Bisection method, False position method, Newton- Raphson method, Secant Method. Multiple roots, Simple fixed point iteration.			06
3.Roots of polynomial - Polynomials in Engineering and Science, Muller's method, Bairstow's Method Graeffe's Roots Squaring Method.			06
 4.Numerical Differentiation and Numerical Integration: Newton –Cotes and Guass Quadrature Integration formulae, integration of Equations, Romberg integration, Numerical Differentiation Applied to Engineering problems, High Accuracy differentiation formulae. 			06
 5.System of Linear Algebraic Equations and Eigen Value Problems: Introduction, Direct methods, Cramer's Rule, Gauss Elimination Method, Gauss-Jordan Elimination Method, Triangularization method, Cholesky Method, Partition method, error Analysis for direct methods, iteration Methods. 			06
 6.Eigen values and Eigen Vectors: Bounds on Eigen Values, Jacobi method for symmetric matrices, Givens method for symmetric matrices, Householder's method for symmetric matrices, Rutishauser method for arbitrary matrices, Power method, Inverse power method. 			05
7.Linear Transformation:05Introduction to Linear Transformation, The matrix of Linear Transformation, Linear Models in Science and Engg.05			05
Reference Books:			
 Erwin Kreyszig , Advanced Engineering Mathematics, 10th Edition , Willely India, 2016. S.S.Sastry, Introductory Methods of Numerical Analysis, PHI, 2005. Steven C. Chapra, Raymond P.Canale, Numerical Methods for Engineers, Tata Mcgraw Hill, 4th Ed, 2002. M K Jain, S.R.K Iyengar, R K. Jain, Numerical methods for Scientific and engg computation, New Age International, 2003. Pervez Moin, Fundamentals of Engineering Numerical Analysis, Cambridge, 2010. David. C. Lay, Linear Algebra and its applications, 3rd edition, Pearson Education, 2002. 			

Course Code: 19EMDE702	Course Title: Mechanics of Solids		
L-T-P: 4-0-0	Credits: 4	Conta	ct Hrs: 5
ISA Marks: 50	ESA Marks: 50	Total Ma	rks: 100
Teaching Hrs: 50		Exam Duratio	on: 3 hrs
Contents			hrs
1. Analysis of stress Introduction, body force, surface force and stress vector, the state of stress at a point, rectangular stress components, stress components on an arbitrary plane, equality of cross shears, differential equations of equilibrium, principal stresses, Mohr's circles for the three-dimensional state of stress, octahedral stresses, decomposition into hydrostatic and pure shear states.			07
2. Analysis of Strain Introduction, deformation, strain displacement relations, state of strain at a point, strain tensors, cubical dilatation, principal strains, spherical and deviator strain tensors, octahedral strains, compatibility conditions			07
3. Stress-Strain Relations for Linearly Elastic Solids Generalized Hooke's law, stress–strain relations for isotropic materials, transformation of compatibility condition from strain components to stress components, relations between the elastic constants, Saint Venant's principle and uniqueness theorem.			06
4. Two Dimensional Problems in Cartesian Co-ordinates Plane stress and plane strain problems, Airy's stress function, solution of two-dimensional problems by the use of polynomials, pure bending of a beam, bending of a narrow cantilever beam under end load, simply supported beam subjected to point load and uniformly distributed load, use of Fourier series to solve two dimensional problems.			07
5. Two Dimensional Problems in Polar Co-ordinates General equations, biharmonic equation, stress distribution symmetrical about an axis, strain components in polar co-ordinates, thick-walled cylinders, rotating disks of uniform thickness, effect of circular holes on stress distribution in plates.			07
6. Torsion of Prismatic Bars Introduction, general solution of the torsion problem, torsion of circular, elliptical and equilateral triangular cross section bar, membrane analogy, torsion of thin tubes.			06
7. Thermal Stresses Introduction, thermoelastic stress–strain relations, thin circular disk; temperature symmetrical about centre, long circular cylinder, normal stresses in straight beams due to thermal loading.			05
8. Introduction to Plasticity Mechanism of plastic deformation, factors affecting plastic deformation, strain hardening, theories of plastic flow, Tresca and Von Mises yield criteria, discussion of plasticity conditions, experimental evidence for yield criteria.			05

Reference Books:

- 1. L S Srinath, Advanced Mechanics of Solids, 3rd Edition, Tata Mcgraw Hill Company, 2009.
- 2. T.G. Sitharam and L. Govindaraju, Elasticity for Engineers, I K International Publishing House, 2016.
- 3. Dr. Sadhu Singh, Theory of Plasticity and Metal Forming Process, 3rd Edition, Khanna Publishers, 2011.
- 4. J. Chakraborty, Theory of Plasticity, 3rd Edition, Butterworth-Heinemann, 2006.

I Sem M. Tech. (Production Management) Curriculum Content

Course Code: 15EP	MC702	Course Title: Mechatronics Systems
L-T-P: 4-1-0	Credits: 5	Contact Hrs: 6 hrs/week
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hrs: 50 hi	°S	Exam Duration: 3 hrs

Introduction to mechatronics system: Advanced mechatronics design Approaches, Review of fundamentals of electronics, Application of mechatronics in manufacturing like CNC, TMS, FMS, CIM, MVS, APS etc.

Mechatronics elements: Data conversion devices, macro sensors, micro sensors, modern transducers, micro actuators, signal processing devices, relays, contactors and timers. MEMS.

Drives and mechanisms: Drives: stepper motors, servo drives. Ball screws, linear motion bearings, cams, systems controlled by camshafts, electronic cams, indexing mechanisms, tool magazines, and transfer systems.

Hydraulic and pneumatic system: Hydraulic systems: flow, pressure and direction control valves, actuators, and supporting elements, hydraulic power packs, and pumps. Distribution and conditioning of compressed air, system components and graphic representations Design of hydraulic and pneumatic circuits.

CNC technology and Robotics: Importance of CNC Systems, CNC variety, comparison of CNC with SPM, types of CNC machines, Advanced machining- 3, 4 & 5 axis, retrofitting applications CNC machines and part programming, Industrial Robotics.

Signal systems and real time interfacing: System and interfacing and data acquisition, DAQS, Overview of the I/O process, Installation of the I/O card and software. I/O ports, peripheral adapters, and serial communications interface, Dynamic Models and analogies, System response.

Programmable Logic Controllers: Introduction - Basic structure - Input / Output processing - Programming -Mnemonics Timers, Internal relays and counters - Data handling - Analog input / output - Selection of PLC.

Design and mechatronics case studies: Design of mechatronics systems & future trends. Designing - Possible design solutions - Case studies of Mechatronics systems- pick and place robot, PC based CNC drilling machine, conveyer based material handling system etc.

References:

- 1. Bolton W., "Mechatronics", Pearson publications, New Delhi.
- 2. Shetty D. and Kolk R.A., "Mechatronics System Design", Thomas Learning.
- 3. Histand M. B. and Alciatore D. G., "Introduction to Mechatronics & Measurement System", TATA McGraw Hill Publishing Company, New Delhi.
- 4. Aulander D. M. and Carl J., "Mechatronics Mechanical System Interfacing", Kemp Prentice-Hall, Inc.

I Sem M.Tech. (Production Management) Curriculum Content

Course Code: 15EP	MC703	Course Title: Project Management
L-T-P : 4-1-0	Credits: 5	Contact Hrs: 6 hrs/week
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hrs: 50 h	rs	Exam Duration: 3 hrs

Planning Overview: Capital investments, Phases and objectives of capital budgeting, Facets of project analysis, Capital Allocation Framework: Key criterion, Elementary investment options, Portfolio planning modes, Strategic planning and capital budgeting, Market and Demand Analysis: Situational analysis and specification of objective, Conduct of market survey, Demand forecasting and Uncertainties in demand forecasting, Technical Analysis: Manufacturing process/technology, Technical arrangements, Material inputs and utilities, Product mix, Plant capacity, Location and site, Machineries and equipment, Structures and civil works, Environmental aspects, Project charts and layouts. Financial Estimates and Projections: Cost of a project, Means of finance, Estimates of sales and production, Cost of production, Working capital requirement and its financing, Profitability projections, Projected cash flow statements. Advance Project Network Analysis and Scheduling: Introduction to CPM and PERT, Theory of constraints and critical chain method, Allocating resources and multiple project scheduling, TOC method for allocating Resources to multiple projects, GERT. Project Selection and Portfolio Management: Project portfolio management, Framework for project selection and portfolio management, Methods for individual project analysis, Methods for comparing and selecting projects, Periodic project review and assessment. The Impact of Sustainability on Project Management: The concept of sustainability, Sustainability in project management, Inter-relating life cycles, The impact of sustainability on project management processes, Measuring and reporting projects, The impact of sustainability on project management competencies.

References:

- 1. Prasanna Chandra, "Projects: Planning, Analysis, Financing, Implementation and Review", Tata McGraw-Hill Publishing Company Limited, New Delhi.
- 2. Nicholas J. M. and Steyn H. "Project Management for Business, Engineering and Technology: Principles and Practice", Elsevier.
- 3. Harold R. Kerzner, "Project Management: A Systems Approach to Planning, Scheduling, and Controlling", Wiley, New York.
- 4. Scott Berkun, "Art of Project Management". Cambridge, MA: O'Reilly Media.
- 5. Choudhury, S., "Project Management", Tata McGraw Hill.
- 6. Wiest J. D. and Levy F. K., "A Management Guide to PERT/CPM", Prentice Hall, Englewood Cliffs.
| Course Code: 15EPMI | E702 Course Title: | Design of Experiments and Robust Design |
|----------------------|--------------------|---|
| L-T-P: 4-0-0 | Credits: 4 | Contact Hrs: 4 hrs/week |
| CIE Marks: 50 | SEE Marks: 50 | Total Marks: 100 |
| Teaching Hrs: 50 hrs | | Exam Duration: 3 hrs |

Taguchi's approach to quality and quality loss function, noise factors and average quality loss, exploiting non linearity, classification of parameters, Analysis of variance: No-Way ANOVA, One-Way ANOVA, Two-Way ANOVA and Three-Way ANOVA, Two Level Experiments: Two factor factorial design, model adequacy checking and estimating model parameters, 2² full factorial design, 2³ full factorial design, 2^k full factorial design and Two level fractional factorial design, General 2^{k-p} fractional factorial design. Steps in Robust Design, Identification of process and its main function, Noise factors and testing conditions, Control factors and their levels, Matrix experiment and data analysis plan, Conducting the experiment and data analysis, Verifying experiment and future plan. Signal to Noise Ratios, Comparison of the quality of two process conditions, Relationship between Signal to Noise Ratio and quality loss after adjustment, Identification of a scaling factor, Signal to Noise Ratios for static problems, Signal to Noise Ratios for dynamic problems, Analysis of ordered categorical data. Taguchi inner and outer arrays, Orthogonal arrays and fractional factorial designs, Parameter design and tolerance design, Analysis of inner/outer array experiment, Alternative inner/outer Orthogonal array experiments, Constructing orthogonal arrays, Dummy level technique, Compound factor method, Linear graphs and Interaction assignment, Modification of linear graphs, Column merging method, Branching design.

- 1. Montgomery, D. C., "Design and Analysis of Experiments", John Wiley & Sons.
- 2. Khuri A. I. and Cornell J. A. "Response Surfaces: Designs and Analyses, Marcel Dekker, Inc., New York.
- 3. Myers R. H., Montogomery, D. C. and Anderson-Cook C. M. "Response Surface Methodology: Process and Product Optimization Using Designed Experiments", John Wiley & sons, Inc., New York.
- 4. Mason R. L., Gunst, R. F., Hess J. L., "Statistical design and Analysis of Experiments with Applications to Engineering and Science", John Wiley & sons, Inc., New York.
- 5. Phadke M. S., "Quality Engineering using Robust Design", Prentice Hall PTR Englewood Cliffs, New Jersey.
- 6. Ross P. J., "Taguchi Techniques for Quality Engineering", McGraw -Hill International.

Course Code: 15EPME704		Course Title: Finite Element Applications
		in Manufacturing
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4 hrs/week
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hrs: 50 hrs	5	Exam Duration: 3 hrs

Equations of equilibrium, stress-strain relations for 2-D and 3-D, Potential energy and equilibrium, Boundary conditions, Von Misses Stresses. Approximation Analysis: Variational methods, Rayleigh-Ritz (R-R) methods applied to simple problems on axially loaded members R-R method applied to Cantilever, simply supported arid fixed beam, with point loads and UDL, Galerkin's method as applied to simple elasticity problem. FEM for 2D Problems: Shape functions, stiffness matrix, strain matrix, load vectors for CST Elements and application problems. FEM for Axisymmetric Problems: Higher order elements in bar, triangular, quadrilateral, tetrahedral and hexahedral elements, axisymmetric formulation, triangular elements, PE approach, Body force term, application problems. FEM applications of FEM in forming processes such as forging, rolling, drawing, extrusion and deep drawing, Applications of FEM in various casting processes. Dynamic Analysis: Equations of motion for dynamic problems –consistent and lumped mass matrices --formulation, Standard FE Packages and their features.

- 1. Chandrupatla and Belegundu, "Introduction to Finite Elements in Engineering", PHI learning Pvt Ltd, New Delhi.
- 2. Desai G.S. and Abel J.F., "Introduction to Finite Element Method", CBS Publishers, New Delhi.
- 3. Rao S. S., "The Finite Element Method in Engineering", Elsevier Publications.
- 4. Madenci E. and Guven I., "The Finite Element Method & Applications in Engineering Using ASYS", Springer International Edition.
- 5. Krishnamoorthy C. S., "Finite Element Analysis", Tata McGraw Hill Publishing Co. Ltd, New Delhi.
- 6. Lakshiminarayana H V., "Finite Element Analysis Procedures in Engineering", Universities Press.

Course Code: 15EPMP701		Course Title: Machining and Mechatronics Lab
L-T-P: 0-0-2-0	Credit: 2	Contact Hrs: 4 hrs/week
CIE Marks: 80	SEE Marks: 20	0 Total Marks: 100
Practical Hrs: 48 hrs		

- CNC programming practices on turning and milling.
- Generation of CNC programming using CAM software.
- Machinability studies in turning, drilling, milling and non-traditional machining.
- Analysis of automation circuits for a manufacturing system using electro-hydraulic and pneumatic circuits.
- Interfacing, programming and analyzing the various working modules with PLC system.
- Open ended experiments
 - ✓ Parametric analysis in traditional/non-traditional machining for a specified work tool combination
 - ✓ Construction and validation of a mechatronic system device for a given task.

II Sem M.Tech. (Production Management)

Curriculum Content

Course Code: 15ECRC701 Course Title: Philosophy and Practice of Engineering Education

		Laucation		
L-T-P: 2-0-1	Credits: 3		Contact Hrs: 3hrs/week	
CIE Marks: 50	SEE Marks: 50		Total Marks: 100	
Teaching Hrs: 40 hrs			Exam Duration: 3 hrs	

Module 1: Fundamental Principles of Effective Teaching and Learning

Teaching Philosophy, How Learning Works, Classroom Communication Skills, Teaching and Learning Styles, Bloom's Taxonomy.

Module 2: Fundamentals of Instructional Design

Different Instructional Design Models.

Module 3: Technology Enhanced Learning

Role of Technology, TPACK Model, Technology Tools.

Module 4: Basics of Assessment and Evaluation

Different Methods, Techniques.

Module 5: Micro Teaching

Practice and Assessment

Reference Books:

Ambrose, S., Bridges, M., DiPietro, M., Lovett, M., & Norman, M. (2010) How learning works: 7 Research-Based principles for smart teaching. San Francisco: Jossey-Bass.

Suggested Web Resources:

https://cft.vanderbilt.edu/guides-sub-pages/blooms-taxonomy/ http://educationaltechnology.net/instructional-design/ https://www.nwea.org/blog/2014/33-digital-tools-advancing-formative-assessmentclassroom/ http://oedb.org/ilibrarian/101-web-20-teaching-tools/

Course Code: 15EPMC706		Course Title: World Class Manufacturing
L-T-P: 4-1-0	Credits: 5	Contact Hrs: 6 hrs/week
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hrs: 50 hr	5	Exam Duration: 3 hrs

World-Class Manufacturing (WCM), Manufacturing Excellence and Competitiveness, Meaning of World-class, Competing in World markets, WCM Techniques, Review of frameworks for WCM, Justification of WCM, Case studies.

Lean Manufacturing: Elements of Lean manufacturing: Stability, Standardized work, Just in time, Jidoka, Hoshin Planning, The culture of lean, Implementation of Lean manufacturing: Implementation framework for the Lean manufacturing, DEMAIC process, Case studies.

Total Productive Maintenance (TPM): An overview of various maintenance systems, Evolution of TPM, Productivity and TP, OEE, TPM and TQC, Small Group Activities, Pillars of TQM, Kobsu-Kaizen (Continuous Improvement), Jishu-Hozen (Autonomous maintenance), Planned Maintenance System, Skill upgrade training, Initial control (Equipment Life cycle management), Hinshitsu-Hozen (Quality Maintenance), Office TPM, Total safety management, Implementation, 5s,Case studies,

Total Quality Management (TQM): Understanding quality, Evolution of TQM, Framework for TQM, Commitment and leadership, Customer satisfaction, Employee involvement, Continuous process improvement, Supplier partnership, Performance, measures, Formulation and implementation of TQM

Concurrent engineering, Design Failure Mode Effects Analysis (DFMEA) and Process Failure Mode Effects Analysis (PFMEA), Manufacturing Quality in Supply Chain Management, Manufacturing Quality and its importance in Product Life Cycle, Case studies.

- 1. Todd J., "World Class Manufacturing", McGraw Hill, London.
- 2. Schonberger R.J., "World Class Manufacturing The Lesson of Simplicity", Free Press.
- 3. Marcus, A. A., "Management Strategy: Achieving Sustained Competitive Advantage", New York: McGraw-Hill/Irwin.
- 4. Voss C.A., "Manufacturing Strategy: Process and Content", Chapman & Hall, London.
- 5. Pascal D., "Lean production simplified", 2nd Edition, Productivity Press.
- 6. Nakajima S., "Introduction to Total Productive Maintenance", Productivity Press.
- 7. Besterfield D. H., et al., "Total Quality Management", Pearson Education.
- 8. Mohanty R.P. and Deshmukh S: G., "Advanced Operations Management", Pearson Education.

II Sem M.Tech. (Production Management)		
	Curricu	lum Content
Course Code: 15EPMC707		Course Title: Automation in Manufacturing
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4 hrs/week
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hrs: 50 hrs		Exam Duration: 3 hrs

Automation in Production System, Principles and Strategies of Automation, Basic Elements of an Automated System, Advanced Automation Functions, Levels of Automations, introduction to automation productivity. Material handling equipment, Analysis. Storage systems, performance and location strategies, Automated storage systems, AS/RS, types. Automatic identification methods, Barcode technology, RFID. Control Technologies in Automation: Industrial Control Systems, Process Industries Verses Discrete-Manufacturing Industries, Continuous Verses Discrete Control, Computer Process and its Forms. Discrete Process Control. Automated Manufacturing Systems: Components, Classification and Overview of Manufacturing Systems, Manufacturing Cells, GT and Cellular Manufacturing, FMS, FMS and its Planning and Implementation, Flow lines & Transfer Mechanisms, Fundamentals and Analysis of Transfer Lines, product design for automatic assembly. Evaluation of automatic production: Product manufacturability, orientation devices- active and passive devices, parts orientation. Automated Assembly Systems: Fundamentals, Analysis of Assembly systems. Cellular manufacturing, part families, cooling, production flow analysis. Group Technology and flexible Manufacturing systems, Quantitative Analysis. Analysis of Transfer Lines with No Internal Storage, Analysis of Transfer Lines with Storage Buffers. Quality Control And Support Systems: Quality in Design and manufacturing, inspection principles and strategies, Automated inspection, contact Vs non-contact, CMM. Manufacturing support systems. Quality function deployment, computer aided process planning, concurrent engineering, shop floor control, just in time and lean production. Rapid manufacturing technology; Introduction to Rapid Manufacturing, Customization and Mass Customization, Classification of Rapid Manufacturing Processes (Additive/Subtractive/Formative) Process Chain for Additive and Other Rapid Manufacturing Processes. Modeling and Simulation for Manufacturing Plant Automation: Introduction, need for system Modeling, Building Mathematical Model of a manufacturing Plant, Modern Tools- Artificial neural networks in manufacturing automation, AI in manufacturing, Fuzzy decision and control, robots and application of robots for automation.

- 1. Grover M.P., "Automation, Production Systems and Computer Integrated Manufacturing", Pearson Education Asia.
- 2. Grover M.P., Weiss M. M., Nagel R.N. and Odrey N.G., "Industrial Robotics, Technology, Programming and Applications", Mc Graw Hill Book Publications.
- 3. Krishna Kant, "Computer Based Industrial Control" PHI.
- 4. David W. P., "Industrial Automation" John Wiley and Sons.
- 5. Radhakrishnan P., "CAD / CAM / CIM", New Age International Pvt. Ltd., New Delhi.
- 6. Viswanandham, "Performance Modeling of Automated Manufacturing Systems" PHI.

Course Code: 15EPMP702		Course Title: Computer Aided Engineering
		and Simulation Lab.
L-T-P: 0-0-2	Credit: 2	Contact Hrs: 4 hrs/week
CIE Marks: 80	SEE Marks: 20-	Total Marks: 100
Practical Hrs: 48 hrs		Exam Duration: 3 hrs

- 3D Modeling and FEM Structural analysis: Exercises on modeling and finite element analysis, Simulation of single point and multi point cutting tools like twist drill and milling cutter. Analysis of results obtained from post processor.
- Forming Simulation: Exercises on forming simulation and analysis of forging, rolling, extrusion/drawing, deep drawing processes. Simulation of the process and analyzing the results to optimize the die design parameters.
- Casting Simulation: Exercises on casting simulation and analysis. Analysis of results to optimize the casting and casting design parameters.
- System Simulation: Exercises on real life problems using discrete event systems simulation software.
- Modern work-study analysis: Data analysis in Method Study and creation of visual charts. Use of work Study knowledge database to do Kaizen, SMED and other Improvements. Use of work-study methodologies to do 5S with examples.

Course Code: 15EPME802		Course Title: Advanced Precision Engineering
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4 hrs/week
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hrs: 50 hrs	6	Exam Duration: 3 hrs

Concept of Measurement methods, Experimental Test plan, Calibration, Static and Dynamic characteristics of signals, Measurement system behavior, Probability and Statistics, Density functions, Infinite and finite statistics, Chi-squared distribution, Regression analysis, Data outlier detection, Uncertainty Analysis, Measurement errors, Design-stage uncertainty analysis, error sources, Bias and precision errors, error propagation, single and multiple measurement, uncertainty analysis, Surface roughness measurement, Stylus instruments (Mechanical and Electrical), Sources of error, Optical instruments (Profiling and Parametric techniques), Data acquisition and filtering, Amplitude and texture parameters, Coordinate Measuring Machines: Coordinate metrology, Configuration of CMM, Hardware components, Control system for CMM, Operating sequence, Measurement program, Automated inspection, Principles, Methods of online, offline, distributed and flexible inspections, Machine vision, Image Acquisition & digitization, Image processing & Analysis, interpretation, applications

References:

1. Figliola R. S. and Beasley, D. E., "Theory and Design for Mechanical Measurements", Third edition, John Wiley & Sons Inc.

nd

- 2. Thomas Tom R., "Rough Surfaces 2 ed", Imperial College Press, London.
- 3. Hooken Rabert and Pereira P. H., "Coordinate Measuring Machines and Systems", CRC press.
- 4. Groover M.P., "Automation, Production Systems and Computer Integrated Manufacturing", PHI.

Course Code: 15EPME803		Course Title: Simulation and Modeling
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4 hrs/week
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hrs: 50 hrs		Exam Duration: 3 hrs

System Models, System environment, Stochastic activities, Continuous and discrete systems, Systems modeling, Types of models. System Simulation, simulation as problem solving tool, general principles and procedure, the techniques of simulation, Monte Carlo method of simulation, comparison of simulation and analytical methods, experimental nature of simulation, Statistical models in Simulation, Random Variables and their Properties, Estimation of Means, Variances, and Correlations, Confidence Intervals and Hypothesis Tests for the Mean, The Danger of Replacing a Probability Distribution by its Mean Discrete and continuous distributions, Poisson process, empirical distributions, Queuing Models, steady state behaviors, Single and multi-channel queuing models, Random Number Generation, Properties of random numbers, generation of pseudorandom numbers, techniques for generating random numbers, tests for random numbers. Random-Variate Generation, Inverse transform techniques, acceptance-rejection techniques, Analysis of Simulation Data, Data collection, identification of the distribution, parameter estimation, goodness-of-fit tests, multivariate and time-series input models, Output Analysis of a Single Model, Types of simulation with respect to output analysis, stochastic nature of output data, measures of performance and their estimation, analysis for termination simulations, Continuous System Simulation, Historical background, various growth patterns, System dynamics diagrams. Simulation of Manufacturing Systems, Verification and Validation of Simulation Models.

- 1. Banks J., Carson II J.S., Nelson B.L., and Nicol D.M. "Discrete-event System Simulation", Pearson Education.
- 2. Gordon G., "System Simulation", PHI, New Delhi.
- 3. Sterman J. D., "Business Dynamics: Systems Thinking and Modeling for a Complex World", McGraw-Hill International.
- 4. Neelamkavil F., "Computer Simulation and Modelling", Wiley, New York.
- 5. Law A. M.and Kelton W. D., "Simulation Modeling and Analysis", McGraw Hill.
- 6. Shannon R.E., "System Simulation", Prentice Hall.
- Written J. L., Bentley L. D.and Barice V.M., "System Analysis and Design Methods", Galgotia Publication.
- 8. Mize J. H. and Cox J. G., "Essentials of Simulation" Prentice Hall.

Course Code: 15EPME805		Course Title: Enterprise Resource Planning
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4 hrs/week
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hrs: 50 hrs		Exam Duration: 3 hrs

ERP as Integrated Management Information System, Evolution of ERP, Benefits of ERP. ERP versus Traditional Information Systems, Business Process Reengineering, Need and challenges, Management concerns about BPR, BPR to build business Model for ERP, ERP & Competitive advantage, Basic Constituents of ERP, Selection criteria for ERP Packages. Procurement process for ERP Package, ERP packages – PEOPLE SOFT, SAP-R/3, BAAN IV, MFG/PRO, IFS/AVALON, ORACLE-FINANCIAL, Survey of Indian ERP Packages regarding their Coverage, performance &cost, ERP Implementation: issues, Role of Consultants, Vendors, Users, Need for training, customization. ERP implementation methodology and post implementation issues and options, Supply Chain Management, Types of SCM, Potential benefits of SCM, Possible obstacles, Application systems supporting SCM – engineering, Product Data Management, Sales, Procurement, Production, MRP, Distribution, ERP case studies in HRM, finance, production, product database, materials, sales & distribution.

- 1. Leon Alexis, "Enterprise Resource Planning", Tata McGraw Hill, New Delhi.
- 2. Garg V. K. and Venkatakrishna N. K., "Enterprise Resource Planning: Concepts and Practices", PHI, New Delhi.
- 3. Sadagopan S., "Enterprise Resource Planning: A Managerial Perspective", Tata McGraw Hill, New Delhi.
- 4. Brady, "Enterprise Resource Planning", Thomson Learning.

Course Code: 15EPME807		Course Title: Product Lifecycle Management
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4 hrs/week
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hrs: 50 hrs		Exam Duration: 3 hrs

Product Lifecycle Management (PLM), Need for PLM, Product Lifecycle, Phases, Opportunities of Globalization, Pre-PLM Environment, PLM Paradigm, Importance and Benefits of PLM, Widespread Impact of PLM, Focus and Application, A PLM Project, Starting the PLM Initiative, PLM Applications PLM Strategies: Industrial strategies, Strategy elements, its identification, selection and implementation, Developing PLM Vision and PLM Strategy, Change management for PLM, Product Design and Development Process, Engineering Design, Organization and Decomposition in Product Design, Typologies of Design Process Models, Reference Model, Product Design in the Context of the Product Development, Process, Relation with the Development Process Planning Phase, Relation with the Post design Planning Phase, Methodological Evolution in Product Design, Concurrent Engineering, Characteristic Features of Concurrent Engineering, Concurrent Engineering and Life Cycle Approach, New Product Development (NPD) and Strategies, Product Configuration and Variant Management, The Design for X System, Objective Properties and Design for X Tools, Choice of Design for X Tools and Their Use in the Design Process, Product Data Management: Product and Product Data, PDM systems and importance, Components of PDM, Reason for implementing a PDM system, financial justification of PDM, barriers to PDM implementation, Virtual Product Development Tools: For components, machines, and manufacturing plants, 3D CAD systems and realistic rendering techniques, Digital mockup, Model building, Model analysis, Modeling and simulations in product Design, Examples/Case studies, Integration of Environmental Aspects in Product Design: Sustainable Development, Design for Environment, Need for Life Cycle, Environmental Strategies, Useful Life Extension Strategies, End-of-Life Strategies, Introduction of Environmental Strategies into the Design Process, Life Cycle Environmental Strategies and Considerations for Product Design, Life Cycle Assessment and Life Cycle Cost Analysis: Properties, and Framework of Life Cycle Assessment, Phases of LCA in ISO Standards, Cost Analysis and the Life Cycle Approach, General Framework for LCCA, Evolution of Models for Product Life Cycle Cost Analysis, Technology Forecasting: Evolution for technology forecasting and its importance, Future mapping, Methods of technology forecasting such as Relevance Trees, Morphological Methods and Mission Flow Diagram, Combining forecast of different technologies.

- 1. Stark J., "Product Lifecycle Management: Paradigm for 21st Century Product Realisation", Springer-Verlag, ISBN: 1852338105
- Giudice F., Rosa Guido La, Risitano A., "Product Design for the environment-A life cycle approach", Taylor & Francis, ISBN: 0849327229
- 3. Antti S. and Anselmie I., "Product Life Cycle Management", Springer, Dreamtech, ISBN: 3540257314
- 4. Grieve M., "Product Lifecycle Management: Driving the next generation of lean thinking", Tata McGraw Hill, ISBN: 0070636265

III Sem M.Tech. (Production Management)			
Curriculum Content			
Course Code: 15EPMI801		Course Title: Internship/Industrial Training	
L-T-P: 0-0-2	Credits: 2	Contact Hrs:	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	

Each student has to undergo internship/industrial training for a period of 6 weeks at a reputed industry/R&D institution after the completion of III semester SEE. At the organization where the student is undergoing training, the student shall be assigned to work under the supervision of a Project Supervisor assigned for this purpose by the Head of the Department / institution. Student is expected to learn about the organization where the student is undergoing training in terms of its vision, mission, objectives, organizational structure, operations etc. At the end of the training, student must submit a report based on training.

The Project Supervisor at the industry shall award Continuous Internal Evaluation (CIE) marks out of a maximum of 50. The Department will conduct the Semester End Examination (SEE) for a maximum of 50 marks.

III Sem M.Tech. (Production Management) Curriculum Content

Course Code: 15EPMW8	3 01 Cou	urse Title: Minor Project/Project Work Phase I
L-T-P: 0-0-8	Credits: 8	Contact Hrs: 8
CIE Marks: 50	SEE Marks: 50	0 Total Marks: 100

Minor Project: The Guide shall define the problem statement for the Project work. The student shall execute the Minor Project within three months duration during the 3rd semester. The student who has opted **Minor Project** shall opt **Major Project** in IV semester. However, Minor Project is independent of Major Project.

Project Work Phase I:

Student must select a research project in consultation with the Guide. Student should identify the problem and conduct an exhaustive literature survey in Project Work Phase I and shall continue the project in IV semester in Phase II. Student has to submit the report at the end of the III Semester based on the following:

- Back ground and significance of the Research Project
- Problem statement
- Objectives and scope of the project
- Literature review
- Methodology
- Future plan of action

Course Code: 15EPMW8	302 Course Tit	le: Major Project/Project Work Phase II
L-T-P: 0-0-20	Credits: 30	Contact Hrs: 20
CIE Marks: 50	SEE Marks: 50	Total Marks: 100

The student who has opted **Minor Project** should opt **Major Project** in IV semester. The **Major Project** shall be carried out by the student under the supervision of guide for a period of 6 months. For successful completion of this course the student should be able to identify the problem, define the objectives of the work as specific points indicating the scope within which the work is to be carried out, conduct the comprehensive literature survey, demonstrate the use of methodology adopted, analyze and interpret the experimental/numerical results obtained.

Project Work Phase II:

The student who has opted **Project Work Phase I** shall continue the project in IV semester in **Phase II**.

Phase II is assessed based on the following:

- Quality of literature survey and demonstration of creativity in the research problem
- Clarity in the objectives and scope of the research
- Clarity in the problem definition and feasibility in the problem solution
- Relevance to the current research/industrial trends
- Quality of work
- Analysis and Interpretation of results
- Quality of oral and written presentation
- Publication based on the research work in reputed national/international conference/journal.

Course Code: 17EPMC701		Course Title: Manufacturing Systems and
		Automation
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40 hrs		Exam Duration: 3 hrs

Introduction: Production system facilities, Manufacturing support systems, Automation in production system, Automation principles and strategies, Manufacturing operations, Basic elements of an automated system, Advanced automation functions, Levels of automation.

Material handling and identification technology: Considerations in material handling system design, 10 principles of material handling, Automated guided vehicle systems, Conveyor systems, Analysis of material transport system, Automated storage systems, Engineering analysis of storage system. Components of manufacturing systems, Single station automated cells, Applications and analysis of single station cells.

Flexible manufacturing systems: FMS components, FMS application and benefits, Quantitative analysis of flexible manufacturing systems.

Industrial control systems: Sensors, Actuators, Drives and other control system components. Electro-hydraulic and Electro-pneumatics in manufacturing automations

Machine vision systems: Importance of machine vision system in manufacturing automation.

Role of microcontrollers in manufacturing automation system: Microcontroller architecture, interfacing sensors and actuators with microcontroller for industrial automation, Microcontroller programming.

PLCs in manufacturing automation: Application of programmable logic controllers in manufacturing automation, PLC basic and advanced ladder logic programming using RsLogix and CoDeSys format, Usage of timers, counters, sequencing, and interlocking, latching, master control relay for developing programs for manufacturing automation. Temperature control, valve sequencing, conveyor belt control, control of a process etc

SCADA for Automation: Elements of SCADA, Benefits of SCADA, Applications, Types of SCADA systems, Features and functions of SCADA, Building applications using SCADA for manufacturing automation.

- 1. Grover M.P., "Automation, Production Systems and Computer Integrated Manufacturing", Pearson Education Asia.
- 2. Grover M.P., Weiss M. M., Nagel R.N. and Odrey N.G., "Industrial Robotics, Technology, Programming and Applications", Mc Graw Hill Book Publications.
- 3. Krishna Kant, "Computer Based Industrial Control" PHI.
- 4. W. Bolton, "Programmable Logic Controllers" Fifth Edition, Elsevier
- 5. Vijay R. Jadhav, "Programmable Logic Controller", Second Edition, Khanna Publishers.

Course Code: 17EPMC	2702	Course Title: CNC Machining Technology and
		Additive Manufacturing
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50 hrs		Exam Duration: 3 hrs

Structure of CNC Machine Tools: Evolution of CNC Technology, CNC and DNC concept, classification of CNC Machines – turning centre, machining centre-features and applications, Automatic tool changers and Multiple pallet system, types of control systems, CNC controllers, characteristics, interpolators. CNC Machine building, structural details, configuration and design, guide ways –Friction, Anti friction and other types of guide ways, elements used to convert the rotary motion to a linear motion – Screw and nut, recirculating ball screw, rack and pinion, spindle assembly, torque transmission elements – gears, timing belts, flexible couplings, Bearings. Swarf removal and safety considerations

Drives and Tooling Systems: Spindle drives – DC shunt motor, 3 phase AC induction motor, feed drives – stepper motor, servo principle, DC and AC servomotors, Open loop and closed loop control, Tooling requirements for turning and machining centres, Qualified, semi qualified and preset tooling, coolant fed tooling system, work holding devices for rotating and fixed work parts, modular fixtures.

Feedback systems and Adaptive Control: Axis measuring system, Adaptive control with constraints (ACC), Adaptive control with optimization (ACO), Geometric adaptive control (GAC), Variable gain AC systems-stability problem, estimator algorithm, variable gain algorithm,

CNC Programming: G & M Codes, tool length compensation, cutter radius and tool nose radius compensation, do loops, subroutines, canned cycles, mirror image, parametric programming, machining cycles, programming for machining centre and turning centre, generation of CNC codes from CAM packages. Basics of APT

Additive manufacturing (AM) processes: AM based rapid prototyping (RP) Systems like Stereo-lithography, Fused Deposition Modeling (FDM), Selective Laser Sintering (SLS), Laminated Object Manufacturing (LOM), 3-D Printing, and LENS etc.

Role of additive manufacturing and rapid prototyping in product design and development: Solid modeling techniques for additive manufacturing with comparison, advantages and disadvantages, Process planning for rapid prototyping, STL file generation, Slicing and various slicing, procedures.

Accuracy issues in additive manufacturing: Properties of metallic and nonmetallic additive manufactured surfaces, Stress induced in additive manufacturing (AM) processes. Surface roughness problem in rapid prototyping, Part deposition orientation and issues like accuracy, surface finish, build time, support structure, cost etc.

- 1. Radhakrishnan P "Computer Numerical Control Machines", New Central Book Agency.
- 2. Rao P.N., "CAD/CAM", Tata McGraw-Hill Publishing Company Limited, New Delhi.
- 3. Pabla, B.S. & Adithan, M. "CNC Machines", New Age Publishers, New Delhi.
- 4. Warren. S. Seames, "Computer Numerical Control: Concepts and Programming", 4th edition, Delmar Thomson Learning Inc.
- 5. James Madison, "CNC Machining Hand Book", Industrial Press Inc.
- 6. Peter Smid, "CNC Programming Hand book", Industrial Press Inc., 2000
- 7. Chua, C.K., Leong, K.F., "Rapid Prototyping: Principles and Applications in Manufacturing", John Wiley and Sons Inc.
- 8. Hopkinson, N., Hague, R.J.M. and Dickens, P.M., "Rapid Manufacturing and Industrial Revolution for the Digital Age", John Wiley and Sons Ltd, Chichester.
- 9. Gebhardt, A., "Rapid Prototyping", Hanser Gardner Publications, Inc., Cincinnati.
- 10. Noorani, R., "Rapid Prototyping: Principles and Applications", John Wiley & Sons, Inc., New Jersey.

Course Code: 17EPM	C703	Course Title: Operations Management
L-T-P: 3-1-0	Credits: 4	Contact Hrs: 5 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40 hrs	Tutorial Hrs: 24 hrs	Exam Duration: 3 hrs

Overview of Operations Management: Functional sub systems of organizations, Systems concept of production, Types of production systems, Productivity, Strategic management.

Product Design and Analysis: New product development, Process Planning and Design, Value analysis and Value Engineering, Standardization, Simplification, Make or Buy decisions, Ergonomic considerations in Product design.

Capacity Planning and Investment Decisions: Capacity planning and strategies, Investment formulas and comparisons of alternatives.

Forecasting: Nature and use of forecasting, Measures of Forecasting, Factors affecting forecasting, Types and models of forecasting

Facility Location and Layout: Factors influencing plant location, location evaluation methods, Different types of lay outs for operations and production, arrangement of facilities within the department, CRAFT, ALDEP, CORELAP etc.

Aggregate Planning and Master Production Scheduling: Nature of aggregate planning, Methods of aggregate planning, Approaches to aggregate planning –graphical, empirical and optimization, Development of MPS, MRP-I and MRP-II.

Inventory Analysis and Control: ABC inventory systems, Inventory models, EOQ models for purchased and manufactured parts, lot sizing techniques.

Scheduling and Controlling: Objectives in scheduling, Major steps involved, Information systems linkages in production planning and control, Production control in repetitive, batch / flow shop and job shop scheduling environment - SPT, EDD, WMFT.

Project Planning and Management: Phases of project planning, Evolution of network planning techniques - Critical Path Method (CPM) and Project Evolution and Review Technique (PERT), Crashing of project network, Project scheduling with constrained resources –Graphical Evolution and Review Technique (GERT), Project monitoring, Line balance.

References

- 1. Vollman.T.E., "Manufacturing Planning & Control Systems", McGraw-Hill.
- 2. Dilworth. B. James., "Operations Management Design, Planning and Control for Manufacturing and services", McGraw Hill Inc., New Delhi.
- 3. Bedworth D.D., "Integrated production control systems: management, analysis,design", John Wiley & sons, New York
- 4. Panneerselvam. R., "Production and Operations Management", Prentice Hall. gement

Tutorial Exercises:

Forecasting, Facility location and layout, Aggregate Planning and MPS, Inventory Control, Scheduling and Controlling, Project Planning and Management

Course Code: 17EPME	703	Course Title: Design and	Analysis of Experiments
L-T-P: 4-0-0	Credits: 4		Contact Hrs: 4 hrs/week
ISA Marks: 50	ESA Marks:	50	Total Marks: 100
Teaching Hrs: 50 hrs			Exam Duration: 3 hrs

Overview: Taguchi's approach to quality and quality loss function, noise factors and average quality loss, exploiting non linearity, classification of parameters

Analysis of variance: No-Way ANOVA, One-Way ANOVA, Two-Way ANOVA and Three-Way ANOVA

Two Level Experiments: Two factor factorial design, model adequacy checking and estimating model parameters, 2^2 full factorial design, 2^3 full factorial design, 2^k full factorial design and Two level fractional factorial design, General 2^{k-p} fractional factorial design.

Steps in Robust Design: Identification of process and its main function, Noise factors and testing conditions, Control factors and their levels, Matrix experiment and data analysis plan, Conducting the experiment and data analysis, Verifying experiment and future plan.

Signal to Noise Ratios: Comparison of the quality of two process conditions, Relationship between Signal to Noise Ratio and quality loss after adjustment, Identification of a scaling factor, Signal to Noise Ratios for static problems, Signal to Noise Ratios for dynamic problems, Analysis of ordered categorical data.

Taguchi inner and outer arrays, orthogonal arrays and fractional factorial designs, Parameter design and tolerance design, Analysis of inner/outer array experiment, Alternative inner/outer orthogonal array experiments.

Constructing orthogonal arrays, Dummy level technique, Compound factor method, Linear graphs and Interaction assignment, Modification of linear graphs, Column merging method, Branching design.

- 1. Montgomery, D. C., "Design and Analysis of Experiments", John Wiley & Sons.
- 2. Khuri A. I. and Cornell J. A. "Response Surfaces: Designs and Analyses, Marcel Dekker, Inc., New York.
- 3. Myers R. H., Montogomery, D. C. and Anderson-Cook C. M. "Response Surface Methodology: Process and Product Optimization Using Designed Experiments", John Wiley & sons, Inc., New York.
- 4. Mason R. L., Gunst, R. F., Hess J. L., "Statistical design and Analysis of Experiments With Applications to Engineering and SISAnce", John Wiley & sons, Inc., New York.
- 5. Phadke M. S., "Quality Engineering using Robust Design", Prentice Hall PTR Englewood Cliffs, New Jersy.
- 6. Ross P. J., "Taguchi Techniques for Quality Engineering", McGraw -Hill International.

Course Code: 17EPME704		Course Title: Finite Element Analysis
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 4 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50 hrs		Exam Duration: 3 hrs

Introduction: Introduction to FEA, General FEM procedure, Approximate solutions of differential equations: FDM method, W-R technique, collocation least square sub-domain and Galerkin method Numerical integration, Gauss Quadrature in 2-D and 3-D, Structure of FEA program, Pre and Post processor, commercially available, standard packages, and desirable features of FEA packages, Principal of minimum total potential, elements of variational calculus, minimization of functional, Rayleigh-Ritz method, Formulation of elemental matrix equation, and assembly concepts.

One Dimensional FEM: Coordinate system: Global, local, natural coordinate system, Shape functions: Polynomial shape functions, Natural co-ordinate and coordinate transformation, Linear quadratic and cubic elements, Shape functions using Lagrange polynomials. Convergence and compatibility requirement of shape functions, One dimensional field problems: structural analysis (step-bar, taper-bar), Structural analysis with temperature effect, Thermal analysis.

Two Dimensional FEM: Trusses, Thermal effects in truss members, Beams, Two dimensional finite elements formulations, Three noded triangular element, Four-noded rectangular element, Four-noded quadrilateral element, derivation of shape functions: natural coordinates, triangular elements, and quadrilateral elements, Six-noded triangular elements, Eight-noded quadrilateral elements, Nine noded quadrilateral element, Strain displacement matrix for CST element.

Three dimensional elements: Tetrahedron, Rectangular prism (brick), Arbitrary hexahedron, Three Dimensional polynomial shape functions, Natural co-ordinates in 3D, Three dimensional Truss(space trusses), Introduction to material models: Introduction to plasticity (Von-Mises Plasticity), Hyper –elasticity. Generating and using experimental data to model material behaviour, Errors in FEA, sources of errors, method of elimination, Patch test.

Applications of FEA in Manufacturing: FE analysis of Metal casting, Analysis of metal forming- Sheet metal stamping, Analysis of Machining using standard FE analysis packages

- 1. Reddy J. N., "Introduction to Finite Element Method", McGraw-Hill.
- 2. Rao S.S, "Finite Element Method in Engineering", Academic Press, Elsevier.
- 3. Desai and Abel, "Introduction to the finite element method: A numerical method for engineering analysis", CBS.
- 4. Chandrupatla R T and Belegundu A D, "Introduction to Finite Elements in Engineering", PHI.
- 5. David Hutton, "Fundamentals of Finite Element Analysis", McGraw-Hill.
- 6. Buchanan, G R., Finite Element Analysis, Adapted by: R Rudramoorthy, The McGraw-Hill, Indian Adapted Edition, Schaum's Outlines.

I Sem M.Tech. (Production Management)

Curriculum Content

 Course Code: 17EPMP701

 L-T-P: 0-0-1
 Credit: 1

 CIE Marks: 80
 SEE Marks: 20

 Practical Hrs: 24 hrs
 Yes

Course Title: Automation Lab Contact Hrs: 2hrs/week Total Marks: 100

Laboratory Exercises:

- Non controller based applications
- Controller based applications
- Programming PLC system for small applications using CodeSys and RsLogix software
- Interfacing PLC system for analyzing industrial applications
- Building programs for manufacturing automation processes
- Building and analyzing circuits using electro hydraulics and electro pneumatics system.

 Course Code: 17EPMP702

 L-T-P: 0-0-1
 Credit: 1

 CIE Marks: 80
 SEE Marks: 20

 Practical Hrs: 24 hrs
 Yes

Course Title: Machining Lab Contact Hrs: 2hrs/week Total Marks: 100

Laboratory Exercises:

- CNC programming practices on machining centers and WEDM.
- CAD/CAM integration with CNC machine tool.
- Practices in 3D printing.
- Machinability studies in turning, drilling, milling and non-traditional machining.
- Open ended experiments on
 - \checkmark Parametric analysis in traditional/non-traditional machining for a work tool combination,
 - ✓ CNC Programming

I Sem M.Tech. (Production Management) Curriculum Content			
Course Code: 17EP	MW701	Course Title: Mini Project I	
L-T-P: 0-0-3	Credit: 1	Contact Hrs: 6hrs/week	
CIE Marks: 80	SEE Marks: 20	Total Marks: 100	
Practical Hrs: 72 hr	·s		

Mini Project I: The Guide shall define the problem statement for the Project work. The student shall execute the Project within during the 1st semester. The student who has opted Mini Project I shall opt automation theme to carry out their work.

Course Code: 17EPMC	2705	Course Title: Data Analytics
L-T-P: 3-1-0	Credits: 4	Contact Hrs: 5 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40 hrs	Tutorial Hrs: 24 hrs	Exam Duration: 3 hrs

Statistical Data Analysis: Data and Statistics- Review of Basic Statistical Measures-Probability Distributions-Testing of Hypotheses-Non Parametric Tests

Data Analysis I: Introduction – Basic concepts – Uni-variate, Bi-variate and Multivariate techniques – Types of multivariate techniques – Classification of multivariate techniques – Guidelines for multivariate analysis and interpretation – Approaches to multivariate model building.

Data Analysis II: Simple and Multiple Linear Regression Analysis – Introduction – Basic concepts – Multiple linear regression model – Least square estimation – Inferences from the estimated regression function – Validation of the model.

Factor Analysis: Definition – Objectives – Approaches to factor analysis – methods of estimation – Factor rotation – Factor scores - Sum of variance explained – interpretation of results. Canonical Correlation Analysis - Objectives – Canonical variates and canonical correlation – Interpretation of variates and correlations

Data Analysis III: Multiple Discriminant Analysis - Basic concepts – Separation and classification of two populations - Evaluating classification functions – Validation of the model. Cluster Analysis – Definitions – Objectives – Similarity of measures – Hierarchical and Non – Hierarchical clustering methods – Interpretation and validation of the model.

Data Analysis IV: Conjoint Analysis – Definitions – Basic concepts – Attributes – Preferences – Ranking of Preferences – Output of Conjoint measurements – Utility -Interpretation. Multi Dimensional Scaling – Definitions – Objectives – Basic concepts – Scaling techniques – Attribute and Non-Attributes based MDS Techniques – Interpretation and Validation of models. Advanced Techniques – Structural Equation modeling.

- 1. Joseph F Hair, Rolph E Anderson, Ronald L. Tatham & William C. Black, "Multivariate Data Analysis", Pearson Education, New Delhi.
- 2. Richard A Johnson and Dean W. Wichern, "Applied Multivariate Statistical Analysis", Prentice Hall, New Delhi.
- 3. David R Anderson, Dennis J Sweeney and Thomas A Williams, "Statistics for Business and Economics", Thompson, Singapore.

Course Code: 17EPMC706		Course Title: Enterprise Resource	
		Planning	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40 h	rs	Exam Duration: 3 hrs	

ERP as Integrated Management Information System: Evolution of ERP, Benefits of ERP,ERP versus Traditional Information Systems, Business Process Reengineering, Need and challenges.

Management concerns about BPR: BPR to build business Model for ERP, ERP & Competitive advantage, Basic Constituents of ERP, Selection criteria for ERP Packages.

Procurement process for ERP Package, ERP packages – PEOPLE SOFT, SAP-R/3, BAAN IV, MFG/PRO, IFS/AVALON, ORACLE-FINANCIAL, Survey of Indian ERP Packages regarding their Coverage, performance and cost

ERP Implementation: Issues, Role of Consultants, Vendors, Users, Need for training, customization. ERP implementation methodology and post implementation issues and options,

Supply Chain Management: Types of SCM, Potential benefits of SCM, Possible obstacles, Application systems supporting SCM – engineering, Product Data Management, Sales, Procurement, Production, MRP, Distribution, ERP case studies in HRM, finance, production, product database, materials, sales & distribution.

- 1. Leon Alexis, "Enterprise Resource Planning", Tata McGraw Hill, New Delhi.
- 2. Garg V. K. and Venkatakrishna N. K., "Enterprise Resource Planning: Concepts and Practices", PHI, New Delhi.
- 3. Sadagopan S., "Enterprise Resource Planning: A Managerial Perspective", Tata McGraw Hill, New Delhi.
- 4. Brady, "Enterprise Resource Planning", Thomson Learning.

Course Code: 17EPMC707		Course Title: Manufacturing Systems
		Simulation
L-T-P: 3-0-0	Credits: 4	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40 h	rs	Exam Duration: 3 hrs

Principles of Modeling & Simulation: Basic Simulation Modeling, Systems – discrete and continuous systems, general systems theory, models of systems- variety of modeling approach, concept of simulation, simulation as a decision making tool, types of simulation, Principle of computer modeling- Monte Carlo simulation, Nature of computer modeling, limitations of simulation, area of application.

Random Number Generation: Random variables and their properties, Properties of random numbers, generation of Pseudo random numbers, techniques for generating random numbers, Various tests for random numbers-frequency test and test for Autocorrelation,

Random Variate Generation: Different techniques to generate random Variate: Inverse transform technique,-exponential, Normal, uniform, Weibull, direct transformation technique for normal and log normal distribution, convolution method and acceptance rejection techniques-Poisson distribution, **Statistical Techniques:** Comparison of two system designs, Comparison of several system designs – Bonferroni approaches to multiple comparisons for selecting best fit, for screening

Design and Evaluation of Simulation Experiments: Problem formulation, data collection and reduction, time flow mechanism, key variables, logic flow charts, starting condition, run size, experimental design consideration, output analysis, verification and validation of simulation models. **Simulation Languages:** Comparison and selection of simulation languages, study of any one simulation language.

Discrete Event Simulation: Concepts in discrete –event simulation, development of simulation models for queuing systems, production systems, inventory systems, maintenance and replacement systems, investment analysis and network, Programming for discrete event simulation, Case studies.

- 1. Jerry Banks and John S Carson, Barry L Nelson, David M Nicol, "Discrete event system simulation", Prentice Hall, India.
- 2. Khoshnevi. B., "Discrete system simulation", McGraw Hill International.
- 3. Ronald G Askin and Charles R Standridge , "Modeling and analysis of manufacturing systems", John Wiley & Sons.
- 4. Gordon G, "System Simulation", Prentice Hall, India..
- 5. Thomas J Schriber., "Simulation using GPSS", John Wiley & Sons.
- 6. Shannon, R.E., "System Simulation The art and science", Prentice Hall, India.
- 7. Averill Law & David M.Kelton, "Simulation, Modeling and Analysis", TMH.

Course Code: 17EPMP703		Course Title: ERP Lab
L-T-P: 0-0-1	Credit: 1	Contact Hrs: 2hrs/week
CIE Marks: 80	SEE Marks: 20	Total Marks: 100
Practical Hrs: 24 hrs		

- Introduction and selection criteria for ERP Packages, Survey of Indian ERP Packages
- Production Planning and Execution Module: Exercises on production planning, machine scheduling, Material Requirement Planning, track daily production progress, production forecasting & actual production reporting with case studies.
- Supply Chain Management Module: Exercises on Management of flow of products from manufacturer to consumer & consumer to manufacturer, demand & supply management, sales returns & replacing process, shipping & transportation tracking with case studies.
- Finance & Accounting module: Exercises on Track of all account related transactions like expenditures, Balance sheet, account ledgers, budgeting, bank statements, payment receipts, tax management with case studies.
- Human Resource Module:- Exercises on Efficient management of human resources, employee information, track employee records like performance reviews, designations, job descriptions, skill matrix, time & attendance tracking. Payroll System, payment repots, travel Expenses & Reimbursement tracking. with case studies.

Course Code: 17EPMP704Course Title: Simulation LabL-T-P: 0-0-1Credit: 1Contact Hrs: 2hrs/weekCIE Marks: 80SEE Marks: 20Total Marks: 100Practical Hrs: 24 hrsTotal Marks: 100

Laboratory Exercises:

Development of simulation models for the following systems

- Queuing and Inventory systems, manufacturing system and service operations.
- Maintenance and replacement systems
- · Job shop with material handling and FMS
- Exercises on real life problems using discrete event systems simulation software on product, process and FMS layouts.

Course Code: 17EPMW702		Course Title: Mini Project II
L-T-P: 0-0-3	Credit: 1	Contact Hrs: 6hrs/week
CIE Marks: 80	SEE Marks: 20	Total Marks: 100
Practical Hrs: 72 hrs		

Mini Project II: The Guide shall define the problem statement for the Project work. The student shall execute the Project within during the 2nd semester. The student who has opted Mini Project II shall opt automation theme to carry out their work.

Course Code: 18EPMC701		Course Title: PLM Fundamentals
L-T-P: 2-0-0	Credits: 2	Contact Hrs: 2 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 30 hr	S	Exam Duration: 3 hrs

Introduction to Product Lifecycle Management (PLM): PLM Overview, Background for PLM, Scope, Components/Elements of PLM, PLM Grid, PLM Paradigm - Concepts, Consequences and Corollaries, Strategic Benefits, Operational Benefits, Spread of PLM, Overcoming Problems, Enabling Opportunities, Challenges.

The PLM Environment: Issues in the Traditional Environment, Product Data Issues, A Complex Changing Environment-Change, Interconnections, Changes Driving PLM, Product Pains-Aerospace, Automotive and Other Products, Product Opportunities - Globalization Opportunity, Technology Opportunity, Social/Environmental Opportunity, Human Resource Opportunity.

Product Lifecycle Management System: Product Data or Product Information, System Architecture, Information Models and Product Structure, Information Model, Product Information Data Model, Product Model, Reasons for the Deployment of PLM Systems.

PLM in Different Verticals: Functionality of the Systems, Use of PLM Systems in Different Organizational Verticals, Product Development and Engineering, Production, After Sales, Sales and Marketing, Sub-Contracting, Sourcing and Procurement, Different Ways to Integrate PLM Systems, System Roles - ERP, CAD.

Project/Program Management in PLM Environment: Characteristics of Projects, People in Projects, Project Phases, Project Management Knowledge Area, Project Management Tools and Templates, The Importance of Project Management in PLM, Project reality in a Typical Company, Project Management Activities in PLM Initiatives, Pitfalls of Project Management, Top Management Role with Project Management.

- 1. Stark John, "Product Lifecycle Management: 21st Century Paradigm for Product Realization", Springer, Third Edition, 2015
- 2. Antti Saakasvuori, Anselmi Immonen, "Product Lifecycle Management" Springer, 1st Edition, 2003.
- 3. Grieves Michael, "Product Lifecycle Management Driving the Next generation of LeanThinking", McGraw-Hill, 2006.

Course Code: 18EPMC702		Course Title: Engineering Data Management
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40 hrs		Exam Duration: 3 hrs

Introduction and Overview of Embedded Product Design: Background, Related Research and Research Problems, Structure of the Report, Design for Manufacture, Design of Embedded Products, Technical Design Disciplines and Document Management, Software Design, Electronics Design, Software-Hardware Co-Design, Mechanical design, Concurrent Engineering, Design Data Management, DFA and DFMA.

PDM Systems and Data Exchange: Product Data Management (PDM), State-of-the-art trends of PDM, Data Formats and Translators in Data Exchange, STEP (Standard for the Exchange of Product Model Data), CDIF (Case Data Interchange Format), SGML (Standard Generalized Markup Language).

PDM and SCM: PDM and Product Life Cycle, PDM Systems – Common Functionality, Product Structure and Document Management, System Architecture, Version Management, Configuration Selection, Concurrent Development, Build Management, Release Management, Workspace Management, Change Management.

Requirements of Design Data Management: Requirements for the Embedded Product's Design Data Management, Data Management, Process and Life-Cycle Management, Data Capture & Distribution, Support for Working Methods, Requirements for Enterprise-Level Design Data Management, Design Data Management Levels, The Design Data Management Features of Design Tools, Team-Level Design Data Management, Team-Level Design Data Management.

Analysis of Needs and Solutions: Comparison of Principles, Comparison of Key Functionalities, Requirements and Needs, Analysis, Different Scenarios in an Integrated Environment, Possible Integrations, Examples of integrations.

Product Data in PLM Environment: Relevance of Product Data in PLM, Product Data Across the Lifecycle, Tools to Represent Product Data, Data model diagrams, Reality in a Typical Company-Issues, Challenges and Objectives, Product Data Activities in the PLM Initiative-Product Data Improvement.

- 1. Jukka Kaariainen, Pekka Savolainen, Jorma Taramaa & Kari Leppala, "Product Data Management (PDM) Design, exchange and integration viewpoints", VTT- Technical research centre of Finland, 2000.
- Rodger Burden "PDM: Product Data Management" Volume 1, Resource Publishing, 2003.
- 3. Annita Persson Dahlqvist et.al "PDM and SCM similarities and differences", The Association of Swedish Engineering Industries, 2001.

Course Code: 18EPMC	C703	Course Title: Product Design and Development
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40 hrs		Exam Duration: 3 hrs

Introduction: Characteristics of successful product development, duration and cost of product development, Challenges of product development.

Development Process and Organizations: Generic development process, concept development – Front-end process, adapting the generic product development process **Identifying Customer Needs:** Defining scope, gathering data from customers, establishing relative importance of needs etc.

Establishing Product Specifications: Target specifications & refining specifications **Concept Generation:** Five step methodology of concept generation.

Concept selection: Structured methodology for selecting a concept using selection matrix & ranking of concepts.

Product Architecture: Meaning & implication of product architecture.

Industrial Design: Meaning of ID, & its impact, Aesthetic & Ergonomic considerations, ID process

Design for Manufacturing: DFM meaning, DFM Methodology.

Value Engineering and Product Design: Definition of value. Value analysis job plan, creativity etc.

- 1. Karl T Ulrich and Steven D Eppinger, 'Product design and development', Tata McGraw Hill Publication.
- 2. A. K. Chitale and R. C. Gupta, 'Product Design and Manufacturing', Prentice Hall India.
- 3. Bralla, James G., Handbook of Product Design for Manufacturing, McGraw Hill Publications.

Course Code: 18EPMC704		Course Title: Enterprise Resource Planning - I	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40 hrs		Exam Duration: 3 hrs	

Introduction to ERP: Need for ERP, Characteristics and components of ERP, Suppliers of ERP, Integrated Management Information, Seamless Integration and Functional information system, Marketing, Accounting and Financial Management, Supply Chain Management, Resource Management, Integrated Data Model.

Business Functions and Business Processes: Functional Areas of Operation, Business Processes, A process view of business, Functional Areas and Business process of very small business. Marketing and Sales, Supply Chain Management, Accounting and Finance, Human Resources, Functional Area Information System

Business Process Reengineering: Need for reengineering, Reengineering Model, BPR Guiding principles, Business process reengineering and performance improvement, Enablers of BPR in Manufacturing, Collaborative Manufacturing, Intelligent manufacturing, Production Planning. BPR Implementation

Financial & Accounting Management: Differences between Financial accounting, Cost accounting and Management accounting, Basic finance – Concept of Cost Centre accounting, Cost – Volume – Profit Analysis, Cash Flow Analysis

Role of ERP in Purchasing: Features of purchase module, ERP Purchase System; Role of ERP in Sales and Distribution, Sub-Modules of the Sales and Distribution Module: Master data management, Order management, Warehouse management, Shipping and transportation, Billing and sales support, foreign trade, Integration of Sales and Distribution Module with Other Modules

Inventory Management: ERP inventory management system, Importance of Web ERP in Inventory Management, ERP Inventory Management Module and Sub-Modules of the ERP Inventory Management Module, Bill of Material, Safety stock, Lot number/Batch number, Inventory valuation methods

Material Requirement Planning: Product structure and Bill of Materials (BOM), MRP concept, MRP calculations, Lot sizing in MRP, capacity requirement planning, MRP-II, MRP Exercises

Production and Supply Chain Management Information Systems: Role of ERP in CAD/CAM, MRP, Closed Loop MRP, MRP-II, Manufacturing and Production Planning Module of an ERP System, Distribution Requirements Planning (DRP); ERP Approach to Production Planning, MRP to ERP.

- 1. Ellen Monk , Bret wagner "Concepts in Enterprise Resource planning" Third Edition Course Technology.
- 2. R.Radha Krishnan "Business Process Reengineering PHI, New Delhi.
- 3. Garg V. K. and Venkatakrishna N. K., "Enterprise Resource Planning: Concepts and Practices", PHI, New Delhi.
- 4. Sadagopan S., "Enterprise Resource Planning: A Managerial Perspective", Tata McGraw Hill, New Delhi.
- 5. Pauline Weetman, "Financial and Management Accounting: An Introduction", Pearson Education Limited.

I Sem M. Iech. (Production Management)			
Curriculum Content			
Course Code: 18EPME701		Course Title: Design for Additive Manufacturing	
L-T-P:3-0-0	Credits: 4	Contact Hrs: 3 hrs/week	
ISA Marks: 50	ESA Marks:	50 Total Marks: 100	
Teaching Hrs: 40 hrs		Exam Duration: 3 hrs	

Overview of Design for Additive Manufacturing (AM): How to design for AM? Challenges & opportunities, Design process, mechanical properties, performance of materials used in AM, process driven & designer driven shape, methods, Additive manufacturing principles & processes.

Drivers for AM: Material efficiency, flow optimization, integration of functions, mass customization, lead time, automated manufacturing, Limitations, Available material, accuracy of the technology, price of the industrial machines, certification of materials and processes, surface finish(supports, post processing), part dimensions.

DFMA Principles for AM: Maximum Part size, Faces requiring support, minimum wall thickness & rigidity, Minimum feature size & manufacturing quality, Typical geometries, DFX rules for additive manufacturing. cost considerations.

Topology Optimization for AM: Introduction to topology optimization, Topology optimization process, characteristics, link with AM potentials & Challenges, Current developments.

Accuracy Issues in AM: Properties of metallic and nonmetallic additive manufactured surfaces, Stress induced in additive manufacturing (AM) processes. Surface roughness problem in rapid prototyping, Part deposition orientation and issues like accuracy, surface finish, build time, support structure, cost etc

- 1. Ian Gibson, David W. Rosen, Brent Stucker, "Additive manufacturing technologies: rapid prototyping to direct digital manufacturing", Springer, 2010.
- 2. Andreas Gebhardt, "Understanding additive manufacturing: rapid prototyping, rapid tooling, rapid manufacturing", Hanser Publishers, 2011.
- Christoph Klahn, Bastian Leutenecker, Mirko Meboldt, "Design for Additive Manufacturing – Supporting the Substitution of Components in Series Products", Procedia CIRP 21 2014, 24th CIRP design conference
 - Rosen, D.W., 2007. "Design for additive manufacturing: A method to explore unexplored regions of the design space". In Proceedings of the 18th Annual Solid Freeform Fabrication Symposium.

I Sem M.Tech. (Production Management)

Curriculum Content

Course Code: 18EPME703		Course Title: Supply Chain Management
L-T-P:3-0-0	Credits: 4	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40 hrs		Exam Duration: 3 hrs

Supply Chain Concepts: Introduction to Supply Chain, SCOR model, Virtual/Extended Enterprise, Delivery Channel, Objective of a Supply Chain, Decision Phases in a Supply Chain, Production Approaches, Supply Chain Process, Push & Pull Production Systems, Push-Pull Boundary, Lack of Coordination and Bullwhip Effect, Order Management, Order-to-Cash Process, Procure-to-Pay Process, Call-off, Replenishment, Sourcing

Supply Chain Performance: Supply Chain Strategies, Value Chain, Capabilities, Uncertainties, Responsiveness vs Cost, Supply Chain Performance Drivers – Facilities, Inventory, Transportation, Information, Sourcing, and Pricing, Supply Chain Visibility, Resilience, Non-Financial Metrics Examples, Financial Metrics Examples, Sustainability

Designing Distribution Network: Introduction, Factors Influencing Distribution Network Design, Design Options for a Distribution Network, Distribution Network for Online Sales, Impact of Online Sales on Cost

Network Design: Introduction, Factors Influencing Network Design Decisions, Framework for Network Design Decisions, Facility Location Mathematical Models, Capacity Allocation Mathematical Models, Network Behavior, Types of Supply Relationship, Factors influencing Nature of Network Relationship, Vertical Integration

Demand Management and Forecast: House of SCM, Managing Demand, Managing Supply, Transportation Model, Just-in-Time in Supply Chain, Forecasting in Supply Chain, Characteristics of Forecasts, Approaches to Demand Forecasting

Inventory Management: Cycle Inventory, Cycle Inventory Related Costs, Economics of Scales, Economic Order Quantity, Multiechelon Cycle Inventory, Uncertainty and Safety Inventory, Safety Inventory Level

Logistic and Warehouse Management: Transportation in Supply Chain, Modes of Transportation, Transportation Network, Trade-offs in Transportation Design, Warehouse Layout and Design, Warehouse Types, Warehouse Operating Processes, Warehouse Management System, Procurement, Material Classification, Material Codification

Trends in SCM: Gartner's Hype Cycle, Capgemini's Consulting Hype Cycle, Trend Categories, Algorithmic Supply Chain Planning, Predictive Analytics, Global Logistics Visibility, Focus on Risk Management and Supply Chain Resiliency

- 1. Sunil Chopra, and Peter Meindl, "Supply Chain Management Strategy, Planning, and Operation," Pearson Education.
- 2. APICS, "Operations Management Body of Knowledge Framework."
- 3. Lora Cecere, "Supply Chain Metrics that Matter," Wiley.
- 4. Hartmut Stadtler, "Supply chain management and advanced planning basics, overview and challenges," European Journal of Operations Research, 163, 2015.
- 5. Keely L. Croxton, Sebastián J. García-Dastugue and Douglas M. Lambert, "The Supply Chain Management Processes," The International Journal of Logistic Management.

Course Code: 18EPM	P701 Course T	itle: Collaborative Design - Modeling Lab
L-T-P: 0-0-5	Credits: 5	Contact Hrs: 10 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Practical Hrs: 120 hrs		Exam Duration: 2 hrs

User Interface Platform:

Understand the user interface, Connect to the PLM platform, Access your Dashboard, Use the Tags for searching content, Share various documents with other users through, 3DSpace, Use standard menus and commands, Import new data and export to required file formats, Search for a 3D data using different methods, Explore and open 3D data, Manipulate the tree, Filter data

Sketcher: Exercises on sketch tools, profile tool bar and constraint tool bar.

Part Design: Exercise on 3D models using pad, slot, shaft, groove, hole, rib and stiffener commands, cut revolve etc.

Generative Shape Design (GSD): Exercises using GSD to generate complicate surfaces using sub tool bars

Sheet Metal: Setting sheet metal parameters, bend extremities tab, creating the base wall, creating the wall on edge, creating extrusions etc.

Assembly Design: Assembly design work bench Bottom-Up and Top-Down assembly approaches invoking existing components into assembly work exercise to demonstrate Top-Down assembly approach.

Drafting: Converting existing 3D models into 2D drawings with all relevant details, sectional views etc.

Data Exchange and Collaborative Lifecycle:

Import and export different file formats, manage the Mastership of imported objects, Create a new product structure, Use different sections of the Action bar effectively, Manage the changes in a product structure, Save the product structure in the database

Design Review:

Create a design review, add markups to it, Create slides, and add markers, Create sections and measures, Export sections and measures, compare 3D Objects and 2D Drawings

References

Companion Courses – <u>https://companion.3ds.com/</u>

Course Code: 18EPMP702		Course Title: PLM Functional Lab
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 6 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Practical Hrs: 72hrs		Exam Duration: 2 hrs

Collaboration and Approvals:

Illustrate the structure of PLM Business Process Services, Create and manage your folders, Create workflows, Identify and manage your assigned tasks, Subscribe to various objects and events, Report and resolve issues in objects, Create, track and organize your documents

IP Classification:

Need of IP Classification, Create different types of libraries and their related hierarchies, Create and manage documents and parts, classify the library objects based on their features, Use the Classification functionality

Engineering Bill of Material:

Create parts and specifications, Create and edit Bill of Materials, Create a Change Request to make the changes in a part or a specification, Complete Change Orders and Change Actions to implement the changes, Review and release the parts

Project Management Fundamentals:

Create programs and projects, Assign members to a project, Add tasks and assign project members to the tasks, Create folders for managing project documents, Create process flow for tasks, Review the status of programs and projects, Exchange and view projects data using Microsoft Project Integration

Project Management Advanced:

Document the various risk areas of a project and track them, Create and manage the resource requirements for a project, Create budgets and benefits to monitor the financials of a project, Track the time spent on a project using time sheets, Create calendars for the projects, Identify the quality factors of a project and monitor them, Create an assessment to measure the project's health, Use dashboards to monitor the status of your projects

Project Execution:

Manage the project schedule, Record risks for tasks, Create and submit timesheets

- 1. Companion Courses <u>https://companion.3ds.com/</u>
- Antti Saakasvuori, Anselmi Immonen, "Product Lifecycle Management" Springer, 1st Edition, 2003.
I Sem M.Tech. (Production Management) Curriculum Content

Course Code:18EPMP703Course Title:ERP Functional LabL-T-P:0-0-3Credits:3Contact Hrs:6hrs/weekISA Marks:80ESA Marks:20Total Marks:100Practical Hrs:72 hrsExam Duration:2 hrs

Selection Criteria for ERP Packages: Survey of Indian ERP Packages

Financial Accounting: Basic Finance – Chart of accounts, Journal entries, Journal vouchers, Exchange rates; Banking (In and Out); Debit and Credit note

Master Data Management: Item master; Business partner master – Customer, vendor; Pricing; Tax

Supply chain Management

Sales: Sales quotation, Sales order, Delivery, Return, Invoice (A/R)

Purchase: Purchase quotation, Purchase order, Return, GRN, Invoice (A/P) **Production:** Assembly BOM, Production order, Goods issue, Goods receipt

Reports: Generation of reports for various functions

II Sem M. Tech. (Production Management) Curriculum Content

Course Code: 18EPMC705		Course Title: PLM Advanced
L-T-P: 2-0-0	Credits: 2	Contact Hrs: 2 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 30 h	rs	Exam Duration: 3 hrs

Deployment of the PLM System: Different stages of deployment, Leading a PLM Project, Understanding the need for change, PLM maturity model, Choosing a system, Realization stage of the project, Start up, Steering group, Project manager, Accomplishing change in the organization.

Challenges of Product Management in Manufacturing Industry: Life cycle thinking, value added services and after sales traceability, Special challenges of product management in the high tech industry, Case studies.

Service Industry and PLM: Introduction, Categorizing services, Rational for building service products, PLM in service business, PLM challenges in service business, Case studies.

Role of product Information Management in Collaborative Business Development: CIM, Concurrent Engineering, Product lifecycle management as an enabler of cooperation between companies, Contents of collaboration, Successful cooperation, Tools of collaboration.

Product and Product Management Strategy: PLM as a business strategy tool, Making a product strategy, Product management strategy, Time to market, Time to react, Time to volume, Time to service.

- 1. Stark John, "Product Lifecycle Management: 21st Century Paradigm for Product Realization", Springer, Third Edition, 2015
- Antti Saakasvuori, Anselmi Immonen, "Product Lifecycle Management" Springer, 1st Edition, 2003.
- 3. Grieves Michael, "Product Lifecycle Management Driving the Next generation of LeanThinking", McGraw-Hill, 2006.

II Sem M. Tech. (Production Management) Curriculum Content

Course Code: 18EPMC	706	Course Title: Enterprise Resource Planning-II
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40 hrs		Exam Duration: 3 hrs

ERP implementation Basics: Master Data Management – Item Master, Vendor Master, COA, Customer Master, Machine Master, etc. Vendors- Role of Vendor; Consultants: Types of consultants; Role of a Consultant, Employees; Role of employees; Resistance by employees; Dealing with employee resistance, Role of Top Management, Role of Implementation Partner

ERP –**Functional modules:** Functional modules of ERP software, integration of supply chain and customer relationship application.

ERP implementation Life cycle: Objectives of ERP implementation, Different phases of ERP implementation. Consultants, vendor and employees

ERP Projects: Project types, Implementation methodology, Project Preparation, Business Blueprinting, Gap Analysis, Realization, Final Preparation, Go Live and Support, User Training

ERP Post Implementation: Maintenance of ERP- Organizational and Industrial impact; Success and Failure factors and ERP Implementation - Case studies.

ERP and e-Business: Introduction ERP and e-business process model, components of e-Business supply chain ERP/ e-business integration ERP to ERP II –Bringing ERP to the Entire Enterprise

Future Directions in ERP: Faster Implementation Methodologies; Business Modules and BAPIs; Convergence on Windows NT; Application Platform; New Business Segments; More Features; Web Enabling; Market Snapshot.

Other Related Technologies of SCM: Relation to ERP; E-Procurement; E-Logistics; Internet Auctions; E-markets; Electronic Business Process Optimization; Business Objects in SCM; E commerce

Case Studies: ERP case studies in HRM, Finance, Production, Product Database, Materials, Sales & Distribution

- 1. Leon Alexis, "Enterprise Resource Planning", Tata McGraw Hill, New Delhi.
- 2. Garg V. K. and Venkatakrishna N. K., "Enterprise Resource Planning: Concepts and Practices", PHI, New Delhi.
- 3. Sadagopan S., "Enterprise Resource Planning: A Managerial Perspective", Tata McGraw Hill, New Delhi.
- 4. Brady, "Enterprise Resource Planning", Thomson Learning.

III Sem M.Tech. (Production Management) Curriculum Content

Course Code: 18EPMC707		Course Title: Project Feasibility and Analysis
L-T-P: 3-1-0	Credits: 4	Contact Hrs: 5 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50 hrs		Exam Duration: 3 hrs

Planning Overview: Capital budgeting and Allocation, Strategic planning.

Market and Demand Analysis: Situational analysis, Demand forecasting and Uncertainties in demand forecasting.

Technical Analysis: Material inputs and utilities, Product mix, Plant capacity and Location, Environmental aspects, Project charts and layouts.

Financial Estimates and Projections: Means of finance, Estimates of sales and production, Working capital requirement and its financing, Profitability projections, projected cash flow statements. Project risk analysis: Sources, Measures and Perspectives on risks, Sensitivity analysis, Scenario analysis, Break-even analysis, Simulation analysis, Decision tree analysis, managing risk.

Sustainability in Project Management: Inter-relating life cycles, The impact of sustainability on project management processes, Measuring and reporting projects

- 1. Prasanna Chandra, "Projects: Planning, Analysis, Financing, Implementation and Review", Tata McGraw-Hill Publishing Company Limited, New Delhi.
- 2. Nicholas J. M. and Steyn H. "Project Management for Business, Engineering and Technology: Principles and Practice", Elsevier.
- 3. Harold R. Kerzner, "Project Management: A Systems Approach to Planning, Scheduling, and Controlling", Wiley, New York.

II Sem M. Tech. (Production Management)

Curriculum Content

Course Code: 17EPME705		Course Title: Manufacturing Systems and
		Automation
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40 hrs		Exam Duration: 3 hrs

Introduction: Production system facilities, Manufacturing support systems, Automation in production system, Automation principles and strategies, Manufacturing operations, Basic elements of an automated system, Advanced automation functions, Levels of automation.

Material handling and identification technology: Considerations in material handling system design, 10 principles of material handling, Automated guided vehicle systems, Conveyor systems, Analysis of material transport system, Automated storage systems, Engineering analysis of storage system. Components of manufacturing systems, Single station automated cells, Applications and analysis of single station cells.

Flexible manufacturing systems: FMS components, FMS application and benefits, Quantitative analysis of flexible manufacturing systems.

Industrial control systems: Sensors, Actuators, Drives and other control system components. Electro-hydraulic and Electro-pneumatics in manufacturing automations

Machine vision systems: Importance of machine vision system in manufacturing automation.

Role of microcontrollers in manufacturing automation system: Microcontroller architecture, interfacing sensors and actuators with microcontroller for industrial automation, Microcontroller programming.

PLCs in manufacturing automation: Application of programmable logic controllers in manufacturing automation, PLC basic and advanced ladder logic programming using RsLogix and CoDeSys format, Usage of timers, counters, sequencing, and interlocking, latching, master control relay for developing programs for manufacturing automation. Temperature control, valve sequencing, conveyor belt control, control of a process etc

SCADA for Automation: Elements of SCADA, Benefits of SCADA, Applications, Types of SCADA systems, Features and functions of SCADA, Building applications using SCADA for manufacturing automation.

- 1. Grover M.P., "Automation, Production Systems and Computer Integrated Manufacturing", Pearson Education Asia.
- 2. Grover M.P., Weiss M. M., Nagel R.N. and Odrey N.G., "Industrial Robotics, Technology, Programming and Applications", Mc Graw Hill Book Publications.
- 3. Krishna Kant, "Computer Based Industrial Control" PHI.
- 4. W. Bolton, "Programmable Logic Controllers" Fifth Edition, Elsevier
- 5. Vijay R. Jadhav, "Programmable Logic Controller", Second Edition, Khanna Publishers.

II Sem M.Tech. (Production Management) Curriculum Content

Course Code: 18EPME706		Course Title: Robust Design Optimization	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 3 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40 hrs		Exam Duration: 3 hrs	

Robust Design Overview: Taguchi's approach to quality and quality loss function, noise factors and average quality loss, exploiting non linearity, classification of parameters

Analysis of variance: No-Way ANOVA, One-Way ANOVA, Two-Way ANOVA and Three-Way ANOVA

Two Level Experiments: Two factor factorial design, model adequacy checking and estimating model parameters, 2^2 full factorial design, 2^3 full factorial design, 2^k full factorial design and Two level fractional factorial design, General 2^{k-p} fractional factorial design.

Steps in Robust Design: Identification of process and its main function, Noise factors and testing conditions, Control factors and their levels, Matrix experiment and data analysis plan, Conducting the experiment and data analysis, Verifying experiment and future plan.

Signal to Noise Ratios: Comparison of the quality of two process conditions, Relationship between Signal to Noise Ratio and quality loss after adjustment, Identification of a scaling factor, Signal to Noise Ratios for static problems, Signal to Noise Ratios for dynamic problems, Analysis of ordered categorical data.

Taguchi Inner and Outer arrays: Orthogonal arrays and fractional factorial designs, Parameter design and tolerance design, Analysis of inner/outer array experiment, Alternative inner/outer orthogonal array experiments.

Constructing orthogonal arrays: Dummy level technique, Compound factor method, Linear graphs and Interaction assignment, Modification of linear graphs, Column merging method, Branching design.

- 1. Montgomery, D. C., "Design and Analysis of Experiments", John Wiley & Sons.
- 2. Khuri A. I. and Cornell J. A. "Response Surfaces: Designs and Analyses, Marcel Dekker, Inc., New York.
- 3. Myers R. H., Montogomery, D. C. and Anderson-Cook C. M. "Response Surface Methodology: Process and Product Optimization Using Designed Experiments", John Wiley & sons, Inc., New York.
- 4. Mason R. L., Gunst, R. F., Hess J. L., "Statistical design and Analysis of Experiments With Applications to Engineering and SISAnce", John Wiley & sons, Inc., New York.
- 5. Phadke M. S., "Quality Engineering using Robust Design", Prentice Hall PTR Englewood Cliffs, New Jersy.
- 6. Ross P. J., "Taguchi Techniques for Quality Engineering", McGraw -Hill International.

II Sem M. Tech. (Production Management) Curriculum Content

Course Code: 18EPMP704 L-T-P: 0-0-4 Credits: 4 ISA Marks: 80 ESA Marks: 20 Practical Hrs: 96 hrs Course Title: **Product Automation Lab** Contact Hrs: **8 hrs/week** Total Marks: **100** Exam Duration: **2 hrs**

Knowledge Based Engineering:

- Customize the tree to display knowledge ware features
- Create parametric models
- Embed design knowledge in the models
- Automate the design and modification processes
- Create design configurations using design tables

HTML:

Tags, Attributes and Elements, Links, Images, Tables, Forms **CSS**: CSS basics, styles, CSS syntax

JavaScript:

JavaScript Output, JavaScript Statements, JavaScript Syntax, JavaScript Variables, JavaScript Operators, JavaScript Arithmetic, JavaScript Strings, JavaScript Events, JavaScript Loop, JavaScript Objects, JavaScript functions.

Python:

Python programming skills using data structures and constructs, python programming skills using functions and packages.

References:

Companion Courses – https://companion.3ds.com/

II Sem M.Tech. (Production Management) Curriculum Content

Course Code: 18EPMP705		Course Title: PLM Technical Lab
L-T-P: 0-0-3	Credits: 4	Contact Hrs: 6 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Lab Hrs: 72 hrs		Exam Duration: 2 hrs

Variant Management Essentials & Product Architect:

Create the product structure, Define product portfolios based on product roadmaps, Create and manage product configurations and design variants, Use Enterprise Changes to track and release features, Generate BOMs

Traceable Requirements Management Essentials:

Capture requirements from MS Word and MS Excel documents, Create requirements and requirement specifications, Allocate requirements to products and models, Create test cases and use cases, Create revision and multiple versions of requirements, Generate traceability reports

Platform Management and Baseline Behavior:

Create collaborative spaces and users, Assign required access rights to different users, Explore the Control widget and its related features, Configure PLM platform to add additional features as per requirements

Data Model Customization Essentials:

Describe Unified Typing concepts, Create Subtypes and add attributes to it, Create Specialization, Customer and Deployment Extensions, Create Unique Keys, Create Specialization and Deployment Packages

Web Based Customization:

Use MQL to set up the schema, Create and maintain a web application based on UI configurable components, Configure automatic business rules (triggers, notifications) and automatic object naming, Execute advanced MQL commands needed for administration, Extend the application with JSP

- 1. Companion Courses https://companion.3ds.com/
- 2. Stark John, "Product Lifecycle Management: 21st Century Paradigm for Product Realization", Springer, Third Edition, 2015
- Antti Saakasvuori, Anselmi Immonen, "Product Lifecycle Management" Springer, 1st Edition, 2003.

II Sem M. Tech. (Production Management) Curriculum Content

Course Code: 18EPMP706		Course Title: ERP Technical Lab
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 6 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Practical Hrs: 72 hr	'S	Exam Duration: 2 hrs

Financial Accounting (Advanced): Fixed assets, Budget, Cost center accounting

MRP: Sales forecast, MRP run, Order recommendation

Admin and Technical: Application installation (APP and DB), System initialization, Setup, Technical Enhancement – UI, Report – Query generation, Crystal report, Print layout design, Basics of Integration

Reports: Generation of reports for various functions

III Sem M. Tech. (Production Management) Curriculum Content

Course Code: 18EPMC	C801 Cour	rse Title: Manufacturing Execution Systems
L-T-P: 3-1-0	Credits: 4	Contact Hrs: 5 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50 hrs		Exam Duration: 3 hrs

Enterprise and Enterprise Integration: Enterprise and its characteristics, Strategic Planning, Feedback Loops, Time Definitions, Business Processes, Manufacturing Processes, Enterprise Integration, Horizontal Integration and Interoperability, Vertical Integration and Temporal Gap, Digitalization, Standards (ISO 15704)

Manufacturing Execution Systems and its Functionalities: Manufacturing Execution Systems (MES), MES Functionalities, MES Models, Manufacturing Operations Management (MOM), Functional Control Model, MES in Discrete Industry, MES in Process Industry, Standards (IEC 62264, IEC 61512, VDI 5600)

Process and Data Modeling: Enterprise Modeling, Process Modeling, Business Process Modeling Language (BPMN), Sankey Diagram, Entity-Relationship Diagrams, ARIS (ARchitecture for integrated Information Systems), Integrated Definition for Function Modelling (IDEF), Event-Driven Process Chain (EPC), Data Modeling, Data Flow Diagrams (DFDs), Unified Modeling Language (UML), Business to Manufacturing Markup Language (B2MML)

Data Collection: Process Analysis, Process Modeling, Data Modeling, Data Flow Diagrams (DFDs), Communication Patterns, Technologies, OPC (OLE for Process Control)

Traceability And Tracking: Tracing, Traceability, Enterprise Entities, Forward and Backward Traceability, Traceability Granularity, Tracking, Tracking Approaches, Regulations (GMP, US FDA, EudraLex)

PERFORMANCE MEASUREMENT: Performance Measurement, Performance Management, Performance Measurement System and Characteristics, Key Performance Indicators (KPIs), Overall Equipment Effectiveness (OEE), Metrics Maturity Model, KPI Effectiveness, Process Improvement, Standards (ISO 22400, VDMA 66412)

Managerial Accounting: Managerial Accounting, Cost Assignment Techniques, Cost Hierarchal Levels, Activity Drivers, Standard Cost, Actual Cost, Job Costing, Process Costing, Activity-Based Costing (ABC), Time-Driven ABC (TDABC), Resource Consumption Accounting (RCA), Cost of Poor Quality (COPQ)

Real-Time Enterprise: Real-Time Enterprise (RTE), Event-Driven Architecture (EDA), Events, Complex Event Processing (CEP)

Industry 4.0: Industry 4.0, Challenges, Industrial Internet of Things (IIoT), Reference Architecture for Industry 4.0, Cyber-Physical Systems (CPS), Cyber-Physical Production Systems (CPPS), Smart Product, Smart Manufacturing, Smart Logistics, Smart Services

M.Tech. (Production Management)

Business Analytics and Business Intelligence, Blockchain: Knowledge Management, Case-Based Reasoning (CBR), Big Data, Decision Analytics, Descriptive Analytics, Predictive Analytics, Prescriptive Analytics, Bitcoin and Blockchain, Merkle Tree, Blockchain Types, Scope and Application of Blockchain in Manufacturing

- 1. Sachin Karadgi, "A Reference Architecture for Real-Time Performance Measurement," Springer, 2014.
- 2. Opher Etzion, Peter Niblett, "Event Processing in Action," Manning, 2011.
- 3. Roger Wattenhofer, "The Science of the Blockchain," CreateSpace Independent Publishing Platform, 2016.
- 4. Bruce Silver, "BPMN Method and Style With BPMN Implementer's Guide," Cody-Cassidy Press, 2011.
- Charles T. Horngren, George Foster, Srikant M. Datar, Madhav V. Rajan, Chris Ittner, "Cost Accounting: A Managerial Emphasis," Prentice Hall, 13th Edition, 2008.
- 6. Wood C. Douglas (Editor), "Principles of Quality Costs: Financial Measures for Strategic Implementation of Quality Management," ASQ, 4th Edition, 2013.
- 7. Gary Cokins, "Activity-Based Cost Management: An Executive's Guide," Wiley, 2001.
- Robert S. Kaplan, Robin Cooper, "Cost & Effect: Using Integrated Cost Systems to Drive Profitability and Performance," Harvard Business Review Press, 3rd edition, 1997.
- 9. ISO 15704: Industrial Automation Systems—Requirements for Enterprise-Reference Architectures and Methodologies, 2000.
- 10. IEC 62264: Enterprise-Control System Integration. Multi-part standard.
- 11. IEC 61512: Batch Control. Multi-part standard.
- 12. ISO 22400–2: Automation Systems and Integration—Key Performance Indicators for Manufacturing Operations Management, Multi—part standard.
- 13. VDI 5600 Part 1: Manufacturing execution systems (MES), 2007.
- 14. OPC Foundation: OPC unified architecture specification part 1: overview and concepts, http://www.opcfoundation.org/.
- 15. MESA, MES Explained: A high level vision, white paper number 6, 1997.GMP
- WHO Good Practices for Pharmaceutical Quality Control Laboratories, WHO Technical Report Series, No. 957, 2010.
- 17. Mike Bourne, Pippa Bourne, Handbook of Corporate Performance Management, Wiley, 2011.

III Sem M. Tech. (Production Management) Curriculum Content

Course Code: 18EPM	C802 Course	Title: Manufacturing Systems Simulation
L-T-P: 3-0-1	Credits: 4	Contact Hrs:5 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50 hrs		Exam Duration: 3 hrs

Principles of Modeling & Simulation: Basic Simulation Modeling, Systems – discrete and continuous systems, general systems theory, models of systems- variety of modeling approach, concept of simulation, simulation as a decision making tool, types of simulation, Principle of computer modeling- Monte Carlo simulation, Nature of computer modeling, limitations of simulation, area of application.

Random Number Generation: Random variables and their properties, Properties of random numbers, generation of Pseudo random numbers, techniques for generating random numbers, Various tests for random numbers-frequency test and test for Autocorrelation,

Random Variate Generation: Different techniques to generate random Variate: Inverse transform technique,-exponential, Normal, uniform, Weibull, direct transformation technique for normal and log normal distribution, convolution method and acceptance rejection techniques-Poisson distribution, Statistical Techniques: Comparison of two system designs, Comparison of several system designs – Bonferroni approaches to multiple comparisons for selecting best fit, for screening

Design and Evaluation of Simulation Experiments: Problem formulation, data collection and reduction, time flow mechanism, key variables, logic flow charts, starting condition, run size, experimental design consideration, output analysis, verification and validation of simulation models. **Simulation Languages:** Comparison and selection of simulation languages, study of any one simulation language.

Discrete Event Simulation: Concepts in discrete –event simulation, development of simulation models for queuing systems, production systems, inventory systems, maintenance and replacement systems, investment analysis and network, Programming for discrete event simulation, Case studies.

- 1. Jerry Banks and John S Carson, Barry L Nelson, David M Nicol, "Discrete event system simulation", Prentice Hall, India.
- 2. Khoshnevi. B., "Discrete system simulation", McGraw Hill International.
- 3. Ronald G Askin and Charles R Standridge , "Modeling and analysis of manufacturing systems", John Wiley & Sons.
- 4. Gordon G, "System Simulation", Prentice Hall, India..
- 5. Thomas J Schriber., "Simulation using GPSS", John Wiley & Sons.
- 6. Shannon, R.E., "System Simulation The art and science", Prentice Hall, India.
- 7. Averill Law & David M.Kelton, "Simulation, Modeling and Analysis", TMH.

	Curriculum Col	ntent
Course Code: 19EPN	4W701	Course Title: Mini Project
L-T-P: 0-0-3	Credits: 3	Contact Hrs: 6 hrs/week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hrs: 72 hrs	5	Exam Duration: 2 hrs

II Sem M. Tech. (Production Management) Curriculum Content

Mini Project: The Guide shall define the problem statement for the Project work. The student shall execute the Project within three months duration during the 2nd semester. The student who has opted Mini Project shall opt either ERP or PLM theme to carry out their work.

Syllabus

Course Content				
Course Code: 15EEEC201	Course Title: Circui	it Analysis		
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 50		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hrs: 50		Exam Duration: 3 hrs		

Content	Hrs
Unit - 1	
Chapter No. 1.Network Equations Source Transformation, Star Delta transformation, Nodal Analysis, Super node, Mesh Analysis, Super mesh, Duality, Network Topology, Tie Set and Cut Set matrix formulation, Dot convention.	8 hrs
Chapter No. 2.Network Theorems Homogeneity, Superposition and Linearity, Thevenin's & Norton's Theorems, Maximum Power Transfer Theorem, Milman's theorem, Reciprocity principle, Application of theorems to both ac and dc networks	8 hrs
Chapter No. 3.Sinusoidal Steady state analysis Characteristics of sinusoids, Forced response to sinusoidal functions, The complex forcing function, Phasors & Phasor diagrams.	4 hrs
Unit - 2	
Chapter No. 4.First order circuits Order of a system, Concept of Time constant, System Governing equation, System Characteristic equation, Basic RL & RC circuit, Transient response with initial conditions, Frequency response characteristics, R-C, R-L circuits as differentiator and integrator models, time and frequency domain responses R-C, R-L circuits as Low pass and high pass filters	8 hrs
Chapter No. 5.Higher order circuits Higher order R-C, R-L, and R-L-C networks, time domain and frequency domain representation, Series R-L-C circuit, Transient response, Damping factor, Quality factor, Frequency response curve, Peaking of frequency curve and its relation to damping factor, Resonance Parallel, R-L-C circuit, Tank circuit, Resonance, Quality factor and Bandwidth	12 hrs
Unit - 3	
Chapter No. 6.Two Port Networks Two port variables, Z,Y, H,G, A- Parameter representations, Input and output impedance calculation, Series, Parallel and Cascade network connections, and their (suitable) models.	5 hrs
Chapter No. 7.Polyphase Circuits Polyphase systems, Single Phase three wire system, Three phase Y-Y connection, Delta connection, Analysis of balanced & unbalanced three phase circuits.	5 hrs

Syllabus

Text Book (List of books as mentioned in the approved syllabus)

- 1. W H Hayt, J E Kemmerly, S M Durban, Engineering Circuit Analysis, 6th, McGraw Hil, 2006
- 2. M E. Van Valkenburg, Network Analysis, 3rd, Pearson Ed, 2006

- 1. Joseph Edminister, Mahmood Nahavi, Electric Circuits, 3rd, Tata McGra, 1991
- 2. Bruce Carlson, Circuits, 3rd, Thomson Le, 2002
- 3. V. K. Aatre, Network Theory and Filter Design, 2nd, Wiley West, 2002
- 4. Anant Agarwal and Jeffrey H Lang, Foundations of Analog & Digital Electronics Circuits, 3rd, Morgan Kau, 2006
- 5. Muhammad H . Rashid, Introduction to PSPICE using OrCAD for circuits and Electronics, 3rd, Pearson Ed, 2005

Creating Value Leveraging Knowledge

Credits: 4

Course Title: Analog Electronic Circuits

KLE TECH.

L-T-P-SS: 4-0-0

Department of Electrical & Electronics Engineering

Syllabus

Course Code:15EEEC202
Contact Hours: 4Hrs/week
Total Marks: 100

CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hours: 50Hrs	Examination Duration	n: 3Hrs	
	Unit I		
Chapter 1: Applications of	f a Junction diode:		06Hrs
Recap of piece-wise linear	r model, constant volta	ge drop model, ideal diode model, small	
signal model. Applications	s of diodes as a Clippi	ng circuit and clamping circuits Voltage	
doubler.	11		
Chapter 2: MOSFETs st	ructure and physical o	peration: Device structure, operation with	12 Hrs
no gate voltage, creating a	channel for current flow	w, applying small vds, operation as vds is	
increased derivation of the	id-vds relationship, the	P-channel mosfet complementary mos or	
cmos operating the mos tra	ansistor in the sub thresh	old region. Current-voltage characteristics:	
circuit symbol the id	vs vds characteristics	finite output resistance in saturation	
characteristics of the p-cha	nnel mosfet the role of	the substrate-the body effect temperature	
effects breakdown and inpu	ut protection MOSEET (circuits at DC	
circets, breakdowir and inpe	<u>Init II</u>		
Chanter 3. Current mirror	rs		08 Hrs
Resignment mirror, Widler Cascode, and Wilson: Output impedance and Voltage swing			00 1115
Charten 4: MOSEET emplifiers :			
Diaging in MOS amplification	milers:	operation and models single stage mas	12 Hrs
Blashing in MOS amplifier	f circuits, siliali signal	bish fusion and models, single stage mos	12 HIS
amplifiers, the MOSFET in		ingn frequency model, frequency response	
of CS amplifier.(CD and CC	J), Cascode Connection:	Implications on gain and Bandwidth	
	Unit III		0.4.77
Chapter 5: Feedback Amplifiers : General feedback structure (Block schematic), Feedback			
desensitivity factor, positive and negative feedback Nyquist stability Criterion, RC phase			
shift oscillator, wein bridge oscillator, merits of negative feedback, feedback topologies:			
series-shunt feedback ampl	lifier, series-series feedb	ack amplifier, and shunt-shunt and shunt-	
series feedback amplifier w	ith examples		
Chapter 6: Large Signal A	Amplifiers :		06 Hrs
Classification of amplifiers	S: $(A, B, AB \text{ and } C);$	Transformer coupled amplifier, push-pull	
amplifier Transistor case an	d heat sink.	_	
Text Books			

- 1. A.S. Sedra & K.C. Smith, "Microelectronic Circuits", 5th Edition, Oxford Univ. Press, 1999.
- 2. Jacob Millman and Christos Halkias, "Integrated Electronics", McGraw Hill,

- 1. David A. Bell, "Electronic Devices and Circuits" 4thedition, PHI publication 2007.
- Grey, Hurst, Lewis and Meyer, "Analysis and design of analog integrated circuits," 4thedition.
- 3. Thomas L. Floyd, "Electronic devices", Pearson Education, 2002
- 4. Richard R. Spencer & Mohammed S. Ghousi, "Introduction to Electronic Circuit Design", Pearson Education, 2003
- 5. J. Millman & A. Grabel, "Microelectronics"-2nd edition, McGraw Hill, 1987.
- 6. Behzad Razavi, "Fundamentals of Microelectronics", reprint 2015 Wiley publications.

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008	Document #: FMCD2005	Rev: 1.0	
Department of Electrical & Electro	nics Engineering			
Syllabus				
Course	e Content			
Course Code: 15EEEC203	Course Title: Di	gital Electron	ics	
L-T-P: 4-0-0	Credits: 4	Con	tact Hrs: 40	
CIE Marks: 50	SEE Marks: 50	Tota	l Marks: 100	
Teaching Hrs: 50		Exa	n Duration: 3	hrs
Cc	ntent			11.5
Chapter 1: Logic Families:				
Logic levels, output switching times, fan-in and fan-o	ut, comparison of	logic families		03Hrs
	-	_		
Chapter 2: Principles of Combinational Logic: Definition of combinational logic, canonical forms, Generation of switching equations from truth tables, Karnaugh maps-3,4 variables, Incompletely specified functions(Don't care terms),Simplifying Maxterm equations, Quine-McCluskey minimization technique- Quine- McCluskey using don't care terms, Decimal method, Reduced Prime Implicant Tables.			08 Hrs	
Chapter 3: Analysis and design of combinational log General approach, Decoders-BCD decoders, Encoders Boolean function generators. Adders and subtractors- adders, Binary comparators.	ic: s, Digital multiple: Cascading full add	xers- Using mu lers, Look ahea	lltiplexers as d carry	09 Hrs
Unit II				
Chapter 4: Flip Flops and its applications: Basic Bistable Element, Latches, A SR Latch, Applica SR Latch, The gated SR Latch, The gated D Latch, Th Flip-Flops): The Master-Slave SR Flip-Flops, The Ma Flip-Flop: The Positive Edge-Triggered D Flip-Flop, I Characteristic Equations.	ation of SR Latch, ne Master-Slave Fl aster-Slave JK Flip Negative-Edge Tri	A Switch De b lip-Flops (Puls p-Flop, Edge Th iggered D Flip-	oouncer, The e-Triggered riggered ·Flop;	
				10Hrs
Chapter 5: Analysis of Sequential Circuits: Registers and Counters, Binary Ripple Counters, Sync Counters, Design of a Synchronous counters, Design of clocked JK Flip-Flops Design of a Synchronous Mod- Flops.	chronous Binary co of a Synchronous on Counter using c	ounters, Ring a Mod-n Counte locked D, T or	nd Johnson r using SR Flip-	10Hrs
Unit – II	Ι			
Chapter 6: Introduction to Sequential Circuit: Introduction to Sequential Circuit Design, Mealy and Synchronous Sequential Circuit Analysis, Constructio	Moore Models, St n of state Diagran	ate Machine no	otations, design.	05Hrs
Chapter 7: Introduction to Memories: Introduction and role of memory in a computer system memory, MROM, PROM, EPROM, EPROM, I NVRAM.	n, memory types a Random access	and terminolog memory, SRA	y, Read Only M, DRAM,	05Hrs

S KLE Technological	
KLE TECH. Creating Value Leveraging Knowledge	L

Syllabus

Text Book

- 1. Donald D Givone, Digital Principles and Design, Tata McGraw Hill Edition, 2002.
- 2. John M Yarbrough, Digital Logic Applications and Design, Thomson Learning, 2001.
- 3. M. Raffiquzzman&Rajan Chandra, Modern Computer Architecture, Galgotia Publications, 1990.
- 4. David Patterson and John Hennessy, Computer Organization and Design, Elsevier, 2007.

- 1. Charles H Roth, Jr; Fundamentals of Logic Design, Thomson Learning, 2004.
- 2. ZviKohavi, Switching and Finite Automata Theory, 2ed, TMH
- 3. Mono and Kim, Logic and Computer Design Fundamentals, Pearson, 2ed, 2001
- 4. David Harris Money and Sarah Harris, Digital Design and Computer Architecture, Morgan Kaufman, 2007.

-	KLE Technological
Ι.	Creating Value

KLE TECH

Department of Electrical & Electronics Engineering

Syllabus

Course Code: 15EEEC204	Course Title: Electrical Machine	s -I	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40)
CIE Marks: 50	SEE Marks: 50	Total Marks: 10	00
Teaching Hrs: 40		Exam Duration	: 3 hrs
	Content		Hrs
	Unit - 1		
Chapter No. 1 Magnetic Circuits and	Induction		
Introduction, Magnetic circuits, Magnetic	c Materials and Their Properties, Ma	gnetically	5 hrs
Induced EMF and Force, AC Operation of	of Magnetic Circuits, Hysteresis and	Eddy - Current	
Losses, Permanent Magnets, Application	of Permanent Magnet Materials.		
Chapter No. 2 Single Phase Transform	ners		
Introduction, Transformer Construction a	nd Practical Considerations, Transfe	ormer on No-	10 hrs
Load, Ideal Transformer, real Transformer	er and Equivalent Circuit, Transform	er Losses,	
Transformer Testing, The Per Unit System	m, Efficiency and Voltage Regulation	on, Excitation	
Phenomenon in Transformers, transformer	er as a Magnetically Coupled Circuit		
Autotransformers.			
	Unit - 2		
Chapter No. 3 Three Phase Transform	ner		
Three Phase transformers, Parallel operat	ion of transformers, Three – Windir	g transformers,	5 hrs
Phase Conversion, Tap Changing Transfe	ormers, Voltage and Current Transfo	ormers.	
Chapter No. 4 Principles of Electromed	chanical Energy Conversion		6 hrs
Introduction, Energy in Magnetic System, Field Energy and Mechanical Force, Multiply –			
Excited Magnetic Field Systems, Forces/	Torques in Systems with Permanent	Magnets,	
Energy Conversion via Electric Field.			
Chapter No. 5 DC Generators			
Introduction, Armature Winding and Cor	nmutator, EMF and Torque, Circuit	Model,	4 hrs
Armature Reaction, Compensating Wind	ing, Commutation, Methods of Exci	tation, Operating	
Characteristics of dc generator, Self – Ex	citation, Characteristics of dc genera	ator, Shunt	
Generator – Predetermination of External	Characteristic, Parallel Operation o	f dc generators,	
	Unit - 3		
Chapter No. 6 DC Motors			
Characteristics of dc Motors, Starting of	dc Motors, Braking of dc Motors, Ef	ficiency and	5 hrs
Testing, Testing of dc Machines, Perman	ent Magnet dc (PMDC) Motors, DC	Machine	
Applications, Starters.			
Chapter No. 6 Speed Control			
Speed control by varying armature circuit	t resistance, varying field current, va	rying armature	5 hrs
terminal voltage.			
Text Book:			
1. A E Fizgerald, Charles K	ingsley, Jr Stephen D. Umans,		

- Electric machinery , 6th edition, TMH, 2012.
- 2. D. P. Kothari and I. J. Nararath, Electrical Machines, 4, MGH, 2011
- 3. P. C. Sen, Principles of Electric Machines and Power Electronics, 2, John Wiley, 2001

References

1. Bhimbra, Principles of Electric machinery, 3, Khanna, 2006

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008	Document #: FMCD2005	D 10
Department of Electrical & Electro	Kev: 1.0		
Syllabus			

Cou	rse Title: Microcontroller A	rchitecture & Programming	Course Code:	
Т_Т	-D· 0-1-1	Cradits: 2	15EEEP201 Contact Hours:	
L-1	-1.0-1-1	Creans. 2	4Hrs/week	
CIE	Marks: 80	SEE Marks:20	Total Marks: 100	
Tea	ching + Lab. Hours: 48Hrs	Examination Duration:3 Hrs		
1.	Overview of Architecture of	f 8051:		02+02 Hrs
	 Processor Core and F 	unctional Block Diagram		
	Description of memo	ory organization		
	Overview of ALL SI	FR's and their basic functionality		
2.	Low Level programming (Concepts:		02+02 Hrs
	Addressing Modes			
	Instruction Set and A	ssembly Language programming(A	ALP)	
	Developing, Building	g, and Debugging ALP's		
3.	Middle Level Programmin	g Concepts:		04+04Hrs
	Cross Compiler			
	Embedded C languag	e implementation, programming, &	k debugging	
	Differences from AN	SI-C		
	Memory Models			
	Library reference			
	• Use of directives	• • • •		
	Functions, Parameter	passing and return types		04.0411
4.	On-Chip Peripherals Study	,Programming, and Application	:	04+04Hrs
	• Ports: Input/Output			
	• Timers & Counters			
	• UART			
~	• Interrupts			04.0411
5.	External Interfaces Study,	Programming and Applications :		04+04Hrs
	• LEDS			
	• Switches(Momentary	(N l l DCD l L L		
	• Seven Segment Displ	ay: (Normal mode, BCD mode, Int	ernal Multiplexing &	
	External Multiplexing	g) - fl	`	
	• LCD (801t, 401t, Busy Kaunad Matrix	Thag, custom character generation)	
6	Keypad Maurix	Dere is at Dereslammer and		00.0011.00
0.	Selective Discussion during	Project Development		08+08HIS
	• A/D & D/A COnverte	l Intor		
	• Stepper Motor, DC W	TOTOL		
	• ZIUDEE			
	Fthernet MAC			
1				

Syllabus

Text Book*Text Books*:

- 1. Kenneth J. Ayala ; "The 8051 Microcontroller Architecture, Programming & Applications" 2e, Penram International, 1996 / Thomson Learning 2005
- 2. Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinlay; "The 8051 Microcontroller and Embedded Systems using assembly and C "- PHI, 2006 / Pearson, 2006

References Books:

- 1. Predko ; "Programming and Customizing the 8051 Microcontroller" -, TMH
- 2. Raj Kamal, "Microcontrollers: Architecture, Programming, Interfacing and System Design", Pearson Education, 2005
- 3. Ajay V.Deshmukh; "Microcontrollers- Theory and Applications", TMH, 2005
- 4. Dr.RamaniKalpathi and Ganesh Raja; "Microcontroller and its applications", Sanguine Technical publishers, Bangalore-2005

Syllabus

Course Title: Analog Electronics Laboratory		Course Code: 15EEEP202
L-T-P: 0-0-1	Credits: 1	Contact Hours: 2Hrs/week
CIE Marks: 80	SEE Marks: 20	Total Marks: 100
Laboratory Hours: 28Hrs	Examination Duration: 3Hrs	

List of Experiments:

- 1. Design & Testing of Diode Clipping (single/double ended) circuits
- 2. Design & Testing of Clamping circuits for Positive and Negative Clamping.
- 3. Design of RC Coupled single stage FET/BJT amplifier & determination of the gain frequency response, I/P & O/P impedance.
- 4. MOSFET characteristics
- 5. Design of single stage CS (MOSFET) amplifier & determination of the gain frequency response.
- 6. Design of source follower using MOSFET.
- 7. Design and testing Current mirror circuit MOSFET

8. Design of two stage voltage series feed-back amplifier & determination of the gain, frequency response, i/p &o/p impedance with &without feedback

- 9. Design and testing of Transformer-less push-pull class B power amplifier
- 10. Design of Darlington Emitter follower with and without Bootstrapping and determines the gain, i/p and o/p impedance.

Reference Books

- 1. "Electronic Devices & circuit Theory " by Nashelsky & Boylstead, PHI,9th Ed
- 2. "Integrated Electronics" By 'Jacob Millman and Christos Halkias', McGraw Hill,
- 3. "Electronic Principles" by A.P. Malvino, TaTa MGH.5th Ed

Syllabus

Course Title: Digital Electroni	cs Laboratory	Course Code: 15EEEP203
L-T-P: 0-0-1	Credits: 1	Contact Hours: 2Hrs/week
CIE Marks: 80	SEE Marks: 20	Total Marks: 100
Laboratory Hours: 28Hrs	Examination Duration: 3Hrs	

List of Experiments:

- 1. Characterization of TTL & CMOS Gates– Propagation delay, Fan-in, Fan-out and Noise Margin.
- 2. Design and implement binary to gray, gray to binary, BCD to Ex-3 and Ex-3 to BCD code converters.
- 3. Design and implement BCD adder and Subtractor using 4 bit parallel adder.
- 4. Design and implement given functionality using decoders and multiplexers.
- 5. Design and implement n bit magnitude comparator using 4- bit comparators.
- 6. Design and implement Ring and Johnson counter using shift register.
- 7. Design and implement mod-6 synchronous and asynchronous counters using flip flops.
- 8. Design and implement a digital system to display a 3 bit counter on a 7 segment display. Demonstrate the results on a general purpose PCB.

9. Design and implement 1-bit serial adder. Demonstrate the results on a general purpose PCB.

Reference Books

- 1. Books/References: 1. K.A.Krishnamurthy "Digital lab primer", Pearson Education Asia Publications, 2003.
- 2. "Electronic Principles" by A.P. Malvino, TaTa MGH,5th ED

Q	KLE Technological University
KLE TECH.	Leveraging Knowledge

Syllabus

Course Code: 15EEEC205	Course Title: Electrical machines-II	
L-T-P-SS: 3-0-0-0	Credits: 3	Contact Hrs: 40
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hrs: 40		Exam Duration: 3 hrs

Content	Hrs
Unit - 1	
Chapter No. 1 Synchronous Machines Introduction, Basic Synchronous Machine Model, Circuit Model of Synchronous Machine, Determination of the Synchronous Reactance, MMF Method, Determination of Armature Reaction Ampere-Turns and Leakage Reactance of a Synchronous Machine – Potier Method, Nature of Armature Reaction, Synchronizing to Infinite Bus – Bars, Operating Characteristics, Efficiency of Synchronous Machines,	9 hrs
Chapter No. 2 Synchronous Machines - continued Power Flow (Transfer) Equations, Capability Curve of Synchronous Generator, Salient –Pole Synchronous Machine Two – Reaction Model, Staying in Synchronizm – The Synchronizing Power (Torque), Determination of X_D and X_Q – Slip Test, Parallel Operation of Synchronous Generators, Hunting in Synchronous Machines, Starting of Synchronous Motors, Short – Circuit transient in Synchronous Machine, Single – Phase Synchronous Generators, Brushless DC Motors	6 hrs
Unit - 2	
Chapter No. 3 Induction Machine Introduction, Construction, Flux and MMF Waves in Induction Motor – Principles of Operation, Development of Circuit Model (Equivalent Circuit), Power Across Air – Gap, Torque and Power Out Put, Tests to determine Circuit – Model Parameters, The Circle Diagram (Approximate),	09 hrs
Chapter No. 4 Speed Control of Induction Motors: Starting, Cogging and Crawling, Speed Control, Deep – bar/Double – Cage Rotor, Classes of Squirrel – Cage Motors, Induction Generator, Induction Machine Dynamics Acceleration Time, Inverted Induction machine, High Efficiency Induction Motors, Linear Induction Motor.	6 hrs
Unit - 3	
Chapter No. 5 Single Phase Induction Motor Introduction, Single Phase Induction Motors, Circuit Model of single – Phase Induction Motor, Types of single phase induction motors, Balanced 2-phase Motor Fed from Unbalanced Supply.	5 hrs
Chapter No. 6 Special Motors Stepper Motors, Series Motor (Universal Motor), Reluctance Motors, Hysteresis Motors, Speed Control.	5 hrs

Text Book:

- 1. A E Fizgerald , Charles Kingsley, Jr Stephen D. Umans, Electric machinery , 6th edition, TMH, 2012.
- 2. D. P. Kothari and I. J. Nararath, Electrical Machines, 4, MGH, 2011
- 3. P. C. Sen, Principles of Electric Machines and Power Electronics, 2, John Wiley, 2001

References

1. Bhimbra, Principles of Electric machinery, 3, Khanna, 2006

Course code: 15EEEC206

Course title: Linear Control Systems

Department of Electrical & Electronics Engineering

Syllabus

L-T-P: 4-0-0 CIE: 50 **SEE: 50**

Teach	ing hours: 50	SEE: 50		
	Unit-I			
1	Introduction to control systems:	3 Hours		
	Open loop and closed loop control systems-definitions, salient features and simple			
	examples			
2	Transfer function Models and block diagram representation:	13 Hrs		
	Definition of transfer function, assumptions and properties, Block diagram			
	representation, symbols used. Block-diagram of negative and positive feedback			
	systems. Electrical systems: Derivation of transfer functions for electrical circuits.			
	Mechanical translation and rotational systems: Basic elements of mechanical			
	systems, Transfer functions of mechanical translation systems. Models of dc			
	servomotors-armature and field control, block-diagram representation.			
	Bock diagram reduction rules, Examples. Signal flow graphs-definition of terms,			
	Mason's gain formula.			
3	Introduction to Time-domain Analysis	4 Hrs		
	Poles and Zeros, Type and order, Standard test signals. First order system: unit step			
	response, importance of time constant.			
	Unit-11	<i></i>		
4	Time Response Specifications	5 Hrs		
	Second order system: Standard T.F of second order system. Unit step response of			
	2 nd order system Time response specifications-definition. Expressions for rise time,			
	peak time, peak oversnot and settling time, Static error constants and steady-state			
5	Ctability Analysis of control systems:	5 Ura		
5	Explanation of Pouth Hurryitz criterion necessary and sufficient condition for	5 118		
	explanation of Routh-Hulwitz chieffon-necessary and sufficient condition for stability special cases. Absolute and Relative stability relative stability analysis			
6	Controllor design approaches:	5 Ura		
0	Basic modes of controls and their features: On-Off proportional integral PL PD	51115		
	and PID. Controller design approaches- Zeigler Nichol's tuning method and Pole			
	placement design method design examples			
7	Frequency response analysis:	5 Hrs		
,	Sinusoidal response: system response for sinusoidal inputs, sinusoidal transfer	0 1110		
	functions. Frequency response of a second order system, definitions and			
	expressions of Frequency response specifications. Polar plot: method to draw			
	approximate polar plot, definition of phase and gain margin.			
	Unit-III			
8	Bode plot analysis of control systems:	5 Hrs		
	Bode plots: asymptotic plots for basic factors, method to draw Bode asymptotic			
	plot and phase plot, determination of gain and phase margins from Bode plot.			
9	Root locus diagrams:	5 Hrs		
	Basic principle – magnitude and angle criterion, Rules to construct root locus			
	diagram (proof not required), method to construct root locus diagram.			

Text Books:

- Nagarath and Gopal, *Control system Engineering*, Wiley Eastern Ltd., 1995, 2nd edition.
 Katsuhiko Ogata, *Modern Control Engineering*, PHI, 2002, 4th edition

Reference Book:

1. M. Gopal, Control Systems-Principles and Design, TMH 2002, 2nd edition

Syllabus

Course Code: 15EEEC207	Course Title: ARM	Processor & Applications
L-T-P-SS: 4-0-0-0	Credits: 4	Contact Hours:4 Hrs/week
CIE Marks: 50	SEE Marks:50	Total Marks: 100
Teaching Hours:50Hrs		Examination Duration:3Hrs

Content	Hrs
Unit - 1	
Chapter No.1 Interrupt programming 8051-Interrupts and programming (both assembly and 'C'): Interrupts for timer and serial communication.	5 hrs
Chapter No.2 ARM Architecture The Acorn RISC machine, Architectural inheritance, Architecture of ARM7TDMI, ARM programmers model, ARM development tools, 3 stage pipeline ARM organization, ARM instruction execution.	5 hrs
Chapter No.3 Introduction to ARM instruction set Data processing instruction, Branch instruction, Load store instruction, Software interrupt instruction, Program status register instruction, Conditional execution, Example programs.	5 hrs
Unit - 2	
Chapter No.4 Introduction to THUMB instruction set The Thumb programmer model, ARM-Thumb interworking, other branch instructions, Data processing instructions, Single/Multiple register load store instruction, Stack operation, Software interrupt instructions, example programs.	2 hrs
Chapter No.5 Assembler rules and Directives Introduction, structure of assembly language modules, Predefined register names, frequently used directives, Macros, Miscellaneous assembler features. Example programs.	4 hrs
Chapter No.6 Exception handling Introduction, Interrupts, error conditions, processor exception sequence, the vector table, Exception handlers, Exception priorities, Procedures for handling exceptions.	4 hrs
Chapter No.7 Architectural support for high level languages Abstraction in software design, data types, floating point data types, The ARM floating point architecture, use of memory, run time environment.	5 hrs
Unit - 3	
Chapter No.8 LPC2148 Architecture and applications On-chip memory, GPIOs, Timers, UART, ADC, I2C, SPI, RTC, ARM interfacing techniques and programming: LED, LCD, Stepper Motor, Buzzer, Keypad, ADC and I2C	10 hrs

Syllabus

_	
•	
<u> </u>	

Text Books (List of books as mentioned in the approved syllabus)

1.	Steve Furber, ARM System- on-Chip Architecture, 2nd, LPE, 2002
2.	William Hohl, ARM Assembly Language fundamentals and Techniques, 1st, CRC press, 2009

- "ARM system Developer's Guide"- Hardbound, Publication date: 2004 Imprint: MORGAN KAUFFMAN
- User manual on LPC21XX.

Syllabus

Course Content

Course code: 15EEEC208L-T-P: 3-0-0Course title: Electrical Power Generation, Transmission &
DistributionCIE: 50Teaching hours: 40SEE: 50

Chapter 1 : Selection of site, Classification, General arrangement and operation of Hydro electric plant with Components, General arrangement and operation of Thermal power plant with Components, General arrangement and operation of Nuclear power plant with Components, Safety of Nuclear power reactor, Storing and processing spent fuel	5hrs
Chapter 2: Substations: Types, bus-bar arrangement, schemes, location,	
substation equipments.	
Economics: Important terms and curves commonly used in system operation, Effect	5hrs
of Voltage and frequency on Loads, Scheduling of Generators, Choice of size and	
number of generator units, Interconnection of power stations.	
Chapter3: Introduction, electrical supply system, comparison of AC & D.C.	
Systems, Standard Voltages of Transmission & Distribution, Advantages of High	21
Voltage Power Transmission, (effect of increase in voltage on weight of conductor,	2nrs
Line Efficiency & Line Voltage Drop). Feeders, Distributors & Service Mains,	
Conductors types.	
Chapter4: Line supports & placing of the conductors, single phase and three phase	
systems. Single circuit and double circuit, Spacing of conductors, Length of span &	
Sag in OH lines. Sag calculation in conductors (a) Suspended on level supports (b)	21
Supports at different levels, Effect of wind and ice. Tension and sag. Corona:	3nrs
Phenomena, expression for disruptive and visual critical voltages and corona power	
loss.	
Unit – II	
Chapter 5:Line parameters Introduction to transmission line constants i.e.	
Resistance, Inductance and capacitance, Inductance of the single phase & three phase	
lines, Inductance calculation with equilateral and unsymmetrical spacing of the lines,	7hm
Transposition of line conductors. Capacitance for single phase & three phase lines,	/11/5
Effect of earth on capacitance of the line, Numerical solutions on resistance	
calculations.	
Chapter 6: Characteristics & Performance of Power transmission lines:	
Introduction to Short transmission lines, calculations for short lines, Medium	8hrs
transmission lines, Nominal-T and \prod representation for transmission lines, Long	
transmission lines, Long line solutions by Rigorous method, equivalent models,	
ABCD constants,	
Unit – III	
Chapter 7: Insulators: Types, potential distribution over a string of suspension	
insulators. String efficiency and methods of increasing string efficiency and methods	5 hrs
of increasing string efficiency, testing of insulators.	
Chapter 8: Underground Cables: Types, material used. Insulation resistance,	
thermal rating of cables, charging current. Grading of cables, capacitance grading and	5 hrs

Syllabus

Text Book:

1. Power Station Engineering and Economics by Skrotzki and Wavopat, McGraw Hill, 1995

Reference Books:

- 1. Principles of Power system By: V.K. Mehta & Rohit Metha. S. Chand & Company, LTD. 2014
- **2.** A course in Electrical Power By: Soni, Gupta & Bhatnagar. Dhanpat rai Publications .2014
- 3. Transmission & Distribution of Electrical Power By J.B.Gupta. SK Kataria, Publication
- 4. Electric Power Generation Transmission and Distribution by S. M. Singh, by Prentice Hall of India, Regd. Office: d 13/12, Model Town, Delhi

L-T-P: 0-0-1

CIE Marks: 80

Course Title: Machines lab

Laboratory Hours: 28Hrs

Department of Electrical & Electronics Engineering

Credits: 1

SEE Marks: 20

Examination Duration: 3Hrs

Syllabus

Course Code: 15EEEP204 Contact Hours: 2Hrs/week Total Marks: 100

Category: Demonstration				
Expt. No.	Experiment			
1	Introduction to meters and machines			
Category: E	xercise			
Expt. No.	Experiments			
2	No Load/Load characteristics of DC Generators			
3	Speed control of DC motor by armature voltage control and flux control			
4	Three Phase transformer Bank with STAR-STAR connection mode demonstration			
5	To Conduct Open Circuit and Short Circuit test on given single phase transformer and a) Calculate Voltage regulation at different loads & power factors. b) To represent the transformer by its equivalent circuit.			
6	Speed control of Induction motor by a) Stator Voltage control. b) Rotor resistance control.(SRIM)			
7	To Conduct NO – LOAD & BLOCKED ROTOR test on a given Induction motor and a) Represent the motor by its equivalent circuit referred to Stator or Rotor. b) To find the performance parameters			
8	Performance study of synchronous motor with change in its excitation (V and Inverted V curves)			
9	Voltage regulation of an Alternator by EMF method			
Category: O	pen Ended			
Expt. No.	Experiment			
1	Open delta connection of a three phase transformer OR Voltage regulation of an alternator by direct loading OR Load test on DC series motor OR			
	Determination of x_d and x_q of synchronous machines			

Syllabus

Course Title: ARM Microcontroller LabL-T-P: 0-0-1Credits: 1CIE Marks: 80SEE Marks:Teaching Hours: 25HrsExamination

ontroller Lab Credits: 1 SEE Marks: 20 Examination Duration: 2 Hrs Course Code: 15EEEP205 Contact Hours: 2Hrs/week Total Marks: 100

Chapter	List of Experiments		
No.			
1	Write an ALP to achieve the following arithmetic operations: i. 32 bit addition ii. 64		
	addition iii. Subtraction iv. Multiplication v. 32 bit binary divide		
2	Write an ALP for the following using loops: i. Find the sum of 'N' 16 bit numbers ii. Find		
	the maximum/minimum of N numbers iii. Find the factorial of a given number with and		
	without look up table.		
3	Write an ALP to i. Find the length of the carriage r1eturn terminated string. ii. Compare		
	two strings for equality. ii.		
4	Write an ALP to pass parameters to a subroutine to find the factorial of a number or		
	prime number generation.		
5	Write a 'C' program to test working of LED's using LPC2148.		
6	5 Write a 'C' program & demonstrate an interfacing of Alphanumeric LCD 2X16 panel t		
	LPC2148 Microcontroller.		
7	Write an ALP to generate the following waveforms of different frequencies i. Square		
	wave ii. Triangular iii. Sine wave II.Write a 'C' program & demonstrate interfacing of		
	buzzer to LPC2148(using external interrupt)		
<u>8</u>	Write a program to set up communication between 2 microcontrollers using I2C.		
9	Write a 'C' program & demonstrate an interfacing of ADC.		
Structure	d Enquiry		
1	Write a program that displays a value of 'Y' at port 0 and 'N' at port 2 and also generates		
	a square wave of 10Khz with Timer 0 in mode 2 at port pin p1.2 XTAL =22MHz		
2	Write a C program that continuously gets a single bit of data from P1.7 and sends it to		
	P1.0 in main, while simultaneously i. creating a square wave of 200us period on pin P2.5.		
	ii. Sending letter 'A' to serial port. Use Timer 0to create square wave.		
Open End	led		
1	Develop an ARM based application using i. sensors ii. Actuators iii. displays		

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008	Document #: FMCD2005		
Department of Electrical & Elect	Rev: 1. Department of Electrical & Electronics Engineering		U	
Syllabus				
Course Code, 17EEEC202	Course Titles D	igital Cinquita		
	Course The: D	igital Circuits	taat Ura. 10	
L-1-1-55. 5-0-0 CIF Marks: 50	SFF Marks: 50		1401 1115. 40 Morkey 101	n
Teaching Hrs. 50	SLE Marks. 30		n Duration.	2 hm
Teaching Hrs: 50	r	Exa	in Duration:	5 1175
Chapton 1: Logia Familiage	1			
Logic levels, output switching times, fan-in and far	-out, comparison of	logic families		03Hrs
Charter 2: Principles of Combinational Lagia				
Chapter 2: Principles of Combinational Logic: Definition of combinational logic, canonical forms, Generation of switching equations from truth tables, Karnaugh maps-3,4 variables, Incompletely specified functions(Don't care terms),Simplifying Maxterm equations, Quine-McCluskey minimization technique- Quine-McCluskey using don't care terms, Decimal method, Reduced Prime Implicant Tables.			08 Hrs	
Chapter 3: Analysis and design of combinational logic: General approach, Decoders-BCD decoders, Encoders, Digital multiplexers- Using multiplexers as Boolean function generators. Adders and subtractors-Cascading full adders, Look ahead carry adders. Binary comparators.			09 Hrs	
Unit	I			
Chapter 4: Introduction to Sequential Circuits : Basic Bistable Element, Latches, A SR Latch, App The SR Latch, The gated SR Latch, The gated D La Triggered Flip-Flops): The Master-Slave SR Flip-F Triggered Flip-Flop: The Positive Edge-Triggered F Flop; Characteristic Equations.	lication of SR Latch atch, The Master-Sla lops, The Master-Sl D Flip-Flop, Negativ	, A Switch De ave Flip-Flops ave JK Flip-Flo ve-Edge Trigge	bouncer, (Pulse- op, Edge ered D Flip-	10Hrs
Chapter 5: Analysis of Sequential Circuits: Registers and Counters, Binary Ripple Counters, Sy Johnson Counters, Design of a Synchronous counter using clocked JK Flip-Flops Design of a Synchronous Flip-Flops.	ynchronous Binary c ers, Design of a Sync ous Mod-n Counter	counters, Ring chronous Mod- using clocked I	and n Counter D, T or SR	10Hrs
Unit –	111			
Introduction to Sequential Circuit Design, Mealy a Synchronous Sequential Circuit Analysis, Construct	nd Moore Models, S tion of state Diagram	State Machine 1 ms and counter	notations, design.	05Hrs
Chapter 7: Introduction to Memories: Introduction and role of memory in a computer s Only memory, MROM, PROM, EPROM, EEPRO NVRAM.	ystem, memory typ M, Random access	es and termino memory, SRA	ology, Read M, DRAM,	05Hrs

Syllabus

Text Books (List of books as mentioned in the approved syllabus)

- 1. Donald D Givone, Digital Principles and Design, Tata McGraw Hill Edition, 2002
- 2. John M Yarbrough, Digital Logic Applications and Design, Thomson Learning, 2001
- 3. A Anand Kumar , Fundamentals of digital circuits, PHI, 2003

- 1. Charles H Roth, Fundamentals of Logic Design, Thomson Learning, 2004
- 2. Zvi Kohavi, Switching and Finite Automata Theory, 2nd, TMH
- 3. R.D. Sudhaker Samuel, Logic Design, Sanguine Technical Publishers, 2005
- 4. R P Jain, Modern Digital Electronics, 2nd, Tata McGraw Hill, 2000

Syllabus

L-T-P: 3-0-0 CIE: 50 SEE: 50

Unit –I	
Chapter 1 : Transformer : Transformer construction and principle of operation, Ideal Transformer, Practical Transformer, Transformer phasor diagrams, Equivalent circuit of transformers, Open circuit and short circuit tests, Voltage regulation, transformer losses and efficiency, Testing of transformers, Three phase transformers. Auto-transformers	10 hours
Chapter 2: DC Machines: Construction of DC machine and DC machine as generator, EMF equation of DC machine, Operating characteristics of types of DC generators, Operating characteristics of DC motors, DC motor starting, Speed control of DC motors.	05 hours
Unit – II	
Chapter 3: Induction (Asynchronous) Machines: Induction motor as transformer, Principle of operation, Rotor frequency, e.m.f, current and power, Losses and Efficiency, Equivalent circuit, Torque slip and Power-slip characteristics, Determination of equivalent circuit parameters. Circle diagram, Starting of polyphase induction motors.	10 hours
Chapter 4 : Synchronous Machines: Cylindrical and salient pole machines, Phasor diagram of cylindrical rotor alternator. AC armature winding, Voltage regulation of alternator using e.m.f method.	05 hours
Unit – III	
Chapter 5 : Synchronous Machines: Synchronous motor phasor, Power angle characteristic of synchronous machine, Measurement of Xd and Xq, Capability curves of synchronous generators, Power factor correction by synchronous motors.	5 hours
Chapter 6:Single phase induction machines: Double field revolving theory, Equivalent circuit, Resistance split phase motors, capacitor start motor, permanent capacitor motor, two-value capacitor motor, shaded-pole motor. Performance and cost comparison and choice of single phase induction motors.	5 hours

Text Book

KLE TECH.

Code: 17EEEC201

Teaching Hours: 40

Course Title: Electrical Machines.

1. P. C. Sen, "Principles of Electric Machines and Power Electronics", John Wiley & Sons Publications, Canada, 2nd Edition, 2001.

- 1. Bhimbra, "Principles of Electrical machinery", Khanna Publishers.2006.
- 2. D. P. Kothari and I. J. Nagrath, "Electrical Machines", MGH Publishers. 4th Edition, 2011.
- 3. Fitzgerald, Kingsly & Stephen, "Electric Machinery", 5ed., McGraw Hill, 1992

Syllabus

Course Code: 17EEEC204

Course Title: Linear Control Systems

L-T-P: 3-0-0 ISA Marks: 50

ESA Marks: 50

Credits: 3

Contact Hrs: 40 Total Marks: 100 Exam Duration: 3 hrs

Teaching Hrs: 50

Chapter	Unit-I			
No.				
1	Introduction to control systems:	2 Hrs		
	Open loop and closed loop control systems-definitions, salient features and simple			
	examples			
2	Transfer function Models and block diagram representation:	6 Hrs		
	Definition of transfer function, assumptions and properties, Block diagram and			
	signal flow graph representation, symbols used. Block-diagram of negative and			
	positive feedback systems. Electrical systems: Derivation of transfer functions for			
	electrical circuits, Models of dc servomotors-armature and field control, block-			
	diagram representation. Block diagram reduction rules, Examples.			
3	Time Response Analysis	7 Hrs		
	Poles and Zeros, Type and order, Standard test signals. First order system: unit step			
	response, importance of time constant, Second order system: Standard T.F of			
	second order system. Unit step response of 2 nd order system Time response			
	specifications-definition. Expressions for rise time, peak time, peak overshot and			
	settling time, Static error constants and steady-state errors.			
	Unit-II			
4	Stability Analysis of control systems:			
	Explanation of Routh-Hurwitz criterion-necessary and sufficient condition for			
	stability, special cases, Absolute and Relative stability, relative stability analysis.			
5	Controller design approaches:	5 Hrs		
	Basic modes of controls and their features: On-Off, proportional, integral, PI, PD			
	and PID, Controller design approaches- Zeigler Nichol's tuning method and Pole			
	placement design method, design examples			
6	Frequency response analysis:	5 Hrs		
	Sinusoidal response: system response for sinusoidal inputs, sinusoidal transfer			
	functions. Frequency response of a second order system, definitions and expressions			
	of Frequency response specifications. Polar plot: method to draw approximate			
	polar plot, definition of phase and gain margin.			
	Unit-III			
1	Bode plot analysis of control systems:	5 Hrs		
	Bode plots: asymptotic plots for basic factors, method to draw Bode asymptotic plot			
0	and phase plot, determination of gain and phase margins from Bode plot.	~ TT		
8	Koot locus diagrams:	5 Hrs		
	Basic principle – magnitude and angle criterion, Rules to construct root locus			
	diagram (proof not required), method to construct root locus diagram.			

Text Books

1 Nagarath and Gopal, *Control system Engineering*, Wiley Eastern Ltd., 1995, 2nd edition.

2 Katsuhiko Ogata, Modern Control Engineering, PHI, 2002, 4th edition

Reference Books:

M.Gopal, Control Systems-Principles and Design, 2, TMH, 2002. 1

Syllabus

Course Content		
C	burse Code: 17EEEC301 L-T-P-S: 3-0-0	
C	ourse Title: Power Electronics CIE: 50	
Teaching Hours: 40SEE: 50		
Unit–I		
1	Introduction	2 11
	Power Electronics, Converter Classification, Power Electronics Concepts, Electronic	2 Hrs
	Switches: The Diode, Thyristor, Transistors, switch Selection.	
2	Power Computations	
	and Consistence Energy Recovery Effective Volumes RMS Apparent Dever and real Dever	1 Ura
	Power Eactor Power Computations for Sinusoidal AC Circuits Power Computations for	41115
	non-sinusoidal periodic waveforms Fourier Series Average Power Non-sinusoidal Source	
	and linear load Sinusoidal Source and Nonlinear load	
3	DC-DC Converters	
U	Linear voltage regulators, a basic switching converter, the buck converter. Voltage and	
	Current Relationships, output voltage ripple, capacitor resistance—The Effect on Ripple	
	Voltage Synchronous Rectification for the buck converter, design considerations, the boost	9 Hrs
	converter, Voltage and Current Relationships, Output Voltage Ripple, Inductor Resistance,	
	the Buck-Boost Converter, Voltage and Current Relationships, Output Voltage Ripple, Cuk	
	and SEPIC converters.	
	Unit–II	
4	Inverters	
	Introduction, the full-bridge converter, the square-wave inverter, Fourier series analysis,	
	total harmonic distortion, amplitude and harmonic control, the half-bridge inverter, pulse-	8 Hrs
	width-modulated output: bipolar switching, unipolar switching, three-phase inverters, the	
_	Six-Step Inverter, PWM three-phase inverters.	
5	Controlled Rectifiers	
	The controlled half-wave rectifier, resistive load, KL load, KL-source load, commutation,	7 11
	discontinuous surrent. DL load, continuous surrent, controlled restifier with DL Source	/ HIS
	Load controlled single-phase converter operating as an inverter	
	Load, controlled single-phase converter operating as an inverter.	
6	AC Voltage Controllers	
	Introduction. The Single-Phase AC Voltage Controller Basic Operation Single-Phase	
	Controller with a Resistive Load. Single-Phase Controller with an RL Load. Static VAR	5 Hrs
	Control. AC Voltage Controllers.	
7	Drive Circuits. Snubber Circuits and Heat Sinks	
	Introduction, MOSFET and IGBT drive circuits, low-side drivers, high-side drivers,	7 11
	transistor snubber circuits, heat sinks and thermal management, steady-state temperatures,	5 Hrs
	time-varying temperatures.	
Text Book:		
1. Daniel W Hart, Power Electronics, Tata McGraw-Hill Edition, New-Delhi, 2011.		
References:		
1.	Rashid M. H, Power Electronics: Circuits, Devices and Applications, 3rd edition, PHI, New	Delhi,

2000.

2. P. S. Bhimbra, Power Electronics, Khanna Publishers, 2007.

3. Umanand, Power Electronics, 2nd edition, Wiley-India Publications, New –Delhi, 2009.

CIE Marks: 50

SEE Marks: 50

Department of Electrical & Electronics Engineering

Syllabus

Course code: 17EEEC302 **Course title: Power System Analysis & Stability Teaching hours: 40**

Course Content	Hrs
Unit - 1	
Chapter No. 1: Power system representation Standard symbols of power system components, one-line diagram, impedance and reactance diagrams, per-unit quantity-definition, per-unit impedance of 3-phase component, change of base, equivalent load impedance, p.u impedance of two-winding transformer referred to primary and secondary, method to draw p.u impedance diagram, advantages of p.u system calculations, examples on obtaining per-unit reactance diagram and per-unit calculations	6 hrs
Chapter No. 2: Symmetrical fault analysis 3-Phase short circuit at the terminals of unloaded generator, definitions of sub-transient, transient and steady-state reactance, internal emf's of loaded machines, examples on short circuit calculations, selection of circuit breaker ratings-momentary current and interrupting capacity, examples on symmetrical fault calculations.	5 hrs
Chapter No. 3: Introduction to Symmetrical components and sequence networks Definition of sequence components as applied to 3-phase unbalanced systems, expressions for sequence components, examples on computations of sequence components.	4 hrs
Unit - 2	
Chapter No. 4 Sequence Networks Sequence impedance and sequence network, sequence networks of 3-phase generator, zero- sequence networks of 3-phase loads and transformers, Sequence network of power systems	4 hrs
Chapter No. 5: Unsymmetrical Fault Analysis Single line to ground, line to line and double line to ground fault with fault impedance at the terminals of unloaded generator- derivation of connection of sequence networks, Unsymmetrical faults on unloaded power systems, examples on unsymmetrical fault calculation for unloaded power systems.	7 hrs
Chapter No. 6: Introduction to power system Stability Power angle equation of SMIB system, steady-state analysis, M&H constants-definitions and relation, swing equation, equal area criterion (EAC),	4 hrs
Unit - 3	
Chapter No. 7: Stability analysis by EAC: EAC applications to to-sudden change in mechanical power input, 3-phase fault on transmission line, expression for critical clearing angle, examples on EAC applications	5 hrs
Chapter No. 8: Numerical solution of swing equation for stability analysis Point by point method of solving swing equation, applications of Euler, modified Euler and R-K numerical techniques for stability analysis, methods to improve transient stability, examples on stability analysis	5 hrs

Text Books

- 1. W.D. Stevenson, Elements of Power System Analysis, 4th Edition, McGraw Hill, 1982
- 2. I.J. Nagarath and D.P. Kothari, Power System Engineering, 2nd Edition, Tata McGraw Hill, 2010 **Reference Books**
 - 1. Hadi Sadat, Power System Analysis, First Edition, Tata McGraw Hill, 2002
 - 2. Nagarath and Kothari, Modern Power System Analysis, 2nd Edition, Tata McGraw Hill, 1993
 - 3. J.J. Grainger and W.D. Stevenson, Power System Analysis, McGraw Hill (New York), 1994

Syllabus

Course Code: 17EEEC303 L-T-P-SS: 3-0-0 CIE Marks: 40 SEE Marks: 50 Teaching Hrs: 40 hrs

Course Title: OS and Embedded Systems Credits: 3 Contact Hrs: 3 hrs/week Total Marks: 100 Exam Duration: 3 hrs

No	Content	Hrs	
	Unit I		
	Introduction and System structures Operating system definition; Operating System operations; Different types of operating system – Mainframe systems, Multi programmed systems, Time sharing systems, Desktop systems,	03 Hrs	
1	 Parallel systems, Distributed systems, Real time systems. Process Management Process concept; Process scheduling; Operations on processes; Inter-process communication. Multi-Threaded Programming: Overview; Multi threading models; Thread Libraries; Threading issues. Process Scheduling: Basic concepts; Scheduling criteria; Scheduling algorithms; Multiple-Processor scheduling; Thread scheduling. Memory Management Memory Management Strategies: Background; Swapping; Contiguous memory allocation; Paging; Structure of page table; Segmentation. Virtual Memory 	06 Hrs 06 Hrs	
	Management: Background; Demand paging; Page replacement; Allocation of frames;		
	Thrashing. (Textbook: Galvin)		
	Introduction To Real-Time Operating Systems		
	Introduction To Real-Time Operating Systems Introduction To Real-Time Operating Systems: Introduction to OS, Introduction to real time embedded system- real time systems, characteristics of real time systems, the future of embedded systems. Introduction to RTOS, key characteristics of RTOS, its kernel, components in RTOS kernel, objects, scheduler, services, context switch, Scheduling types: Preemptive priority-based scheduling, Round-robin and preemptive scheduling	08 Hrs	
4	Scheduling.Tasks, Semaphores and Message Queues:Tasks, Semaphores and Message Queues: A task, its structure, A typical finite statemachine, Steps showing the how FSM works. A semaphore, its structure, binarysemaphore, mutual exclusion (mutex) semaphore, Synchronization between two tasksand multiple tasks, Single shared-resource-access synchronization, Recursive shared-resource-access synchronization. A message queue, its structure, Message copyingand memory use for sending and receiving messages, Sending messages in FIFO orLIFO order, broadcasting messages.(Textbook: Qing Li with Caroline Yao, Real-Time Concepts for Embedded Systems,1E, Published, 2011)	07 Hrs	
	Unit III		
	Typical Embedded System: Classification and purposes of embedded system, Characters and Quality attributes of embedded system, Core and Supporting	05 Hrs	
3	components of embedded system, Embedded firmware (Text book: Shibu KV) Wired and Wireless Protocols: Bus communication protocol (USB,I²C,SPI) ,		
	Wireless and mobile system protocol (Bluetooth, 802.11 and its variants, ZigBee), Embedded design cycle-case study-ACVM (Text book: Rajkamal)	05 Hrs	

Syllabus

Course Code: 17EEEC304 L-T-P: 3-0-0 Credits: 3 CIE Marks: 50 SEE Marks: 50 Teaching Hrs: 40 hrs Course Title: Digital Signal Processing Contact Hrs: 3 hrs/week Total Marks: 100 Exam Duration: 3 hrs

Unit I			
No	Content	Hrs	
1	Introduction to Digital Signal Processing: Signals, Systems, and Signal Processing, Classification of Signals, Basic operations on signals, Elementary signals.	07hrs	
2	Discrete Time Signals and Systems: Properties of systems, representation of linear time in variant systems, Correlation of Discrete Time Signals.	08hrs	
	Unit II		
4	Discrete Fourier Series and Fourier Transform Representation : Fourier Series representation of discrete time signals and properties, Fourier Transform representation of discrete time signals and properties, Applications	04hrs	
5	The Discrete Fourier Transforms: Frequency Domain Sampling, Properties	06hrs	
6	Efficient Computation of DFT: Fast Fourier Transform Algorithms, Applications of FFT Algorithms, A linear Filtering Approach to Computation of the DFT.	05hrs	
	Unit – III		
7	Design of Digital IIR Filters: Introduction, Impulse Invariant & Bilinear Transformations, analog filters – Butterworth, design of digital Butterworth, Chebyshev	05hrs	
8	Design of FIR Filters: Introduction, windowing, rectangular, modified rectangular, Hanning, Hamming,	05hrs	
	 Text Book: Digital Signal Processing, by John G. proakis & Dimitris G. Manolakis, Third Edition, prentice-Hall of India Pvt. Ltd.,ISBN 81-203-1129-9. References: Discrete-Time Signal Processing, by Alan V Oppenheim & Ronald W. Schfer, Prentice-Hall of India Pvt. Ltd., ISBN 0-87692-720-7 Digital Signal Processing- A computer based approach by Sanjit K. Mitra, Tata McGraw-Hill Publishing Company Limited, New Delhi,ISBN 0-07-463723-1. A Student's Guide to Fourier Transforms With Applications in Physics and Engineering by J. F. James, Third Edition, www.cambridge.org/9780521176835 		

Credits:2

Course Code: 17EEEP301

CIE Marks: 80 SEE Marks: 20

L-T-P: 0-0-2

Department of Electrical & Electronics Engineering

Syllabus

Title: Data Structure Using C Lab Contact Hrs: 4 hrs/week Total Marks: 100 Exam Duration: 3 hrs

Teac	ching Hrs: 48hrs Exam Duration: 3 h	irs
1.	Programming on pointer concepts: Pointer concepts,1D and 2D arrays, pointers	02+02 Hrs
	to functions, memory management functions	
2.	Programming on string handling functions using pointers, structures, bit-	02+02 Hrs
	fields: Perform string handling functions like String length, String concatenate,	
	Strings compare, String copy and Strings reverse, Implementing Structures, union and bit-field.	
3.	Programming on files: Open, Close, Read, Write and Append the file.	02+02 Hrs
4.	Programming on stack data structures and applications: Insert delete and	02+02 Hrs
	display an integer in a stack, Conversion from Infix to postfix & Infix to Prefix,	
	Recursion.	
5.	Programming on queue data structures: Insert at rear end ,delete at front end	02+02 Hrs
	and display the integers in queue, Deque and circular queue.	
6.	Programming on linked lists: Insert, delete and display a node in Singly Linked List, Doubly Linked List and Circular Linked List.	06+03 Hrs
7.	Programming on trees: Perform various operations on binary trees, find max,	02+02 Hrs
	min value in a binary search trees, find the height of a tree, count nodes in a tree,	
	delete a node in a tree.	
8.	Programming on sorting: Merge sort, Quick sort, Heap sort, Shell sort, Radix	02+02 Hrs
_	sort.	
9.	Programming on graphs: Compare Breadth First Sort Sort, and Depth First Sort	02+02 Hrs
10	Programming on hashing tables: Implement different methods of hash tables.	02+02 Hrs
11	Open ended experiment: Implement given Data structures.	02+02 Hrs
NO	TE: The pseudo codes for different data structures and algorithms to be based of	on standard
pro	blems from geeksforgeeks website.	
Tex	t Book	
1.	Horowitz, Sahani, Anderson-Feed, "Fundamentals of Data Structures in C", 2e	d,Universities
	Press, 2008	
2.	Aaron M. Tenenbaum, "Data Structures Using C", Pearson Education India, 2003	
3.	Richard F. Gilberg, Behrouz A. Forouzan "Data Structures: A Pseudocode Approach	h With C", 2^{nd}
D	Edition, Course Technology, Oct 2009.	
i Ret	erences	

- 1. E Balaguruswamy, "The ANSI C programming Language", 2ed., PHI, 2010.
- 2. Yashavant Kanetkar, "Data Structures through C", BPB publications 2010

Syllabus

Course Code: 17EEEP302 L-T-P: 0-0-2 Credits:2 CIE Marks: 80 SEE Marks: 20 Teaching Hrs: 48hrs

Title: Linear Integrated Circuits Lab Contact Hrs: 4 hrs/week Total Marks: 100 Exam Duration: 3 hrs

1.	Inverting & Noninverting summer	02+02 Hrs	
2.	Conductance & Tansconductance Amplifier	02+02 Hrs	
3.	Instrumentation Amplifier	02+02 Hrs	
4.	High gain high input impedance amplifier	02+02 Hrs	
5.	Op-amp Phase shifter	02+02 Hrs	
6.	Non Inverting Integrator	06+03 Hrs	
7.	Active Low pass filter	02+02 Hrs	
8.	RC Phase shift Oscillator	02+02 Hrs	
11	Open ended experiment: Implement given LIC Circuit	02+02 Hrs	
	To design and implement Analog PI controller for single time constant system		
Text Book			
1. Jacob Milman, "Microelectronics: Digital and Analog Circuits and Systems", 6 th edition			
	McGrawhill,1984		

Syllabus

Course Code: 17EEEP303	Course Title: Embedded and IOT Lab		
L-T-P: 0-0-1	Credits: 1	Contact Hrs: 32	
CIE Marks: 20	SEE Marks: 80	Total Marks: 100	
Teaching Hrs: 32		Exam Duration: 2 hrs	

Chapter	List of Experiments
No.	
1	Write a C program to use on chip Timers in LPC2148 and generate required delay
2	Write a C program to demonstrate the concept of basic RTOS programming by
	using RTX RTOS
3	Write a 'C' program & demonstrate concept of Round Robin Task Scheduling.
	Write a C program to demonstrate the concept of basic preemptive scheduling
	algorithm by using RTX RTOS
4	Write a 'C' program & demonstrate concept of Events and Flags for inter task
	communication using RTX RTOS
5	Write a 'C' program & demonstrate concept of Mailbox.
6	Write a 'C' program & demonstrate concept of Semaphore.
7	Write a 'C' program & demonstrate concept of interrupts(hardware and software)
	Write a C program to interface I2C-RTC with LPC2148
8	Write a C program to interface SPI-EEPROM with LPC2148
	Structured Enquiry
	Real-Time OS Application which successfully demonstrates the use of various
	RTOS concepts

Syllabus

Course Code: 17	'EEEW301
L-T-P: 0-0-3	Credits:3
CIE Marks: 50	SEE Marks: 50

KLE TECH.

Title: Mini Project Contact Hrs: 3 hrs/week Total Marks: 100

Students are supposed to carry out the mini project based on the theme and guidelines as given below.

(I) Theme: A Computer Aided Solution to Electrical Engineering Problems

- 1. The work must involve designing and developing a computer solution to an electrical engineering problem with the help of a computer program written in C/C++.
- 2. Computer program must make use of data structures /algorithms suitable to the problem being solved.
- **3**. The solution must involve mathematical modeling, mathematical solution and numerical methods.
- 4. Computer program design must be well documented through flowcharts.
- 5. Computer program must have a user manual and source code documentation.
- 6. Computer program must generate a clear, concise report that is useful for other users.
- 7. The solution must be documented in a report consisting of problem definition, methodology, modeling, solution, results and discussion and conclusions.

(II) Project batches and Guide:

Each project batch consists of 3 or 4 students. Students are informed to form their own batch based on the kind of project work and their interest. Each batch is supposed to give four faculty names as guides in the order of their preference. Guides will be allocated based on the preference given by the batch. The primary role of the guide is to supervise the work, provide appropriate guidance in successfully carrying out the project work.

(III) Project implementation

The principle steps in carrying out the project work are summarized below:

Step-1: Literature survey:

A literature survey with regard to the given theme is to be carried out in order to understand the state of the current research. Further, a critical review of the collected literature will facilitate to summarize key observations. Key observations will lead to identifying a specific problem for the project work in terms of alternate/new solution techniques, possible improvements, new formulations or models, hardware implementations etc.

Step-2: Prepare a synopsis:

A synopsis highlights the definition of identified problem and its significance. The synopsis will also contain detailed literature review giving the state of the current research on the selected specialized area.

KLE TECH. KLE TECH. Creating Value	FORM	Document #:	D 10
Leveraging Knowledge	ISO 9001: 2008	FMCD2005	
Department of Electrical & Electro	Rev: 1.0		

Syllabus

It will also brief the problem formulation, solution methodology, tools employed and possible outcomes.

Step-3: Project implementation:

The work is to be carried out in phase wise manner, testing or analyzing the partial results obtained. Guide will periodically monitor the progress of the work done giving suitable suggestions as required.

(IV) Schedule:

S1.	Activity	Week No.	Evaluation Objectives
No.			
1	Announcement for	At the end of the	NA
	the formation of	previous semester	
	batches		
2	Allotment of guides	$1^{st} - 2^{nd}$	NA
3	Submission of	$3^{\rm rd}$ - $5^{\rm th}$	Literature review, problem
	Synopsis		formulation, solution methodology,
			tools employed
4	Review-I	$6^{\text{th}} - 8^{\text{th}}$	Literature review, problem
			formulation, solution methodology,
			tools employed
5	Review-II	9 th -10 th	Analysis and implementation
			(partial)
6	Review-III	$12^{\text{th}} - 14^{\text{th}}$	Analysis, complete implementation
			and results.

Evaluation:

Evaluation of the project work carried out by each batch will be reviewed periodically by a review committee. Review committee consists of guide and two other faculty members who are guiding other batches. Generally, two to three reviews will be held during a semester. However, each project batch will be supervised by the guide on a weekly basis. Review committee will evaluate for 40% and guide will evaluate for 60% of the total marks.

Continuous Internal Evaluation (50%)	Assessment	Weightage in Marks
	Evaluation by Project Guide	30
	Project Review committee	20
Semester End Examination	Using SEE Rubrics	50
(50%)	Total	100

Passing: 40% both in CIE and SEE

Syllabus

Course Code: 17EEEC305 L-T-P-S: 3-0-0 Teaching Hours: 40

Course Title: Electric Drives and Control CIE:50 SEE:50

Chapter 1. An introduction to Electrical Drives & its Dynamics: Electrical drives. Advantages of electrical drives. Parts of electrical drives, Choice of electrical drives status of dc and ac drives dynamics of electrical drives fundamental	5 Hrs
torque equation, speed torque conventions and multi quadrant operation. Nature and	5 1115
classification of load torques, calculation of time and energy loss in transient operations.	
Chapter 2. D C Motor Drives:	
Starting braking, single phase fully controlled rectifier control of dc separately excited	
motor, Single-phase half controlled rectifier control of dc separately excited motor. Three	
phase fully controlled rectifier control of dc separately excited motor, three phase half	10 Hrs
controlled rectifier control of dc separately excited motor, multiquadrant operation of dc	10 1115
separately excited motor fed from fully controlled rectifier. Rectifier control of dc series	
motor, chopper controlled dc drives, chopper control of separately excited dc motor.	
Chopper control of series motor.	
Unit – II	
Chapter 3. Induction Motor Drives:	
Operation with unbalanced source voltage and single phasing, operation with unbalanced rotor impedances, analysis of induction motor fed from non-sinusoidal voltage supply, starting, braking, Stator voltage control, variable frequency control from voltage sources, voltage source inverter control, current source inverter control, current regulated voltage source inverter control, rotor resistance control, slip power recovery.	10 Hrs
Chapter 4. Synchronous Motor and Brushless dc Motor Drives:	
Operation from fixed frequency supply, synchronous motor variable speed drives, variable	05 Hrs
frequency control of multiple synchronous motors, self controlled synchronous motor	
drive, PMAC motor drives, brushless dc motor drives	
Chapter 5. Stepper Motor and Swiched Reluctance Motor Drives:	
Stepper Motor: variable reluctance, permanent magnet, torque versus stepping rate	
characteristics drive circuits for stepper motors	5 Hrs
Switched Reluctance Motor: Operation and control requirements, converter circuits, modes	
of operation	
Chapter 6. Solar and Battery Powered Drives:	
Solar panels, motors suitable for pump drives, battery powered vehicles, solar powered	5 Hrs
electrical vehicles	

Text Book :

1. G. K Dubey, *"Fundamentals of Electrical Drives"*, 2nd ed., Narosa Publishing House, Chennai, 2002. *References:*

KLE TECH.

Department of Electrical & Electronics Engineering

Syllabus

Course code: 17EEEC306 Course title: Power System Modeling, Operation & Control Teaching hours: 50

L-T-P: 3-0-0 CIE Marks: 50 SEE Marks: 50

Unit - 1	Hrs
Chapter No. 1: Formation of network matrices : Multi-port power system representation, performance equations in bus frame of reference, definitions of Network models Ybus and Zbus, Primitive element representations, primitive performance equations,. Formation of Ybus by method of Inspection, Introduction to graph theory- definitions of terms, Bus incidence matrix, Ybus by the method of singular transformation, Examples on Ybus formation by singular transformation (with no mutual coupling) and Inspection method, Zbus building algorithm-addition of uncoupled branches and links, modification of Zbus for changes in elements not mutually coupled, Examples on Zbus formation	8 hrs
Chapter No. 2: Optimal load dispatch : Importance and objective of economic load dispatch, Fuel cost and Incremental fuel cost, Optimal load allocation between plants neglecting transmission losses, Examples on optimal load allocation with and without generation constraints, Optimal load allocation considering transmission losses, General transmission loss formula, Examples.	7 hrs
Unit - 2	
Chapter No. 3: Load flow analysis : Importance of Power flow, Classification of busses, General steps in load flow analysis, Off-nominal ratio tap changing ratio transformer representation. Bus voltage solution by Gauss and Gauss-Seidel methods without PV buses, Handling PV buses in Gauss-Seidel method, N-R load flow model in polar coordinates, formation of NR Jacobian, Introduction to FDLF load flow model, Comparison of Gauss-Seidel, NR and FDLF load flow methods, Examples on one iteration of load flow solution.	8 hrs
Chapter No. 4: Load frequency control : Introduction to load frequency control problem, Working principle of speed governor, Model of isolated power system area –block diagram representation, Expression for steady-state frequency deviation, Parallel operation of generators – expression for operating frequency and load sharing,, two area load frequency control, steady-state operation of multi-area system under free governor operation, Examples on load sharing between areas.	7 hrs
Unit - 3	
Chapter No. 5: Reactive power and voltage control : Power flow through a line, Relation between voltage, power and reactive power at a node, Brief descriptions of methods of voltage control-by injection of reactive power and tap changing transformer. Generator reactive power control by AVR-simplified AVR system model, AVR response.	5 hrs
Chapter No. 6:Power System Simulations: Simulation of automatic generation control, simulation of small signal stability of a SMIB power system, Transient stability simulation of SMIB power system using trapezoidal integration, simulation of classical economic load dispatch Algorithm	5 hrs

Text Books

- 1. Stagg and El-Abid, Computer Methods in power system analysis, First Edition, Mc-Graw Hill, 1968
- 2. Kothari and Nagarath, Modern power system analysis, 3rd Edition, Tata McGraw Hill, 2004 **References :**
- 1. P. Kundur, Power system stability and control, First Edition, Tata McGraw Hill, 2007
- 2. Hadi Sadat, Power System analysis, Ed. First Edition, Tata McGraw Hill, 2002
- 3. A.R. Bergen and Vijay Vittal, Power system analysis, Ed. First Edition, Pearson Ed, 2009

Syllabus

Course Code: 17EEEC307 L-T-P-SS: 3-0-0 Credits:3 CIE Marks: 50 SEE Marks: 50 Teaching Hrs: 40hrs

KLE TECH.

Course Title: Automotive Electronics Contact Hrs: 3 hrs/week Total Marks: 100 Exam Duration: 3 hrs

	Unit I	
No	Content	Hrs
1	Automotive Systems, Design cycle and Automotive industry overview Overview of Automotive industry, Vehicle functional domains and their requirements, automotive supply chain, global challenges. Role of technology in Automotive Electronics and interdisciplinary design. Introduction to modern automotive systems and need for electronics in automobiles and application areas of electronic systems in modern automobiles, Introduction to power train, Automotive transmissions system ,Vehicle braking fundamentals, Steering Control, Overview of Hybrid Vehicles ECU Design Cycle : Types of model development cycles(V and A), Components of ECU, Examples of ECU on Chassis, Infotainment, Body Electronics and cluster	8
2	 Automotive Sensors and Actuators: Sensor characteristics, Sensor response, Sensor error, Redundancy of sensors in ECUs, Avoiding redundancy, Smart Nodes, Examples of sensors : Accelerometer (knock sensors), wheel speed sensors, Engine speed sensor, Vehicle speed sensor, Throttle position sensor, Temperature sensor, Mass air flow (MAF) rate sensor, Exhaust gas oxygen concentration sensor, Throttle plate angular position sensor, Crankshaft angular position/RPM sensor, Manifold Absolute Pressure (MAP) sensor. Actuators: Engine Control Actuators, Solenoid actuator, Exhaust Gas Recirculation Actuator. 	7
3	 Embedded system in Automotive Applications & Automotive safety systems: Review of microprocessor, microcontroller and digital signal processor within the automotive context. Criteria to choose the right microcontroller/processor for various automotive applications, Architectural attributes relevant to automotive applications Automotive grade processors ex: Renesas, Quorivva, Infineon. EMS: Engine control functions, Fuel control, Electronic systems in Engines , Development of control algorithm for EMS, Look-up tables and maps, Need of maps, Procedure to generate maps, Fuel maps/tables, Ignition maps/tables, Engine calibration, Torque table, Dynamometer testing Safety Systems in Automobiles: Active and Passive safety systems: ABS, TCS, ESP, Brake assist, Airbag systems etc. 	10
4	Automotive communication protocols : Overview of Automotive communication	5
	Advanced Driver Assistance Systems (ADAS) and Functional safety standards	
5	Advanced Driver Assistance Systems (ADAS): Examples of assistance applications: Lane Departure Warning, Collision Warning, Automatic Cruise Control, Pedestrian Protection, Headlights Control, Connected Cars technology and trends towards Autonomous vehicles. Functional Safety: Need for safety standard-ISO 26262, safety concept, safety process for product life cycle, safety by design, validation	5

Syllabus

	Diagnostics: Fundamentals of Diagnostics: Basic wiring system and Multiplex wiring	
	system, Preliminary checks and adjustments, Self-diagnostic system. Fault finding and	
<u> </u>	corrective measures, Electronic transmission checks and Diagnosis, Diagnostic	5
)	procedures and sequence, On board and off board diagnostics in Automobiles, OBDII,	3
	Concept of DTCs, DLC, MIL, Freeze Frames, History memory, Diagnostic tools,	
	Diagnostic protocols : KWP2000 and UDS	

Text Book:

f

- 1. Ribbens Understanding of Automotive electronics
- 2. Denton.T Automobile Electrical and Electronic Systems.
- 3. Denton.T Advanced automotive fault diagnosis

References:

- 1. Ronald K Jurgen: "Automotive Electronics Handbook, 2nd Edition, McGraw-Hill, 1999
- 2. James D Halderman: -Automotive electricity and Electronics", PHI Publication
- 3. Terence Rybak. Mark Stefika: Automotive Electromagnetic Compatibility (EMC), Springer. 2004
- 4. Allan Bonnick.: "Automotive Computer Controlled Systems" Diagnostic Tools and Techniques". Elsevier Science, 2001
- 5. William T.M Automotive Electronic Systems.
- 6. Nicholas Navet Automotive Embedded System Handbook 2009.
- 7. BOSCH Automotive Handbook, 6th Edition.

FORM

ISO 9001: 2008

Department of Electrical & Electronics Engineering

Syllabus

Course code: 17EEEC308

Course title: Machine Learning

Teaching hours: 40

Chapter	er Unit-I		
No.			
1	Introduction	5 hrs	
	Introduction to Machine Learning, Applications of Machine Learning, Types of		
	Machine Learning: Supervised, Unsupervised and Reinforcement learning, Dataset		
	formats, Basic terminologies.		
2	Supervised Learning	10 hrs	
	Linear Regression, Logistic Regression Linear Regression: Single and Multiple		
	variables, Sum of squares error function, The Gradient descent algorithm,		
	Application, Logistic Regression, The cost function, Classification using logistic		
	regression, one-vs-all classification using logistic regression, Regularization.		
	Unit-II		
3	Supervised Learning: Neural Network	10 hrs	
	Introduction to perception learning, Implementing simple gates XOR, AND, OR		
	using neural network. Model representation, Gradient checking, Back propagation		
	algorithm, Multi-class classification, Application- classifying digits, SVM.		
4	Unsupervised Learning: Clustering	5 hrs	
	Introduction, K means Clustering, Algorithm, Cost function, Application.		
	Unit-III		
5	Unsupervised Learning: Dimensionality Reduction	4 hrs	
	Dimensionality reduction, PCA- Principal Component Analysis. Applications,		
	Clustering data and PCA.		
6	Introduction to Deep Learning	8 hrs	
	What is deep learning?, Difference between machine learning and deep learning,		
	Convolution Neural Networks (CNN), Recurrent Neural Networks(RNN), When to		
	use deep learning?		

Text Books

- Tom Mitchell, Machine Learning, 1, McGraw-Hill., 1997 1
- 2 Christopher Bishop, Pattern Recognition and Machine Learning, 1, Springer, 2007

Reference Books:

1 Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical Learning : Data Mining, Inference and Prediction, 2, Springer, 2009

CIE Marks: 50 SEE Marks: 50

L-T-P: 2-0-1

Syllabus

Laboratory Title: Power Electronics & Drives Lab Total Hours: 36 Hrs Total Exam Marks: 100

Lab. Code: 17EEEP304 Duration of Exam: 03 Hrs Total CIE. Marks: 80

S No	Experiment list		
	Demonstration		
1	Forward and Flyback DC-DC Converter		
2	Single phase full bridge inverter		
3	Half controlled Rectifier feeding R and RL load		
4	Fully controlled bridge rectifier feeding R and RL load		
	Exercises		
1	Three phase full bridge controlled rectifier fed DC motor drive.		
2	Class AB chopper fed DC Motor drive.		
3	Four Quadrant Closed loop control of DC motor drive		
4	VSI based open loop volts/hertz control of three phase induction motor drive.		
	Structured Enquiry		
1	Title: Each batch (consisting of 4 students) will work on one hard ware circuit out of the below mentioned circuits, obtain the simulation results, and experimentally verify the working principle and prepare a report. To design and implement closed loop DC motor/Induction motor drive to meet defined emolifications		

Syllabus

Laboratory Title: Automotive Electronics Lab Total Hours: 36 Hrs Total Exam Marks: 100

Lab. Code: 17EEEP305 Duration of Exam: 03 Hrs Total CIE. Marks: 80

Sl. No.	Name of Experiment			
	Demonstration Experiment			
1	Electronic engine control system: Injection and Ignition control system,			
	Transmission trainer modules			
	Exercise Experiment			
2	Simulation of an automobile engine			
3	Modeling a vehicle motion on a flat surface during hard acceleration, deceleration			
	and steady acceleration.(ABS and suspension system)			
4	Basic gate logic simulation and modeling using Simulink and realization on the			
	hardware platform.			
5	Modeling Seat belt warning system, and Vehicle speed control based on the gear			
	input.			
6	EGAS modeling and simulation using Simulink and realization on the hardware			
	platform.			
7	Interior lighting control modeling with state flow			
8	Gear input transmission over CAN bus using ARM Cortex m3 and signal analysis			
	using CANalyzer/BusMaster software. Code driven and Model driven integration			
	for Vehicle speed control function based on the gear input.			
	Structured Enquiry			
1	Develop Matlab code for stepper motor control and convert it to			
	Simulink model and port it on to an embedded hardware			
2	Develop a C code for LCD display device and convert it to Simulink model and			
	port it to embedded hardware/FPGA			

Syllabus

Laboratory Title: Minor Project Total Hours: 36

SEE Marks: 50

Lab. Code: 17EEEW302 Duration of SEE Hours: 3 CIE Marks: 50

Students are supposed to carry out the minor project based on the theme and guidelines as given below. (I) Theme:

Hardware Design and Implementation of Electrical and / or Electronics System for application in Controls, Measurement and Instrumentation, Power Electronics and Drives, Relays, Renewable Energy Systems etc using specialized ICs /Microcontrollers /DSPs.

(II) Project batches and Guide:

Each project batch consists of 3 or 4 students. Students are informed to form their own batch based on the kind of project work and their interest. Each batch is supposed to give four faculty names as guides in the order of their preference. Guides will be allocated based on the preference given by the batch. The primary role of the guide is to supervise the work, provide appropriate guidance in successfully carrying out the project work.

(III) Project implementation

The principle steps in carrying out the project work are summarized below:

Step-1: Literature survey:

A literature survey with regard to the given theme is to be carried out in order to understand the state of the current research. Further, a critical review of the collected literature will facilitate to summarize key observations. Key observations will lead to identifying a specific problem for the project work in terms of alternate/new solution techniques, possible improvements, new formulations or models, hardware implementations etc.

Step-2: Prepare a synopsis:

A synopsis highlights the definition of identified problem and its significance. The synopsis will also contain detailed literature review giving the state of the current research on the selected specialized area. It will also brief the problem formulation, solution methodology, tools employed and possible outcomes.

Step-3: Project implementation:

The work is to be carried out in phase wise manner, testing or analyzing the partial results obtained. Guide will periodically monitor the progress of the work done giving suitable suggestions as required.

Sl. No.	Activity	Week No.	Evaluation Objectives
1	Announcement for	At the end of the	NA
	the formation of	previous semester	
	batches		
2	Allotment of guides	1^{st} - 2^{nd}	NA
3	Submission of	3 rd - 5 th	Literature review, problem formulation,
	Synopsis		solution methodology, tools employed
4	Review-I	6^{th} - 8^{th}	Literature review, problem formulation,
			solution methodology, tools employed
5	Review-II	9 th -10 th	Analysis and implementation (partial)
6	Review-III	$12^{\text{th}} - 14^{\text{th}}$	Analysis, complete implementation and
			results.

(IV) Schedule:

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008	Document #: FMCD2005	
Department of Electrical & Electro	Rev: 1.0		
Syllabus			

Evaluation:

Evaluation of the project work carried out by each batch will be reviewed periodically by a review committee. Review committee consists of guide and two other faculty members who are guiding other batches. Generally, two to three reviews will be held during a semester. However, each project batch will be supervised by the guide on a weekly basis. Review committee will evaluate for 40% and guide will evaluate for 60% of the total marks.

Continuous Internal	Assessment	Marks
Evaluation (50%)	Evaluation by Project Guide	30
	Project Review committee	20
Semester End Examination	Using SEE Rubrics	50
(50%)	Total	100

Passing: 40% both in CIE and SEE

Syllabus

Course Code: 18EEEP201 L-T-P: 0-0-3 CIE Marks: 80 SEE Marks: 20 Teaching Hrs: 48hrs Title: Data Structure Using C Lab Credits:3 Contact Hrs: 4 hrs/week Total Marks: 100 Exam Duration: 3 hrs

Chapter	Unit-I	
No.		
1	Programming on pointer concepts: Pointer concepts,1D and 2D arrays, pointers	02+02 Hrs
	to functions, memory management functions	
2	Programming on string handling functions using pointers, structures, bit-	02+02 Hrs
	fields: Perform string handling functions like String length, String concatenate,	
	Strings compare, String copy and Strings reverse, Implementing Structures,	
	union and bit-field.	
3	Programming on files: Open, Close, Read, Write and Append the file.	02+02 Hrs
4	Programming on stack data structures and applications: Insert delete and	02+02 Hrs
	display an integer in a stack, Conversion from Infix to postfix & Infix to Prefix,	
	Recursion.	
5	Programming on queue data structures: Insert at rear end ,delete at front end and	02+02 Hrs
	display the integers in queue, Deque and circular queue.	
6	Programming on linked lists: Insert, delete and display a node in Singly Linked	06+03 Hrs
	List, Doubly Linked List and Circular Linked List.	
7	Programming on trees: Perform various operations on binary trees, find max, min	02+02 Hrs
	value in a binary search trees, find the height of a tree, count nodes in a tree, delete	
	a node in a tree.	
8	Programming on sorting: Merge sort, Quick sort, Heap sort, Shell sort, Radix sort.	02+02 Hrs
9	Programming on graphs: Compare Breadth First Sort Sort, and Depth First Sort	02+02 Hrs
10	Programming on hashing tables: Implement different methods of hash tables.	02+02 Hrs
11	Open ended experiment: Implement given Data structures.	02+02 Hrs

Text Books

- 1 Horowitz, Sahani, Anderson-Feed, "Fundamentals of Data Structures in C", 2ed, Universities Press, 2008
- 2 Aaron M. Tenenbaum, "Data Structures Using C", Pearson Education India, 2003
- 3 Richard F. Gilberg, Behrouz A. Forouzan "Data Structures: A Pseudocode Approach With C", 2nd Edition, Course Technology, Oct 2009.

Reference Books:

- 1 E Balaguruswamy, "The ANSI C programming Language", 2ed., PHI, 2010.
- 2 Yashavant Kanetkar, "Data Structures through C", BPB publications 2010

L-T-P: 3-0-0

ISA Marks: 50

Teaching Hrs: 40

Course Code: 18EEEC201

Department of Electrical & Electronics Engineering

Syllabus

Course Title: Electrical Machines

Credits: 3 ESA Marks: 50 Contact Hrs: 40 Total Marks: 100 Exam Duration: 3Hrs

Chapter	Unit-I	
No.		
1	Transformer : Transformer construction and principle of operation, Ideal	10 hrs
	Transformer, Practical Transformer, Transformer phasor diagrams, Equivalent	
	circuit of transformers, Open circuit and short circuit tests, Voltage regulation,	
	transformer losses and efficiency, Testing of transformers, Three phase	
	transformers, Auto-transformers.	
2	DC Machines: Construction of DC machine and DC machine as generator, EMF	05 hrs
	equation of DC machine, Operating characteristics of types of DC generators,	
	Operating characteristics of DC motors, DC motor starting, Speed control of DC	
	motors.	
	Unit-II	
3	Induction (Asynchronous) Machines: Induction motor as transformer, Principle of	10 hrs
	operation, Rotor frequency, e.m.f, current and power, Losses and Efficiency,	
	Equivalent circuit, Torque slip and Power-slip characteristics, Determination of	
	equivalent circuit parameters. Circle diagram, Starting of polyphase induction	
	motors.	
4	Synchronous Machines: Cylindrical and salient pole machines, Phasor diagram of	05 hrs
	cylindrical rotor alternator. AC armature winding, Voltage regulation of alternator	
	using e.m.f method.	
	Unit-III	
5	Synchronous Machines: Synchronous motor phasor, Power angle characteristic of	5 hrs
	synchronous machine, Measurement of Xd and Xq, Capability curves of	
	synchronous generators, Power factor correction by synchronous motors.	
6	Single phase induction machines: Double field revolving theory, Equivalent circuit,	5 hrs
	Resistance split phase motors, capacitor start motor, permanent capacitor motor,	
	two-value capacitor motor, shaded-pole motor. Performance and cost comparison	
	and choice of single phase induction motors.	

Text Books

1 P. C. Sen, "Principles of Electric Machines and Power Electronics", John Wiley & Sons Publications, Canada, 2nd Edition, 2001.

Reference Books:

- 1 Bhimbra, "Principles of Electrical machinery", Khanna Publishers.2006.
- 2 D. P. Kothari and I. J. Nagrath, "Electrical Machines", MGH Publishers. 4th Edition, 2011.
- 3 Fitzgerald, Kingsly & Stephen, "Electric Machinery", 5ed., McGraw Hill, 1992

Syllabus

Laboratory Title: Control System Lab Total Hours: 32 Total Exam Marks: 20

Lab. Code: 18EEEP202 Duration of Exam: 02 Total ISA. Marks: 80

Category	: Demonstration	Total Weightage:	10.00	No. of lab sessions: 2.00	
Expt./ Job No.	Experiment/job Details				
1	Demonstration of heat learning model	tank simulator with	out controll	er using Labview Interactive	
2	Demonstration of temp Interactive learning mo	perature control of li odel	iquid tank si	imulator using Labview	
Category	: Exercises	Total Weightage:	40.00	No. of lab sessions: 5.00	
Expt./ Job No.	Experiment/job Details				
1	Time response specific	ations of second or	der system		
2	Frequency response of second order system				
3	P,PI and PID controlle	rs-effect on plant st	ep response		
4	Lag and Lead Compen	sators- determination	on of freque	ncy response	
5	Determination of Phase	e and Gain margin			
Category	: Structured Enquiry	Total Weightag	e: 30.00	No. of lab sessions: 4.00	
Expt./ Job No.	Experiment/job Details				
1.	Each batch consisting of MATLAB to design co specifications and anal responses. To submit a list of assumptions, design validation)	of 4 students work of ompensator/controll yze the performanc technical report (co sign formulation, de	on a given d er for a syst e by simula onsisting of esign calcula	esign problem- To employ em to meet given ting the time and frequency objectives, specifications set, ations, simulation results,	

4hrs

Department of Electrical & Electronics Engineering

Syllabus

Cour	se Title: Digital S	Course Code: 18EEEP203			
L-T-P: 0-0-2		Credits: 2	Contact Hours: 4Hrs/week		
ISA Marks: 80		SEA Marks:20	Total Marks: 100		
Teaching + Lab.		Examination Duration: 2	Hrs		
Hou	Hours: 48 Hrs				
1. Chapter No. 1. Architecture of FPGA					
	Architecture of FPGS: Spartan 3, What Is HDL, Verilog HDL Data Types and				

	Architecture of FPGS: Spartan 3, What Is HDL, Verilog HDL Data Types and	
	Operators.	
2.	Chapter No. 2. Data Flow Descriptions	6 hrs
	Highlights of Data-Flow Descriptions, Structure of Data-Flow Description, Data	
	Type – Vectors, Testbench.	
3.	Chapter No. 3. Behavioral Descriptions	10 hrs
	Behavioral Description highlights, structure of HDL behavioral Description, The	
	VHDL variable – Assignment Statement, sequential statements, Tasks and	
	Functions	
4.	Chapter No. 4. Structural Descriptions	10 hrs
	Highlights of structural Description, Organization of the structural Descriptions,	
	Binding, state Machines, Generate, Generic, and Parameter statements	
5.	Chapter No. 5: Finite State Machine:	4hrs
	Moore Machines, Mealy Machines	
6.	Chapter No. 6: Timing Issues in Digital Circuits:	6hrs
	Setup Time Constraints, Hold Time Constraints, Static Time analysis, Critical	
	Path, Clock Skew.	
7.	Chapter No. 7. Advanced HDL Descriptions	8hrs
	File operations in Verilog, Memories: RAM, ROM, Block Memories(Xilinx IP)	

Syllabus

Course Code: 18EEEC301

Course Title: Linear Integrated Circuits

L-T-P: 3-0-0 CIE Marks: 50 Teaching Hrs: 40

Credits: 3 SEE Marks: 50 Contact Hrs: 40 Total Marks: 100 Exam Duration: 3 hrs

Chapter	Unit-I		
No.			
1	Current Mirrors	05 Hrs	
	Current Mirror circuits and Modeling, Figures of merit (output impedance, voltage		
	swing), Widlar, Cascode and Wilson current Mirrors, Current source and current		
	sink.		
2	Basic OPAMP architecture	06 Hrs	
	Basic differential amplifier, Common mode and difference mode gain, CMRR, 5-		
	pack differential amplifier, 7-pack operational amplifier, Slew rate limitation,		
	Instability and Compensation, Bandwidth and frequency response curve		
3	OPAMP characteristics	04 Hrs	
	Ideal and non-ideal OPAMP terminal characteristics, Input and output impedance,		
	output Offset voltage, Small signal and Large signal bandwidth.		
	Unit-II		
4	OPAMP with Feedback		
	OPAMP under Positive and Negative feedback, Impact Negative feedback on	0511-0	
	linearity, Offset voltage, Bandwidth, Input and Output impedances, Follower	05Hrs	
	property, Inversion property		
5	Linear applications of OPAMP		
	DC and AC Amplifiers, Voltage Follower, Summing, Scaling and		
	Averagingamplifiers (Inverting, Non-inverting and Differential configuration),	10 Hrs	
	Integrator, Differentiator, , Currentamplifiers, Instrumentation amplifier, Phase	10 115	
	shifters, Voltage to current converter, Phase shift oscillator, Weinbridge oscillator,		
	Active Filters – First and second order Low pass & High pass filters.		
	Unit-III		
6	Nonlinear applications of OPAMP		
	Crossing detectors (ZCD. Comparator), Schmitt trigger circuits, Monostable &		
	Astable multivibrator, Triangular/rectangular wave generators, Waveform	10 Hrs	
	generator, Voltage controlled Oscillator, Precisionrectifiers, Limiting	101115	
	circuits.Clamping circuits, Peak detectors, sample and hold circuits, Log and		
	antilog amplifiers, Multiplier and divider Amplifiers, Voltage Regulators.		
Text Boo	bks		

- 1 Sedra and Smith, "Microelectronics", 5th edition, Oxford University Press.
- 2 Ramakant A. Gayakwad, "Op Amps and Linear Integrated Circuits", 4th edition, PHI.

Reference Books:

- 1 Robert. F. Coughlin & Fredrick F. Driscoll, "Operational Amplifiers and Linear Integrated Circuits", PHI/Pearson, 2006.
- 2 James M. Fiore, "Op Amps and Linear Integrated Circuits", Thomson Learning, 2001
- 3 Sergio Franco, "Design with Operational Amplifiers and Analog Integrated Circuits", TMH, 3e, 2005
- 4 David A. Bell, "Operational Amplifiers and Linear IC's", 2nd edition, PHI/Pearson, 2004

Syllabus

Course Code: 18EEEP301

L-T-P: 0-0-3 CIE Marks: 20 Teaching Hrs: 48

Course Title: Data Structure Using C Lab

Credits: 3 SEE Marks: 80 Contact Hrs: 48 Total Marks: 100 Exam Duration: 2 hrs

Chapter	Unit-I	
No.		
1	Programming on pointer concepts: Pointer concepts, 1D and 2D arrays, pointers	02+02 Hrs
	to functions, memory management functions	
2	Programming on string handling functions using pointers, structures, bit-	02+02 Hrs
	fields: Perform string handling functions like String length, String concatenate,	
	Strings compare, String copy and Strings reverse, Implementing Structures,	
	union and bit-field.	
3	Programming on files: Open, Close, Read, Write and Append the file.	02+02 Hrs
4	Programming on stack data structures and applications: Insert delete and	02+02 Hrs
	display an integer in a stack, Conversion from Infix to postfix & Infix to Prefix,	
	Recursion.	
5	Programming on queue data structures: Insert at rear end ,delete at front end and	02+02 Hrs
	display the integers in queue, Deque and circular queue.	
6	Programming on linked lists: Insert, delete and display a node in Singly Linked	06+03 Hrs
	List, Doubly Linked List and Circular Linked List.	
7	Programming on trees: Perform various operations on binary trees, find max, min	02+02 Hrs
	value in a binary search trees, find the height of a tree, count nodes in a tree, delete	
	a node in a tree.	
8	Programming on sorting: Merge sort, Quick sort, Heap sort, Shell sort, Radix sort.	02+02 Hrs
<u>9</u>	Programming on graphs: Compare Breadth First Sort Sort, and Depth First Sort	02+02 Hrs
10	Programming on hashing tables: Implement different methods of hash tables.	02+02 Hrs
11	Open ended experiment: Implement given Data structures.	02+02 Hrs

NOTE: The pseudo codes for different data structures and algorithms to be based on standard problems from geeksforgeeks website.

Syllabus

Laboratory Title: Control System Lab Total Hours: 32 Total Exam Marks: 20

Lab. Code: 18EEEP302 Duration of Exam: 02 Total ISA. Marks: 80

Category	: Demonstration	Total Weightage:	10.00	No. of lab sessions: 2.00
Expt./ Job No.		Experiment	/job Details	3
1	Demonstration of heat learning model	tank simulator with	out controll	er using Labview Interactive
2	Demonstration of temp Interactive learning mo	erature control of lindel	iquid tank si	imulator using Labview
Category	: Exercises	Fotal Weightage:	40.00	No. of lab sessions: 5.00
Expt./ Job No.		Experiment	/job Details	3
1	Time response specific	ations of second or	der system	
2	Frequency response of	second order system	m	
3	P,PI and PID controller	rs-effect on plant st	ep response	
4	Lag and Lead Compen	sators- determination	on of freque	ncy response
5	Determination of Phase	e and Gain margin		
Category	: Structured Enquiry	Total Weightag	e: 30.00	No. of lab sessions: 4.00
Expt./ Job No.		Experiment	/job Details	5
1.	Each batch consisting of MATLAB to design co specifications and anal responses. To submit a list of assumptions, des design validation)	of 4 students work of ompensator/controll yze the performanc technical report (cosign formulation, de	on a given d er for a syst e by simula onsisting of esign calcula	esign problem- To employ em to meet given ting the time and frequency objectives, specifications set, ations, simulation results,

Syllabus

Course Code: 17EEEP306 L-T-P: 0-0-1 CIE Marks: 20 Teaching Hrs: 32 Course Title: RTOS Lab Credits: 1 SEE Marks: 80

Contact Hrs: 32 Total Marks: 100 Exam Duration: 2 hrs

Expt No.	List of Experiments		
1	Write a C program to use on chip Timers in LPC2148 and generate required delay		
2	Write a C program to demonstrate the concept of basic RTOS programming by using RTX RTOS		
3	Write a 'C' program & demonstrate concept of Round Robin Task Scheduling.		
	Write a C program to demonstrate the concept of basic preemptive scheduling algorithm by using RTX RTOS		
4	Write a 'C' program & demonstrate concept of Events and Flags for inter task communication using RTX RTOS		
5	Write a 'C' program & demonstrate concept of Mailbox.		
6	Write a 'C' program & demonstrate concept of Semaphore.		
7	Write a 'C' program & demonstrate concept of interrupts(hardware and software)		
	Write a C program to interface I2C-RTC with LPC2148		
8	Write a C program to interface SPI-EEPROM with LPC2148		
	Structured Enquiry		
9	Real-Time OS Application which successfully demonstrates the use of various RTOS concepts		

Syllabus

Course Code: 18EEEC302 L-T-P: 2-0-1 ISA Marks: 50 Teaching Hrs: 30 Course Title: Electric Drives & Control Credits: 3 Contact Hrs: 30 ESA Marks: 50 Total Marks: 100 Exam Duration: 3 hrs

Content	Hrs
Unit 1	
Chapter 1: Introduction to electric drives: Fundamental torque equation, speed toque conventions and multi-quadrant operation, components of load torque, nature and classification of load torques Control of electric drives: Closed loop control of drives: current limit control, closed loop torque control, closed loop speed control.	04Hrs
Chapter 2: DC motor drives: DC motor and their performance: shunt and separately excited motors, series motors, permanent magnet motors. Braking: regenerative braking, dynamic braking, plugging. Speed control, methods of armature control, chopper controlled dc drives, chopper control of separately excited dc motors, chopper control of series motor	
Unit 2	
Chapter 3: Induction motor drives: Three phase induction motor: analysis and performance, Braking: regenerative braking, Plugging or reverse voltage braking, speed control, variable frequency control from voltage sources, Voltage Source Inverter (VSI) Control: VSI induction motor drives, braking and multi-quadrant operation of VSI induction motor drives. Closed loop speed control and converter rating of VSI induction motor drives.	10 hrs
Unit 3	
Chapter 4: Permanent magnet synchronous machines and BLDC drives: Permanent magnet synchronous motors, Electromotive force EMF (voltage induced), Electromagnetic (developed) torque, Vector control concepts, drive system schematics, control strategies, Permanent magnet DC brushless motors and its working principle.	05 hrs
Chapter 5: Switched Reluctance Motor drives: What is a switched reluctance machine, Aligned and unaligned positions, Electromagnetic torque, Power electronics converters for SRMs: Current hysteresis control, Voltage PWM control.	05 hrs

Text Book

- 1. G. K Dubey, "Fundamentals of Electrical Drives", 2, Narosa Publishing House, Chennai, 2002
- 2. R. Krishnan, Permanent Magnet Synchronous and Brushless DC Motor Drives, CRC Press, Taylor & Francis Group, 2010.

References

- 1. T. J. E.Miller, "Brushless Permanent-Magnet and Reluctance Motor Drives", Oxford Science Publications, 1989.
- 2. Jacek F. Gieras, "Electrical Machines: Fundamentals of Electromechanical Energy Conversion", CRC Press, Taylor & Francis Group, 2017.

4hrs

6 hrs

10 hrs

10 hrs

4hrs

6hrs

8hrs

Department of Electrical & Electronics Engineering

Syllabus

Cour	se Title: Digital System Desi	gn using Verilog	Course Code: 18EEEP303
L-T-l	P: 0-0-2	Credits: 2	Contact Hours: 4Hrs/week
ISA I	Marks: 80	SEA Marks:20	Total Marks: 100
Teacl	hing + Lab. Hours: 48 Hrs	Examination Duration: 2Hrs	
1.	Chapter No. 1. Architecture	of FPGA	
	Architecture of FPGS: Spart	an 3, What Is HDL, Verilog HDL	Data Types and Operators.
2.	Chapter No. 2. Data Flow D	escriptions	
	Highlights of Data-Flow Des	scriptions, Structure of Data-Flow	Description, Data Type –
	Vectors, Testbench.		
3.	Chapter No. 3. Behavioral I	Descriptions	
	Behavioral Description high	ights, structure of HDL behaviora	al Description, The VHDL
	variable – Assignment Statement, sequential statements, Tasks and Functions		
4.	Chapter No. 4. Structural De	escriptions	
	Highlights of structural Description, Organization of the structural Descriptions, Binding,		
	state Machines, Generate, Generic, and Parameter statements		
5.	Chapter No. 5: Finite State M	lachine:	
	Moore Machines, Mealy Ma	achines	
6.	Chapter No. 6:Timing Issue	s in Digital Circuits:	
	Setup Time Constraints, Hol	d Time Constraints, Static Time a	nalysis, Critical Path, Clock
	Skew.		
7.	Chapter No. 7. Advanced H	DL Descriptions	
	File operations in Verilog, M	Iemories: RAM, ROM, Block Me	emories(Xilinx IP)

Syllabus

Course Code:17EEEC401

L-T-P-SS: 3-0-0 CIE Marks: 50 Teaching Hrs: 40

Course Title: Switched Mode Power Converters

Credits: 3 SEE Marks: 50 Contact Hrs: 40 Total Marks: 100 Exam Duration: 3 hrs

Chapter	Unit-I	
No.		
1	Chapter No. 1.DC Power Supplies:	15 hrs
	Introduction, transformer models, the flyback converter: Continuous Current Mode,	
	Discontinuous Current Mode, Summary of flyback converter operation, the forward	
	converter, summary of forward converter, operation, the doubly ended (two	
	switch)forward converter, the push-pull converter, summary of push-pull converter	
	operation, full-bridge and half-bridge DC-DC converters, multiple outputs,	
	converter selection, power factor correction, simulation of DC power supplies, pwm	
	control circuits, the Ac line filter, the complete DC power supply .	
	Unit-II	
2	Chapter No. 2. DC-AC Switched Mode Inverters	15 hrs
	Introduction, basic concepts of switch-mode inverters, single phase inverters, three	
	phase inverters, effect of blanking time on output voltage in inverters, other inverter	
	switching schemes, rectifier mode of operation.	
	Unit-III	
3	Chapter No. 3. Multilevel Converters:	05 hrs
	Introduction, Generalized topology with a Common DC Bus, Converters Derived	
	from the Generalized Topology, Diode Clamped Topology, Flying Capacitor	
	Topology,	
4	Diode Clamped Multilevel Converters: Introduction, Converters structure and	05 hrs
	Functional description: voltage clamping, switching logic, Modulation of	
	multilevel converters, Multilevel space vector modulation	

Text Books

- 1 Ned Mohan, T. M. Undeland and W. Robbins, Power Electronics: Converters, Applications and Design, 2, John Wiley and Sons, 1995
- 2 Daniel W Hart, Power Electronics, 1, Tata McGRAW-HILL, 2011
- **3** YorkSergio Alberto González, Santiago Andrés Verne, María Inés Valla, Multilevel converters for Industrial Applications, CRC Press, 2014.

Reference Books:

- 1 Rashid M. H, Power Electronics: Circuits, Devices and Applications, 3, PHI, 2005
- 2 Bose B. K., , Power Electronics and AC Drives, 5, PHI, 2003
- 3 Rashid M. H, Digital Power Electronics and Applications, 1, Elsevier, 2005
- 4 V. Ramanarayanan, Switched Mode Power Converters Notes, IISC, Bangalore, 2008

Total Hours: **32**

SEE Marks: 20

Laboratory Title: Soft Computing Lab

Department of Electrical & Electronics Engineering

Syllabus

Credits: L-T-P: 0-0-1 Credits: 1

Lab. Code: 17EEEP401 Duration of SEE Hours: 2 CIE Marks: 80

Category: Demonstration			
Expt./ Job No.	Experiment / Job Details		
1	Demonstration of Fuzzy, Genetic and PSO programs/tool-box of MATLAB		
Category	: Exercise		
2	Fuzzy based Automatic Generation controllers for isolated and two-area power system.		
3	GA, DE and PSO optimization of PI/PID controllers for AGC		
4	GA, DE and PSO based optimal load dispatch for multi-machine power systems.		
Category: Structured Enquiry			
1.	Formulation and Simulation of Fuzzy logic based PSS for SMIB power system		
2.	PSS Design for SMIB power system using GA/ PSO/ DE algorithms		

Syllabus

Laboratory Title: Relay & High Voltage Engineering LabLab. Code:17EEP402Total Hours: 32Credits: L-T-P: 0-0-2Credits: 2Duration of SEE Hours: 2SEE Marks: 20CIE Marks: 80

Expt./ Job No.	Experiment / Job Details	
Catego	ry: Exercise	
1	Introduction Session	2 hrs
2	To obtain the inverse time characteristics of a given fuse wire and wires of different lengths.	2hrs
3	To obtain the inverse time characteristics of an electromagnetic over current relay	2hrs
4	To obtain the operating characteristics of microprocessor based differential relay.	2hrs
5	To obtain the operating characteristics of microprocessor based directional over current relay.	2hrs
6	To obtain the breakdown strength of air using Copper sphere gap with HVAC and HVDC.	2hrs
7	a) To obtain the breakdown strength of air using different pairs of electrode gap with HVAC and HVDC.b) To obtain the breakdown voltage of a solid dielectric.c) To obtain the breakdown voltage of a liquid dielectric.	2hrs
Catego	ry: Structured Enquiry	
1.	To develop microcontroller based overcurrent, over voltage and impedance relay using CT /PT giving details of program and demonstrate it's working output.	4hrs

Syllabus

Laboratory Title: Capstone Project Credits: L-T-P: 0-0-14 Credits: 14 SEE Marks: 50 Lab. Code: 18EEEW401 Duration of SEE Hours: 3 CIE Marks: **50**

Capstone Project Guidelines

(I) Preamble

KLE TECH.

A project work essentially gives the students a platform to integrate the concepts studied during the study, enhance their analytical capabilities and develop abilities to effectively communicate technical information in multiple formats. During the course of projects, students are asked to follow the research methodology in identifying a problem of their interest though literature survey, carry-out feasibility study, formulate the problem, develop mathematical models, select suitable solution technique etc. Students are also encouraged to develop new formulations, alternate solution techniques, study and new optimization algorithms, develop new simulation models and use modern apply engineering/simulation tools.

(II) Project batch and Guide

Each project batch consists of 3 or 4 students. Students will be informed to form their own batch based on the kind of project work and their interest. Each batch is supposed to give four faculty names as guides based on faculty expertise in the order of their preference. Guides will be allocated based on the preference given by the batch. The primary role of the guide is to supervise the work, give appropriate guidance in successfully carrying out the project work.

(III) Project implementation

The principal steps in carrying out the project work are summarized below:

Step-1: Selection of a specialized area for the project work

A specialized area in which the project work is to be carried out depends on the interest and specialized skills acquired by the project team. This includes areas such as power system analysis, power system dynamics, renewable energy, electric drives, VLSI & Embedded system, Power quality issues etc. The proposed work may include simulation studies, hardware implementation or both.

Step-2: Selection of topic based on literature survey

A literature survey in the selected specialized area is to be carried out in order to understand the state of the current research. Further, a critical review of the collected literature will facilitate to summarize key observations. Key observations will lead to identifying a specific problem for the project work in terms of alternate/new solution techniques, possible improvements, new formulations or models, hardware implementations etc.

Step-3: Prepare a synopsis

A synopsis highlights the definition of identified problem and its significance. The synopsis will also contain detailed literature review giving the state of the current research on the selected specialized area. It will also brief the problem formulation, solution methodology, tools employed and possible outcomes.

Step-4: Project implementation

The work is to be carried out in phase wise manner, testing or analyzing the partial results obtained. Guide will periodically monitor the progress of the work done giving suitable suggestions as required.

Syllabus

(IV) Schedule

Sl. No.	Activity	Week No.	Evaluation Objectives
1	Announcement to	At the end of the	NA
	form the batches	previous 7 th sem	
2	Allotment of guides	1^{st} - 2^{nd}	NA
3	Submission of	4^{th} - 5^{th}	Literature review, problem formulation,
	Synopsis		methodology by respective Guides
4	Review-I	6 th - 8 th	Literature review, problem formulation,
			methodology, tools used in the
			presence Review Committee
5	Review-II	9 th -10 th	Implementation and analysis done
6	Review-III	$12^{\text{th}} - 14^{\text{th}}$	Completion along with Hardware/
			Software/ Report. Results and
			Conclusions.

(V) Evaluation

Evaluation of the project work carried out by each batch will be reviewed periodically by a review committee. Review committee consists of guide and two/ three other faculty members who are guiding other batches. Generally, two to three reviews will be held during a semester. However, each project batch will be supervised by the guide on a weekly basis. Review committee will evaluate for 40% and guide will evaluate for 60% of the total marks.

Activity	Assessment	Marks
ISA (50%)	Project Review committee	20
	Evaluation by Project Guide	30
ESA	Using ESA Rubrics	50
(50%)	Total	100

Passing: 40% both in ISA and ESA

	i Scheuul	e
Activity	Week	Marks
Review I: Problem Definition	6 th	05
Review II: Progress	8 th	05
Review III: Results & Conclusions	12 th	10
Guide Evaluation	12 th	30
Total		50

aview Committee Evaluation Schedule

Syllabus

In Semester Assessment (ISA)

Review	Phases of the project	PI	Marks	
1	Identification of problem, Literature survey,	2.4.1		
	Methodology			
	Relevance of project topic literature review	24.1	10 Morka	
1	Tools/ Software/ Hardware using	2.2.3	10 Marks	
	Team and Individual Work	9.2.1		
	Develop models and simulate power/ energy/	13.1.1		
	electronics systems using appropriate engineering			
	tools			
	Presentation and communication skills	10.3.2		
2	Design/ Development of solutions	3.4.1	10 Marks	
	Investigation of complex problems	4.3.4		
	Work done	2.2.3		
	Team and Individual Work	9.2.1		
3	Develop models and simulate power/ energy/	13.1.1		
	electronics systems using appropriate engineering			
	tools			
	Work done	2.2.3	30 Marks	
	Design/ Development of solutions	3.4.1		
	Investigation of complex problems	4.3.4		
	Analysis and Results	3.4.1		
	Team and Individual Work	9.2.1		
Total (Average of three reviews)			50 Marks	

Syllabus

End Semester Assessment (ESA)

CAPSTONE PROJECT					
	Grou	p Evaluation	PO Assessed	PI Assessed	Weightage
End Semester Assessment (ESA)	Relevance of project topic and Literature review	 Problem identification Problem objectives and scope	2	2.2.3 2.4.1	30%
	Quality and Quantity of work reported Quality of presentation and report	 Problem formulation Contribution to the field of knowledge Experimentation/simu lation Analysis of results Drawing conclusions Assumptions and justifications Organization of the report/presentation Clarity of language Clarity of illustrations 	2 3 4 13	2.4.2 13.1.1 3.4.1 4.3.4	40%
	Individ	and Tables			
	Presentation/ Communicatio n skills	 Clarity of language Technical Knowled 	10	10.3.2	5%
	Viva Voce	• Demonstration of clear understanding of the concept	10	10.3.2	5%

Syllabus

Course Code: 19EEEC202

L-T-P-Self Study: 3-0-0-0

ISA Marks: 50

KLE TECH.

Teaching Hrs: 40

Course Title: Electrical Power Generation, Transmission & Distribution

Credits: 3 ESA Marks: 50 Contact Hrs: 40

Total Marks: 100

Exam Duration: 3 hrs

Content	Hrs	
Unit - 1		
Chapter No. 1. Generating Stations. selection of Site, Classification, General arrangement and operation of Hydroelectric plant with components, General arrangement and operation of Thermal power plant with components, General arrangement and operation of Nuclear power plant with components, Safety of Nuclear power reactor, storing and processing of spent fuel.	5 hrs	
Chapter No. 2. Substations and Economic operations Sub stations : Types, Bus-bar arrangement Schemes, location and substation equipment's Economics :Important terms and curves commonly used in system operation, effect of Voltage and frequency on loads , Scheduling of generators, Choice of size and number of generator units, Interconnection of power stations	5 hrs	
Chapter No. 3.Typical Transmission & distribution systems Introduction, electric supply system, comparison of AC and DC systems, Standard Voltages of Transmission & Distribution Advantages of High Voltage Power Transmission. (effect of increase in voltage on weight of conductor, Line Efficiency & Line Voltage Drop) Feeders, Distributors & Service Mains. Conductor types.	2 hrs	
Chapter No. 4. Overhead Transmission Line (Mechanical Design) Overhead transmission lines: introduction, components of a typical OH system. Line supports & placing of the conductors, single phase and three phase systems. Single circuit and double circuit Spacing of conductors, Length of span & Sag in OH lines. Sag calculation in conductors. (a) Suspended on level supports. (b) Supports at different levels. Effect of wind and ice. Tension and sag at erection. Corona Phenomena & Factors affecting corona in OH lines Expressions for Critical disruptive & visual critical voltage. and corona power loss	3 hrs	
Unit - 2		
Chapter No. 5. Line parameters (Electrical Design) Introduction to transmission line constants i.e. Resistance, Inductance and capacitance . Distributed resistance of the transmission line, skin effect and proximity effect. Inductance of the single phase & three phase lines. Inductance calculation with equilateral and unsymmetrical spacing of the lines. Transposition of line conductors. Capacitance for single phase & three phase lines. Effect of earth on capacitance of the line. Numerical solutions on resistance calculations. Inductance & Capacitance calculations.	7 hrs	
Chapter No. 6. Characteristics & Performance of Power transmission lines:	8 hrs	

Syllabus

Introduction to Short transmission lines, calculations for short lines. Medium transmission lines. Nominal-T and □ representation for transmission lines Long transmission lines. Long line solutions by Rigorous method, equivalent models, ABCD constants.	
Unit - 3	
Chapter No. 7. Insulators Materials of insulators. Different types of insulators. Potential distribution over a string of suspension insulators. String efficiency and methods of increasing string efficiency. Testing of insulators.	5 hrs
Chapter No. 8. Underground Cables Underground Cables: Types of cables & material used for Insulation. Resistance, thermal	5 hrs

rating of cables & charging current, Grading of cables Capacitance grading and inter sheath grading, testing of cables.

Text Books

1. Skrotzki and Wavopat, Power station Engineering and economics ., McGraw Hill, 1995 **References**

- 1. Soni, Gupta and Bhatnagar, A Course in Electrical Power, Dhanpatrai, 2014
- 2. S M Singh, Electric Power generation, transmission and Distribution., Prentice Hall of India., 2012
- 3. J B Gupta., Transmission and Distribution of Electrical power., Kataria, 2012

V K Metha and Rohit Metha., Principles of Power System., S Chand & Company Ltd.,

Syllabus

Course Code: 19EEEC201 L-T-P-SS: 4-0-0 CIE Marks: 50 Teaching Hrs: 50 Course Title: Circuit Analysis Credits: 4 Contact Hrs

SEE Marks: 50

Contact Hrs: 50 Total Marks: 100 Exam Duration: 3 hrs

Chapte	Unit-I	
r No.		
1	Network Equations :Source Transformation, Star Delta transformation, Nodal	8 hrs
	Analysis, Super node, Mesh Analysis, Super mesh, Duality, Network Topology, Tie	
	Set and Cut Set matrix formulation, Dot convention.	
2	Network Theorems :Homogeneity, Superposition and Linearity, Thevenin's &	8 hrs
	Norton's Theorems, Maximum Power Transfer Theorem, Milman's theorem,	
	Reciprocity principle, Application of theorems to both ac and dc networks	
3	Two Port Networks : Two port variables, Z,Y, H,G, A- Parameter representations,	4 hrs
	Input and output impedance calculation, Series, Parallel and Cascade network	
	connections, and their (suitable) models.	
	Unit-II	
4	First order circuits :Order of a system, Concept of Time constant, System	8 hrs
	Governing equation, System Characteristic equation, Basic RL & RC circuit,	
	Transient response with initial conditions, Frequency response characteristics, R-C	
	, R-L circuits as differentiator and integrator models, time and frequency domain	
	responses R-C, R-L circuits as Low pass and high pass filters	
5	Higher order circuits: Higher order R-C, R-L, and R-L-C networks, time domain	12 hrs
	and frequency domain representation, Series R-L-C circuit, Transient response,	
	Damping factor, Quality factor, Frequency response curve , Peaking of frequency	
	curve and its relation to damping factor, Resonance Parallel, R-L-C circuit, Tank	
	circuit, Resonance, Quality factor and Bandwidth	
	Unit-III	
6	Sinusoidal Steady state analysis : Characteristics of sinusoids, Forced response to	5 hrs
	sinusoidal functions, The complex forcing function, Phasors & Phasor diagrams.	
7	Polyphase Circuits : Polyphase systems, Single Phase three wire system, Three	5 hrs
	phase Y-Y connection, Delta connection, Analysis of balanced & unbalanced three	
	phase circuits.	

Text Books

- 1 W H Hayt, J E Kemmerly, S M Durban, Engineering Circuit Analysis, 6th, McGraw Hil, 2006
- 2 M E. Van Valkenburg, Network Analysis, 3rd, Pearson Ed, 2006

- 1 Joseph Edminister, Mahmood Nahavi, Electric Circuits, 3rd, Tata McGra, 1991
- 2 Bruce Carlson, Circuits, 3rd, Thomson Le, 2002
- 3 V. K. Aatre, Network Theory and Filter Design, 2nd, Wiley West, 2002
- 4 Anant Agarwal and Jeffrey H Lang, Foundations of Analog & Digital Electronics Circuits, 3rd, Morgan Kau, 2006
- 5 Muhammad H . Rashid, Introduction to PSPICE using OrCAD for circuits and Electronics, 3rd, Pearson Ed, 2005

KLE TECH.

Department of Electrical & Electronics Engineering

Syllabus

Course Code: 19EEEC203	Course Title: Digital Circuits	
L-T-P-Self Study: 4-0-0	Credits: 4	Contact Hrs: 50
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50		Exam Duration: 3 hrs

Content	Hrs
Unit – 1	
Chapter No. 1. Logic Families Logic levels, output switching times, fan-in and fan-out, comparison of logic families	2 hrs
Chapter No. 2.Principles of Combinational Logic Definition of combinational logic, canonical forms, Generation of switching equations from truth tables, Karnaugh maps-3,4 variables, Incompletely specified functions(Don't care terms),Simplifying Maxterm equations, Quine-McCluskey minimization technique- QuineMcCluskey using don't care terms, Reduced Prime Implicant Tables.	8 hrs
Chapter No. 3.Analysis and design of combinational logic General approach, Decoders-BCD decoders, Encoders, Digital multiplexers- Using multiplexers as Boolean function generators. Adders and subtractors-Cascading full adders, Look ahead carry adders, Binary comparators.	10 hrs
Unit – 2	
Chapter No. 4.Introduction to Sequential Circuits Basic Bistable Element, Latches, A SR Latch, Application of SR Latch, A Switch De bouncer, The SR Latch, The gated SR Latch, The gated D Latch, The Master-Slave FlipFlops (Pulse-Triggered Flip-Flops): The Master-Slave SR Flip-Flops, The Master- Slave JK Flip-Flop, Edge Triggered Flip-Flop: The Positive Edge-Triggered D Flip-Flop, Negative- Edge Triggered D Flip-Flop; Characteristic Equations	10 hrs
Chapter No. 5. Analysis of Sequential Circuits Registers and Counters, Binary Ripple Counters, Synchronous Binary counters, Ring and Johnson Counters, Design of a Synchronous counters, Design of a Synchronous Mod-n Counter using clocked JK Flip-Flops Design of a Synchronous Mod-n Counter using clocked D, T or SR Flip-Flops.	10 hrs
Unit – 3	
Chapter No. 6. Sequential Circuit Design Introduction to Sequential Circuit Design, Mealy and Moore Models, State Machine notations, Synchronous Sequential Circuit Analysis, Construction of state Diagrams and counter design.	5 hrs

Syllabus

Chapter No. 7. Introduction to memories	5 hrs
Introduction and role of memory in a computer system, memory types and terminology,	
Read Only memory, MROM, PROM, EPROM, EEPROM, Random access memory,	
SRAM, DRAM, NVRAM.	

Text Books (List of books as mentioned in the approved syllabus)

- 1. Donald D Givone, Digital Principles and Design, Tata McGraw Hill, 2002
- 2. John M Yarbrough, Digital Logic Applications and Design, Thomson Learning, 2001
- 3. A Anand Kumar, Fundamentals of Digital Circuits, PHI, 2003

References

- 1. Charles H Roth, Fundamentals pf Logic Design, Thomson Learning, 2004
- 2. R.D.Sudhaker Samuel, Logic Design, Sanguine Technical Publishers, 2005
- 3. R P Jain, Modern Digital Electronics, Tata McGraw, 2000

Creating Value Leveraging Knowledge

Department of Electrical & Electronics Engineering

Syllabus

Course Code: 19EEEC204 L-T-P : 4-0-0 ISA Marks: 50 Teaching Hrs: 50

KLE TECH.

Course Title: Electrical Machines Credits: 3 Contact Hrs: 50 ESA Marks: 50 Total Marks: 100 Exam Duration: 3Hrs

Content	Hrs
Unit – 1	
Chapter 1: Transformers: Single phase transformer- Principle of operation and construction, Ideal transformer, Real transformer, Phasor diagrams, Equivalent circuit, Open-circuit test, Short-circuit test, Voltage regulation, Efficiency, Three phase transformers.	09 hours
Chapter 2: Three Phase Induction Machines: Principle of energy conversion in machines, Construction, Fundamental relationships- Slip, Rotor speed, Input power, Electromagnetic power, Electromagnetic (developed) torque, Mechanical power, Efficiency, Shaft torque. , Equivalent circuit, Analogies between induction machine and transformer, No-load and locked-rotor tests, Torque-speed characteristics, Starting, Speed control. Inverter fed induction motor.	11 hours
Unit – 2	
Chapter 3: DC Machines: Principle of operation, Construction of DC machine, Fundamental equations, Armature reaction, Classification of DC machines, DC generators, DC motors, Starting, Speed control of DC motors, Braking, Switched Reluctance Machines- Construction, principle of operation, Aligned and unaligned positions, Electromagnetic torque, Advantages, disadvantages and Applications of SRMs, Steady state analysis of SRM. BLDC motor Construction and operation.	12 hours
Chapter 4 : Synchronous Machines: Construction, Classification of synchronous machines, Electromotive force induced in armature winding, Generator and motor operation, Phasor diagrams of synchronous machine with Non-salient pole rotor and salient pole rotor, Voltage regulation calculation by EMF and MMF method, Synchronous motor, Synchronous motor as a synchronous condenser, Study of V and inverted V curves.	08 hours
Unit – 3	
Chapter 5: Synchronous Machines: Permanent magnet synchronous motors, Air gap magnetic flux density, Equivalent circuit of PM synchronous machine, Phasor diagram, Performance Characteristics of PM synchronous machine, Starting.	05 hours
Chapter 6: Single phase induction motors: Double revolving field theory, Equivalent circuit, Split-phase induction motor, Capacitor-start induction motor, Permanent split capacitor induction motor, Capacitor start capacitor-run induction motor, and Shaded pole induction motor.	05 hours

Text Book

1. Jacek F. Gieras, "Electrical Machines: Fundamentals of Electromechanical Energy Conversion", CRC Press, Taylor & Francis Group, 2017.

References

1. P. C. Sen, "Principles of Electric Machines and Power Electronics", John Wiley & Sons Publications, Canada, 2nd Edition, 2001.

KLE TECH. KLE TECH. KLE TECH.	FORM ISO 9001: 2008	Document #: FMCD2005	
Department of Electrical & Electro	nics Engineering		Rev: 1.0
Syllabus			

- 2. Bhimbra, "Principles of Electrical machinery", Khanna Publishers.2006.
- 3. Mehrdad Ehsani...[et al.],"Modern electric, Hybrid electric, and Fuel Cell Vehicles: fundamentals, theory, and design.", CRC Press, 2005.
- 4. T. J. E.Miller, "Brushless Permanent-Magnet and Reluctance Motor Drives", Oxford Science Publications, 1989.

KLE TECH.

Department of Electrical & Electronics Engineering

Syllabus

Course Title: Signals and Systems Teaching **Course Code: 19EEEC205** Hrs. L-T-P: 3-0-0 Credits:3 **Contact Hours:** 3Hrs/week **ISA Marks: 50** SEA Marks:50 Total Marks: 100 **Teaching Hours: 40 Hrs Examination Duration: 3 Hrs** Chapter No. 1. Introduction and Classification of signals: Definition of 1. 8hrs signal and systems. Sampling of analog signals, Continuous time and discrete time signal, Classification of signals as even, odd, periodic and non-periodic, deterministic and non-deterministic, energy and power. Elementary signals/Functions: exponential, sine, impulse, step and its properties, ramp, rectangular, triangular. Operations on signals: Amplitude scaling, addition, multiplication, differentiation, integration, time scaling, time shifting and time folding Systems: Definition Classification: linear and poplinger time variant

	Torumg. Systems: Dermition, Clussification: Inical and Hommean, time variant	
	and invariant, causal and non-causal, static and dynamic, stable and unstable,	
	invertible.	
2.	Chapter No. 2. Time domain representation of LTI System: Definition of	7hrs
	impulse response, convolution sum, convolution integral , computation of	
	convolution sum using graphical method for unit step to unit step, unit step to	
	exponential, exponential to exponential, unit step to rectangular and	
	rectangular to rectangular only. Properties of convolution.	
3.	Chapter No. 3. Fourier Representation of Periodic Signals: Fourier	5hrs
	Representation of Periodic Signals: Introduction to CTFS and DTFS,	
	definition, properties and basic problems.	
4.	Chapter No. 4. Fourier Representation of aperiodic Signals: FT	10hrs
4.	Chapter No. 4. Fourier Representation of aperiodic Signals: FT representation of aperiodic CT signals, definition, FT of standard CT signals,	10hrs
4.	Chapter No. 4. Fourier Representation of aperiodic Signals: FT representation of aperiodic CT signals, definition, FT of standard CT signals, Properties and their significance. FT representation of aperiodic discrete	10hrs
4.	Chapter No. 4. Fourier Representation of aperiodic Signals: FT representation of aperiodic CT signals, definition, FT of standard CT signals, Properties and their significance. FT representation of aperiodic discrete signals DTFT, definition, DTFT of standard discrete signals, Properties and	10hrs
4.	Chapter No. 4. Fourier Representation of aperiodic Signals: FT representation of aperiodic CT signals, definition, FT of standard CT signals, Properties and their significance. FT representation of aperiodic discrete signals DTFT, definition, DTFT of standard discrete signals, Properties and their significance, Impulse sampling and reconstruction: Sampling theorem	10hrs
4.	Chapter No. 4. Fourier Representation of aperiodic Signals: FT representation of aperiodic CT signals, definition, FT of standard CT signals, Properties and their significance. FT representation of aperiodic discrete signals DTFT, definition, DTFT of standard discrete signals, Properties and their significance, Impulse sampling and reconstruction: Sampling theorem and reconstruction of signals.	10hrs
4.	 Chapter No. 4. Fourier Representation of aperiodic Signals: FT representation of aperiodic CT signals, definition, FT of standard CT signals, Properties and their significance. FT representation of aperiodic discrete signals DTFT, definition, DTFT of standard discrete signals, Properties and their significance, Impulse sampling and reconstruction: Sampling theorem and reconstruction of signals. Chapter No. 5: Z-Transforms: Introduction, the Z-transform, properties of 	10hrs 10hrs
4.	 Chapter No. 4. Fourier Representation of aperiodic Signals: FT representation of aperiodic CT signals, definition, FT of standard CT signals, Properties and their significance. FT representation of aperiodic discrete signals DTFT, definition, DTFT of standard discrete signals, Properties and their significance, Impulse sampling and reconstruction: Sampling theorem and reconstruction of signals. Chapter No. 5: Z-Transforms: Introduction, the Z-transform, properties of the Region of convergence, Properties of the Z-Transform, Inversion of the Z- 	10hrs 10hrs

Text Book

Simon Haykin and Barry Van Veen, Signals and Systems -2nd Edition, John Wiley, 2004 .

66

FORM

ISO 9001: 2008

FMCD2005

Department of Electrical & Electronics Engineering

Technological

University

Creating Value Leveraging Knowledge

Syllabus

Course code: 19EEEC301 Course title: Machine Learning Teaching hours: 40

L-T-P: 2-0-1 **CIE Marks: 50** ESA Marks: 50

Chapter	Unit-I	
No.		
1	Introduction	5 hrs
	Introduction to Machine Learning, Applications of Machine Learning, Types of	
	Machine Learning: Supervised, Unsupervised and Reinforcement learning, Dataset	
	formats, Basic terminologies.	
2	Supervised Learning	10 hrs
	Linear Regression, Logistic Regression Linear Regression: Single and Multiple	
	variables, Sum of squares error function, The Gradient descent algorithm,	
	Application, Logistic Regression, The cost function, Classification using logistic	
	regression, one-vs-all classification using logistic regression, Regularization.	
	Unit-II	
3	Supervised Learning: Neural Network	10 hrs
	Introduction to perception learning, Implementing simple gates XOR, AND, OR	
	using neural network. Model representation, Gradient checking, Back propagation	
	algorithm, Multi-class classification, Application- classifying digits, SVM.	
4	Unsupervised Learning: Clustering	5 hrs
	Introduction, K means Clustering, Algorithm, Cost function, Application.	
	Unit-III	
5	Unsupervised Learning: Dimensionality Reduction	4 hrs
	Dimensionality reduction, PCA- Principal Component Analysis. Applications,	
	Clustering data and PCA.	
6	Introduction to Deep Learning	8 hrs
	What is deep learning?, Difference between machine learning and deep learning,	
	Convolution Neural Networks (CNN), Recurrent Neural Networks(RNN), When to	
	use deep learning?	

Text Books

- Tom Mitchell, Machine Learning, 1, McGraw-Hill., 1997 1
- 2 Christopher Bishop, Pattern Recognition and Machine Learning, 1, Springer, 2007

Reference Books:

Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements of Statistical 1 Learning : Data Mining, Inference and Prediction, 2, Springer, 2009

L-T-P: 0-0-1

CIE Marks: 80

Course Title: Machines lab

Laboratory Hours: 28Hrs

Department of Electrical & Electronics Engineering

Syllabus

Credits: 1

SEE Marks: 20

Examination Duration: 3Hrs

Course Code: 19EEEP301 Contact Hours: 2Hrs/week Total Marks: 100

Category: Demonstration		
Expt./ Job No.	Experiment / Job Details	
1	Star and Delta Connected Lighting Loads	
2	Open circuit characteristics of DC machine	
3	Speed control of separately excited DC motor by armature voltage control and flux control	
4	Synchronization of Alternator with Bus bar/ Parallel operation of Alternator	
Category:	Exercise	
Expt./ Job No.	Experiment / Job Details	
1	To Conduct NO – LOAD & BLOCKED ROTOR test on a given Induction motor to a) Find the performance parameters b) Represent the motor by its equivalent circuit model referred to Stator or Rotor.	
2	To Conduct Open Circuit and Short Circuit test on given single phase transformer to a) Calculate efficiency and voltage regulation at different loads & power factors. b) Draw the transformer equivalent circuit model.	
3	Load test on 3Ø Induction motor	
4	Three phase Transformer bank using three single phase transformers with different configurations of primary and secondary windings.	
5	Speed control of Induction motor by V/f method	
6	Performance study of synchronous motor with change in its excitation (V and Inverted V curves)	
7	Voltage regulation of an Alternator by EMF and MMF method	
Category:	Structured Enquiry	
Expt./ Job No.	Experiment / Job Details	
1	To develop the second order response surface methodology (RSM) based speed prediction model of DC shunt motor by conducting experiments as per Design of Experiments.(DOE)	

Syllabus

Course Content Course Code: 19EEEC302 L-T-P-S: 3-0-0 Teaching Hours: 40

Course Title: Electric Drives and Control CIE:50 SEE:50

Chapter 1. An introduction to Electrical Drives & its Dynamics:	
Electrical drives. Advantages of electrical drives. Parts of electrical drives, Choice of electrical drives, status of dc and ac drives, dynamics of electrical drives, fundamental torque equation, speed torque conventions and multi quadrant operation. Nature and classification of load torques, calculation of time and energy loss in transient operations	5 Hrs
Chapter 2. D C Motor Drives: Starting braking, single phase fully controlled rectifier control of dc separately excited motor, Single-phase half controlled rectifier control of dc separately excited motor. Three phase fully controlled rectifier control of dc separately excited motor, three phase half controlled rectifier control of dc separately excited motor, multiquadrant operation of dc separately excited motor fed from fully controlled rectifier. Rectifier control of dc series motor, chopper controlled dc drives, chopper control of separately excited dc motor. Chopper control of series motor.	10 Hrs
Unit – II	
Chapter 3. Induction Motor Drives: Operation with unbalanced source voltage and single phasing, operation with unbalanced rotor impedances, analysis of induction motor fed from non-sinusoidal voltage supply, starting, braking, Stator voltage control, variable frequency control from voltage sources, voltage source inverter control, current source inverter control, current regulated voltage source inverter control, rotor resistance control, slip power recovery.	10 Hrs
Chapter 4. Synchronous Motor and Brushless dc Motor Drives: Operation from fixed frequency supply, synchronous motor variable speed drives, variable frequency control of multiple synchronous motors, self controlled synchronous motor drive, PMAC motor drives, brushless dc motor drives	05 Hrs
Unit – III	
Chapter 5. Stepper Motor and Swiched Reluctance Motor Drives: Stepper Motor: variable reluctance, permanent magnet, torque versus stepping rate characteristics drive circuits for stepper motors Switched Reluctance Motor: Operation and control requirements, converter circuits, modes of operation	5 Hrs
Chapter 6. Solar and Battery Powered Drives:	
Solar panels, motors suitable for pump drives, battery powered vehicles, solar powered electrical vehicles	5 Hrs

1. G. K Dubey, *"Fundamentals of Electrical Drives"*, 2nd ed., Narosa Publishing House, Chennai, 2002. **References**

- 1. N. K. De and P. K. Sen, Electrical Drives, PHI, 2007
- 2. S. K. Pillai, A First Course On Electric Drives, Wiley Eastern Ltd, 1990
- 3. V. R. Moorthi, Power Electronics, Devices, Circuits & Industrial Applications, Oxford University Press, 2005

Syllabus

Course Code: 19EEEC303Course Title: Object Oriented Programming using C++
Credits: 3L-T-P: 2-0-1Credits: 3Contact Hrs: 3ISA Marks: 50ESA Marks: 50Total Marks: 100Teaching Hrs: 40Exam Duration: 03 hrs

Content	Hrs
Unit - 1	
Chapter 01: Introduction	4 hrs
Principles of Object Oriented Programming, Procedure oriented and Object oriented	
Programming, Basic Concepts of OOP, Benefits and Applications of OOP,	
Beginning with C++, Simple C++ program, C++ with classes, Structure of C++	
program, Creating, compiling and linking C++ programs.	
Chapter 02: Classes and Objects	7 hrs
Structures and Classes, Specifying a Class, Defining Member functions, C++	
program with class, Access Specifiers, Scope Resolution Operators, Inline	
functions, Static Data Members, Static Member Functions, Friend Functions.	
Chapter 03: Constructors and Destructors	4 hrs
Introduction, Parameterized Constructors, Multiple Constructors, Copy Constructor,	
Dynamic Constructor, Destructors, Dynamic allocation of objects - new and delete	
operators.	
Unit - 2	
Chapter 04: Inheritance	6 hrs
Introduction, Defining Derived Classes, Types of Inheritance, Virtual Base Classes,	
Abstract Classes, Constructors in Derived Classes, Nesting of Classes.	
Chapter 05: Virtual Functions and Polymorphism	5 hrs
Pointers to objects, this pointer, Pointers to Derived classes, Virtual Functions. Pure	
Virtual Functions.	
Chapter 06: Exception Handling	4 hrs
Basics, Exception Handling Mechanism, Throwing, Catching and Rethrowing	
Exceptions.	
Unit - 3	
Chapter 07: Function Overloading, Operator Overloading	5 hrs
Function Overloading, Overloading Constructors, Defining operator Overloading,	
Unary and Binary operator overloading, Rules for overloading operators.	
Chapter 08: Templates, STL	5 hrs
Class Templates, Function Templates, Overloading of Template functions,	
Components of STL, Containers, Iterators, Application of Container Classes.	

Text Books (List of books as mentioned in the approved syllabus)

- 1. E.Balagurusamy, Object Oriented Programming with C++, 4th edition, Tata McGrawHill, 2008
- 2. Herbert Schildt, C++ The Complete Reference, Fourth Edition, Tata McGrawHill, 2003

References

- 1. Yashavant P. Kanetkar, Let Us C++, 1st, BPB Publications,
- 2. Stanley B.Lippmann, Josee Lajore, Barbara E. Moo, C++ Primer, 4th Edition, Pearson Education, 2005

Syllabus

Laboratory Title: **Power Electronics & Drives Laboratory** Total Hours: **24**

SEE Marks: 20

Lab. Code: **19EEEP302** Duration of SEE Hours: 3 CIE Marks: **80**

Category: Demonstration		
Expt./ Job No.	Experiment / Job Details	
1	Forward and Flyback DC-DC Converter	
2	Single phase full bridge inverter	
3	Half controlled Rectifier feeding R and RL load	
4	Introduction to STEmbed Model based design and C-code generation for Power Electronics & Drives Application using TI's DSPs.	
Category	: Exercise	
Expt./ Job No.	Experiment / Job Details	
1	Three phase full bridge controlled rectifier fed DC motor drive.	
2	Fully controlled bridge rectifier feeding R and RL load	
3	VSI based open loop volts/hertz control of three phase induction motor drive.	
4	ADC, PWM pulse Generation and PI Controller design for PE and Drives application using STEmbed and TI's DSPs.	
Category: Structured Enquiry		
Expt./ Job No.	Experiment / Job Details	
1	To design, simulate and experimentally verify given drive system to meet defined specifications.	

Creating Value Leveraging Knowledge

Department of Electrical & Electronics Engineering

Syllabus

Course Code: 19EEEC401

Course Title: Power System Modeling, Operation & Control

L-T-P: 3-0-0 CIE Marks: 50 Teaching Hrs: 40

Credits: 3 SEE Marks: 50

Contact Hrs: 40 Total Marks: 100 Exam Duration: 3 hrs

Chapter	Unit-I	
No.		0.1
1	Formation of network matrices : Multi-port power system representation,	8 nrs
	performance equations in bus frame of reference, definitions of Network models	
	I_{bus} and Z_{bus} , Finnerve element representations, primitive performance equations, Formation of Vbus by mathed of Inspection. Introduction to graph theory	
	definitions of terms. Bus incidence matrix. Vhus hy the method of singular	
	transformation. Examples on Vhus formation by singular transformation (with no	
	mutual coupling) and Inspection method. Thus building algorithm addition of	
	induction coupling) and inspection method, Zous building algorithm-addition of uncoupled branches and links, modification of Zhus for changes in elements not	
	mutually coupled Framples on Thus formation	
2	Initially coupled, Examples of Zous formation	7 has
Z	Optimal load dispatch : Importance and objective of economic load dispatch, Fuel	/ nrs
	cost and incremental fuel cost, Optimal load allocation between plants neglecting	
	transmission losses, Examples on optimal load allocation with and without	
	generation constraints, Optimal load allocation considering transmission losses,	
	General transmission loss formula, Examples.	
		0.1
3	Load flow analysis : Importance of Power flow, Classification of busses, General	8 hrs
	steps in load flow analysis, Off-nominal ratio tap changing ratio transformer	
	representation. Bus voltage solution by Gauss and Gauss-Seidel methods without	
	PV buses, Handling PV buses in Gauss-Seidel method, N-R load flow model in	
	polar coordinates, formation of NR Jacobian, Introduction to FDLF load flow	
	model, Comparison of Gauss-Seidel, NR and FDLF load flow methods, Examples	
	on one iteration of load flow solution.	
4	Load frequency control :Introduction to load frequency control problem, Working	7 hrs
	principle of speed governor, Model of isolated power system area –block diagram	
	representation, Expression for steady-state frequency deviation, Parallel operation	
	of generators –expression for operating frequency and load sharing,, two area load	
	frequency control, steady-state operation of multi-area system under free governor	
	operation, Examples on load sharing between areas.	
	Unit-III	
5	Reactive power and voltage control : Power flow through a line, Relation	5 hrs
	between voltage, power and reactive power at a node, Brief descriptions of methods	
	of voltage control-by injection of reactive power and tap changing transformer.	
	Generator reactive power control by AVR-simplified AVR system model, AVR	
	response.	
6	Power System Simulations: Simulation of automatic generation control,	5 hrs
	simulation of small signal stability of a SMIB power system, Transient stability	
	simulation of SMIB power system using trapezoidal integration, simulation of	
	classical economic load dispatch Algorithm	

Syllabus

Text Books

- 1 Stagg and El-Abid, Computer Methods in power system analysis, First Edition, Mc-Graw Hill, 1968
- 2 Kothari and Nagarath, Modern power system analysis, 3rd Edition, Tata McGraw Hill, 2004

- 1 P. Kundur, Power system stability and control, First Edition, Tata McGraw Hill, 2007
- 2 Hadi Sadat, Power System analysis, Ed. First Edition, Tata McGraw Hill, 2002
- 3 A.R. Bergen and Vijay Vittal, Power system analysis, Ed. First Edition, Pearson Ed, 2009

SEE Marks: 20

Department of Electrical & Electronics Engineering

Syllabus

Laboratory Title: Power System Simulation Lab Credits: L-T-P: 0-0-1 Credits: 1

Lab. Code: 19EEEP401 Duration of SEE Hours: 2 CIE Marks: 80

Experiment wise Plan

List of experiments/jobs planned to meet the requirements of the course.

Category	gory: Demonstration				
Expt./ Job No.	Experiment / Job Details				
1	To use interactive simulation software "SofTCAPS" for the simulation of (i)Load flow analysis by Gauss-Seidel and NR models (ii) Voltage control analysis by shunt capacitor and tap changing transformer (iii) P-V Curve at a load bus				
2	To use interactive software "SofTCAPS" for the simulation of Economic load dispatch problem with and without coordinating the transmission losses				
Category	y: Exercise				
Expt./ Job No.	Experiment / Job Details				
3	To form bus admittance matrix [Ybus] by singular transformation.				
4	To form [Ybus] by the method of inspection				
5	ABCD constants and line performance using short and medium π/T models				
Category	y: Structured Enquiry				
Expt./ Job No.	Experiment / Job Details				
6	Each batch (consisting of 4 students) will work on one problem from the below mentioned sets, obtain the simulation results, carry out the analysis, interpret the results, draw practical conclusions from them and prepare a report. (a) To formulate and develop MATLAB/Scilab program/ SIMULINK model on one of the power problem which include, but not limited to -Load frequency control method, Study to determine the effect of excitation on dynamic stability, Comparison of various numerical techniques for stability study, Multimachine transient stability study, Load flow model development, (b) To employ an interactive power system software to simulate a given problem such as multimachine transient stability, multimachine small signal stability, contingency analysis, performance comparison of various load flow models, economic load dispatch etc.				

Q	KLE Technological
KLE TECH	Creating Value
	Leveraging Knowledge

Syllabus

Laboratory Title: Relay and High Voltage Engineering labLab. Code: 19EEEP402Total Hours: 32Credits: L-T-P: 0-0-1Credits: 1SEE Marks: 20CIE Marks: 80

Expt./ Job No.	Experiment / Job Details	
Categor	y: Exercise	
1	Introduction Session	2 hrs
2	To obtain the inverse time characteristics of a given fuse wire and wires of different lengths.	2hrs
3	To obtain the inverse time characteristics of an electromagnetic over current relay	2hrs
4	To obtain the operating characteristics of microprocessor based differential relay.	2hrs
5	To obtain the operating characteristics of microprocessor based directional over current relay.	2hrs
6	To obtain the breakdown strength of air using Copper sphere gap with HVAC and HVDC.	2hrs
7	a) To obtain the breakdown strength of air using different pairs of electrode gap with HVAC and HVDC.b) To obtain the breakdown voltage of a solid dielectric.c) To obtain the breakdown voltage of a liquid dielectric.	2hrs
Categor	y: Structured Enquiry	
1.	To develop microcontroller based overcurrent, over voltage and impedance relay using CT /PT giving details of program and demonstrate it's working output.	4hrs

B.E. (Civil Engineering) Curriculum Syllabus 2015 – 19 Batch

(2015-16 Admission)

	3 rd Semester	r
Course Title: Building T	echnology and Services	Course Code: 15ECVC201
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/ week
ISA Marks: 50 ESA Marks: 50		Total Marks: 100
Teaching Hours: 40	Examination Duration	n: 3 Hrs
	Unit I	

1. Building Materials

Introduction. Properties of building stones, Clay products, Bricks and tiles; **08 hrs** Timber, Plywood, Allied products, Plastics and glass, Paints, Steel, Gypsum and Allied products, Adhesives.

2. Types of Foundations

Preliminary investigations of soil, Presumptive bearing capacity of soils, Masonry footings, Isolated footings, Grillage footings, Strap footings, Raft foundations, Pile foundations.

Unit II

3. Stone and Brick Masonry

Rubble masonry, Ashlar masonry, Bonds in brick work (English and Flemish bond). Load bearing and partition walls. Damp proof construction. 03 hrs

4. Floors and Roofs

Types of flooring (Materials and method of laying), Granolithic, Mosaic, Ceramic, Marble, Polished Granite, Industrial flooring. Flat Roof (R.C.C.), Sloped roof (R.C.C. and Tile roof), Lean to roof, Steel trusses, Water and Weather proof course.

6. Stairs, Doors and Windows

Types (Classifications) and Technical terms in stairs, Requirements of a good stair. Geometric Design of RCC Dog Legged and open well stairs. (Plan and sectional elevation of stairs) Paneled doors, Glazed doors, Flush doors, Collapsible and rolling shutters, Louvered doors, Revolving, sliding and swing doors, Windows, Types, Paneled, Glazed, Bat window, Dormer window, Louvered and corner window, Ventilators

Unit III

7. Plastering and Painting

Purpose of Plastering, Materials of plastering, Lime mortar, Cement Mortar, Methods of plastering, Stucco plastering, Lath plastering, Purpose of Painting, Distemper, Plastic emulsion, Enamel, Powder coated painting to walls and iron and steel surfaces, Polishing of wood surface.

03 hrs

03 hrs

8. Introduction to cost effective construction and services

Necessity, Advantages, Pre fabrication techniques, Pre cast doors and windows (Pre cast frames and shutters), Alternative Building Materials, Hollow concrete blocks, Stabilized mud blocks, Micro concrete tiles, Precast roofing elements. Water supply and sanitation. Electricity illuminated. Modern services & Air condition

Text Books

- 1. Bhavikatti S.S., *Materials of Construction, Vol-1*, I.K. International Pvt. Ltd., New Delhi, 2013
- 2. Bhavikatti S.S., *Materials of Construction, Vol-II*, I.K. International Pvt. Ltd., New Delhi, 2014.
- 3. Punmia, B.C., Jain A.K., *Building Construction*, 10ed., Lakshmi Publications, New Delhi, 2008.
- 4. Rai, M. and Jai Sing, *Advanced Building Materials and Construction*, CBRI Publications, Roorkee, 2014
- 5. Rangwala, S.C., *Building Construction*, 31st Edition Charotar Publishing House, Anand, India, 2014.
- 6. Sushilkumar, *Building Construction*, 20ed., Standard Publisher and Distributors, Delhi, 2014.

- 1. Arora, S.P. and Bindra, S.P., *A Text Book of Building Construction Technology*, Dhanapat Rai Publications (P) Ltd., New Delhi, 2014.
- 2. Bhavikatti S.S., Chitawadagi M.V., *Building Planning and Drawing*, IK International Publishing House Pvt. Ltd., New Delhi., 2014
- Jagadeesh, K.S., Venkatarama Reddy B.V. and Nanjunda Rao K.S., *Alternative Building Materials and Technologies*, New Age International (P) Ltd., New Delhi, 2007.

Course Title: Surveying

L-T-P: 4-0-0

ISA Marks: 50

Teaching Hours: 40

1. Overview and Measurement of directions		05 hrs
Basic principle of surveying, classification of su	rveys Measurement of distance:	
chain surveying Methods of measurements: Dir	ect and indirect chain and their	
types, tapes and their types, Ranging - direc	t and indirect, errors in chain	
surveying and tape corrections.		
Compass surveying prismatic and surveyor's co	ompass bearing and their types	

Examination Duration: 3 Hrs

Compass surveying prismatic and surveyor's compass, bearing and their types. Calculation of included angles from bearings. Corrections to measured bearings – local attraction. Plottng a traverse, closing error and its adjustment by Bowditch's rule. Traverse computations – Latitude and departure (omitted measurements).

Credits: 4

ESA Marks: 50

Unit I

2. Measurement of elevations and contouring

Levelling terms used in levelling, Types of levelling instruments viz Dumpy level, Auto level, electronic or digital level and their temporary adjustments, taking observations.

Methods of calculating reduced levels – HI method and rise and fall method.

Types of leveling curvature and refraction correction, sensitiveness of bubble tube.

Contours and contouring, characteristics of contours, contour interval, Contouring methods – Direct and indirect. Interpolation of contours. Preparation of contour maps. Uses of contour maps.

Plane table surveying: Methods of plane tabling, Two point problem, Three point problem. Merits and demerits of plane tabling.

3. Theodolite surveying and Trigonometric levelling

Theodolite surveying, terminologies used in theodolite, parts of a vernier theodolite, temporary adjustments. Measurement of horizontal angle, vertical angle and other theodolite applications. Theodolite traversing, locating landscape details. Fundamental lines of a theodolite and their desired relationships, errors, precision, upkeep and maintenance of theodolites.

Basic principles, calculation of heights and distances when instrument stations and object in SAME vertical plane (single plane method) and when instrument stations and object NOT in same vertical plane (double plane method).

Unit II

II -IV Year B.E. (Civil Engineering) Curriculum - 2015-19

3

09 hrs

Course Code: 15ECVC202

Total Marks: 100

Contact Hours: 4 Hrs / week

KLE Technological University, Hubballi

4. Tacheometric Surveying

Basic principle of stadia tacheometry; tacheometric equations for horizontal line of sight, inclined line of sight (LOS), when staff vertical to LOS and when staff normal to LOS; Anallactic lens, tangential method of tacheometry, subtense bar, and Beaman's stadia arc; determination of tacheometric constants.

5. Curve surveying

Types of curves, circular curve-terminologies, elements of a simple curve, methods of setting out simple curve- linear method, angular method; compound curves- elements of a compound curve, setting out of compound curve; Reverse curve-element of elements of a reverse curve, setting out of reverse curve; Transition curve- requirements of a transition curve, elements of transition curve, setting out of transition curve, setting out of transition curve;

6. Modern Surveying Instruments: Theodolite, EDM and Total Station 08 hrs Modern theodolites- micro-optic theodolites, electronic theodolites, digital theodolites

Electromagnetic spectrum radar, electromagnetic distance measurement (EDM), EDM equipment- geodimeter, tellurometer, mekenometer, distomat. Corrections to measurements; Total station- principles and working, temporary adjustments, application- angle measurement, distance measurement (horizontal, vertical and slope); major function performed with total station, various types of total station (viz. Sokkia, Leica, Pentax, Nikon, South, etc)

Unit III

7. Areas and Volumes

Computation of areas: Area from co-ordinates, latitude and departures, Midordinate method, average ordinate method, Trapezodial rule, Simpson's rule, Area from digital planimeter.

Computation of volumes: Volumes from cross sections, Prismoidal formula, and Trapezoidal formula capacity of reservoirs volume of borrow pits, Mass-Haul diagram.

8. Construction surveying / setting out works:

Prerequisites, instruments and methods.

Laying out buildings

Settingout of culverts

Settingout bridges - locating the centre line - locating bridge piers

Settingout tunnels - Transferring alignment, Transferring bench marks or levels

Setting out Sewer lines

9. Modern methods of Surveying

Satellite based positioning system, Global Positioning System (GPS), basic principals of GPS, satellite configuration, positioning using satellite signals, GPS receivers;Functions of GPS- determining position, navigation, tracking, mapping,

04 hrs

08 hrs

03 hrs

03 hrs

04 hrs

4

KLE Technological University, Hubballi

precise time determination; Application in survey- surveying with GPS, surveying with hand held GPS; Introduction to GIS- Geographic Information System, definition of GIS, component of GIS, hardware for GIS, software for GIS, data, users, features of GIS, GIS subsystems, data acquisition, data processing and analysis, communication, management of GIS, GIS capabilities, operations of GIS, Applications of GIS. Introduction and applications of LIDAR.

Text Books

- 1. Alak, D., Plane Surveying, S. Chand & Co., 2000.
- 2. Bhavikatti S.S., *Surveying and Leveling Vol-I & II*, I.K. International Publishers, 2008.
- 3. Chandra, A.M., *Higher Surveying*, 3ed. New Age India Ltd. 2015.
- 4. Chandra, A.M., *Plane Surveying*, 3ed. New Age India Ltd. 2015.
- 5. Punmia, B.C., Jain, Ashok.K. Jain, Arun.K. *Surveying Vol. 1*, 11ed., Lakshmi Publishers, 2015.
- 6. Punmia, B.C., Jain, Ashok.K. Jain, Arun.K. Surveying Vol. 2, 15ed., Lakshmi Publishers, 2012.
- 7. Punmia, B.C., Jain, Ashok.K. Jain, Arun.K., *Surveying Vol. 3*, 15ed., Lakshmi Publishers, 2005.

- 1. Anderson, J. M. and Mikhail E. M., Introduction to Surveying, TMH, New York, 1985
- 2. Basak, Text Book of Surveying, 2010
- 3. Duggal, S.K., Text Book of Surveying, 2013
- 4. Roy, S.K., Fundamentals of Surveying, Prentice Hall of India, 2010.

Course Title: Mechanics of	Course Code: 15ECVF201		
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4 Hrs/ week	
ISA Marks: 50 ESA Marks: 5) Total Marks: 100	
Teaching Hours: 50 Hrs	Examination Durati	on: 3 Hrs	
	Unit I		

1. Fluid Properties and Classification of Fluid

Introduction, to fluid mechanics; Systems of units; Properties of fluid; Mass density; Specific Volume, Specific Weight, Relative density; Viscosity, Newton's law of viscosity, Newtonian and Non-Newtonian Fluids; Ideal and Real fluids; Compressibility; Vapour pressure; Surface tension; capillarity; Problems on above topics.

2. Fluid Pressure and its Measurement

Definition of pressure, units and dimensions, pressure at a point, Pascal's law, Hydrostatic pressure law, Different types of pressures, Measurement of pressure-Classification- Simple manometers, Differential manometer and Micro Manometer

3. Hydrostatics

Definition of total pressure, Center of pressure, Centroid; Centroidal depth, depth of center of pressure, Hydrostatic force on plane surface submerged horizontally, vertically and inclined inside a liquid; Hydrostatic force on submerged curved surface. Archimedes principle and centre of buoyancy

4. Kinematics of Fluids

Description of fluid flow, Lagrangian and Eulerian approaches. Classification of flow; Definition of path line, streamline, streak line, stream tube; Acceleration of flow in one dimensional flow; Derivation of continuity equation in differential form; Definition of velocity potential, stream functions, stream line, equipotential line; Relation between velocity potential and stream function; Laplace equation. Problem on above.

Unit II

5. Dynamics of Fluid Flow

Definitions, concept of inertia force and other forces causing motion; Derivation of Euler's equation and Bernoulli's equation with assumption and limitation; Problems on applications of Bernoulli's equation (with and without losses); Application of Bernoulli's equation on Venturimeter, Orificemeter, Pitot tube. Impulse- Momentum equation and its application on direct and oblique impact of a jet on a stationary flat plate, Direct impact on a moving plate.

05 hrs

6. Flow through Pipes and open Channels

Introduction; Reynolds number; Classification of flow; Definition of hydraulic gradient. energy gradient; Major and minor losses in pipe flow, Equation for head loss due to friction (Darcy's-Weishbach equation).Moody's diagram. Uniform flow in open channels, Geometric properties of Rectangular, Triangular, Trapezoidal and Circular channels. Chezy's equation, Manning's equation (theory and problems). Most economical open channels. Specific energy of flowing liquid and critical depth of flow, type of flows, hydraulic jump.

Unit III

7. Dimensional Analysis and Model Studies

Introduction, Systems of units, Dimensions of quantities, Dimensional Homogeneity of an equation. Analysis- Raleigh's method, Buckingham's Π theorem- problems. Model Studies, Similitude, Non-dimensional numbers: Froude **05 hrs** models-Undistorted and Distorted models. Reynold's models

8. Discharge Measurements

Flow through orifices; classification, hydraulic coefficients and their relationship, Flow through mouthpieces: classification, classification of notches and weirs, derivation of discharge equation for rectangular, triangular and trapezoidal notches or weirs, Cipolletti notch or weir, discharge over a broad crested weir, Ogee weir and submerged weir. 05 hrs

Text Books

- 1. Arora, K. R., *Fluid Mechanics, Hydraulic and Hydraulics*, Standard Book House, New Delhi, 1993.
- 2. Bansal, R. K., *Fluid Mechanics and Hydraulic Machines*, 9ed. Lakshmi Publications, New Delhi, 2005.
- 3. Jain, A. K., Fluid Mechanics, Khanna Publications, New Delhi, 1998.
- 4. Modi, P.N. and Seth S.M., *Hydraulics and fluid mechanics*, 2ed., Standard book house, New Delhi, 2010.
- 5. Streeter, V.L. and Wylie, E. B., Fluid Mechanics, McGraw-Hill, London, 1998.
- 6. Ven Te Chow, Open Channel Hydraulics McGraw Hill, New York 1959.

Reference Books:

- 1. Daugherthy, R.L., Franzini, J.B., Finnemore, E.J. *Fluid Mechanics with Engineering Applications*, McGraw Hill, New York, 1985.
- 2. John, F. D., Fluid Mechanics, Pearson Education, India, 2002.
- 3. Modi, P.N. and Seth S.M., *Hydraulics and fluid mechanics*, 2ed., Standard book house, New Delhi, 2002.
- 4. Shames, I.H., Mechanics of Fluids, McGraw Hill, New York, 1992.

7

Course Title: Mechanics	Course Code: 15ECVF202	
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4 Hrs/ week
ISA Marks: 50 ESA Marks: 50		Total Marks: 100
Teaching Hours: 50	Examination Durat	tion: 3 Hrs
	Unit I	

1. Simple Stress and Strain

Introduction, Properties of Materials, Stress, Strain, Hooke's law, Poisson's Ratio, Stress - Strain Diagram for structural steel and non ferrous materials, Principles of superposition, Total elongation of tapering bars of circular and rectangular cross sections. Elongation due to self-weight

2. Simple Stress and Strain continued...

Composite section, Volumetric strain, expression for volumetric strain, Elastic constants, relationship among elastic constants, Thermal stresses (including thermal stresses in compound bars).

3. Bending moment and shear force in beams

Introduction, Types of beams loadings and supports, Shearing force in beam, Bending moment, Sign convention, Relationship between loading, shear force and bending moment, Shear force and bending moment equations, SFD and BMD with salient values for cantilever beams, simply supported beams and overhanging beams considering point loads, UDL, UVL and Couple.

Unit II

4. Bending stress, shear stress in beams

Introduction - Bending stress in beam, Assumptions in simple bending theory, Pure bending derivation of Bernoulli's equation, Modulus of rupture, section modulus, Flexural rigidity, Expression for horizontal shear stress in beam, Shear stress diagram for rectangular, symmetrical 'I' and 'T' section.

5. Deflection of beams

Introduction - Definitions of slope, deflection, Elastic curve derivation of differential equation of flexure, Sign convention, Slope and deflection for standard loading classes using Macaulay's method for prismatic beams and overhanging beams subjected to point loads, UDL and Couple.

6. Columns and struts

Introduction - Short and long columns, Euler's theory on columns, Effective length, slenderness ration, radius of gyration, buckling load, Assumptions, derivations of Euler's Buckling load for different end conditions, Limitations of Euler's theory, Rankine's formula and problems.

Analysis and sketching of various stresses in beams (2-D and 3-D)

06 hrs

06 hrs

06 hrs

06 hrs

06 hrs

06 hrs

Unit III

7. Torsion of circular shafts

Introduction – Pure torsion-torsion equation of circular shafts, Strength and stiffness, Torsional rigidity and polar modulus, Power transmitted by shaft of solid and hollow circular sections, Torsion of Rectangular shaft (only Explanar)

8. Compound stresses

Introduction, Stress components on inclined planes, General two dimensional stress system, Principal planes and stresses, Mohr Circle, thin cylinders subjected to pressure, change in length, diameter and volume, Thick cylinders - Lame's equations (excluding compound cylinders).

Text Books:

- 1. Basavarajaiah, B.S. and Mahadevappa, P., *Strength of Materials*, 3ed., CBS Publishers, New Delhi, 2010.
- 2. Beer, F. and Johnston, R., *Mechanics of Materials*, 5ed., Tata Mac Graw Hill 2007.
- 3. Bhavikatti, S.S., Strength of Materials, 3ed., Vikas Publishers, 2009
- 4. Hibbeler, R.C., Mechanics of Materials, 9ed., Pearson Education Ltd., 2014.
- 5. Punmia, B.C., Jain, A. and Jain, A., *Mechanics of Materials*, 10ed., Lakshmi Publications, New Delhi, 2013.
- 6. Stephen Crandall, Thomas Lardner, *An Introduction to the Mechanics of Solids* 3rd Ed., with SI Units, Tata McGraw Hill, 2007.

Reference Books:

- 1. Beer and Johnson, Strength of Materials, Tata McGraw-Hill Education, 2004.
- 2. James, M. Gere, *Mechanics of Materials*, 8ed., Thomson Learning, 2012.
- 3. Nash W.A., Strength of Materials, 4ed., Schaum's Outline Series, 2007
- 4. Popov E.P., Engineering Mechanics of Solids, PHI, 2012.
- 5. Singer Harper, Strength of Materials, Row Publications, 2007.

05 hrs

Course Title: Survey Prac	Course Code: 15ECVP201	
L-T-P: 0-0-1	Credits: 1	Contact Hours: 2 Hrs / Week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hours: 30 Examination Duration		on: 3 Hrs

1. a)To measure distance between two points using direct ranging

b) To set out perpendiculars at various points on given line using cross staff, optical square and tape.

- 2. Setting out of rectangle, pentagon, hexagon using chain and tape only
- 3. To set out rectangle, hexagon, pentagon using chain, tape and compass.
- 4. To determine the distance between two inaccessible points using chain & compass.
- 5. To locate points using radiation & intersection method of plane tabling
- 6. To determine difference in elevation between two points using fly leveling technique & to conduct fly back leveling using HI & Rise & Fall methods.
- 7. To determine difference in elevation between two points using reciprocal leveling & determine the collimination error.
- 8. To conduct profile leveling for water supply / sewage line & to draw the longitudinal section to determine the depth of cut & depth of filling for a given formation level.
- 9. To solve 3-point problem in plane tabling using Bessel's graphical solution
- 10. To locate the Contours by Direct contouring
- 11. To locate the Contours by Indirect contouring
- 12. Use of planimeter and demonstration of minor instruments like clinometer, hand level, box sextant.

Text Books

- 1. Bhavikatti S.S., *Surveying and Leveling Vol-I & II*, I.K. International Publishers, 2008.
- 2. Punmia, B.C., Jain, Ashok.K., Jain, Arun.K., *Surveying Vol. l & 2*, 15ed., Lakshmi Publishers, 2005.

	-		·			
Course Title: Building Engineering Drawing		Course Code: 15ECVP2	202			
L-T-P: 0-0-2		Credits:	2	Contact Hours: 4 Hrs/ w	veek	
ISA Marks: 80		ESA Ma	rks: 20	Total Marks: 100		
Teaching Hours: 40 Hrs		Examina	tion Duration:	3 Hrs		
			Uı	nit I		
1. To prepare working drawing of components of building i) Stepped wall footing and isolated RCC column footing, ii) Fully paneled and flush doors, iii) Half paneled and half-glazed window, iv) RCC dog legged and open well stairs, v) Steel truss						
2.	Functional o	lesign o	of building	(Residential.	Public and Industrial).	

2. Functional design of building (Residential, Public and Industrial), positioning of various components of building, orientation of building, building standards, bye laws, set back distances and calculation of carpet area, plinth area and floor area ratio.

3. Development of plan, elevation, section and schedule of openings from the given line diagram of residential buildings, i) Two bed room building, ii) G +1 storey buildings (Two Drawings will be done by using ZWCAD) **18 hrs**

Unit II

4. Functional design of building using inter connectivity diagrams, development of line diagram only for Residential and Office building (One Drawing will be done by using ZWCAD)

5. Line diagram of water supply, sanitary and electrical layouts (One Drawing will 04 hrs be done by using ZWCAD)

Text Books

- 1. Bethune, J. D., *Engineering Graphics with Auto CAD* 3ed., Pearson Education Publishers, 1998.
- 2. Chandra, A.M and Chandra, S., *Engineering Graphics with Auto CAD*, 2ed., Pearson Education Publishers, 2004.
- 3. Gurcharan Singh., *Civil Engineering Drawing*, 5ed., Standard Publishers Distributors Nai Sarak, Delhi, 1998.
- 4. National Building Code of India 2005, Bureau of Indian Standards, Manak Bhavan, 9 Bahadur Shah Zafar Marg, Newdelhi-110028
- 5. Shah, M.H and Kale, C.M, *Building Drawing*, Tata Mc Graw Hill Publishing Co. Ltd., New Delhi, 2002.

Course Title: Structural A	Course Code: 15ECVC203	
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/ week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40 Hrs	Examination Durati	on: 3 Hrs
	Unit I	

4th Semester

1. Structural Systems

Forms of structures, Conditions of equilibrium, Degree of freedom, Linear and Non linear structures, one, two, three dimensional structural systems, Static and Kinematics determinate and indeterminate structures. Structural Symmetry

2. Plane Trusses

Introduction, Assumptions, Analysis by method of joints, Analysis by method of 06 hrs sections.

3. Deflection of Beams

Moment area method, Conjugate beam method, Deflection of beams.

Unit II

4. Strain Energy

Strain energy and complimentary strain energy, Strain energy due to axial load, bending and shear, Principle of virtual work, The first theorem of Castigliano, Betti's law, Clarke - Maxwell's theorem of reciprocal deflection, Problems on beams and trusses.

5. Arches and cables

Three hinged circular and parabolic arches with supports at same levels and different levels. Determination of thrust, shear and bending moment, Analysis of cables under point loads and UDL, length of cables - Supports at same levels and at different levels.

Unit III

6. Influence Lines Diagrams

Influence line diagrams for simply supported, cantilever and over hanging beams, Influence line diagrams for girders supporting floor beams, Use of Influence line diagrams, Maximum S.F. and B.M. values due to moving loads.

Text Books

- 1. Bhavikatti, S. S., *Structural Analysis-I*, Vikas Publishing House Pvt. Ltd., New Delhi, 2003.
- 2. Punmia, B. C. and Jain, A. K., Strength of Materials and Theory of Structures,

07 hrs

07 hrs

Vol. I & II, Laxmi Publication, New Delhi, 2000.

3. Reddy, C. S., *Basic Structural Analysis*, 2ed., Tata McGraw- Hill Publishing Company, New Delhi, 2007.

- 1. Noris, C.H. and Wilber, J., *Elementary Structural Analysis*, 4ed., McGraw-Hill Book Company, 2003.
- 2. Pandit, G. S., Gupta, S. P. and Gupta, R., *Theory of Structures*, Vol. I, Tata McGraw- Hill Publishing Company, New Delhi, 1999.
- 3. Prakash Rao D. S., *Structural Analysis, A unified approach*, 1ed., University Press Limited, Hyderabad, 1996.
- 4. Ramamruthum, S. and Narayan, R., *Theory of Structures*, Dhanpat Rai Publishing Company, New Delhi, 1998.
- 5. Timoshenko, S. P. and Young, D. H., *Theory of Structures*, McGraw-Hill Book Company, New York, 1965.

Course Title: Environmental	Course Code: 15ECVC204	
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4 Hrs/ week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 50 Hrs	Examination Duration: 3	Hrs

Unit I

1. Demand and conveyance of water

Human activities and environmental pollution need for protected water supply. Types of water demands, population forecasting- arithmetical, geometrical, incremental increase and simple graphical method. Surface and subsurface sources Intake structures. Design of the economical diameter of the rising main,

2. Quality of Water

Concept of safe wholesome and palatability of water, Sampling of water, Examination of Water–Physical, chemical and Biological Examinations. Drinking water standards BIS & WHO guidelines. Health significance of Fluoride, Nitrates and heavy metals like Mercury, Cadmium, Arsenic etc

3.Water Treatment

Treatment flow-charts. Aeration- Principles, types of Aerators. Sedimentation 10 hrs aided Coagulant, design, jar test, Theory of filtration, slow sand, rapid sand and pressure filters, design – excluding under drainage system .Theory of disinfection, types of disinfection.

Unit II

4. Miscellaneous Treatment and Distribution of Water

Softening methods of removal of hardness by lime soda process and zeolite process. Adsorption technique, reverse osmosis technique, fluoridation and defluoridation.

System of supply, service reservoirs and their capacity determination, methods of layout of distribution systems. Valves in pipe network and type of fire hydrants.

5. Sewerage systems

Types of sewerage systems. DWF, estimation of storm flow, design of storm water drain. Design of sewers - self cleansing and non-scouring velocities. Design of hydraulic elements for circular sewers flowing full and flowing partially full

6. Sewage characteristics

Physical, Chemical and Biological characteristics, CNS cycle. BOD and COD their significance

05 hrs

05 hrs

7. Disposal of Sewage

Self-purification phenomenon, Zones of purification, Oxygen sag curve. Sewage sickness Sewage farming. Numerical Problems on Disposal of Effluents using Streeter Phelps equation.

8. Sewage Treatment

Flow diagram of municipal waste water treatment plant. Preliminary & Primary treatment: Screening, grit chambers, primary sedimentation tanks – Design.

Unit III

9.Secondary treatment

Theory and design of biological unit operation- Trickling filter and Activated sludge process and its modifications.

Miscellaneous treatment – Oxidation pond – design, concepts of UASB, RBC and sequential batch reactor.

10.Sludge Disposal

Digestion of sludge, Sludge drying beds.

Text Books

- 1. Birdie, G.S., *Water Supply and Sanitary Engineering*, Dhanpath Rai and Son Publishers, New Delhi, 2003
- 2. CPHEEO: Manual on water supply and treatment, Ministry of Urban Development
- 3. Garg, S.K., Sewage disposal and Air Pollution Engg., Khanna Publishers, 2003.
- 4. Garg, S.K., Water supply Engineering, 7ed., Khanna Publishers, New Delhi, 2005.
- 5. Modi, P.N., Sewage Treatment and Disposal Engg., 15ed., Std. Book House, New Delhi, 2015.
- 6. Punima, B. C., and Jain Ashok, *Environmental Engineering-I*, 2ed., Laxmi Publications, New Delhi., 2008
- 7. Punmia, B. C., Jain Ashok K and Arun Kumar Jain, *Wastewater Engineering*, Laxmi Publications, New Delhi, 2016.

Reference Books:

- 1. AWWA, Standard Methods Examination of Water and Wastewater, Water Environment Federation, 2004
- 2. Clair N. Sawyer and L. Perry McCarty, Parkin, G. F., *Chemistry for Environmental Engineers*, McGraw-Hill, 2004
- 3. Davis, M.L. and Cornwell, D.A., *Introduction to Environmental Engineering*, Tata McGraw Hill. 2010
- 4. Fair, G.M., Geyer J.C., Okan D.A., *Elements of Water Supply and Wastewater Disposal*, John Wiley and Sons Inc. 2000
- 5. Hammer M.J., *Water and Waste Water Technology*, John Wiley and Sons, New York , 2000

03 hrs

09 hrs

02 hrs

- 6. Howard S. Peavy, Donald R. Rowe, George Techno Bano Glous, *Environmental Engineering*, McGraw Hill International, 1995.
- 7. IS:10500-2012, Drinking water- Specification
- 8. Metcalf & Eddy, *Wastewater Treatment Engg.* & *Reuse*, Tata McGraw Hill Publications, 2003.
- 9. *Ministry of Urban Development, Manual on Waste Water Treatment CPHEEO*, New Delhi.
- 10. Srinivasan, D., Environmental Engineering, PHI Learning Pvt. Ltd., New Delhi, 2008.
- 11. W.K. Berry, Water Pollution, CBS Publishers Pvt. Ltd ,New Delhi, 2016

Course Title: Concrete Technology		Course Code: 15ECVC205
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs /Week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40 Hrs	Examination Duration: 3 Hrs	
	Unit I	

1. Concrete Ingredients

Cement, Chemical composition, hydration of cement, Types of cement, **08 hrs** manufacture of OPC by wet and dry process. Testing of cement - Field testing, Fineness by sieve test and Blame's air permeability test, Normal consistency, setting time, soundness. Compression strength of cement and grades of cement, quality of mixing water. Fine aggregate - grading, analysis, Specific gravity, bulking, moisture content, deleterious materials. Coarse aggregate - Importance of size, shape and texture. Grading of aggregates - Sieve analysis, specific gravity. Flakiness and elongation index, crushing, impact and abrasion tests.

2. Fresh concrete

Workability - factors affecting workability, Measurement of workability - **08 hrs** slump, flow tests. Compaction factor and vee-bee consistometer tests. Segregation and bleeding. Process of manufacture of concrete: Batching, Mixing, Transporting, Placing, Compaction, Curing. Chemical admixtures-plasticizers, accelerators, retarders and air entraining agents. Mineral admixtures - Fly ash, Silica fume and rice husk ash.

Unit II

3. Hardened concrete

Factors affecting strength, w/c ratio, gel/space ratio, maturity concept. Effect of aggregate properties, relation between and compressive strength, and tensile strength, bond strength, modulus of rupture. Accelerated curing. Elasticity - Relation between modulus of elasticity and strength, factors affecting modulus of elasticity, Poisson ratio. Shrinkage - plastic shrinkage and drying shrinkage, factors affecting shrinkage, Creep -Measurement of creep, factors affecting creep, effect of creep. Durability definition, significance, permeability, sulphate attack. Chloride attack, carbonation, freezing and thawing. Factors contributing to cracks in concrete settlement cracks, construction joints. Thermal expansion, Testing of hardened concrete - compressive strength, split tensile strength. Flexural strength, factors influencing strength test results

4. Concrete Mix design

Concept of Mix design, variables in proportioning exposure conditions. Procedure of mix design as per IS 10262-2009,Numerical examples of Mix design

Unit III

5. Special concretes and concreting methods

Constituents, properties and applications: of Light weight concrete, High density concrete, High strength and high performance concrete, Self Compacting Concrete, Fiber reinforced concrete and Ready mixed concrete. Ferro cement - Constituents, properties and applications. **04 hrs** Guniting and shotcreting

6. Non destructive testing of concrete

Principles, applications and limitation of Rebound hammer lest and Ultrasonic pulse velocity test, interpretation of test values. Profometer -Principles, applications and limitations 04 hrs

Text Books

1. Shetty M.S., Concrete technology - Theory and practice, 1ed., S.Chand and company, New Delhi, 2008

- 1. Gambhir, M.L, Concrete manual, 4ed , Dhanpat Rai & Sons, 2005
- 2. IS-10262-2007, Recommend guidelines for concrete mix.
- 3. IS-383:1970, specifications for Concrete mix aggregates from natural resources for concrete (second revision).
- 4. P. Kumar Mehta, Paulo J. M. Monteiro,- Concrete: Microstructure, Properties, and Material McGraw Hill publications, 2013

Course Title: Construction Project Management		Course Code: 15ECVC206
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3Hrs / Week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40 Hrs	Examination Duration: 3 Hrs	
	Unit I	

1 Introduction to Construction Project Management

Phases of construction project, importance of construction and construction **04 hrs** industry, Indian construction Industry, Construction project management and its relevance, stakeholders of a construction project.

2 Drawings and Specifications

Types of Drawings-Architectural and Structural, Study of Scales Used, sequence of dimensioning, dimension lines and figures, Importance of Specifications, General specifications of 1st, 2nd, 3rd and 4th Class building, Detailed specifications of a typical building. Scope definition using drawings and specifications.

3 Work Breakdown Structure

Concept of WBS, Common usage of terms, Preparing a WBS, Factors to be **06 hrs** considered, WBS measurement considerations, Challenges to be considered, WBS level of Detail, WBS life-cycle considerations, Project risk and the WBS, Resource planning and management with WBS, Problems – Detailed WBS of a residential building.

Unit II

4 Project Management through Networks

Introduction, project feasibility, planning methods of projects– Objectives, planning stages. Scheduling, Bar charts and mile stone charts. Introduction, Terms & definitions, Elements of network, types of network, drawing the network. CPM – Event times, Activity times, floats, critical activity and critical path. Problems. PERT – Introduction, time estimates, expected time, earliest expected time, latest allowable occurrence time, slack, critical path. Probability of completing the project. Problems. Updating of network. Problems. Contraction of network. Problems. Resource Allocation. Problems (Resource smoothening and resource levelling).

5 Construction Safety Management

Introduction, evolution of safety, Accident causation theories, unsafe conditions and acts, health and safety act and regulations, role of safety personal, causes of accidents, principles of safety, safety and health management system. 06 hrs
Unit III

6 Construction Equipment

Introduction, standard and special equipment, factor for selecting equipment, cost of owning and operating, economic life of an equipment. Earth moving equipment (Bull Dozers, Scrapers, Loaders and Excavators). Hoisting equipment, concrete mixer and plants, conveyors and rollers, trenching machines, equipment for highway construction. Live projects for course project. 08 hrs

Text Books

 Kumar Neeraj Jha, Construction Project Management: Theory and Practice, 2nd Edition, Pearson Publications, 2015.

- 1. Robert. L Peurifoy and William B. Ledbetter, Construction planning and Equipment& methods, Mc. Graw Hill Publication, 3rd edition, 2010.
- 2. Verma Mahesh, Construction planning and Management, Metropolitan Book co. Delhi, 1982.

Course Title: Hydrology & Irrigation Engineering		Course Code: 15ECVC207
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3Hrs / Week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40 Hrs	Examination Dura	ation: 3 Hrs
	Unit I	

1. Introduction & Precipitation

Introduction, Hydrologic cycle (Horton's representation). Water budget equation Precipitation: introduction, forms of precipitation, types of precipitation, measurement of precipitation (Simon's gauge & Syphon gauge only), selection of rain gauge station. Adequacy of rain gauges, methods of computing average rainfall ,interpolation of missing data, adjustment of missing data by double mass curve method. Hyetograph and mass curve of rainfall.

2. Losses From Precipitation

Evaporation: Definition, factors affecting, measurement (Class A pan). **04 hrs** Estimation using empirical methods (Meyer's and Rohwer's equation). Evapo-transpiration: Definition, factors affecting, measurement, estimation (Blaney criddle method) Infiltration: Definition, factors affecting, measurement (double ring infiltrometer), infiltration indices, Horton's equation of infiltration. Runoff and its estimation

3.Hydrographs

Definition. Components of Hydrograph. Base flow separation, Unit hydrograph and its derivation from simple storm hydrographs, S- curve and its computation.

4. Reservoirs

Definitions. Investigation for reservoir sites. Storage zones. Determination of storage capacity and yield of a reservoir using mass curve.

Unit II

5. Introduction

Definition. Benefits and ill effects of irrigation. Sources of water for irrigation. Systems of irrigation: Surface and ground water, flow irrigation, Lift irrigation, Bhandhara irrigation. Methods of applying water to crops in India – Potential and development

6. Irrigation and Water Requirements of Crops

Definition of duty, Delta and Base period, Relationship between Duty, Delta and Base period, Factors affecting duty of water. Crops and crop seasons in India, Crops Grown in Karnataka, their seasons, Irrigation efficiency, Frequency of irrigation, Definition of gross commanded area,

04 hrs

03 hrs

04 hrs

culturable commanded area, culturable cultivated area, etc.

7. Canals:

Definition, Types of canals, Alignment of canals and Canal regulator. Design of canals by and Kennedy's and Lacey's methods- Problems. Cross drainage works: Classifications. Diversion Works definition, layout, types of weirs and Barrages. Design of Impermeable floors – Bligh's and Lane's theories – Simple design problems. Khosla's theory

8. Gravity Dams

Definition, Forces acting on a Gravity dam, Modes of failures, Elementary and practical profile, Low and high gravity dams, Stability analysis problems, Principle stresses, Drainage 04 Hrs

9. Earthen Dams

Introduction. Types of earthen dams. Failure of earthen dams. Preliminary design. Drainage arrangements. Determination of Phreatic line.

04 hrs

04 hrs

9. Spillways

Definition. Types of Spillways. Design Principles for an Ogee Spillway. Energy dissipaters: Types and introduction to IS Stilling basins (No design problems). 04 hrs

Text Books

- 1. H.M. Raghunath, *Hydrology*, New Age International (P) Ltd., Publication, New Delhi, 2004.
- 2. Jayarami Reddy, *A Text Book of Hydrology*, Lakshmi Publications, New Delhi, 2007.
- 3. Modi, P.N., *Irrigation, Water Resources, and Water Power Engineering*, Standard Book House, New Delhi, 2004.
- 4. Punmia, B.C. and Pande Lal, *Irrigation and Water Power Engineering*, Laxhmi Publications, New Delhi, 2000
- 5. Sharma, R.K., *Text Book of Irrigation Engineering and Hydraulic Structures*, S. Chand, New Delhi, 2002.
- 6. Subramanya K, *Engineering Hydrology*, 2ed., Tata McGraw Hill, New Delhi, 2005.

- 1. Garg, S.K., Irrigation Engineering and Hydraulic Structures, Khanna Publications, New Delhi, 2005.
- 2. Linsley, Kohler and Paulhus, Applied Hydrology, Wiley Eastern Publication, New Delhi, 1988
- 3. Michael, A.M., Irrigation Theory and Practices, Vikas Publications, New Delhi, 2004.

- 4. R.K. Sharma and Sharma, Hydrology and Water Resources Engineering, Oxford and IBH, New Delhi, 2000.
- 5. Sahasra Budhe, Irrigation Engineering and Hydraulic Structures, Dhanpath Rai Publications, New Delh
- 6. Ven Te Chow, Hand Book of Hydrology, Tata McGraw Hill, New Delhi, 1964.

Course Title: Survey Practice - II		Course Code: 15ECVP204
L-T-P: 0-0-1	Credits: 1	Contact Hours: 2 hr / week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100

Teaching Hours: 30

Examination Duration: 3Hrs

- 1. Measurement of horizontal angles with method of repetition and reiteration using theodolite. Measurement of vertical angles using theodolite.
- 2. To determine the elevation of an object using single plane method when base is accessible and inaccessible.
- 3. To determine the distance and difference in elevation between two inaccessible points using double plane method.
- 4. To determine the tachometric constants a) using horizontal line of sight. b) Inclined line of sight.
- 5. To set out simple curves using linear methods perpendicular offsets from long chord.
- 6. To set out simple curves using linear methods by offsets from chords produced.
- 7. To set out simple curves using Rankine's deflection angles method.
- 8. To set out compound curve with angular methods with suing theodolite only
- 9. To set out reverse curve between two parallel line with angular methods with using theodolite only.
- 10. To set out the center line of a simple rectangular room using offset from base line
- 11. To set out the center line of columns of a building using two base lines at right angles
- 12. To determine height of a remote object, horizontal distance and coordinates of points using Total Station Instruments
- 13. Introduction to GPS

Text Books

- 1. Bhavikatti S.S., *Surveying and Leveling Vol-I & II*, I.K. International Publishers, 2008.
- 2. BVB Lab Manual.
- 3. Punmia, B.C., Jain, Ashok.K., Jain, Arun.K., *Surveying Vol. l & 2*, 15ed., Lakshmi Publishers, 2005.

Course Tit	tle: Material Testir	ıg Lab		Course Code: 15ECVP205
L-T-P: 0-0	-2	Credits: 2		Contact Hours: 4 Hrs/ Week
ISA Mark	s: 80	ESA Marks: 20 Total Marks: 10		Total Marks: 100
Teaching l	Hours: 40 Hrs	s: 40 Hrs Examination Duration: 3 Hrs		rs
Unit I				
Tests on co	ement and concrete	2		
1.	Standard consist different cements.	ency (Normal o	consistency) for
2.	2. Setting times: for different cements.			
3.	Specific gravity of cement			
4.	Specific surface of cement by Blaine's air permeability			

- apparatus: for different cements.
- 5. Compressive strength of cement: for different cements.
- 6. Soundness of cement
- 7. Durability of Concrete
- 8. Permeability of Concrete

Tests on green concrete

9. Workability of concrete by slump test, compaction factor test and Vee-Bee test.

Open end experiment - Concrete mix design

Mechanical properties of materials

- 1. Test on Bricks
- 2. Tension test on Mild steel and HYSD bars.
- 3. Compression test of Mild Steel, Cast Iron and HYSD.
- 4. Impact test on Mild Steel (Charpy & Izod)
- 5. Shear Test on Mild steel.
- 6. Hardness tests on ferrous and non-ferrous metals Brinell's and Rockwell
- 7. Torsion test on Mild Steel circular sections
- 8. Bending Test on Wood Under two point loading
- 9. Non destructive Testing Demonstration

Tests on hardened concrete

- 1. Compressive strength of cement concrete for mix 1:2:4 and 1:1.5:3.
- 2. Split tensile strength of cement concrete for mix 1:2:4 and 1:1.5:3
- 3. Modulus of rupture -2 pt loading method

Note:

1. Casting of concrete cubes, cylinders and beams shall be done in

concrete lab and testing will be done in strength of material testing lab

2. All tests to be carried out as per relevant BIS Codes

Text Books

Reference Books:

For Concrete Lab:

- 1. For PPC IS 1489:91 I
- 1. For OPC 33 Grade cement IS 269:1989 Soundness of cement
- 2. IS 4031-1996 (Part-I)
- 3. For OPC 43 Grade cement IS 8112: 1989
- 4. For OPC 53 Grade cement IS 12269 :1987
- 5. For PBSC cement IS 455: 1989
- 6. For SRC cement IS 12330 :1988
- 7. For Concrete Mix Design IS 10262 1984(Reaffirmed)
- 8. SP:23 1982, A hand book on Concrete Mixes based on IS.

For Material testing lab

- 1. Davis, Troxell and Hawk, *Testing of Engineering Materials*, International Student Edition McGraw Hill Book Co. New Delhi.
- 2. Fenner, Mechanical Testing of Materials, George Newnes Ltd. London.
- 3. Holes, K. A., *Experimental Strength of Materials*, English Universities Press Ltd. London.
- 4. IS Codes ; IS : 432 1982 (Part-I) , IS : 1608 1960 , IS : 1500 1968, IS : 5652 1981.
- 5. Kukreja, C. B., Kishore K. Ravi Chawla, *Material Testing Laboratory Manual* Standard Publishers & Distributors 1996
- 6. Suryanarayana, A., K., *Testing of Metallic Materials*, Prentice Hall of India Pvt. Ltd. New Delhi

Course Title: Structural	Analysis-II	Course Code: 15ECVC301
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/ week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration	on: 3 Hrs
	∐nit I	

5th Semester

1. Slope Deflection Method

Introduction, Assumptions, Sign conventions, Derivation of slope deflection equation, Analysis of continuous beams, Analysis of portal frames with and without lateral sway.

Unit II

2. Stiffness Method

Degree of kinematic indeterminacy of one and two dimensional structures, Generalized coordinates, Analysis of continuous beams with and without sinking of supports and portal frames.

Unit III

3. Plastic Analysis

Introduction, plastic hinge and plastic moment capacity, Assumptions, Shape factor for general sections, Collapse load, Basic theorems for finding collapse loads, Methods of plastic analysis, Kinematic method applied to beams and frames, Beam mechanism, Sway mechanism, Combined mechanism. Push over analysis.

Text Books

- 7. Bhavikatti S.S., Structural Analysis-Vol. II, 4ed, Vikas Publishers, 2013
- 8. Pandit, G.S. and Gupta, R., *Structural Analysis-A Matrix Approach*, Tata McGraw Hill Publishing Co Ltd, 2013

- 2. Leet, E.M.and Uang, C. M., *Fundamentals of Structural Analysis*, Tata McGraw Hill Publishing Company, New Delhi, 2003.
- 3. Noris, C.H. and Wilbur, J., *Elementary Structural Analysis*, 4ed., Tata McGraw Hill Publishing Company, New Delhi, 2003
- 4. Reddy, C.S., *Basic Structural Analysis*, 3ed., Tata McGraw Hill Publishing Company, New Delhi, 2010.
- 5. Timoshenko, S.P., and Young, D.H., Theory of Structures, McGraw Hill

Company, New York, 1965.

Course Title: Geotechnie	cal Engineering	Course Code: 15ECVC302
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/ week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration	on: 3 Hrs
	Unit I	

1. Introduction

Introduction to soil mechanics, Phase Diagram, Voids ratio, Porosity, Percentage air voids, Degree of saturation, Moisture content, Specific gravity, Bulk density, Dry density, Saturated density, Submerged density and their inter relationships.

2. Index Properties of Soils

Index Properties of soils- Water content, Specific Gravity, Particle size distribution, Relative density, Consistency limits and indices, insitu density, Activity of Clay, Laboratory methods of determination of index properties of soils: Moisture content, Specific gravity, Particle size distribution, Liquid limit- Casagrande and cone penetration methods, Plastic limit and shrinkage limit determination.

3. Classification of Soils

Purpose of soil classification, basis for soil classification, Particle size classification – MIT classification and IS classification, Unified soil classification and IS classification - Plasticity chart and its importance, Field identification of soils.

4. Clay Mineralogy and Soil Structure

Single grained, honey combed, flocculent and dispersed structures, Valence bonds Soil-Water system, Electrical diffuse double layer, adsorbed water, base-exchange capacity, Isomorphus substitution. Common clay minerals in soil and their structures- Kaolinite, Illite and Montmorillonite.

Unit II

5. Flow of Water through Soils

Darcy's law- assumption and validity, coefficient of permeability and its determination, factors affecting permeability, permeability of stratified soils, Seepage velocity, Superficial velocity and coefficient of percolation, effective stress concept-total stress and effective stress, quick sand phenomena, Capillary Phenomena. Laplace equation- assumptions and limitations, Characteristics and uses of flownets, Methods of drawing flownets for Dams and sheet piles. Estimating quantity of seepage and Exit gradient. Determination of phreatic line in earth dams with and without filter. Piping and protective filter, graded filter

6. Compaction of Soils

Definition, Principle of compaction, Standard and Modified proctor's compaction tests, factors affecting compaction, effect of compaction on 04 hrs soil properties, Field compaction control, Proctor needle. Compacting equipments.

7. Shear Strength of Soils

Concept of shear strength, Mohr's strength theory, Mohr-coulomb theory, conventional and modified failure envelops, Total and effective shear strength parameters, Concept of pore pressure, factors affecting shear 06 hrs strength of soils, Sensitivity and Thixotropy of clay. Measurement of shear parameters- Direct shear test, unconfined compression test, Triaxial compression test and vane shear test, Test under different drainage conditions

06 hrs

29

Unit III

8. Stresses in Soils

Boussinesq's and Westergaard's theories for concentrated, circular, rectangular, line and strip loads. Comparison of Boussinesq's and **04 hrs** Westergaard's analysis. Pressure distribution diagrams, contact pressure, Newmark's chart.

9. Consolidation of Soils

Definition, Mass-spring analogy, Terzaghi's one dimensional consolidation theory-assumption and limitations. Normally consolidated, under consolidated and over consolidated soils, pre-consolidation pressure and its determination by Casagrande's method. Consolidation 05 hrs characteristics of soil, Time rate of consolidation. Laboratory one dimensional consolidation Determination test. of consolidation characteristics of soils-compression index, and coefficient of consolidation, determination of coefficient of consolidation by square root of time fitting method, logarithmic time fitting method.

Text Books

- a. Alam Singh and Chowdhary G.R, *Soil Engineering in Theory and Practice,* CBS Publishers and Distributors Ltd., New Delhi, 1994.
- b. Braja M Das, *Principles of Geotechnical Engineering*, 8ed., Cenage Learning India (P) Ltd., India, 2014.
- c. Punmia B C., *Soil Mechanics and Foundation Engineering.*, 17ed., Laxmi Publications Co., New Delhi, 2005.

- 1. Craig, R.F., Soil Mechanics, Spon Press Publishers, New York ,2004.
- 2. Gopal Ranjan and Rao A.S.R., *Basic and Applied Soil Mechanics*, New Age International (P) Ltd., New Delhi, 2000.
- 3. Murthy V.N.S., *Soil Mechanics and Foundation Engineering*, CBS Publishers & Distributors Pvt. Ltd., New Delhi, 2016.
- 4. Venkatrahmaiah C., *Geotechnical Engineering*, 3ed., New Age International (P) Ltd., New Delhi, 2006.

Course Title: Design of RCC Structures		Course Code: 15ECVC303
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4 Hrs/ week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 50	Examination Duration	on: 4 Hrs
	Unit I	

1. General Features of Reinforced Concrete

Introduction, Philosophies of design (Brief on Working Stress method). Limit State Method of Design: Design Loads, Materials for Reinforced Concrete, Codal provisions, Concept of Safety. Design Philosophy – Limit State Design principles. Principles of limit states, Factor of Safety, Characteristic design loads, and Characteristic design strength.

2. Ultimate Strength of R.C. Sections

General aspects of Ultimate strength, Stress block parameters for limit state of collapse, Ultimate flexural strength of singly reinforced and doubly reinforced rectangular sections, Ultimate flexural strength of flanged sections, Ultimate shear strength of RC sections, Concept of development length and anchorage.

3. Flexure and Serviceability Limit States

General Specifications for design of beams for flexure -practical requirements, size of beam, cover to reinforcement-spacing of bars. General aspects of serviceability-Deflection limits in IS: 456 – 2000-Calculation of deflection, Cracking in structural concrete members, Calculation of deflections and crack width.

Unit II

4. Design of Slabs

General consideration of design of slabs, Rectangular slabs spanning one direction, Rectangular slabs spanning in two directions for various boundary conditions. Design of simply supported, cantilever slabs.

5. Design of Beams

Design procedures for critical sections for moment and shear. Anchorages of bars, check for development length, Reinforcement requirements, Slenderness limits for beams to ensure lateral stability, Design examples for Simply supported and Cantilever beams for rectangular and flanged sections.

Unit III

6. Design of Columns

General aspects, effective length of column, loads on columns, slenderness ratio for columns, minimum eccentricity, design of short 07 hrs axially loaded columns, design of column subject to combined axial load and uniaxial moment using SP - 16 charts.

7. Design of Staircase

General features, types of staircase, loads on stairs, effective span as per IS codal provisions, distribution of loading on different types of stairs, Design of stairs.

Text Books

- 1. Jain, A.K., Limit State method of design, 7ed., Nemichand and Bros., Roorkee, 2012.
- 2. Krishnaraju, N., *Design of Reinforced concrete structures (IS: 456 2000)*, 3ed., CBS Publishers, New Delhi, 2016.

Reference Books:

- 1. Bhavikatti, S. S., *Design of RCC Structural Elements Vol-I*, New Age International Publications, New Delhi, 2016.
- 2. Robert Park & Thomson, Reinforced Concrete, John Wiley & Bros, 1975
- 3. M. L Gambhir, '*Fundamentals of Reinforced Concrete Design*', PHI Learning Pvt. Ltd., 2009, 1st ed.
- 4. Punmia, B.C., Ashok Kumar Jain & Arun Kumar Jain, *Limit State design of Reinforced concrete*, Laxmi Publication, New Delhi, 2007.

IS Codes

- 1. IS:456-2000, Plain and Reinforced Concrete Code of Practice, BIS, New Delhi, 2000
- 2. IS:875 (Part 1 & 2) 1987, Code of Practice for Design Loads (Other than earthquake) for building and structures, BIS, 1987
- 3. SP 16: Design Aids for Reinforced Concrete to IS 456:2000.

Course Title: Transportation Engineering		Course Code: 15ECVC304
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4 Hrs/ week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 50	Examination Duration	on: 3 Hrs
	Unit I	

1. Introduction to Transportation Engineering

Importance of Transportation systems, Different modes, characteristics, their integration and comparison, Road types and classification, road patterns, phasing road development in India, salient features of 3rd and 4th twenty-year road development plans, Present scenario of road development in India and in Karnataka.

2. Highway Alignment and Surveys

Guidelines for selection of alignment, engineering surveys, steps involved in alignment of new highway and realignment of highway. Design features of Rural / low volume roads, Expressways and Urban Roads.

3. Geometric Design of Highways

Functional design of highways, cross section elements- camber, width of carriageway, shoulder width, formation width, right of way, typical cross section of roads in embankment and cutting, sight distance, design of horizontal and vertical curves-features involved in highway safety and traffic efficiency.

4. Traffic Engineering

Sampling in Traffic Studies, Objectives, methods of traffic study, equipment, data collection, analysis and interpretation of (i) Spot speed (ii) Speed and delay (iii) Volume (iv) Origin - Destination (v) Parking (vi) Accident studies. Traffic flow, Roadway capacities.

Unit II

5. Pavement Materials

Basic road construction materials such as soils, aggregates, bitumen-taremulsion-cutback and Portland cement, bituminous mixes – types, source, functions, requirements, properties, tests and specifications for use in various components of road.

6. Pavement design

Flexible pavement design: Empirical, semi empirical and theoretical design approaches, principle, advantages and application. Design as per IRC guidelines, outline of other common design methods such as

AASHTO and Asphalt Institute methods

Rigid pavement design: Determination of ESWL, Axle load distribution studies, Stresses due to wheel loads and temperature variations, Design of cement concrete pavements as per IRC guidelines.

7. Highway Construction

Steps for the construction of road formation in embankment and cut, construction steps for subgrade (preparation of subgrade) in cutting, filling and at grade, Different types of granular base course- WBM, WMM, CRM - specifications, construction method and quality control tests, Different types of bituminous layers for binder and surface courses-specifications construction method and quality control tests, Different types of sub-base and base course for cement concrete pavement and construction method.

Unit III

8. Introduction to Intelligent Transportation Systems (ITS)

Definition, Objectives, Historical Background, Benefits of ITS -ITS Data collection techniques – Detectors, Automatic Vehicle Location (AVL), **08 hrs** Automatic Vehicle Identification (AVI), Geographic Information Systems (GIS), video data collection.

Text Books

- 1. Khanna, S.K., and C.E.G. Justo, & A. Veeraragavan, *Highway Engineering*, 10ed., Nem Chand and Bros. Publishers, Roorkee, 2015.
- 2. Kadiyali, L.R., *Traffic Engineering and Transportation Planning*, 7ed., Khanna Publishers, New Delhi, 2011.
- 3. Kadiyali L.R., *Principles and Practices* of *Highway Engineering*, Khanna Publishers, New Delhi, 2005.
- 4. Papacostas, C.S. and Prevedourous, P.D., *Transportation Engineering and Planning*, 3 ed., Prentice-Hall India, New Delhi, 2002.

- 1. Eldon J. Yoder and Mathew W., Witczak, *Principles of Pavement Design*, 2ed. Tata McGraw Hill Publishing Co Ltd., Delhi, 1975.
- 2. Huang, Yang, H., Pavement Analysis and Design, 2ed., Prentice-Hall, 1993.
- 3. M A Chowdhary and A Sadek. *Fundamentals of Intelligent Transportation systems planning*. Artech House Inc., US, 2003.
- 4. IRC: 37-2012, Guidelines for the Design of Flexible Pavements (Third Revision), Indian Roads Congress, New Delhi.
- 5. IRC: 58-2015, 'Guidelines for the Design of Plain jointed Rigid pavements for highway', Indian Roads Congress, New Delhi.
- 6. IRC-SP-72-2007, 'Guidelines for the Design of Flexible Pavements for Low Volume

Rural Roads', Indian Roads Congress, New Delhi.

7. MORTH Specifications for Road and Bridge Works, IRC Publication.

Course Title: Advanced Project Management		Course Code: 15ECVC305
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/ week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration	on: 3 Hrs
	∐nit I	

1. Introduction to Advanced Project Management

Introduction, Importance of advanced project management, the project 05 hrs management institute and PMBOK, the role of a project manager, project management in India.

2. Work Breakdown Structure

Concept of WBS, Common usage of terms, Preparing a WBS, Factors to be considered, WBS measurement considerations, Challenges to be considered, WBS level of Detail, WBS life-cycle considerations, Project risk and the WBS, Resource planning and management with WBS, Problems – Detailed WBS of residential, commercial, industrial and Highway Road etc. CPM and PERT.

Unit II

3. Cost Loaded Scheduling and Project Controls

Determination of unit costs and total cost of a typical construction project. Project Controls - Introduction, Project life cycle, Overview of project life cycle, earned value management, Cost performance Index, Schedule performance index, forecasting methods and problems, resource utilization and cumulative curves, Cost loaded Schedules.

5. Contractor's Estimation of cost and Bidding Strategy

Pre-qualification process, study of tender documents, preparation of o6 hrs construction schedule, determination of bid price.

Bidding and Estimation practices in Indian Construction Industry.

Unit III

6. Risk analysis and Project Close out

Risks involved in projects – determination and mitigation. Closing out of 03 hrs project, Lessons learned, historical data - creation and uses.

7. Labour Laws and Quality Control

Need for inspection and Quality Control, principles of inspection, Stages of inspection and quality control. Status of construction labour, wages of construction workers, unions, different labour acts.

Text Books

1. James Lewis, Project Planning, Scheduling, and Control, 3ed., 2009.

- 1. P. Harris, Planning and Scheduling Using MS Project 2010.
- 2. Ursula Kuehn, Integrated Cost and Schedule Control in Project Management, 2ed.,2011.

Course Title: Highway Engineering Laboratory		Course Code: 15ECVP301
L-T-P: 0-0-1	Credits: 1	Contact Hours: 2 Hrs/ week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hours: 30	Examination Duratio	n: 3 Hrs
	Unit I	

Test on coarse aggregate:

- 1. Impact test
- 2. Crushing test
- 3. Los Angeles Abrasion test
- 4. Shape test (Flakiness & elongation index and Angularity number)
- 5. Specific gravity and water absorption test
- 6. Gradation test
- 7. Bulk density and voids ratio test

Tests on Bitumen:

- 1. Penetration test
- 2. Specific gravity test
- 3. Ductility test
- 4. Softening point test
- 5. Viscosity test
- 6. Flash and fire point test
- 7. Stripping value test
- 8. Marshall stability test

Test on subgrade soil:

1. CBR Test - soaked

Traffic and pavement performance studies:

- 1. Traffic studies
- 2. Intersection studies
- 3. Bump indicator studies

- 1. Khanna, S.K., Justo, C.E.G., and Veeraragavan, A., *Highway Materials and Pavement Testing*, Nem Chand and Bros, Roorkee
- 2. IS : 2386 (part 4) (Reaffirmed 2011)- Impact & Crushing test.
- 3. IS : 2386 (part 5)-Los Angeles abrasion test
- 4. IS : 2386 (part 5)-Shape Test
- 5. IS : 2386 (Part 3)-Specific gravity and Porosity
- 6. IS 2720 (Part 16)-1997, Laboratory Determination of CBR, Rev.2. Indian standard method of test for soils
- 7. IS : 6241-1971- Stripping value of aggregate
- 8. IS 383-1997 'Indian standard specifications for coarse and fine aggregates from natural sources'.

9. IS: 73-2013, Rev.3. Indian standard specifications for paving bitumen'.

Course	Title:	Environmental	Engineering	Course Code: 15ECVP302
Laborato	ry			
L-T-P: 0-	0-1	Credits: 1		Contact Hours: 2 Hrs/ week
ISA Mar	ks: 50	ESA Mark	s: 50	Total Marks: 100
Teaching	Hours: 30	Examinati	on Duration: 3	Hrs

- 1. Determination of Solids in Sewage: Total Solids, Suspended Solids, Dissolved Solids, Volatile Solids, Fixed Solids, Settleable Solids.
- 2. Electrical conductivity and pH.
- 3. Determination of Calcium, Magnesium and Total Hardness
- 4. Determination of Alkalinity, Acidity
- 5. Determination of Sulphates, Chlorides
- 6. Determination of Dissolved Oxygen and BOD.
- 7. Determination of COD.
- 8. Determination of Residual Chlorine.
- 9. Jar Test for Optimum Dosage of Alum, Turbidity determination
- 10. Determination of Iron.
- 11. Determination of Fluorides.
- 12. Determination of MPN

- Standard Methods for Examination of Water and Wastewater, 22nd American Publication – Association, Water Pollution Control Federation, American Water Works Association, Washington DC., 2012
- 2. IS 10500:2012, Drinking Water Specification, BIS, New Delhi
- 3. IS 3025 (Part 62) : 2006 Methods of Sampling and Test (Physical & Chemical) for water and waste water, BIS, New Delhi
- 4. IS 3307:1977, Tolerance Limits For Industrial Effluents Discharged on Land and Irrigation Purpose, BIS, New Delhi

Course Title: Engineering Computation Laboratory		Course Code: 15ECVP303
L-T-P: 0-0-1	Credits: 1	Contact Hours: 2 Hrs/ week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100

Teaching Hours: 30 Examination Duration: 3 Hrs

Students must be able to write coding in python, compile it and run as applied to the elemental numerical on engineering mathematics and civil engineering subjects like Mechanics of materials, Surveying, transportation, Fluid Mechanics, Structural Dynamics, etc. They should be able to document the lab work in the form of Flow-charts, Algorithms, coding output of results in tabular/graphical formats.

Following is the list of experiments:

- 1. Introduction to Python programming language: Data types, Operators, Program flow control, User defined functions
- 2. Working with Arrays, Array operators, Array indexing and slicing, and Plotting graphs
- 3. Developing and testing a Python function to find the roots of polynomial equations using Newton Gregory forward and backward interpolation.
- 4. Developing and testing a Python function to solve systems of linear equations using Gauss Elimination method.
- 5. Developing and testing a Python function to solve linear system of equations using Gauss Seidel iterative method.
- 6. Developing and testing a Python function to implement Power method for the computation of the largest eigenvalue and corresponding eigenvector.
- 7. Developing the equations for reactions, shear force and bending moment for a simply supported beam.
- 8. Finding out the principal stress in the three dimensional state of stress at a point.
- 9. Using Power method, obtain the smallest natural frequency and the corresponding mode shape.
- **10.** Estimating the population for a given year by extrapolation using first, second, third and fourth order interpolating polynomials and comparing the prediction with actual results.

Text Book

- 1. Mark Lutz, Programming python, O'Reilly Media, 2010.
- 2. Alex Martelli, Python in a nutshell, O'Reilly Media, 2003.
- 3. M.K.Jain, S.R.K.Iyengar, R.K.Jain, 'Numerical Methods for scientific and engineering computation', New Age International Publishers, 2003.

Course Title: Mini Project		Course Code: 15ECVW301
L-T-P: 0-0-3	Credits: 3	Contact Hours: 3 Hrs/ week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration	on: 3 Hrs

(To be conducted in the beginning of 5th Semester for a period of 7 days, Viva voce conducted along with 5th semester exams)

An extensive survey training involving investigation and design of the following projects is to be conducted for 7 days. The student shall submit a project report consisting of designs and drawings.

1. General instructions

Reconnaissance of the sites and fly leveling to establish bench marks.

2. Water Supply and Sanitary Project

Examination of sources of water supply, Calculation of quantity of water required based on existing and projected population. Preparation of village map by any suitable method of surveying (like plane tabling), location of sites for ground level and overhead tanks underground drainage system surveys for laying the sewers.

3. Highway Project

Preliminary and detailed investigations to align a new road (min. 1 to 1.5 km stretch) between two obligatory points. The investigations shall consist of topographic surveying of strip of land for considering alternate routes and for final alignment. Report should justify the selected alignment with details of all geometric designs for traffic and design speed assumed. Drawing shall include key plan initial alignment, final alignment, longitudinal section along final alignment, typical cross sections of road.

NOTE:

A) For the above works to Total Station should also be used along with conventional instruments.

B) All relevant drawings to be prepared using ZW CAD.

- 1. Basak, Text Book of Surveying, 2010
- 2. Bhavikatti S.S., *Surveying and Leveling Vol-I & II*, I.K. International Publishers, 2008.
- 3. CPHEEO: Manual on water supply and treatment, Ministry of Urban Development.
- 4. Duggal, S.K., Text Book of Surveying, 2013
- 5. Garg, S.K., Water supply Engineering, 7ed., Khanna Publishers, New Delhi, 2005.
- 6. Kadiyali, L.R., Traffic Engineering and Transportation Planning, 7ed., Khanna

Publishers, New Delhi, 2011.

- 7. Khanna, S.K., and C.E.G. Justo, & A. Veeraragavan, Highway Engineering, 10ed., Nem Chand and Bros. Publishers, Roorkee, 2015.
- 8. Modi, P.N., *Sewage Treatment and Disposal Engg.*, 15ed., Std. Book House, New Delhi, 2015.
- 9. Punmia, B.C., Jain, Ashok.K. Jain, Arun.K. *Surveying Vol. 1 and Vol-2*, Lakshmi Publishers, 2015.
- 10. IRC: 37-2012, Guidelines for the Design of Flexible Pavements (Third Revision), Indian Roads Congress, New Delhi.
- 11. IRC:15-2011, Construction of Concrete Roads, Indian Roads Congress, New Delhi.
- 12. IRC: 58-2015, Guidelines for the Design of Plain jointed Rigid pavements for highway, Indian Roads Congress, New Delhi.

	o Semester	
Course Title: Advanced Geotechnical Engineering		Course Code: 15ECVC306
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/ week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 3 Hrs	
	Unit I	

th Come actor

1. Subsurface Exploration

Importance of exploration program, Methods of soil exploration: Boring, sounding tests, geophysical Methods-Electrical resistivity and Seismic refraction methods. Types of soil samples- disturbed, undisturbed, and representative samples. Stabilization of boreholes - Typical bore log. Number and depth of borings for various civil engineering structures. Location of ground water table in fine and coarse grained soils.

2. Lateral Earth Pressure

Active and Passive earth pressures, Earth pressure at rest, Earth pressure coefficients. Earth pressure theories- Rankine's and Coulomb's – assumptions and limitations, Graphical solutions for active earth pressure Cullman's and Rebhann's methods, Lateral earth pressure in cohesive and cohesionless soils, Earth pressure distribution.

3. Stability of Slopes

Types of slopes, causes and type of failure of slopes. Definition of factor of safety, Stability of finite and infinite slopes- Method of slices, Friction Circle method, Fellineous method, Taylor's stability number.

Unit II

4. Shallow Foundations

Definitions of ultimate, net and safe bearing capacities, Allowable bearing pressure. Terzaghi's and Brinch Hansen's bearing capacity equationsassumptions and limitations. Bearing capacity of footing subjected to eccentric loading. Effect of ground water table on bearing capacity. Plate load test, Standard penetration test, cone penetration test.

5. Deep Foundations

Types of Deep foundation. Piles, Drilled Piers and Cassons. Load carrying capacity of pile. Design of pile and pile groups. Batter piles and under reamed piles. Design of pile cap. Design aspects of Well foundations.

6. Foundation Settlement

Settlement Analysis, Data for settlement analysis, computation of settlement, Concept of immediate, consolidation and secondary settlements. **03 hrs** Tolerance BIS specifications for total and differential settlements of footings and rafts.

Unit III

7. Soil Stabilization and Reinforced soil

Introduction Methods of soil stabilization Reinforced soil, basic mechanism, choice of soil and reinforcement, Strength characteristics of reinforced soil, **06 hrs** Design of Reinforced earth retaining walls, Wall with reinforced backfill, Reinforced earth slab.

8. Containment of solid waste in landfills

Waste containment, Landfills, Shapes and size of landfills, Types of landfills, Impervious barriers for liners and covers, Stability of landfills, Landfill construction and operation

Text Books

- 1. Alam Singh and Chowdhary, G.R., *Soil Engineering in Theory and Practice*, 2ed., CBS Publishers and Distributors Ltd., New Delhi, 2009.
- 2. Punmia, B.C., *Soil Mechanics and Foundation Engg.*, 16ed., Laxmi Publications Co., New Delhi, 2005.
- 3. B.M. Das, *Principles of Foundation Engineering*, 6ed., Thomson Business Information India (P) Ltd., India, 2007.

Reference Books:

- 1. Braja M. Das, *Principles of Geotechnical Engineering*, 8ed., Cenage Learning India (P) Ltd., India, 2014.
- 2. Gopal Ranjan and A.S.R Rao., *Basic and Applied Soil Mechanics*, New Age International (P) Ltd., New Delhi, 2000.
- 3. Knappett J.A and R.F Craig, *Soil Mechanics*, 8ed., Van Nostrand Reinhold Co. Ltd., 2012.
- 4. Murthy V.N.S., *Principle and Practices Soil Mechanics and Foundation Engineering*, 4ed., UBS Publishers and Distributors, New Delhi, 2002.
- 5. N.N.Som and S.C.Das, *Theory and practice of foundation engineering*, PHI learning Pvt Ltd
- 6. Sashi K Gulhati and Manoj data, *Geotechnical Engineering*, Tata Mcgraw Hill
- 7. Sivakumar Babu, G. L., *Introduction to Soil Reinforcement and Geosynthetics*, Universities Press, Hyderabad, 2006.
- 8. Swami saran, Analysis and Design of Substructures: Limit State Design, 2ed

04 hrs

oxford and IBH publishing co. pvt. ltd

9. Venkatrahmaiah, C., *Geotechnical Engineering*, 3ed., New Age International (P) Ltd., New Delhi, 2006.

IS Codes

- 10. IS 8403 : 1981 (Reaffirmed 2002) Code of practice for Determination of Brearing Capacity of Shallow Foundations.
- 11. IS 2911:1985 Part I to IV (Reaffirmed 1995) Code of Practice for Design and Construction of Pile Foundations.
- 12. IRC-SP-102-2014-Guidelines for design and construction of reinforced soil walls.

Course Title: Estimation and Costing		Course Code: 15ECVC307
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/ week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 3	Hrs
	Unit I	

1. Introduction

Different type of estimates, study of various drawing attached with estimates, important terms, units of measurement, abstract, approximate 04 hrs methods of estimating buildings, cost from materials and labour equations recommended by CBRI –examples.

2. Methods of Estimation

Methods of taking out quantities and cost -center line method, long and 04 hrs short wall method or crossing method.

3. Preparation of Estimates for Building Components

Preparation of detailed and abstract estimates for the following Civil Engineering works -Buildings -Masonry structures and framed structures with flat, sloped RCC roofs. Building components (Beams, Columns and Column Footings, RCC Roof Slabs etc)

Unit II

3. Preparation of Estimates for Truss & Culverts

Wooden and Steel truss	, RCC slab culverts, I	Manhole and Septic tanks.	04 hrs
------------------------	------------------------	---------------------------	--------

4. Specifications

Definition of specifications,- objective of writing specifications, essentials in specifications, general and detail specifications of item of works in buildings, specifications of aluminum and wooden partitions, false ceiling, aluminum and fiber doors and windows, various types of claddings.

5. Rate Analysis

Definition and purpose. Working out quantities and rates for the following standard items of works -earth work in different types of soils, cement concrete of different mixes, bricks and stone masonry, flooring, plastering, RCC works, centering and form work for different RCC items, wood and steel works for doors, windows and ventilators.

Unit III

6. Measurement of Earthwork for Roads

Methods for computation of earthwork -cross sections -mid section formula, trapezoidal or average end area or mean sectional area formula, prismoidal formula, for different terrains.

7. Department (PWD) Procedures / Processes

Types of contract -essentials of contract agreement - legal aspects, penal provisions on breach of contract. Definition of the terms -Tender, earnest money deposit, security deposit, tender forms, documents and types. Comparative statements, acceptance of contract documents and issue of work orders. Duties and liabilities, termination of contract, completion certificate, quality control, right of contractor, refund of deposit. Administrative approval -Technical sanction. Nominal muster roll, measurement books -procedure for recording and checking measurements preparation of bills, Arbitration.

Text Books

- 1. Chakraborti, N., *Estimating, Costing, specification and valuation in Civil Engg.*, Calcutta, 2007.
- 2. Dutta, B.N., *Estimating and Costing in Civil Engineering: Theory and Practice Including Specifications and Valuation*, Sangam Books, 2002

- 1. Birde, G.S., Text book of Estimating & Costing, Dhanpath Rai and Sons. New Delhi, 2014.
- Kohli, D.D. and Kohli, R.C., Text Book of: Estimating and Costing (Civil), Ed.12, S. Chand Co. New Delhi, 2012.
- 3. Public Works Department Schedule of Rates 2016-17.
- 4. Rangwala S.C., *Estimating, Costing and Valuation,* Charotar Publishing House, Anand, 2009.

Open Elective -1

Course Title: Nano Composite Materials L-T-P: 3-0-0 Credits: 3 ISA Marks: 50 ESA Marks: 50 Teaching Hours: 40 Examination Duration: 3 Hrs Course Code: 15ECVE301 Contact Hours: 3 Hrs/ week Total Marks: 100

1. Introduction

Introduction to materials, traditional materials, development, properties, strength of and mechanical properties of materials, introduction, definition, classification and characteristics of composite materials - fibrous composites, laminated composites, particulate composites

2. Fiber and matrices

Carbon fibers, glass fibers, silicon carbide and organic fibers. Polymer 05 hrs matrices, metal matrices and ceramic matrices.

3. Fabrication and application

Polymer composites, metal composites and ceramic composites Application of composites: Automobile, Aircrafts, missiles, Space hardware, Electrical and electronics, marine, recreational and Sports equipment, future potential of composites.

Unit II

4. An overview of Nanoscience & Nanotechnology

Historical background – nature, scope and content of the subject – 06 hrs multidisciplinary aspects – industrial, economic and societal implications.

5. Experimental Techniques and Methods

For investigating and manipulating materials in the nano scale – electron 05 hrs microscope – scanning probe microscope – optical and other microscopes

6. Introduction to Nanomaterials

Carbon Nanotubes , synthesis and purification – filling of nanotubes – mechanism of growth – electronic structure – transport properties – mechanical and physical properties – applications

Unit III

7. Introduction to nano-composite

Nano composite polymer matrix, nano composite ceramic matrix, nano composite metal matrix Applications in engineering, future scope of nano-composite, research, training in development of nano-composite materials.

8. Safety and environmental aspects

Safety and environmental aspects of nano-materials, future challenge, cost 03 hrs optimization and fabrication process of nano composite materials

Text Book:

- 1. Hull and Clyne, *Introduction to composite materials*, Cambridge University Press, 2nd edition, 1990.
- NANO: The Essentials Understanding Nanoscience and Nanotechnology; T Pradeep; Tata McGraw-Hill India (2007)

References:

- 1. Di Ventra, et al (Ed), Introduction to Nanoscale Science and Technology [Series: Nanostructure Science andTechnology]; Springer (2004).
- 2. K.K.Chawla, Composite Science and Engineering, Springer Verlag 1998.
- Nanotechnology Demystified: Linda Williams & Wade Adams; McGraw-Hill (2007)
- 4. Richard Booker & Earl Boysen; Wiley, Nanotechnology, (2005).
- 5. Richard Booker & Earl Boysen; Wiley, Nanotechnology, (2005).
- 6. Robert M. Jones, *Mechanics of Composite Materials*, McGraw Hill Kogakusha Ltd. 1998

	Program Elec	ctive -1
Course Title: Pavement	Engineering	Course Code: 15ECVE303
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/ week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 3 Hrs	
	Unit I	

1. Introduction to pavement system

Desirable characteristics of pavement, types and components, Difference between Highway pavement and Air field pavement, Functions of sub-grade, sub base – Base course – surface course, comparison between Rigid and flexible pavement.

2. Stresses and Deflections in Flexible Pavements

Factors affecting design and performance of flexible and rigid pavements – Pavement design factors, loads – axle load distribution, ESWL, EWL,VDF due to varying loads and CSA. Application of elastic theory, stresses, deflections / strains in single, two and three layer system, Applications in pavement design.

3. Pavement Design Approach

Flexible pavement design: Empirical, semi- empirical and theoretical design approaches, principle, advantages and application. Determination of ESWL, EWL for dual and dual tandem wheel loads in Rigid pavements

Unit II

4. Flexible Pavement Design

Design steps by CBR method as per IRC, outline of other common design 07 hrs methods such as AASHTO and Asphalt Institute methods.

5. Rigid Pavement Design

General design principle, Stresses in rigid pavements, stresses due to wheel loads and temperature variations, design of cement concrete pavements as per IRC guidelines. Design features of CRCP, SFRC and ICBP.

Unit III

6. Flexible Pavement Failures, Maintenance and Evaluation

Types of failures, causes, remedial/maintenance measures in flexible pavements – Functional Evaluation by visual inspection and unevenness measurement by using different techniques - Structural Evaluation by Benkelman Beam Deflection Method, Falling weight deflectometer.

7. Rigid Pavement Failures, Maintenance and Evaluation

Types of failures, causes, remedial/maintenance measures in rigid pavements. Definition and concepts of condition and evaluation surveys, **05 hrs** Present serviceability index, methods of measuring condition.

Text Books

- 7. Khanna, S.K., and C.E.G. Justo, & A. Veeraragavan, *Highway Engineering*, 10ed., Nem Chand and Bros. Publishers, Roorkee, 2014.
- 8. Yoder E.J. and Witczak, Principles of pavement design, 2ed., John Wiley and Sons, 1975.

- 1. IRC 101-1988- Guidelines for Design of Continuously Reinforced Concrete Pavement with Elastic Joints, Indian Roads Congress, New Delhi.
- 2. IRC 59 1976- Tentative Guidelines for Design of Gap Graded Cement Concrete Mixes for Road Pavement, Indian Roads Congress, New Delhi.
- 3. IRC 81-1997- Guidelines for strengthening of flexible road pavements using Benkelman beam deflection technique, Indian Roads Congress, New Delhi.
- 4. IRC: 37-2012 -Guidelines for the Design of Flexible Pavements (Third Revision), Indian Roads Congress, New Delhi.
- 5. IRC: 58-2015- Guidelines for the Design of Plain jointed Rigid pavements for highway, Indian Roads Congress, New Delhi.
- 6. T. Fwa, '*The Handbook of Highway Engineering*', Taylor & Francis Group, Newyork, 2006.

Course Title: Design of Hy	draulic Structures	Course Code: 15ECVE304
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/ week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 3 Hrs	

Unit I

1. Reservoir sedimentation

Introduction, the process of erosion, factors affecting erosion. Trap efficiency and numerical problems. Reservoir sedimentation, life of a reservoir.

2. Gravity Dams

Introduction, forces acting on a gravity dam, types of joints. Stress analysis in gravity dam, Elementary & practical profiles of a gravity dam, stability analysis and drainage galleries in gravity dams

Unit II

3. Earth Dams

Introduction, types of Earth dams, Design criteria for Earth dams, causes of failure of earth dams, section of dam, preliminary design criteria and problems on it, control of seepage through earth dams, Safety measures.

4. Cross Drainage works and Spillways

Types of cross drainage works. Features of design of cross drainage works. Design of siphon aqueduct. Introduction, essentials of a spillway, spillway components, factors affecting type & design of spillways. Ogee spillway. Energy dissipation below spillways.

Unit III

5. Diversion Head Works

Introduction, Khosla's theory, method of independent variables, elements of design for surface flow. Design of vertical drop weir on Bligh's theory. Function of canal head regulator.

Text Books

- 1. Modi, P.N., *Irrigation, Water Resources, and Water Power Engineering*, Standard Book House, New Delhi, 2004.
- 2. Punmia, B.C. and Pande Lal, *Irrigation and Water Power Engineering*, 16ed., Laxhmi Publications, New Delhi, 2009.
- **3.** Sharma, R.K., *Text Book of Irrigation Engineering and Hydraulic Structures*, S. Chand, New Delhi, 2002.

- 1. Garg, S.K., *Irrigation Engineering and Hydraulic Structures*, Khanna Publications, New Delhi, 2005.
- 2. Madan Mohan Das & Mimi Das Saikia, *Irrigation and Water Power Engineering*, PHI Learning Pvt. Ltd., New Delhi, 2009.
- 3. N. Balasubramanya, *Hydraulic Structures & Irrigation Design Drawing* Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2015
- 4. Sathya C, Narayana Murthy, *Design of Minor Irrigation and Canal Structures* Wiley eastern limited, New Delhi, 1990.

Course Title: Geotechnical Engineering Laboratory		Course Code: 15ECVP304
L-T-P: 0-0-1	Credits: 1	Contact Hours: 2 Hrs/ week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hours: 30	Examination Duration: 3 Hrs	

List Of Experiments

- 1. Tests for determination of specific gravity and moisture content.
- 2. Grain size analysis of soil sample (sieve analysis).
- 3. In situ density by core cutter and sand replacement methods.
- 4. Consistency Limits Liquid Limit (Casagrande and Cone Penetration Methods), plastic limit and shrinkage limit.
- 5. Standard Proctor Compaction Test and Modified Proctor Compaction Test.
- 6. Coefficient of permeability by constant head and variable head methods.
- 7. Strength Tests
- a) Unconfined Compression Test.
- b) Direct Shear Test.
- c) Triaxial Compression Test (undrained).
- 8. Consolidation Test- Determination of compression index and coefficient of consolidation.
- 9. a) Demonstration of miscellaneous equipments such as Augers, Samplers, Rapid Moisture meter, Proctor's needle.
 - b) Demonstration of Hydrometer Test.
 - c) Demonstration of Free Swell Index and Swell Pressure Test
 - d) Demonstration of determination of relative density of sands.
 - e) Laboratory vane shear
- 10. Open ended experiments to use soil as foundation material and construction material.

- 1. Braja M. Das., Soil Mechanics Laboratory Manual, 9ed., Oxford University Press, 2016.
- 2. Lambe T.W., Soil *Testing for Engineers*, Wiley Eastern Ltd., New Delhi.
- 3. Shamsher Prakash and P.K.Jain, *Engineering soil testing*, NEM Chand and Bros, Roorkee.
- 4. SP-36-1987-Compendium of Indian standard on soil engineering.

Course Title: Computer Ai	ded Design Laboratory	Course Code: 15ECVP305
L-T-P: 0-0-1	Credits: 1	Contact Hours: 3 Hrs/ week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hours: 30	Examination Duration: 3	Hrs

Students should be able to write coding in MS Excel, compile the same and run, for simple numerical in various civil engineering fields. They should be able to document the laboratory work in the forms of Flow charts, Algorithms, coding, output of results in tabular/graphical formats.

Also they should be able to use the available software (SAP) to analyse a simple structures and present the results in tabular/ graphical formats and generate reports.

Using MS Excel to solve Civil Engineering Problems

Structural Engineering

- 1. Calculating and plotting shear force and bending moment diagrams for cantilever, simply supported and fixed beams subjected to a combination of loads.
- 2. Calculation of deflection diagrams for cantilever and simply supported beams subjected to single point loads and UDL.
- 3. Design of singly and doubly reinforced rectangular sections subjected to bending moment and shear force.
- 4. Stability of dams.

Surveying

- 5. Balancing of closed traverse using transit rule
- 6. Computation of volume of earthwork in cutting and filling.
- Setting out a horizontal curve by different methods (i) Offset from long chord (ii) Perpendicular offset from tangents (iii) Radial offsets from tangents

Transportation Engineering

- 8. Design of super elevation
- 9. Design of horizontal and vertical alignment

Geotechnical Engineering

- 10. Grain size distribution and grading of soil
- 11. Calculation of shear parameters

Fluid Mechanics

12. Most economical section for a canal
- 13. Water hammer analysis
- 14. Head over Ogee weir

Use of Structural Analysis Software

The student shall analyse the following structures in SAP:

- 15. Plane truss subjected to dead loads, live loads and wind loads
- 16. Continuous beam with at least three spans subjected to dead loads and live loads
- 17. Plane frame subjected to dead loads, live loads and lateral loads.
- 18. Analysis of two bay two storey structure under static loading conditions (concrete frame).
- 19. Analysis of long span steel truss bridge.

Text Book

1. Microsoft Excel 2010 Formulas, John Walkenbach, Wiley-India pvt. Ltd.

Course Title: Construction Management Laboratory	on Engineering &	Course Code: 15ECVP306
L-T-P: 0-0-1	Credits: 1	Contact Hours: 2 Hrs/ week
ISA Marks: 80	ESA Marks: 20	Total Marks: 100
Teaching Hours: 30	Examination Duratio	n: 3 Hrs

- 1. Introduction to Primavera P6
- 2. Develop a Work Break-down Structure (WBS) for a residential building of 3 storey.
- 3. Create and add activities to the WBS and assign relationships as per the logic of the precedence diagram for the residential building. Determine the duration of the project.
- 4. Apply constraints and filters to the developed activities to develop two-week, one-month and three-month look-ahead schedule.
- 5. Develop different roles and resources in the resource library and assign to the various activities along with their unit rates.
- 6. Develop the cost-loaded schedule and create baseline of the project.
- 7. Perform earned value analysis to track and monitor the project.
- 8. Conduct simulations in Microsoft Visio process simulator to determine most efficient excavation cycles on large scale projects.
- 9. Conduct Monte-Carlo simulation in Microsoft Excel to perform risk analysis for the project.

- 1. Kim Heldman & William Heldman, Microsoft Excel for Project managers 2007.
- 2. P. Harris, Planning and Scheduling Using Primavera P6 2010.

Course Title: Minor Project		Course Code: 15ECVW302
L-T-P: 0-0-6	Credits: 6	Contact Hours: 6 Hrs/ week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 3 l	Hrs

Functional and architectural design of a building from, but not restricted to one of the following category: Educational institutions, Administration buildings, Industrial buildings, Commercial buildings, Public facilities such as bus terminus, rail station, hospitals, cinema halls, auditorium etc.

The students shall identify a building and collect requirements for the building, carry out functional design through bubble diagrams and circulation diagrams and consider aspects such as orientation, aspect, best use of site conditions. The project shall include calculation of loads and analysis and design of components including foundations, columns, beams and slab. Simplified computer aided analysis should be performed.

The student shall submit the following:

- Identification of Project.
- Bubble diagrams and Circulation diagrams
- Logic used to arrive at room dimensions based on ergonomics, furniture sizes and placement, equipment etc.
- Architectural plans, elevations, sections and building services fit for submission to approving authorities
- Preliminary soil investigation.
- Results of structural analysis and design of selected components
- Drawings showing structural details of components designed
- Develop WBS, calculate productivity, create precedence diagram, develop cost-loaded schedule and create a baseline.
- Collection of progress data, update the schedule, perform earned value analysis.

Expected Deliverables:

Identified project details, bubble diagrams and circulation diagrams, complete architectural plans, Soil investigation report, Final structural design drawings and calculations, detailed WBS, productivity calculations, precedence diagram, Initial cost-loaded schedule (Primary Baseline), 1st progress report and earned value report.

- 1. IS 1172 1971 Code of Basic Requirements for Water Supply, Drainage and Sanitation (Second Rev.), BIS.
- 2. IS 1642 1960 Code of Practice for Fire Safety in Buildings (General): Materials and Constructions in Buildings, BIS.
- 3. IS 1648 1961 Code of Practice for Fire Safety in Buildings (General): Fire fighting Equipment and its maintenance, BIS.
- 4. IS 1742 1972 Code of Practice for Building Drainage, BIS.
- 5. IS 2065 1972 Code of Practice for Water Supply in Buildings (First Rev.) BIS.
- 6. IS 3861 1975 Method of Measurement of Plinth, Carpet and Rentable Area of Buildings(First Rev.) BIS.
- 7. IS 4326 1993 Earthquake Resistant Design and Construction of Buildings Code of Practice (Second Rev.)
- 8. IS 7564 1974 Recommendations for Co-ordination of Dimensions in Buildings Arrangement of Building Components.
- 9. IS:456-2000, Plain and Reinforced Concrete Code of Practice, BIS, New Delhi, 2000
- 10. IS:875 (Part 1) 1987, Code of Practice for Design Loads (Other than Buildings and Structures Dead Loads, BIS, 1987
- 11. IS:875 (Part 2) 1987, Code of Practice for Design Loads (Other than r Buildings and Structures Live Loads, BIS, 1987.
- 12. Kraners, Sieverts and Partners. 1977. Open Plan Offices, UK: McGraw Hill. (English Translation Ritchie, J.L.)
- 13. Leonard, M. and Cunliffe, R. 1962. Office Buildings, New York: Reinhold
- 14. National Building Code of India 2005 (NBC 2005), Bureau of Indian Standards, New Delhi
- 15. SP:1983 National Building Code of India (First Rev.) BIS.
- **16.** Subramaniyam, T.N. (edited by) n.d. Architects, Engineers and Builders Handbook, Madras: Fairhaven Printers.

	, unu o se	
Course Title: Design of S	Steel Structures	Course Code: 15ECVC401
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/ week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration	on: 3 Hrs
	Unit I	

7th and 8th Semester

1. Introduction

Advantages and disadvantages of Steel structures, Loads and load combinations. Structural forms, Design concepts. IS code provisions. Fire resistance and ductility of steel. Introduction to working stress method.

2. Structural Fasteners

Bolted and welded connections, Strength of bolt and bolted joint. Design of bolted connections. Bracket connections. Welded connections, fillet and Butt welds, strength of a weld, Bracket connections.

3.Design of Tension Members

Axially loaded tension members and their connections, design of lug angles, Design 05 hrs of truss ties and joints.

Unit II

4. Design of Compression Members

Angle struts, Columns including built up sections, Laced and Battened systems. 09 hrs Column splicing, column bases- simple slab base, gusseted base.

5. Design of Flexural Members

Simple and built up sections. Laterally supported and unsupported compression 06 hrs flange. Web crippling and web buckling,

Unit III

6. Design of Truss

Wind load, dead load and other loads wind pressure, calculation of loads on nodes, design of members of the roof Truss (Forces in the members to be given), Design of purlins 05 hrs

7. Design of Welded Plate Girders

Introduction, Design of Plate Girders (without intermediate stiffeners) 05 hrs

Text Book

- 1. Bhavikatti, S.S, Design of Steel Structures, 5ed., New Age International, 2017
- 2. Duggal S.K , *Design of Steel Structures*, 2ed., Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2014.

References

- 1. Subramanian, N., *Design of Steel Structures*, 1ed., Oxford University Press, New Delhi, 2014.
- 2. IS: 800: 2007 Guidelines for Design of Structural Steel.
- 3. IS: 875 (Part 3) 1987 Code of Practice for Design Loads (Other than Earthquake) for Buildings and Structures : Wind Loads.

Course Title: Design of S	Sub-structures	Course Code: 15ECVE401
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/ week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duratio	on: 3 Hrs
	Unit I	

1. Soil Exploration

Subsurface exploration programme for civil engineering projects. Interpretation of 02 hrs soil parameters. Tests on disturbed and undisturbed soil samples, Soil exploration report.

2. Shallow Foundations

Design Criteria. Types of shallow foundations. Bearing capacity theories. Bearing 07 hrs capacity from field tests. Use of different foundation models. Design of individual and combined footings. Design of raft foundations - Conventional methods. Modulus of subgrade reaction. Beams on elastic foundations. Analysis of footings by Finite Difference.

3. Pile Foundations

Load carrying capacity of pile. Design of pile and pile groups. Batter piles and under reamed piles. Design of pile cap. Design of axially and laterally loaded piles.

3. Drilled Piers and Caissons

Construction, advantages and disadvantages of drilled piers. Design of open, 06 hrs pneumatic and floating caissons. Advantages and disadvantages of floating caissons.

4. Well Foundation

Different shapes and characteristics of wells. Components of well foundation. 05 hrs Forces acting on well foundation. Sinking of wells. Causes and remedies of tilts and shifts.

5. Foundations on Expansive Soils

Definition, Identification, Structure, Index properties of expansive soils, Swell potential and Swell pressure, Free swell, CNS layer, foundation treatment for structures in expansive soil.

Unit III

6. Machine Foundations

Basic terminologies. Design criteria for machine foundations. Vibration analysis. Methods of analysis. Determination of soil parameters. Foundations for reciprocating machines. Foundations for impact type of machines. Vibration isolation.

II -IV Year B.E. (Civil Engineering) Curriculum - 2015-19

05 hrs

06 hrs

05 hrs

7. Foundations for Special Structures

04 hrs

Foundations for tall structures - Water tanks, Chimneys, Antenna towers and Radar units.

Text Books

- 9. Bowles. J. E, *Foundation analysis and design*, 5ed, McGraw-Hill Company, Inc, New York, 2012.
- 10. Das. B.M, *Principles of Foundation Engineering*, 8ed., Thomson Business Information India (P) Ltd., India, 2014.
- 11. Murthy V.N.S., *Soil Mechanics and Foundation Engineering*, 4ed., UBS Publishers and Distributors, New Delhi, 2016.
- 12. Swami Saran, *Analysis and Design of Substructures: Limit State Design*, 2ed, oxford and IBH publishing co. Pvt. Ltd., 2006.

Reference Books:

- 6. Ghosh K.M., Foundation Design in Practice, PHI Learning Pvt. Ltd., New Delhi, 2009.
- 7. Nainan Kurian., *Modern Foundations: An Introduction to Advanced Techniques*, Tata McGraw Hill Education Pvt. Ltd, New Dehli, 1982.
- 8. Som N. N., Das S. C., *Theory and Practice of Foundation Design*, PHI Learning Private Limited, New Delhi, 2009.
- 9. Srinivasulu, P. and Vaidyanathan, C.V., *Hand Book of Machine Foundations*, 1ed, Tata McGraw Hill Education Pvt. Ltd, New Dehli , 2002.
- 10. Tomlinson, M.J., Pile Design and Construction Practice, 6ed, CRC Press, 2014.
- 11. Winterkorn, H. F. and Fang H. Y., *Foundation Engineering Hand Book*, 2ed, Van Nostrand Reinhold Company, 1991.

IS Codes:

- 1. IS 2911 (Part 1/Sec 3): 2010 Design And Construction Of Pile Foundations
- 2. IS: 2950 (Part I) -1981 (Reaffirmed 2008) Code Of Practice For Design And Construction Of Raft Foundations

Cou	rse Title: Advanced RC	C Structures	Course Code: 15EC	VE402
L-T-	-P: 3-0-0	Credits: 3	Contact Hours: 3 Hr	s/ week
ISA	Marks: 50	ESA Marks: 50	Total Marks: 100	
Tea	ching Hours: 40	Examination Durat	tion: 3 Hrs	
		Unit I		
1. D Intro load	esign of Footings aduction, load for footing and uniaxial moment, des	, Design of isolated sign of pedestal.	rectangular footing for axial	05 hrs
2. D Desi trape 3. D Desi	esign of Combined Footi gn of strap footing, D zoidal Combined Footing esign of Raft Footing gn of raft footing as per IS	ng esign of Combined gs. S:456:2000 Guideline	footings: Rectangular and	05 hrs 05 hrs
	0 0 1	Unit II		
4. R	etaining Walls			
Desi	gn of Cantilever and Cou	nter-fort type of retain	ing walls.	08 hrs
5. D	esign of Portal Frame			07 hrs
Desi benc	gn of RCC Portal Frame ling moment, shear force a	e, Design of beam, co and torsion as per IS:	blumn, footing for the given 456: 2000 Guidelines	07 1115
		Unit III		
6.De Bene	sign of continuous beam ding moment envelops mo	ns oment redistribution as	s per IS Code provisions	05 hrs
7. D Desi wate	esign of Water tanks gn of circular and rectang r tanks and design of Intz	gular water tanks, rest tank.	ing on ground and over head	05 hrs
Text	t Books			
1. 2.	Jain, A.K., <i>Limit State M</i> Punmia B.C., Ashok H <i>Reinforced Concrete</i> , La	<i>Method of Design</i> , 7ed Kumar Jain, and Aru axmi Publications Pvt	., Nemichand and Bros., Roord n Kumar Jain, <i>Limit State</i> . Ltd., New-Delhi-2016.	kee, 2012. Design of

- 1. Bhavikatti S.S, *Advanced RCC Design (RCC Vol-II)*, New Age International Publishers, New Delhi, 2008.
- 2. Krishnaraju, N., *Design of Reinforced Concrete Structures (IS: 456 2000)*, 3ed., CBS Publishers, New Delhi, 2016.
- 3. Robert Park & Thomson, Reinforced Concrete, John Wiley & Bros Pvt. Ltd, 1975
- 4. Unnikrishnan Pillai S. and Devdas Menon, Reinforced Concrete Design Third

Edition, Tata McGraw Hill Education Pvt Ltd., New-Delhi-2017.

- 5. IS:456-2000, *Plain and Reinforced Concrete Code of Practice (Fourth Revision)*, BIS, New Delhi, 2000
- 6. SP 16: Design Aids for Reinforced Concrete to IS 456:1978.

Course Title: Design Stu Structures	dio – Steel and RC	Course Code: 15ECVP401
L-T-P: 1-0-1	Credits: 2	Contact Hours: 6 Hrs/ week
ISA Marks: 20	ESA Marks: 80	Total Marks: 100
Teaching Hours: 40	Examination Duratio	n: 3 Hrs

Unit – I

1. RCC Detailing

- a. Drawing and detailing of beams (Simply supported and Continuous beam), slab (One way and two way), column, footing (Isolated and combined) and stairs (Dog legged)
- b. Retaining walls cantilever and counter fort retaining walls
- c. Water tanks Over head (Intz tank)
- d. Portal frame Single bay

Unit – II

2. Drawings to be prepared for given structural details

a. Connections: Bolted and welded, beam-beam, Beam-column, seated, stiffened and un-stiffened.

- b. Columns: Splices, Column-column of same and different sections. Lacing and battens
- c. Column Bases: Slab base and gusseted base.
- d. Roof Trusses: At supports and different nodes.

Text Books

- Bhavikatti, S.S., Design of Steel Structures by Limit State of Method As per IS 800-2007, I.K. International Publishing House Pvt. Ltd., New Delhi, 2009
- 3. Ramachandra, *Design of Steel Structures*, Vol- 1 & 2, Standard Book House, New Delhi, 2009.
- 4. Subramanian, N., *Design of Steel Structures*, Oxford University Press, New Delhi, 2008.
- 5. Kazimi and Jindal, *Design of Steel Structures*, 2ed., Prentice Hall of India, New Delhi, 2000.

References

- 1. Arya and Ajmani, *Design of Steel Structures*, Nem Chand Bros, Roorkee, 1977.
- 2. Negi, L.S., *Design of Steel Structures*, Tata McGraw Hill Publishers, 2004.
- 3. SP 6 (Part 1) Year: 1984 Handbook for structural engineers Structural

20 hrs

12 hrs

steel sections

- 4. SP: 34 Year1987 Handbook on Concrete Reinforcement and Detailing
- 5. IS:800-2007 Code of Practice for general Construction in Steel.

	,,			
Course Title: Finite Eleme	nt Methods	Course Code:	15ECVE403	
L-T-P: 3-0-0	Credits: 3	Contact Hour	s: 3 Hrs/ week	
ISA Marks: 50	ESA Marks: 50	Total Marks:	100	
Teaching Hours: 40	Examination Dura	ation: 3 Hrs		
	Unit I			
1. Introduction to Finite	Element method.			
Introduction, Basic conc elasticity, Steps in Finite Ele	epts on finite el ement Analysis.	lement analysis, In	troduction to	05 hrs
2. Element Properties.				
Natural Coordinates, Trian Serendipity Elements, Solic of Isoparametric Elements Integration: Two and Three	gular Elements, Rec l Elements, Isoparam , Numerical Integra Dimensional Worked	ctangular Elements , netric Formulation , St tion: One Dimension l out Examples	Lagrange and tiffness Matrix al, Numerical	05 hrs
3. Finite Element Formula	tion Technique.			05 hrs
Virtual Work and Vari Method.	ational Principle,	Galerkin Method,	Rayleigh-Ritz	
	Unit II			
4. Analysis of Frame Struc	tures			
Stiffness of Truss Members Element Analysis of Contin	, Analysis of Truss, uous Beams.	Stiffness of Beam M	embers, Finite	08 hrs
5. FEM for Two and Three	e Dimensional Solids	S		10 hrs
				10 11 5

Constant Strain Triangle, Linear Strain Triangle, Rectangular Elements , Numerical Evaluation of Element Stiffness , Computation of Stresses, Geometric Nonlinearity and Static Condensation , Axisymmetric Element, Finite Element Formulation of Axisymmetric Element, Finite Element, Formulation for 3 Dimensional Elements Worked out Examples

Unit III

6. FEM Program

Structure of FEM program for FEM Analysis, Description of different modules, Pre 07 hrs and post processing.

Text Books

- 1. Reddy J.N., *An Introduction to Finite Element Method*, 3ed., McGraw-Hill Publishing Company Inc, New York, 2017.
- 2. Krishnamoorthy C. S., *Finite Element Analysis*, Tata McGraw-Hill Education Pvt. Ltd, New Delhi, 2004.

- 1. Rajasekaran, S., Finite Element Analysis in Engineering Design, S. Chand Group, 2006.
- 2. Pandit G.S. and Gupta, S.P., *Structural Analysis, A Matrix Approach*, 2ed., Tata McGraw-Hill Education Pvt. Ltd, New Delhi, 2008.
- 3. Cook R.D., Malkus D.S., Plesha M.E. and Witt R.J. Concepts And Applications Of Finite Element Analysis, 4ed., John Wiley and Jous, Inc., 2013.
- 4. Bathe K.J., Finite Element Procedures, Klaus-Jürgen Bathe; 2ed., 2014.
- 5. Bhavikatti S.S., *Finite Element Analysis*, New Age International Publication Pvt. Ltd., New Delhi, 2010.
- 6. Daryl L. Logan., *A first course in the Finite Element Method*, 5ed, Cengage Learning, 2010.
- 7. Tirupathi R. Chandrupatla and Ashok D. Belegundu, *Introduction to Finite Elements in Engineering*, 4ed, Pearson, 2011

Course Title: Horizontal and Vertical Construction Course Code: 15ECVE405 Methods

L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/ week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration	on: 3 Hrs
	Unit I	

1. Planning for earthwork construction

Planning, Graphical presentation of Earthwork, Earthwork quantities, Mass 05 hrs diagram and its applications, Pricing of earthwork operations.

2. Compaction and Stabilization Equipment

Compaction of soil and rock, Types of compaction equipment, roller production 05 hrs estimating, Dynamic compaction, Soil stabilization, stabilizing soils with lime, Cement-soil stabilization.

3. Excavators and loaders

Hydraulic Excavators, selection of front shovels, Calculating shovel production, height of cut effect on shovel production, angle of swing effect on shovel production, Loaders - introduction, Loader buckets/attachments, operating specifications, Loader production rates, Calculating wheel loader production, Calculating track loader production. Loader safety.

Unit II

4. Drilled Shaft Foundations

Introduction, Construction of drilled shafts - dry method of construction, casing 05 hrs method of construction, wet construction method, Installation of casings, Steel cages, Placement of concrete, Dewatering, open dewatering systems, deep well systems, well point systems - Types, techniques, Basement waterproofing systems.

5. Formwork Systems

Introduction, formwork materials, shores and scaffolding, Vertical formwork systems - Conventional wall/columns forming systems, Modular panel column form, adjustable wraparound column forms, circular steel forms for round columns, wall panel system, single sided wall formwork, formwork ties, Horizontal formwork systems - conventional wood form and metal systems, cuplock type scaffolding system, slab flex system, tunnel form, flying formwork system, crane-jumped formwork, automatic climbing formwork, self-rising core system.

6. Concrete and Conveying Systems

Introduction, Concrete - Mixers, Concrete plants, Pre-tensioning and Post tensioning, Transporting and handling - Concrete chute, concrete mixer with lift, concrete skip, truck mixer concrete pumps, concrete belt conveyors, concrete pump truck, trailer pump and pipeline with tower-mounted boom, trailer mounted pumps, pipeline system, mobile concrete placing booms, finishing.

05 hrs

06 hrs

Unit III

7. Cranes

Major cranes types, Mobile cranes, Crawler cranes, Telescoping-boom truckmounted cranes, Lattice-boom truck-mounted cranes, Rough-terrain cranes, modified cranes for heavy lifting, crane booms, lifting capacities of cranes, Rated loads for lattice and telescopic boom cranes, Tower cranes – classifications, operation, Tower crane selection, Rated loads for tower cranes, rigging, slings, safety.

Text Books

- 1. Peurifoy, *Construction Planning, Equipment & Method*, 7ed., Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2010.
- 2. Basem M, Construction Technology for High-rise Buildings-Handbook, 2014.

- 1. Stephens W. Nunnally, *Managing Construction Equipment*, 2ed, Pearson Publications, USA, 2000.
- 2. Gupta B. L., Amit Gupta, *Construction Management and Machinary*, 5ed, Standard Publications, New Delhi, 2015.

Course Title: Construction	Economics & Management	Course Code: 15ECVE404
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/ week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 3 Hrs	
	Unit I	

1. Project Organization

Introduction, Forms of business organizations, Structure of construction organization, 07 hrs organizing for project management, management levels, traits of a project manager and project coordinator, Factors behind the success of a construction organization.

2. Construction Economics

Introduction, economic decision making, Time Value of Money, Cash Flow Diagrams, 10 hrs Using Interest Tables, Evaluating Alternatives by Equivalence, Effect of Taxation on Comparison of Alternatives, Effect of Inflation on Cash Flow, Evaluation of Public Projects: Discussion on Benefit-cost Ratio

Unit II

3. Construction Contract

Introduction, Contract Documents, Classification of Engineering Contracts, CPWD 03 hrs Contract Conditions, FIDIC Form of Contract Agreement, Subcontracting.

4. Construction Material Management

Introduction, Material procurement process in construction organization, material management functions, inventory management.

5. Construction Project Success: Factors 03 hrs Introduction, project performance measurement, criteria for project performance Evaluation, project performance attributes, effect of other elements on project Performance.

Unit III

6. Construction Accounts Management

Introduction, Principles of Accounting, Accounting process, Construction Contract Revenue Recognition, Construction contract status report, Limitations of accounting, Balance Sheet, Profit and Loss Account, Working Capital, Ratio Analysis, Funds Flow 06 hrs Statement.

7. Construction Equipment Management

Introduction, Plant and Equipment Acquisition, Depreciation, Methods of Calculating Depreciation, Example of Depreciation Calculations for Equipment on Site, The Effect of Depreciation and Tax on Selection of Alternatives, Evaluating Replacement Alternatives.

07 hrs

04 hrs

Text Books

1. Kumar Neeraj Jha, *Construction Project Management – Theory and Practice*, 2ed., Pearson Publication, 2015.

- 1. Shrivastava U. K., *Construction Planning and Management*, Galgotia Publication Pvt. Ltd., New Delhi-2007.
- 2. Verma Mahesh, *Construction planning and Management*, Metropolitan Book Co., Delhi, 1982.
- 3. Seetharaman S., *Construction Engineering and Management*, Umesh Publications, New Delhi, 2006.

Course Title: Constructi	on Quality Management	Course Code: 15ECVE406
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/ week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration	: 3 Hrs
	I∃nit — I	

1. Concept of Quality

Definition of Quality, Historical background of quality control, difference between Quality control and Quality Assurance (QA/QC). Total quality control (TQC) and Total Quality Management (TQM), Need for TQM in construction industry, TQM philosophy: Concept of Deming, Juran, Crosby, Imai, Ishikawa, Taguchi, Shingo philosophies. Models and frame works.

2. Quality Control Tools

Cause and Effect diagrams, Check sheets, Control charts, Data collection, Flow charts, Histograms, Pareto analysis, Pie charts, Run chart, Scatter diagrams and Control charts (Concepts and examples in construction projects), Project Rework Reduction Tool (PRRT) software.

3. Development of Human Resource and Quality Circles

Training and development, technical and managerial competencies necessary for achieving quality Cultural change, Innovation and learning, Leadership and commitment, Philosophy of quality circles, Organization of Quality Circles, Stages of Adoption, Areas of Interest to Quality circles, Essential Requirements for the success of circles, Gains from circles. Inspection reports, Monitoring and

Control, 360 feedback for quality.

Unit – II

4. Study of ISO 9001- Quality System Standards.

Purpose of ISO Standards. Difference between ISO 9001 and ISO 9004.Certification process for ISO 9001. Certification bodies involved. Eight Principles of ISO-Basic meaning, Quality management system requirements.

5. Quality Management System Procedures

Introduction, procedure for management review, Format for writing procedures, Procedure for preparing Quality plans/ work Instructions, Contract review, Design control, Document and data control, Document numbering system, Change request, purchasing, control of customer supplied product, product identification and traceability, process control, inspection and testing, measuring and test equipments, the control of non- conforming product, corrective and preventive action, handling, storage, packaging and delivery, control of quality records.

6. Work Instructions

Introduction -Document and Data Control, Material Procurement, Material Handling, Tendering and Estimating, Planning, Design, Training, Plant and Equipment, Bar Bending Schedule, Concrete Works, Earthworks and Compaction, Soil Investigation works, Survey works, Concrete Repair Works, Road Works, Painting Works, Water Proofing works, Drainage Works, Quality Assurance and Control, Patching and Transportation of Concrete.

Unit – III

7. Method Statement

Introduction, Concrete Works, Earthworks and Compaction, General Soil Investigation works, Survey works, Concrete Repair Works, Concrete Demolition 04 hrs Works, Road Works, Fencing works etc.

8. Job Description

Introduction, Job Description of: Managing Director, Project Manager, Site Manager, Site Engineer, QA/QC Engineer, Foreman, Typist/Clerk, Design Engineer, Planning Engineer.

9. Introduction to Six Sigma

Introduction, Definition of Six Sigma, evolution – Historical aspects, Six Sigma methodology, Leadership principles, Six Sigma team, Six Sigma in construction projects 03 hrs

Text Books

- 1. Bagchi, ISO 9000 Concepts, Methods, Implementation, Wheeler Publishing
- 2. Gary E. MacLean, *Documenting Quality for ISO 9000 and other Industry Standards*, Tata McGraw-Hill Publishing Company Limited, 1993.
- 3. Girdhar J. Gyani, *Training Manual on ISO 9000-2000 and* TQM, Raj Publishing House, 1994.
- 4. Mohamed Zairi, *Total Quality Management for Engineers*, Aditya Books Private Limited.
- 5. P.L.Jain, *Quality Control and Total Quality Management*, Tata Mcgraw Hill Publicaions
- 6. Rajendra Prasad, D.S., *Quality Management System in Civil Engineering ISO 9001-2000*, Sapna Book House, Bangalore, 2000.

References

- 1. Elwyn E. Seelye, *Data Book for Civil Engineers Field Practice*, John Wiley & Sons, inc., 1957.
- 2. Feigenbaum Armand V., "*Total Quality Control*", McGraw Hill Inter- national Edition, 1991
- 3. John L. Hardesky, *Productivity and Quality Improvement*, McGraw Hill Book Company
- 4. Neville, A.M., Properties of Concrete, ELBS Publications.

IS Codes

- 1. IS: 456-2000, *Indian Standard Specifications for Plain and Reinforced Concrete Code of Practice*, 4th Revision, Bureau of Indian Standards.
- 2. IS: 383-1990, Indian Standard Specifications for Coarse and Fine Aggregates from Natural sources for Concrete, Bureau of Indian Standards.
- 3. ISO 9001-2015, Quality Management System in Civil Engineering
- 4. ISO 9004:2018, *Quality management Quality of an organization Guidance to achieve sustained success*

Course Title: Solid Waste Ma	anagement	Course Code: 15ECVE	407
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/	week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40	Examination Duration: 3	Hrs	
	Unit I		
1. Introduction			
Solid waste -Definition, Land management, functional eler Classification and characteristi -Generation rate, methods.	1 Pollution -scope and imp nents of solid waste man cs- municipal, hospital / bior	ortance of solid waste nagement. SOURCES: nedical waste, Quantity	05 hrs
2. Collection and Transporta	tion		
Systems of collection, collect bailing and compacting, route	ion equipment, garbage chu optimization	ites, transfer stations -	05 hrs
3. Processing Techniques Components separation, volume reduction, size reduction, chemical reduction and biological processing		05 hrs	
	Unit II		
4. Disposal Methods Open dumping -selection of sanitary land. filling, merits an	site, ocean disposal, feeding d demerits. Construction/Der	g to hogs, composting, molition waste.	0.4 hms
5 In air ann dian			04 111 \$
Processes -3 T 's, factors a prevention of air pollution, pyr	ffecting incineration proces olysis.	ss, incinerators -types,	04 hrs
6. Composting Aerobic and anaerobic comp Bangalore processes, mechan Vermi composting	osting, factors affecting, co ical and semi-mechanical	omposting, Indoor and composting processes.	05 hrs
	Unit III		
7. Sanitary Land Filling Definition, methods, trench ar- involved, cell design, preventi methods, gas collection system	ea, Ramp and pit method, si on of site pollution, leachate is.	te selection, basic steps e collection and control	07 hrs
8. Recycle and Reuse Material and Energy Recove Wastes, Environmental Signifi	ry Operations, Reuse In O cance and Reuse	ther Industries, Plastic	05 hrs

Text Books

- 1. George Tchobanoglous, Hilary Theisen and Vigil S. A., *Integrated solid waste management: engineering principles and management issues*, McGraw-Hill Inc,US, 1993.
- 2. Bhide A. D. and , Sundaresan B. B., *Solid Waste Management in Developing Countries,* Indian National Scientific Documentation Centre, 2010.
- **3.** Ministry of Environment and Forests, Govt. of India, The Municipal Solid Wastes (Management and Handling) Rules, 2000.

- 1. Joseph L. Pavoni, John E. Heer, D. Joseph Hagerty, *Solid Waste Management, Van Nostrand Reinhold Co.*, 1973.
- Howard S. Peavy, Donald R. Rowe, George Tchobanoglous, *Environmental Engineering*, McGraw-Hill Publishing Company Inc., New York, 2017.
- Ramesha Chandrappa, Jeff Brown, Solid Waste Management Principles and Practice, Springer Science & Business Media, 2012.

Course Title: Advanced V	Waste Water Treatment	Course Code: 15ECVE	E 408
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/	week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40	Examination Duration	n: 3 Hrs	
	Unit I		
1.Introduction Wastewater Characteristics	s, Effluent Quality Standard	s, Receiving Stream Quality	03 hrs
2. Primary Treatment -Sedimentation, Flotation (o	Screening, Grit removal, 1 bil & grease removal),	Neutralization, equalization,	06hrs
3. Secondary Treatmen relationships, analysis and and plug flow oxygen requ	t- Fundamental concept descriptions of reactors- bairement in aerobic process.	of reactors: Mass balance atch, completely mixed flow	06hrs
	Unit II		
4. Biological Treatment Biomass Growth, Kinetic Process Design , Biofili Contactor	: Activated Sludge Proces Parameters, Process Descr n Process: Trickling Filt	s: Substrate Utilization and iption and its Modification, er, Rotational Biological	10 hrs

Aerated lagoons, oxidation pond-operation and maintenance

5.Advanced Treatment Processes- Chemical Coagulation, Carbon Adsorption, Phosphorus Removal, Nitrogen Removal (Nitrification/Denitrification), Media Filtration, UV Disinfection 06 hrs

Unit III

6. Solids Handling Processes- Gravity Thickening, Flotation Thickening, Dewatering, Pressure Filtration, Stabilization, Aerobic and Anaerobic Digestion, Composting, Drying, Incineration, Landfilling, Land Application
09 hrs

Text Books

- 1. Eddy and Metcalf, *Wastewater Engineering Treatment and Reuse*, Tata McGraw Hill Education Pvt Ltd., New Delhi, 2003.
- 2. Modi, P.N., *Sewage Treatment and Disposal Engg.*, Standard Book House, New Delhi, 2000.
- 3. Howard S. Peavy, Donald R. Rowe, George Techno Bano Glous, *Environmental Engineering*, McGraw Hill International, 2010.

- 1. Qasim S.R., Motley E. M., *Wastewater Treatment Plants Planning, Design and Operation*, Prentice Hall, New Delhi. 2002.
- 2. Davis, M.L. and Cornwell, D.A., *Introduction to Environmental Engineering*, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2010
- 3. Hammer M.J., *Water and Waste Water Technology*, John Wiley and Sons, New York , 2000.

Course Title: Air Pollution		Course Code: 15ECVE409	
L-T-P: 3-0-0	Credits: 3	Contact Hours: 3 Hrs/ w	veek
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 40	Examination Duration: 3	Hrs	
	Unit I		
1. Introduction			
Definition -Classification and Air pollutants, Concentrations Air Pollution: Chemical rea	properties of Air pollutants, of Air pollutants and source ction in the Atmosphere,	Primary and secondary s. Behavior and Fate of photochemical Smog.	05 hrs
2. Effects of Air Pollution			05 hrs
On human health, Animals, Pla	ant and properties, Major Epi	sodes.	00 m 5
3. Meteorology Introduction -Meteorological Variables, Lapse Rate – Adiabatic - Dispersion, inversion, stability conditions, wind rose, general characteristics of stack plumes			05 hrs
	Unit II		
4. Sampling and Analysis of A	Air Pollutants		
Sampling and measurement of smoke and its measurements.	Gaseous and particulate pol	lutants, stack sampling,	05 hrs
5. Control of Air Pollutants			10 hrs
Control methods -Particulate cyclone separators, fabric filter of gaseous emissions (Design r	emission control, gravitatic rs, Electrostatic precipitators not requires)	onal settling chambers, , wet scrubbers, control	
	Unit III		
6. Air Pollution Due to Autor	nobiles		
Air pollution due to gasoline direct and indirect methods.	driven and Diesel driven en	gines, effects, control -	02 hrs
7. Global Environmental Issues			04 hrs
Acid rain, Green House effect, Global warming, Ozone layer Depletion.			
8. Environmental Impact Ass	sessment		
Environmental Impact Assess Standards and legislation -Air regulation, Air pollution index	sment in industrial plant lo r quality and emission stan	ocations and planning. dards - legislation and	04 hrs
Text Books			

1. Rao, H.V.N., and Rao, M.N., *Air Pollution*, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2007.

2. Rao, C.S., *Environmental Pollution Control*, New Age International Pvt. Ltd, New Delhi, 2006.

- 1. A.O.C., Stem, Air Pollution Vol I IV, Academic Press., 2010.
- 2. Henry C Perkins, *Air pollution*, Tata McGraw Hill Education Pvt Ltd., New Delhi, 1974.

Course Code: 15EARC201 Course Title: Analog and Digital Electronic		Circuits	
L-T-P-SS: 4-0-0-0	-SS: 4-0-0-0 Credits: 4 Contact Hrs: 50		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 50		Exam Duration:	3 hrs
Conten	t		Hrs
Unit - :	1		i
Chapter No. 01 Modeling and analysis of electrical circuits The Lumped Circuit Abstraction, Modeling Physical Elements using lumped circuit abstraction, Signal Representation, Dependent Sources and the Control Concept, Network theorems: The Node Method, Loop Method, Superposition, Thévenin's Theorem and Norton's Theorem.			
Chapter No. 02 Basics of Digital Electronics Number Representation , MOSFET Switch Implementation of Logic Gates, The SR Model of the MOSFET, Active Pullups Voltage Levels and the Static Discipline, Simplifying Logic Expressions using K-map, Combinational circuits: encoder/decoder, multiplexers/de- multiplexers , Binary adder/ subtractor, Binary comparator, Sequential Circuits: Gated D Latch JK Elin-Elon Registers Counters			7 hrs
Chapter No. 03 Transistor Modeling Operating point, Fixed bias circuits, Emitter stabilized biased circuits, Voltage divider biased, Bias stabilization, BJT transistor modeling, , Emitter follower, CB configuration, Collector feedback configuration, analysis of CE configuration using h- parameter model; Relationship between h-parameter model of CE,CC and CB configuration.			
Unit - 2			
Chapter No. 04 Power Amplifiers Definitions and amplifier types, series fed class A amplifier, Transformer coupled Class A amplifiers, Class B amplifier operations, Class B amplifier circuits, Amplifier distortions. Designing Power amplifiers: Heat flow calculations using analogous circuit. Calculation of actual power handling capacity of transistors with and without heat sink. Heat sink design.			6 hrs
Chapter No. 05 Operational Amplifiers Device Properties of the Operational Amplifier, Simple Op Amp Circuits: The Non-Inverting Op Amp, The Inverting Connection, A Special Case: The Voltage Follower, Op Amp RC Circuits: Op Amp Integrator, Op Amp Differentiator, An RC Active Filter, The RC Active Filter Impedance Analysis, Sallen-Key Filter, Op Amp in Saturation: Op Amp Integrator in Saturation, Positive Feedback : RC Oscillator.			8 hrs
Energy Storage Elements; capacitors and inductors , Power and Energy Relations for a			

Simple RC Circuit, Average Power in an RC Circuit, Power Dissipation in Logic Gates: Static	
Power Dissipation, Total Power Dissipation, CMOS Logic Gate Design.	
Unit - 3	
Chapter No. 07 First Order Transients in Linear Electrical Circuits	5 hrs
Analysis of RC & RL circuits, Propagation Delays, State and State variables	
Chapter No. 08 Transients in Second Order Circuits	5 hrs
Undriven Series RLC circuit, Stored Energy in Transient Series RLC circuit, Undriven Parallel	
RLC circuit, Driven Parallel RLC circuit, State Space Analysis	

Course Code: 15EARC202	L5EARC202 Course Title: Mechanics of Materials			
L-T-P-Self Study: 3-1-0-0	Credits: 4	Contact Hrs: 50		
CIA Marks: 50	SEE Marks: 50	Total Marks: 10	0	
Teaching Hrs: 50	Feaching Hrs: 50 Exam Duration:			
Content			Hrs	
Unit - 1				
Chapter No. 1.Stress & Strain Introduction,Normal Stress Under Axial Loading,Direct Shear Stress,BearingStress,Stresses on Inclined Sections,Equality of Shear Stresses on Perpendicular Planes,Strain,Displacement, Deformation, and the Concept of Strain,NormalStrain,Shear Strain				
Chapter No. 2.Mechanical Properties of MaterialsTheTensionTest,TheStress–StrainDiagram,Hooke'sLaw,Poisson'sRatio,DesignConcepts,TypesofLoads,Safety,AllowableStress Design,Load and Resistance Factor Design			5 hrs	
Chapter No. 3.Axial Deformation Introduction,Saint-Venant'sPrinciple,Deformations in Axially Loaded Bars,Deformations in a System of Axially Loaded Bars,Statically Indeterminate Axially Loaded Members			5 hrs	
Unit - 2				
Chapter No. 4.Torsion Introduction, Torsional Shear Strain, Torsional Shear Stress, Stresses on Oblique Planes, Torsional Deformations, Torsion Sign Conventions, Power Transmission, Statically Indeterminate Torsion Members.			5 hrs	
Chapter No. 5. Equilibrium of Beams Introduction, Shear and Moment in Beams, Graphical Method for Constructing Shear and Moment Diagrams, Discontinuity Functions to Represent Load, Shear, and Moment			5 hrs	
Chapter No. 6.Bending Introduction, Flexural Strains, Normal Stresses in Beams, Analysis of Bending Stresses in Beams, Introductory Beam Design for Strength, Flexural Stresses in Beams of Two Materials, Bending Due to Eccentric Axial Load, Unsymmetric Bending			5 hrs	
Unit - 3				
Chapter No. 7. Shear Stress in Beams Introduction, Resultant Forces Produced by Bending Stresses, The Shear Stress Formula, The First Moment of Area Q, Shear Stresses in Beams of Rectangular Cross Section, Shear Stresses in Beams of Circular Cross Section.			5 hrs	

Chapter No. 8. Beam Deflections	5 hrs
Introduction, Moment-Curvature Relationship, The Differential Equation of the Elastic	
Curve, Deflections by Integration of a Moment Equation, Deflections by Integration of	
Shear-Force or Load Equations, Deflections Using Discontinuity Functions	

Course Code: 15EARC203	Course Title: Manufacturing Technology & Metrolog			
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 50		
CIA Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hrs: 50		Exam Duration:	3 hrs	
Content			Hrs	
Unit - 1				
Chapter No. 1. Turning , Shaping and Planing Ma Classification, constructional features of Lathe, Sh mechanisms of Lathe, Shaping and Planing machi Shaping Machine & Planing Machine. Simple prob	achines haping Machine, Planing M nes. Different operations c lems on machining time ca	lachine. Driving on Lathe, alculations	7 hrs	
Chapter No. 2. Milling Machines Classification, constructional features of milling machines. Types of milling cutters & milling cutter nomenclature. Milling processes, up milling and down milling concepts. Various milling operations. Indexing: Simple, compound, differential and angular indexing. Simple problems on simple and compound indexing			7 hrs	
Chapter No. 3. Drilling & Grinding Machines Classification, constructional features of drilling machine & related operations. Types of drill & drill bit nomenclature, drill materials. Types of abrasives, Grain size, bonding process, grade and structure of grinding wheels, grinding wheel types. Classification, constructional features of grinding machines (Center less, cylindrical and surface grinding). Selection of grinding wheel, dressing and truing of grinding wheels. Analysis of the grinding process			6 hrs	
Unit - 2				
Chapter No. 4. CNC Machine Tools Introduction to CNC machines- Principles of operation. Axes of NC machine-Coordinate systems. Basics of Manual part programming methods				
Chapter No. 5. Nontraditional Machining Need for nontraditional machining, principle, equipment & operation of Abrasive Jet Machining, Water Jet Machining, Electro-Chemical Machining, Electrical Discharge Machining, Wire EDM, Electron Beam Machining, Laser Beam Machining & Plasma Arc Machining			7 hrs	
Chapter No. 6. Measurement and Inspection Standards of measurement, allowance and tolerance, inspection methods of measurement, measuring instruments, gauges for attribute measurements, geometric dimensioning and tolerance, comparators & angular measurements			6 hrs	

Unit - 3	
Chapter No. 7. Advancements in Metrology: Introduction & applications of: Co-ordinate Measuring Machine, Universal Measuring Machine, Laser in Metrology.	5 hrs
Chapter No. 8. Form Measurement Measurement of screw thread-Thread gauges, measurement of gears-tooth thickness, Measurement of surface finish, straightness, flatness and roundness measurements	5 hrs

Course Code: 15EARC204	Course Title: Analysis of algorithms & Design of Programs			
L-T-P : 3-0-0-0	Credits: 3	Contact Hrs: 40		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40		Exam Duration: 03 ho	urs	
	Content		Hrs	
	Unit - 1			
Chapter 1: GENERAL PROBLEM SOLVING CONCEPTS - Problem Solving in Everyday Life, Types of Problems, Problem Solving with Computers - Problem Definition, Solution Design & Refinement, Testing Strategy Development, Program Coding and Testing, Using the Problem Solving Method, Break-Out Diagrams, Difficulties with Problem Solving. How the Computer Stores Data, Functions-function prototypes, Operators, Expressions and Equations,				
Chapter 2: SOLUTION PLANNING- Software Development Cycle, Requirement Modeling framework, Computer Communication methods, Unified modeling language: UML Building Blocks, UML Diagrams-Class Diagram, object diagram, component diagram, UML Modeling Types, UML Basic Notations, UML-SysML , Using the Tools, Testing the Solution, Coding the Solution, Case studies-Modeling the sequence diagram for the Plant operation, Modeling the control strategy action.				
Chapter 3: DESIGN AND ANALYSIS OF ALGORITHMS- Algorithms and Their Representations, Modifying Algorithms, Alternative Algorithms. Review of Asymptotic Notations, Mathematical Analysis of Non-Recursive and Recursive Algorithms, Brute Force Approaches: Introduction, Selection Sort and Bubble Sort, Sequential Search and Brute Force String Matching ,Divide and Conquer: General Method, Defective Chess Board, Binary Search, Merge Sort, Quick Sort and its performance			5 hrs	
	Unit - 2			
Chapter 4: ARRAYS, STACKS & QUEUES: Arrays, Dynamically Allocated Arrays, , Polynomials, Sparse Matrices, Representation of Multidimensional Arrays, Structures and Unions, Stacks, Stacks Using Dynamic Arrays, Queues, Circular Queues, Evaluation of Expressions, Multiple Stacks and Queues, Single- and Double-Ended Priority Queues.				
Chapter 5: LINKED LISTS, TREES &GRAPHS: Singly Linked lists and Chains, Representing Chains in C, Linked Stacks and Queues, Polynomials, Additional List operations, Sparse Matrices, Doubly Linked Lists. Introduction, Binary Trees, Binary Tree Traversals, Threaded Binary Trees, Heaps, Graph representation, Adjacency matrix, Adjancey list, Application of graphs.				
Unit - 3				
Chapter 6:DYNAMIC PROGRA	MMING& GREEDY METHOD:Depth First	Search and Breadth	5 hrs	

First Search, The General Method, Warshall's Algorithm, Floyd's Algorithm for the All-Pairs Shortest Paths Problem, Single-Source Shortest Paths, The Traveling Salesperson problem, Kruskal's algorithm, Huffman trees.

Chapter 7:LIMITATIONS OF ALGORITHMIC POWER AND COPING WITH THEM: Lower-Bound 5 hrs Arguments, Decision Trees, P, NP, and NP-CompleteProblems, Challenges of Numerical Algorithms

Laboratory Plan

Semester:	

Year: 2016 - 2017

Laboratory Title: Programming laboratory	Lab. Code: 15EARP201
Total Hours: 28	Duration of SEE Hours: 2
SEE Marks: 20	CIE Marks: 80

Experiment wise Plan

List of experiments/jobs planned to meet the requirements of the course.

Category: Demonstration		Total Weightage: 10		LO	No. of lab sessions:2	
Expt.	Experiment / Job Deta	ails	No. of Lab		Marks /	Correlation of
/ Job			Session(s) per		Experimen	Experiment with the
No.			batch (estima	te)	t	theory
1	program to sort the	e given N	1		5	
	numbers using	1.bubble				
	sort,2.Quick sort					
	Learning Objectives:					Unit I
	The students should b	e able to:				
	1.Rearrange the giver	set of elem	nents in ascend	ing o	r descending	
	order					
	2.Use different types of	of tool to ex	execute programs			
2	Program to search an	element	1	1 5		Unit I
	from a given set of ele	ements				
	using 1.Linear search,	2.Binary	ary			
	search.					
	Learning Objectives:					Unit I
	The students should be able					
	1. Search an element based on the specific method					
		-	_			
Category :Exercises Total weight		ntage:5			No of lab sessions1	
3	Program to simulate		1	10		
	arrangement of goods	in a box				
	by robot on first come first serve					
	basis and perform the following					
	operations on it					
	a.pushb.popc.display>The					
	program should print					

	appropriate messages for stack	í.		
	overflow,stack,underflow and			
	stack empty.			
	Learning Objectives:			Unit II
	The students should be able to	:		
	1. Developing of program using	stack concepts		
	Category:Structured Enquiry	Total weightag	ge:45	No of lab sessions 6
			1	
4	Design an algorithm to	1	10	
	create a record to maintain			
	details of 5 flights, having			
	informationas name, source			
	& destination stations,			
	seatsavailable with category			
	Learning Objectives:			Unit II
	The students should be able to	:		
	1.Demonstrate how to compile	and run a C progr	am in Microsoft	
	visual studio,			
	2. Develop programs using ope			
	statements			
	3. Develop programs using stru			
			ſ	
5	Design an algorithm to	1	10	
	assign a job for a robot &			
	make it to perform jobs in			
	circular manner.			
	Learning Objectives:			Unit II
	The students should be able to	:		
	1. Illustrate using of structure c	lefinition.		
	2. Develop a program using cir	cular queue.		
6	Develop menu driven	1	10	
	program in C language for			
	maintaining university			
	information.			
	Learning Objectives:			Unit III
	The students should be able to	:		
	1. Demonstrate how to maintain	in information of a	university 2.	
	2.Demonstrate how to specify	different types of o	constraints	
	on a given set of operations			
	3. Develop a program in C lange	uage using linked l	ist.	

7	Design an algorithm to a	1	10	
	Student Prerequisite			
	Subjects Management			
	System to store different			
	courses and their			
	prerequisites and based on			
	this list it will allow any			
	, student to take particular			
	Learning Objectives:			Unit II
	The students should be able to:			
	1. Demonstrate how it will store Prerequisite subject details			
	2. Classify the method of course allocation for student			
	3 Develop the programs in C la	nguage using dout		
	t			
0	Design an algorithm to find the			Lipit III
0	ontimal solution for travelling	1	10	
		Ţ	10	
	problem			
	Leaming Outcomes:			
	The students should be able to:			
	1. Demonstrate the graphical			
	solution for the problem.			
	2. Analyze the efficiency of an			
	algorithm.			
	3.Develop the program in C			
	language using dynamic			
	Programming technique.			
9	Design an algorithm to			Unit III
	implement Floyd's algorithm	1	10	
	Learning Outcomes:			
	The students should be able to:			
	1.Demonstrate the graphical			
	solution for the problem			
	2. Analyze the efficiency of an			
	algorithm.			
	3. Develop the program in c			
	using dynamic programming			
	technique			

Category: Open Ended		Total Weightage:	20	No. of lab sessions: 2
Expt./	Experiment / Job Details	No. of Lab	Marks /	Correlation of
Job No.		Session(s) per	Experiment	Experiment with the
		batch		theory
		(estimate)		
10	Implement a project using	2	20	
	C language, for			
	automation and robotics			
	applications. (FOR SEE)			
	Learning Objectives:			Analysis of algorithms &
	The students should be able to:			Design of Programs
	1. Use Analysis of algorithm	s & Design of Prog	rams concepts to	
	implement the project.			Unit I, Unit II , Uniti III
	2. Select the appropriate to			
	project.			
	3. Write a technical report using IEEE standard.			
	4. Present the technical rep	ort for the implem	ented project.	
	5. Demonstrate the learning	g experiences of wo	orking in a team.	

Laboratory Course Plan: B E in A&R 2015-2019

Laboratory Title: Machine Drawing Lab	Lab. Code: 15EARP202
Total Hours: 28	Duration of SEE Hours: 2
SEE Marks: 20	CIE Marks: 80

Experiment wise Plan

Category:	Demonstration	Total Weightage: 15.00		No. of lab sessions: 3.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	Blueprint Reading	1.00	5.00	
	 Learning Outcomes: The students should be abled. The students should be abled. Explain the importance Explain the differences beted. detail drawings. • Described. reproduce blueprints. • Described. blueprint. • Identify element. of a detail drawing. • List models. blueprints. • Identify the blueprints. • Explain the standard lines on blueprint. disadvantages of various procession. 	le to: e to: of information on tween assembly d e methods used to efine and describe ts located within t nethods of care an ne standard line meaning and ap nts. • Identify cor Name the adva rojection types. •	blueprints. • rawings and o create and e parts of a he title block d security of s used on plications of mmon views antages and Explain the	Workshop & CAD
2	Geometric Dimensioning and Tolerancing	1.00	5.00	
	 Learning Outcomes: The students should be abl The students should be a 	e to: ble to:		Workshop & CAD

	 Concepts of zero defect Drawing conventions used applications Limits, fits control, orientation control, profile control Compari practices How to standard 			
3	Introduction to SolidWorks [®] Interface	1.00	5.00	
	 Learning Outcomes: The students should be able Learning Objectives: The Familiar with the SolidWork the basic functionality of Create part modeling • Be Windows • Become familiar interface • Develop an under recognition of an object in geometry, rectangle, circle, 	CAD/CREO PARAMTERIC		
	3D features that add and Extruded Base, Extruded Cur	l remove geomet t, Fillet and Shell	ry including	
Category:	3D features that add and Extruded Base, Extruded Cur Exercise	I remove geomet t, Fillet and Shell Total Weightage:	try including	No. of lab sessions: 4.00
Category: Expt./ Job No.	3D features that add and Extruded Base, Extruded Cur Exercise Experiment / Job Details	t, Fillet and Shell Total Weightage: No. of Lab Session(s) per batch (estimate)	45.00 Marks / Experiment	No. of lab sessions: 4.00 Correlation of Experiment with the theory
Category: Expt./ Job No. 4	3D features that add and Extruded Base, Extruded Cur Exercise Experiment / Job Details Part Modeling	t, Fillet and Shell Total Weightage: No. of Lab Session(s) per batch (estimate) 2.00	45.00 Marks / Experiment 20.00	No. of lab sessions: 4.00 Correlation of Experiment with the theory

	different planes • Create the	e Chisel part		
5	Advanced Modeling & Assembly	1.00	15.00	
	 Learning Outcomes: The students should be abl Learning Objectives: The students should be able Assemble Knuckle joint, Familiar with the mating condition of the students and the students are standing one part with are tools to offset geometry a sketch plane 	Engineering Graphics		
6	SolidWorks [®] Routing- Electrical	1.00	10.00	
	 Learning Outcomes: The students should be abl The students should be a Explains how to create, edit from the critical routing of requirements to the sub- routes. Topics include: Fundamentals of Ro Basic Electrical Rout Routing with Clips 	e to: ble to: and manage Elec components and assemblies that uting ing	trical routes, their design contain the	CAD LAB
Category:	ry: Structured Enquiry Total Weightage: 10.00		No. of lab sessions: 1.00	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
7	Sustainability	1.00	10.00	

ILearning Outcomes:

IThe students should be able to:The students should be able to:

As an engineer or product designer, you have the power to dramatically alter how we interact with our environment. The question is how. Many designers don't know about the life cycle assessment (LCA) process or how it could guide them to more sustainable designs. Others may think the process is too complex and time-consuming, or is someone else's responsibility. Learning about designing for the environment now will put you ahead of the curve. With SolidWorks® Sustainability, you'll have the built-in environmental intelligence to make more informed decisions about what materials to use. You'll also see how region-specific material sourcing, manufacturing, use, and disposal will affect your product's life cycle before manufacturing begins. 1. Understand the basic concepts of sustainable design 2. Measure the environmental impacts of various design choices, including material, manufacture location, and more on the various parts and assemblies

Category: Open Ended		Total Weightage:	20.00	No. of lab sessions: 1.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
8	Project Work	1.00	20.00	
	 Learning Outcomes: The students should be able The students should be a Reverse Engineering The process engineering Reverse drawings, documentation, or reverse engineering Reverse the process of analyzing system's components and the representations of the system level of abstraction 3. Creation of that system Tasks Investigation 	Learning Outcomes: The students should be able to: . The students should be able to: . everse Engineering The process of duplicating an existing omponent, subassembly, or product, without the aid of rawings, documentation, or computer model is known as everse engineering Reverse engineering can be viewed as he process of analyzing a system to 1. Identify the ystem's components and their interrelationships 2. Create epresentations of the system in another form or a higher evel of abstraction 3. Create the physical representation		

the given product 3. Take measurements with tolerance 4. Capture the surface details like texture, colour, pattern etc. 5. Identify the material 6. Reproduce the same components using solidworks 7. Assemble all the components in solidworks 8. Render the product using solidworksphotoview 360

Laboratory Course Plan: B E in A&R 2015-2019

Semester-III

Laboratory Title: Analog and Digital Circuits Lab	Lab. Code: 15EARP203	
Total Hours: 28	Duration of SEE Hours: 2	
SEE Marks: 20	CIE Marks: 80	

Experiment wise Plan

Category: Demonstration		Total Weightage: 10.00		No. of lab sessions: 2.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
01	Demonstration of lab equipments and components: CRO, Multimeter, Function Generator, Power supply- Active/Passive Components & Bread Board. Demonstration of Software – Multisim / Ultiboard.	1.00	0.00	
	 Dearning Objectives: The students should be ab Identify and demo knowl purposes of different comp capacitors, transistors etc. Identify and demo knowl purposes of different Test a as Multimeters, Power Sup generators etc. 	le to: edge of functionin onents like Resisto edge of functionin and Measuring equ plies, CROs and Fui	g and rs, Inductors, g and ipments such nction	Chapter 1

	 Description of an operation of an Ope			Chapter 5
4	Design a Line sensor circuit using an Operational Amplifier.	2.00	10.00	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
Category: St	tructured Enquiry	Total Weightage:	60.00	No. of lab sessions: 10.00
	 Learning Objectives: The students should be ab Study the behavior of the Study the behavior of the 	le to: 2 MOSFET as a Swit 2 MOSFET as an Am	ch. 1plifier.	Chapter 1
3	Analyze the operation of a MOSFET as I. A Switch II. An Amplifier And conclude it for different regions	1.00	10.00	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
Category: Ex	xercise	Total Weightage:	10.00	No. of lab sessions: 1.00
	 Learning Objectives: The students should be ab Carryout design of experi 	le to: ments (DOE).		Chapter 2
2	DOE: Study of different methods used for DOE and Obtain the step response of the Resonant circuit by taking fixed resistance of 10Ω and choosing the values of inductor (L) & capacitor(C).	1.00	10.00	
	3. Simulate circuits using M	ultisim software.		

	3. Analyze the behavior of a line sensor.			
5	Build a circuit that converts an input voltage of – 1 V to + 2.2 V to an output voltage of 0 to 5 V. Dual supply of 2 12 V available and need to drive a 10 k2 load. Test designs under different input voltages and verify that output voltages are within 2 5% of the calculated ones.	2.00	10.00	
	 Learning Objectives: The students should be ab Build, test, and troublesh conditioning circuit using M Analyze an analog signal a range of desired output vor range of input voltages. 	le to: noot an analog sigr lultisim. conditioning circu pltages in respond	nal it to provide to a certain	Chapter 5
6	A sensor provides temperature sensitivity of 200 @V/°C. Design a circuit that activates an alarm when the temperature reaches 300 °C. Use a single 10 V supply. The alarm could be any type, visual- or sound-based.	2.00	10.00	
	 Description 			Chapter 4
7	Design a simple DAC circuit with 0-10V output voltage.	2.00	10.00	

	 DLearning Objectives: The students should be able to: 1. Learn how to design a DAC circuit that converts digital input signals to expected corresponding analog voltage levels. 2. Build, test, and troubleshoot a DAC circuit using Multisim. 			Chapter 6
8	Design an 8-bit ADC circuit that utilizes LEDs to indicate its binary output value. Use a reference voltage of 2.5V to 5 VDC.	2.00	10.00	
Category:Vi Attendance	va, Journal and	Total Weightage	:: 10	No. of lab sessions: 01
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
09	Viva, Journal and Attendance	01	10	
	Learning Outcomes : The students should be able to: 1. Command of appropriate communication skills such as technical reports, viva and presentations through the lab. Maintaining the punctuality to all the lab sessions.			
Category: O	pen Ended Enquiry	Total Weightage: 20		No. of lab sessions: 02
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
10	Project	02	20	
	Learning Outcomes :			

The students should be able to:	
1. Carryout a project in a team.	
2. Come up with PCB design using Ultiboard.	

Course Code: 15EARC205 Course Title: Kinematics of machinery			
Credits: 4Contact Hrs: 50			
CIA Marks: 50 SEE Marks: 50 Total Marks: 100			
Teaching Hrs: 50 Exam Duration: 3 h			rs
Conte	ent		Hrs
Unit	- 1		
Chapter No. 1.INTRODUCTION TO KINEMATICS Introduction, Mechanisms, kinematics, mechanism terminology, kinematic diagrams, kinematic inversion, mobility, four bar mechanism, slider crank mechanism, techniques of mechanism analysis.			
Chapter No. 2.POSITION ANALYSIS Position, displacement, position analysis, position analysis applications to simple mechanisms – analytical analysis, Displacement Diagrams			5 hrs
Chapter No. 3.VELOCITY ANALYSIS Velocity of a point, velocity of a link, linear and angular velocities, relative velocity, velocity image, analytical velocity analysis: relative velocity method, algebraic solutions for common mechanisms, instantaneous center of rotation, velocity curves			
Chapter No. 4. ACCELERATION ANALYSIS Linear acceleration of a point, acceleration of a link, normal and tangential acceleration, relative acceleration analysis: analytical method, algebraic solutions for common mechanisms, acceleration of a general point on a floating link, coriolis acceleration, equivalent linkages, acceleration curves.			
Unit	- 2		
Chapter No. 5.CAMS: DESIGN AND KINEMATIC ANALYSIS Introduction, Types of Cam, Types of Followers, Prescribed follower motion, Follower motion schemes, Graphical disk cam profile design, Pressure angle, Design Limitations, Analytical disk cam profile design.			7 hrs
Chapter No. 6.GEARS: KINEMATIC ANALYSIS AND SELECTION Types of gears, spur gear terminology, involute tooth profiles, spur gear kinematics, rack and pinion kinematics, gear trains, idler gears, planetary gear trains.			7 hrs
Chapter No. 7.BELTS AND CHAIN DRIVES Introduction, Belts, Belt drive geometry, Belt drive kinematics, Chains, Chain drive geometry, Chain drive kinematics.			6 hrs
	-		•

Unit - 3

Chapter No. 8.SCREW MECHANISMS

Introduction, Thread features, Thread forms, Ball screws, Lead, Screw kinematics, Screw forces and torques, Differential screws, Auger screws.

5 hrs

5 hrs

Chapter No. 9.STATIC FORCE ANALYSIS

Introduction ,Forces ,Moments and Torques, Laws of Motion, Free-Body Diagrams ,Drawing a Free-Body Diagram ,Characterizing Contact Forces ,Static Equilibrium ,Analysis of a Two-Force Member ,Sliding Friction Force.

Course Code: 15EARC206	Course Code: 15EARC206 Course Title: Control Systems		
L-T-P: 4-1-0 Credits: 4 Teaching Hours		Teaching Hours:	50 hrs
CIA Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 50		Exam Duration: 3	hrs
U	nit –I		
1.Introduction to control system and system model Introduction, A History of Control Systems, Systems), Analysis and Design Objectives, To of physical Systems: Electrical networks, Mecha Analogous systems.	deling in frequency doma ystem Configurations (op The Design Process.Mathe anical systems, Electro me	in en-loop & closed matical modeling chanical systems,	7h
2. Topological Models Transfer function, Block diagram representation and reduction, signal flow graph representation and reduction using Mason's Gain formula, Transfer functions of control components – dc servomotor			6h
3. Time –Domain modeling and Analysis The General State-Space Representation, Applying the State-Space Representation, Converting a Transfer Function to State Space, Converting from State Space to a Transfer Function, Standard test signals, Unit step response of First and second order systems, Time response specifications of first and second order systems, steady – state errors and error constants			7h
Unit – II			
4. Stability analysis Concepts of stability, Necessary conditions for Stability, Routh- stability criterion, Relative stability analysis: More on the Routh stability criterion.			5h
5. Root-Locus Techniques and Design Via Root Locus Introduction, The root locus concepts, Construction of root loci. Improving Transient Response and Steady-State Error via Cascade Compensation, Feedback Compensation, Physical Realization of Compensation.			7 h
6. Frequency domain analysis Introduction, Correlation between time and frequency response, Stability analysis, Bode plot and Nyquist plot to obtain phase margin and gain margin of a given system. Experimental determination of transfer functions, Assessment of relative stability using Bode Plots.			8h
Unit – III			
7. Design Via Frequency Response Transient Response via Gain Adjustment, Lag Co Compensation.	ompensation, Lead Compo	ensation, Lag-Lead	5h
8. State Space Design Controller Design, Controllability, Observability,	Observer Design, Exampl	es.	5h

Course Code: 15EARC207	Course Title: Machine Design		
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 50	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 50 Exam Duration: 3 hrs			5
Cont	ent		Hrs
Unit	- 1		1
Chapter No. 1. THE DESIGN PROCESS 1. Introduction, Materials in Design, 2. The Evolution of Engineering Materials, 3. The Evolution of Materials in Products, the Design Process, Types of Design, 4. Design Tools and Materials Data, Eurotion, Material, Shape, and Process.			
Chapter No. 2. MATERIAL PROPERTY CHARTS Exploring Material Properties, 2. modulus–density chart 3. strength–density chart 4. modulus– strength chart 5. maximum service temperature chart, Cost bar charts 6. The modulus–relative cost chart 7. The strength–relative cost chart ENGINEERING MATERIALS, THEIR PROPERTIES AND MATERIAL SELECTION The Families of Engineering Materials 2. Materials Information for Design 3. Material Properties and 4. Units			
Chapter No. 3. KINEMATICS OF GEARS AND GEAR DESIGN Spur Gear Geometry: Involute-Tooth Form, Interference Between Mating Spur Gear Teeth, Devising Gear Trains, Forces, Torque And Power In Gearing, Gear Manufacture, Gear Quality, Allowable Stress Numbers, Stresses In Gear Teeth, Selection Of Gear Material Based On Bending Stress, Design Of Spur Gears, Power-Transmitting Capacity, Practical Considerations For Gears And Interfaces With Other Elements. Forces and stresses on helical gear teeth, design of helical gears, bearing forces on shafts carrying bevel gears, bending moments on shafts carrying bevel gears, design of bevel gears for pitting resistance, forces, friction, and efficiency in worm gear sets, stress in worm gear teeth, surface durability of worm gear drives.			
Unit	- 2		
Chapter No. 4. KEYS, COUPLINGS, SEALS AND SHAFT DESIGNS Materials for keys, stress analysis to determine key length, other methods of fastening elements to shafts, couplings, universal joints, retaining rings and other means of axial location, types of seals, seal materials, shaft design procedure, forces exerted on shafts by machine elements, stress concentrations in shafts, design stresses for shafts, shafts in bending and torsion only, shaft design example, recommended basic sizes for shafts, shaft rigidity and dynamic considerations, flexible shafts			
Chapter No. 5. LINEAR MOTION ELEMENTS, SPRINGS, FASTNERS Power screws, ball screws, application considerations for power screws and ball screws, bolt materials and strength, externally applied force on a bolted joint, thread stripping strength,			7

other means of fastening and joining. Kinds of springs, helical compression springs, stresses and deflection for helical compression springs, analysis of spring characteristics, design of helical compression springs, helical torsion springs, improving spring performance by shot peening, spring manufacturing.

Chapter No. 6. CLUTCHES AND BRAKES

Descriptions of clutches and brakes, types of friction clutches and brakes, performance parameters, time required accelerating a load, inertia of a system referred to the clutch shaft speed, effective inertia for bodies moving linearly, energy absorption: heat-dissipation requirements, response time, friction materials and coefficient of friction, plate-type clutch or brake.

Unit - 3

Chapter No. 7. BEARINGS: ROLLING CONTACT & SURFACE CONTACT

Types of rolling contact bearings, thrust bearings, mounted bearings, bearing materials, load/life relationship, design life, bearing selection: radial loads only, bearing selection: radial and thrust loads combined, mourning of bearings, tapered roller bearings, practical considerations in the application of bearings, importance of oil film thickness in bearings, life prediction under varying loads.

Chapter No. 8. MACHINE FRAMES, BOLTED CONNECTIONS AND WELDED JOINTS Machine frames and structures, recommended deflection limits, design to resist bending,

design of members to resist torsion, eccentrically loaded bolted joints, types of joints, types of welds, size of weld, method of treating weld as a line, welded joints.

7

5

5

Cours	Course Code: 15EARC208 Course Title: Microcontrollers				
L-T-P-	L-T-P- SS: 3-0-0-0 Credits:3 Contact Hrs: 4				
CIE M	CIE Marks: 50 SEE Marks: 50 Total Marks: 100				
Teach	ing Hrs: 50		Exam Duration: 100		
		Unit I			
No		Content		Hrs	
1 Chapter 1: Introduction to Microcontroller Introduction To Microprocessor and Microcontroller: History and Evolution, types of microprocessors, Difference between Microprocessors and Microcontrollers. CPU architectures: RISC/CISC and Harvard/Von-Neumann, Overview of PIC Microcontroller family, Introduction to different microcontroller families (8051, ATMEL/AVR, and			5 Hrs		
2 Chapter 2: PIC and AVR Microcontroller Architecture and ALP Architecture and pin functions, Registers and Instructions, Data formats and directives, Introduction to assembly language programming, Program counter and program ROM space. Branch, Call and Time delay loop: Branch instructions and looping, Call instruction and stack, Time delay instructions and pipeline. Timing diagrams			7 Hrs		
 Chapter 3: I/O Port programming I/O port programming, I/O bit manipulation programming, Arithmetic, logic instructions and programs: Arithmetic instructions, Signed number concepts and arithmetic operations, logic and compare instructions, rotate instructions and data serialization, BCD and ASCII conversion. 			8 Hrs		
Unit II					
4 Chapter 4:PIC and AVR programming in C Data types and time delays in C, I/O programming, logic operations, data serialization, program ROM allocation, Program ROM allocation inC18, State diagrams, Timing diagrams in-depth			5 Hrs		
5	 Chapter 5: Timer and Serial port programming Programming TIMERS 0 and 1, counter programming, Programming TIMER0 and 1 in C, Basics of serial communications, PIC18 connection to RS232, PIC18 serial port programming in assembly and C 			8 Hrs	
6	 Chapter 6:Interrupt programming in Assembly and C Polling Vs interrupts, PIC18 Interrupts, Programming timer interrupts, programming external hardware interrupts, programming the serial communication interrupt, PortB change interrupts. ADC, DAC and sensor interfacing: ADC characteristics, ADC programming in the PIC18, DAC interfacing, sensor interfacing and signal interfacing. 			7 Hrs	
Chanter 7:Using Flash and FEPROM Memories for data storage					
7	Semiconductor memory, Erasir writing to data EEPROM in the	ng and writing to flash in the PIC18.	PIC18F, Reading and	5 Hrs	

8	Chapter 8: Applications of Microcontroller: Event counter, Linear variable Differential Transformer (LVDT), Angular speed measurement (RPM meter), Digital Thermometer, Digital PID controller.	5 Hrs	
Text B	ook		
Mazidi&Mazidi, "PIC Micrcontroller and Embedded systems", Pearson Edition			
Mazidi&Mazidi, "Introduction to AVR Micrcontroller and Embedded systems", Pearson Edition			
Reference Books			
Ramesh Gaonkar, Fundamentals of microcontrollers and Applications in Embedded Systems. Penram			
International Publishing(India) Pvt. Ltd.			
Ajay V Deshmukh, "Microcontroller: Theory and Applications"			

Course Code:15EARC209	Course Title: Engineering Design Practice	
L-T-P:2-1-0	Credits:3 Contact Hrs: 4	
CIE Marks: 80	SEE Marks: 20	Teaching Hours: 30 hrs SEE: 20 marks

Unit –I

Г

٦

Т

1. Engineering Design and the Design Process Definition of engineering design, Design levels, Importance and challenges of engineering design, Introduction to systematic design, Design process and models.	4 hrs
2. Essential transferable skills, Identifying needs and gathering information Working In Teams, Forming a Team, Dynamics of a Team, Scheduling, Gantt Chart, CPM/PERT, Definitions, CPM/PERT Network Development, Problem Definition: Need Statement, Gathering Information: Clarifying the Need, How To Conduct a Market Analysis, Product Information, Industry Information, Company Information, Market Information.	5 hrs
3. Customer requirements & Design specifications Identifying Customer Requirements, Prioritizing Customer Requirements, Organizing Customer Requirements—Objective Tree, Kano Model Customer Needs Assessment, Design specifications	3 hrs

4. Functional analysis & performance specifications		
Functions, Function Decomposition and Structure, Bounding Box and Overall Function		
Diagram, Function Tree, Function Structure, Detailed Procedure to Establish Functional	4 hrs	
Structures, Function Structure, Reverse Engineering, Performance-Specification Method,		
Quality-Function-Deployment Method.		
5. Conceptual design and evaluation		
Developing Working Structures, Steps to Develop Concepts From Functions, Brainstorming,		
Mechanism of Brainstorming Session, Ideation, Creativity, How to Increase Your Level of		
Creativity, Developing Concepts, Sketch Assembly of Alternatives, Evaluating Conceptual		
Alternatives, Pugh's Evaluation Matrix, Decision Matrix.		
6. Embodiment design		
Product Drawings, Prototype, Design for "X", Design for Manufacturing, Design for Assembly,	4 hrs	
Design for Environment, Safety Considerations, Safety Analysis Techniques, Human Factors,		
Human Sensory Capabilities, Anthropometric Data.		

Unit – III

7. Detailed design	
Analysis, Material Selection, Material Classifications and Properties, Material Selection	3 hrs
Process, Primary Manufacturing Methods, Material Selection Theory, Bill of Material	

8. Ethics in Design

Ethics: Understanding obligations, Codes of ethics: What are our professional obligations?3 hrsObligations may start with the client. But what about the public and the profession? On
engineering practice and the welfare of the public, Ethics: Always a part of engineering
practice.3 hrs

Text Books:

1. Yousef Haik, Engineering Design Process, Cengage Learning India Private Limited, New Delhi

References:

- 2. Clive L Dym and Patrick Little, Engineering Design: A Project Based Introduction, John Wiley & Sons.
- 3. George Dieter and Linda C Schimdt, Engineering Design, Macgraw Hill

Laboratory Course Plan: B E in A&R

Laboratory Title: Manufacturing & Metrologylab	Lab. Code: 15EARP204	
Total Hours: 24	Duration of SEE Hours: 3	
SEE Marks: 20	CIE Marks: 80	

Experiment wise Plan

Category: Demonstration		Total Weightage: 20		No. of lab sessions: 2
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1.	Material Removal Operations	1	10	
	 Learning Objectives: The students should be abl 1. Demonstrate variou Turning, threading machine. 2. Perform operations work material using 3. Perform Tapping operations 4. Demonstrate grinding cube to achieve precess 5. Demonstrate taper to bar 	ole to: us operations like Facing, g on a work piece using Lathe s like drilling of holes on a given g Drilling Machine. peration on a given slab of metal. ing operation on a given metal edefined dimensions.		Unit 1
2.	Material Testing	1	10	
	 Learning Objectives: The students should be able to: To calculate various stresses acting on a circular bar subjected to axial loading using UTM and plot a graph by taking the readings. 			Unit I

	 To calculated Impact strength of a given material using CHARPY and IZOD testing machine. To calculate Hardness of a given material 			
Category	Exercise	Total Weightage:	30	No. of lab sessions: 6
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
3.	Fabricate the Parts for Table Clamping Device	6	30	
	 Dearning Objectives: The students should be able To machine a given r dimensions. Perform drilling ope Mark the work piece Taking measurement using vernier caliper Perform welding ope Perfect right angle. Fill machining time of pitch. Fill operation chart a 	e to: raw metal sheet to erations at suitable e before going for m ts at every step of o s. eration on hinges to alculation chart. g on a circular bar t	actual locations. nanufacture. operations o achieve to a given	Unit I, II
Category	Structured Enquiry	Total Weightage:	10	No. of lab sessions: 1
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
4.	Assembly of parts Learning	1	10	
	 Dearning Objectives: The students should be able to: 1. Ensure all the parts are ready for assembly. 			Unit I, II

	 Make sure all the particular Prepare a process chassembly Write specification or 			
Category:	Open Ended	Total Weightage:	10	No. of lab sessions: 1
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
5.	DFM using Solid works Learning outcomes	1	10	
	Interning Objectives:			
	The students should be able			
	 Ensure all the parts any difficulties. 	Ensure all the parts can be manufactured without any difficulties.		
	 Ensure dimensions generation 	Ensure dimensions given and machine selected can perform the operation.		
	3. Visualize all the parts each link in assembly	Visualize all the parts and remember the location of each link in assembly.		
	4. Identify alternate di	Identify alternate dimensions to any failing part and		
	 Select suitable mach operations. 	nine to perform spe	cific	

Laboratory Course Plan: B E in A&R 2014-2018

Laboratory Title: Microcontroller Lab	Lab. Code: 15EARP205	
Total Hours: 24	Duration of SEE Hours: 3	
SEE Marks: 20	CIE Marks: 80	

Experiment wise Plan

Category: Demonstration		Total Weightage: 15		No. of lab sessions: 6
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	Compare Architectures of different microcontrollers w.r.t to time response, frequency response, delay, process time etc. Write a program to demonstrate the blinking of LED in PIC16F877A and Arduino board	2	5	
	 Learning Objectives: The students should be able 1. 1. study the data sh study of the Archite applications of differe Compare and contrast Connect microcontrol proper delay. Apply suitable meth problem. 	to: eets and make a ectures, resources nt microcontroller t different microco ler to LED and bl nod or logic to	comparative 5, tools and ntrollers. ink LED with solve given	
2	Develop a counter machine which count from 0000 to 9999 and display on 7 segment LED display using PIC16F877A and Arduino	2	5	

	board.			
	 Learning Objectives: The students should be able 1. 1. Use 7Segment LED 2. Use appropriate logic 	to: for counting numb or method for cou	pers. nting.	
3	In a manufacturing industry there is a need of continuous temperature monitoring and inform to the concern authority. Develop an application that reads the values from LM35 temperature sensor and display the temperature in degree Celsius on LCD display using PIC16F877A and Arduino board.	2	5	
	 Learning Objectives: The students should be able 1. 1. Connect LM35, LCD Write function to reading to the state of LCD. 			
Category:	Exercise	Total Weightage: 20		No. of lab sessions: 8
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
4	In bank lockers there is requirement of password protection to open the locker. Develop an application Using a 4*3 keypad and LCD to secure the lockers by providing password protection.	2	5	
	 Dearning Objectives: The students should be able to: 1. Connect Keypad, LCD with microcontroller. 2. Write logic to read key press event from keypad 			

5	There is a need to develop a microcontroller based in an automobile to estimate the exact distance of an object from the car. Develop a system using Ultrasonic Sensors to find the distance of an object and inform the driver. The schematic of the system with all the connections are shown in the diagram below. Make the connections as per the schematic and develop the flowchart and the code to perform the required operation.	2 o: onic Distance S	5 ensor and	
	microcontroller 2. Logic to find dista	nce in CM and Me	ters.	
6	There is a need to develop a microcontroller based system to do control the speed and direction of a wheeled autonomous mobile robot. Develop an add-on to autonomous robot using sensors to control the speed control of a DC motor hence control the robot movement.	2	5	
	 Learning Objectives: The students should be able to a connection of the conn	o: ctions from micro river helps in col	controller to ntrolling the	

7	Write a program to sensor based control of a stepper motor	2	5		
	 Learning Objectives: The students should be able Connect stepper moderiver. Understand different to 	ng Objectives: udents should be able to: <i>Connect stepper motor to microcontroller using</i> <i>driver.</i> <i>Understand different types of stepper motors.</i>			
Category:	Structured Enquiry	Total Weightage	: 25	No. of lab sessions: 4	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory	
8	There is a need to develop a microcontroller based system to continuously monitor and check products for defect which are moving on a conveyer belt using sensors and kick out the defect product from the queue.	2	5		
	 Learning Objectives: The students should be able <i>1. Connect Push button,</i> <i>2. Logic to control ON/O</i> 				
9	People sitting in a car have the tendency of keeping their hand out of window and when driver closes the window their hand may get struck in between. Implement an Anti-Pinch System for Power Window which helps in avoiding such accidents.	2	20		
	 Learning Objectives: The students should be able 	to:			

	 Understand different hardware interrupts. Write interrupt programmed 			
Category:	Open Ended	Total Weightage	: 20	No. of lab sessions: 4
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
11	Develop a system to create Liquid flow rate measurement using any microcontroller.	4	20	
	 Dearning Objectives: The students should be able to: <i>1.</i> Identify the problem and solve. 2. Apply the knowledge of electronics and programming to measurement Liquid flow rate. 			

Laboratory Course Plan: B Ein A&R 2014-2018

Laboratory Title: Kinematics of Machinery lab	Lab. Code:15EARP206		
Total Hours: 24	Duration of SEE Hours: 3		
SEE Marks: 20	CIE Marks: 80		

Experiment wise Plan

Category	: Demonstration	Total Weightage: 15.00		No. of lab sessions: 3.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	SolidWorks Motion	1.00	5.00	
	 Learning Outcomes: The students should be able Demonstration of comma interface. Demonstration of mechanical mates The stude students are asked to answe How do you start a SolidWork you activate SolidWorks Motion analyses are available analysis? 5. Why analysis is in SolidWorks Motion analysis 	e to: nds used in SolidW advanced mates ar nts should be able r the following que ks Motion session tion Add-In? 3. What in SolidWorks? 4. mportant? 6. What calculate?	Yorks Motion ad to: The estions 1. 2. How do at types of What is does	UNIT – I
2	Position, Velocity and Acceleration Analysis	1.00	5.00	
	 Learning Outcomes: The students should be able Simulate and compare the scenario Graphically determine velocity vectors. Calculate the velocity of a ball 	UNIT – I		
3	Simulations of sliding, and rigid body rotations (using SolidWorks motion)	1.00	5.00	

	 Learning Outcomes: The students should be able 1. Demonstration of slidin solidworks motion 2. Examin sliding and/or rolling down ir should be able to: The stude following questions 1. What on the plane if there is no fri- of the block at the bottom of starting position? 3. What wi the plane if friction is include the block at the bottom of the motion of a roller be different 	UNIT – I		
Category:	Exercise	Total Weightage:	45.00	No. of lab sessions: 9.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	Motion simulation 4 bar linkage(Tracing the path generated by the points on the mechanisms)	1.00	5.00	
	 Learning Outcomes: The students should be able Simulate and apply motor students are asked to answe Students simulate the motio respective to each other. Thi key figures of Motion Simula motors to simulate the move and frame rate. 	UNIT-I		
2	Motion Analysis of a 4 bar mechanism (Using SolidWorks Motion)	1.00	5.00	
	 Learning Outcomes: The students should be able 1. Simulation of 4 bar link the joints 3. Plot angular according The students should be able Simulation to perform motio 	UNIT-I		

	shown below. The green link displacement of 45 degrees i direction and it is required to velocity and acceleration of t time & Create a Trace Path			
3	Modification of the geometry of 4 bar mechanism and its effect on kinematic properties (Using SolidWorks Motion)	1.00	5.00	
	 Learning Outcomes: The students should be able Students should modify the the 4Bar mechanism looks likelow. Now ask them to use the new torque required to compare uniform angular velocition 	UNIT-I		
4	Motion analysis of a Slider Crank Mechanism	1.00	5.00	
	 Learning Outcomes: The students should be able Use SolidWorks Motion to mechanism. The goal of the selection of the sele	UNIT-I		
5	Analysis of Torque and Power of a rotating drum	1.00	5.00	
	 Learning Outcomes: The students should be able 1. Compute the torque an Obtaining the results in solid 	UNIT-I		
6	Simulation of CAM – Following mechanism	1.00	5.00	
	 Dearning Outcomes: The students should be able to: Design and simulate the motion of CAM & Follower using SolidWorks motion 1. Design CAM & Follower 2. Applying motors to simulate the movement 3. Setting the time flow 			UNIT-II

	and frame rate			
7	Gears: Motion study of spur gears & Planetary gear.	1.00	5.00	
	 Learning Outcomes: The students should be able Importing Standard Gears Meshing of Gears (Spur gear) Gear) 	UNIT-II		
8	Simulation of Belt and Chain Drive Mechanism.	2.00	10.00	
	 Learning Outcomes: The students should be able Silmulation of conveyor sy command using SolidWorks 	UNIT-II		
Category	Structured Enquiry	Total Weightage:	10.00	No. of lab sessions: 2.00
Expt./ Job No.	Experiment / Job Details	No. of Lab	Marks /	Correlation of Experiment
		batch (estimate)	Experiment	with the theory
1	EVENT BASED MOTION ANALYSIS	batch (estimate) 2.00	10.00	with the theory

Course Code: 15EARC301		Course Title: Robot Analysis & Design				
L-T-P: 4-0-0		Credits: 4	Contact Hrs: 50			
ISA N	Aarks: 50	ESA Marks: 50	Total Marks: 100			
Teaching Hrs: 50			Exam Duration	: 3 Hrs		
	UN	lit – I				
No	Con	tent		Hrs		
1	Chapter 1:Introduction to Robotics and Applications Introduction, Classifications of Robots, Robot Components, Robot Degrees of Freedom, Robot Joints, Robot Coordinates, Robot Reference Frames, Programming Modes, Robot Characteristics, Robot Workspace, Robot Languages, and Robot Applications.			6		
2	Chapter 2: Representing Position and Orientation Coordinate frames, representing Pose in 2-Dimensions, representing Pose in 3- Dimensions, representing Orientation in 3-Dimensions, orthonormal Rotation Matrix, three-Angle Representations, combining Translation and Orientation.			6		
3	Chapter 3: Position Analysis of Serial Manipulators Describing a Robot Arm,Link Parameters and Link Coordinate systems, Homogeneous transformation Matrices, Denavit-Hartenberg,Forward Kinematics, Inverse Kinematics,A 2-Link Robot, A 6-Axis Robot .			8		
	UNIT - II					
4	Chapter 4:Jacobian Analysis of Serial Manipu Different Kinematics of rigid body, Differe coordinates and screw systems, Manipulat Screw-Based Jacobian, and Transformations Two Methods, condition number, singularity	Ilators nt Kinematics of serial mani or Jacobian Matrix, conventi of screw coordinates. Relatio analysis.	pulators,screw onal Jacobian, nship Between	6		
	Chapter 5: Staticsand Dynamics of Serial Ma	nipulators				
5	Statics of Serial Manipulators, Transformatio momentum, transformation of inertia ma Recursive Newton-Euler Formulation, Lagr Rotors, End-Effectors Space Dynamical Equat	ns of Forces and Moments, m atrix, kinetic energy. Newto angian Formulation, Inertia ions.	ass properties, on-Euler Laws, Effects of the	7		

Chapter 6: Trajectoryplanning

Path versus Trajectory, Joint-Space versus Cartesian-Space Descriptions, Basics of Trajectory Planning, Joint-Space Trajectory Planning, Third-Order Polynomial Trajectory Planning, Fifth-Order Polynomial Trajectory Planning, Linear Segments with Parabolic Blends, Linear Segments with Parabolic Blends and Via Points, Higher-Order Trajectories, Other Trajectories, Cartesian-Space Trajectories, Continuous Trajectory Recording.

7

5

5

UNIT - III

Chapter 7: Wrist Mechanisms

- 7 Introduction, Bevel-Gear Wrist Mechanisms, structure representation of mechanisms, structure characteristics of epicyclic Gear Drives, Kinematics of Robotic Wrist Mechanisms, and static force analysis.
 Chapter 8:Tendon-Driven Manipulators
- 8 Introduction, classification of Tendon-Driven Manipulators, Planar Schematic Representation, Kinematics of Tendon-Driven Manipulators, Static Force Analysis, Feasible Structure Matrices, Redundant forces resolution.

Course Code: 15EARC302	Course Title: Hydraulics and Pneumatics	
L-T-P : : 4-0-0	Credits: 4	Contact Hrs: 50 hours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50 hours		Exam Duration: 3 Hrs

Content	Hrs
Unit - 1	
Chapter No. 1. Introduction to Hydraulic Power and Hydraulic Pumps Pascal's law, Structure of Hydraulic Control System. The Source of Hydraulic Power: Pumps Pumping theory, pump classification, gear pumps, vane pumps, piston pumps, Variable displacement pumps, pump performance, pump selection.	7hrs
Chapter No. 2. Hydraulic Actuators: Cylinders and Motors Linear Hydraulic Actuators (cylinders), Mechanics of Hydraulic Cylinder loading, Hydraulic Rotary Actuators, Gear motors, vane motors, piston motors, Hydraulic Motor Performance	6hrs
Chapter No. 3. Hydraulic Valves Hydraulic Valves: Directional Control Valves- classification of directional control valves, direction control valves actuating devices, Symbolic representation as per ISO 1219 and ISO 5599, pressure control valves, flow control valves- classification of flow control valves, proportional control valves, and servo valves.	7hrs
Unit - 2	
Chapter No. 4. Hydraulic Circuit Design and Analysis Control of single acting and double acting Hydraulic Cylinder, regenerative circuit, pump unloading circuit, Double pump Hydraulic system, Counter Balance Valve application, Hydraulic cylinder sequencing circuits. Locked cylinder using pilot check valve, cylinder synchronizing circuits, Speed control of hydraulic cylinder: Meter-in circuit, Meter-out circuit and Bleed-off circuit, speed control of hydraulic motors. Ancillary Hydraulic Devices: Reservoirs, Accumulators, Pressure Intensifiers, Sealing Devices.	6hrs
Chapter No. 5. Pneumatic Systems Structure of Pneumatic control system, Choice of working medium, characteristics of compressed air, Pneumatic Actuators: Types of Linear Actuators or Pneumatic cylinders, Cylinder mountings, Cylinder seals, End cushioning in pneumatic cylinders. Pneumatic Control Valves: Direction control valve- types of direction control valves, ISO designation of direction control valves, Non return valves, methods of actuation of pneumatic directional control valves, Flow control valves, and Pressure control valves.	5hrs
Chapter No. 6. Pneumatic Circuit Design and Hydraulic Control Systems Pneumatic Circuit Design: Direct and indirect control of single acting cylinder, control of	9hrs

single acting cylinder using "or" valve, control of single acting cylinder using "and" valve, control of single acting cylinder using "not" valve. Direct control of a double acting cylinder, Indirect control of double acting cylinder using memory valve, Supply air throttling and exhaust air throttling, Various methods of checking end position of a cylinder, Pressure dependent controls and Time dependent controls. Hydraulic Control Systems: Servo Control, Valve servo systems: Valve Iap, mechanical feedback, systems response, electro hydraulic servo valves, system response and stability, Pump servo systems, Proportional valves: Force control, force position control, spool position control, proportional pressure control, two stage proportional valves, proportional flow control, electrical control of proportional valve, Proportional versus Servo valves, Applications of proportional control valves.		
Unit - 3		
Chapter No. 7. Electro Pneumatics Basic electrical devices- Manually actuated push button switches, Limit switches, Pressure switches, Solenoids, Relays, Timers, Temperature switches, Direct and indirect control of single acting cylinders using electro pneumatics, Direct and indirect control of double acting cylinders using electro- pneumatics, Control of double acting cylinder OR logic (Parallel circuit), Control of double acting cylinder AND logic.	5 hrs	
Chapter No. 8. Hydraulic System Maintenance Common faults in a hydraulic systems, contamination, Filter and filter maintenance, pump maintenance. Hydraulic system maintenance, fault diagnosis of Hydraulic system.	5 hrs	

Course Code: 15EARC303	Course Title: Mechatronic Systems Design		
L-T-P : 4-0-0	Credits: 4 Contact Hrs: 50 hou		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 50 hours		Exam Duration: 3 Hrs	

Content	Hrs
Unit - 1	
Chapter No. 1. Mechatronic Systems Design, Engineering & Modeling Introduction to mechatronic systems design, structure of mechatronic systems, Traditional approach to mechatronic systems design, Mechatronics design methodology (V-model) – VDI 2206, Model based design, Bond graph approach to modeling State charts, UML &SysML, Case studies.	10
Chapter No. 2. Design of Mechatronic control systems in State spaceControllerDesign, AlternativeApproachestoControllerDesign, ObserverDesign, AlternativeapproachestoObserverDesign, Steady-StateErrorDesignViaIntegralControl,RobustControlSystemDesign, The z-Transform:TransferFunctions, BlockDiagramReduction,Stability,Steady-StateErrors, TransientResponse on the z-Plane, GainDesign on the z-Plane,CascadeCompensationviathe s-Plane,Implementingthe DigitalCompensator.Compensator.CompensatorCompensatorCompensatorCompensator	10
Unit - 2	
Chapter No.3. Mechanisms for motion transmission Characteristics of motion transmission mechanism, Rotary to rotary motion transmission mechanisms, Rotary to translational motion mechanisms, Cyclic motion transmission mechanisms, Shaft misalignments and flexible couplings, Actuator sizing.	6
Chapter No. 4: Motion control systems Design Methodology for Programmable motion control Systems, Motion Controller Hardware and Software, Basic Single-Axis Motions, Coordinated Motion Control Methods, Point-to-point Synchronized Motion, Electronic Gearing Coordinated Motion, CAM Profile and Contouring Coordinated Motion, Sensor Based Real-time Coordinated Motion, Coordinated Motion Applications.	7
Chapter No. 5 : Sensors Principles & characteristics of measurement devices, Signal conditioning, Sensor characterization, Relations between physical quantities, Sensor Classification, Specifications, Error reduction techniques, Loading errors, Wheatstone bridge circuit, Sensors for position, Velocity, Acceleration, Strain, Force, Torque, Pressure, Temperature, Flow rate, Humidity, Vision systems, Sensor fusion.	7

Unit - 3		
Chapter No.6. Actuators	7	
Principle and characteristics of electric motors, Solenoids, DC motors & drives, AC		
induction motors & drives, Step motors, Linear motors.		
Chapter No.7. Data Acquisition Systems	7	
Data conversion devices, Filters, Signal sampling and aliasing, Sampling theorem,		
Quantization, Encoding, Digital to analog conversion methods, Analog to digital conversion		
methods, Sample & Hold circuit, Flash ADC, Successive approximation ADC, Dual slope		
ADC, Sigma Delta ADC, Multiplexers.		

Course Code: 15EARC304	Course Title: Programming Industrial Automation Systems		
L-T-P-SS: 3-0-0-0	Credits: 3 Contact Hrs: 40		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hrs: 40	Exam Duration: 3 hrs		

Content	Hrs	
Unit - 1		
Chapter No. 01.Programmable logic controllers(PLC) & its building blocks Internal architecture of Programmable Logic Controllers systems, Input/ Output devices, Memory Organization, I/O processing, Signal conditioning, Remote connections, Networks, Processor Scan cycle, Error Checking and Diagnostics.	4 hrs	
Chapter No. 02. The IEC 61131 , IEC61499 standards & Ladder , FB, IL, SFC and ST programming IEC 61131-3: Building Blocks , Goals , benefits, , Programming Languages of IEC 61131-3, Ladder diagrams, Analogy with Boolean Algebra and Binary Logic , Function blocks, Instruction lists, Sequential function charts, State chart modelling, Structured text programming with example programs for each, IEC 61499 models: models ,concepts and industrial examples like Temperature control system, Conveyor test station	6 hrs	
Chapter No. 03.Advanced PLC functions PLC Sequencer, Shift registers, Program / Flow Control Instructions, Arithmetic Instructions, Data handling Instructions like FIFO, FAL, ONS, Data Transfer Instructions PLC MOVE, PLC Matrix functions, Network Communication Instructions, Analog PLC operation, PID control of continuous processes.	5 hrs	
Unit - 2		
Chapter No. 04.Designing systems, PLC Start-up & Maintenance PLC Core application development, Development Cycle, Safe systems, Commissioning, Fault finding, PLC System Layout, Power Requirements and Safety Circuitry, Noise, Heat, and Voltage Considerations,, I/O Installation, System wiring strategies, and Precautions ,Safety Standards like NEMA & NEC, Electrical wiring diagrams PLC Start-Up and Checking Procedures, PLC System Maintenance & Troubleshooting	7 hrs	
Chapter No. 05.PC based Automation, SCADA Technologies and advantages of PC based Automation, Programmable Automation Controller systems (PACs) for Industrial control, Comparison of PLC with PAC Supervisory Digital Control and Data Acquisition (SCADA) system & Distributed Control Systems(DCS): SCADA Hardware and software, Open SCADA protocols like DNP3 and IEC60870,	8 hrs	

Unit - 3	
Chapter No. 06. DCS & Field Bus Overview of DCS, Network Standards: Device net, CAN bus, Control Net, Profibus, Sercos,	5 hrs
EtherCAT, Ethernet Powerlink, Comparison of each of them with other network standard.	
Chapter No. 07. System Selection Guidelines & Commissioning PLC Selection process ,estimation of program memory and time requirements, PLC Sizes and Scope of applications, Special I/O modules, Electrical relay diagram symbols, Fail Safe Design, IEC 61508/61511 safety standards, Process modeling, Programming for large systems ,Control system documentation & Commissioning	5 hrs

Laboratory Course Plan: B E in A&R 2014-2018

Laboratory Title: Automation Lab	Lab. Code: 15EARP303
Total Hours: 28	Duration of SEE Hours: 2
SEE Marks: 20	CIE Marks: 80

Experiment wise Plan

Category: Demonstration		Total Weightage: 20.00		No. of lab sessions: 4.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	Introduction to Safety guidelines & PLC and system wiring. Introduction to SELEC Hardware and instruction set, demo programs.	1.00	5.00	
	 Learning Outcomes: The students should be able appreciate the guide working with PLC and procedures involved elements Solve the problems of PLC, sensor and acture 	e to: lines to be followed d I/O devices and fo in wiring the PLC sy on interfacing by us ators.	l while ollow the ostem ing Selec	UNIT I
2	Introduction to Panasonic PLC Hardware and FPWinPro software , Instruction set, Demo Programs	1.00	5.00	
	 Learning Outcomes: The students should be able Identify the different inpuction for interfacing elements Solve the problems on intersection of the sensors and different types of the sensors and sensors and types of the sensors and types of	e to: t and output device with Panasonic PLC erfacing by using Pa f actuators through	rs and their Csystem anasonic PLC, n ladder	UNITI

	logic, Function block and Stru			
3	Introduction to Bosch Rexroth PLC Hardware, Indra Works, Instruction set and Demo Programs	1.00	5.00	
	 Learning Outcomes: The students should be able Simulate PLC logic using In problems on ON - OFF controc coming on a conveyor with p 	e to: ndra logic Software I strategy , Countin lanned intervals	by solving ng Items	UNIT I
4	Demo on Electro Pneumatics : A. Time- dependent control of a double-acting cylinder with switch-on delay B. Sequential control of 2 double-acting cylinders with impulse valves	1.00	5.00	
	 Learning Outcomes: The students should be able Implement PLC logic solution elements based on stated case OFF control strategy , Countion with planned intervals 	e to: ion to drive electro se study problems e ng Items coming or	- <i>pneumatic</i> ems on ON - n a conveyor	UNIT I
Category	Exercise	Total Weightage:	25.00	No. of lab sessions: 5.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
5	Simulation Exercises on FPWINPro Software & Panasonic PLC a. Car safety system b. Solving Boolean Expressions c. Sequential Logic Control	1.00	5.00	
	 ILearning Outcomes: The students should be able to: 1. Solve problems based on given case studies using ladder logic and function blocks 			UNIT II and III

6	Exercises using Panasonic PLC hardware interfaced with sensors and actuators &FPWinPro software	1.00	5.00	
	 Learning Outcomes: The students should be able <i>Implement PLC control log control of DC motor/stepper and process indicators</i> 	e to: nic by interfacing se motor using timers	nsors for , counters	
7	simulate exercises using Rexroth PLC software using ladder diagram, function block and structured text programming for the given case studies	1.00	5.00	
	 ILearning Outcomes: The students should be able to: <i>simulate exercises using Rexroth PLC software using ladder diagram, function block and structured text programming for the aiven case studies</i> 			
8	Solve case study problems using Rexroth PLC hardware interfaced with sensors, actuators and process indicators	1.00	5.00	
	 Learning Outcomes: The students should be able simulate exercises using R ladder diagram, function bloc programming for the given compared 	e to: exroth PLC softwar ck and structured to ase studies	e using ext	
9	Exercises using Rexroth PLC software and hardware Building ALU , Timer and Counter b. Motor Control c.Burglar Alarm . d. Conveyor Control e. To explore PID control	1.00	5.00	
	ILearning Outcomes:IThe students should be able	e to:		

	1. Solve case study problems interfaced with sensors, actu indicators.indent:25in;mso- exercises using Rexroth PLC s function block and structured given case studies			
Category:	Structured Enquiry	Total Weightage:	15.00	No. of lab sessions: 2.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
10	Case studies on A. Automatic stamp B. Vehicle control system C. Process control system	2.00	15.00	
	2			UNIT III
Category:	Open Ended	Total Weightage:	20.00	No. of lab sessions: 2.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
11	Exploring PLC Serial communication using Ethernet	2.00	20.00	UNIT III

Laboratory Plan

Laboratory Course Plan: B E in A&R 2015-2019

Laboratory Title: Mechatronics Laboratory	Lab. Code: 15EARP304
Total Hours: 30	Duration of ESA Hours: 2hrs

Experiment wise Plan

Category: Demonstration		Total Weightage: 10		No. of lab sessions: 2	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory	
1	Demo on Quanser Mechatronics Sensor kit, DC Motor Control Trainer module, Inverted Pendulum Trainer module with NI ELVIS Platform.	1	05	Unit - 2	
	 Learning Objectives: The students should be able to: 1. Demonstrate the working of O Motor Control Trainer module with NI ELVIS Platform. 	Quanser, Mech e, Inverted Pen			
2	 Model physical systems using bond graph techniqueusing Model-20Sim software/Open modelica/ /Hopsansoftware. Discretization(S→Z) (Simulation) using Labview. 	1	05	Unit - 1	
	 Learning Objectives: The students should be able to: 1. Model physical systems using 20Sim software/Open modeli 2. Realize discretizition methods 	Objectives: ents should be able to: del physical systems using bond graph technique using Model- im software/Open modelica software.			

	3. Make basic calculation us				
Category	: Exercise		Total Weig	No. of lab sessions: 3	
Expt./ Job No.	Experiment / Job Details		No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
3	A/D and D/A (Simulation) using 1 05 Labview. Learning Objectives:				Unit - 3
	 Measure and characterize Measure and characterize Measure and characterize Make basic calculation us 	e Anal e Digit ing La	og to Digital al to Analog bVIEW Virtu	Converter (ADC). Converter (DAC). Ial Instrument.	
4	Implementing a Level Co System in LabVIEW.	ntrol	1	05	Unit - 1
	Learning Objectives: The students should be able to 1. Implement a level control	: syster	n using PID	controller.	
5	Ultrasonic Transducer110Characterization and MotorControl on starter kit 2.01				Unit - 2
	 Learning Objectives: The students should be able to 1. Realize the characteristic kit 2 and LABVIEW. 2. Discover how to control techniques. 3. Realize the characteristic LABVIEW. 4. Apply conversions betwee preferred units. 				
Category	: Structured Enquiry	Total	Weightage:	40	No. of lab sessions: 6
Expt./ Job No.	Experiment / Job Details	No. of Sessio batch (estim	f Lab on(s) per nate)	Marks / Experiment	Correlation of Experiment with the theory

6	System identification (DC motor, Inverted pendulum)	2	20		Unit - 2
7	Learning Objectives: The students should be able t 1. Derive analytically th identify experimentally 2. Measure the resistan EMF) constant of the speed transfer functio 3. Investigate various ph experimentally determ Design a Lag controller for a DC motor using the frequency response method.	o: e mathematical n y its physical paran ce and the back- DC motor and d n. hysical principles o hine its moment of 2	nodel of a Do neters. electromotive erive the volt f the rotary po inertia. 10	C motor and force (back- age-to-motor endulum and	Unit – 1, 2
	Learning Objectives: The students should be able t 1. Design a Lag controlle 2. Derive and simulate a	o: er for a DC motor digital equivalent	controller usin	g emulation.	
8	Design a PI controller for a DC motor using the Ziegler Nichols method, and then use this controller to build the discrete equivalent controller using emulation, investigating the effect of the discretization method and sampling frequency.	2	10		Unit – 1, 2
	Learning Objectives: The students should be able t 1. Design a PI controller 2. Derive and simulate a	o: using the Ziegler N digital equivalent	lichols method controller usin	g emulation.	
Category	: Open Ended	Total Weightage:	10	No. of lab see	ssions: 2
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation o the theory	f Experiment with
9	Select any one of these following experiments and	2	10	Unit – 1, 2 an	d 3

per				
	form the experiment:			
1.	Kinematics. Perception			
	with PING))) and			
	Localization using			
	starter kit 2.0.			
2.	Pole placement using			
	state feedback (PPSF			
	emulation) for the			
2	Inverted pendulum			
5.	LabVIEW software and			
	SbRIO/ CRIO to build			
	control system.			
4.	Build SCADA and Cam			
	profile applications			
	using Rexroth Win-			
	studio and MLD-CAM			
	builder software tools.			
1.	Discover the steering f	rame. Add moto	or control of	
2. 3. 4. 5. 6. 7.	from point A to point B. Learn about hierarchi machine architectures programs to sequence co to navigate from point A Calibrate PING)))'s orient Displayperception data w Communicate perception Streams Write a program to extraction method to obstacle and follow a wa Determine DaNI's locat	cal programming to build more ontrol tasks like rot to point B. tation and file IO with an XY Graph n data to the host identify edges u identify an obs II.	oility to drive g and state sophisticated cate and drive with network using feature stacle, avoid onment with	
2. 3. 4. 5. 6. 7.	from point A to point B. Learn about hierarchi machine architectures programs to sequence co to navigate from point A Calibrate PING)))'s orient Displayperception data w Communicate perception Streams Write a program to extraction method to obstacle and follow a wa Determine DaNI's locat odometric localization (d Build an occupancy grid r	cal programming to build more ontrol tasks like rot to point B. cation and file IO with an XY Graph n data to the host identify edges u identify an obs II. cion in the enviro lead reckoning).	oility to drive g and state sophisticated cate and drive with network using feature stacle, avoid onment with	
2. 3. 4. 5. 6. 7. 8. 9.	from point A to point B. Learn about hierarchi machine architectures programs to sequence co to navigate from point A Calibrate PING)))'s orient Displayperception data w Communicate perception Streams Write a program to extraction method to obstacle and follow a wa Determine DaNI's locat odometric localization (d Build an occupancy grid n	cal programming to build more ontrol tasks like rot to point B. tation and file IO with an XY Graph n data to the host identify edges u identify an obs II. tion in the enviro lead reckoning). map using LABVIEV ck controller for	oility to drive g and state sophisticated cate and drive with network using feature stacle, avoid onment with V. the inverted	
2. 3. 4. 5. 6. 7. 8. 9.	from point A to point B. Learn about hierarchi machine architectures programs to sequence co to navigate from point A Calibrate PING)))'s orient Displayperception data w Communicate perception Streams Write a program to extraction method to obstacle and follow a wa Determine DaNI's locat odometric localization (d Build an occupancy grid n Design a state feedbac pendulum using pole pla	cal programming to build more ontrol tasks like rot to point B. cation and file IO with an XY Graph n data to the host identify edges u identify an obs II. cion in the enviro lead reckoning). map using LABVIEV ck controller for cement.	oility to drive g and state sophisticated cate and drive with network using feature stacle, avoid onment with V. the inverted	
2. 3. 4. 5. 6. 7. 8. 9.	from point A to point B. Learn about hierarchi machine architectures programs to sequence co to navigate from point A Calibrate PING)))'s orient Displayperception data w Communicate perception Streams Write a program to extraction method to obstacle and follow a wa Determine DaNI's locat odometric localization (d Build an occupancy grid n Design a state feedbac pendulum using pole plac	cal programming to build more ontrol tasks like rot to point B. tation and file IO with an XY Graph n data to the host identify edges u identify an obs II. tion in the enviro lead reckoning). map using LABVIEV ck controller for cement. gital equivalent co	oility to drive g and state sophisticated cate and drive with network using feature stacle, avoid onment with V. the inverted ntroller using	
2. 3. 4. 5. 6. 7. 8. 9. 10.	from point A to point B. Learn about hierarchi machine architectures programs to sequence co to navigate from point A Calibrate PING)))'s orient Displayperception data w Communicate perception Streams Write a program to extraction method to obstacle and follow a wa Determine DaNI's locat odometric localization (d Build an occupancy grid n Design a state feedbac pendulum using pole play Derive and simulate a dig emulation.	cal programming to build more ontrol tasks like rot to point B. cation and file IO with an XY Graph n data to the host identify edges u identify an obs II. cion in the enviro lead reckoning). map using LABVIEV ck controller for cement. gital equivalent co	oility to drive g and state sophisticated cate and drive with network using feature stacle, avoid onment with V. the inverted ntroller using	
2. 3. 4. 5. 6. 7. 8. 9. 10. 11.	from point A to point B. Learn about hierarchi machine architectures programs to sequence co to navigate from point A Calibrate PING)))'s orient Displayperception data w Communicate perception Streams Write a program to extraction method to obstacle and follow a wa Determine DaNI's locat odometric localization (d Build an occupancy grid r Design a state feedbac pendulum using pole pla- Derive and simulate a dij emulation.	cal programming to build more ontrol tasks like rot to point B. tation and file IO with an XY Graph in data to the host identify edges u identify an obs II. tion in the enviro lead reckoning). map using LABVIEV tk controller for cement. gital equivalent co	oility to drive g and state sophisticated cate and drive with network using feature stacle, avoid onment with V. the inverted ntroller using stem.	
2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12.	from point A to point B. Learn about hierarchi machine architectures programs to sequence co to navigate from point A Calibrate PING)))'s orient Displayperception data w Communicate perception Streams Write a program to extraction method to obstacle and follow a wa Determine DaNI's locat odometric localization (d Build an occupancy grid r Design a state feedbac pendulum using pole pla- Derive and simulate a di- emulation.	cal programming to build more ontrol tasks like rot to point B. cation and file IO with an XY Graph in data to the host identify edges u identify an obs II. cion in the enviro lead reckoning). map using LABVIEV ck controller for cement. gital equivalent co ling rate on the system p face using SCADA	with network with network using feature stacle, avoid onment with V. the inverted ntroller using stem.	

Semester:VYear: 2017Laboratory Title:Mini projectLab. Code: 15EARW301Total Hours:30Total Credits: 3Total ESA Marks:50Total ISA. Marks: 50

Experiment wise plan

List of activities planned to meet the requirements of the syllabus

Week No	Activities	Deliverables	CIE Marks out of 50
1&2	Need analysis, Identification of problem statement, Engineering Design process	Problem statement, Project plan	10
3&4	Control System Design	Component designs & Integration, Modeling and simulation	10
5,6,7&8	Fabrication, Testing and validation	Prototype (hardware and software)	20
9&10	Report generation	Test reports and Conclusion	10

Cou	rse Content				
Course Code: 15EARC305	Course Title: Real Time Embedded Systems				
L-T-P-SS: 4-0-0-0	Credits: 4	Contact Hrs: 50			
ISA Marks: 50	ESA Marks: 50	0 Total Marks: 100			
Teaching Hrs: 50	Exam Duration: 3 hrs				
Content			Hrs		
Ur	nit - 1		I		
1.0 Introduction to System Structures, Embedded System and Operating System System Structures types, Real time systems & basics, Operating system definition, operations, types,Embedded system purpose, Quality attributes, Core and Supporting components of embedded system, Embedded firmware					
2.0 Target Architectures : ARM Cortex M3 processors & its Programming: Architecture of ARM Cortex M3, Nested Vector Interrupt Controller. Interrupt behavior of ARM Cortex M3. Exceptions Programming. Advanced Programming Features. Memory Protection. Debug Architecture. Digital Signal Processor (DSP). Field Programmable Generic Array (FPGA).					
3.0 Real-Time Kernels and Operating Systems: Introduction to Real-Time Kernels, Tasks, process and threads, Introduction to RTOS, key characteristics of RTOS, its kernel, components in RTOS kernel, objects, scheduler, services, context switch, Task scheduling, Task communication and synchronization, Multiprocessing and multitasking, Scheduling types: Preemptive priority-based scheduling, Round-robin and preemptive scheduling.first come first served scheduling, shortest job first scheduling, Device drivers and selection of an BTOS.					
Unit - 2					
4.0 Inter-task Communication in RTOS Tasks, Semaphores and Message Queues: A task, its structure, A typical finite state machine, Steps showing the how FSM works. A semaphore, its structure, binary semaphore, mutual exclusion (mutex) semaphore, Synchronization between two tasks and multiple tasks, Single shared-resource-access synchronization, Recursive shared- resource-access synchronization. A message queue, its structure, Message copying and memory use for sending and receiving messages. Sending messages in FIFO or LIFO order, broadcasting messages.					
5.0 Tasks and Task Management VxWorks- task creation and Management, task scheduling, kernel services, inter-task- communication, Micro C/OS-II- task creation and Management, task scheduling, kernel services, inter-task-communication.					
6.0 Handling Deadlocks Sharing Resources, Deadlock Model- Necessary Conditions, A Graph Theoretic Tool—The Resource Allocation Graph, Handling Deadlocks, Deadlock Prevention, Deadlock Avoidance, Deadlock Detection.					
Ur	nit - 3		·		
7.0 Performance Analysis and Optimization Performance or Efficiency Measures, Complexit Methodology, Analyzing Code, algorithms, Resp Evaluating Performance, Performance Optimiza	ty Analysis—A High-Lev ponse Time, Time Loadi ation, optimizing for Po	el Measure, The ng, Memory Loading, wer Consumption.	5		

8.0 Wired and Wireless Protocols used in Real Time Embedded System:	
Bus communication protocol (USB, I2C, SPI), Wireless and mobile system protocol (Bluetooth,	5
802.11 and its variants, ZigBee), Embedded design cycle-case study-ACVM	

Laboratory Plan Semester: VI FMTH0303-3.0

Year: 2018 - 2019

Laboratory Title: OOP & Python Practice	Lab Code: 15EARC306
Total Hours: 48	Duration of SEE Hours: 3
ISA Marks: 80	ESA Marks: 20

Experiment wise Plan

Category: Demonstration		Total Weightage:	20	No. of lab sessions: 2
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	Write programs using the concept of OOP (C++/Java) Language Fundamentals and concept of command line arguments.	1	10	
	 Learning Objectives: The students should be ab Demonstrate how to cor command prompt. Write programs using op Write programs for acce and process them in progra Demonstrate how to cor using different IDE's like ecl 	le to: npile and run a pro perators and contro pting command lin m. npile and run a Jav ipse, Net beans et	ogram in ol statements. e arguments ra program c.	Object Oriented Programming -I
2	Write programs using the concept of arrays, Strings and String Buffer class and exception Handling.	1	10	
	 Learning Objectives: The students should be ab Write programs using difference 	Object Oriented Programming -I		

	strings. 2. Write a program to catch 3. Demonstrate how the St				
Category: E	xercise To	tal Weightage: 20	N	o. of lab sessions: 2	
3	Develop a swing based GUI using swing components and containers and connect it to database .	1	10	Object Oriented Programming -I	
	 Learning Objectives: The students should be ab Develop a GUI using swire Demonstrate how to insefinom a database by using a signal Demonstrate the proced 				
4	Write programs using the concept of Generic class, Inheritance, Interface and Package.	1	10		
	 Learning Objectives: The students should be ab Write a program to creat and demonstrate the inheri program. Write a program to creat how to use the interface for Use the built in packages task. Create the user packages the user package in other p Demonstrate how to creat and how to use different typ program. 	 Learning Objectives: The students should be able to: Write a program to create base class and derived class and demonstrate the inheritance concept using the same program. Write a program to create interface and demonstrate now to use the interface for other programs also. Use the built in packages to write programs for defined ask. Create the user packages and demonstrate how to use he user package in other programs or other classes. Demonstrate how to create parameterized constructors and how to use different types of access specifies in a program. 			
Category: E	xercise	Total Weightage:	30	No. of lab sessions: 3	
Expt./ Job No.	Experiment / Job Details	No. of Lab Marks / Session(s) per Experiment batch (estimate)		Correlation of Experiment with the theory	

5	Write a program using the concepts of python scripting elements python constructs, data structures.	1	10	Python programming-II
	 Learning Objectives: The students should be ab Demonstrate how to cor command prompt. Write programs using op Write programs for acce and process them in progra Demonstrate how to cor using different IDE's like and 	le to: npile and run a pro perators and contro pting command lin m. npile and run a pyt aconda ,ipython et	ogram in ol statements. e arguments :hon program c.	
6	Write programs using the concept of functions, modules, packages and regular expressions	1	10	Python programming-II
	Learning Objectives: The students should be ab Write programs using function Write a program to use program	le to: nctions and modul backages and regul	es. ar expressions	
7	Write a python program to use the language scripting elements and constructs, data structures, and repository of standard library, to develop real world applications.	1	10	Python programming-II
	 Learning Objectives: The students should be ab Write a program using sc structures. Create the user packages the user package in other p Write a program to creat to use the interface for other 	le to: ripting elements a s and demonstrate rograms or other c e interface and de er programs also	nd data how to use lasses. monstrate how	

Category: S	itructured Enquiry	Total Weightage:	10	No. of lab sessions: 3
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
8	Solving a Maze: Program a robot to solve a maze by finding the goal position in the maze starting from a starting position. You will need a data structure to keep track of positions found in the maze that are yet to be explored, starting with positions around the starting position. You will compare the maze solutions found using a Stack versus a Queue for storing unexplored positions.	2	10	
	 Learning Objectives: The students should be ab Select fundamentals con programming concepts/pyt scenario to implement prog 	le to: cepts of object orio hon, based on the grams.	ented problem	Object Oriented Programming –I/ Python programming-II
Category: C	Dpen Ended	Total Weightage:	20	No. of lab sessions: 2
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
9	Implement a project using C++/Java/python concepts, for automation and robotics applications. (FOR SEE)	2	20	

ILearning Objectives:	Object Oriented
IThe students should be able to:	Programming –I/ Python
1. Use the C++/Java/python concepts to implement the	programming-II
project.	
2. Select the appropriate tool/software to implement the	
project.	
3. Write a technical report using IEEE standard.	
4. Present the technical report for the implemented project.	
5. Demonstrate the learning experiences of working in a	
team.	

Laboratory Plan	Laboratory	Plan
-----------------	------------	------

Semester:

VI

FMTH0303-3.0 Year: 2018-2019

Laboratory Title: DBMS Lab	Lab. Code: : 15EARC307
Total Hours: 24	Duration of ESA Hours: 3
ESA Marks: 20	ISA Marks: 80

Experiment wise Plan

Category:	Demonstration	Total Weightage:	20	No. of lab sessions: 4	
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory	
1	Preparing an ER diagram for given database	2	10		
	 Learning Objectives: The students should be able to Demonstrate how structure of a database can beexpressed graphically by an ER diagram. Demonstrate how torepresent attributes, relationships among entity sets, link attribute to entity sets and entity sets to relationships 				
2	Execute basic SQL queries on a given database. (DDL, DML, DCL commands)	2	10		
	 Dearning Objectives: The students should be able to: Demonstrate how to use DDL, DML and DCL commands on a database. Demonstrate how to specify different types of constraints on a table while creating a table. 				
Category:	Exercise	Exercise Total Weightage: 40			
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory	
3	Execute nested, correlated queries using exist, like,	1	10		

	union, intersection and joins on a given database.			
	Learning Objectives: The students should be abl Write SQL queries to retricorrelated queries, nested q keywords exist, like, union a Demonstrate how to join types of joins and use keyword intersection to retrieve data	ata, using sing ifferent on, and		
4	Execute SQL queries on - group by, having clauses and aggregate functions on a given database to retrieve the required data.	1	10	
	 Learning Objectives: The students should be abl Write SQL queries using g aggregate functions to retries 			
5	Specifying views in SQL	1	10	
	Learning Objectives: The students should be able to Write SQL gueries to create & update Views			
6	Design a database for the given schema using normalization concept and execution of given queries on the database and execution of queries.	1	10	
	 Learning Objectives: The students should be abl Design the database for t normalization concepts and and implement the database 	e to: he given schema us use the given RDBM e.	sing VIS software	
Category:	Structured Enquiry	Total Weightage:	20	No. of lab sessions: 2
Expt./	Experiment / Job Details	No. of Lab	Marks /	Correlation of Experiment

Job No.		Session(s) per batch (estimate)	Experiment	with the theory
7	Design a database for the given specifications & implement the database and write and execute the queries for the given statements.	2	20	
	 Dearning Objectives: The students should be able to: Draw the ER diagram for a given specifications. Design a database based on the specifications given and create tables by specifying different types of constraints on database and write SQL queries for given statements and execute them. Select the proper RDBMS software to implement the database. 			
Category	Open Ended	Total Weightage:	20	No. of lab sessions: 2
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
8	Implement a project using Java/database management systems concepts, for automation and robotics applications. (FOR SEE)	2	20	
	 Dearning Objectives: The students should be able to: Use the java /database management concepts to implement the project. Select the appropriate tool/software to implement the project. Write a technical report using IEEE standard. Present the technical report for the implemented project. Demonstrate the learning experiences of working in a team. 			

Course Content			
Course Code: 15EARE301 Course Title: Power Electronics, Motors & Drives			
-T-P: 3-0-0 Credits: 3 Contact Hrs: 40			
ISA Marks: 50 ESA Marks: 50 Total Marks: 100			
Teaching Hrs: 40		Exam Duration: 3 hrs	
Con	tent		Hrs
Uni	it - 1		
Chapter No. 1.Elements and Dynamics of Electric Drive Systems Basic components of an Electric drive system: Mechanical loads, electric motors, power sources, converters and controllers. Moment of inertia , basic concept of Traveling time, gears and belts, traveling time of dc motors and traveling time of induction motors.(Book-1,3)			3 hrs
Chapter No. 2.Power electronic devices Ratings of power electronic devices, Characteristics of : power diodes, power transistors, power mosfets, triac and IGBT. Thyristors (SCR): static VI characteristics, turn on methods, switching characteristics, gate characteristics, two transistor model, di/dt and dv/dt protection. Firing circuits for SCRs(Book-2,5)			6 hrs
Chapter No. 3.Solid state switching circuits Single- phase , half-wave, ac/dc conversion for resistive loads, Single- phase , full-wave, ac/dc conversion for resistive loads, Single- phase , half-wave, ac/dc conversion for inductive loads without/with freewheeling diode, single phase dc/ac converter, voltage, frequency and sequence control and PWM,. Current source Inverter(Book-2,5)			6 hrs
Unit - 2			
Chapter No. 4. Power Amplifiers Definitions and amplifier types, series fed class A amplifier, Transformer coupled Class A amplifiers, Class B amplifier operations, Class B amplifier circuits, Amplifier distortions. Designing Power amplifiers: Heat flow calculations using analogous circuit. Calculation of actual power handling capacity of transistors with and without heat sink. Heat sink design.(Book-4)			6 hrs
Chapter No. 5.Speed –torque characteristics &Speed Control of Electric motors Joint Speed-Torque Characteristics of Electric Motors and Mechanical Loads, DC motors: separately excited motors, shunt motors, series motors and compound motors, Speed control of shunt or separately excited DC motors: by adding resistance, adjusting armature voltage, adjusting field voltage and solid-state control, Speed control of DC series motor: by adding resistance to armature circuit, adjusting armature voltage, and by adjusting field current, Induction motors: equivalent circuit, power flow, torque characteristics, starting procedure ,Damage to electric machines. speed control of induction motors: by rotor resistance, by slip energy recovery method, by adjusting the stator voltage, adjusting the supply frequency, voltage/frequency (V/F) control(Book-1,3)			9hrs
Uni	it - 3		

Chapter No. 6.Braking of electric motors

DC shunt and series motors: Regenerative, dynamic, and concurrent braking. Induction motors: Regenerative, dynamic and concurrent braking. (Book-1,3)

5 hrs

5 hrs

Chapter No. 7. Drives for industrial Applications

Rolling mill drives, cement mill drives, electric traction drives, textile mill drives drives and machine tool drives. .(Book-1,3)

Course Code: 15EARE302	Course Title: Computer vision & digital image processing	
L-T-P-SS: 3-0-0-0	Credits: 3	Contact Hrs: 40
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40		Exam Duration: 3 hrs

Content	Hrs
Unit - 1	
CHAPTER 1: FUNDAMENTALS OF COMPUTER VISION & DIGITAL IMAGE PROCESSING Introduction to –computer vision system, Geometric Camera Models- Pinhole Perspective, Cameras with Lenses, the Human Eye, Intrinsic and Extrinsic Parameters, Geometric Camera Calibration. Digital image processing system, application of computer vision & digital image processing. Design of machine vision system.	6 hrs
CHAPTER 2:LIGHT & SHADING, COLOR	6hrs
Modeling Pixel Brightness, Reflection at Surfaces, Sources and Their Effects, the Lambertian+SpecularModel, Inference from Shading, Radiometric Calibration and High Dynamic Range Images, the Shape of specularities, Inferring Lightness and Illumination, Color- Human Color Perception, The Physics of color, representing Color, Inference from Color Finding specularities Using Color Shadow removal, usingColor Constancy: Surface Color from Image Color.	
CHAPTER 3: IMAGE FORMATION & PROCESSING Image Acquisition – Sampling and Quantization- Pixel Relationships, image enhancement Spatial Domain Gray level Transformations Histogram Processing Spatial Filtering – Smoothing and Sharpening, Introduction to the Fourier Transform and the Frequency Domain, DFT, FFT.	5 hrs
Unit - 2	
CHAPTER 4:IMAGE SEGMENTATION AND FEATURE ANALYSIS	6hrs
Detection of Discontinuities – Edge Operators – Edge Linking and Boundary Detection – Thresholding – Region Based Segmentation, A Model of the Image Degradation/Restoration Process, Noise Models, Restoration in the Presence of Noise Only–Spatial Filtering, Periodic Noise Reduction by Frequency Domain Filtering.	
CHAPTER 5: COLOR IMAGE PROCESSING & IMAGE COMPRESSION	6hrs

Color Fundamentals, Color Models, Pseudo color Image Processing, Basics of Full-Color Image Processing Color Transformations, Smoothing and Sharpening, Color Segmentation, Noise in Color Images Color Image Compression, Image Compression-Fundamentals, Image Compression Models, Elements of Information Theory, Error-Free Compression, Lossy Compression	
Unit - 3	
CHAPTER 6: MORPHOLOGICAL PROCESSING Dilation and Erosion, Opening and Closing, The Hit-or-Miss Transformation, Some Basic Morphological Algorithms.	6hrs
CHAPTER 7: RECOGNITION & BAYESIAN MODELING Object detection, Face recognition. Instance recognition, Category recognition, Context and scene understanding, Recognition databases and test sets, Prior models and Bayesian inference. Gradient descent and simulated annealing, Graph cuts, Markov random fields	5 hrs

Course Code: 15EARE303	Course Title: Computer-Integrated Manufacturing		
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40 hours	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40 hours		Exam Duration: 3 Hrs	
Unit –I			

1. Geometric Modelling and Computer-Aided Design, CAD Data Exchange and CAD Standards	
Introduction to Geometric Modelling	
 Geometric Modelling Approaches: Wire-Frame Modelling, Surface Modelling Solid Modelling 	, OE bours
Computer-Aided Design, CAD System Architecture	05 Hours
Computer Hardware for CAD	
CAD Kernels	
 Data Interoperability: Different Types of Data Translation/Conversion, Dual Kernel CAD Systems, Direct Data Translators, Common/Neutral Translators 	
2. Group Technology and Flexible manufacturing system	
 Group Technology: Part Families, Part Classification and Coding, Production flow analysis, Machine Cell Design, Benefits of Group Technology 	/ 05 hours
 Flexible Manufacturing Technology: Introduction, FMS workstations, Materia Handling and storage Systems, Computer Controls Systems, Planning the FMS Analysis Methods for FMS 	l ,
3. Computer-Aided Process Planning and Manufacturing	
 Computer-Aided Process Planning: Basic Steps in Developing a Process Plan, Principal Process Planning Approaches Computer-Aided Manufacturing: Computer Applications in a Manufacturing Plant, Key Aspects of CAM in a Manufacturing System, Manufacturing Control 	05 hours
Unit –II	
4. Integration of CAD/CAPP/CAM/CNC, Integration Based on STEP Standards, Function	
Block-Enabled Integration	
 Models of Integrating CAD/CAPP/CAM/CNC A Case Study of Integrating CAD/CAPP/CAM: Concurrent Product Modelling in a CAD/CAM System, A Bird's-Eye View of the Case Study, CAD/CAM Enabling a Concurrent Environment, Reflections Limited Efforts to Integrate CAM and CNC, Post-Processor: A Source of Vexation, Challenges, The APT Effort, The BCL Effort, The BNCL Effort, Intermediate Languages for CNC Programming Data Exchange Using STEP and STEP-NC Data Exchange between CAD Systems 	05 Hours

• Data Flow between CAD, CAPP, CAM and CNC Systems

-		
	 Features as a Common Thread 	
	 Integration through STEP AP Harmonization 	
	 Integrate CAD with CAPP 	
	 Integrate CAPP with CAM 	
	 Integrate CAM with CNC 	
	 STEP-NC Data Model 	
	 Data Access Implementation Methods 	
5. Integ	grating CAD/CAPP/CAM/CNC with Inspections	
	Classed Learn Machine and On Machine Inspection	
•		05.11
•	Past Research	05 Hours
•	A Data Model for UMI	
•	An integrated Machining and inspection System	
•	Implementation	
6. Inter	net-Based Integration	
•	A Collaborative Framework	
•	System Model	
	 Client Tier: User Interface 	
	 Business Logic Tier: CAPP Server 	
	 Data Tier: Data Model 	05 Hours
•	Framework Development	
	 Client Tier Implementation 	
	 Business Logic Tier Implementation 	
	• Data Tier Implementation	
	Linit –III	
7. From	CAD/CAPP/CAM/CNC to PDM. PLM and Beyond	
•	PDM's Capabilities	
•	Benefits of PDM Systems	
•	Web-Based PDM	
•	PDM Standardization	
•	Integrated and Extended PDM	
	Droduct Lifocycle Management	
•		
•	Looking Forward to "Grand" Integration	
8. Key	Enabling Technologies	
•	Knowledge-Based Systems	
	Artificial Neural Network Methods	
-		05 Hours
•	Genetic Algorithm	
•	Agent-Based Technology	
•	Other Technologies	

Laboratory Plan

FMTH0303-3.3

Semester: VI

Year: 2018

Laboratory Title: Robotics Lab	Lab. Code: 15EARP301
Total Hours: 28	Duration of Exam: 3
Total ESA Marks: 20	Total ISA Marks: 80

Experiment wise plan

Category: D	Category: Demonstration Total Weightage: 10 No. of lab sessions: 4						
Learning Ou	Learning Outcomes :						
The student	s should be able to:						
1. Den	nonstrate the knowledge about the basic pr	inciples and la	ws of robot	L .			
2. Den	nonstrate the knowledge about the basic pr	inciple of oper	ation, coor	dinates and parts	of robot	t.	
3. Den	nonstrate the knowledge about Mat lab and	l Robot studio	software b	ased tools.			
Expt./Job	Experiment/job Details	No. of Lab.	Marks/	Correlation of			
No.		Session/s	Experim	Experiment with the	CLO	PI Codo	
		(estimate)	ent	theory		Coue	
	Demonstration on working with Mat Lab						
1	software.	1	10	Chapter 1-3	1	4.1.1	
	Demonstration of operations of ABB		10				
2	Robot and Robot Studio Software.	1	10	Chapter 1-3	1	4.1.1	
2	Demonstration of controlling the robot		10	Charles 4.2	2	544	
3	using Flex pendant.	1	10	Chapter 1-3	2	5.1.1	
	Demonstration on working with ROS.						
4	Description: This tutorial introduces ROS	1	10	Chapter 1-3	2	5.1.1	
	filesystem concepts, and covers using						
	the roscd, rosls, and						

Category: Exercises Total Weightage: 20 No. of lab sessions: 4						
Learning Outcomes:						
The students should be able to:						
1. Demonstrate the robot programming methods.						
2. Demonstrate the operation of robot using robot controller.						
3. Simulate the robot using Mat lab and Robot studio software.						
Expt./Job Experiment/job Details No. of Lab. Marks/ Correlatio	n of					
No. Session/s Experime Experimer	t CLO	PI				
(estimate) theory		Code				
Create dynamic simulation of a simple						
5 robot with flexible transmission using 1 20 Chapter	3-5 2	5.1.1				
the toolbox with Mat lab Simulink.						
Obtain the kinematic equation of the 3						
DOF articulated arm with three revolute						
6 joints and simulate the same using ABB 1 20 Chapter 7	7,82	5.1.1				
robot.						
Obtain the position & orientation of the						
tool point P with respect to the base for						
the 2 DOF, RP planar manipulator using						
7ABB robot studio software.120Chapter 3	2-8 3	5.1.1				
Example: Path Tracing, Collision						
Creating a ROS Package.						
Description: This exercise covers using	, o o	E 1 1				
roscreate-pkg or catkin to create a new 1 20 Chapter	2-0 3	5.1.1				
package, and rospack to list package						
dependencies.						

Category: Structured Enquiry

Total Weightage: 20No. of lab sessions: 4

Learning Outcomes :

The students should be able to:

- 1. Demonstrate the knowledge of solid modeling software tools.
- 2. Demonstrate the knowledge of industrial applications of robot.
- *3. Demonstrate the knowledge about the mapping of sensors and end effectors with the robot.*

Expt./Job No.	E	Experiment/job Details	No. of Lab. Session /s per batch (estima te)	Marks/ Experim ent	Correlation of Experiment with the theory	CLO	PI Code
9	Design an e application work softw	end effector for a particular using Robot Studio and Solid vare.	2	20	Chapter 1-8	4 and 6	4.2.1
10	Writing a S (Python). i. ii. iii.	imple Publisher and Subscriber Writing the Publisher Node Writing the Subscriber Node Building your nodes	2	20	Chapter 1-8	3	4.2.1
Category: C)pen Ended	Total Weightage: 20	No. c	of lab sessio	on: 2		

Learning Outcomes :

The students should be able to:

1. Demonstrate the knowledge about the commands used in simulating the robot.

2. Demonstrate the knowledge about work stations and conveyors.

Expt./Job No.	Experiment/job Details	No. of Lab. Slots per batch (estima te)	Marks/ Experim ent	Correlation of Experiment with the theory	CLO	PI Code

	Design a complete process for welding,					
12	assembly, drilling, gluing or sorting using	2	20	Chanter 1-8	5	4.2.1
12	RODOL SLUUIO AND DELIVIA SOLWARE.	_	20			10.1.1
						12.1.1
						1

Laboratory Plan

Laboratory Course Plan: B E in A&R 2015-2019

Laboratory Title: Hydraulics And Pneumatics Lab	Lab. Code: 15EARP302	
Total Hours: 24	Duration of SEE Hours: 2	
ESA Marks: 20	ISA Marks: 80	

Experiment wise Plan

Category: Demonstration		Total Weightage:	25.00	No. of lab sessions: 5.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	To study hydraulic pump, its characteristics and calculate the hydraulic power	1.00	4.00	
	Learning Objectives: The students should be able t 1. Differentiate between ty 2. Plot and infer characteris	o: pes of pumps. tic curve of the Pu	mp.	Unit - I
2	 A. To study concepts of Meter-in and Meter-out circuits using Single-rod cylinder and 4/2 DCV B. Automation Studio Exercises 	1.00	6.00	
	Learning Objectives: The students should be able to: 1. Identify hydraulic cylinders and various direction control valves. 2. Explain meter-in and meter-out circuits used to control the speed of a single acting cylinder using meter in/out throttle.			Unit II

3	To study pressure	1 00	4.00	
5	intensification of a single rod	1.00	4.00	
	cylinder.			
	Learning Objectives: The students should be able to 1. Demonstrate how the sp using 4/2 directional valve. 2. Demonstrate the pressure cylinder.	Unit - II		
4	Study of Hydraulic Motor with 4/3 DCV	1.00	5.00	
	Learning Objectives: The students should be able to 1. Discuss the operating featu 2. Explain how a 4/3 direct implement clockwise and con hydraulic motor.	o: ires of a hydraulic tional valves can unter-clockwise ru	motor. be used to Inning of the	Unit – I
5	 A. Study of indirect control of a double-acting cylinder with a pneumatically operated 5/2 directional control valve. B. Automation Studio Exercises 	1.00	6.00	
	Learning Objectives: The students should be able to 1. Demonstrate how a 5/2 DC acting cylinder.	o: V can be used con	itrol a double	Unit - II
Category	Exercise	Total Weightage:	20.00	No. of lab sessions: 4.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
6	To study position dependent control of a double acting cylinder using mechanical limit switches.	1.00	5.00	
	Learning Objectives: The students should be able to	o:		Unit - II

	1. Identify switches and push the circuits.			
7	To study the application of different center configuration of 4/3 DCV. (Tandem and closed centre)	1.00	5.00	
	Learning Objectives: The students should be able to 1. Demonstrate how a hydra 4/3 directional valve with d and circulation position).	Unit - I		
8	Study of Speed Control of Single Acting Cylinder - Slow Speed Extension and Rapid Retraction.	1.00	5.00	
	Learning Objectives: The students should be able to 1. Explain how the speed controlled using a quick-exhau	o: of a single acting ust valve.	Unit I and II	
9	Stop control, double-acting cylinder with 5/3 directional control valve, tensile load	1.00	5.00	
	Learning Objectives: The students should be able to 1. Explain the use of a 5/3 closed mid-position for stoppi	Unit - II		
Category	Structured Enquiry	Total Weightage:	20.00	No. of lab sessions: 3.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
10	To study the application of Regenerative Circuit	1.00	8.00	
	Learning Objectives: The students should be able to: 1. Understand and record the table of the travel times 2. Calculate the velocity of the piston.			Unit - II

11	By using a 3/2 directional control valve with adjustable minimum pressure of response, a pressure- dependent (and in addition displacement) control of a double acting cylinder is put into effect.	1.00	6.00	
	Learning Objectives: The students should be able to 1. Use double acting cylinder, valves and push buttons and o the given application.	o: appropriate DCVs, construct the circui	, flow control t diagram for	Unit - II
12	The sequential control with two pneumatic drives. The signal overlapping occurring during this exercise is constructively solved by use of rollers with idle return. Practice is obtained in developing sequential diagrams and pneumatic circuit diagrams.	1.00	6.00	
	Learning Objectives: The students should be able to 1. Use double acting cylin control valves and push but diagram for sequential contro	o: ders, appropriate tons and construc l of two pneumatic	DCVs, flow ct the circuit cdrives.	Unit - II
Category	: Open Ended	Total Weightage:	10.00	No. of lab sessions: 2.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
13	A double-acting cylinder is used to press together glued components. Upon pressing a push-button, the clamping cylinder is to extend and trip the roller valve. Once the fully extended position of the cylinder has been reached and sufficient	2.00	10.00	

clamping force has been developed, the cylinder is to retract to the initial position. Develop a control circuit using a pressure sequence valve.			
Learning Objectives: The students should be able to 1. Construct a control circuit u for a given application.	o: Ising a pressure se	quence valve	Unit - I, II and III

Laboratory Plan	FMTH0303-3.0
Semester: VII	Year: 2017

Laboratory Title: Real Time Embedded Systems Lab	Lab. Code: 15EARP305
Total Hours: 28	Duration of ESA Exam: 3hrs
Total ESA Marks: 20	Total ISA. Marks: 80

LIST OF EXERCISES & ISA COMPUTATION

SI. No	EXPERIMENTS	MAX MARK S
	Demo on Energia IDE and TM4c1294NCPDT, TIVA C series microcontroller board &	
1	Solving problems on Data Acquisition for Bio Medical / Process control/Industrial control application	10
2	Demo on Code Composer Studio(CCS) and TIVA C series TM4C1294NCPDT	
	microcontroller board and problem solving on ADC, TIMERS, INTERRUPTS	10
	Demo on LABVIEW on multitasking to implement Semaphores, Queue	
3	Demo on Introduction to Keiluvision 4 problem solving	10
4	Demo on Raspberry Pi Programming and peripheral programming	05
5	Exercises on basic RTOS program, RTX Kernel using peripherals like RTC, TIMERS,	
	UART, SEMAPHORES	10
6	Exercises on implementing scheduling algorithms like Preemptive /Round Robin /	10
0	Interrupts/ and Multitasking operations in RTX Kernel of Keiluvision 4.	10
7	Structured Query : Implementing Communication Protocols like I2C / SPI / UART /CAN /	10
,	ETHERNET with Energia /CCS & TM4C1294 TIVA board	10
8	Synopsis for ESA Project	10
9	Attendance & Timely Submission of document	05
	TOTAL ISA MARKS	80

ESA	Design using state machine architecture or Unified Modeling Language and implement solution for a real world problem using IOT technology for applications related Smart Home, Energy Management, Smart Grid, Smart Agriculture, Wearable Device, Smart Health Care, Connected Car, Smart Machine involving Inter-process communication, Resource sharing and an effective scheduling technique satisfying real time constraints.	20
	TOTAL MARKS	100

Semester: VI

Year: 2015-16(Even)

Course Title: Professional Aptitude and Logical Reasoning	Course Code:HSC301
Total Contact Hours: 40	Duration of SEE: 90 mins
SEE Marks: 50	CIE Marks: 50

Unit –I - Arithmetical Reasoning and Analytical Thinking

Chapter 1. – ArithmeticalReasoning	10hrs
Chapter 2. – AnalyticalThinking	4hrs
Chapter 3. – SyllogisticLogic	3hrs

Unit – II – Verbal and Non – Verbal Logic

Chapter 1. – Verbal Logic	9hrs
Chapter 2. – Non-Verbal Logic	6hrs

Unit – III - Lateral Thinking

Chapter 1 Lateral Thinking	8hrs

Text Book

1. A Modern Approach to Verbal and Non – Verbal Reasoning – R. S. Aggarwal, Sultan Chand and Sons, New Delhi

2. Quantitative Aptitude – R. S. Aggarwal, Sultan Chand and Sons, New Delhi

References:

1. Verbal and Non – Verbal Reasoning – Dr. Ravi Chopra, MacMillan India

2. Lateral Thinking – Dr. Edward De Bono, Penguin Books, New Delhi

Semester:VIYear: 2017-18Laboratory Title:Minor projectLab. Code: 15EARW302Total Hours:30Duration of Exam: 3 Hrs

Total ESA Marks: 50

Design Process

Total ISA. Marks: 50

Figure 2. V-shaped model on the macro-level

Combination of V-model and project plan

Experiment wise plan

1.	List of activities planned	to meet the requirements	s of the syllabus	(Demonstration only)
			· · , · · · , · · · · ·	1

Week No	Activities	Deliverables	ISA Marks out of 50
1&2	Engineering Design	Problem statement, Project plan	10
3&4	Mechatronics System Design	Component designs & Integration	10
5,6,7&8	Fabrication	Prototype	20
9&10	Testing, Validation an Improvements	Test reports and Recommendations	10

Course Code: 15EARC401	Course Title: Industrial Data Networks	
L-T-P: 4-0-0	Credits: 4	Contact Hrs: 50
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 50		Duration of ESA: 3 hrs

Content	Hrs
Unit I	
Chapter No. 1. DATA NETWORK FUNDAMENTALS AND INDUSTRIAL ETHERNET Modern Instrumentation and Control Systems, Open Systems Interconnection (OSI) Model, EIA-232, EIA-485, Fiber Optics Overview, Local Area Networks (LANs), Metropolitan Area Networks (MANs), Wide Area Networks (WANs), Circuit Switching and Packet Switching, Network Topologies, Ethernet, Ethernet Topology, 10 Mbps Ethernet, 1 Gigabit Ethernet, Internetwork Connections Devices (Repeaters, Bridges, Hubs, Switches, Routers and Gateways)	8
Chapter No. 2. TCP/IP IP Version 4 (IPv4), IP Version 6 (IPv6), Address Resolution Protocol (ARP), Internet Control Message Protocol (ICMP), IP Routing, Transmission Control Protocol (TCP), User Datagram Protocol (UDP)	7
Chapter No. 3. MODBUS MODBUS: Protocol Structure, Function Codes	5
Unit II	
Chapter No. 4. FIELDBUS, PROFIBUS AND AS-INTERFACE FIELDBUS: Physical Layer, Data Link Layer and Application Layer of FOUNDATION Fieldbus PROFIBUS: PROFIBUS DP (Decentralized Periphery), PROFIBUS DP Communication Protocol, Application Profiles, PROFIBUS PA (Process Automation) AS-Interface: AS-Interface, Physical Layer, Data Link and Application Layer of the AS- Interface	7
Chapter No. 5. ETHERCAT, ETHERNET POWERLINK AND SERCOS III ETHERCAT: Architecture Model, Protocol, Topology, Distributed Clocks, Device Profiles, EtherCAT Master, EtherCAT Slave Ethernet POWERLINK: Slot Communication Network Management, Physical Layer, Data Link Layer, Transport and Application Layer of Ethernet POWERLINK, Ethernet POWERLINK Addressing, Frame Structures SERCOS III: OSI Layers of SERCOS III, Communication Cycle, Protocol Structure, Topology, Communication Network Infrastructure	8

Chapter No. 6. HART, BLUETOOTH AND OPC	5
HART: HART Protocol, Physical Layer, Data Link Layer and Application Layer of HART.	
BLUETOOTH: Protocol Stack, Topologies, Generic Data Transport Architecture, Basic	
Rate/Enhanced Data Rate (BR/EDR) Radio Operation, Low Energy (LE) Operation,	
Operational Procedures and Modes, Profiles	
OPC: Enterprise Integration, Manufacturing Execution Systems (MES), Process Analysis,	
Process Modeling, Data Modeling, Data Flow Diagrams (DFDs), Communication Patterns,	
Data Collection Technologies, OPC (OLE for Process Control)	
Unit III	
Chapter No. 7. CAN, CAN FD AND DEVICENET	5
CAN: Physical Layer, Data Link Layer and Application Layer of CAN, Protocol, Bus	
Arbitration, Frames, Bit Stuffing, Bit Synchronization, Bit Timing	
CAN FD: Physical Layer, Data Link Layer and Application Layer of CAN FD, Protocol,	
Frames	
DEVICENET: Physical Layer, Data Link Layer, Network and Transport Layers, and	
Application Layer of DeviceNet	
Chapter No. 8. FLEXRAY AND MOST	5
FLEXRAY: Topologies, Protocol, Media Access Control (Communication Cycle), Frame	
Format, Clock Synchronization	
MOST: OSI Layers for MOST, Data Frame, Timing Master, Timing Slave, MOST Devices	

Course Code: 15EARE401	Course Title: MeasurementSystems	
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40 hours
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40		Duration of ESA: 3 Hrs

Content	Hrs
Unit – 1	/
Chapter No. 1. Introduction to Measurement Systems Need for study of Measurement Systems, Classification of Types of Measurement Applications, Computer-Aided Machines and Processes, Functional Elements of an Instrument, Active and Passive Transducers, Analog And Digital Modes of Operation, Null and Deflection Methods, Input-Output Configuration of Instruments and Measurement Systems, Static Characteristics and Static Calibration, Dynamic Characteristics and Problems.	7hrs
Chapter No. 2. Motion Measurement Fundamental Standards, Relative Displacement: Translation and Rotational, Relative Velocity: Translation and Rotational, Relative-Acceleration Measurements, Seismic- Displacement Pickups, Seismic-Velocity Pickups, Seismic-Acceleration Pickups,Calibration and Vibration Pickups, Jerk Pickups, Problems.	4hrs
Chapter No. 3. Force, Torque, and Shaft Power Measurement Standards and Calibration, Basic Methods of Force Measurement, Characteristics of Elastic Force Transducers, Torque measurement on Rotating shaft, Shaft Power Measurement (Dynamometers), Vibrating Wire Force Transducers, Problems.	4hrs
Unit – 2	1
Chapter No. 4. Pressure & Sound Measurement Standards and Calibration, Basic Methods of Pressure Measurement, Deadweight Gages and Manometers, Elastic Transducers, Vibrating-Cylinder and Other Resonant Transducers, Dynamic Testing of Pressure-Measuring Systems, High-Pressure Measurement, Low- Pressure Measurement, Sound Measurement, Problems.	7hrs
Chapter No. 5. Flow and Temperature Measurement Local Flow Velocity, Magnitude and Direction, Gross Volume Flow Rate, Standards and Calibration of Temperature Measurement, Thermal-Expansion methods, Thermoelectric Sensors, Electrical-Resistance Sensors, Junction Semiconductor Sensors, Digital Thermometers, Radiation Methods, Problems.	5hrs
Chapter No. 6.Manipulation, Transmission, and Recording of Data Bridge Circuits, Amplifiers, Filters, Integration and Differentiation, Problems	3hrs

Unit – 3	
Chapter No. 7. Data Transmission and Instrument Connectivity	5 hrs
Cable Transmission of Analog Voltage and Current Signals, Cable Transmission of Digital Data, Fiber-Optic Data Transmission, Radio Telemetry, Pneumatic Transmission, Synchro Position Repeater Systems, Slip Rings and Rotary Transformers, Instrument Connectivity, Data Storage with Delayed Playback, Problems.	
Chapter No. 8. Voltage-Indicating and Recording Devices	5 hrs
Standards and Calibration, Analog Voltmeters and Potentiometers, Electrical Instruments,	
Digital Voltmeters and Multimeters, Signal Generation, Electromechanical XT and XY	
Recorders, Thermal-Array Recorders and Data Acquisition Systems, Analog and Digital	
Cathod-Ray Oscilloscopes/Displays and Liquid-Crystal Flat-Panel Displays, Displays, Virtual	
Instruments, Magnetic Tape and Disk Recorders/Reproducers, Fiber Optic Sensors.	

Course Code: 15EARE402	Course Title: Advanced Microcontrollers		
L-T-P : 3-0-0	Credits: 3	Contact Hrs: 40	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 40		Duration of ESA: 3	hours
	Content		Hrs
	Unit - 1		
1.0. Introduction to ARM and ARM Architecture: Background, ARM cortex series portfolio, ARM program model, Instruction Set Development, The Thumb-2 Technology and Instruction SetArchitectural features, R profile, M profile and A Profile, ARM Cortex-M3 Processor :Peripheral Interfacing, Exceptions and Interrupts, Cortex-M3 Programming, Low power modes, Hardware Features, Debug Support, Application development with Cortex M3/M4 controllers using standard peripheral libraries.			7
2.0 Controllers in embedded system design : Low power architectures, High performance capabilities, Microcontroller power saving strategies, Tradeoff between High Performance and low power capabilities for embedded systems. Power/Energy Profiling of Microcontroller/Embedded systems. Applications			8
	Unit - 2		
3.0 MSP430 series Microcontroller devices: Unique architectural features, block diagram, Low power DNA, Addressing modes, Instruction set, Power down modes ,MSP430 Interrupts and Low Power, Digital Input-Output, On chip peripherals, Timers: Block diagram, Timer Modes, Timer Interrupts, Low Power Down Modes, Watchdog Timer			8
4.0 MSP430 Peripherals: Analog to Digital Convertors (ADC), Performance measures, Signal to Noise Ratio, ADC Architectural Block diagram, Timing and Triggering options, Low power and Interrupt operation. Digital to Analog Convertors: Architectural Block Diagram and Operation, Comparator Architecture and Operation, Special Function Registers, Hardware Multiplier: Operation, Registers, Direct Memory Access Controller (DMA and DMA Transfer Modes, Applications.		7	
Unit - 3			
5.0 Power/ Energy profiling: Profiling power operation Dynamic Voltage and Fr for low power in embedded MCU designeripheral power, battery life.	of ARM Cortex & MSP430 fa equency Scaling ,CPU power r gns: MCU power consumptio	mily devices, Low- nodes , Optimizing n, standby power,	5
6.0 Case studies: ARM cortexM3/M4 & M for application like biomedical system des applications etc.	SP430 microcontroller based ign, machine health monitorin	real-time solutions g, Energy metering	5

Cours	Course Code: 15EARE403 Course Title: Machine Learning			
L-T-P:	3- 0- 0	Credits:3	Contact Hrs: 40	
ISA M	arks: 50	ESA Marks: 50	Total Marks: 100	
Total	Teaching Hrs.: 40		Duration of ESA: 3 hrs	
		UNIT-I		
No		Content		Hrs
1	 Chapter 1: Introduction Machine Learning Applications, Learning Associations, Designing of learning system, perspectives & issues in machine learning, Concept learning task, concept learning search, Find-S: Finding a maximally specific hypotheses, version spaces & candidate elimination algorithm, Remarks - version spaces & candidate elimination algorithm, inductive bias 		5 hrs	
2	 Chapter 2: Decision Tree learning Representation, decision tree algorithm, hypotheses space search in decision tree algorithm inductive bias in decision tree algorithm, issues in DTL, Bayesian decision theory classification. 			5hrs
3.	 Chapter 3: Computational Learning theory Motivation, Estimating hypotheses accuracy, Basics of sampling theory, general approach for deriving confidence intervals, difference in error of two hypotheses, comparing learning algorithm. Probably learning an approximately correct hypothesis, sample complexity for finite hypnosis spaces, sample complexity for infinite hypothesis spaces, instance based learning-K nearest neighbor learning, locally weighted regression 			5 hrs
		UNIT-II		1
4.	 Chapter 4: Artificial neural network Feed forward neural networks, Learning neural network ,the expressive power of neural network, the sample complexity of neural networks, the runtime of learning neural networks.SGD and back-propogation 			5hrs
5	Chapter 5: Clustering Linkage–Based clustering algorithms-means and other cost minimization clusterings,spectral clustering, high level view of clustering		5 hrs	

6	Chapter 6:Kernel methods & Graphical models Embeddings into feature spaces, the kernel trick, Multiple kernel learning, Kernel dimensionality reduction, Implementating soft SVM with kernels, Canonical Cases for Conditional Independence, Example Graphical Models, Naive Bayes' Classifier, Hidden Markov Model, Linear Regression, d-Separation Belief Propagation	5hrs
	UNIT-III	
7	Chapter 7:Reinforcement Learning The learning task,Q-learning,Nondeterministic rewards & actions, temporal difference learning, generalizing from examples, relationship to dynamic programming.	5 hrs
8	Chapter 8:Design and Analysis of Machine Learning Experiments Factors, Response, and Strategy of Experimentation, Response Surface Design, Randomization, Guidelines for Machine Learning Experiments, Cross-Validation and Re sampling Methods, Measuring Classifier Performance, Interval Estimation, Hypothesis Testing, Assessing a Classification Algorithm's Performance, Comparing Two Classification Algorithms, Comparison over Multiple Datasets.	5hrs

Cour	se Code: 15EARE404	Course Title: Design of Automatic Machinery		,
L-T-P	P-SS:3-0-0-0	Credits: 3	Contact Hrs: 40)
ISA N	Aarks: 50	ESA Marks: 50	Total Marks: 10	00
Теас	hing Hrs: 40		Exam Duration	: 3 Hrs
	U	NIT – I	1	
No	Con	tent		Hrs
1	 Chapter 1: Introduction and Steps to Automation What is Automation, AnAutomation design process, examples of automation, problems and project assignments? Justifying Automation Traditional Project Cost Justification for a Purchase, Traditional Costing Estimating for Building and Selling Automation, Win–Win Purchasing Philosophy, Maximum Profit Cost Estimating for Building and Selling Automation, Justifying Flexible Automation over Hard Automation Intellectual Property, Patents, and Trade Secrets. 		6	
2	Chapter 2: The Automation Design Process System Specifications, Brainstorming, Machine Classification by Function, Machine Classification by Transfer Method, Machine Configuration Trade-offs Mechanisms Toolbox, TBBL Automation Project and Conclusions, Case Study Number 1: Case Opening, Case Study Number 2: Label Insertion and Printing, Case Study Number 3: Crossed Four- Bar BMC Unloader.		4	
3	<i>Chapter 3:</i> Workstations Workstation Basics, Drive Mechanisms, Case Case Study Number 2: Automated Screwdriv Safety.	e Study Number 1: TBBL Work ver Workstation Design, Mach	station Design, ine Design and	5

Feeders

Feeders, Automatic Feeding and Orienting — Vibratory Feeders, Escapement Feeders, Vibratory Bowl Feeder, Centripetal Feeder, Flexible Feeders, Gravity Feed Tracks, Powered Feed Tracks, Escapements, Parts-Placing Mechanisms, Assembly Robots, Case Study Number 1: Dropping Cookies, Case Study Number 2: Feeding of TBBL Cases.

	UNIT – II	
4	Chapter 4: Conveyors Flat Belt Conveyors, Tabletop Chain Conveyor, Belt Conveyors, Static (Gravity) Conveyors, Powered Conveyors, Heavy Unit Load Handling Conveyors, Case Study Number 3: Donut Loader Machine.	3
5	Chapter 5: Single Station Manufacturing Cells Single station manned cells, single station automated cells, applications of single station cells, analysis of single station systems. Manual Assembly Lines Fundamentals of manual assembly lines, Analysis of single model assembly lines, Line balancing algorithms, Mixed model assembly lines, Workstation considerations, Other considerations in assembly line design, Alternative assembly systems. Automated Product Lines Fundamentals of automated product lines, applications of automated product lines, Analysis of transfer lines.	6
6	Chapter 6: Automated Assembly Systems Fundamentals of automated assembly systems, Quantitative analysis of assembly systems. Cellular Manufacturing Part families, part classification and coding, product flow analysis, cellular manufacturing, applications of group technology, quantitative analysis in cellular manufacturing. Flexible Manufacturing Systems	6

Introduction to flexible manufacturing system, flexible manufacturing systems components, flexible manufacturing systems applications and benefits, flexible manufacturing system planning and implementation issues, quantitative analysis of flexible manufacturing systems.

UNIT - III **Chapter 7: System Specifications** Expectations, Other Problems Beyond Specifications, Example 1: Bulk Mail Carrier (BMC) 7 5 Unloader, Specifications, Design Specifications, Comments, Request for Quote, Example 2: BMC Unloader Bid Award Package. **Chapter 8: Packaging Machines** 8 Liquid Filling Machines, Cartoning and Boxes, Labeling, Cases, Palletizing, FormingPouche, 5 Blister Packs and Bags. TEXT BOOKS: Stephen J. Derby., "Design of Automatic Machinery", 2005 1. Patrick M. McGuire, P.E., "Conveyors", CRC Press, 2010. 2.

REFERENCE:

3. Geoffrey Boothroyd., "Assembly Automation and Product Design", Taylor & Francis Group, CRC Press, 2005.

Course Code:15EARO401	CourseTitle:HomeandBui	CourseTitle:HomeandBuildingAutomation	
L-T-P:3-0-0	Credits:3	ContactHrs:40	
ISAMarks:50	ESAMarks:50	TotalMarks:100	
TeachingHrs:50		ExamDuration:3hrs	
Cor	nten t		Hrs
Un	iit- 1		
CHAPTERNO.1.INTRODUCTIONConceptandapplicationofBuildingManagementSystem(BMS)andAut omation,requirementsanddesignconsiderationsanditseffectonfunctional efficiencyofbuildingautomation system.architectureandcomponentsofBMS.			5hrs
CHAPTERNO.2.FIREALARMSYSTEMFUNDAMENTALS: What is Fire? Fire modes, History, Components, and Principles of Operation. FAS Components:Different fire sensors, smoke detectors and their types, Fire control panels, design considerations forthe FA system. Field Components, Panel Components, Applications. FAS Architectures: Types ofArchitectures,Examples.FASloops:Classificationofloops,Examples.FireStandards:FASDesignproce dureinbrief,NFPA72A,BS5839,ISConceptofIPenabledfire&alarmsystem,designaspects			5hrs
CHAPTER NO. 3. ACCESS CONTROL SYSTEM: Access Components, Access control systemDesign. CCTV: Camera: Operation & types, Camera Selection Criteria, Camera Applications, DVRBasedsystem, DVM, Networkdesign, Storagedesign. Components of CCTV system like cameras, types of lenses typical types of cables control lingsystem CCTV Applications: CCTV Applications			5hrs
Unit-2			
CHAPTER NO. 4. SECURITY SYSTEMS Systems, Concepts. Perimeter Intrusion: Concept, Co urityDesign: Security system design for verticals. forsafety, Physical security system with components Computer system access control – DAC, MAC, RBAC.	FUNDAMENTALS: Intro- omponents,Technology,Ad . Concept of automation in s,RFIDenabledaccesscontro	duction to Security vancedApplications.Sec n access control system plwithcomponents,	5hrs
CHAPTERNO.5.LIGHTING-CONTROLSYSTEMS Purposeoflighting-controlsystems, Basiccompone controlsystems, Systems based on standard lighting control protocols, Systems based on common autom protocols, Strategies for energy management and lig	CHAPTERNO.5.LIGHTING-CONTROLSYSTEMS Purposeoflighting-controlsystems, Basic components of lighting and lighting- control systems, Systems based on standard lighting- control protocols, Systems based on common automation protocols, Strategies for energy management and lighting control		
CHAPTERNO.6.Processcontrol,PIDandadaptivecontrolw.r.t automationsystem Closedcontrolloops,Proportionalcontrol,Integralcontrol,Derivativecontrol,Proportional,integraland derivative functions, Tuning of PID control loops, Digital PID and direct digital control (DDC),Introductionto adaptive control			5hrs

Unit-3	
CHAPTERNO.7.BUILDINGMANAGEMENTSYSTEM:IBMS(HVAC,Fire&Security)project cycle,ProjectstepsBMS.Verticals:Advantages&ApplicationsofBMS,ExamplesIntegration:IBMSArchite cture, Normal&Emergencyoperation.Advantages ofBMS	5hrs
CHAPTERNO.8.PRACTICALAUTOMATIONSYSTEM: Designconsideration of Automationsystem, Rapsber ryPi, PLC, IoTbased systems.	5hrs

Semester: V	Laboratory Plan	FMTH0303-3.3 Year: 2018-19
Laboratory Title:	Project	Lab Code: 17EARW401
Total Hours: 30		Duration of Exam: 3 Hrs
Total ESA Marks:	5 0	Total ISA. Marks: 50
Lab. Plan Author:	Rakesh Tapaskar	Date: 29 /12/2018
Checked By: Arur	C Giriyapur	Date: 29 /12/2018

Prerequisites:

Subjects learnt up to VI semester.

Course Outcomes-CO

At the end of the course student will be able to:

- 1. Carry out market survey, do need analysis and identify suitable problems.
- 2. Write a project proposal which will involve developing a complete solution for the identified problem from the real world.
- 3. Apply the principles of engineering design to plan and manage the project.
- 4. Apply suitable design processes and develop the best possible solution.
- 5. Develop proof of concepts and models for verification.
- 6. Prepare production drawings, bill of materials and process plans.

Course Articulation Matrix: Mapping of Course Outcomes (CO) with Program outcomes (PO)

Laboratory (Course) Title: Project Laboratory (Course) code: 15EARW401Semester: VIII Year: 2018-19

(Course Outcomes (CO) / Program	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	Outcomes (PO)														
1.	Carry out market survey, do need														
	analysis and identify suitable														
	problems.														
2.	Write a project proposal which will														
	involve developing a complete														
	solution for the identified problem														
	from the real world.														
3.	Apply the principles of engineering														
	design to plan and manage the														
	project.														
4.	Apply suitable design processes														
	and develop the best possible														
	solution.														
5.	Develop proof of concepts and														
	models for verification.														
6.	Prepare production drawings, bill														
	of materials and process plans.														

Degree of compliance L: Low M: Medium H: High

Design Process

Combination of V-model and project plan

Experiment wise plan

2. List of activities planned to meet the requirements of the syllabus

Week No	Activities	Deliverables	CIE Marks out
			of 50
1&2	Need analysis, Problem identification and market survey	Project proposal	10
3&4	Project management	Project plan, gantt chart, WBS, Budget	10
5,6,7&8	Engineering design	Component designs & Integration, Proof of concept, modeling and simulation (hardware and software)	20
9&10	Detailed design	Bill of materials, production drawings	10

Laboratory Plan

Semester: VIII	Year: 2019-20
Course Title: Internship - Training	Course Code: 18EARI493
Total Contact hrs: 50	Duration of ESA: 3 hrs
ISA Marks: 50	ESA Marks: 50

Prerequisites:

Course Outcomes (COs):

Upon completion of an internship, students will be able to demonstrate the following outcomes:

- 1. Gain knowledge to real-world challenges in an industry environment.
- 2. Engage in responsible conduct while working as an intern and allow decisions to be informed by a value-centered life.
- 3. Understanding an organization by proper insight into their structure, processes and functions.
- 4. Able to assimilate new technical knowledge, and integrate the same with the existing technical knowledge for industrial application.
- 5. Understanding of lifelong learning processes through critical reflection of internship experiences.
- 6. Enhance his/her verbal and written communication, and different modes of communication.

	Laboratory Plan	FMTH0303-3.1
Semester: VIII		Year: 2019-20
Laboratory Titl	e: Internship - Project	Lab. Code: 18EARW494
Total Hours: 80)	Duration of Exam: 3 hrs
Total ESA Mark	rs: 80	Total ISA. Marks: 20

Preamble:

The aim of this project work is to enable students to develop their engineering skills and practice by coworking with industry mentors on an industry relevant problem.

Course Outcomes (COs)

At the end of the course, students will be able to:

- 1. Generate and evaluate different alternative solutions
- 2. Formulate a detailed solution plan to solve the given problem.
- 3. Identify and employ tools that help to arrive at solutions
- 4. Understand and adhere to various standards, legislation and regulations
- 5. Distribute the work load based on competences among team members and integrate the various components of the solution
- 6. Adhere to promised deliverable, including bill of material, production drawings, manufacturing of components, assembly, and so forth.

Course Code: 16EARE403	Course Title: Machine learning and ROS			
L-T-P: 3-0-0	Credits: 3	Contact Hrs: 40		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 40		Exam Duration : 3 hours		

Content	Hours	
UNIT – 1	I	
Chapter 1:Introduction to Robot operating system ROS concepts, creating ROS packages writing a minimal ROS publisher, compiling ROS nodes, running ROS nodes, examining running minimal publisher node, scheduling node timing, writing a minimal ROS subscribercompiling and running minimal subscriber, minimal subscriber and publisher node summary writing ROS nodes more ROS tools: catkin simple, ROSlaunch, simplifying cmakelists.txt with catkin simple automating starting multiple nodes viewing output in a ROS console recording and playing back data with ROSbag.	5 hrs	
Chapter 2:Messages, Classes and Servers in ROS Defining custom messages, ROS services- service messages, ROS service nodes, manual interaction with ROS services, example ROS service client, running, example service and client, using C++ classes in ROS creating library modules in ROS, introduction to action servers and action clients- creating an action server package, defining custom action-server messages, designing an action client running the example code, introduction to parameter server.	5 hrs	
Chapter 3 : Introduction to machine learning Introduction Machine Learning ,Well posed learning problem, Types of learning, supervised learning ,unsupervised learning and reinforcement learning, Learning Associations, Designing of learning system, perspectives & issues in machine learning, Concept learning task, concept learning search, Find-S: Finding a maximally specific hypotheses, version spaces & candidate elimination algorithm, Remarks - version spaces & candidate elimination algorithm, inductive bias.	5 hrs	
UNIT – 2		
Chapter 4: Computational learning theory and decision tree learning Motivation, Estimating hypotheses accuracy, Basics of sampling theory, general approach for deriving confidence intervals, comparing learning algorithm. Probably learning an approximately correct hypothesis, sample complexity for finite hypothesis spaces, sample complexity for infinite hypothesis spaces, instance based learning-K nearest neighbor	8hrs	

Technological University **Creating Value** KLE TECH. Leveraging Knowledge DEPARTMENT OF AUTOMATION & ROBOTICS

learning, locally weighted regression, Representation, decision tree algorithm, hypotheses space search in decision tree algorithm inductive bias in decision tree algorithm, issues in DTL, Bayesian decision theory classification.

7hrs

Chapter 5:Kernel methods and Graphical models Embedding's into feature spaces, the kernel trick, Multiple kernel learning, Kernel dimensionality reduction Canonical Cases for Conditional Independence, Example Graphical Models, Naive Bayes' Classifier, Hidden Markov Model, Linear Regression, d-Separation Belief Propagation, Linkage–Based clustering algorithms-means and other cost minimization clustering.

UNII – 3	
Chapter 6:Reinforcement Learning	5 hrs
The learning task,Q-learning,Nondeterministic rewards & actions, temporal difference learning, generalizing from examples, relationship to dynamic programming.	
Chapter 7: Artificial neural network Biological motivation, neural network representations, and appropriate problems for neural	5hrs
network learning, perceptron's, multilayer networks and the back propagation, algorithm, an illustrative example: face recognition	

CourseCode:17EARE301	GeCode:17EARE301 Course Title: Artificial Intelligence For Autonomous Systems			
L-T-P:3-0-0	Credits:3	ContactHrs:40		
ISAMarks:50	ESAMarks:50	TotalMarks: 100		
TeachingHrs:40		ExamDuration:3ho	urs	
	Content		Hours	
	UNIT-1			
Chapter1:IntroductiontoArtificialintelligenceand autonomoussystemsFoundationofartificialintelligence,roboticsandtheAlapproach,Semi- autonomouscontrol,SevenareasofAl,TheConceptofRationalityTheNatureofEnvironments, TheStructure of Agents,Problem-SolvingAgents,Searching forSolutions, UninformedSearchStrategies,InformedSearchStrategies,KnowledgerepresentationinAl,knowledge				
Subsumptionarchitecture, Three-layerarchitecture, Pipelinearchitecture, HierarchicalParadigm- AttributesoftheHierarchicalParadigm, ReactiveParadigm- AttributesofReactiveParadigm, HybridDeliberative/ReactiveParadigm- AttributesofHybridParadigm, ArchitecturalAspects, ManagerialArchitectures- AutonomousRobotArchitecture(AuRA), SensorFusionEffects(SFX), State- HierarchyArchitectures, Model-				
Chapter 3: Biological Foundations of the Reactive Paradigm Agency and computational theory, Animal Behaviors, Reflexive behaviors , Coordination and Control of Behaviors, Innate releasing mechanisms, Concurrent behaviors, Perception nin Behaviors, Action- perception cycle, Two functions of perception Gibson: Ecological approach, Neisser: Two perceptual syst ems, Schema Theory, Behaviors and schematheory, Principles and Issues in Transferring Insights to Robo				
	UNIT–2			
Chapter4:Capturingintelligence- Designingareactiveimplementationwithcommonsensingtechniquesforroboticsperception Behaviors asObjects inDesigningaReactiveBehavioralSystem,CaseStudy:UnmannedGroundRoboticsCompetition,Assem blagesofBehaviors,Logicalsensors,BehavioralSensorFusion,DesigningaSensorSuite,ProprioceptiveS ensors,ProximitySensors,ComputerVision,RangefromVision,CaseStudy:Horsd'Oeuvres,Anyone?			8hrs	
Chapter5: Multi-agentsandnavigation inrobotics Heterogeneity,Control,Cooperation,EmergentSocialBehavior,TopologicalPathPlanning,RelationalM ethods,AssociativeMethods,CaseStudyofTopologicalNavigationwithaHybridArchitecture			elationalM	7hrs

UNIT–3		
Chapter6:LocalizationandMapMaking	6hrs	
SonarSensorModel, Bayesian, Conditional probabilities, Conditional probabilities, Updating with Bayes'ru le, Dempster-		
ShaferTheory, Shaferbelieffunctions Belieffunction for sonar Dempster's rule of combination Weight of conflict metric, HIMMs on armodel and Comparison of Methods, Example computations, Performance Errors due to observations from stationary robot, Tuning, Localization, Continuous localization and mapping, Feat ure-based localization Exploration, Frontier-based exploration, Generalized Voronoigraphmethods.		
Chapter7: Deeplearningandnaturallanguageprocessing	4hrs	
DeepLearningImprovementoftheDeepNeuralNetworkVanishingGradientOverfittingComputationalLo ad.Languagemodels, textclassification,informationretrieval		

1.1.3. Average percentage of courses having focus on employability/ entrepreneurship/ skill development during the last five years.

Year of offering: 2016-17 Batch- 2015-19 (3rd semester)

Program: Biotechnology				
Course Title: Microbiology		Course Code: 15EBTC201		
L-T-P: 4-0-0	Credits: 4.0	Contact Hours: 04 Hours/Week		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hours: 50	Examination Duration: 03 Hours			

Unit I

1. Introduction

The scope of Microbiology, Historical Foundations, Taxonomy and classification of microorganisms, prokaryotic and eukaryotic cells, Eubacteria and Archaebacteria, study of different types of microorganisms: bacteria, yeasts, viruses, fungi, protozoa (structure, classification, modes of reproduction & growth). Role of microbes in agriculture, public health and industry, common diseases caused by microorganisms.

05 Hours

2. Functional anatomy of Prokaryotic and Eukaryotic cells:

Size, shape and arrangement of bacterial cells, structures external to cell wall, cell wall and structures internal to cell wall including endospores. Structure and functions of eukaryotic cell. Genome structure in prokaryotic and Eukaryotic cells, Genotype & Phenotype, Genetic transfer and recombination (Transformation, Conjugation & Transduction), Genes and evolution.

07 Hours

3. Microscopic Examination

Bright-field Microscopy, Dark-field Microscopy, Phase-contrast Microscopy, Fluorescence Microscopy and Electron Microscopy. Preparation of specimen for light and electron microscopy, Advances in scanned probe microscopy. **04 Hours**

4. Microbial Growth

The requirements for growth, Culture media, Effect of different factors on growth, Growth of bacterial culture: bacterial division, generation time, phases of growth. Measurement of growth: Direct and Indirect methods. **04 Hours**

5. Microbial Techniques

Pure culture techniques (streak plate, spread plate, pour plate), Staining techniques (simple and differential staining techniques), Enumeration techniques (Direct Microscopic Count, plating techniques, membrane filtration, Electronic enumeration, etc). Characterization: Biochemical tests

Unit II

and 16S rRNA homology studies.

10 Hours

6. Microbial Metabolism

Catabolic and Anabolic reactions, Enzymes, Energy production, Carbohydrate catabolism: Glycolysis, Alternatives to Glycolysis, Cellular respiration, Lipid and Protein catabolism, Photosynthesis: Light dependent and light independent reactions. Metabolic diversity among microorganisms: autotrophs and heterotrophs. Metabolic pathways of energy use: Polysaccharide biosynthesis, lipid biosynthesis, amino acid and protein biosynthesis. The integration of metabolism.

Energy production: Principles of bioenergetics, Respiratory chain, Energy production by aerobic process, Energy production by anaerobic process, Energy production by photosynthesis, Mechanism of ATP synthesis. Utilization of Energy and Biosynthesis: Utilization of energy for biosynthetic and non-biosynthetic processes.

Bacterial genetics: Bacterial recombination (Transformation, Conjugation & Transduction). Genome structure in prokaryotic and Eukaryotic cells. Population Genetics and Pedigree Analysis.

10 Hours

Unit III

7. Control & Preservation of Microorganisms

Control of microorganisms by physical methods (heat, filtration, radiation). Control of microorganisms by chemical methods (phenols, alcohols, halogens, dyes, detergents, heavy metals, etc), Common preservation techniques for microbes. **05 Hours**

8. Applied and Industrial Microbiology

Food Microbiology, role of microorganisms in food production, Industrial Microbiology: Introduction to Fermenter & fermentation processes, Media for industrial application, Industrial Products: amino acids, vitamins, enzymes, pharmaceuticals, organic acids (discussion of case study), r-DNA technology & therapeutic products from microbes. Biosynthetic pathways and Introduction to Metabolic Engineering.

Industrial Microbiology:Introduction to Fermenter & fermentation processes, Media for industrial application. Production of amino acids, antibiotics, organic acids & vitamins from microorganisms, Microbes as sources of proteins, enzymes from microbes. r-DNA technology & therapeutic products from microbes. 05 Hours

Text Books:

- 1 Chan & Pelzar, Microbiology, Publisher: Tata McGraw Hill 5th Edition 2008.
- 2 Tortora, Microbiology: An Introduction, Publisher: Pearson Education, 8th Edition, 2004

Reference Books:

- 1. Stanier Ingraham & Wheeler, General Microbiology, Pub: Mac Millan 5th edition. 2007.
- 2. Heritage, Introductory Microbiology Pub: Cambridge, 1st edition, 2007

Program: Biotechnology				
Course Title: Biochemistry		Course Code: 15EBTC202		
L-T-P: 4-0-0	Credits: 4.0	Contact Hours: 04 Hours/Week		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hours: 50	Examination Duration: 03 Hours			

Unit I

1. Biochemical Foundation & Biomolecules

Chemical Bonding- Ionic bond, covalent bond, Hydrogen bond, Van der waals forces, hydrophobic interactions, coordinate bond with examples. Nomenclature of organic compounds with examples. Stereochemistry of carbon compounds. Types of chemical reactions, Solution chemistry. Biochemical calculations, The pH scale, measurement of pH, pH meter, pKa values Buffers and their properties, biological buffer systems. **04 Hours**

2. Lipids

Definition and classification of lipid – simple, compound and derived lipids. Structure, classification and properties of fatty acids, Essential and non-essential fatty acid with physiological importance. Structure and physiogical functions of phospholipids, Sphingolipids, cerebrosides and gangliosides. Steroids- Structure and functions of cholesterol and its derivatives. Eicosanoids, lipoproteins and terpenes. Vitamins-classifications and functions.

3. Amino acids and Proteins

Definition, Classification and properties of amino acids, reactions, rare amino acids, essential and nonessential amino acids with physiogical importance. Peptides - Definition of peptide bond, Structure and function of Peptides and biological significance. Proteins - Classification, physicochemical properties, structure- primary, secondary, tertiary and quaternary proteins, Secondary structures: Alpha hélix, Beta sheets, coils and turns, Helix to coil transition & zipper model., Fibrous proteins, structure of collagen. Ramachandran plot. Methodology related to isolation, purification and characterization of proteins, polypeptide sequencing- Edman degradation, Chemical synthesis of Peptides.

4. Nucleic acids

Structure and properties of purines, pyrimidines, nucleosides and nucleotides. Nucleic acids-Structure of DNA, RNA -Types, structure and properties, prokaryotic versus eukaryotic organisms. Genetic code. 04 Hours

Unit II

4. Carbohydrates

Classification, basic chemical structure and properties of monosaccharides, Disaccharides, Sugar derivatives, deoxy sugars, amino sugars, and sugar acids, phosphorylated sugars, structure and properties of polysaccharides, Homopolysaccharides, Heteropolysaccharides - Peptidoglycan, Glycosaminoglycans, Glycoconjugates, Glycobiology. Biological importance of carbohydrates.

5. Carbohydrate metabolsim:

Glycolysis, Glycolysis in aerobic and in anaerobic conditions. Energy yield of glycolysis, phosphorylation at the substrate level. Regulation of glycolysis- metabolic and hormonal. Fates of pyruvate.Glycogen - structure, synthesis and degradation. Regulation of glycogen metabolism. Gluconeogenesis, Pentose phosphate pathway. Significane of pentose phosphate pathway and

07 Hours

06 Hours

05 Hours

regulation.Production of Acetyl-CoA, Reactions of Citric acid cycle, Anaplerotic reactions, regulation of citric acid cycle. Glyoxylate cycle.Structure of Mitochondria, Electon carriers, Electon transport chain, ATP synthesis, energetics of electon transfer, shuttle systems and regulation of Oxidative phosphorylation. Disorders of carbohydrate metabolism. Production of microbial polysaccharides; industrial application of exopolysaccharides; Medical applications of exopolysaccharides. **14 Hours**

Unit III

6. Photosynthesis and Phytochemistry

Photo pigments, Photo systems I & II, Cyclic and Non-cyclic Photophosphorylation. Calvin Cycle (C₃), and balance sheet, C₄ pathway. Bacterial photosynthesis. Exploitation of nature for product development and applications, Medicinal plants, plants secondary metabolites and endophytes.

05 Hours

8. Biological Membranes And Transport Mechanism

Composition and functions of biological membranes – Proteins, Carbohydrates, Glycoproteins and glycolipids. Models of Plasma membrane, Membrane transport - Passive transport, Osmosis and Active transport. Cytoskeleton – Microtubules, Microtubular organelles. Endomembrane systems – Endoplasmic reticulum, Golgi complex and Protein secretion Ion permeability and membrane potential, Cell signaling – devices, autocrine, paracrine and endocrine models, receptors –hormones, enzymes, ion channel, G-protein coupled receptors.

05 Hours

Text Books:

- 1. David L. Nelson, Michael M. Cox.Lehninger principles of biochemistry.McMillan –worth, third edition, 2003.
- 2. Lubert Stryer, Jeremy.M.Berg and John L Tymoczko, Biochemistry fifth edition, Freeman and Company.2002.

Reference Books:

- 1. Voet D. & Voet J, Biochemistry. John wielly and sons. 2nd edition2002.
- 2. G.Zubay, Biochemistry, Welsey Publ.1983.
- 3. Laurence A. Moran, Raymond S. Ochs, J. David Rawn, and K. Gray Scrimgeour. Principles of biochemistry. Third edition, Prentice Hall.2002.

Course Title: Bioprocess Calculations		Course Code: 15EBTF201		
L-T-P: 4-0-0	Credits: 4	Contact Hours: 04 Hours/Week		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hours: 50	Examination Duration: 03 Hours			
	Unit I			
1.Units and dimensions				
Introduction to Fundamental and derived Units. FPS, MKS, CGS and SI system. Conversion from one system to another system with examples. 04 Hours.				
2.Basics of chemical calculation	on			
Introduction, concept of mole, Atomic mass and molar mass, composition of mixtures of solids, liquids and gaseous. Ideal gas law, Amagats law and Dalton's law. Varification of Vol %=Mol %. Physical properties of solution, normality, morality and molality. Solving problems for normality, morality and molality.				
3.Material balances without chemical reaction				
General material balance equation, simplification for steady state without chemical reaction. Material balances of unsteady-state operation. Problems on mixing of streams, Distillation, Drying, Absorption, evaporation, Filtration, Extraction & Crystallization. 08 Hours				
	Unit II			
4.Material balances with chemi	cal reaction			
Introduction, Concept of limiting, excess reactant and inerts. Conversion, yield and selectivity. Fuels and combustion-Definition of ultimate and proximate analysis of coal, air fuel ratio calculation. Problems. 10 Hours				
5.Energy Balance				
General steady state energy balance Equation. Thermopysics-Enthalpy, Heat				
capacities of solids, liquids and gases. Heat capacities of mixture, Thermo chemistry-				
Heat of combustion, formation and reaction. Effect of temperature on heat of reaction. Definition and significances of NCV and GCV and problems. 10 Hours				
	11-5110			

Unit III

6a .Stoichiometry of microbial growth and product formation kinetics

Introduction and definition of various yield coefficients. Elemental balances and Degree of reduction. Problems. 05Hours

6b .Stoichiometry of microbial growth and product formation kinetics

Introduction and Basic cell kinetic models, Strutured, unstructured and mixed growth kinetic models

05 Hours

Text Books:

- 1. B.I Bhatt and S.M.Vora, Stoichiometry, Tata McGraw Hill publications, 4th edn, 2007.
- 2. David Himmelblau, Basic principles and calculation in chemical engineering, Pearson Education Limited,6th edn,2005

Reference Books:

- Hougen, Watson and Rigatz, Chemical Process principles Pati-I, CBS Publishers & Distributors,2nd edn,2004.
- 2) J E Bailey and D F Ollis, Biochemical engineering Fundamentals, Mc Grew Hill Publication, 2nd edn,1986.

Program: Biotechnology				
Course Title: Heat and Mass Transfer		Course Code: 15EBTF202		
L-T-P: 3-0-0	Credits: 3.0	Contact Hours: 03 Hours/Week		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hours: 40	Examination Duration: 03 Hours			

Unit I

1. Basics of mass transfer

Introduction to Mass Transfer, Classification of mass transfer operations, Diffusion, Fick's law of diffusion, Vapour Liquid Equilibrium (Txy & xy plots), Raoult's law, Relative volatility and its importance. Prediction of VLE data for binary mixture (Ideal system).

05 Hours

2. Distillation

Types of distillation: simple distillation, flash vaporization, Multi stage tray tower distillation, Packed tower distillation & steam distillation.

Determination of theoretical stages in multistage tray tower distillation column: Construction of equilibrium curve, Equations for operating lines of rectifying section & stripping section, Equation for feed line(q-line).Concept of Reflux ratio, Types of Refluxes: Total reflux, Minimum reflux & Optimum reflux. Conceptual numerical Problems on determination of number of theoretical stages.

10 Hours

Unit II

3. Drying

Importance of Drying, Terminologies and definitions, Drying rate curves under constant drying conditions, Drying Equipments: Tray dryer, Freeze dryer, spray dryer etc. **04 Hours**

4. Extraction

Introduction, Liquid-Liquid & Solid-Liquid Extraction Principles, selection of solvents. Phase Diagrams, Extraction equipments: Fixed bed, moving bed leaching, mixer and settler Extractor.

04 Hours

5. Adsorption: Concept of Adsorption, Types of Adsorption, Adsorption Isotherms, Applications of Adsorption. **02 Hours**

6. Heat transfer: Introduction, Modes of heat transfer: conduction, convection and radiation. Conduction: Fourior's law of heat conduction, Thermal conductivity. Steady state heat conduction through unilayer and multilayer plain wall, Unilayer & multilayer Cylindrical pipe. Conceptual problems. 05 Hours

Unit III

7. Convective heat transfer & Heat transfer equipments:

Forced and natural convection, individual and overall heat transfer coefficient, Correlation for h and U for the flow in circular tubes and annulus. Concept of Log Mean Temperature Difference

(LMTD). Typical heat transfer equipments: Double pipe heat exchanger, Shell and tube heat exchanger. (Line diagram and operation). **05 Hours**

8. Condensation & Boiling:

Condensation: Drop wise & Film wise condensation. Boiling: Phenomenon, different regimes of Boiling (descriptive only). Insulation, Critical thickness of Insulation. **05 Hours**

Text Books:

- 1. McCabe W. L. and Smith J. C, Unit operations of chemical engineering, Pub: McGraw-Hill, 7th edition, 2005.
- 2. C. J. Geankoplis, Transport Processes and unit operations, Prentice Hall of India, 4th edition, 2004

Reference Books:

- George Granger Brown, Unit Operations, Pub: CBS Publishers & Distributors, 1st Edition, 2004.
- 2. Alan S Foust, Principles of Unit operations, Pub: John Wiley & Sons, 2nd edition,

1980

Program: Biotechnology				
Course Title: Microbiology Lab		Course Code: 15EBTP201		
L-T-P: 0-0-1	Credits:1.0	Contact Hours: 2Hrs/week		
CIE Marks: 80	SEE Marks: 20	Total Marks: 100		
Teaching Hours: 24	Examination Duration: 03 Hours			

List of Experiments:

- 1. Laboratory safety precautions, cleaning & storage practices, culture disposal practices.
- 2. Study of Laboratory equipments: Microscope, Autoclave, Laminar Air Flow Bench, Hot Air Oven, Bacteriological Incubator and Freeze Drier. SOP and Calibration.
- 3. Media preparation: Nutrient broth/Agar, Mac-Conkey's medium and Potato-Dextrose broth/Agar.
- 4. Pure culture techniques: Streak plate Method, Spread plate Method, Pour plate Method.
- 5. Enumeration techniques: Plate Count Method, Direct Microscopic Count.
- 6. Simple and Differential Staining Techniques (Gram staining technique).
- 7. Hanging drop technique for motility and Endospore staining.
- 8. Study of bacterial growth curve.
- 9. Sterilization by Filtration.
- 10. Antibiotic susceptibility testing for bacteria.
- 11. Identification of Unknown fungi.
- 12. Open ended-experiment.

Note: There shall be ONE Open-Ended Experiment

Text Books/Reference Books:

- Microbiology: A Lab Manual Seventh Edition by Cappuccino J G and Sherman N 2012 Pearson education Inc, 2012 (ISBN 978-81-317-1437-9).
- 2. Lab Ref by Jaine Roskams IK International, 2004.

Program: Biotechnology			
Course Title: Biochemistry Lab		Course Code: 15EBTP202	
L-T-P: 0-0-1	Credits:1.0	Contact Hours: 02 Hours/week	
CIE Marks: 80	SEE Marks: 20	Total Marks:100	
Teaching Hours: 24	Examination Duration: 03 Hours		

List of Experiments

- Biochemical Measurements: Molarity, Normality, Molality, Moles, weight/volume measurements, percent solution, concentration Units. pH measurements and Buffer preparation, SOP's, Instrument calibrations.
- 2. Qualitative analysis of carbohydrates and Lipids
- 3. Qualitative analysis of amino acids and proteins.
- 4. Estimation of Reducing sugar by Folin Wu method.
- 5. Estimation of Reducing sugar by Nelson –Somogyi/DNS method.
- 6. Estimation of Amino acids by ninhydrin method.
- 7. Estimation of Proteins by Lowry's method.
- 8. Estimation of Inorganic Phosphate by Fiske-Subbarao method.
- 9. Estimation of Urea by DAMO method
- 10. Estimation of DNA by Diphenylamine method.
- 11. Estimation of RNA by Orcinol method.

Text Books/ Reference Books:

- 1. David Plummer An introduction to Practical biochemistry. Third edition, McGraw-Hill, 1987.
- 2. Sadasivam S and Manickam A.,Biochemical methods.Second edition,New Age International,2005.

Year of offering: 2016-17 Batch- 2015-19 (4th semester)

Program: Biotechnology		
Course Title: Immunology		Course Code: 15EBTC203
L-T-P: 3-0-0	Credits: 03	Contact Hours: 03 Hours/Week
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 03 Hours	
	Unit I	

1. Immune system

History and Scope of Immunology and Immune system, Classification of Immune system, Types of Immune responses, Molecules ,Cells and Organs of Immune system and Anatomy of immune response

2. Humoral Immunity

Overview of Humoral immunity, B- Lymphocytes – Development and their activation, Antibody response, Structure and functions of Immunoglobulins, Classes and sub-classes of immunoglobulins, genetic control of antibody production, Monoclonal and Polyclonal antibodies, Production of Monoclonal antibodies and quality screening processes in large scale monoclonal antibody production

3. Cell Mediated Immunity

Overview of cell mediated immunity and its significance, T-Lymphocytes – Development, Types and their activation, Major Histocompatibility (MHC) Complex, Antigen Presenting Cells (APC) and antigen processing and presentation, Mechanism of Phagocytosis- Oxygen dependent and Oxygen independent

04 Hours

Unit II

4. Regulation of Immune response and Immune tolerance

Immune response – Nature and necessity of its regulation, Complement System- Types, activation and types and their biological applications, Cytokines – types and their role in immune response, Immune Tolerance and their types, Hypersensitivity reactions – Types and Treatments **05 Hours**

5. Immunological disorders

Auto immune disorders – Features, important types and Experimental models of auto immune diseases Immunodeficiency Disorders – Types and features 04 Hours

6. Transplantation immunology

Transplantation antigens – Types and functions, Types of Transplantations, Immunological basis of Graft rejection, Role of HLA in graft rejection, Tumor specific antigens, Tissue typing, Immune suppression and immune suppressive drugs

06 Hours

7. Molecular Immunology

Vaccines – Types and their development, Production of Recombinant DNA vaccines, Application of PCR technology to produce antibodies, Immune Therapy with genetically engineered antibodies, Catalytic antibodies, immunotherapeutic applications of hematopoietic stem cells, Purification and preparation of antigens in vaccine development and Immunoinformatics.

Unit III

06 Hours

06 Hours

8. Immunodiagnosis

Immunization and Antiserum, Antigen-Antibody interactions – Precipitation reactions and Agglutination reactions Immunoelectrophoresis and Immunoflurescence assay, Principle and applications of ELISA and RIA and Western blotting analysis.

04 Hours

Text Books:

- 1. Immunology J. Kuby, WH Freeman and Company, New York (2003)
- 2. Immunology and Immunotechnology by Pandian (2003)

Reference Books:

- 1. Instant notes in Immunology by P.M. Ladyard, Bios Scientific Publishers Ltd (2000)
- 2. Essential Immunology by Roitt I, Blackwell scientific publications, (1991)

Program: Biotechnology			
Course Title: Enzyme Technology & Metabolism Course Code: 15EBTC204			
L-T-P: 4-0-0	Credits: 04	Contact Hours: 04 Hours/Week	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hours: 50	Examination Duration: 03 Hours		

Earlier known as B. V. B. College of Engineering & Technology

Unit I

1. Enzyme Purification and characterization

History, nomenclature, classification of enzymes, sources of enzymes, properties of enzyme, strategies for isolation and purification and characterization of enzyme, theories and mechanism of enzyme action with examples.

2. Enzyme catalysis and enzymatic techniques

Types of specificities, Enzyme catalysis -Acid base catalysis, covalent catalysis, metal ion catalysis, Enzyme assay, Enzyme and isoenzyme measurement methods with examples, Methods for investigating the kinetics of Enzyme catalyzed reactions, Standardization and optimization methods, stability and activity of enzymes

3. Allosteric enzymes and Enzyme Inhibitions.

Kinetics of single substrate reactions, Michaelis-Menten plots, Lineweaver-Burk plot, Enzyme inhibition-reversible, competitive, uncompetitive and non-competative inhibitions and kinetics allosteric and irreversible inhibition. Multi-substrate reactions-ordered mechanisms, random mechanisms, Ping-pong mechanism. Allosteric enzymes - The Monad - Changeux - Wyman model (MCW) and The Koshland - Nemethy - Filmer (KNF) model, regulation of enzymes: Allosteric, Feed back regulation and covalent regulation

06 Hours

08 Hours

06 Hours

4. Lipid Metabolism

Fatty acid oxidation, biosynthesis of fatty acids, Ketone bodies, cholesterol biosynthesis, steroid, harmones. Regulation. Envronmental and Industrial Significance of lipid metabolsim. Oleaginous microorganisms and their principal lipids; Production of microbial lipids; Modification of lipids for commercial application; Extracellular microbial lipids and biosurfactants.

Unit II

5. Protein Metabolism

General reactions of amino acid metabolism, urea cycle, amino acid biosynthesis and degradation, regulation, Protein folding and assembly - protein folding pathways in prokaryotes and eucaryotes. Application of gene cloning in redirecting cellular metabolism for over-production of a few industrial products. Strategies for hyper production of primary and secondary metabolites such as enzymes, amino acids, anti-oxidants and antibiotics. Enivronmental and Industrial Significance of Amino acid metabolsim.

6. Nucleic acid Metabolism

Biosynthesis and degradation of purines and pyrimidines, uric acid production, regulation, metabolic disorders of nucleic acid metabolism. 04 Hours

7.Enzyme Immobilization

Techniques of enzyme immobilization; kinetics of immobilized enzymes, effect of solute, partition & diffusion on the kinetics of immobilized enzymes, applications of immobilized enzyme. Bioreactors for soluble and immobilized enzymes.

Unit III

08 Hours

8.Industrial Applications and synzymes:

Enzymes used in detergents, use of proteases in food, leather and wool industries, uses of lactase in dairy industry, glucose oxidase and catalase in food industry. Enzymes in diagnostics, Biotransformations, Peptide Synthesis, synzymes, The design and construction of novel enzymes. 05 Hours

Text Books:

- 1. Lehninger principles of biochemistry, David L. Nelson, Michael M. Cox, Fourth edition.
- 2. Enzymes: Biochemistry, Biotechnology and Clinical Chemistry-Trevor Palmer, 1st edition, East-West Press Pvt. Ltd. (2004).
- 3. Fundamentals of Enzymology –Nicholas .C. Price and Lewis Stevens, 3rd ed., Oxford University Press (1991).

Reference Books:

- 1. Biochemistry by Donald voet, & Judith G. Voet, 2nd Edition, Wiley.
- 2. Biotransformation in Organic Chemistry Faber,4th edition,Springer,2000.
- 3. Enzymes in industry- production and applications- Aehle W, Wiley-VCH, 2004

Program: Biotechnology					
Course Title: Cell and Molecular Biology Course Code: 15EBTC205					
L-T-P: 4-0-0 Credits: 04					
SEE Marks: 50	Total Marks: 100				
Teaching Hours: 50 Examination Duration: 03 Hours					
	ogy Credits: 04 SEE Marks: 50 Examination Duration: 03 Hours				

Unit I

1. Cell, Cell Division and Cell-Cycle

Prokaryotic and Eukaryotic cells. Structure and functions of membranes, cytoskeletal elements, cytoplasm, nucleus, endoplasmic reticulum, Golgi complex, mitochondria, chloroplast and vacuoles. Cell functions: Cell division, Cell Cycle and its regulation.

05 Hours

2. Molecular Biology and Nucleic Acids

Meaning and scope of molecular biology, Central Dogma and its updated view, Nucleic acids as genetic material, Structure and forms of nucleic acids, factors determine the structure of DNA – Denaturation and melting curves, Evidences for hydrogen bonds, hydrophobic interactions and effect of the ionic strength of a solution on the structure of DNA. Isolation and Purification of Nucleic acids – genomic DNA, Plasmid DNA and Total RNA, Quantification and storage of nucleic acids.

3. Organization of Genome or Genetic material

Genome: Viral genome, bacterial genome, Mitochondrial genome, Eukaryotic genome. Organization of Chromatin, Chromosomes: types and Gene organization in Prokaryotes and Eukaryotes. 04 Hours

4. Replication of DNA

An overview and Basic rules for DNA Replication, Enzymes and proteins of DNA Replication, DNA

Replication is Semi conservative, Origin of DNA Replication, Replicon and Replication fork, Unidirectional and Bidirectional replication of DNA, Mechanism of DNA replication in prokaryotes and in Eukaryotes. **05 Hours**

UNIT - II

5. Transcription

General features of Transcription process, Types of RNA molecules, Prokaryotic and eukaryotic RNA polymerases, Promoter structure and Mechanism of transcription in prokaryotes and eukaryotes, Post transcriptional modifications of mRNA, tRNA and rRNA, Transcription inhibitors

05 Hours

6. Translation

Features of Genetic code and Wobble hypothesis, Overview of protein synthesis, Components required for protein synthesis, Mechanism of protein synthesis in prokaryotes and eukaryotes, Post-translational modifications and Protein targeting, Inhibitors in translation

04 Hours

7. Regulation of Gene Expression in Prokaryotes and Eukaryotes.

Regulation of gene activity, Gene regulation in Prokaryotes: Constitutive, Inducible and repressible gene expression systems, Operon model for gene expression regulation in prokaryotes, Positive and Negative regulation of – Lac Operon – Regulation, Catabolic repression and Gratuitous inducers etc, Trp Operon and Gal Operon.

Gene regulation in Eukaryotes, Regulation of Gene expression at Genome level, Transcriptional level –Acetylation of Histones, Chromatin remodeling, DNA Methylation, DNA elements, Transcription factors, Insulators, Regulatory proteins and Hormones. Gene regulation at Post transcriptional level – Splicing, RNA interference, Transport of mRNA and by regulating mRNA stability.

Unit III

8. Mutations and DNA Repair

Mutation – Source of genetic variability, basic features of Mutation process, Molecular basis of Mutation, Conditional lethal mutations as a powerful tool for genetic studies and Ames test of Mutagenecity testing. DNA damage and different types of DNA repair systems and Human diseases. **05 Hours**

9. Polymerase Chain Reaction

Principle of polymerase chain reaction (PCR) - Components of PCR reaction and optimization of PCR -Gene specific primer and degenerate primer – Inverse PCR, Hot-start PCR, Loop mediated PCR -, Reverse transcription PCR and Real time PCR. Chemistry of primer synthesis.

05 Hours

Text Books:

- 1. Fundamentals of Molecular Biology Ane's Student Edition. Veer Bala Rastogi, Ane Books India, New Delhi (2008)
- 2. Instant Notes in Molecular Biology P.C. Turner, Viva Series Publishing, New Delhi

Reference Books:

1. Principles of Genetics (IVth) Edition – Snustad and Simmons, Wiley Asia Student Edition (2006)

2. Molecular Biology (IInd) Edition - David Freifelder, Narosa Publishing House, (1990)

Program: Biotechnology				
Course Title: Momentum Transfer		Course Code: 15EBTF203		
L-T-P: 3-0-0	Credits: 03	Contact Hours: 03 Hours/Week		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hours: 40	Examination Duration: 03 Hours			

Unit I

1. Basic concepts

Fluid definitions, shear stress, shear strain, Properties of fluids: specific weight, viscosity, Density, specific gravity, specific volume. Types of fluids; real fluid and ideal fluid, compressible fluid and incompressible fluid, Newtonian and non-Newtonian fluids. Types of fluid flow: steady flow, uniform flow, rotational flow, one dimensional flow, laminar flow and turbulent flow, Reynolds number, pressure measurements, Types of manometers, Hydrostatic equilibrium, Newton's law of viscosity, Screen Analysis.

03 Hours

2. Fluid flow

Basic equations of fluid flow: Mass balance, Continuity equation, Euler's equation, Bernoulli's equation, Application of Bernoulli's equation. Numericals on Bernoulli's equation and continuity equation, Laminar Flow through Circular Conduits, Hagen Poiseulle's equation, Boundary layer, development of boundary layer on a plate and in pipe. Boundary layer separation and wake formation, friction factor, friction factor chart, effect of roughness, minor loss and major loss, Losses due to sudden expansion, contraction and other fittings.

06 Hours

3. Flow past immersed bodies

Drag, lift, Drag coefficient, drag coefficients of typical shapes, Pressure drop correlations, Kozney- Carman equation, Blake- plummer equation Ergun's Equation. Filtration, Filter media, Filter aids, Types of filters, cake filter, clarifying filter, cross flow filter,rate of filtration, Constant rate filtration, Constant pressure filtration, Specific cake resistance α and Filter media resistance R_m. Filtration equipment: principle and working of rotary drum filter, plate and frame filter, leaf Filter.

06 Hours

Unit II

4. Flow through stagnant fluids

Settling, Types of settling, Free settling, hindered settling, Terminal settling velocity, Stoke's law, Newton's law, Criterion for settling regime, Sedimentation, Batch sedimentation,

Rate of sedimentation, Kynch theory, Thickener, Determination of thickener area. Numericals on Settling and Sedimentation. Fluidization, conditions for fluidization, minimum fluidization velocity.

07 Hours

5. Fluid pumping and metering

Measurement of fluid flow rates, Constructional features and working principles of venturimeter, orificemeter, rotameter, pitot tube. Application of Bernoulli's equation to venturi meter and orificemeter, Flow rate calculations from the readings of venturi meter, orifice meter and pitot tube. Pumps, Classification and selection of Pumps, developed head, power requirement, suction lift and cavitation, NPSH, priming, constructional features and working principle of centrifugal pump, reciprocating pump, rotary pump, peristaltic pump, characteristic curves of a centrifugal pump. Numericals on flowmeters.

08 Hours

Unit III

6. Mixing

Mixing and Agitation: Necessity of mixing & agitation in industries, Principles of agitation Types of Impellers & propellers, Different flow patterns in mixing, prevention of swirling, draft tubes. Standard turbine design, Calculation of power requirement of mixing equipment, Mixing equipment of pastes & viscous material, Solid – Solid Mixing, Agitator selection. Mixing equipments: Change can mixers, Muller mixers, Ribbon blender, Double cone mixer, Twin shell blender, Internal Screw mixer, Jet mixer, Static mixer.

05 Hours

7. Dimensional Analysis:

Units and dimensions, Dimensionless number, Rayleigh and Buckingham π theorem. Problems on Rayleigh and Buckingham π theorem. Model and prototype. Similitude: Geometric, Kinematic and Dynamic. Numericals.

05 Hours

Text Books:

- McCabe W. L. and Smith J. C, Unit operations of chemical engineering, Pub: McGraw-Hill, 7th edition, 2005.
- C. J. Geankoplis, Transport Processes and unit operations, Pub: Prentice Hall of a. India, 4th edition, 2004

Reference Books:

- John F. Douglas, Janusz M. Gasiorek, John A. Swaffield, Fluid Mechanics, Pub: Pearson education limited, 4th edition, 2007.
- Alan S Foust, Principles of Unit operations, Pub: John Wiley & Sons, 2nd edition, 1980.

Program: Biotechnology			
Course Title: Enzyme Technology L	ab	Course Code: 15EBTP204	
L-T-P: 0-0-1	Credits:1.0	Contact Hours: 02 Hours/week	
CIE Marks:80	SEE Marks: 20	Total Marks:100	
Teaching Hours: 24	Examination Duration: 03 Hours		
List of Experiments 1. Biochemical Measureme	nts: Molarity, Normality, Molality,	Moles, weight/volume	
measurements, percent s preparation, SOP's, Instr	solution, concentration Units. pH r rument calibrations.	measurements and Buffer	
 Determination of activity of amylase enzyme Estimation of protein content of amylase and specific activity Effect of temperature on enzyme activity Effect of pH on enzyme activity Effect of substrate concentration on enzyme activity Effect of enzyme concentration on enzyme activity Effect of inhibitor on enzyme activity Effect of inhibitor on enzyme activity Enzyme immobilization and kinetics of immobilized enzyme Molecular weight determination by SDS PAGE Staining the gel using CBB and silver staining 			
 Text Books/ Reference Books: Introduction to Practical biochemistry – David Plummer, McGraw-Hill Publishing Co,3rd edition,pp:332. Biochemical methods- Sadasivam and Manickam(1996), New Age International Publishers, 2nd edition, pp256. Experimental Biochemistry – A Student Companion by Beedu Shashidhar Rao and Vijay Deshpande.(2005) I.K International Pvt. Ltd.New Delhi, pp301 			

Program: Biotechnology			
Course Title: Cell and Molecular Biology Lab Course Code: 15EBTP205			
L-T-P: 0-0-1	Credits: 1.0	Contact Hours: 02 Hours/Week	
CIE Marks: 80	SEE Marks: 20	Total Marks: 100	
Teaching Hours: 24	Examination Duration: 03 Hours		

List of Experiments

1. Study of Cell and Molecular Biology laboratory equipments – Table top cooling Centrifuge,

- UV Visible Spectrophotometer, PCR machine and Gel Documentation system.
- 2. Staining and microscopic observation of plant/animal cells and chromosomes
- 3. Study of Mitosis and Meiosis Cell Divisions
- 4. Isolation of genomic DNA from Bacteria/ Plant/ Animal cells
- 5. UV Spectrophotometric analysis of DNA and RNA
- 6. Calculation of Tm value of DNA of isolated DNA sample
- 7. Agarose gel electrophoresis and gel elution of DNA.
- 8. Isolation and estimation of Plasmid DNA
- 9. Extraction of Total RNA from different biological sources

Text Books /Reference Books:

- 1. Cell and Molecular Biology A Lab Manual K V Chaitanya PHI Learning Private Limited Delhi 110092, 2013.
- 2. Molecular Cloning Volumes I, II and III Sambrook J *et al* (2000) Cold Spring Harbour Laboratory Press, 2000

Program: Biotechnology			
Course Title: Momentum Transfer Lab Course Code: 15EBTP206			
L-T-P: 0-0-1	Credits:1.0	Contact Hours: 02 Hours/Week	
CIE Marks: 80	SEE Marks: 20	Total Marks: 100	
Teaching Hours: 24	Examination Duration: 03 Hours		

List of Experiments:

- 1. Verification of Bernoulli's Equation.
- 2. Pressure drop through packed bed. (Verification of Ergun's Equation).
- 3. Studies on sedimentation. (Verification of Kynch Theory, Thickener area calculation).
- 4. Verification of stoke's law
- 5. Studies on agitation
- 6. Constant pressure filtration using leaf filter
- 7. Study on flow meters (Characteristics of Rotameter, venturimeter etc).
- 8. Pressure drop correlations through circular pipes (Friction factor correlations).
- 9. Study of laminar flow characteristics
- 10. Sieve Analysis

Text Books:

- 1. McCabe W. L. and Smith J. C, Unit operations of chemical engineering, Pub: McGraw-Hill, 7th edition, 2005.
- 2. C. J. Geankoplis, Transport Processes and unit operations, Pub: Prentice Hall of India, 4th edition, 2004

Reference Books:

1. John F. Douglas, Janusz M. Gasiorek, John A. Swaffield, Fluid Mechanics, Pub: Pearson education limited, 4th edition, 2007.

 Alan S Foust, Principles of Unit operations, Pub: John Wiley & Sons, 2nd edition,1980.

Year of offering: 2017-18 Batch- 2015-19 (5th semester)

Program: Biotechnology				
Course Title: Genetic Engineering and Applications		Course Code: 15EBTC301		
L-T-P: 4-0-0	Credits: 4.0	Contact Hours/Week	Hours:	04

CIE Marks: 50	SEE Marks: 50		Total Marks: 100	
Teaching Hours: 50	Examination Hours	Duration:	03	

Unit I

1. Basics of Recombinant DNA technology

Development and Scope of Recombinant DNA Technology and Genetic Engineering. Emergence and commercialization of Molecular Biotechnology. Gene Cloning: Introduction and Steps involved in gene cloning. Subcloning and its applications. Vectors in GE - biology, features, types, cloning & expression vectors.

2. Enzymes in Genetic Engineering

DNA modifying enzymes and necessity of DNA modification in gene cloning. Enzymes used for DNA modification. Restriction Endonucleases, classification & mode of action, Role and applications of different DNA modifying enzymes in gene cloning process - DNA Polymerases, Reverse Transcriptase, RNA Polymerase, Alkaline Phosphatases, Polynucleotide Kinase and DNA Ligases etc.

3. Molecular Cloning Strategies and Genetic Transformation

Isolation and purification of nucleic acid (genomic/plasmid DNA and RNA), Quantification on and storage of nucleic acids, Construction of cDNA library, Construction of Genomic library, Screening and preservation of DNA libraries. DNA Cloning – Methods and applications. Genetic Transformation of prokaryotes and DNA Transfection in Eukaryotic hosts. Biological and Non-biological methods of gene transfer in hosts. Chloroplast transformation.

09 Hours

05 Hours

06 Hours

Unit II

4. Selection, Screening and Analysis of Recombinants

Introduction to screening and analysis of recombinants. Genetic selection and screening methods - Selectable Marker genes, Reporter genes. Screening using Nucleic acid hybridization methods - Preparation of probes for hybridization experiments and different blotting techniques. Screening by PCR based methods. Screening by Immunological methods and Analysis of cloned genes.

07 Hours

5. Production of Proteins from Cloned Genes

Introduction to recombinant gene expression, scope and applications of recombinant gene expression. Special vectors for expression of foreign genes in E coli. General problems with the production of recombinant protein in E coli. Production of recombinant proteins by Eukaryotic cells. 07 Hours

6. Directed Mutagenesis and Protein Engineering

Oligonucleotide – Directed Mutagenesis with M13 DNA, Plasmid DNA, PCR Amplification etc. Protein Engineering – Meaning and Scope, Protein Engineering for adding disulphide bonds, increasing enzymatic activity, decreasing protease sensitivity, modifying protein specificity, Increasing enzyme stability and specificity etc.

7. Genetic Engineering and Microbial Biotechnology

Genetic manipulation of Microorganisms – Introduction and scope. Applications of Recombinant Microorganism – Production of recombinant therapeutic proteins, Production of Antibiotics, Combating Human diseases, Microbial pesticides, Efficient utilization of Carbohydrates and Bioremediation or Environmental cleanup.

05 Hours

8. Plant and Animal Transgenic Technology and Applications.

Applications of Transgenic Plant Technology – Development of Insect resistant plants, Herbicide resistant plants, Pathogens resistant plants, and Abiotic stress tolerant plants. Plants as Bioreactors for large scale production. Applications of Animal cloning and Transgenic technology - Cloning in Domestic animals. Applications of Transgenic Animals - as research models, and as bioreactors for large scale production of substances for Human welfare.

05 Hours

Text Books

- 1. Genetic Engineering by Smitha Rastogi and Neelam Pathak, Oxford University Press, USA (2009)
- Molecular Biotechnology Principles and applications of Recombinant DNA by Bernard r Glick and Jack J Pasternak, ASM Press, American Society for Microbiology, Washington DC 2003

Reference Books

- 1. Gene Cloning and DNA Analysis by T A Brown. Wiley-Blackwell (2010)
- 2. An Introduction to Genetic Engineering Third Edn By Desmond S T Nicholl, Cambridge University Press, Singapore 2008.

Program: Biotechnology				
Course Title: Bioinformatics				Course Code: 15EBTC302
L-T-P: 3-0-0	Credits: 3.0			Contact Hours: 03 Hours/Week
CIE Marks: 50	SEE Marks: 50	D		Total Marks: 100
Teaching Hours: 40	Examination Hours	Duration:	03	

Unit - I

1.Database

Introduction, meaning of databases, types of databases, Primary Database: NCBI, Genbank, DDBJ, EMBL. File formats, Secondary Database: PROSITE, PIR, UNIPROT, BLOCKS, Pfam, specialized databases: KEGG, OMIM. Structure Database: PDB, MMBD, CATH, SCOP & structure visualization tools. 6 Hours

2.Pairwise Sequence Alignment

Meaning and significance of Sequence alignment, Pairwise sequence alignment, Global alignment, Local Alignment, overview of methods, Methods & Algorithms-dot matrix, dynamic programming, substitution matrices, gap penalties, FASTA, BLAST PSI-BLAST & PHI-BLAST.

3. Multiple Sequence Alignment

Meaning of Multiple Sequence Alignment, Global Multiple Sequence Alignment: Progressive Alignment methods, Iterative methods, Local Multiple sequence Alignment, Significance of Multiple Sequence Alignment, Multiple Sequence Alignment editors. Motifs and Patterns, PROSITE.

4 Hours

Unit - II

4.Molecular Phylogenetics

Meaning of phylogenetic analysis, Meaning & significance of evolutionary trees, Rooted and unrooted trees, Elements of phylogenetic Models, Phylogenetic Data Analysis, Distance based methods: Neighbor Joining (NJ) method, Fitch-Margoliash (FM) method, Minimum Evolution (ME) method, Character based methods:Maximum parsimony, Maximum Likelihood; Tree Evaluation methods, Phylogenetic Softwares: PHYLIP & PAUP.

5.Gene Prediction

Prokaryote and Eukaryote gene prediction, promoter site prediction. Gene Prediction tools-GRAIL, GENSCAN & GENEPARSER.

6.Protein Prediction

Protein structures: Secondary structure :Alpha helix, beta Sheets, phi & psi angles, Ramachandran plots. Protein Secondary Structure Prediction, Tertiary Structure Predictions: Homology modeling, conformational analysis and forces that determine protein structure, Protein Structure Comparison.

6 Hours

LAST.

4 Hours

6 Hours

Unit - III

7.In-silico Drug Designing-I

Introduction to traditional drug designing, Introduction in-silico drug designing approach, Methodology for in-silico drug designing, different tools used for drug designing, molecular Modeling, Energy minimization methods.

8.In-silico Drug Designing-II

Identification of ligands, Lipinski's rule, Process of Docking, Quantitative structure-activity relationship (QSAR), Physical and Chemical basis of receptor ligand interactions.

4 Hours

4 Hours

Text Books

- 1. Andreas D. Baxevanis, B. F. Francis Ouellette, Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, 3rd, Wiley-Inte, 2005
- 2. David Mount, Bioinformatics: Sequence and Genome Analysis, 2nd, Cold Sprin, 2004

Reference Books

- 1. P. Rastogi, N. Mendiritta, S. C. Rastogi, Bioinformatics: Methods and Applications: Genomics, Proteomics and Drug Discovery, 4th, Prentice-H, 2013.
- 2. Anand Solomon K, Molecular Modelling and Drug Design , 1st, MJP Publis, 2015
- Richard Durbin, Sean R. Eddy, Anders Krogh, Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids, 1st, Cambridge, 1998

Program: Biotechnology			
Course Title: Reaction Engineering		Course Code: 15EBTC303	
L-T-P: 4-0-0 Credits: 4		Contact Hours: 50	
CIE Marks: 50	SEE Marks:100	Total Marks: 100	
Teaching Hours: 50	Examination Duration: 3 hrs		
UNIT-I			

1: Introduction

Introduction to homogeneous and heterogeneous reaction in ideal reactors. Elementary and Non-elementary reactions kinetics of homogeneous and heterogeneous reactionsystem.

06 hours

2: Interpretation of Batch Reactor data

Introduction to analysis of experimental reactor data, evaluation of rate equation, integral and differential analysis of kinetic data's, constant volume system and variable volume System. Total pressure technique of analyzing the kinetic data of gaseous reaction system. **08 hours**

3. Introduction to Bioreactor Design.

General discussion on basics bioreactor design. General material balance equation for various conditions. Ideal reactors for a single reaction. Design equations for homogeneous system: batch, stirred tank and tubular flow reactor, size comparison of reactor 08 hours systems.

4: Design for Multiple Reactions

Introduction, general design approach to multiple reactions. Quantitative and gualitative analysis of product distribution. Effect of temperature and pressure on single reaction. General graphical procedure, optimum temperature progression. Factors affecting choice of reactors: optimum yield, conversion, selectivity and reactivity.

UNIT-II

5: Non-Ideal Reactors

Non-ideal reactors, residence time distribution studies, Stimulus Response Technique, pulse and step input response of reactors, RTD's for CSTR and PFR, Relationship between C, E and F-curve. Kinetic models for non Ideal reaction system, Axial Dispersion Model 04 hours

6: Microbial kinetics:

Introduction to microbial kinetics, Yield coefficients. Simple kinetic models for microbial growth, transient growth kinetics Factors affecting the kinetics of Monod model; Growth of Filamentous Organisms. kinetic Models for product formation and substrate degradation

7: Heterogeneous Reactor System:

Heterogeneous reactions in Bioprocessing. The rate equation for surface for kinetics, Pore diffusion kinetics with combined with surface kinetics. Porous catalyst particle Performance equation for reactor containing Porous catalyst particles. External and internal mass transfer effects.

UNIT-III

8: Reactor Engineering

Bioreactor configurations: Bubble column, airlift reactor, packed bed, fluidized bed, trickle bed,

04 Hours

04 Hours

Text Books

1) Chemical Reaction Engineering by Octave and Levenspiel., John Wiley, 3rd Edition, 2006.

2) Elements of Chemical Reaction Engineering by Fogler, H.S., Prentice Hall, 1986.

Reference Books

1) Bioprocess Engineering Principles by Pouline M Doran Academic Press, 2003

2) Biochemical Engineering Fundamentals By Bailey and Ollies McGraw Hill 2nd Edition

Chemical Reactor Analysis and Design by Forment G F and Bischoff K B. John wiley, 1976

08 hours

4) Chemical engineering By J.F Richardson and J.M Coulson Volume 6

Program: Biotechnology			
Course Title: Biological Thermodynamics			
Credits: 3		Contact Hours:40	
SEE Marks:50		Total Marks:100	
Examination hours	Duration:3		
	odynamics Credits: 3 SEE Marks:50 Examination hours	odynamics Credits: 3 SEE Marks:50 Examination Duration:3 hours	

Unit I

1. Basic concepts

System, Surrounding, State and Properties, Intensive and extensive properties, State and path functions, Heat reservoir, Hess Law, energy and biological world, energy flow transformation, energy conversions, energy, nutritional requirements of living systems, Flow of electrons in organism, energy flow in metabolic process, division of labor in cells, Numerical problems

06 hours

2. Basic laws of thermodynamics

Zeroth law, First law of Thermodynamics, cyclic process, non-flow process, flow Process, internal energy, Heat capacity, second law of thermodynamics, Concept of entropy, Calculation of entropy changes, Third law of thermodynamics. Numerical problems.

09 hours

Unit II

3. PVT behavior

P-V-T Behavior of pure fluid, Processes involving ideal gases, Equation of state for real gases: Vander Waals equation, Redlich-Kwong equation, Peng-Robinson equation, Virial equation. Compressibility charts: Principle of corresponding states, Numerical problems.

07 hours

4. Thermodynamic properties of Biological fluids

Classification of thermodynamic properties, Work function, Gibbs free energy, Gibbs-Helmholtz equation, ATP Synthesis in cell and Protein Folding, Metabolic reactions in cells. Entropy - heat capacity relationships, Relationships between C_p and $C_{v,n}$, Activity of molecule, Chemical potential, Oxidation-Reduction reaction, Cell Membrane Transportation & Protein Extraction, Osmosis, Nernst equation in membrane transportation, Numerical problems.

08 hours

Unit III

5. Statistical Thermodynamics

Boltzmann distribution & partition function, Protein folding and helix-coil transition, Binding equilibria, Oxygen biding to myoglobin & Hemoglobin.

6. Reaction Equilibria

Reaction Stoichiometry, Effect of temperature on standard heat of reaction. energy coupling reactions, activation energy, Criteria of chemical reaction equilibrium, Relationship between Equilibrium constant and standard free energy change, Effect of temperature, pH and pressure on equilibrium constants and other factors affecting equilibrium conversion, Numerical problems.

06 hours

04 hours

Text Books

- 1. Biological Thermodynamics by Donald T. Haynie, 2nd edition, Cambridge University Press,2008
- 2. Introduction to chemical engineering thermodynamics by J.M.Smith, H. C. VanNess, M.M. Abbott, 7th edition, Tata McGraw-Hill, NewDelhi, 2005.

Reference Books

- 1. Thermodynamics. An engineering approach, by Yunus A. Cengel, Michael A. Boles, 8th edition, McGraw- Hill, 2014.
- 2. Chemical Engineering Thermodynamics by Y.V.C. Rao. 2nd edition, Universities Press, 1997.
- 3. Chemical and Process Thermodynamics by B.G.Kyle. 3rd edition, Prentice Hall of India Private limited,2015.

Program: Biotechnology		
Course Title: Research Method	dology	Course Code:15EBTC305
L-T-P: 3-0-0	Credits: 03	Contact Hours: 40
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 03 hours	

Unit I

1. Introduction to Research and Research Methodology

Introduction, Objectives and scope of research, Research methods and Methodology. Types of research – Descriptive vs. Analytical, Applied vs. Fundamental, Quantitative vs. Qualitative, Conceptual vs. Empirical Concept of Translatory research.

04 hours

2. Research Philosophy and Formulation of Research Problem

Concept of Research Philosophy- (Ontology, Logic, Method and Epistemeology) Formulation of Research Problem- Necessity of defining the research problem and framing the problem statement.

	03 hours
3. Sources and Review of Literature	
Introduction and need for Literature Review., Search Procedures and Gap analysis.	
Sources of Literature - Research articles, review articles, Research communicat chapters. Bibliometrics- Citation index, Impact factor, H- Factor	ions, Book
	08 hours
Unit II	
4. Sampling & Data Collection	
Explain sampling and its significance. Describe different methods of sampling	03 hours
5. Statistical Analysis of Data	
Measures of Central Tendency, Measures of Dispersion and variance, Correlation and F	Regression
Development of hypothesis and testing : Chi- square test, Student's t-test, ANOVA	C
	07 hours
6. Design of Experiments	
Introduction and significance of DOE, Types - Factorial Design, Plackett Burman Desigr	n, Central
Composite Design, Introduction to Response Surface Methodology.	
	05 hours
Unit III	
7. Research Communication	
Written Communication- Introduction, Structure and components of scientific Bibliography, referencing and footnotes. Oral Presentation – Developing and presentation	reports – delivering 05 hours
8. Environment, Ethics and IPR in Research	
Impacts of Research on Environment, - Ethical issues, ethical committees, Research Intellectual Property Rights- Copy-right & royalty, Patent law, Trade mark, Tra Geographical Indicator,	Generated ide secret,
Industrial Design. Concept of Plagiarism	05 hours
Text Books	
1.C.R. Kothari and Guarav Garg, Research Methodology, III Edition, New Age Ir Publisher, New Delhi, 2014	nternational
2. N. Gurumani, Research Methodology for Biological Sciences, I Edition, MJP Chennai, 2007	Publishers,
Reference Books	
1. Design and Analysis of Experiments by Montgomery D. C. John Wiley Publishers	

2. An Introduction to Research Methodology by Garg, B.L., Karadia, R., Agarwal, F. and Agarwal, U.K. RBSA Publishers

Program: Biotechnology			
Course Title: Genetic Engineering & Immunotechnology Lab		Course Code: 15EBTP301	
L-T-P: 0-0-1	Credits:1.0	Contact Hours: 2Hrs/week	
CIE Marks: 80	SEE Marks: 20	Total Marks: 100	
Teaching Hours: 24	Examination Duration: 03 Hours		

List of Experiments:

- 1. Preparation of Competent E coli cells (Exercise)
- 2. Ligation of DNA fragment with vector and Transformation (Demonstration)
- 3. Restriction digestion analysis of plasmid DNA (Structured Inquiry)
- 4. Introduction to PCR Programming, and amplification of DNA (Exercise)
- 5. Screening of Transformants by Colony PCR (Demonstration)
- 6. TA Cloning method for cloning of PCR product. (Demonstration)
- 7. Demonstration of Southern blotting (Demonstration)
- 8. Agglutination techniques Heam agglutination techniques and Bacterial agglutination techniques (Exercise)
- 9. Radial diffusion and Rocket Immunoelectrophoresis (Exercise)

Dot-ELISA(Enzyme Linked Immuno Sorbent Assay) (Exercise)

Text Books/Reference Books

1.Principles of Gene Manipulations- Introduction to Genetic Engineering, by R.W. Old and S.D. Primrose(2007), Blackwell Scientific Publications.

2. Molecular Cloning- By T.Maniatis, E.F. Fritsch and J. Sambrook, Cold spring Harbour (2009)

Program: Biotechnology		
Course Title: Bioinformatics L	.ab	Course Code: 15EBTP302
L-T-P: 0-0-1	Credits:1.0	Contact Hours: 2Hrs/week
CIE Marks: 80	SEE Marks: 20	Total Marks: 100
Teaching Hours: 24	Examination Duration: 03 Hours	

List of Experiments:

- 1. Searching bibliographic database for relevant information
- 2. Searching sequence and retrieve from nucleic acid and Protein sequence database

- 3. PDB: Protein Data Bank and structure visualization
- 4. Pair wise alignment of the sequences
- 5. Searching sequence database using BLAST and FASTA algorithm
- 6. Multiple Sequence Alignment: CLUSTALW.
- 7. Evolutionary Relationship/ Phylogenetic Analysis.
- 8. Gene structure Prediction
- 9. Protein Secondary Structure Prediction
- 10. Pattern searching in proteins.
- 11.Define gene structure and design primers specific to the identified gene of microorganisms

and draw restriction digestion map for sequence identified

Text Books/Reference Books

- 1. Andreas D. Baxevanis, B. F. Francis Ouellette, Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, 3rd, Wiley-Inte, 2005
- 2. David Mount, Bioinformatics: Sequence and Genome Analysis , 2nd, Cold Sprin, 2004

Laboratory Title: Mini Project	Lab. Code: 15EBTW301
Total Hours: 90	Duration of SEE Hours: 3
SEE Marks: 50	CIE Marks: 50

Guidelines:

- Mini project to be carried out in a group of maximum 4 students.
- Every student needs to maintain laboratory work book which should contain the details of all the work carried out in the laboratory.
- Entries to be done in log books for instrument usage.
- Timely report submission to the coordinator.
- Requisitions for chemicals and glassware's to be provided in advance for the project work

Review committee:

Review committee is formed by the project coordinator taking into consideration that review committee consists of faculty experts from all domains. Review committee consists of the guide of the respective project group also.

Reviews:

- Continuous internal evaluation will be done by the respective guides/review committee as per the rubrics.
- Total of 3 reviews per semester will be carried out to evaluate the progress of the project.
- At each review students have to submit a report duly signed by guide.
- Final evaluation will be done by examiners during semester end examination as per the SEE evaluation scheme.

Phases of Minor Project:

SI. No	Phases	Reviewed	Activities
1	Review-1	By Review committee	Need analysis, Detail Review of literature, Objectives, Overall plan of work.
2	Review-2	By Project Guide	Development of protocols, Standardization and screening. Design of experiments, Conduct of experiments, Initial experimental data.
3	Review-3	By Review committee	Final experimentation, Data interpretation and analysis, Conclusion.

Year of offering: 2017-18 Batch- 2015-19 (6th semester)

Program: Biotechnology		
Course Title: Bioprocess Engir	neering	Course Code:15EBTC306
L-T-P: 4-0-0	Credits: 4	Contact Hours: 4 hours/week
CIE Marks:50	SEE Marks:50	Total Marks:100
Teaching Hours:50	Examination Duration:3 hrs	

Unit - 1

1.Media and Inoculum development for industrial fermentations

Bioprocess development: An interdisciplinary challenge, Biotechnology & Bioprocess Engineering, steps in bioprocess development, Media ingredients, medium formulation, oxygen requirements, antifoams, medium optimization, Ingredients for mammalian cell culture and plant cell culture.

Introduction, Criteria for transfer of inoculum, development of inocula for bacterial processes, yeast processes and mycelial processes. Inoculum development for plant Fermenter.

8 Hours

2.Sterilization

Media sterilization, Design of sterilization process: Batch Process (Dell factor, holding time, and thermal death kinetics), continuous sterilization process; sterilization of fermenter and other ancillaries. Scale up of sterilization, filter sterilization of air and media.

5 Hours

3.Design of bioreactors

Basic objective of fermenter design, aseptic operation & containment regulation, achievement and maintenance of aseptic conditions, body construction, agitator and sparger design, baffles, stirrer glands and bearings. Animal cell bioreactors.

Unit - II

4.Scale Up of Bioreactor

Scale up of bioreactors: Introduction, Scale-Up methods: Geometric and Dynamic Similarity, Criteria for scale-up: Constant power consumption/volume, constant KLa, constant mixing time, constant tip speed, Regime analysis: Time constant for transport phenomena, time constant for conversion. Scale down approach.

5 Hours

4 Hours

5 Hours

5.Heat Transfer

Heat transfer in Bioprocess: Design equation for heat transfer process, Energy balance, Logarithmic and arithmetic mean temperature difference, Calculation for heat transfer coefficient, applications of design equations, Relationship in between heat transfer, cell concentrations and stirring conditions, Numerical based examples on above.

6.Mass Transfer

Mass transfer in Bioprocess: Role of diffusion in bioprocessing, Different equations in mass transfer (liquid-solid, liquid-liquid and gas-liquid), Oxygen uptake in cell culture: Factors affecting cellular oxygen demand, Oxygen transfer from gas bubble to cells, Oxygen transfer in fermenter, measuring dissolved oxygen concentrations, Measurement of KLa: Oxygen balance method, Gassing out techniques (static method of Gassing out and dynamic method of Gassing out) Sulphite oxidation, Factors affecting KLa, Oxygen transfer in large vessels, Numerical based examples on above.

7.Fermenter fluid rheology

Fermentation broth: Viscosity, Viscosity measurement, Rheological properties of fermentation broths, Factors affecting broth viscosity, Mixing in Fermenters: Mechanism of mixing, Assessing mixing effectiveness, estimation of mixing time, Power requirement for mixing: Ungassed Newtonian fluids, ungassed non-Newtonian fluids, Gassed fluids, Calculation of power requirements, Scaleupof mixing systems, Improving mixing in Fermenters, Effect of rheological properties on mixing, Role of shear in stirred fementers: Interaction between cells and turbulent eddies, Bubble shear, operating conditions for shear damage. Numericals

6 Hours

Unit - III

8.Bioreactor kinetics

Batch reactor kinetics, CSTR kinetics, Fedbatch kinetics and plug flow kinetics, Numericals

9.Solid State fermentation:

Introduction, SSF v/s SMF, Types of SSF reactors, Microbial growth kinetics in SSF, Heat & Mass Transfer in SSF

5 Hours

Text Books

- 1. Pauline M. Doran, Bioprocess Engineering Principles, 2, Academic Press, 2003
- 2. Stanbury & Whittaker, Principles of Fermentation Technology, 2, Pergamum Press, 2000

Reference Books

1. Michael L. Shuler & Fikret Kargi, Bioprocess Engineering, 2, Prentice Hall, 2001 2.Bailey, James E.; Ollis, David F., Biochemical Engineering Fundamentals, McGraw-Hill Education, 1986

Program: Biotechnology		
Course Title: Bioprocess Control and Automation		Course Code:15EBTC307
L-T-P: 3-0.5-0	Credits: 3.5	Contact Hours: 3 hours/week
CIE Marks:50	SEE Marks:50	Total Marks:100
Teaching Hours:40	Examination Duration:3 hrs	
	1	1

Unit I

1: Instrumentation & Process Dynamics: Introduction to Measurement of important physicochemical and biochemical parameters in bioprocess. Methods of on line and off line estimation of biomass, substrates and products. Brief introduction to typical automatic control system and its components. Open loop and closed loop control systems.

05 hours

2: First & Second Order Systems: Mathematical representation of physical systems. Transfer function representation of linear first order systems, Examples: mercury in glass thermometer & Liquid level system. Mathematical forms of standard Input function/Forcing Functions such as Step input, Impulse Input, Linearly increasing Input and Sinusoidal Input. Response of first order system for step input, Features of step response, Response of linearly increasing input. Conceptual numerical. First Order Systems in Series: Interacting and Non-Interacting systems & their Transfer function representation. Second Order Systems: Transfer function representation of Second order systems, Example: Pneumatic Control Valve.

10 hours

Unit II

3: Controller and Final Control Elements: Different types of controllers-P (Special case of P-controller i.e ON-OFF controller), PI, PD, PID controllers. Derivation of Transfer Functions of different types of controllers.Final control element: The role of Final control Element in control system. Example: Pneumatic Control Valve: Working of Pneumatic control valve, Types of Pneumatic Control Valves i.e. Air to close & air to open.

08 hours

4: Block Diagram Reduction: Block diagram representation of control systems, Block diagram reduction in case of Servo and Regulatory control systems. Reduction of block diagrams for single input & Single output systems (SISO) & Multiple Input & Multiple Output Systems (MIMO), Problems on block diagram reduction.

07 hours

Unit III

5: Transient response of different controllers for Servo & Regulatory control Problems: Transient response of P, PI, PD & PID controllers for servo and regulatory problems. The determination of offset in all cases.

05 hours

6: Analysis of Stability: Concept of stability, stability criterion. Routh test for stability. Theorems of Routh Array test, Conceptual numerical on Routh test for stability. **05 hours**

Text Books

- 1. Process System analysis and control by Donald R Coughnowr, 2nd Edn.Mc Graw Hill,1991
- 2. Chemical Process Control by George Stephanopoulos, Prentice Hall of India, 1999

Reference Books

1. Process Control-Peter Harriott, Tata McGraw-Hill Publishing Company Limited, 2004.

Program: Biotechnology		
Course Title: Bio Analytical Te	chniques	Course Code: 15EBTC308
L-T-P: 3-0-0	Credits: 3.0	Contact Hours: 03 Hours/Week
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 03 Hours	

Unit I

1. Introduction to Bio-analysis

Introduction to instrumentation, Functional elements of an instrumentation system, static and dynamic characteristics, calibration of instrumental methods, Types of errors, Methods of expressing precision and accuracy, Confidence limits, Uncertainties in Instrumental measurements – Sensitivity and detection, preparation & storage of solutions, usage of laboratory glasswares, statistical analysis of experimental data, Electrodes and Biochemical preparation.

05 Hours

2: Spectroscopy

General principles–Radiation, energy and atomic structure- types of spectra and their biochemical usefulness basic laws of light absorption. Electromagnetic radiation & Spectrum, Beer – Lambert's Law and apparent deviations; UV – VIS Spectrophotometer

05 Hours

3: Advanced Spectroscopy

Spectroflourimetry, Atomic absorption spectroscopy, IR spectroscopy, FTIR, Nuclear Magnetic Resonance, Mass spectroscopy, ORD, CD, X-ray diffraction.

05 Hours

Unit II

4: Chromatographic techniques

Analytical techniques for biomolecules purification, Paper chromatography, thin layer chromatography, Column chromatography, Gas chromatography, Ion-exchange chromatography, molecular exclusion chromatography, affinity chromatography, High performance liquid chromatography & UPLC- Principles, Methods, Instrumentation, Detectors, Analysis of data.

09 Hours

5: Electrophoretic techniques

Theory & application of polyacrylamide & Agarose gel electrophoresis for protein & nucleic acids, capillary electrophoresis, pulsed field gel electrophoresis, Iso-electric focusing, 2D-gel electrophoresis and Immunoelectrophoresis

06 Hours

Unit III

6: Centrifugation techniques

Basic principles of sedimentation, centrifuges and their uses, preparative ultracentrifuges, density gradient ,analytical ultra centrifuges, applications

7. Advanced Instrumental methods

LC-MS, GC-MS, HPTLC, SEM, Atomic Force Microscopy, transmission electron microscopy (TEM)

04 Hours

06 Hours

Text Books

- 1. Wilson K & Walker J., Principles and Techniques of Practical Biochemistry, 5th edition, Cambridge Univ. Press., 2000.
- 2. Rodney Boyer, Modern Experimental Biochemistry, 3rd edition, Pearson Education, 2002
- 3. Chatwal and Anand, Spectroscopy, Himalaya Publishing house-New Delhi, 2016

Reference Books

- 1. Willard H. W. & Meritt L. L, Instrumental methods for chemical analysis, 7th edition. CBS Publishers & Distributors, 2004
- 2. Chatwal and Anand, Instrumental methods for chemical analysis, Himalaya Publishing house, 2012

Program: Biotechnology		
Course Title: Bioprocess Engineering Lab		Course Code: 15EBTP303
L-T-P: 0-0-1.5 Credits:1.5		Contact Hours: 3Hrs/week
CIE Marks: 80	SEE Marks: 20	Total Marks: 100
Teaching Hours: 36	Examination Duration: 03 Hours	
List of Experiments:		
1. Study of Lab fermente	r	
2. Determination of thern	nal death kinetics of microorganis	n.
3. Batch growth kinetics		
4. Fed Batch kinetics		
5. Determination of kinetic parameters of microorganism using batch mode.		
6. Kinetics of product formation		
7. Kinetics of substrate degradation		
8. Design an experiment to determine mixing time and power requirement of fermenter		
9. Determination of K _{La}		
10. Solid state fermentation		
11. Design an experiment to study the effect of mass transfer on microbial growth.		
Text Books/Reference Books 1. Pauline M. Doran, Bioprocess Engineering Principles, 2, Academic Press, 2003		

2. Stanbury & Whittaker, Principles of Fermentation Technology, 2, Pergamum Press, 2000

Laboratory Title: Minor Project	Lab. Code: 15EBTW302
Total Hours: 12	Duration of SEE Hours: 3
SEE Marks: 50	CIE Marks: 50

Experiment wise Plan

List of experiments/jobs planned to meet the requirements of the course.

Category: Open Ended		Total Weightage: 50.00		No. of lab sessions: 40.00
Expt./ Job No.	Experiment / Job Details	No. of Lab Session(s) per batch (estimate)	Marks / Experiment	Correlation of Experiment with the theory
1	Production of Protease/Amylase and study of effect of physico- chemical parameters	40.00	50.00	
	Learning Outcomes: The students should be able to: 1. Prepare the media and inoculum for enzyme production 2. Operate different instruments by using SOP 3. Analyze the effect of parameters on enzyme production 4. Conduct the statistical analysis of the results and correlate to the theortical concepts and principles 5. Work effectively in a group to fulfill the defined objectives 6. Write the technical report and present the results orally by using the media effectively		Minor project is related to the courses studied in 3rd, 4th and 5th semester	

Year of offering: 2018-19 Batch- 2015-19 (7th semester)

Program: Biotechnology		
Course Title: Downstream Pro	Course Code: 15EBTC401	
L-T-P: 3-0-0	Credits: 3.0	Contact Hours: 03 Hours/Week
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 03 Hours	

Unit I

1.Introduction

Role and importance of downstream processing in biotechnological processes. Characteristics of biological mixtures. Process design criteria for various classes of byproducts (high volume, low value products and low volume, high value products), Steps involved, case studies

05 Hours

2. Primary separation techniques

Cell disruption methods for intracellular products, Removal of insoluble, Biomass (and particulate debris) separation techniques; Flocculation and Sedimentation, Centrifugation filtration methods.

09 Hours

Unit II

3. Membrane separation processes

Membrane - based separations theory; Design and configuration of membrane separation equipment; Concentration polarization and fouling - causes, consequences and control techniques; Applications: Reverse osmosis, Dialysis, Ultra filtration, Micro filtration **09 Hours**

4. Enrichment operations

Precipitation methods with salts, organic solvents, and polymers, Extraction methods for separations. Aqueous two-phase extraction, Supercritical extraction; In situ product removal / integrated bio-processing. 07 Hours

Unit III

5. Product recovery I

Introduction to chromatography, Van Deemter equation, Reversed Phase Chromatography, Hydrophobic Interaction Chromatography, Ion Exchange Chromatography.

6. Product recovery II

Gel Filtration Chromatography, Affinity Chromatography, Polishing Operations: Crystallization, 05 Hours Drying

Text Books:

- 1. Product Recovery in Bioprocess Technology BIOTOL Series, VCH, 1990
- 2. Bioseparations: Principles and Techniques by B. Sivasankar, 2005

Reference Books:

- 1. Separation Process Principles by J D Seader and Ernest J Henley, 1998.
- 2. Bioprocess Engineering by Shuler and Kargi Prentice Hall, 1992.
- 3. Separation Processes in Biotechnology by Asenjo J. and Dekker M, 1993.
- 4. Bioseparations by Belter P.A. and Cussier E., Wiley, 1985

Program: Biotechnology		
Course Title: Bioprocess E	Course Code: 15EBTC402	
L-T-P: 3-0-0	Credits: 3.0	Contact Hours: 03 Hours/Week
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 03 Hours	

Unit – I

1. Notation and terminologies

Pipe Joints: Flanged pipe joint, Hydraulic pipe joint, Gland & stuffing box expansion joint, Union joint, Socket & spigot Joint. Welded joints: Butt, Fillet, lap welded joint. Vessel openings: Manholes, nozzles, drains, sight Glasses. Pipe design: Basic notation and terminologies, Schedule 10 and 40. Introduction to design.

04 Hours

2. Materials of Construction

Material properties: Mechanical & types of Corrosion; Materials used: Stainless steel and their alloys, properties of different metals used in stainless steel, Selection criteria, Different Standards (Indian steel codes, American Society for Mechanical Engineers-Bioprocess Engineer (ASME BPE) standard, AISI (American Iron & Steel Institute) standard), different Stainless steel grade: 304, 316.

Unit – II

08 Hours

3. Design of Bioreactor

Fermenter: Steps involved in the design: Volume of Reactor, H/D ratio, impeller design, baffle design, shaft design, Thickness of the shell, thickness of the top & bottom Cover, thickness of jacket, heat transfer area of jacket, Power number, Power required to drive the Impeller.

09 Hours

4. Design of shell and tube Heat exchanger

Heat exchangers: Steps involved in the design, Energy balance, LMTD, Tubing characteristics, Tube side heat transfer coefficient, baffle spacing, shell side heat transfer coefficient, Fouling, Overall heat transfer coefficient, Tube side & shell side Pressure drop calculations.

Unit – III

5. Equipment qualification & Validation

Design qualification, FAT (factory acceptance test), Site acceptance test, Commissioning, Installation Qualification, Operational qualification, Performance qualification, Equipment validation.

6.Bioreactor Accessories

Sterilization by filters, Design criteria for filters, filter housing, Filter Integrity test: Diffusive air flow test, Bubble point test, Pressure drop test, Water intrusion test; Valves: Diaphragm valve, Pneumatic valve, pinch valve, Non-return safety Valve; Aseptic seals in fermenter (Gasket, Lip seal, O rings).

05 Hours

Text Books:

- 1. Chemical Engineering Design by R K Sinnott, vol-6, 4th edition, Butterworth-Heinemann, 2005.
- Process Equipment Design by M. V. Joshi & V. V. Mahajani, 3rd edition, Macmillan India Ltd, 1996.

Reference Books:

- 1. Fermentation & Biochemical engineering handbook by H. C. Vogel & C. L. Todaro, 2nd edition, Standard publishers distributors.
- Introduction to chemical equipment design by B. C. Bhattacharyya, 1st edition, CBS Publishers & distributors, 1985

Program: Biotechnology			
Course Title: Industrial Biotec	Course Code: 15EBTE401		
L-T-P: 3-0-0	Credits: 3.0	Contact Hours: 03 Hours/Week	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hours: 40	Examination Duration: 03 Hours		
	Unit I		
1. Beverage products Fermentative production Alcoholic beverages: Beer, Wine, Whisky. 05 Hours			
2. Fermentation of food produ	cts	estain bakar avaast) I Olutamia	
Acid	biomass production (single cell pr	olein, baker.s yeasi), L-Giulamic	
		05 Hours	
3. Industrial Chemicals			
Citric Acid, Ethanol, Lactic Aci	id, Acetone & Butonol	05 11	
		US HOURS	
	Unit II		
4. Biomolecules			
Microbial Flavors & fragrance	e, Amino acid production: Phenyla	anine, L-Lysine, Aspartic Acid 05 Hours	
5. Enzymes			
Amylases, Proteolytic enzyme	es, Pectinases, Lipases, Glucose I	somerase	
6 Dianharmagauticala		05 hours	
Production of penicillin Strep	tomycin Cephalosporins		
05 Hours			
Unit III			
7.a. Health Care Products:			
Interferon's, Anticancer agents, Steroid fermentation			
7.b. Health Care Products:			
Insulin, Vaccines, Monoclonal Antibodies			
05 Hours			
Text Books:			
 L.E.Casida, JR , Industrial Microbiology, New Age International (P) Ltd Publication. 			
2. Prescot and Dun, Industrial Microbiology, McGraw-Hill Book Company, Inc. New York			

Reference Books:

KLE TECH.

- 1. D.Lanch, Drew, Wang, Comprehensive Biotechnology-Volume 3, Elsevier Publication.
- 2. George T. Austin, Nicholas Basta; Shreves Chemical Process Industries Handbook; McGraw Hill Professional, 1998

Program: Biotechnology			
Course Title: Food Processing	Course Code: 15EBTE402		
L-T-P: 3-0-0	Credits: 3.0	Contact Hours: 03 Hours/Week	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hours: 40	Examination Duration: 03 Hours		

Unit I

1. Fundamentals of Food Processing Technology

Basic concepts about properties of foods: liquid, solid and gases; Introduction to food processing: scope and significance; Principles of food processing and preservation

2. Microbial Food Spoilage

Food as substrate for microorganisms, Primary sources of micro organisms in foods, Microbes induced biochemical changes in foods, Microbiological Examination of foods, Food poisoning, and types., A brief account of various organisms related with food poisoning- *E. coli, Clostridium, Bacillus, Staphylococcus and Vibrio*

3. Food biotechnology and Applications

Enzymes, organic acids, antibiotics, baker's yeast, single cell protein and Mushrooms. Biocolours, Concept of fermented foods and beverages, Probiotics, Prebiotics & Symbiotics, Genetically Modified Foods

04 Hours

Unit II

4. Unit Operations in Food Processing

Introduction, Food Engineering operations- raw material preparation, cleaning, sorting, grading and peeling. Food conversion operations- size reduction, emulsification, filtration, membrane separation, centrifugation and extraction. Pulsed Electric Field processing, High-Pressure Processing, 04 Hours

5. Thermal Processing of Foods

Heat processing using steam or water, Blanching, Pasteurization, Heat Sterilization, Evaporation, Distillation, Extrusion and Canning. dielectric heating, ohmic and infrared heating. Dehydration, Intermediate Moisture Foods, Baking and Roasting, Heat processing using hot oils- Frying.

06 Hours

6. Non-Thermal Processing of Foods

04 Hours

Chilling, Freezing, Freeze-drying, Vacuum Concentration, Processing by chemical methodssugar, salt, curing, smoking, acid and chemicals. Irradiation of foods. Controlled and Modified– Atmosphere Packaging. Concept of hurdle technology. **05 Hours**

Unit III

7. Food Product Development

Concept and need of new product development, testing and sensory evaluation, Development of product formulation and development,, Role of food ingredients in human health Packaging and shelf life of food products. Concept of Functional Foods and Nutraceuticals.

05 Hours

8. Food laws, Labeling and Regulatory Bodies

Food Laws- General Standards and Regulations as per FSSAI, . Regulatory bodies governing food laws. Certification and labeling of foods. Concept of HACCP and AGMARK

05 Hours

Text Books:

- 1. P.J.Fellows, Food Processing Technology. Principles and Practices, Second Edition, Woodland Publishing Ltd,Cambridge,England,2002
- 2. Avantina Sharma, Text Book of Food Science and Technology, International Book Distributing Co, Lucknow, UP, 2006

Reference Books:

1. Ramaswamy H & Marcotte M. Food Processing: Principles and Applications. Taylor & Francis. 2006

Program: Biotechnology		
Course Title: Bioprocess Mode	Course Code: 18EBTE401	
L-T-P: 3-0-0	Credits: 3.0	Contact Hours: 03 Hours/Week
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 03 Hours	

Unit I

1.Introduction to modeling:

Introduction, Mathematical Modeling of Bioprocess Engineering System, General Aspects of the Modeling Approach, General Modeling Procedure: Fundamentals uses of mathematical model, scope of coverage, principles of formulation; Fundamental Laws of Modeling: continuity equation, energy equation with examples 05 Hours

2.Fundamental Laws of Modeling:

Equation of motion, transport equation, equation of state, phase and chemical equilibrium, chemical kinetics; Lumped and distributor parameters with examples 05 Hours

3. Mathematical models of Biochemical Engineering Systems:

Modeling of Batch reactors, modeling of CSTR, Numericals. Plug flow reactor, Fluidized bed

	05.11
reactor, Reactors used in effluent treatments, packed bed reactor.	05 Hours
Unit II	
4. Use of MATLAB in Process Simulation:	
Basics-Data analysis-curve fittings, Numerical integration, Euler and fourth order method, Input and Output in MATLAB. Solving problems using MATLAB by numeric Euler and fourth order Runge Kutta methods. Simulation of CSTR and Batch React of Plug flow reactor.	er RungeKutta cal integration, tor, Simulation 10 Hours
4.Introduction to Process Design:	
Steps involved in process design, Process flow diagram structure and hierarchi importance of Material and Energy balance, selection of unit operations,	ical approach,
	05 Hours
Unit III	
5.Introduction to process simulation software	
Bioprocess design with example: Process Description, Specifying Process Sectio Equipment Sharing, Initialization of Reaction Operations, Process Analysis, Cost Economic Evaluation, Environmental Impact.	ns, Specifying Analysis and
	05 Hours
6. Use of Super Pro in Process Simulation:	
Components and mixtures, Physical and Chemical properties of components, mater balance simulation, adding unit operation, scheduling the unit process, process co sizing of the unit operation.Case study: Monoclonal antibody production, Enzyme pro	rial and energy ost estimation, oduction 05 Hours
Text Books:	
1.Luyben W.L., Process Modeling Simulation and Control for Chemical Engineers. 1988.	, McGraw Hill,
2. Pauline M. Doran, "Bioprocess Engineering Calculation", Blackwell Scientific Publi	ications.
Reference Books:	

1. Kenneth J. Beers. "Numerical Methods for Chemical Engineering Applications in MATLAB®", Massachusetts Institute of Technology, Cambridge University press 2007 edition.

2. Bailey and Ollis, "Biochemical Engineering Fundamentals", 2 nd ed., McGraw Hill, 1986.

Program: Biotechnology			
Course Title: Plant and Anima	Course Code: 15EBTE403		
L-T-P: 3-0-0	Credits: 3.0	Contact Hours: 03 Hours/Week	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hours: 40	Examination Duration: 03 Hours		

Unit I

1. Introduction to plant tissue culture

Introduction and scope of plant tissue culture. Historical events in the development of plant tissue culture method. Practical applications and recent advances. Laboratory organization, Cell culture media and its components. Aseptic manipulation in plant tissue culture laboratory.

2. Methods and Techniques in Plant tissue Culture.

Callus and suspension culture, Micropropagation, Protoplast culture & Somatic Hybridization, Anther & Ovary Culture, Somatic Embryogenesis, Embryo & Endosperm culture, Somaclonal variation Germplasm storage by cryopreservation – pretreatment for cryopreservation, freezing, thawing, plant growth and regeneration and applications. **04 Hours**

3. Introduction to animal cell and tissue culture

History and Scope of Animal cell and Tissue culture, Advantages and Disadvantages of Cell culture, laboratory facilities for tissue culture. Culture media for cells and tissues. Laboratory layout, Essential equipments and Consumable items, Aseptic Techniques- elements of aseptic environment and culturing vessels Types of tissue culture – Primary cultures and Cell lines maintenance of cell line cultures **06Hours**

Unit II

4. Culture characterization and culture maintenance

Need for characterization, Parameters of Characterization, Cell Morphology, Confocal microscopy, DNA content analysis, Enzyme activity and Antigenic markers. Contamination in cell culture – sources, monitoring and eradication of contamination Cryopreservation and transportation. **04 Hours**

5. Animal Cell culture Scale up and Automation

Introduction to scale up and automation. Scale up in suspension culture: Continuous culture, Scale & complexities, Mixing & Aeration. Scale up in Monolayer culture: Multi surface propagators, Roller culture, Microcarriers, and Perfused Monolayer culture. Process control and Automation: Robotic cell culture and High throughput screening. **05 Hours**

6. Animal cell culture and Biopharmaceuticals production

Mammalian cells as desired expression systems for protein biopharmaceuticals, Construction and selection of high-producing cell lines, Medium development for mammalian cell culture, and Process development for mammalian cell culture. Single use disposable animal cell culture technologies for biopharmaceutical manufacturing. **06 Hours**

Unit III

7. Plant Cell culture and Secondary Metabolite production

Introduction, Selection of high yield cells and Mass cultivation of plant cells: Free cell suspension culture, Immobilized plant cell culture, and Two phase system culture. Elicitor induced accumulation of products. Biotransformation using plant cell cultures, Genetic modification and factors limiting large scale production of useful compounds. **05 Hours**

8. Animal cell culture applications and Tissue engineering

Hybridoma Technology and Animal cell culture applications in Monoclonal antibodies production. Products of Animal tissue culture – Erythropoietin, Tissue Plasminogen Activator & Factor VIII etc. Tissue Engineering – Introduction, Cell types, Extracellular matrix and Tissue engineering concepts. Artificial skin development by tissue engineering and its applications.

05 Hours

Text Books:

- Introduction to Plant tissue culture Second edition. M K Razdan Oxford & IBH Publishing Co Pvt Ltd, New Delhi. 2003
- 2. Animal Cell Culture Concept and Application by Sheelendra M Bhatt, Narosa Publishing House, New Delhi ISBN: 978-81-7319-926-4

Reference Books:

- 1. Introduction to Plant Cell, Tissue and Organ culture Sunil D Purohit PHI Learning Private Ltd, New Delhi 2013. ISBN 978-81-203-4677-2
- Culture of Animal Cells A Manual of Basic Technique by R. Ian Freshney A John Wiley & Sons, Inc., Publication New York (2000)

Program: Biotechnology			
Course Title: Biopharmaceutic	als		Course Code: 15EBTE404
L-T-P: 3-0-0	Credits: 3.0		Contact Hours: 03 Hours/Week
CIE Marks: 50	SEE Marks: 50		Total Marks: 100
Teaching Hours: 40	Examination Duration: Hours	03	

Unit I

1. Introduction:

Introduction to pharmaceutical industry, API and pharmaceutical products, Formulation Industry, Introduction to dosage forms, Biopharmaceuticals & Biotechnology, Biopharmaceuticals: Current status & future prospects. Drug discovery & development process, Sources of Biopharmaceuticals, Dosage forms and routes of drug administration.

06 Hours

2. Pharmacokinetic and Pharmacodynamics of Peptide & Protein Drugs:

Introduction to pharmacokinetics and pharmacodynamics, drug as agonist & antagonist, Pharmacokinetics of protein therapeutics, ADME study for small molecules & protein therapeutics, optimization of pharmacokinetic profile, Pharmacodynamics of protein therapeutics, PK/PD

Models.

3. The Drug Manufacturing Process:

Pharmacopeias, good manufacturing practices (GMP), good laboratory practices (GLP), manufacturing facilities, clean rooms, water plant & grades of water, production of final product & formulation, analysis of final product (Qualitative & Quantitative), documentation: SOP, specifications & records, batch manufacturing records (BMR), batch packaging records (BPR).

Unit II

4. Therapeutic Agents:

The cytokines (Interleukins & Interferons), haemopoetic growth factors (erythropoietin), hormones of therapeutic interest (insulin & glucagon), preservation and clinical use of blood products, therapeutic enzymes, monoclonal & polyclonal antibodies, vaccines and vaccine technology (with appropriate case studies).

Unit III

5. Quality in Pharmaceutical Industry:

Quality Assurance & Quality Control, validation & qualification studies, aseptic fill-process validation, cleaning validation, Validation Master Plan, Qualification: IQ, OQ and PQ. Calibration of analytical instruments.

6. Regulatory issues and Drug product approval

Drug approval process (NDA & ANDA), Regulatory framework: Quality, Safety & Efficacy, Biosimilars and follow-on biologics, FDA & its Organizational structure, European regulations, Drug Registration in Japan, World harmonization of drug approvals (The ICH).

Text Books:

- 1. Biopharmaceuticals: Biochemistry & Biotechnology. Author: Gary Walsh. Second Edition, 2011. Pub: John Wiley & Sons.
- 2. Pharmaceutical Biotechnology: Fundamentals and Applications. Ed: Daan J.A. Crommelin et al. Third Edition. Publisher: Informa Healthcare.

Reference Books:

- 1. Molecular Biotechnology: Principles & Applications of r-DNA. Author: Bernard Glick & Jack Pasternak. 2002. Pub: Panima Books.
- 2. Manual of Industrial Microbiology & Biotechnology by Arnold L. Demain. 1999 Pub: ASM Press.
- 3. Biopharmaceuticals: An Industrial perspective. Authors: Gary Walsh & Brendan Murphy. 2009. Pub: Spring Books.

Program: Biotechnology

10 Hours

08 Hours

08 Hours

04 Hours

04 Hours

Course Title: Bioprocess Plan	Course Code: 15EBTE406	
L-T-P: 3-0-0	Credits: 3.0	Contact Hours: 03 Hours/Week
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hours: 40	Examination Duration: 03 Hours	

Unit I

1. Introduction to Process Design Development

Design project procedure, design information from the literature and other sources of information, flow diagrams, preliminary design, and comparison of different processes, Equipment design and specialization, factors affecting the investment. **06Hours**

2. General Design Considerations

Marketability of the product, availability of technology, Health and safety hazards, raw materials, human resources, loss prevention Environmental protection and utilities, site characteristics, plant location, plant layout, plant operation and control, utilities, structural design, storage, materials handling, materials and fabrication Selection, optimum design and design strategy. Waste disposal, physical treatment, chemical treatment and biological treatment, govt. regulations and other legal restrictions, community factors. Safety and hazard control measures.

10 Hours

Unit II

3. Cost Analysis and Manufacturing Cost

Cost Analysis: Factors involved in project cost estimation. Cash flow diagrams for the industrial operation, Cumulative cash position, factors affecting the Investment and production cost, Different methods employed for the estimation of the capital investment. Estimation of equipment cost by sixth tenth rule, Cost index. Marshall and swift installed – equipment indexes, Engineers News-Record construction index, Nelson –Farrar refinery construction index. and Chemical Engineering plant cost index Manufacturing Costs: Direct Production costs, indirect cost and fixed charges (including depreciation, taxes, insurance, rental costs etc.)

10 Hours

4. Bioprocess Economics:

Economic analysis for the production of following Products. (Historical Perspective, Fermentation Technology, Recovery of product and process economics of following products)

- High volume, low value products. (Citric acid, Ethanol and Amino acids etc)
- Medium volume, medium value products.(Antibiotics, Crude Enzymes and Vitamins etc)
- Low volume, high value products. (MAb, purified Enzymes and Therapeutic proteins etc)

06 Hours

Unit III

5. Profitability Analysis and Optimization Technique

i) Importance of profitability analysis in investment decision making. Different Methods for calculating the profitability. Minimum Acceptable Rate of return. Methods that Do not consider Time value of money.
 ii) General procedure to find the optimum conditions, factors affecting the optimization, comparison of analytical and graphical methods. Linear programming, Simultaneous Equations and dynamic programming

Text Books:

- 1. Peters and Timmerhaus, Plant Design and Economics for Chemical Engineers, McGraw Hill 5th edition, 2004.
- 2 Chemical Engineering plant design, Frank C Vilbrandt and Charles E Dryden, McGraw Hill 4th edition, 1959

Reference Books:

- 1. Rudd and Watson, Strategy of Process Engineering, Wiley, 1987.
- 2. Backhurst, J.R And Harker, J. H Process Plant Design, Heieman Educational Books, (1973).
- Biochemical Engineering Fundamentals, James E Baily David F Oillis. McGraw-Hill 2nd Internatio Edition

Course Title: Quality Assurance & Regulations Course Code: 18EBTE403			
Credits: 3.0	Contact Hours: 03 Hours/Week		
SEE Marks: 50	Total Marks: 100		
Examination Duration: 03 Hours			
	ce & Regulations Credits: 3.0 SEE Marks: 50 Examination Duration: 03 Hours		

Unit I

1. Introduction

Introduction to Quality and Quality Regulation, Validation and Regulatory Affairs in Bio (Pharmaceutical) Manufacturing: An Introduction to FDA Operations & Industry Compliance Regulations, The Fundamentals of Regulatory Compliance with respect to Good Clinical Practice (GCP), Good Manufacturing Practice (GMP) & Good Laboratory Practice (GLP).

06 Hours

2. Quality and Quality Management

Terms Relating to Quality Management System, Quality Policy, Quality Objectives, Quality Planning, Quality Control, Quality Assurance, Quality Improvement, Continual Improvement, Effectiveness, Efficiency; Relating to Process and Product, Quality Characteristics; Terms Relating to Conformity, Non-Conformity, Defect, Preventive Action, Corrective Action, Rework, Repair, Scrap, Concession, Deviation Permit, Release; Terms Relating to Documentation.

Unit II

3. Process Validation

Definition and concept of validation, An introduction to process validation, Validation and Qualification, IQ, OQ and PQ. A Review of Prospective, Concurrent, Retrospective Validation Calibration and performance evaluation. Validation of Water & Thermal Systems, including HVAC Facilities & Cleaning Validation. Validation septic Processes, Computer software validation in pharmaceuticals (CSV).

4. Analytical Method Validation

FDA and ICH guidelines. Analytical method validation, Specificity, Linearity, Accuracy, Precision, Limits of detection (LOD) and quantification (LOQ), Minimum detectable amount (MDA), Sample stability and method robustness, System suitability, Statistical process control for HPLC, Troubleshooting out-of-control systems, Case studies, Validation of Analytical Methods.

06 Hours

Unit III

5. Quality Standards

Introduction, ISO 9000 Series of Standards, Management Responsibility, Quality System, Contract Review, Design Control, Document and Data Control, Control of Quality Records, Internal Quality Audits, Training, Servicing, Environmental Management System.

04 Hours

6. Implementation and Regulation

Role of QC and QA in Bio/Pharmaceutical organization, Quality System, Contract Review, Design Control, Document and Data Control, Product Identification and Traceability, Process Control, Control of Quality Records, Internal Quality Audits, Training.

04 Hours

Text Books:

- 1. Pharmaceutical Process Validation by Robert Nash and Alfred Wachter, Marcel Dekker. Publisher: Marcel Dekker Inc. 2011.
- 2. Good Manufacturing Practices for Pharmaceuticals: A Plan for Total Quality Control From Manufacturer to Consumer, Sidney J. Willig, Publisher: Marcel Dekker Inc. 2005.

Reference Books:

- 1. Validation of Pharmaceutical Processes: Sterile Products, Frederick J. Carlton (Ed.) and James Agalloco (Ed.), Marcel Dekker, 2008.
- 2. Validation Standard Operating Procedures: A Step by Step Guide for Achieving Compliance in the Pharmaceutical, Medical Device, and Biotech Industries, Syed Imtiaz Haider, Saint Lucie Press, 2004.

10 Hours

Program: Biotechnology				
Course Title: Downstream Processing Technology Lab Course Code: 15EBTP401				
L-T-P: 0-0-1	Credits: 1.0 Contact Hours: Hours/Week			
CIE Marks: 80	SEE Marks: 20	Total Marks: 100		
Teaching Hours: 24	Examination Duration: 03 Hours			

List of Experiments

- 1. Cell disruption technique: Sonication.
- 2. Solid-liquid separation method: Filtration.
- 3. Solid-liquid separation methods: Centrifugation.
- 4. Product enrichment operations: Two phase aqueous extraction.
- 5. Isoelectric precipitation of proteins
- 6. Membrane Separation methods: Tangential Flow Filtration
- 7. Chromatography techniques: Gel exclusion chromatography
- 8. Chromatography techniques: Ion exchange chromatography
- 9. Determination of protein molecular weight: SDS-PAGE
- 10. Estimation of metabolite using high performance liquid chromatography

Text Books/ Reference Books:

- 1. Bioseparations: Principle & Technique; Shiv Shankar B.; PHI LEARNING PRIVATE LIMITED;2009
- 2. Bioseparations: Downstream Processing for Biotechnology; Paul A. Belter E. L. Cussler Wei-Shou Hu; WILEY INDIA PVT. LTD.-NEW DELHI; 2011
- 3. Separation Processes in Biotechnology; Juan A. Asenjo; CRC Press (28 June 1990).
- 4. Protein Purification : Principles and Practice; Robert K Scopes;Springer; 2010 December

Year of offering: 2018-19 Batch- 2015-19 (8th semester)

Program: Biotechnology			
Course Title: Biological Data A	nalysis		Course Code: 18EBTE402
L-T-P: 3-0-0	Credits: 3.0		Contact Hours: 03 Hours/Week
CIE Marks: 50	SEE Marks: 50		Total Marks: 100
Teaching Hours: 40	Examination Duration: Hours	03	

Unit I

1.Introduction to Basic statistics:

Strategy of Experimentation, History of the Design of Experiments, Basic Principles of DOE:

Randomization, Replication, Blocking, Multi-factor Designs, Confounding; Steps for Planning, Conducting and Analyzing an Experiment, Typical applications of Experimental design, Basic Principles, Guidelines for Designing, Concepts of random variable, probability, density function,cumulative distribution function. Concept of confidence level. Statistical Distributions: Normal, Log Normal &Weibull distributions. Hypothesis testing, Probability plots.

2. Screening Design:

Introduction, Terminology: factors, levels, interactions, treatment combination, Orthogonal array, PB design, analysis of PD design, Numericals. **05 Hours**

3.Full Factorial Design:

Basic Definitions and Principles, The Advantage of Factorials, The Two-Factor Factorial Design, Statistical Analysis of the Fixed Effects Model, Model Adequacy Checking, Estimating the Model Parameters, Concept of the General Factorial Design, 2^k Factorial Design, The 2²Design, The 2³ Design, The General 2^k Design. **07 Hours**

4. Response surface methods:

Introduction, Central composite design, Box Behnken design, importance of counter and surface plots. 05 Hours

Unit II

5. R Programming Basics:

Overview of R programming, Environment setup with R Studio, R Commands, Variables and Data Types, Control Structures, Vectors, Factors, Functions, Matrices, Arrays and Lists. **06 Hours**

6. Interfacing:

Interfacing R to other languages, Parallel R, Basic Statistics: Linear Model, Generalized Linear models, Non-linear models, Time Series, Autocorrelation and Clustering. **05 Hours**

Unit III

7. Introduction to Bioconductor for Sequence Data:

04 Hours

Sequencing Resources, Ranges Infrastructure, DNA /amino acid sequence from FASTA files, Reads from FASTQ files, Aligned Reads from BAM files, Called Variants from VCF files, Genome Annotations from BED, WIG, GTF files. **04 Hours**

8. Biological Data Analysis:

Preparing count matrices, The DESeq, DataSet, sample information, and formula design, exploratory analysis and visualization, Differential expression analysis, Plotting results, Annotating and exporting results **04 Hours**

Text Books:

1. R for Everyone: Advanced Analytics and Graphics: b y Jared P. Lander Addison Wesley Data & Analytics Series, 2013.

2. Design and analysis of experiments" by D.C. Montgomery, 7th edition John Wiley and sons, NewYork

Reference Books:

1. A Little Book of R for Bioinformatics: by Avril Coghlan, Release 0.1

2. Das. M.M. and Giri N.C. : - Design and Analysis of Experiments

Program: Biotechnology				
Course Title: Nano Biotechnology Course Code: 17EBTE401				
L-T-P: 3-0-0	Credits: 3.0	Contact Hours: 03 Hours/Week		
CIE Marks: 50	SEE Marks: 50	Total Marks: 100		
Teaching Hours: 40	Examination Duration: 03 Hours			

Unit I

1. Introduction to Nanobiotechnology

Historical background, nature, scope and content of the subject, multidisciplinary aspects, industrial, economic and societal implications of Nanotechnology. Nanolithography, Nanofabrication, Bottom-Up versus Top-Down approaches. **08 Hours**

2. Nanomaterials and Nanostructures

Buckyballs, Nanotubes, Fullerenes, Magnetic systems, Carriers, Dendrimers, Nanoparticles, Membranes & Matrices, Nanoshells, Quantum Dot, Nanocrystals, hybrid biological: inorganic devices, Other Biological Nanostructures **06 Hours**

Unit II

3. Characterization of Nanoparticles and Nonmaterial - I

Optical methods, Electron microscope, Scanning tunneling microscopy, Transmission Electron Microscopy, Atomic force microscopy, XRD, etc. **07 Hours**

4. Characterization of Nanoparticles and Nonmaterial - II *In-vitro* laboratory tests on the interaction of nanoparticles with cells. Assessment of the toxic effects of nanoparticles based on *in-vitro* laboratory tests. Identification of pathogenic organisms by magnetic nanoparticle-based

techniques

07 Hours

Unit III

5. Nanobiology

Biosynthesis of nanoparticles by microbes/plants, self assembly, interaction between biomolecules and nanoparticles, hybrid-nano bio assemblies, nano-probes and nano-devices, Analytical applications. **06 Hours**

6. Applications of Nanobiotechnology

Molecular Nano-machines, Nanobiotechnology and drug discovery and delivery, Nanodiagnotics, Nanorobots, Molecular Motors. Health risks and challenges **06 Hours**

Text Books

- 1. Biological molecules in Nanotechnology by Stephen Lee and Lynn M Savage
- 2. Nanobiotechnology Protocols, Rosenthal, Sandra J and Wright, David W., Humana Press, 2005

Reference Books

- 1. Nanotechnology in biology & medicine by tuan vo-dinh, Taylor Francis.
- 2. Nanotechnology By M. KARKARE (2008), IK Intl. Publishers

Program: Biotechnology			
Course Title: Project Work			Course Code: 15EBTW402
L-T-P: 0-0-14	Credits: 14		Contact Hours: 42 Hours/Week
CIE Marks: 50	SEE Marks: 50		Total Marks: 100
Teaching Hours: NA	Examination Duration: (Hours	03	

Preamble:

The engineering graduate's capstone project is an essential part of the curriculum structure which integrates all the skills acquired during all the theory and laboratory courses addressing Bioprocess Engineering and Molecular Biotechnology verticals. The capstone project work requires exhaustive literature survey to define the problem statement and research objectives. Various optimization strategies help the student to select the best alternative and feasible solution. Capstone project emphasizes on solving real time problems depicting societal benefits and industrial applications. Students gain hands on experience during their capstone Project implementation. Projects also facilitate students to present their work on different platforms likes seminars, national and international conferences. Capstone project help students in their jobs opening and higher studies as well in higher research careers.

Guidelines:

- 1. Project has to be carried out in teams.
- 2. Every team needs to maintain laboratory work book which contains details of all the work carried out in the laboratory.
- 3. Make entries in log books for instrument usage.
- 4. Adhere on timely report submission to the coordinator.
- 5. Provide requisitions hand before for any project work

Review committee:

Review committee is formed by the project coordinator taking into consideration each review committee has faculty experts of all the domains. Review committee consists of the guide of the respective project group also.

Project evaluation:

SI. No	Phase	Marks	Review
1	Definitive Phase	25	Guide/s
2	Final submission	25	Committee
3	SEE	50	External
	TOTAL	100	

Program: Biotechno	logy	
Course Title: Project	Work	Course Code: 20EBTW402
L-T-P: 0-0-11	Credits: 11	Contact Hours: 33 Hours/Week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: NA	Examination Duration: 03 Hours	

Preamble:

The engineering graduate's capstone project is an essential part of the curriculum structure which integrates all the skills acquired during all the theory and laboratory courses addressing Bioprocess Engineering and Molecular Biotechnology verticals. The capstone project work requires exhaustive literature survey to define the problem statement and research objectives. Various optimization strategies help the student to select the best alternative and feasible solution. Capstone project emphasizes on solving real time problems depicting societal benefits and industrial applications. Students gain hands on experience during their capstone Project implementation. Projects also facilitate students to present their work on different platforms likes seminars, national and international conferences. Capstone project help students in their jobs opening and higher studies as well in higher research careers.

Guidelines:

- 6. Project has to be carried out in teams.
- 7. Every team needs to maintain laboratory work book which contains details of all the work carried out in the laboratory.
- 8. Make entries in log books for instrument usage.
- 9. Adhere on timely report submission to the coordinator.
- 10. Provide requisitions hand before for any project work

Review committee:

Review committee is formed by the project coordinator taking into consideration each review committee has faculty experts of all the domains. Review committee consists of the guide of the respective project group also.

Project evaluation:

SI. No	Phase	Marks	Review
1	Definitive Phase	25	Guide/s
2	Final submission	25	Committee
3	ESA	50	External
	TOTAL	100	

KLE TECH. KLE Technological Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Cont	ent- Course wise	Page 1
		Year: 2015-2016

CURRICULUM SCHEME & SYLLABUS OF 2015-2020 BATCH I Semester - II Semester

(Year of introduction-2015, Faculty-A, Architecture-AT, Core course-C, Humanities-H, Lab-L, Elective-E, Internship-I, Practice-P, W-Project)

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Cont	ent- Course wise	Page 2
		Year: 2015-2016

B. Arch. Semester I (2015-20)

No	Code	Course	Category	L-S-P	Credi t	Contact Hours	ISA	ESA	Total	Exam Duration
1	15AATC101	Architectural Design – I	Design	2-3-0	5	6	70	30	100	NA
2	15AATC102	Building Const & Materials – I	Construction	1-3-0	4	6	70	30	100	NA
3	15AATC103	Graphics – I	Communication	1-3-0	4	6	70	30	100	NA
4	15AATC104	Visual Art & Basic Design	Design	2-1-0	3	4	70	30	100	NA
5	15AATC105	Architecture & Culture	Design	0-1-0	1	2	70	30	100	NA
6	15AATC106	Skill Development Workshop I	Design	2-0-0	2	2	70	30	100	NA
7	15AATC107	Structures – I	Construction	3-0-0	3	3	50	50	100	3 HOURS
8	15AATH101	Constitution law	Profession	0-0-0	Audit	1	50	50	100	3 HOURS
		TOTAL		11-11-0	22	30	520	280	800	

ISA :Internal Semester Assessment , ESA : End Semester Assessment , P : Practical, S : Studio , L : Lecture,

Credit	Lecture Hours	Studio Hours	Practical Hours
1	1	1.5	2

Program Head

Signature of Dean (Academic Affairs)

KLE TECH. KLE Technological Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Cont	ent- Course wise	Page 3
		Year: 2015-2016

B. Arch. Semester II (2015-20)

No	Code	Course	Category	L-S-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	15AATC108	Architectural Design – II	Design	1-4-0	5	7	70	30	100	NA
2	15AATC109	Building Const & Materials – II	Construction	1-3-0	4	6	70	30	100	NA
3	15AATC110	Graphics – II	Communication	0-3-0	3	5	70	30	100	NA
4	15AATC111	Measure Drawing	Design	0-2-0	2	4	70	30	100	NA
5	15AATC112	History of Architecture I	Design	2-0-0	2	2	70	30	100	NA
6	15AATC113	Skill Development Workshop II	Design	0-1-0	1	2	70	30	100	NA
7	15AATC114	Structures – II	Construction	3-0-0	3	3	50	50	100	3 HOURS
8	15AATP101	Surveying	Construction	2-0-0	2	2	50	50	100	3 HOURS
		TOTAL		9-13-0	22	31	520	280	800	

ISA :Internal Semester Assessment , ESA : End Semester Assessment , P : Practical, S : Studio , L : Lecture,

Credit	Lecture Hours	Studio Hours	Practical Hours
1	1	1.5	2

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Cont	ent- Course wise	Page 4
		Year: 2015-2016

I SEMESTER

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Cont	ent- Course wise	Page 5
		Year: 2015-2016

Program : Architecture						
Course Title: ARCHITECTURAL DES	IGN - I	Course Code: 15AATC101				
L-S-P: 2-3-0	Credits: 5	Contact Hours: 6				
ISA : 70	ESA: 30	Total Marks: 100				
Teaching Hours: 96	Examination Duration: NA					
UNIT I: Introduction to Human propo	rtions, Anthropometry and space star	ndards				
 Detailed study of spaces requirements with respect to single unit dwellings such as living, dining, bedrooms, kitchen, toilet etc. minimum standards for movements and vehicular data expression of design using the following. Spatial perception of spaces Study of anthropometrics Circulation Forms and integrity Space planning 						
UNIT II: Introduction to Space maki	na elements					
Defining the core space making ele importance in designing spaces of vario its role in space creation.	ments like wall, openings, column, fl ous needs. Measuring and plotting existi	loors, roofs, stairs etc. its usage and ing buildings to understand element and				
UNIT III: Designing a multi room space).					
 Designing and organizing spaces of various purposes with respect to movement, circulation, furniture layout, aesthetical relation of traditions, culture etc. expression of creativity in form making The design issues to be addressed are Various basic human functions and their spatial implications Formulation of concepts Anthropometry and furniture layout 						
Movement and circulation diagr	am					
Interior volumes and space articulation through different materials.						
 Integration of form and function. Study models 						
The design projects could be, my dream house, guest house, farm house, tree house, cottage, etc.						
Text Books:NIL						
Reference Books: Ching, Francis DK, <i>J</i> York, 1999	Reference Books: Ching, Francis DK, Architecture: Form, Space and Order, 2nd ed. Van Nostrand Reinhold, New York, 1999					

Scheme for End Semester Examination (ESA) Evaluation of Portfolio, assignments by internal and external examiners / Viva.

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Cont	ent- Course wise	Page 6
		Year: 2015-2016

Program : Architecture					
Course Title: BUILDING CONSTRUCT	FION & MATERIALS - I	Course Code: 15AATC102			
L-S-P: 1-3-0	Credits: 4	Contact Hours: 6			
ISA: 70	ESA Marks: 30	Total Marks: 100			
Teaching Hours: 96	Examination Duration: NA				
UNIT I: Introduction to various building compo and elevations for different construct masonry and carpentry work. Brick Construction – Types of brick mas	nents and their function, various convertion materials. Introduction to various sonry walls including bonds, pilasters, lint	itions used for drawing in plan, section tools commonly used for excavation, els and arches.			
UNIT II:					
Stone construction – Types of walls incl Foundation – Types and behavior of so brick and stone. Plinth formation, coping	uding bonds, lintels and arches. ils. Functions and types of foundations, f g and damp proof course (DPC).	oundations for load bearing structure in			
UNIT III:					
Bricks and Clay products – Types, prop	perties, uses and manufacturing process	in brief.			
Stones – Types, properties and uses, m	nethods of quarrying in brief				
Lime – Varieties, properties and uses in	construction				
Cement – Types, properties, uses, field	tests.				
Sand – Availability, properties					
Aggregate – Sources and types					
Mortar – Preparation and application					
Blocks – Hollow and solid blocks in con-	crete, adobe (stabilized mud) blocks.				
 Reference Books: McKay J.K Building Construction Metric Vol 1-4, 4th edi Orient Longman Pvt. Ltd, Mumbai,2002 "Construction Technology" volume-I by R Chudley, ELBS & Longman group Ltd. Barry R, "The construction of buildings", Vol-2, 5th Edi, East West Press, New Delhi 1999. Bindra S.P and Arora S.P, Building Construction-Planning Techniques and Method of Construction, 19th edi, Dhanpat Rai Pub ,NewDelhi, 2000 "Building Construction" by Janardhan Jha, Khanna New-Delhi. Rangawal S.C, "Building Construction" 22nd Edi, charotar Publishing house, Anand, 2004 "Building Materials" by S K Duggal, IBH New Delhi. Sushil Kumar T.B of Building Construction 19th edi, Standard Pub House, NewDelhi, 2003. 					
Text Books:NIL					

Evaluation of Portfolio, assignments by internal and external examiners / Viva

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Cont	ent- Course wise	Page 7
		Year: 2015-2016

Program : Architecture		
Course Title: GRAPHICS - I		Course Code: 15AATC103
L-S-P: 1-3-0	Credits: 4	Contact Hours: 6
ISA: 70	ESA: 30	Total Marks: 100
Teaching Hours: 96	Examination Duration: NA	

UNIT I:

1: Introduction to the basic principles of drawing

Introduction to the basic principles of drawing, introduction to drawing equipments and their uses, sign conventions, Lettering and Dimensioning, Architectural Scale

2: Plane geometry – Lines, Angles, Curves and regular Polygons

Construction of triangles, quadrilaterals, curves and regular polygons

3: Solid Geometry – Points and Lines

Introduction to solid geometry, Orthographic projections of points and lines

4: Solid Geometry – Planes and Solids

Problems on Orthographic projections of planes and solids

UNIT II:

5: Three Dimensional Representation – Oblique, Axonometric & Isometric

Problems on Oblique, axonometric & Isometric projection of solids

6: Technical drawing

Simple floor plans, elevation, sections, of simple building.

UNIT III:

7: Architectural Detailing

Reading and representing building components details such as door frames fixing, chejja, plinth formation, steel joinery etc.

Text Books:

- I. Bhat N.D. and Panchal V.M, Engineering Drawing, Plane and solid geometry, Charotar Publishing house, Anand 2002.
- II. Francis D.K. Ching, Architectural Graphics, 4th Edition, John Wiley & Son, New York

References:

- III. I H Morris, Geometrical Drawing for Art students.
- IV. K R Gopalkrishna, Engineering Drawing Vol I & II combined edition, Bangalore, 2001,
- V. K. Venugopal, "Engineering Drawing and Graphics" New Age *i.* International (P) Ltd, New Delhi 2001.
- VI. Francis D.K. Ching, Design Drawing, 4th Edition, John Wiley & Son, New York

Scheme for End Semester Assessment (ESA)

Evaluation of Portfolio of Term Work and tests.

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise		Page 8
		Year: 2015-2016

Program : Architecture			
Course Title: Visual Art & Basic Design		Course Code: 15AATC104	
L-S-P: 2-1-0	Credits: 3	Contact Hours: 4	
ISA: 70	ESA: 30	Total Marks: 100	
Teaching Hours: 64	Examination Duration: NA		
ISA :Internal Semester Assessment,	ESA : End Semester Assessment		
UNIT I:			
1. FREE HAND AND OBJECTS various drawing and sketching	DRAWING : Observation and recordir tools like pencil, pen, charcoal crayons e	ng through free hand drawing by using ttc.	
 ARCHITECTURAL SKETCHING: Drawing of human figures, vehicles, small buildings, furniture, simple and complex geometrical objects with an emphasis on the perception of details and expressing them in lines, colour texture etc. 			
3. PAINTING : Understanding of colour wheel, components , types of colour, colour schemes, value and intensity by using painting tools and materials like brushes, paper, water color, poster colour etc.			
UNIT II:			
 Elements of Visual Composition: Understanding role of the following basic elements of visual design existing in paintings, compositions, murals, sculptures, building and in a nature – Dots, Lines, Planes, Patterns, Shapes, Forms, Spaces, Colour, Texture, Levels, Light, Fenestration's. Study of Textures and Textures Schemes 			
 Principles of Visual Compositions : Understanding and using principles like Repetition, Rhythm, Radiation, Focal point, Symmetry, Asymmetry, Background, Foreground, Sense of Direction, Harmony, Balance and Proportion. 			
 SCULPTURE: Creating and carving sculpture, understanding the different media used for sculpture like plaster of paris, clav, wire, wax etc. 			
7. EXPLORATION OF ART FORMS - study of traditional and contemporary art forms, relation between art and architecture from earliest times to present.			
Reference Books:			
Robert Gill : Rendering with pen & ink ,	Thames & Hudson New York 1984		
Robert Gill : Basic Rende	ring ,Thames & Hudson New York 1991		
John Chen : Architecture in pen & ink, McGraw-Hill Inc- USA 1995			
Colin Saxton : Art School, Chartwell Books Inc New Jersy.			

Evaluation of Portfolio, assignments by internal and external examiners

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise		Page 9
		Year: 2015-2016

Program : Architecture			
Course Title: Architecture and Culture		Course Code: 15AATC105	
L-S-P: 0-1-0 Credits: 1		Contact Hours: 2	
ISA: 70	ESA: 30	Total Marks: 100	
Teaching Hours: 32	Examination Duration: NA		
UNIT I:			
Introduction to Culture- Releva CULTURAL INFLUENCES IN A	nce & influence of Culture on Architecture. NCIENT INDIA		
Indus valley civilization Town	-planning in Mohenjo-Daro -Tree & moth	her goddess worship . Harappa and	
lothal –the great bath, the grea	t granary – sumps, manholes, underground	d drainage etc	
Symbolism in early Buddhist ar	chitecture in India – Stupas at Sanchi and	Amaravati	
Symbolism in Tibetan Buddh	ism manifestation in the architecture of i	monasteries (gompa) and palaces –	
Potala palace, Palpung monasi	tery		
TRADITIONAL ART &ARCHIT	TRADITIONAL ART & ARCHITECTURE OF WEST COAST, OF INDIA		
Salient features of the house -			
Elevation -			
Roof wood frame details			
Contemporary expressions			
UNIT III:			
TRADITIONAL ART & ARCHITECTURE OF KARNATAKA			
Salient features of the house –			
Elevation -			
Roof wood frame details			
Contemporary expressions			
Reference Books:			
1. A.Thampuran "Study of Arcl	nitecture Forms in Malabar coast" Wilev an	id sons Inc	
2. George Mitchell - Temple to	wns of Tamilnadu- Marg publications Bom	bay 1993 .	
3.Raj Rewal, etal – Architecture in India – Ministere des relations exteriieres , frances			
Schome for End Semester Assessm	ant (ESA)		

The evaluation of portfolio worked during the course by internal and external examiners.

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise		Page 10
		Year: 2015-2016

Program : Architecture			
Course Title: SKILL DEVELOPMENT WORKSHOP – I		Course Code: 15AATC106	
L-S-P: 2-0-0	Credits: 2	Contact Hours: 2	
ISA: 70	ESA: 30	Total Marks: 100	
Teaching Hours: 32	Examination Duration: NA		
UNIT I:		l	
Allied skills for Architecture			
Introduction to Basics of the following a	ssociated skills to enhance and understa	and spatial, scale, material, and	
aesthetical requirements of design, con	struction and presentation.		
Model making			
Wood working			
Murals and sculpting (Using Metal, Wood, Clay & POP)			
UNIT II:			
Tools and materials			
Hands-on working of advance model making and working tools. Various types of materials used for making scaled			
models, sculpting etc. (Paper, card sheet, mount board Art card, foam, metal, plaster, clay, wax glass etc.)			
Methods of cutting, joining, texture deve	elopment, glue welding and joinery		
UNIT III:			
Reusing and Recycling			
Designing, remoulding and producing useful products from waste materials. Various Methods of working and handling			
trash. Adding aesthetical, artistic and product value to used and waste materials or byproducts.			
Text Books: NIL			
Reference Books: NIL			

Checking of Models and products by external and internal exam

KLE TECH. Creating Value FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise	Page 11
	Year: 2015-2016

Program : Architecture			
Cours	e Title: Structure-I		Course Code: 15AATC107
L-S-P:	3-0-0	Credits: 3	Contact Hours: 3
ISA: 5	0	ESA: 50	Total Marks: 100
Teach	ing Hours: 48	Examination Duration: 3 HOURS	
 UNIT I: Evolution of Structures: Historical perspective and definition of structure as a device for channeling loads that result from the use or presence of the building in relation to ground. Structural systems and its elements overview: Vertical/lateral systems: wall, cantilever, moment frame, braced frame, horizontal one-way and two-way systems: truss, arch, vault, dome, shell, cable stayed, suspended, membrane. 			
 Experiment with Structures: Example-1: Build a structure using drawing sheet paper having three and four supports to carry a weight of 2 to 3 kg on it. Example-2: Make a column of height 30mm to carry a weight of 3kg. Example-3: Build a beam of span 450mm simply supported to carry a weight of 1kg at mid span. Basic structural Materials: Qualities of building materials Mechanical properties of Structural materials: wood, masonry, steel, concrete, fabric; energy use and rupture length. Advantages and disadvantages of Structural Materials and choice of Structural Material for domestic buildings, Industrial buildings, Tall buildings 			

- 5. Loads on Structures: Dead load (DL), live load (LL), static, dynamic, impact, and thermal loads. Principle of transmissibility of forces. Understanding load flow by tributary load and load path (slab, beam, and girder) and vertical members (post, wall, and footing); load path.
- 6. **Sectional properties:** Centroid, difference between centroid and centre of gravity, role of symmetry in locating centroid, moment of inertia, obtaining moment of inertia of unsymmetrical by applying parallel and perpendicular axis theorems.

UNIT II

- 7. **Equilibrium of Forces:** Force, characteristics of a force, Reaction, Moment of a force and Principle of Support conditions and their significance in resistance to forces and to maintain equilibrium.
- 8. **Basic principles of mechanics:** Tension, compression, shear, bending, torsion; symbols and notations; force and stress.
- 9. **Stress/strain relations (Hooke's Law):** Material response to applied loads, intensity of stress, strain and types. Stress strain diagrams for major building materials, Modulus of Elasticity, linear and non-linear materials, elastic, plastic, and elastic-plastic materials; Poisson's Ratio; Thermal stress and strain.
- 10. **Graphic vector analysis:** Resultant and equilibrant of coplanar, concurrent and non-concurrent force systems. Parallelogram, force polygon, resultant, equilibrant, components; numeric method.

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise		Page 12
		Year: 2015-2016

UNIT III

- 11. Truss: Truss concept of triangulation, common truss configurations, innovative forms for truss of given span.
- 12. **Truss loads and reactions**: For a given configuration of the trusses and center to center spacing, calculations of the dead weight of the truss and the dead weight of the roof cover and support reaction loads analysis of simple trusses by method of joints..

Text Books:Engg Mechanics by S.S.Bhavikatti III-edition .Vikas publications New Delhi.

Reference Books:

REFERENCES:

 STRUCTURES - Martin Bechthold, Daniel L Schodek, and PHI Learning Private limited, Sixth Edition 2) Structure in Architecture, the building of buildings, by Mario Salvadori 3) Structure and Design, by G. G. Schierle 4) Engg Mechanics – R K Bansal & Sanjay Bansal, Laxmi publications, New Delhi, 3rd ed 5) Engg Mechanics, Ferdinand L Singer, Harper Collins publications, 3rd ed.

Scheme for Semester End Examination (ESA)

SI.No	8 Questions to be set of 20 Marks Each	Chapter Number	Instructions
1	Q.No1, Q.No2, Q.No3	1,2,3,4,5	Solve Any 2 out of 3
II	Q.No4, Q.NO – 5 Q.No6,	6,7,8,9	Solve Any 2 out of 3
111	Q.No7, Q.No8	10,11	Solve Any 1 out of 2

KLE TECH. KLE TECH. Document Creating Value #: Leveraging Knowledge FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise	Page 13
	Year: 2015-2016

Program : Architecture			
Course Title: CONSTITUTIONAL LAW Course Code: 15AATH		Course Code: 15AATH101	
L-S-P: 1-0-0	Credits: 0	Contact Hours: 1	
ISA: 50	ESA: 50	Total Marks: 100	
Teaching Hours: 16	Examination Duration: 3 HOURS		
 UNIT I: Preamble to the Constitution of India Evolution of Constitutional Law. Scope and extent of fundamental rights under part-III Details of exercises of rights, Limitations and important cases Relevance of Directive principals of State Policy under part IV. Significance of Eundamental duties under part IV (a) 			
 UNIT II: Union Executive-President, Vice President, Prime Minister, Council of Ministers, Parliament and Supreme Court of India State Executive-Governor, Chief Minister, Council of Ministers, Legislature and High Courts. Functions of Panchayats, Muncipalities and Corporations. Constitutional Provisions for scheduled castes and tribes, women and children and backward classes. 			
 UNIT III: Emergency provisions. 42nd, 44th, 86th Constitutional amendments and Amendment procedure under Article 368. Electoral Process Text Books:			
1. "Introduction to the Co	nstitution of India" by Durga Das Basu 2	004	
Reference Books: 1. "An Introduction to Cor 2. "Constitution of India" -	nstitution of India" by Pylee - by VN Shukla		

Scheme for Semester End Examination (ESA)

Sl.No	8 Questions to be set of 20 Marks Each	Chapter Number	Instructions
Ι	Q.No1, Q.No2, Q.No3	1	Solve Any 2 out of 3
II	Q.No4, Q.NO – 5 Q.No6,	2	Solve Any 2 out of 3
III	Q.No7, Q.No8	3	Solve Any 1 out of 2

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Cont	ent- Course wise	Page 14
		Year: 2015-2016

II SEMESTER

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Cont	ent- Course wise	Page 15
		Year: 2015-2016

Program : Architecture			
Course Title: ARCHITECTURAL DESIGN – II Course Code: 15AATC108			
L-S-P: 1-4-0	Credits: 5	Contact Hours: 7	
ISA: 70	ESA: 30	Total Marks: 100	
Teaching Hours: 112	Examination Duration: NA		

UNIT I:

1. Introduction to Design theory

- Principles of architectural composition:
- General principles like unity, Balance, Proportion, Scale, Contrast, Harmony, Accentuation, and Restraint. Repose, Vitality, Strength in the built environment
- Underlying Ordering Principles Symmetry, hierarchy, datum, axis, scale and proportion rhythm in the built environment.

UNIT II

1. Introduction Multiuser/ public spaces

Defining and understanding various design aspects needed for multi /semipublic/public user spaces.

UNIT III:

Designing a multi user multi level room space.

To develop skills for comprehensive understanding and dealing with Architecture Provide skills for designing multi-user and multi level spaces.

The design issues to be addressed are

- Multi user and multi level space formation
- Integration of material and form.
- Integrate the horizontal and vertical circulation.
- Develop skills to correlate the materials and the resulting form.
- Details pertaining to the disabled, aged people and children.

The tentative list of suggested projects to be covered as design problems: Architectural Exhibition / display spaces Multi level museum, academic spaces, kindergarten school, Recreational spaces fast food/ restaurant

Text Books:NIL

Reference Books:

- 1. Bernard Rudofsky, *Architecture without Architects* .a short introduction to Non-Pedigreed Architecture. Academy Edition London
- 2. Francis D K Ching, Form Space and Order
- 3. J.M.Zunde , Design Procedures level 4
- 4. Mike Dartion, The illustrated Book of Architect & Architecture

Scheme for End Semester Assessment (ESA) Evaluation of Portfolio, assignments by internal and external

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Cont	ent- Course wise	Page 16
		Year: 2015-2016

Program : Architecture	Program : Architecture				
Course Title: BUILDING CONSTRUCTION & MATERIALS - II		Course Code: 15AATC109			
L-S-P: 1-3-0	Credits: 4	Contact Hours: 6			
ISA: 70	ESA: 30	Total Marks: 100			
Teaching Hours: 96	Examination Duration: NA				
UNIT I:					
Construction: Introduction to Doors:					
Study of various types of timber doors door, partly glazed & Partly Paneled do	s viz, Ledged & Battened, Ledged, Batter por, Flush doors	ned & Braced door, Framed & Paneled			
Materials : Timber, Commercial wood					
UNIT II:					
Introduction to Windows:					
Study of various types of glazed timbe	r windows viz, Casement window, Corner	window, Bay window			
Introduction to Roofs:					
Study of conventional timber roofs for Queen Posts.	moderate spans: Flat roof, Lean to roof, (Couple roof, Collar beam roof, King and			
Introduction and study of:					
Bamboo, Cane, Thatch, Roofing mater	rials, paints for interior and exterior.				
Reference Books:					
I. McKay J.K Building Const	ruction Metric Vol 1-4, 4 th edi Orient Long	man Pvt. Ltd, Mumbai,2002			
II. "Construction Technology"	volume-I by R Chudley, ELBS & Longma	an group Ltd.			
III. Barry R, "The construction of buildings", Vol-2, 5 th Edi, East West Press, New Delhi 1999.					
IV. Bindra S.P and Arora S.P, Building Construction-Planning Techniques and Method of Construction, 19 th					
edi, Dhanpat Rai Pub ,NewDelhi, 2000					
v. Kangawai S.C., Building Construction 22 ²⁷ Edi, charotar Publishing house, Ahand, 2004 Building Materials" by S.K. Duggal, IBH New Delbi					
Sushil Kumar T.B of Buildi	ing Construction 19 th edi, Standard Pub H	ouse. NewDelhi. 2003.			
Text Books: NIL					

Evaluation of Portfolio, assignments by internal and external examiners / Viva

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Conte	Page 17	
		Year: 2015-2016

Program : Architecture				
Course Title: GRAPHICS - II	Course Code: 15AATC110			
L-S-P: 0-3-0	Credits: 3	Contact Hours: 5		
ISA: 70	ESA: 30	Total Marks: 100		
Teaching Hours: 80	Examination Duration: NA			
UNIT I:				
 Section of Solids - section of Perspective View- Parallel - Principles and visual effe Study of picture plane, so their resultant effects. 	f simple and composite objects. and Angular perspective projection cts of three dimensional objects tation point, vanishing point, eye level, gr	round level etc., their variation and		
UNIT II:				
 Perspective view drawings of simple geometrical forms by office method and by measuring point method. Sciography - Introduction of basic principles of sciography and its application to the field of architecture. Sciography of line and plane in plan and elevation. Sciography of three dimensional objects in perspective views. 				
 UNIT III: Perspective drawing including (one point & two point) of building exteriors including rendering. Perspective drawing including (one point & two point) of building interiors including rendering. 				
Text Books: NIL				
Reference Books: I. Perspective Drawing, Shah Patki Kale II. Geometrical Drawing for Art students, I H Morris, III. Engineering Drawing, Prof, VeeEss, MSRIT, V.K.Publishers, BNG-10,1990 IV. Basic Perspective" by Robert Gill, Rendering with Pen & Ink by Robert Gill. V. "Perspective and Sciography" by S.H.Mullik. VI. Perspective for Interior Desingners by John Pile. VII. Applied perspective by John Holmes. VIII. Building Drawing by M.G.Shah, C.M.Kale & S.Y.Patki				

Scheme for End Semester Assessment (ESA) Evaluation of Portfolio of Term Work and tests.

KLE TECH. KLE Technological Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Cont	Page 18	
		Year: 2015-2016

Program : Architecture				
Course Title: MEASURE DRAWING	Course Code: 15AATC111			
L-S-P: 0-2-0	Credits: 2	Contact Hours: 4		
ISA: 70	ESA: 30	Total Marks: 100		
Teaching Hours: 64	Examination Duration: NA			
The students can study any buildings and document, measured drawing to be prepared. The site visits/documentation could be carried out during vacation, weekends. The assignment may be given as group work. UNIT I: Detailed plans with all measurements to be compiled and submitted including site plan. The report comprising of historic evolution, climatic influence, construction techniques, materials applications to be prepared along with drawings				
UNIT II: Detailed sectional drawings, elevation drawings along with details of individual elements to be submitted. Study the construction techniques				
Digital documentation in the form of pho	otography, videography & analysis of the	entire project.		
Note – Two minor assignments covering the above topics in the form of drawings, reports, reviews at important stages, shall be for CIE.				
A final submission covering all topics shall be for SEE along with a final portfolio of the drawings and report of the building /study area.				
Text Books:				
NIL				
Reference Books:				
NIL				

Evaluation of Portfolio, assignments by internal and external examiners.

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Cont	ent- Course wise	Page 19
		Year: 2015-2016

Program : Architecture				
Course Title: HISTORY OF ARCHITECTURE - I Course Code: 15AATC112				
L-S-P: 2-0-0	Credits: 2	Contact Hours: 2		
ISA: 50	ESA: 50	Total Marks: 100		
Teaching Hours: 32	Examination Duration:3 HOURS			
UNIT I:				
Pre-classical – Persian, Mycenean, E	truscan			
The Palace of Persepolis, The Palace T	iryns , The Temple of Juno Sospita, Lanu	vium.		
Greek Architecture				
Orders of Greek, The Acropolis: Athens	, Parthenon, Theatres and Temples			
UNIT II:				
Roman Architecture				
Colosseum, Pantheon, Forums, Temple	es, Theatres and Amphitheaters, Aqueduct	S		
Early Christian Architecture & Byzantine Architecture				
Basilica church , Evolution of Churches, Hagia Sophia				
UNIT III: Romanesque Architecture				
New Construction Methods, Pisa Cathedral, The Abbey Church, Cluny Gothic Architecture				
Cathedrals, Gothic Churches with construction of pointed arch, Rose windows, etc				
Text Books: NIL				
Reference Books:				
I.Sir Banister Fletcher - History of Architecture				
II.Henri Stierlin - Architecture of the World – Greece				
III.Henri Stierlin - Architecture of the World – The Roman Empire				
IV.Henri Stierlin - Architecture of the World – Romanesque				
Scheme for End Semester Examination (ESA)				

Evaluation of Portfolio, assignments by internal and external examiners.

KLE TECH. KLE TECH.	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Cont	ent- Course wise	Page 20
		Year: 2015-2016

Program : Architecture								
Course Title: SKILL DEVELOPMENT	Course Code: 15AATC113							
L-S-P: 0-1-0	Credits: 1	Contact Hours: 2						
ISA: 70	ESA: 30	Total Marks: 100						
Teaching Hours: 32	Examination Duration: NA							
UNIT I: Interior Detailed Model Makin	ng							
Introduction to materials and scaled tex following materials :	tures development to be used in interior	detailed modeling. Using some of the						
Paper, Card Board & Paper ma	ash							
Soap								
Wood								
POP	• POP							
Acrylic Sheet / Foam Sheet								
UNIT II: Graphic Design								
Introduction to Theory of Graphic Desig	n & Composition Design							
Understanding of Different print medias	, fonts & paper types.							
UNIT III:								
Tapestry Design:								
Hands on workshop to produce tapestr	y products using the following materials							
• Glass								
• Wood								
• Clay								
Metal								
• Sand								
Text Books: NIL								
Reference Books: NIL								

Scheme for Semester End Examination (ESA)

Evaluation of Models and products by external and internal examiners.

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Cont	Page 21	
	Year: 2015-2016	

Program : Architecture						
Course Title: STRUCTURES - II		Course Code: 15AATC114				
L-S-P: 3-0-0	Credits: 3	Contact Hours: 3				
ISA: 50	ESA: 50	Total Marks: 100				
Teaching Hours: 48	ExaminationDuration:3 HOURS					
	Unit I					
1. Determinate and indeterminate implication of indeterminacy, ob	ate structures: Difference between determ taining the redundancy of beams and frame	inate and indeterminate structures, es.				
 Bending moment and shear f concentrated load, uniformly of BMD for simple cases of cantil for two and three span continuo Stresses in beams: Concept resistance, obtaining bending the symmetrical and unsymmetrical 	orce: Concept of shear force and bending r listributed load, uniformly varying load and ever and simply supported beams. Bending bus beams. of pure or simple bending, bending equatic stress distribution for simple cases of beam rical beam cross sections.	noment, types of beams, concept of d couple. Construction of SFD and moment and shear force diagrams on, section modulus and moment of ns. Shear stress distribution across				
	Unit II					
 Deflection of beams: Relatideflection equation, obtaining states formulae. 	on between deflection, bending moment, lope and deflections for cantilever and simp	shear force and rate of loading, bly supported beams using standard				
 Torsion in structures: Conc system. 	5. Torsion in structures: Concept of torsion, torsion equation, elements subjected to torsion in structural system.					
6. Columns and struts: short and long columns, buckling of column, boundary conditions for columns, effective length, slenderness ratio and critical load. Euler's and Rankine's theories.						
	Unit III					
 Design of compression members: Design of steel posts using IS:800-1984, Design of short RC column by using IS: 456-2000 and SP-16. Design of RC columns experiencing axial load and uniaxial bending, using SP – 16. 						
REFERENCES:						
 STRUCTURES - Martin Bech Structure in Architecture, the 	thold, Daniel L Schodek, and PHI Learnii building of buildings, by Mario Salvadori 3	ng Private limited, Sixth Edition 2) 3) Structure and Design, by G. G.				

Schierle 4) Engg Mechanics – R K Bansal & Sanjay Bansal, Laxmi publications, New Delhi, 3rd ed

Scheme for Semester End Examination (ESA)

SI.No	8 Questions to be set of 20 Marks Each	Chapter Number	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2,3,4,5	Solve Any 2 out of 3
II	Q.No4, Q.NO – 5 Q.No6,	6,7,8,9	Solve Any 2 out of 3
III	Q.No7, Q.No8	10,11	Solve Any 1 out of 2

Q	KLE Technological University
KLE TECH.	Creating Value Leveraging Knowledge

Title: Curriculum Content- Course wise

Year: 2015-2016

Program : Architecture						
Course Title: SURVEYING Course Code: 15AATP101						
L-S-P: 2-0-0	Credits: 02	Contact Hours: 02				
CIE Marks: 50	SEE Marks: 50	Total Marks: 100				
Teaching Hours: 32	Examination Duration: 3 HOURS					

UNIT I:

1. Surveying- definition, scope of surveying, applications of surveying in architecture projects, principles, classification and character of work. Shrunken scale. Direct and reciprocal ranging, offsets types. Basic problems in chaining, well-conditioned triangle and chain triangulation. Errors in chain surveying.

2. Principles of plane table surveying, accessories and methods of plain tabling. Merits and demerits of plane table survey as compared to chain survey.

UNIT II:

3. Levelling, terms used, instruments, classification of leveling, Temporary adjustments of dumpy level. Plane of collimation and rise and fall methods. Booking and reduction of levels related numerical on the topics. and errors in levelling.

4.Introduction to contouring, definitions contour interval, factors affecting contour interval. Characteristics of contours, location of contours, direct and indirect methods of contouring, interpolation of contours. Application of contour maps in architecture field.

UNIT III:

5. Introduction to Theodolite temporary adjustments and field work.

6. Introduction to Geographical Information systems and Total station.

Text Books:

- B.C. Punmia, Surveying and Levelling, Vol-IChirator Publications.
- Kanetkar T. P. and Kulkarni S.V, Surveying and Levelling Part-

Reference Books:

• Duggal, Surveying and Levelling. Vol-I

Scheme for End Semester Assessment (ESA)

SI.No	8 Questions to be set of 20 Marks Each	Chapter Number	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2,3,4,5	Solve Any 2 out of 3
II	Q.No4, Q.NO – 5 Q.No6,	6,7,8,9	Solve Any 2 out of 3
III	Q.No7, Q.No8	10,11	Solve Any 1 out of 2

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Cou	ırse wise		Page 1 of 35
			Year: 2016-2017

B. Arch. CURRICULUM SCHEME & STRUCTURE OF 2015-2020 BATCH

III Semester - IV Semester

School of Architecture, KLE Technological University. BVBCET Campus, Vidyanagar, Hubli.

(Year of introduction-2015, Faculty-A, Architecture-AT, Core course-C, Humanities-H, Lab-L, Elective-E, internship-I, Practice-P, W-Project)

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0	
Title: Curriculum Content- Course wise			Page 2 of 35	
		Year: 2016-2017		

B. Arch. Semester III 2015-20

No	Code	Course	Category	L-S-P	Credit s	Contact Hours	ISA	ESA	Total	Exam Duration
1	15AATC201	Architectural Design III	Design	1-8-0	6	9	50	50	100	NA
2	15AATC202	Building Const & Materials III	Construction	1-5-0	4	6	50	50	100	NA
3	15AATC203	Services – I (w s & sanitation)	Construction	1-2-0	2	3	50	50	100	2 HOURS
4	15AATC204	Climatology	Design	1-2-0	2	3	50	50	100	NA
5	15AATC205	History of Architecture II	Design	2-0-0	2	2	50	50	100	3 HOURS
6	15AATC206	Structures – III	Construction	3-0-0	3	3	50	50	100	3 HOURS
7	15AATP201	Digital Tool-I	Communication	0-0-2	1	2	50	50	100	NA
8	15AATE201 15AATE202 15AATE203 15AATE204 15AATE205	Elective I Vernacular Architecture Photography. Space, culture & architecture Digital rendering Space Making	Design	2-0-0	2	2	50	50	100	NA
	TOTAL				22	30	400	400	800	

ISA: Continuous Internal Evaluation ESA: Semester End Examination L: Lecture S: Studio P: Practical

Credit	Lecture Hours	Studio Hours	Practical Hours
1	1	1.5	2

Program Head

Signature of Dean (Academic Affairs)

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Cou	Page 3 of 35		
	Year: 2016-2017		

No	Code	Course	Category	L-S-P	Credits	Conta ct Hours	ISA	ESA	Total	Exam Duration
1	15AATC208	Architectural Design IV	Design	1-8-0	6	9	50	50	100	NA
2	15AATC209	Building Const & Materials IV	Construction	1-5-0	4	6	50	50	100	NA
3	15AATC210	Services II (Electricity & Illumination)	Construction	1-2-0	2	3	50	50	100	2 HOURS
4	15AATC211	History of Architecture III	Design	2-0-0	2	2	50	50	100	3 HOURS
5	15AATC212	Theory of Architecture	Design	1-2-0	2	3	50	50	100	3 HOURS
6	15AATC213	Landscape Design	Design	1-2-0	2	3	50	50	100	NA
7	15AATP202	Digital Tool- II	Communication	0-0-2	1	2	50	50	100	NA
8	15AATC214	Structures – IV	Construction	3-0-0	3	3	50	50	100	3 HOURS
TOTAL			10-19- 2	22	31	400	400	800		

B. Arch. Semester IV 2015-20
KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise			Page 4 of 35
			Year: 2016-2017

III SEMESTER

KLE TECH. KLEVERAGING Knowledge	FORM ISO 9001: 2008- KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Cou	Irse wise		Page 5 of 35
			Year: 2016-2017

Program : Architecture			
Course Title: DESIGN STUDIO – III		Course Code: 15AATC201	
L-S-P: 0-8-0	Credits: 6	Contact Hours: 9	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 144	Examination Duration: NA		

Course contents:

To develop skills for comprehensive understanding and dealing with Architecture Provide skills for designing multi-user and multi level spaces.

The design issues to be addressed are

- Multi user and multi level space formation
- Integration of material and form.
- Integrate the horizontal and vertical circulation.
- Develop skills to correlate the materials and the resulting form.
- Details pertaining to the disabled, aged people and children.

The list of suggested spaces to be covered as design problems: Architectural Exhibition / display spaces Multi level Accommodation spaces, higher level academic spaces, multi activity Recreational spaces, Neighbor hood Community spaces, Healthcare Centers etc.

Necessary theoretical inputs to be given highlighting the norms and design issues. At least one major exercise and one minor design/ time problem should be given. The topics covered as design problems will have to be covered by the studio faculty members through lecture/slide show session and site visits.

The Portfolio covering the given topics and the study models shall be presented

The evaluation shall be through periodic internal reviews.

The students have to present the entire semester work for assessment along with Models.

Text Books: NIL

Reference Books:

- 1. Time Saver Standard for Architectural Data by John Hancock.
- 2. Architectural Graphic Standards by Ramsey and Sleeper.
- 3. Magazines and Design related books
- 4. Architecture: Form, Space and Order, Ching, Francis DK
- 5. Design and Form: The basic course at the Bauhaus, Itten, Johannes.
- 6. Elements of space forming, Yatin Pandya.

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU	Document #: FMCD2005	Rev: 1.0
	School of Architecture		
Title: Curriculum Content- Cou	Irse wise		Page 6 of 35
			Year: 2016-2017
7. Architectural Composition, Kerier, Roab 8. Building construction and materials, Rangawala.			

9. Building construction, Choudley.

Scheme for Semester End Examination (ESA)

Checking of Portfolio of Term Work / Viva.

KLE TECH. KLECKER Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU	Document #: FMCD2005	Rev: 1.0
	School of Architecture		
Title: Curriculum Content- Cou	ırse wise		Page 7 of 35
			Year: 2016-2017
			-

Program : Architecture				
Course Title: BUILDING CONSTRUCTION&MATERIALS- III		Course Code: 15AATC202		
L-S-P: 0-6-0	S-P: 0-6-0 Credits: 4			
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 96	Examination Duration: NA			
 UNIT I: RCC FOUNDATION, COLUMNS AND BEAMS SHALLOW FOUNDATION- Types, with reinforcement arrangements for i) isolated ii) combined iii) combined with strap beam iv) eccentric v) raft, etc. DEEP FOUNDATION- Introduction to and study of pile, grouping of piles & pile cap. RCC COLUMNS - Various shapes of columns and types of reinforcement arrangements. BEAMS – Reinforcement arrangement for i) simply supported ii) continuous iii) cantilever iv) brackets. 				
 UNIT II: MATERIALS, FORMWORK, STAIRS REINFORCEMENT - Types, properties & uses of plain, ribbed, twisted, TMT, weld mesh, HT wires etc. CONCRETE- Ingredients, grades of concrete, properties of concrete, proportioning, mixing, transporting, placing, compaction & curing. SPECIAL CONCRETE - RMC, concreting under water, light and heavy weight, dense, etc ADMIXTURES - Admixtures used in concrete to improve quality i.e. i) retarder ii) accelerator iii) plasticizer iv) water proofer v) hardener vi) pigments, etc. FORM-WORK- Purpose of form work in concrete works. Various materials used, precautions to be taken and removal time STAIRS - Introduction to, types & calculation of stairs. Study of stairs in i) stone ii) brick iii) timber iv) steel v) RCC. Construction details for timber, fabricated steel & RCC, including fixing of handrail in various materials 				
 UNIT III: RCC JOINTS IN BUILDING Study, necessity & construction details of construction joint and expansion joints Note – The Portfolio covering the above topics shall be presented for Term work. Site visits shall be arranged by studio teacher. Study of material application shall be submitted in the form notes, sketches and photo brief as a next of next for studio. 				
Text Books:NIL				
Reference Books:	Reference Books:			

McKay J.K Building Construction Metric Vol 1-4, 4th edi Orient Longman Pvt. Ltd, Mumbai,2002

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU	Document #: FMCD2005	Rev: 1.0
	School of Architecture		
Title: Curriculum Content-Cou	ırse wise		Page 8 of 35
			Year: 2016-2017
"Construction Technology" volume-I by R Chudley, ELBS & Longman group Ltd.			

- Barry R, "The construction of buildings", Vol-2, 5th Edi, East West Press, New Delhi 1999.
- Bindra S.P and Arora S.P, Building Construction-Planning Techniques and Method of Construction, 19th edi, Dhanpat Rai Pub ,NewDelhi, 2000
- "Building Construction" by Janardhan Jha, Khanna New-Delhi.
- Rangawal S.C ,"Building Construction" 22nd Edi, charotar Publishing house, Anand, 2004
- "Engineering Materials" by Surendra Singh, Vikas Delhi.
- "Building Materials" by S K Duggal, IBH New Delhi.
- Sushil Kumar T.B of Building Construction 19th edi, Standard Pub House, NewDelhi, 2003.
- Chowdhary K.P. Engineering Materials used in India, 7th Edi, Oxford and IBH Pub Itd New Delhi, 1990.

Building Construction Hand book : By R Chudly & R Greeno, Bullerworth Heinemann, New-Delhi.

Scheme for internal Assessment (ISA): Evaluation of term work regularly and tests conducted Scheme for Semester End Examination (ESA): Evaluation of term work portfolio & Viva

KLE TECH. KLE TECHNOLOgical Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise		Page 9 of 35	
			Year: 2016-2017
Program : Architecture			
Course Title: SERVICES – I (WATER SUPPLY & SANITATION) Course Cod		e: 15AATC203	
L-S-P: 1-2-0 Credits: 2 Contact Hou		ırs: 3	
ISA Marks: 50	ESA Marks: 50 Total Marks:		100

Teaching Hours: 48

1: Sources and purification of water

Surface and underground sources of water supply, pollution and preventive measures.

Purification ----filtration, disinfection, softening, miscellaneous methods of water treatment.

2: Domestic water supply

Water requirement for different types of buildings, pipes, valves, wash basins, sink, bath tubs, flushing cisterns, showers, jets, faucets. Cold and hot water supply for ground and multi-storied buildings. Provision for fire fighting, solar heating systems, geysers.

Examination Duration: 32HOURS

UNIT II:

3: Sanitation

Importance of sanitation, definitions, types of refuse, collection and disposal systems. Rural sanitation. Types of fixtures and materials. Sanitary requirements for various types of buildings.

4: . Drainage systems

Principles, location of sanitary units, separate and combined systems, septic tanks, aqua privy. Drainage system for ground and multistoried buildings incl. storm water drainage, rain water harvesting.

UNIT III:

5: Recycling

Sewage pumping stations, waste water treatment, oxidation. recycling of sewage water.

6: Site planning

Roads and pavements, drainage of roads, drainage on sloping sites, sub soil drainage. Site planning from drainage and water supply point of view.

Text Books:

NIL

Reference Books:

Husain, S. K. T. B. of *water Supply and Sanitary Engineering,* 3rd ed. Oxford and IBH Pub. Ltd. New Delhi, 1994.

Kshirsagar,S.R. Water Supply Engineering, 6th ed. Roorkee Pub, Roorkee, 1980.

Rangawala, S.C. Water Supply and Sanitary Engineering ; Envirornmental Engineering, 19th ed. Charotar Pub. House, Anand, 2004.

S.C. Rangawala, fundamentals of water supply and sanitary engineering. Charotar Pub. House, Anand,

Ilussain S. K. water supply and sanitary engineering, Dhanapat Rai and Sons, Delhi Relevant I.S. Codes

Basic Plumbing techniques, Orthobooks, Chevron Chemical Company, Consumer products Div., Box 5047, San Ramon, CA 94583

G.M. Fair, J.C. Geyer and D.A. Oku, Water and Waste Water Enineering, vol.II, John Wiley and Sons, Inc. New York, 1968

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU	Document #: FMCD2005	Rev: 1.0
			Daria 40 of 05
Title: Curriculum Content- Cou	urse wise		Page 10 of 35
			Year: 2016-2017
			Į

Manual of water Supply and Treatment , 2nd edition , CPHEEO, Ministry of works And HOUSING New DELHI , 1980 Manual ON sewage Treatment , CPHEEO, Ministry of works And HOUSING New DELHI , 1977

Scheme for Semester End Examination (ESA)

SI.No	8 Questions to be set of 20 Marks Each	Chapter Number	Instructions

KLE TECH. KLE TECHNOLOgical Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise		Page 11 of 35	
			Year: 2016-2017

Program : Architecture

Course Title: CLIMATOLOGY		Course Code: 15AATC204
L-S-P: 1-2-0	Credits: 2	Contact Hours: 3
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 48	Examination Duration: NA	

UNIT I:

Introduction – Elements of Climate, Enumerating and representing climatic data. Classification of Climate, major Climatic Zones of the World, tropical Climate further Classification. Climatic Zones of India, Classifications, case study of one city within each Zone.

UNIT II:

Thermal Comfort, effect of Climatic Elements on thermal Comfort, Heat Exchange Process, Effective Temperature Natural Ventilation, effect of openings in internal and external features, Design Considerations etc. Effect of Landscape elements and site topography

UNIT III:

Construction Techniques for Improving Thermal Performance of Walls and roofs at various climatic Zones in India Design Consideration for various climatic zones of INDIA, with respect to Shading devices, Day Lighting Factors, Components of day light factor and design considerations Rains etc.

Text Books:

- 1. Arvind Kishan , Baker & Szokolay, Climate Responsive Architecture.
- 2. "Manual of Tropical Housing & Buildings (PartII)" Koenigsberger.
- 3. Buildings in the tropics by Maxwell Fry
- 4. Housing , Climate and Comfort by Martin Evans

Reference Books:

NIL

Scheme for Semester End Examination (ESA)

NOTE: ALTHOUGH THE MODULES IN CORPORATED IN 3 UNITS IN LESSON PLAN, TO BE IN CORPORATED IN SYLLABUS

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU	Document #: FMCD2005	Rev: 1.0	
	School of Architecture			
Title: Curriculum Content- Course wise			Page 12 of 35	
			Year: 2016-2017	
Program : Architecture				

Course Title: HISTORY OF ARCHITECTURE - II		Course Code: 15AATC205			
L-S-P: 0-2-0	L-S-P: 0-2-0 Credits: 2 Contact Hours: 2				
ISA Marks: 50	ESA Marks: 50	Total Marks: 100			
Teaching Hours: 32	Examination Duration: 3 HOURS				
UNIT I:					
1: Evolution of Buddhist Architecture					
Characteristic features of Buddhist Arch	nitecture, Sanchi Stupa, Viharas and Cha	itya Halls			
2:Introduction to temple architecture					
Essential characteristics of Indian temp	le,different types of temple architecture				
Evolution of Hindu Temples					
Temples at Udayagiri, Tigawa, ,Bhitar	goah				
3. Evolution of Indo Aryan Temples					
Orissan Group of Temples - The Sun te	emple of Konark , The Lingraja Temple a	t Bhubaneswar,			
Khajuraho Group of Temples - Kandari	iya Mahadev Temple, Laksmanan Templ	e			
UNIT II:					
4 - Early Chalukyan Architecture –					
Aihole , Pattadakal and Badami					
5 : Rastrakuta Architecture					
Rockcut Temple, Elephanta , Kailasa T	emple Ellora				
6: Evolution of Pallava , Cholla and Par	ndya style				
Pallava Style - Rathas at Mamallapurar	n,Shore temple, Kailasanath temple				
Kanchipuram , Vaikunthaperumal temp	le at Kanchipuram,				
Chola Style – Brihadeshwar Temple & 0	Gangaikondacholapuram Temple				
Pallava Style – Characteristics, Gopura	am				
UNIT III:					
7: Later Chalukyan or Hoyasala style	7: Later Chalukyan or Hoyasala style				
Chennakeshwa Temple, Belur, Hpysaleshwar Temple, Halebidu and Keshava Temple, Somnathpur					
8: Evolution of later Dravidian Temples					
Vijaynagar Architecture - Vithala temple	e complex at Vijaynagar , Hazara Ram Te	emple			
Madurai Style - Meenakshi Te	emple at Madurai. Srirangam Temple				
Text Books:					
NIL Deference Books:					
Reference Books:					

• Satish Grover: The Architecture of India

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU	Document #: FMCD2005	Rev: 1.0
	School of Architecture		
Title: Curriculum Content- Course wise			Page 13 of 35
			Year: 2016-2017
Percy Brown : Indian Architecture	e(Buddhist and Hindu Period0		•

- Tadgell Christopher: The History of Architecture in India
- Rowl Benjamin. Art and Architecture of India
- Vistara . The Architecture of India
- Yatin Pandya: Concept of space making in Indian traditional Architecture

Scheme for Semester End Examination (ESA)

NOTE: ALTHOUGH THE MODULES IN CORPORATED IN 3 UNITS IN LESSON PLAN, TO BE IN CORPORATED IN SYLLABUS

SI.No	8 Questions to be set of 20 Marks Each	Chapter Number	Instructions

KLE TECH. KLE Technological Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise			Page 14 of 35
		Year: 2016-2017	

Program : Architecture

Course Title: Digital Tool- I		Course Code: 15AATP201
L-S-P: 0-2-0	Credits: 1	Contact Hours: 2
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 32	Examination Duration: 3 HOURS	

UNIT I:

• Basic Hardware and components of computer.

Introduction to a Brief history of computers, hardware components of computer, knowledge of different types of OS. Introduction to Digital tools of Architecture and Design, (scanner, Digitizer, plotters).

Introduction to Windows, Office and PowerPoint

Introduction to Windows OS History and present OS. Understanding various components of OS like desktop, Short cuts, Etc. creating file structure, files, folders, Installing and managing software's, working with MS office and PowerPoint creatively for various presentations in sync MS paint and note pad,

UNIT II:

• Introduction to Sketch up.

Basic drawing and editing tools, measuring and dimensioning tools, etc

Introduction to Advance Sketch up

Advance tools for developing and creating architectural design using advanced features

UNIT III:

• Rendering techniques with Sketch Up.

Setting up Lights, camera, foreground and background, adding landscaping elements like trees human figures, introduction to rendering and animation.

Text Books

1. NIL

Reference Books:

1. Online Sketch Up Manual.

Note:

- Journal Submission of commands related to the software and its tools.
- Assignments in form of soft copy & hard copy worked during the course.

KLE TECH. KLE Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU	Document #: FMCD2005	Rev: 1.0
	School of Architecture		
Title: Curriculum Content- Course wise			Page 15 of 35
			Year: 2016-2017
Program : Architecture			

Course Title: STRUCTURES - III		Course Code: 15AATC206
L-S-P: 3-0-0	Credits: 3	Contact Hours: 03
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 48	Examination Duration: 3 HOURS	

- 1. Reinforced cement concrete, grades of concrete, water cement ratio and its effect on strength of concrete, admixtures, retarders and use of high strength concrete in building structures.
- 2. Introduction to working stress method, assumptions, theory of singly reinforced sections. Moment of resistance and design of a section for flexure. Related elementary numerical.

UNIT II:

- 1. Design philosophy of limit state method. Limit state for collapse for flexure.
- 2. Analysis of continuous beam by using IS 456-2000 and design by using SP16.
- 3. Design of beams by using SP 16
- 4. Analysis of one way continuous slabs by using IS 456-2000and design by using SP16.
- 5. Design of columns axial load and axial load plus uniaxial moment by using SP 16

UNIT III:

- 1. Case study of ongoing RC building structures to correlate knowledge to on site during construction.
- 2. Typical reinforcement detail for beams isolated column with footing, slabs (one way and two way), staircases.

Text Books:

- 1. A.K. Jain, Reinforced concrete: Limit state design, 5th edition, New Chand and brothers, Roorkee.
- 2. S.N. Sinha, Reinforced concrete design, Tata McGraw Hill Publications, New Delhi.

Reference Books

- 1. Karve S. R. and Shah V. L: .Limit state Theory and design of Reinforced Concrete, Structures Publishers, Pune
- 2. S.N. Sinha, Reinforced Concrete Tata Mc.Graw Hill Companies. Second Revised Edition.
 - 3. B.C.Punmia Ashok Kumar Jain, Arun kumar Jain, Reinforced Concrete Structures Laxmi Publications Pvt. Ltd. New Delhi.
 - 4. Ashok K. Jain. Reinforced Concrete Limit State Nemchand & Bros.Roorkee
 - 5. I S 456, SP 24, SP 16

Scheme for Semester End Examination (ESA)

SI.No	8 Questions to be set of 20 Marks Each	Chapter Number	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3

<i>V</i> KLE TECH.	KLEE Technological Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU School of Architecture		Docum # FMCD20	ent :)05	Rev: 1.0	
Ti	tle: Curriculum Content- Cou	Content- Course wise		Page 16 of 35			
						Year: 2016-2017	
	II Q.No4, Q.NO – 5 Q.No6, 3 to 7			Solve A	ny 2 out of 3]	

8, 9

Solve Any 1 out of 2

Ш

Q.No.-7, Q.No.-8

KLE TECH. KLEE Technological Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise			Page 17 of 35
		Year: 2016-2017	

Program : Architecture

Course Title: Elective – Vernacular Architecture		Course Code: 15AATE201
L-S-P: 0-2-0	Credits: 2	Contact Hours: 2
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 32	Examination Duration: NA	

UNIT I:

Introduction and Definitions.

Review of Vernacular Architecture in different parts of India in context to the Lifestyle and culture, House forms, climate, materials and construction techniques prevailing in these regions.

UNIT II:

Study of Vernacular styles of North and North East, North West, South India.

UNIT III:

Case study and documentation

Case study of a house form to collect data regarding lifestyle and culture, climate, materials, construction techniques and documentation of the same.(1field,book or net study)

Note – assignments, Seminars and a portfolio of the documentation of case study for evaluation.

Text Books:

NIL

Reference Books:

- 1. Paul Oliver (Ed), Encyclopedia of Vernacular Architecture of the world, vol 1,2,3,
- 2. Fletcher Bannister: History of Architecture
- 3. Rappoport Amos: History and Precedent of Environmental Design
- 4. Rappoport Amos: House Form and Culture
- 5. Rappoport Amos: Meaning of the built environment
- 6. Paul Oliver (Ed), Encyclopedia of Vernacular Architecture of the world, vol 1,2,3, Cambridge University press, Cambridge, 1977.
- 7. Bernard Rudofsky Architecture without architects.
- 8. Paul Oliver: Dwellings. Cambridge University press, Cambridge, 1977.
- 9. Galion and Eisner, 'Urban Pattern': City planning and Design. Ed, Van Nostrand Reinhold, New York, 1986.

Scheme for Semester End Examination (ESA)

Term work. Documented measure drawing portfolio

KLE TECH. KLEETCH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise		Page 18 of 35	
The. Curriculum Content-Course wise		Year: 2016-2017	

Program : Architecture		
Course Title: Elective – Photography		Course Code: AATE202
L-S-P: 0-2-0	Credits: 2	Contact Hours: 2
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 32	Examination Duration: NA	
UNIT I: 1. Introduction a. Introduction to Architectural Photography b. Theory of Photography c. Understanding Light, aperture, Shutter speed and ISO d Turner of Compare Long, and other appropriate		
UNIT II:		
 2. Composition. a. Understanding composition like rule of third, S- curve, balance etc b. Shooting Out-doors and In-doors c. Colour management and post editing using software's d. Camera Tricks to create special effect photography. e. Analysis of Photographs 		
UNIT III:		
 3. Documentation of Architectural buildings and interiors a. Importance and use of architectural journalism b. Documentation methods. c. Presentation and compilation of Images and text. d. Printing. 		
Text Books:		
NIL		
Reference Books:		
 Better photography monthly magaz Basic photography for dummies 	ine	

Scheme for Semester End Examination (ESA)

Assignments, Checking of Portfolio of Term Work / Viva.

KLE TECH. KLEETECH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise		Page 19 of 35	
			Year: 2016-2017

Program : Architecture

Course Title: Elective – Space, Culture & Architecture		Course Code: 15AATE203
L-S-P: 0-2-0	Credits: 2	Contact Hours: 2
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 32	Examination Duration: NA	

UNIT I:

Introduction to Space, Culture & Architecture

Sociological theories and cultural theories in relation to architecture Critical thinking – its basis and intent

UNIT II:

Study and analysis of few Important Architectural Spaces of Cultural Significance

Study and Documentation of Cultural Landscape.

UNIT III:

Research Paper on Space, Culture & Architecture

Text Books:

NIL

Reference Books:

- 1) J Habraken Sociologic of space
- 2) Rappoport Amos: House Form and Culture

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise		Page 20 of 35	
		Year: 2016-2017	

Program: Architecture				
Course Title: Elective – Digital Rendering		Course Code: 17AATE204		
L-T-P:0-0-1	Credits: 1	Contact Hours: 2		
ISA Marks:50	ESA Marks:50	Total Marks:100		
Teaching Hours:28	Examination Duration: NA			
Unit I				
Digital Rendering Techniques Rendering techniques of plans, elevation	ons & sections using digital tool.			
Unit II	Unit II			
Detail Rendering Adding details like human figures, furniture, trees, vehicles etc.				
Unit III				
Publish to various media				
Various print and web file formats				
Text Books				
Reference Books: Online tutorials				

Scheme for Semester End Examination (ESA)

Assignments, Checking of Portfolio of Term Work / Viva.

KLE TECH. KLECKER	FORM ISO 9001: 2008- KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise		Page 21 of 35	
			Year: 2016-2017

Program : Architecture		
Course Title: Elective – Spac	e Making	Course Code: 15AATE205
L-S-P: 0-2-0	Credits: 2	Contact Hours: 2
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 32	Examination Duration: NA	
UNIT I:		
Introduction to different spa	ce making elements.	

Understanding and appreciating different space perceptions.

UNIT II:

Study and analysis of few Important Architectural Spaces with different parameters

UNIT III:

Understanding contemporary approaches in space making.

Understanding of the term space formation and its importance in Architecture.

Text Books:

Nil

Reference Books:

1) Space making elements by Yatin Pandya.

2) J Habraken Sociologic of space

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise		Page 22 of 35	
		Year: 2016-2017	

IV SEMESTER

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0	
Title: Curriculum Content- Course wise		Page 23 of 35		
		Year: 2016-2017		

Course Title: DESIGN STUDIO – IV		Course Code: 15AATC208
L-S-P: 0-8-0	Credits: 6	Contact Hours: 9
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 144	Examination Duration: NA	

Course contents:

Program : Architecture

Project

- 1. Scale of a project shall be limited to allow for intensive study rather than repetition of typical configuration of housing
- 2. Project can be attempted with added complexities like dense context, occupation based, traditional urban fabric, social status & prevalent social strata.
- 3. Detail from the dwelling cell to immediate shared space to communal space shall be emphasized and worked out. Socio-cultural layer of the occupants shall form a strong fabric in ultimate way of the design.
- 4. project shall aim at developing a very sensitive attitude toward micro level human habitation & role of architecture in enhancing or curbing the quality of living
- 5. Examples apartment for IT employees, government servants, teaching faculty, textile workers, Luxury flats in the center of the city, group housing in suburbs, etc.

Students may be required to develop a brief, translate it in to requirements and Design. At least one major exercise and one minor design/ time problem should be given. The topics not covered as design problems will have to be covered by the studio faculty members through lecture/slide show session and site visits.

The evaluation shall be through periodic internal reviews.

The students have to present the entire semester work for assessment along with Model.

Text Books: NIL

Reference Books:

- 1. Joseph De Chiara & John Hancock Calendar, Time Saver Standards for Building Types
- 2. Various books and magazines about architectural design

Scheme for Semester End Examination (ESA)

Checking of Portfolio of Term Work / Viva.

KLE TECH. KLEE Technological Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise			Page 24 of 35
			Year: 2016-2017

Program :	Architecture
-----------	--------------

Course Title: BUILDING CONSTRUCTION & MATERIALS - IV		Course Code: 15AATC209
L-S-P: 0-6-0	Credits: 4	Contact Hours: 6
ISA Marks: 70	ESA Marks: 30	Total Marks: 100
Teaching Hours: 96 Examination Duration: NA		

UNIT I: RCC SLABS

Introduction to, types & selection criteria of slabs like i) spanned in one direction ii) spanned in both directions i.e. iii) continuous iv) cantilever v) slope vi) ribbed vii) coffered vii) filler, showing construction & reinforcement arrangements.

UNIT II:RCC FLAT SLAB, VAULTS & DOMES AND RETAINING WALLS

FLAT SLAB- Introduction to, advantages over regular slabs, including construction details & reinforcement arrangements for i) solid slab ii) drop panel iii) flared column top.

VAULTS AND DOMES - Introduction to, types, construction details with reinforcement arrangement.

RETAINING WALLS – Introduction to and study of walls for retaining earth & water, with i) brick masonry ii) stone masonry iii) RCC. Construction details & reinforcement arrangements there in.

UNIT III:FLOOR FINISHES

- Various types, method of laying & maintenance for floor finishes using,
- Naturally available i) clay & murrum ii) stone slab & tiles iii) timber
- Timber products i) parquet tiles ii) plywood/ block board & engineered wood (plain & laminated) etc.
- Cement concrete i) rough and rendered (IPS, oxide, epoxy) surface ii) VDC (vacuum dewatered concrete)
- Cement concrete products marble mosaic, terrazzo, designer tiles & in-situ work
- Mineral products clay, ceramic & vitrified tiles.
- Other products i) metal ii) glass
- **PAVING** Various types, preparation of base, method of laying using i) burnt bricks ii) flag stone iii) stone slabs iv) cobbles v) in-situ concrete vi) precast concrete slabs vii)concrete designer tiles viii) interlocking blocks etc

Note – The Portfolio covering the above topics shall be presented for Term work. Site visits shall be arranged by studio teacher. Study of material application shall be submitted in the form notes, sketches and photo brief as a part of portfolio

Text Books:

- McKay J.K Building Construction Metric Vol 1-4, 4th edi Orient Longman Pvt. Ltd, Mumbai,2002
- "Construction Technology" volume-I by R Chudley, ELBS & Longman group Ltd.
- Barry R, "The construction of buildings", Vol-2, 5th Edi, East West Press, New Delhi 1999.
- Bindra S.P and Arora S.P, Building Construction-Planning Techniques and Method of Construction, 19th edi, Dhanpat Rai Pub ,NewDelhi, 2000
- "Building Construction" by Janardhan Jha, Khanna New-Delhi.

KLE TECH. KLEETECH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU	Document #: FMCD2005	Rev: 1.0
	School of Architecture		
Title: Curriculum Content- Course wise			Page 25 of 35
			Year: 2016-2017
 Rangawal S.C , "Building "Engineering Materials" k "Building Materials" by S Sushil Kumar T.B of Buil 	Construction" 22 nd Edi, charo by Surendra Singh, Vikas Delh K Duggal, IBH New Delhi. ding Construction 19 th edi, Sta	tar Publishing house, An ni. andard Pub House, New	and, 2004 Delhi, 2003.

- Chowdhary K.P. Engineering Materials used in India, 7th Edi, Oxford and IBH Pub Itd New Delhi, 1990.
- Building Construction Hand book : By R Chudly & R Greeno, Bullerworth Heinemann, New-Delhi.

Scheme for internal Assessment (ISA): Evaluation of term work regularly and tests conducted Scheme for Semester End Examination (ESA): Evaluation of term work portfolio & Viva

KLE TECH. KLEE Technological Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise			Page 26 of 35
		Year: 2016-2017	

Program : Architecture				
Course Title: SERVICES – II (ELECTRICITY & ILLUMINATION) Course Code: 15AATC210				
L-S-P: 1-2-0	Credits: 2	Contact Hours: 3		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 48	Examination Duration: 2 HOURS			

1. Brief Introduction to electricity, its uses in everyday life and as an architectural application.

2. Terminology used in electricity.

3. Supply and distribution of electricity to the end user (consumer) - generators and overhead and underground distribution systems, high tension and low tension cables, substations, transformers, service connections, panel board, energy meter. Internal supply and distribution.

UNIT II:

3. Systems of wiring in building and their merits. Types of conduits, wires and cables. Accessories used in wiring.

4. Various devices used to protect shock, over loading, leakages and short circuits.(Fuses-definition and types, ELCB, Earthing-definition and its types, MCB'S)

5. Branch circuits, calculation of electrical load for a residential building. Electrical symbols and Indian electricity rules-relevant codes of practice(NBC).

6. Electrical layout for different buildings. Ways and methods of saving electricity in buildings.

UNIT III:

7. Introduction and terminologies, quality and quantity of light. Necessity of artificial lighting, combination of day light and artificial lighting.

8. Methods of lighting- accent, ambient and task lighting.

9. Various types (incandescent, fluorescent/CFL, HID's, neon lamps) and selection criteria considering their temperament for residential, commercial, industrial, public buildings, for street and landscape lighting.

UNIT IV:

10. Criteria's for selecting lamps for different occupanISAs.

11. Lighting design for different types of occupanISAs - landscape, parking areas, different tasks, street lighting, commercial building, residence.

Text Books:

- 1) H Cotton, Electrical Technology
- 2) L. Uppal, Electrical wiring, Estimating & Costing
- 3) Anwari., Electrical Engg.
- 4) M.S.N. Swamy, Lighting, MSN Marketing, Bangalore.
- 5) Torquil Barker, Concepts in Practice lighting, 1997, B.T. Batsford Ltd, 583, fullham Road, London.
- 6) Dr. Frith Abnwos and others. Electrical Engineering handbook.
- 7) S.L.Uppal and G.C. Garg. Electrical wiring (Estimating & Costing), Khanna Publishers, New Delhi.

Reference Books:

A manufacturer catalogues and journal references on electricity.

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise		Page 27 of 35	
			Year: 2016-2017

Scheme for Semester End Examination (ESA)

SI.No	8 Questions to be set of 20 Marks Each	Chapter Number	Instructions

KLE TECH. KLE TECHNOLOgical Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise			Page 28 of 35
			Year: 2016-2017

Examination Duration: 3 HOURS

Course Code: 15AATC211

Contact Hours: 2

Total Marks: 100

UNIT I:
Evolution of Imperial Indian Islamic Architecture in the following dynastic rule of
Imperial style
Provincial Style -I
Provincial Style -II
UNIT II:
Evolution of provincial Indian Islamic Architecture in the following provinces of
Provincial Style -II
Mughal Architecture-I

Credits: 2

ESA Marks: 50

Mughal Architecture-II

Program : Architecture

L-S-P: 3-0-0

ISA Marks:50

Teaching Hours: 32

Course Title: HISTORY OF ARCHITECTURE - III

UNIT III:

Evolution of Indian British Colonial architecture Architecture in the dynastic rule of

- Early British Colonial Style
- Late British Colonial Style

Text Books:

- 1. Christopher Tadgel, The History Of Architecture Of India
- 2. Satish Grover, Architecture of India Islamic
- 3. Percy Brown, Indian Architecture Islamic

Reference Books:

NIL

Note:

• A student (individually / group) in course of the semester shall present at least two seminars from above topics or as suggested by the subject teacher

Scheme for Semester End Examination (ESA)

NOTE: ALTHOUGH THE MODULES IN CORPORATED IN 3 UNITS IN LESSON PLAN, TO BE IN CORPORATED IN SYLLABUS

SI.No	8 Questions to be set of 20 Marks Each	Chapter Number	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
II	Q.No4, Q.NO – 5 Q.No6,	3, 4	Solve Any 2 out of 3
	Q.No7, Q.No8	5, 6	Solve Any 1 out of 2

KLE TECH. KLE Technological Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU	Document #: FMCD2005	Rev: 1.0
	School of Architecture		
Title: Curriculum Content- Course wise			Page 29 of 35
		Year: 2016-2017	

Program : Architecture				
Course Title: THEORY OF ARCHITECTURE		Course Code: 15AATC212		
L-S-P: 2-0-0-1	Credits: 2	Contact Hours: 3		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 48	Examination Duration: 3 HOURS			
 UNIT I: 1. Principles of architectural composition: Unity, Balance, Proportion, Scale, Contrast, Harmony, Accentuation, Restraint. Repose, Vitality, Strength in the built environment 2. Underlying Organizing Principles Symmetry, hierarchy, datum, axis, rhythm in the built environment, examples drawn from both historical and urban context 3. Underlying Spatial Organizations of built fabric Linear, centralized, radial, Clustered, Grid. Examples drawn from both historical 				
UNIT II: Theory in Antiquity & Renaissance 18 th century theory 19 th century theory				
UNIT III: Contribution of architectural theoreticians Architectural Criticism				
Self Study: : Understanding the Built environment Students will explore such questions as: What is the built environment? What role does it play in our life? How does it come about? How are ideas and meaning embedded in the world we make? Students will comprehend conceptual basis of the design disciplines, terminology regarding form, function, and technology of buildings; and methods used in the design process.				
Students will explore issues related to intent, values and design; site, and context; buildings and cities, and relationships between culture, place and meaning;				

 $\hfill\square$ Students will increase their understanding of the human significance of the built environment.

KLE TECH. KLEETCH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise		Page 30 of 35	
			Year: 2016-2017

Student Performance Criteria addressed:

Communication Skills Design Thinking Skills Visual Communication Skills Investigative Skills Fundamental Design Skills Use of Precedents Ordering System Skills Historical Traditions and Global Culture Cultural Diversity Site Design Structural Systems Human Behavior Leadership Community and Social Responsibility

Topical Outline

The built environment as human habitat Theoretical constructs for understanding & analyzing the built environment Architecture as a combination of form, function, technology Urban environments Exploring the relationships between culture, values, meaning and place

Prerequisites: None

None.

Deliverables:

Application of the theoretical base to the human settlement site , analysis and interpretation of the same.

Four hours are incorporated after the completion of respective chapters

Text Books:

NIL

Reference Books:

- 1. Bernard Rudofsky, *Architecture without Architects* .a short introduction to Non-Pedigreed Architecture. Academy Edition London
- 2. Francis D K Ching, Form Space and Order
- 3. Parmar V S, Design Fundamental in Architecture
- 4. Howard Robertson, The Principles of Architectural Compositions
- 5. J.M.Zunde ,Design Procedures level 4
- 6. Barbara lee Dia Monstein, Architect, Architecture in Collaboration
- 7. Mike Dartion, The illustrated Book of Architect & Architecture

KLE TECH. KLEETECH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
TU O U U O U U U U U U U U U U			Page 31 of 35
litie: Curriculum Content-Col	Irse wise		Year: 2016-2017
 Kenshiro Takamii, Decora Enrico Guidon, Primitive A Arthur Statton, Elements Tim Charlotte, Forms & F Christian Norberg Shulz, Vitruvious : Ten Books or Alberti Leon: Ten Books or Alexander Christopher; U Alexander Christopher: N Alexander Christopher: N Alexander Christopher: N Alexander Christopher: S Alexander Christopher: C Alexander Christopher: S Alexander Christopher: C Rappoport Amos: Human Rappoport Amos: House Rappoport Amos: Meanin Geoffrey Baker: Design s Attoe Wayne: Architectura Hale A Jonathan: Building Lynch Kevin: City Sense Lynch Kevin: Image of the Sociologic of space 	a, Ornamental Motif of the Wo Architecture of Forms & Design in Classic Function - a source book for the Genius Locii in Architecture on Architecture Irban Pattern imeless way of Building lew Theory of Urban Design lature of Order, vol. 1, 2, 3 ynthesis of Form ity is not a Tree a Aspect of Urban Form and Precedent of Environment form and Culture ng of the built environment ign in Architecture trategies in architecture: An ap al and critical imagination g Ideas, An introduction to Arc e <i>City</i>	rld. Architecture e History of Architecture ntal Design pproach to analysis of fo	prm

KLE TECH. KLEETCH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise		Page 32 of 35	
			Year: 2016-2017

Course Title: LANDSCAPE DESIGN		Course Code: 15AATC213
L-S-P: 1-1-0	Credits: 2	Contact Hours: 3
ISA Marks: 70	ESA Marks: 70	Total Marks: 100
Teaching Hours: 42	Examination Duration: NA	

Introduction to landscape architecture and role of Landscape design in built environment. Evolution of concepts in landscape design in integrating built spaces to open spaces

UNIT II:

Landscape elements-land forms, water and vegetation. Principles of landscape design, and built environment. Selection and management of plant material in relation to built environment, taxonomy and classification of plants. Study and analysis of existing landscaped areas Introduction to study of plant materials in relation to landscape architecture and design. Appearance, functional and visual effects of plants in landscape design Selection and management of plant material in relation to built environment, taxonomy and classification of plants.

UNIT III:

Site planning and site analysis with reference to different characteristics like topography, vegetation, hydrology, access, surroundings etc. Philosophical and design issues related to site development-spatial and contextual relationships of built and outdoor space and circulation, site and its relationship to surroundings, importance of climate and social factors in development of site.

Natural and manmade landscape in urban and rural landscape. Contemporary attitude to development and design of open spaces-like urban spaces, courtyards, gardens, parks, Streetscape, street furniture, lampposts, pavements and other architectural elements in relation to architectural design

Studio exercises emphasizing relationship between built form and outdoor areas and site planning issues.

Note – The Portfolio covering the above topics shall be presented for Term work. Minimum one plate from each unit., site visits to be arranged by studio teacher. Study of material application shall be submitted in the form of journal.

Text Books: NIL

Reference Books:

).Blane Alan, Landscape Construction and detailing B T Batsford Ltd, London 1996.

2) Colise Brenda, Land and Landscape.

3) G. Eckbe "Landscape for Living"

4) Trivedi, P. Pratibha, Beautiful Shrubs. Indian Council of Agricultural Research, New Delhi, 1990.

5) Lynch, Kevin, Site Planning, IT Press, Massachusetts, 1962.

6) Laurie, Michael, An introduction to Landscape, II Ed, Prentice Hall, New Jersey, 1986

7).Santapau. H. Common Trees, National Book Trust, NewDelhi, 1981.

8) J.O. Simmonds, "Landscape Architecture"

Scheme for End Semester Assessment (ESA)

Evaluation of Portfolio of Term Work / Viva

KLE TECH. KLEETCH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise		Page 33 of 35	
			Year: 2016-2017

Program : Architecture			
Course Title: DIGITAL TOOL - II	Course Code: 15AATP202		
L-S-P: 0-0-2	Credits: 2	Contact Hours: 2	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 32	Examination Duration: NA		

• Introduction to CAD Environment: Introduction to The world space, user co-ordinate system (ucs). Command line and menus, to learn basic commands like, units, limits, line, circle, arc. Etc. Use editing commands like trim, extend, erase, offset to create basic shapes.

UNIT II:

- **2D Drafting**: Use basic drawing and editing commands to create 2d architectural plans, elevations, and sections, adding text and dimensions creating layers using advance editing commands.
- **Composing and printing**: Creating detail sanction drawings, Using plot for output saving drawings in different file formats. Creating 2d drawings from google earth and importing images in cadd.

UNIT III:

• Introduction to Photoshop: file formats, importing and enhancing cad drawing images using masks, layers, fills, and editing tools.

Text Books:

Reference Books:

NIL

- 1.) AutoCAD 2007 For Dummies. by David Byrnes, Mark Middle brook. Publisher: For Dummies; Revised edition (May 8, 2006)
 - ISBN-10: 0471786497, ISBN-13: 978-0471786498
- 2.)Enhancing CAD Drawings with Photoshop by Scott Onstott
 - Publisher: Sybex (January 21, 2005) Language: English

ISBN-10: 0782143865 ISBN-13: 978-0782143867

KLE TECH. KLEETECH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise		Page 34 of 35	
			Year: 2016-2017

Program : Architecture		
Course Title: STRUCTURES - IV		Course Code: 15AATC214
L-S-P: 3-0-0	Credits: 3	Contact Hours: 3
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 48	Examination Duration: 3 HOURS	
· · · · · · · ·	•	•

- 1. Structural steel properties, available steel grades in India, loads on steel structures as per IS 875- 1987 (Part I and II) and standers rolled steel sections.
- 2. Fasteners welded, bolt and nut connections in steel structures, to find the strength of a joint may subjected to axial load and eccentric load. Merits and demerits as compared to each other.

UNIT II:

- 1. Design of roof truss elements strut and tie.
- 2. Design of elements of braced streel structural system, compression members of single and built up sections. Design of compression members using SP 6 part I.
- 3. Design of slab base and foundation subjected to axial laod.

UNIT III:

- 1. Design of laterally restrained beams.
- 2. Moment resisting frames, comparison with braced frames, different types, composite structures.
- 3. Case study of steel building structures.

Text Books:

1. Ram Chandra Design of Steel Structures Vol I Standard Publishers New Delhi

Reference Books:

- 1. P Dayaratnam Design of Steel Structures S Chand Publications New Delhi . 1999
- 2. Vaziranzi & Ratwani Design of Steel Structures Khanna Publications New Delhi. 1998
- 3. Duggal. Design of Steel Structures Tata McGraw Hill Publications New Delhi . 1999
- 4. I.S.875-1978
- 5. S.P.6 (6)
- 6. IS 800 1984

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	FORM ISO 9001: 2008- KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise			Page 35 of 35
Inte. Cumculum Content-Course wise		Year: 2016-2017	

Scheme for Semester End Examination (ESA)

SI.No	8 Questions to be set of 20 Marks Each	Chapter Number	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2	Solve Any 2 out of 3
П	Q.No4, Q.NO – 5 Q.No6,	3, 4, 5	Solve Any 2 out of 3
111	Q.No7, Q.No8	6, 7, 8	Solve Any 1 out of 2

RLETECH. STATUS	FORM ISO 9001: 2008-KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Titl	e: Curriculum Content- Course w	ise	Page 1 of 30
			Year: 2017-2018

B.ARCHCURRICULUM SCHEME & STRUCTURE OF 2015-2020 BATCH

V Semester - VI Semester

School of Architecture, KLE Technological University, BVBCET Campus, Vidyanagar, Hubli.

(Year of introduction-2015, Faculty-A, Architecture-AT, Core course-C, Humanities-H, Lab-L, Elective-E, internship-l, Practice-P, W-Project)

	FORM ISO 9001: 2008-KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course w		ise	Page 2 of 30
			Year: 2017-2018

B. Arch. Semester V 2015-20

No	Code	Course	Category	L-S-P	Credit s	Contact Hours	ISA	ESA	Total	Exam Duration	
1	15AATC301	Architectural Design V	Design	1-5-0	6	9	50	50	100	NA	
2	15AATC302	Building Const& Materials V	Construction	1-3-0	4	6	50	50	100	NA	
3	15AATC303	Services III (HVAC)	Construction	2-0-0	2	2	50	50	100	3 HOURS	
4	15AATC304	Modern Architecture	Design	2-0-0	2	2	50	50	100	3 HOURS	
5	15AATC305	Working Drawing	Construction	0-2-0	2	3	50	50	100	NA	
6	15AATC306	Quantity survey & specification	Profession	1-1-0	2	3	50	50	100	3 HOURS	
7	15AATC307	Structures – V	Construction	3-0-0	3	3	50	50	100	3 HOURS	
8	15AATE301 15AATE302 15AATE303 15AATE304 15AATE305	Elective II Sustainable development of living cultural heritage-I Advance Computers-I Productive landscape Hands on workshop Digital 3D	Design	0-1-0	1	2	50	50	100	NA	
	TOTAL			11-11-0	22	30	400	400	800		

ISA: Continuous Internal Evaluation ESA: Semester End Examination L: Lecture S: Studio P: Practical

Credit	Lecture Hours	Studio Hours	Practical Hours
1	1	1.5	2

RIETECH . STRUME	FORM ISO 9001: 2008-KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title	e: Curriculum Content- Course w	ise	Page 3 of 30
			Year: 2017-2018

B. Arch. Semester VI 2015-20

No	Code	Course	Category	L-S-P	Credit s	Conta ct Hours	ISA	ESA	Total	Exam Duration
1	15AATC308	Architectural Design VI	Design	1-5-0	6	9	50	50	100	NA
2	15AATC309	Building Const& Materials VI	Construction	1-3-0	4	6	50	50	100	NA
3	15AATC310	Services IV (Acoustic)	Construction	2-0-0	2	2	50	50	100	3 HOURS
4	15AATC311	Contemporary Architecture	Design	2-0-0	2	2	50	50	100	3 HOURS
5	15AATC312	Professional Practice - I	Profession	1-1-0	2	3	50	50	100	3HOURS
6	15AATC313	Interior Design	Design	0-3-0	3	5	50	50	100	NA
7	15AATC314	Structures – VI	Construction	3-0-0	3	3	50	50	100	3HOURS
	TOTAL			10-12-0	22	30	350	350	700	

ISA: Continuous Internal Evaluation ESA: Semester End Examination L: Lecture S: Studio P: Practical

Credit	Lecture Hours	Studio Hours	Practical Hours
1	1	1.5	2

RETECH . Infrarmer	FORM ISO 9001: 2008-KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title	e: Curriculum Content- Course w	ise	Page 4 of 30
			Year: 2017-2018

V SEMESTER
Contraction of the second seco	FORM ISO 9001: 2008-KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course w		ise	Page 5 of 30
			Year: 2017-2018

Program : Architecture				
Course Title: Architectural Design – V Course Code: 15AATC301				
L-S-P: 1-5-0	Credits: 6	Contact Hours: 9		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 144	Examination Duration: NA			

Course contents:

To develop skills for comprehensive understanding and dealing with Architecture Provide skills for designing multi-user and multi level spaces.

The design issues to be addressed are

- Multi user and multi level space formation
- Integration of material and form.
- Integrate the horizontal and vertical circulation.
- Develop skills to correlate the materials and the resulting form.
- Details pertaining to the disabled, aged people and children.

The list of suggested spaces to be covered as design problems: Architectural Exhibition / display spaces Multi level Accommodation spaces, higher level academic spaces, multi activity Recreational spaces, Neighbor hood Community spaces, Healthcare Centers etc.

Necessary theoretical inputs to be given highlighting the norms and design issues. At least one major exercise and one minor design/ time problem should be given. The topics covered as design problems will have to be covered by the studio faculty members through lecture/slide show session and site visits.

UNIT I:

Design Analysis : Research of the given design project, Analysis of precedents

Site analysis / Concept Development: Site plan, Site analysis, site synthesis and zoning, formulation of design brief, conceptual sketches, design development

Preliminary Design Development stage: Schematic drawings of plans with furniture Layout, sections,

elevations and study models

UNIT II:

Secondary Design Development stage : Development of detail plans, elevations and sectional details,

Models, Development of Three dimensional massing with

School of Architecture

corresponding fenestrations, etc.

UNIT III:

Finalization of design: Presentation (computer aided) and rendering

Esquissee : Given design topic to be completed within the time limit.

Model Making : Final three dimensional model/views

Text Books: NIL

Reference Books:

- 1. Time Saver Standard for Architectural Data by John Hancock.
- 2. Architectural Graphic Standards by Ramsey and Sleeper.
- 3. Magazines and Design related books
- 4. Architecture: Form, Space and Order, Ching, Francis DK
- 5. Design and Form: The basic course at the Bauhaus, Itten, Johannes.
- 6. Elements of space forming, Yatin Pandya.
- 7. Architectural Composition, Kerier, Roab

Scheme for Semester End Examination (ESA)

Evaluation of Portfolio, assignments by internal and external examiners

The students have to present the entire semester work for assessment along with Models.

A viva-voce (Approximate 15 minutes /student) shall be conducted by a jury comprising of an external examiner and an internal examiner. The drawings, models and shall be presented by the student.

Page 7 of 30

Year: 2017-2018

Title:	Curriculum Content- Course wise
--------	---------------------------------

Program : Architecture				
Course Title: BUILDING CONST	Course Code: 15AATC302			
L-S-P: 1-3-0	Credits: 4	Contact Hours: 6		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 96	Examination Duration: NA			

UNIT I: DOORS FOR LARGER OPENINGS

Folding Door in Timber. Sliding Door in Aluminum and PVC

Various types of Doors in steel viz Rolling shutter, fabricated in Pressed M.S. Sheet panel.

UNIT II: METAL AND PVC WINDOWS

Various types of Windowsin steel fabricated with "Z" section and pressed metal (box) sections. Sliding windows in Aluminum and PVC including safety arrangement.

UNIT III: PARTITIONS AND FALSE CEILINGS

Partition systems using various materials like Timber, metal, PVC, various boards, glass etc.

False ceiling system with Timber, metal framing and various panel materials.

Materials:-

Properties, types, manufacturing in brief and architectural uses of glass, and glass products, Plastics and Rubber

Note – The Portfolio covering the above topics shall be presented for Term work. Site visits shall be arranged by studio teacher. Study of material application shall be submitted in the form notes, sketches and photo brief as a part of portfolio

Text Books:NIL

Reference Books:

- McKay J.K Building Construction Metric Vol 1-4, 4thedi Orient Longman Pvt. Ltd, Mumbai,2002
- "Construction Technology" volume-I by R Chudley, ELBS & Longman group Ltd.
- Barry R, "The construction of buildings", Vol-2, 5th Edi, East West Press, New Delhi 1999.
- Bindra S.P and Arora S.P, Building Construction-Planning Techniques and Method of Construction,
- 19thedi, Dhanpat Rai Pub ,NewDelhi, 2000
- "Building Construction" by JanardhanJha, Khanna New-Delhi.
- RangawalS.C ,"Building Construction" 22nd Edi, charotar Publishing house, Anand, 2004
- "Engineering Materials" by Surendra Singh, Vikas Delhi.
- "Building Materials" by S K Duggal, IBH New Delhi.
- Sushil Kumar T.B of Building Construction 19thedi, Standard Pub House, NewDelhi, 2003.
- Chowdhary K.P. Engineering Materials used in India, 7th Edi, Oxford and IBH Pub Itd New Delhi, 1990.

Building Construction Hand book : By R Chudly& R Greeno, Bullerworth Heinemann, New-Delhi

Scheme for internal Assessment (ISA): Evaluation of term work regularlyand tests conducted Scheme for Semester End Examination (ESA): Evaluation of term work portfolio & Viva

FORM ISO 9001: 2008-KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course w	ise	Page 8 of 30
		Year: 2017-2018

Program : Architecture

Course Title: SERVICES – III (HVAC)	Course Code: 15AATC303	
L-S-P: 2-0-0	Credits: 2	Contact Hours: 3
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 32	Examination Duration: 3 HOURS	

UNIT I:

1.Passive and Mechanical/Artificial ventilation- Need for mechanical ventilation in buildings, Applications in different criteria's.

Air conditioning- Definition, Refrigeration cycle. Compressor, Condenser, evaporator in air-conditioning.

2.Different types of Air conditioning –Ductable non ductable air conditioners, Location analysis of different equipments in different types of buildings. Air distribution systems- ducts, diffusers etc and architectural requirements of the same. Zoning purpose, advantages and disadvantages of the same

UNIT II:

3.Factors responsible for calculation of air conditioning load. Application of appropriate AC system for different types of occupancies like Residential, commercial, industrial etc.

Elevators: Introduction, different types of elevators like traction, hydraulic, double deck elevators, sky lobby, structure and interiors of lifts.

4.Passenger handling capacity, space and physical requirement and layout. Locational analysis of elevators, grouping of elevators.

Escalators: Definition, structure and different parts of escalator, Application, Location and arrangement in different types of buildings.

UNIT III:

5.Fire safety of buildings: Origin and causes of fire in buildings, fire load, fire hazards, material properties.

Passive fire protection: Application of fire resisting materials, Comapartmentation, fire escape routes.

6.Active fire protection: Portable fire extinguishers and different types. Non portable fire extinguishers, required water supply for the same, automatic fire detection and Alarm systems.

Rules for fire protection and fire fighting requirements for high rise buildings in India.

Text Books:NIL

Reference Books:

1). P. N. Anant Narayana., *Refrigeration and Air conditioning,* Third edition, Tata McGraw-Hill publishing Company Ltd, New Delhi.

Q. KLE TECH. UNFRANCES	FORM ISO 9001: 2008-KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise			Page 9 of 30
			Year: 2017-2018

2). Manohar Prasad., Air conditioning and Refrigeration Data Hand book.

3). Blue star ltd: Blue star Guide to Comfort Air conditioning. India Published by Packaged Air conditioning division.

4). Roy J Dosat., *Principles of Refrigeration*.

5) Dagostino, F. R:(1982) "Mechanical and Electrical systems in Building" Varginia, Reston Publishing Co.

SI.No	8 Questions to be set of 20 Marks Each	Unit Number	Instructions
1	Question Numbers 1, 2 & 3	I	Solve Any 2 out of 3
2	Question Numbers 3, 5 & 6	11	Solve Any 2 out of 3
31	Question Numbers 7 & 8	111	Solve Any 1 out of 2

FORM ISO 9001: 2008- School of Architecture	KLETU	Document #: FMCD2005	5	Rev: 1.0
Title: Curriculum Conte	nt- Course w	ise		Page 10 of 30
				Year: 2017-2018
Program : Architecture				
Course Title: Modern Architecture			Course Co	de: 15AATC304
L-S-P: 2-0-0	Credits: 2		Contact Ho	urs: 2
ISA Marks: 50	ESA Marks: 5	0	Total Marks	s: 100
Teaching Hours: 32	Examination	Duration: NA		
UNIT I: characteristics of Renaissance architecture Transitional period and Revival architecture Early Industrial buildings Arts & Craft Movement and Art Noueavau. UNIT II: The Chicago school and Italian Futurism De Style and Bauhaus Ideas and Works of Le Corbusier andMies Van Der Rohe, Ideas and Works of Le Corbusier and Louise Kahn in India UNIT III: Ideas and Works of Frank Llyod wright Ideas and Works of architects AchyutKanvinde, B. V. Doshi and Charles Correa				
NOTE: The architects and ideas mentioned above are indicative only The course teacher may choose the ideas and works of architects to explain modern architecture. Text Books:Nil Reference Books: 1. Kenneth Frampton, Modern Architecture- A critical History 2. Bannister Fletcher, History of Architecture William Curtis, Modern Architecture since 1900 3. William Curtis, Modern Architecture since 1900 4. Bannister Fletcher, History of Architecture Scheme for Semester End Examination (ESA)				
	O Marka Fash	Unit Number	Instructions	

SI.No	8 Questions to be set of 20 Marks Each	Unit Number	Instructions
1	Question Numbers 1, 2 & 3	I	Solve Any 2 out of 3
2	Question Numbers 3, 5 & 6	II	Solve Any 2 out of 3
31	Question Numbers 7 & 8	111	Solve Any 1 out of 2

Contraction of the second seco	FORM ISO 9001: 2008-KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise		ise	Page 11 of 30
		Year: 2017-2018	

Program : Architecture

Course Title: Working Drawing	Course Code: 15AATC305	
L-S-P: 0-2-0	Credits: 2	Contact Hours: 3
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 48	Examination Duration: NA	

UNIT I:

Introduction and importance of detailed working drawings in architectural practice. Creating working details for a residential / commercial project starting with foundation/footing and wall details

UNIT II:

Introduction to creating working details of doors, windows, staircase and floors

UNIT III:

Introduction to creating working details of interior, bathrooms, electrical, &plumbing.

Text Books:NIL

Reference Books:

 Architectural Working Drawings: Residential and Commercial Buildings by William P. Spence Publisher: Wiley; ISBN-10: 0471574880

ISBN-13: 978-0471574880

2.) Architectural Drawing: A Visual Compendium of Types and Methods (3rd edition) by Rendow Yee Publisher: Wiley; 3 edition (July 20, 2008)

ISBN-10: 0471793663 ISBN-13: 978-0471793663

3.) AutoCAD 2008 For Dummies. by David Byrnes, Mark Middle brook.

Publisher: For Dummies; Revised edition (May 8, 2006)

ISBN-10: 0471786497, ISBN-13: 978-0471786498

Scheme for Semester End Examination (ESA)

Assignments, Checking of Portfolio of Term Work / Viva.

Contraction of the second	FORM ISO 9001: 2008-KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course w		ise	Page 12 of 30
			Year: 2017-2018

Program : Architecture					
Course Title: Quantity survey and specifications. Course Code: 15AATC306					
L-S-P: 1-1-0	Contact Hours: 3				
ISA Marks: 50	ESA Marks: 50	Total Marks: 100			
Teaching Hours: 48	Examination Duration: 3 Hours				
Unit - I					
1)Types of Estimates					

2) Detailed estimates for load bearing buildings.

Unit - II

3) Detailed estimates for R C C frame structure buildings.

4) Introduction to Schedule of Rates.

5) Rate analysis.

Unit – III

6) Abstract Specifications for building constructions.

Text Books: NIL

Reference Books: Datta B N

SI.No	8 Questions to be set of 20 Marks Each	Unit Number	Instructions
1	Question Numbers 1, 2 & 3	1	Solve Any 2 out of 3
2	Question Numbers 3, 5 & 6	II	Solve Any 2 out of 3
3	Question Numbers 7 & 8	Ш	Solve Any 1 out of 2

School of Architecture

Page 13 of 30 Year: 2017-2018

Program : Architecture Course Title: STRUCTURES – V Course Code: 15AATC307 L-S-P: 3-0-0 Credits: 3 Contact Hours: 3 ISA Marks: 50 ESA Marks: 50 Total Marks: 100 Teaching Hours: 48 Examination Duration: 3 HOURS

UNIT I:

1. Introduction to the structural design project: Design of airport terminal building of dimension 50m X 100m as horizontal structural system.

2. Structural analysis and design: Determining the loads on structure as per IS 875-1984. Design the roof system

3. Analysis and Design of continuous beams and slabs using IS:456-2000. Design of column and isolated foundation for axial load.

UNIT II:

- 4. Structural behavior, classification and application of folded plates, shells, domes, pneumatic structures and tensile structures.
- 5. Study of typical reinforcement details of RCfolded plates, shells, domes.
- 6. Long span industrial building: Triangular and vierendeel roof truss structural system, general configuration of industrial building, spacing of trusses and design. Dead load, live load and wind load as per IS 875:1984
- 7. Cable and suspension structures: Design of long span system using cable and suspension system

UNIT III:

8. Design of dogged legged stairs

Text Books:

Reference Books:

1. S.R. Karve and V. L. Shah, Limit state theory and design of reinforced concrete structures publications Pune

FORM ISO 9001: 2008-KLETU School of Architecture Title: Curriculum Content- Course w Program : Architecture		Document #: FMCD2005 ise	t 5	Rev: 1.0 Page 14 of 30 Year: 2017-2018
Course Title:Elective-Sustainable Dev	elopment of Liv	ing CulturalHeritage	Course Co	de: 15AATE301
L-S-P: 0-2-0	Credits: 1		Contact Ho	ours: 2
ISA Marks: 50	ESA Marks: 5	0	Total Mark	s: 100
Teaching Hours: 32	Examination	Duration: NA		
Definition of Cultural Heritage ,Cultural Landscape, Monuments & site(UNESCO operational guidelines) Documentation of the Heritage Site Need for conservation of living cultural heritage sites . Values & Ethics in heritage conservation Charters				
UNIT II:				
Analysis				
Draft Proposals and report				
UNIT III:				
Final proposal and report				
Text Books:				
NIL				
Reference Books:				
1. Bernard Rudofsky, Architecture without Architects .a short introduction to Non-Pedigreed				

- Architecture. Academy Edition London
- 2. Enrico Guidon, Primitive Architecture
- 3. Christian NorbergShulz, Genius Locii
- 4. Alexander Christopher ; Urban Pattern
- 5. Alexander Christopher: Timeless way of Building
- 6. Feilden Bernard, Guidelines for Conservation, A technical manual

- 7. *Jacobs,J* (1961) The Death and Life of Great American Cities, NewYork, Random House.
- 8. *Lynch,K* (1981) A Theory of Good City Form, MIT Press
- 9. UNESCO Operational Guidelines 2012
- 10. UNESCO Nomination Dossier manual 2012
- 11.UNESCO paper series

School of Architecture

Website: /COMOS , ICCROM , UNESCO

Project Report,,Place Making " A Synthesis of Professional Practice & Case studies about better living Environment, RUDI (Resource of Urban Design Information)

Scheme for Semester End Examination (ESA)

Checking of Portfolio of Term Work / Viva

RETECH	FORM ISO 9001: 2008-KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0	
Title: Curriculum Content- Course w		ise	Page 16 of 30	
			Year: 2017-2018	
Program : Architecture				

Course Title: Elective-ADVANCE COMPUTERS - I		Course Code: 15AATE302		
L-S-P: 0-1-0	Credits: 1	Contact Hours: 2		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 32	Examination Duration: NA			
UNIT I:				
 Introduction Raster and Vector Introduction color modes and p Introduction typography, anima 	 Introduction Raster and Vector graphics. Introduction color modes and pixels. Introduction typography, animation, video and sound. 			
UNIT II:				
1. Introduction Adobe indesign software				
2. Page layout tools and commands in adobe indesign software				
UNIT III:				
 Interactive tools commands in adobe indesign software Various export file formats 				
Text Books:Nil				

Reference Books:

Online tutorials

Scheme for Semester End Examination (ESA)

Checking of Portfolio of Term Work / Viva

Contraction of the second seco	FORM ISO 9001: 2008-KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course w		ise	Page 17 of 30
			Year: 2017-2018

Program : Architecture				
Course Title:Elective-Productive landscape Course Code: 15AATE303				
L-S-P: 0-1-0	Credits: 1	Contact Hours: 2		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 32	Examination Duration: NA			

UNIT I:

- Introduction to different types of productive landscape in interior and exterior spaces of building.
- Study of Different methods of productive landscape.
- Basics of different types of grow mediums, soil and plants.

UNIT II:

- Maintaining, pest and disease control of plants
- Water management and Fertilizers for the good health and food production of plants
- Organic and sustainable methods of growing plants in small spaces

UNIT III:

- Introduction to vertical farming.
- Literature and Case study.

Text Books:Nil

Reference Books:

- 1. Blane Alan, Landscape Construction and detailing B T Batsford Ltd, London 1996.
- 2. Laurie, Michael, An introduction to Landscape, II Ed, Prentice Hall, New Jersey, 1986

Website:

Project Report

Scheme for Semester End Examination (ESA)

Checking of Portfolio of Term Work / Viva

Contraction of the second seco	FORM ISO 9001: 2008-KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title	e: Curriculum Content- Course w	ise	Page 18 of 30
			Year: 2017-2018

Program : Architecture				
Course Title:Elective- Hands on workshop Course Code: 15AATE304				
L-S-P: 0-1-0	Credits: 1	Contact Hours: 2		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 32	Examination Duration: NA			

UNIT I:

- Introduction to different types of hands on projects
- Case study and literature study of the selected project.
- Data collection and material study of the project.

UNIT II:

- Development and execution of the project with hands on experience.
- Continual development and real time design and material application on scaled models and life scale models.

UNIT III:

• Hands on execution with improvements and Documentation of the project from start to finish.

Text Books:Nil

Reference Books:

- Ching, Francis DK, Architecture: Form, Space and Order, 2nd ed.VanNostrand Reinhold, New York, 1999
- Visual Intelligence: How We Create What We See by Donald D. Hoffman (Author) Publisher: W W Norton & Co Ltd; New Ed edition (29 Feb 2000)
- 3. Building Construction Hand book: By R Chudly& R Greeno, Bullerworth Heinemann, New-Delhi.

Website:

Project Report

Scheme for Semester End Examination (ESA) Checking of Portfolio of Term Work / Viva

Page 19 of 30 Year: 2017-2018

Program: Architecture Course Title: Elective - DIGITAL 3D Course Code: 15AATE205 L-T-P 0-0-2 Credits: 2 **Contact Hours: 28** ISA Marks: 50 ESA Marks: 50 Total Marks: 100 **Teaching Hours: 28 hrs Examination Duration: 2hrs** Unit I 1. Understanding the Basics of Rhino 2. Working with the tools for design 3. Basic modeling using tools in Rhino Unit II 1. Understanding the Basics of Grasshopper 2. Working with the tools for design 3. Basic modeling using tools in Grasshopper 4. Simulating Rhino design with Grasshopper Unit III 1. Presenting the modeled design using the software knowledge Text Books - NIL **Reference Books: - NIL**

UNI T	8 Questions to be set of 20 Marks Each	Chapter numbers	Instructions
I	8 designs of Rhino models	1	To be completed in class hours
Ш	8 designs of Grasshopper models	2	To be completed in class hours
III	8 simulation designs	3	To be completed in class hours

RETECH . INFINITION	FORM ISO 9001: 2008-KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course w		ise	Page 20 of 30
			Year: 2017-2018

VI SEMESTER

RETECH	FORM ISO 9001: 2008-KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise		ise	Page 21 of 30
			Year: 2017-2018

Program : Architecture			
Course Title: Architectural Design – VI Course Code: 15AATC308			
L-S-P:1-5-0	Credits: 6	Contact Hours: 9	
ISA Marks:50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 144	Examination Duration: NA		

Course objective:Application of an understanding of structures and services in the design of social infrastructure in an urban context.

Course contents:

- 1. Project shall be of multiple functions and with a need for imagery as one of the architectural goals.
- 2. Design project should be a complex building involving an advanced level of services and structural system. Example: Exhibition and display pavilions, theme based hotels, sports facilities, medical facilities and shopping centers etc
- 3. Design emphasis shall be on the use of innovations in materials and techniques of construction.
- Alternative to the emphasis on imagery, projects involving large span structure like industrial Structures may be attempted. Design emphasis shall be on the skin and support of structural Systems and resulting architectural form.

UNIT I:Design Analysis :Research of the given design project, Analysis of precedents.

Site analysis / Concept Development: Site plan, Site analysis, site synthesis and zoning,

formulation of design brief ,conceptual sketches,

design development.

Preliminary Design Development stage: Schematic drawings of plans with furniture Layout,

sections, elevations and study models

UNIT II: Secondary Design Development stage : Development of detail plans, elevations and sectional details,

Models, Development of Three dimensional massing

with corresponding fenestrations,

details of services and structural system.

UNIT III: Finalization of design: Presentation (computer aided) and rendering

Esquissee: Given design topic to be completed within the time limit.

Model Making : Final three dimensional model/views

Necessary theoretical inputs to be given highlighting the

norms and design issues. At least one major exercise and

one minor design/ time problem should be given.

Title: Curriculum Content- Course wise

Page 22 of 30 Year: 2017-2018

The topics covered as design problems will have to be

covered by the studio faculty members through lecture/

slide show session and site visits. The Portfolio covering

the given topics and the study models shall be presented .

The evaluation shall be through periodic internal reviews.

Scheme for Semester End Examination (ESA)

Evaluation of Portfolio, assignments by internal and external examiners

The students have to present the entire semester work for assessment along with Models.

A viva-voce (Approximate 15 minutes /student) shall be conducted by a jury comprising of an external examiner and an internal examiner. The drawings, models and shall be presented by the student.

Title: Curriculum Content- Course wise

Course Title: BUILDING CONSTRUCTION & MATERIALS - VI		Course Code: 15AATC309
L-S-P: 1-3-0 Credits: 4		Contact Hours: 6
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 96 Examination Duration: NA		

UNIT I: STEEL STRUCTURES

Various steel sections and its use as, single or composite for column and beams, including connection methods. Steel grillage foundation.

UNIT II: STEEL BEAMS AND GIRDERS, TRUSSES, PORTAL FRAME & PEB

Girders: Types of girders like, standard sections, lattice, plate, castellated, veirendiel and portal frame.

Trusses: Types of roof trusses. Detailing of ridged & North light roof truss, including fixing of roofing materials **PEB:** Introduction, fabrication and selection criteria.

UNIT III: MATERIALS:

Waterproofing and weather proofing materials like chemical admixtures and surface application. and Properties and architectural uses of ferrous and non-ferrous metals.

Note – The Portfolio covering the above topics shall be presented for Term work. Site visits shall be arranged by studio teacher. Study of material application shall be submitted in the form notes, sketches and photo brief as a part of portfolio

Text Books:

- McKay J.K Building Construction Metric Vol 1-4, 4thedi Orient Longman Pvt. Ltd, Mumbai,2002
- "Construction Technology" volume-I by R Chudley, ELBS & Longman group Ltd.
- Barry R, "The construction of buildings", Vol-2, 5th Edi, East West Press, New Delhi 1999.
- Bindra S.P and Arora S.P, Building Construction-Planning Techniques and Method of Construction, 19thedi, Dhanpat Rai Pub ,NewDelhi, 2000
- "Building Construction" by JanardhanJha, Khanna New-Delhi.
- RangawalS.C ,"Building Construction" 22nd Edi, charotar Publishing house, Anand, 2004
- "Engineering Materials" by Surendra Singh, Vikas Delhi.
- "Building Materials" by S K Duggal, IBH New Delhi.
- Sushil Kumar T.B of Building Construction 19thedi, Standard Pub House, NewDelhi, 2003.
- Chowdhary K.P. Engineering Materials used in India, 7th Edi, Oxford and IBH Pub Itd New Delhi, 1990.
- Building Construction Hand book : By R Chudly& R Greeno, Bullerworth Heinemann, New-Delhi.

Scheme for internal Assessment (ISA): Evaluation of term work regularlyand tests conducted Scheme for Semester End Examination (ESA): Evaluation of term work portfolio & Viva

School of Architecture

Page 24 of 30 Year: 2017-2018

Course Title: SERVICES – IV(Acoustic)		Course Code: 15AATC310
L-S-P: 2-0-0	Credits: 2	Contact Hours: 2
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 32	Examination Duration: 3 HOURS	

1. UNIT I:

Introduction to the study of acoustics

- 1. Basic terminology-propagation, frequency, pitch, tone, sound pressure, intensity of sound' velocity of sound, decibel scale, loudness, threshold of audibility, pain, masking effect, sound and distance.
- Behavior of sound in an enclosed spaces----- reflection of sound from plane, convex and concave surfaces, diffraction of sound, masking effect, articulation test, echoes, whispering galleries, sound foci and dead spots.
- 3. Effect of noise, various types of noises, air borne and structure borne noise, impact noise, acceptable noise levels, transmission loss.

2. UNIT II:

Acoustic materials and Definition of noise.

- 1. Various sound absorptive materials, construction details, special sound absorptive materials used for multipurpose activities, absorption coefficient, reverberation, reverberation time calculation
- 2. Environmental noise Road, rail and air traffic and means of controlling and insulation, Industrial noise air turbulence, friction, methods of reduction by enclosures and barriers, sound isolationthrough landscape elements, land use planning for noise control
- 3. Sound proof doors and windows, sound leaks in doors and windows, floating floors, cavity wall construction, discontinuous joints, noise reduction between rooms and floors, resilient hangers.
- 4. Noise reduction from mechanical equipment, rubber mounts, vibration isolation of machines, pumps and generators, noise in a.c. ducts, acoustical filters, electronic sound amplification and distribution. Systems, loud speaker layout.

UNIT III:

Study and development of ---Auditorium and theaters

- 1. Design details of---- audio visual room,
- 2. Seminar hall, Cinema Theater, auditorium with balcony used for drama, music and speech.
- 3. Lecture halls, office building

Case study of an auditorium acoustically treated with drawings---acoustical design for any one type of building with RT calculations.

Reference Books:

School of Architecture

Page 25 of 30 Year: 2017-2018

1. Acoustics and Noise Control: B.J. Smith, R.J. Peters, S owen, Longman Group Ltd. U.S.A., 1982

2. Acoustical Designing in architecture: Vern o. Knudsen and Cyril M. Harris, John Wiley & Sons, inc. London. 1963

3. Master Hand book of Acoustics: F.Alton Everest, 4ed, McGraw-Hill, Two Penn Plaza, New York, NY 10121-2298 (Delhi- India), 1945

4. Acoustics Noise and buildings: P.H. Parkin, H.R. Humphreys and J.R Cowell, 4ed, Ebenezer Balis and Son, Ltd., the Trinity Press, Worcester, and London, 1979

5. Acousics : R. L. Suri, 1ed, Asia Publishing, Mumbai, 1966

Internal Semester Assessment (ISA)

Minor tests and assignments

SI.No	8 Questions to be set of 20 Marks Each	Unit Number	Instructions
1	Question Numbers 1, 2 & 3	I	Solve Any 2 out of 3
2	Question Numbers 3, 5 & 6	II	Solve Any 2 out of 3
3	Question Numbers 7 & 8	111	Solve Any 1 out of 2

Contraction of the second development	FORM ISO 9001: 2008-KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title	e: Curriculum Content- Course w	ise	Page 26 of 30
			Year: 2017-2018
Program : A	Architecture		

Course Title: Contemporary Archited	ture	Course Code: 15AATC311
L-S-P: 2-0-0	Credits: 2	Contact Hours: 2
ISA Marks:50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 32	Examination Duration: 3 HOURS	

UNIT I:

- 1) Post-independence architecture in India -
- 1. Ideas and Works of architects i.e. AchyutKanvinde, B. V. Doshi, Charles Correa, etc
- 2. Ideas and Works of architects i.e. Raj Rewal, Uttam Jain, Laurie Baker, etc

UNIT II:

- 2) Contemporary western architecture -
- 1. Ideas and Works of post modern architects i.e. Richard Meier, Charles Moore, etc.
- 2. Ideas and Works of de-construction architects i.e. Bernard Tschumi, Frank Gehry, ZahaHadid, Daniel Leibskind, etc.
- 3. Ideas and Works of hi-tech architects i.e. Norman Foster, Renzo Piano, Richard Rogers, etc.
- 4. Ideas and Works of artist and architects i.e. Santiago Calatrava
- 5 Ideas and Works of Rem Koolas, Zahahadid, Daniel Liebskind

UNIT III:

- 1) Contemporary Indian architecture
- 1 Ideas and Works of Hafeez contractor, Sanjay mohe, Rahul Mehrotra , Shirish Beri, Sanjay Puri, Christopher chares Benninger, etc

Text Books: Nil

Reference Books:

- 1. Bahga, Bahga and Bahga, Modern Architecture in India
- 2. Jon Lang, A Concise History of Modern Architecture in India
- 3. Charles Jencks, Currant Architecture
- 4. **Dennis Sharp,** 20th Century Architecture, A Visual History
- 5. James Steel, Architecture Toda

Internal Semester Assessment (ISA) - 2 Minor test and assignments

SI.No	8 Questions to be set of 20 Marks Each	Unit Number	Instructions
1	Question Numbers 1, 2 & 3	I	Solve Any 2 out of 3
2	Question Numbers 3, 5 & 6	11	Solve Any 2 out of 3
3	Question Numbers 7 & 8		Solve Any 1 out of 2

Title: Curriculum Content- Course wise

Program : Architecture

Course Title: Professional practice - I		Course Code: 15AATC312
L-S-P: 1-1-0	Credits: 2	Contact Hours: 3
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 48	Examination Duration: 3 HOURS	

UNIT I:

1. Tenders –Tender documents, Types, Tendering Procedure, Tender Notice, EMD, Mobilisation Fund, Security Deposit, Retention Amount, Mobilisation Fund, Contractor's Profit, Work Order, and Letter of Acceptance.

2. Contracts – Definition, General Principles, Types of Contract, Importance of Articles of Agreement and Appendix, Definition of various terms and their scope. Architect's power and duties with respect to execution of contract conditions, Contractor's Duties and Liabilities under contract. Problems arising out of contract – Virtual completion and defects liability, liquidated and unliquidated damage, Penalty Bonus, Extension of Time, Non tendered items, extra and additional work, variation, prime cost and provisional sum, fire insurance and conditions of claim

UNIT II:

3. Arbitration and Conciliation – Methods to settle disputes and differences, Arbitration – Types, Arbitrator, power and duties of Arbitral Tribunal, Umpire, Awards and Conduct of arbitration proceedings. Conciliation – Duties of Conciliator. Arbitration and Conciliation Act 1996.

4. Dilapidation and Easements -

Dilapidation - Definition, Characteristics, Schedule of Dilapidations, Preparation of Dilapidation Report

Easements – Definition, Various easement rights, process and precautions to be taken by the architect in protecting or preventing the concerned parties from acquiring such rights.

UNIT III:

5. Valuation – Introduction, Essential Characteristics, Value and its classification, purpose of Classification, methods of valuation, standard rent, cost of construction.

Text Books:NIL

Reference Books:

- 1. Professional Practice Dr. Roshan Namavati
- 2. Architectural Practice and Procedure Ar. V S Apte
- 3. The Business of Architectural Practice Derek Sharp
- 4. Architectural Practice in India Ar. MadhavDeobhakta
- 5. Professional Practice Dr. K G Krishna Murthy and Prof S V Ravindra

Internal Semester Assessment (ISA)2 Minor test and assignments

SI.No	8 Questions to be set of 20 Marks Each	Unit Number	Instructions
1	Question Numbers 1, 2 & 3		Solve Any 2 out of 3
2	Question Numbers 3, 5 & 6	Π	Solve Any 2 out of 3
3	Question Numbers 7 & 8	III	Solve Any 1 out of 2

KLETECH. WARRANT	FORM ISO 9001: 2008-KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title	e: Curriculum Content- Course w	ise	Page 29 of 30
			Year: 2017-2018

Program : Architecture		
Course Title: Interior Design		Course Code: 15AATC313
L-S-P: 0-3-0	Credits: 3	Contact Hours: 5
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 80	Examination Duration: NA	

UNIT I:

- History of Interior Design
- Interior Space and its definitions

UNIT II:

- Material information and its application.
- Detailing

UNIT III:

• Hands on experiment with different materials and its usage in interior spaces.

Text Books - NIL

Reference Books:

- 1 CHING
- 2 Rendering with Pen & Ink.

Scheme for internal Assessment (ISA): Evaluation of term work regularlyand tests conducted Scheme for Semester End Examination (ESA): Evaluation of term work portfolio & Viva

FORM ISO 9001: 2008-KLETU School of Architecture		Document #: FMCD2005		Rev: 1.0	
Title: Curriculum Conter	nt- Course w	ise		Page 30 of 30	
				Year: 2017-2018	
Program : Architecture					
Course Title: STRUCTURES - VI			Course Co	de: 15AATC314	
L-S-P: 3-0-0	Credits: 3		Contact Ho	ours: 3	
ISA Marks: 50	ESA Marks: 5	50 Total Mark		ks: 100	
Teaching Hours: 48	Examination I	Duration: 3 HOURS			
UNIT I: 1. Vertical/lateral structural systems: introduction. Structural design project of a 15 story of 40m X 40m X 32m. calculation dead load, live load and wind load as per IS 875-1984. 2. Seismic loading calculation as per IS1983-2002 part - I. 3. Introduction to the computer added structural analysis and design. UNIT II: 4. Introduction to lateral load resisting system 5. Shear wall system 6. Dual system UNIT III: 7.Braced frame					
 Text Books: Dr. Ram Chandra, Design of Steel Structures, Vol I, 10th ed. Standard book house, New Delhi, 1999. S. Ramambrutham and R Narayanan, Design of Steel Structures, 4th ed. Dhanpat Rai and Sons, Delhi 1995 Reference Books: Structures Martin Bechthold, Daniel L Schodek. PHI Learning pvt. Ltd 					

Internal Semester Assessment (ISA)2 Minor test and assignments

SI.No	8 Questions to be set of 20 Marks Each	Unit Number	Instructions
I	Q.No1, Q.No2, Q.No3	1	Solve Any 2 out of 3
II	Q.No4, Q.NO – 5 Q.No6,	11	Solve Any 2 out of 3
III	Q.No7, Q.No8	111	Solve Any 1 out of 2

KLETECH. MARK	FORM ISO 9001: 2008-KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0	
Title	Page 1 of 26			
			Year: 2018-2019	

B.ARCHCURRICULUM SCHEME & STRUCTURE OF 2015-2020 BATCH

VII Semester - VIII Semester

School of Architecture, KLE Technological University, BVBCET Campus, Vidyanagar, Hubli.

(Year of introduction-2015, Faculty-A, Architecture-AT, Core course-C, Humanities-H, Lab-L, Elective-E, internship-I, Practice-P, W-Project)

KLETECH. SCHWART	FORM ISO 9001: 2008-KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0	
Title	Page 2 of 26			
			Year: 2018-2019	

B.Arch. Semester VII

No	Code	Course	Category	L-S-P	Credit s	Contact Hours	ISA	ESA	Total	Exam Duration
1	15AATC401	Architectural Design VII (Urban Insert)	PC	0-7-0	7	10	50	50	100	NA
2	15AATC402	Building Const& Materials VII	BS&AE	1-3-0	4	6	50	50	100	NA
3	15AATC403	Settlement Planning	PC	2-0-0	2	2	50	50	100	3 HOURS
4	15AATC404	Dissertation	PAE	0-3-0	3	4	50	50	100	NA
5	15AATC405	Professional practice - II	PAE	3-0-0	3	3	50	50	100	3HOURS
6	15AATC406	Structures – VII	BS&AE	0-3-0	3	4	50	50	100	NA
		TOTAL		6-16-0	22	29	300	300	600	

ISA: Internal Semester Assessment , ESA : End Semester Assessment , P : Practical, S : Studio , L : Lecture, (PC-Professional Core, BS & AE- Building Sciences & Applied Engineering, PAE- Professional Ability Enhancement)

Credit	Lecture Hours	Studio Hours	Practical Hours
1	1	1.5	2

KLETECH. 2000	FORM ISO 9001: 2008-KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0	
Tif	tle: Curriculum Content- Course wi	Page 3 of 26		
The. Sufficient Softent-Sourse wise			Year: 2018-2019	

B.Arch. Semester VIII

No	Code	Course	Category	L-S-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	15AATC407	Architectural Design VIII (Campus Planning)	PC	0-7-0	7	10	50	50	100	NA
2	15AATC408	Pre-thesis	PC	0-3-0	3	4	50	50	100	NA
3	15AATC409	Digital tool- 3 (Revit)	PAE	0-0-3	3	4	50	50	100	NA
4	15AATC410	Online Portfolio	PAE	0-0-2	2	3	50	50	100	NA
5	15AATC411	Construction Management	PAE	3-0-0	3	3	50	50	100	3 Hours.
6	15AATC412	Green Building Studio	PAE	0-2-0	2	3	50	50	100	NA
7	15AATE407 5AATE408 15AATE409 15AATE410	Elective-III Architectural Film Making-I Sustainable development of living heritage –II Transit Oriented Development Architectural Lighting	PAE	0-2-0	2	2	50	50	100	NA
		TOTAL		3-14-5	22	29	350	350	700	

ISA: Internal Semester Assessment , ESA : End Semester Assessment , P : Practical, S : Studio , L : Lecture, (PC-Professional Core, BS & AE- Building Sciences & Applied Engineering, PAE- Professional Ability Enhancement)

	FORM ISO 9001: 2008-KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0	
Т	Page 4 of 26			
nile. Guinculum Goment- Gourse wise			Year: 2018-2019	

Credit	Lecture Hours	Studio Hours	Practical Hours
1	1	1.5	2

KLE TECH. DEBENSE	FORM ISO 9001: 2008-KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Ti	Page 5 of 26		
	Year: 2018-2019		

VII SEMESTER

Rev: 1.0

Title: Curriculum Content- Course wise

School of Architecture

Page 6 of 26

Year: 2018-2019

Program : Architecture					
Course Title: DESIGN STUDIO-VII (Urban Insert) CourseCode: 15AATC401					
L-S-P: 0-7-0	Credits: 7	ContactHours:10			
CIE Marks: 50	SEE Marks: 50	Total Marks: 100			
Teaching Hours: 160	Examination Duration: NA				

Course Overview:

" Each generation writes its own biography in the cities it creates". Lewis Mumford, The Culture of the City

The course focuses on creating awareness in students in the subject of Urban Design as a specialization in the field of Architecture and urban planning

This studio will explore the discipline of urban design. Urban design is the creation of the physical structure for collective life: making places for people. It is a generalist discipline focused on the building of human settlements. We lay our cities, roads, parks and buildings, in order to create places where humanity can go about the complicated business of daily life.

As urban designers we are answerable not just to our clients but to everyone, generations past, present and future, all of whom must live together in the places on which we work. Ultimately we strive to make places for people that are sustainable, beautiful, inspiring and open, for the best places are never finished. Urban designers work at a range of scales, from street furniture all the way up to regions.

Objectives of the course:

- · Identify and analyze how people perceive and navigate their communities
- To give an overview of urban design as an interface between the fields of architecture and urban planning.
- Our approach to urban design engages the city as an integrated design problem which is best solved through a participatory design process. Drawing on multiple disciplines, you will study the process of working directly with communities to create visions for future change.
- The studio is intended to both introduce you to urban design and inform your understanding of building design in relation to existing contexts.
- The first half of the semester is focused on introducing new skills of urban design which involves field studies and analysis of the built environment and its embedded issues while the second half is devoted to expanding and developing design skills at the block and neighborhood scale.
- The urban design studio seeks to educate architects to be leaders for vision-based change at the scales of neighborhood, city
 and region. This studio builds upon and expands your design skills in architecture, urban design and landscape architecture,
 and introduces new skills in community leadership and urban design.
- To impart the knowledge about various developments in the field of urban Design.

Expected skills/Knowledge Transferred:

Skills to understand the principles and methodology involved in urban design projects in public and private developments through active participation with the stake holders and the authority

Urban design as a complex interdisciplinary process requiring strong leadership and a combination of skills. The community and urban design studio is designed to introduce you to new skills regarding community leadership and urban planning and development while expanding your existing skills as a physical designer. The exercise sequence relates directly to these various skills over the course of the semester.

Course contents

Based on the currents issues affecting the built environment in India or abroad, the studio is aligned accordingly to address the complexity through solutions.

The studio is divided into three phases

The first phase involves Site (urban/peri-urban, rural laboratory)Identification, inventory and analysis

Pre visit research, archival study appreciating the natural, cultural, historical, economical socio-political context (Data collection: Maps ,drawings ,CDP, building regulation ,Demography study , socio economic survey)

Field study and inventory exercise

Meetings with the stakeholders

Site analysis inferences is carried out by the pre formed groups of four to five students each. The inferences, individual and shared views are presented. The emerging issues are discussed in a group.

Year: 2018-2019

Page 7 of 26

All groups present and discuss their respective SWOT observation, vision statement, Objectives, Strategies leading to a common vision statement.

The second phase of work focus on the preparation of master plans and design guidelines based on the conclusion drawn from the inventory and analysis phase, through agreed objectives for development and strategies and individual demonstration projects. The master plan and accompanying guidelines will be formulated simultaneously and will serve as the basis for individual test projects during the third phase.

Third Phase Individual project Proposals

Note: The above said task will be carry out in the holidays before the commencement of the semester and will take approximately two-three weeks

<u>Unit-I:</u>

Site Analysis

(5 weeks in the studio) (1-6 week)

2-3 weeks on the site during VI Semester end holidays

Research and inventory

Appreciating the context through maps, context model, digital model

Analysis and identification of issues and impact assessment

Communication of analysis and conclusions through situation maps, analytical drawings, photo documentation, sketches drawings and other graphical material as required to illustrate issues with potential to influence the master plan

This information will be published in a binder that will act as a primary resource for the next phase of work.

Working as a studio you will explore economic, social and physical aspects of the neighborhood through maps, demographics, diagrams, photographs, and a large physical model. The analysis provides an opportunity for you to learn about the community. More importantly, effective representation of conditions sets the frame for a future. Analysis is the foundation upon which urban design and development proposals stand.

Unit-II: Urban Design Framework

4 weeks(6-10 weeks)

Formulating the Vision of the place

Formulation of Objectives

Development strategy (Land use, Zoning regulations, setting FAR, Ground Coverage, defined sustainable measures) Develop graphic and verbal recommendation for essential design character of the overall site and its individual development. Each group will produce one master plan for specific area of the city/town/neighborhood.

Policy and development framework

Working as a studio group, you will transform community issues and objectives into a unified vision for the neighborhood with a series of strategies and an urban design framework. The urban design framework will establish a future vision of the corridors, districts, and neighborhoods of the community. The framework will establish significant places for public investment as well as important civic design features of private development.

Unit-III. Urban Design Project

4 weeks(10-14 weeks)

This unit will involve reading task followed by class room discussions.

Once the overall vision for the place has been formulated and development objective are chalked out, the group disperses. Each individual designer will zoom in to there respective areas of intervention for:

Project identification

Formulation of design program

Urban Design Project framework

Formulation of areas

Design development

Draft proposal

Final Project

In the final phase you will develop a single area of focus in detail, exploring site forces, development typologies, three-dimensional place making and representation. Your vision for change will be embodied through the designs of a development proposal at a critical location in the community. A catalytic project must inspire continued investment and pursuit of the larger urban design goals for community reinvestment.

Title: Curriculum Content- Course wise

Page 8 of 26

The individual design solutions itself is defined in terms of allowing and constricting a set of processes in time and space. The challenge you face in the Urban Design Studio involves expanding the scale of the problem not only in space (the site is much bigger than in your previous studios), but also in time: the solution itself must allow for multiple possibilities over an extended period of time. In this sense your solutions must be concrete spatial proposals, but they should also be thought of as flexible temporal frameworks for urban change.

(15th week) +1 week for Final Presentation of individual interventions)

General Reading

- 1) Katz Peter, The New Urbanism: Toward an Architecture of Community. McGraw -Hill, Inc
- 2) Larict, M and Macdonald, E.Ed. 2013. The Urban Design Reader, Second Edition, Routledge.
- 3) Bacon N. Edmund. Design of cities. Penguin Books, New York 1976.
- 4) Krier Rob, Urban Space 3rd Ed, Academy Editions, London 1984.
- 5) KrierRob, Town Spaces(Contemporary Interpretations in Traditional Urbanism), Birkhauser-Publishers for Architecture
- 6) Mumford Lewis City in History, Its origin transformation and its prospects.
- 7) SpreiregenPaul ,Urban Design: The Architecture of Towns and cities
- 8) Alexander Christopher ; Urban Pattern
- 9) Alexander Christopher: Timeless way of Building
- 10) Alexander Christopher: New Theory of Urban Design
- 11) Alexander Christopher: Nature of Order, vol. 1, 2, 3, 4
- 12) Alexander Christopher: Synthesis of Form
- 13) Alexander Christopher: City is not a Tree
- 14) Rappoport Amos: Human Aspect of Urban Form
- 15) Rappoport Amos: History and Precedent of Environmental Design
- 16) Rappoport Amos: House Form and Culture
- 17) Rappoport Amos: Meaning of the built environment
- 18) Geoffrey Broadbent: Design in Architecture
- 19) Geoffrey Baker: Design strategies in architecture: An approach to analysis of form
- 20) Lynch Kevin: City Sense
- 21) Lynch Kevin: Image of the City

Reference Reading book

- 1) MoughtinClif, Urban Design, Method and Techniques. Architectural Press
- 2) Lawson B,(1980)How Designers Think, London Architectural Press
- 3) De Bono, E(1977) Lateral Thinking, Harmondsworth: Penguin
- 4) Jane Jacob, The Death and Life of Great American Cities (1961) New York, Random House.
- 5) Rudi & Academy of Urbanism, Place Making 2009
- 6) Atkins, Hinkley Town Center Renaissance Master Plan
- 7) DETR/CABE, By design(2000)
- 8) DTLR/CABE, Better places to live (2001)
- 9) Bartlett School of Planning, The value of design (CABE online, 2002)
- 10) English Heritage/CABE, Building in context (2001)
- 11) Robert Cowan (ed.), Urban design guidance (Urban Design Group, 2002)
- Robert Cowan, Place check a user's guide (Urban Design Alliance)
- 12) Bentley, I (etal) (1985) Responsive Environments , Architectural Press
- 13) Colquhoun, I (1995) Urban Regeneration
- 14) DETR and CABE (2000) By Design: Urban Design in the Planning System: Towards Better Practice
- 15) Urban Design Compendium
- 16) DETR (2000) Planning Policy Guidance Note 3: Housing
- 17) The New Urbanism: Towards an Architecture of Community, McGraw-Hill, Inc.
- 18) Krieger, A (Ed.) (1991) Towns and Town Making Principles, New York, Rizzoli
- 19) Rogers, R (1997) Cities for a Small Planet, Faber and Faber
- 20) Rudlin, D. and Falk, N. (1999) Building the 21st Century Home: The Sustainable Urban Neighbourhood,
- 21) Tibbalds ,F (1992) Making People-Friendly Towns, Longman
- 22) Urban Task Force (1999) Towards an Urban Renaissance, E & FN Spon (Final Report of the Urban Task Force)
- 23) Urban Villages Group (1992 and 1998) Urban Villages
- 24) English Dortnarshing (1006) Time for Design

ISO 9001: 2008-KLETU

School of Architecture

FMCD2005

Document #:

Rev: 1.0

Title: Curriculum Content- Course wise

Page 9 of 26 Year: 2018-2019

 25) English Partnerships / Urban Villages Forum (1998) Making Places 26) English Partnerships (1998) Time for Design II 27) English Partnerships (1999) Space for Growth 28) Housing Corporation (1998) Scheme Development Standards 29) Housing Corporation/DETR (1999) Housing Quality Indicators 30) Bentley,I (etal) (1985) Responsive Environments ,Architectural Press 31) Colquhoun, I (1995) Urban Regeneration 					
Web Sites					
Council on Architecture and the Built Environment: <u>www.cabe.org.uk</u> UDPFI Guidelines					
Student Assessment					
Participation- Field studies preparation, formulation c	ies, Pin -ups, critique, discussion, activity engagement, studio attendance and nof Vision, Objectives and Strategies 30				
Studio assignments- sketchbooks, drawings, maps ,report, interpretations from archival studies, observation SWOT analysis					
Individual design project- process and product		20			
Total		50			
Successful accomplishment of learning outcomes will be assessed, primarily, based on two tools					
1.Rubrics for the studio assignments					
2. The community design project, organized around project process, product, and presentation; and verbal critique and written comments from guest reviewers for process and final project presentations spread across series of internal reviews, external reviews, community participation, discussions, exhibitions/Urban Design Charrette /pechakucha					
Rationale					
Analysis	Physical Analysis(Lynch, Lost Space Analysis, Connectivity, Morhphology,SWOT, Factors Affecting the sites				
Principles	Theory of Built environment, Genius Locii,Urban Design Principles, Historic Urban Landscape, Valletta Principles for Historic towns and villages				
Strategy	Open Space, Built Environment, Heritage, Natural Setting, Connectivity,Urban Infrastructure, social infrastructure ,Urban Block, density, urban morphology etc				
Master Plan	Area development, sustainable design parameters, design for resilience and inclusiveness				
Design	Block plan, public realm design, area codes, Building codes, street features, street furniture ,lighting				
Conclusion					

Title: Curriculum Content- Course wise

Program : Architecture				
Course Title: Building Constructions & Materials- VII		Course Code: 15AATC402		
L-S-P: 0-4-0	Credits: 4	Contact Hours: 6		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 96	Examination Duration: NA			

Course contents:

Unit-I: Large span Roofing systems, shell roof , Folded Plates in R.c.c, advantages over conventional roofing systems and details there in space frame, Tensile & Pneumatic structures , evolution , advantages , scope and construction details there in.

Unit-II :Envelop systemMethod of using various types of curtain wall method including structural glazing Advantages, provision and arrangements made during construction, working out details with various metals.

Unit-III Pre fab, Pre stress and post tension study of various buildings prefab elements ,advantages over in situ components study of pre tensioning and post tensioning of prefab and in situ components

Advantages & disadvantages over regular reinforcement, pre& post tensioning method.

Material-

Concrete admixture adhesive &sealants, pest control Identifying the pest which may attack the buildings precautionary measures taken during construction. Pre &post treatment methods

Sessional Work (Internal semester assessment)

The 'Sessional Work' shall comprise of the following.

Scheme for Semester End Assessment (ESA)

The students have to present the entire semester work for assessment along with Model.

Mode of assessment :

A1 size sheets related to above mentioned topics

Models to scale on each topic are expected

References :


```
Page 11 of 26
Year: 2018-2019
```

Program : Architecture

Course Title: Settlement Planning		Course Code: 15AATC403
L-S-P: 2-0-0	Credits: 2	Contact Hours: 2
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 32	Examination Duration: NA	

Course contents:

Unit-I: 1 INTRODUCTION TO HUMAN SETTLEMENTS

Elements of Human Settlements – human beings and settlements – nature shells&Net work – their functions and Linkages – Anatomy & classification of Human settlements – Locational, Resource based, Population size & Occupational structure. Human settlements during ancient medieval and modern periods India, Europe and other parts of the world.

2 PLANNING CONCEPTS

Role and contribution of the following towards contemporary town planning thought – Geddesian Triad and outlook Tower by Patrick Geddes, City Beautiful by Daniel Burnham, Garden city by Ebenezer Howard, Neighbourhood by C.A.Perry, Radburn by Henry Wright and Clearance stein, Ekistics by CA Doxiadis, City for three million habitat, Radiant city and Chandigarh by Le Corbusier and F.L.Wright,Soria ,Soria Y Mata, Kevin Lynch.

Unit-II: 3 CONTEMPORARY ISSUES IN URBAN PLANNING

Contemporary problems of settlements, Environmental impact of unplanned growth. Socio-economic aspects of urban housing and problems of slums, rationale of urban regulatory controls. Urban redevelopment and renewal, urban traffic and transportation planning

4 URBAN AND REGIONAL PLANNING

Influence of socio-economic factors in the development of human settlements, growth and decay of human settlements. Classification of settlements: Classification based on population, functions, locations, Municipal status. Town and its land uses, graphical representation and colour coding of land use, character of a town, categories of a town, densities of a town, Principles, Advantages and types of Zoning. Scope and purpose of Perspective Plan, Regional Plan, Development Plan, Local Area Plan, Special Purpose Plan, Annual Plan, Project

Unit-III: 5 TOWN PLANNING TECHNIQUES.

Data Collection Techniques, Types of Surveys, Data and Map Analytical Techniques, Applying Carrying Capacity for Urban and Regional planning, Threshold Analysis – Factors taken into consideration to assess the most suitable land use & weighted overlay of Land suitability, Projection Techniques - Population Projection and Economic Projection, Plan formulation through Remote Sensing & Geographic Information System.

6 EMERGING TRENDS IN URBAN PLANNING.

New Urbanism, Smart growth, TOD, Form-Based Codes, Rural village, Transect Future of cities and cities of future -Sustainable cities, Intelligent cities, Liveable cities, Resilient cities, Smart Cities, Global city, Eco city, Compact city, Vertical urbanism, MediCity, Sports city.

FMCD2005

Title: Curriculum Content- Course wise

School of Architecture

Page 12 of 26 Year: 2018-2019

Program : Architecture			
Course Title: Dissertation		Course Code: 15AATC404	
L-S-P: 0-3-0	Credits: 3	Contact Hours: 4	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 64	Examination Duration: NA		

Course contents: The objective of this course is to orient the students to gain a strong theoretical analytical base for a well structured research. The course shall enable students to conduct research, analyse and write a research paper on a topic of their interest.

Students may choose a topic related to Architecture and allied subjects. Emphasis must be on critical understanding, logical reasoning and structured writing.

Unit-I:

The nature and function of research, meaning of research in the field of architecture, pure and applied research, traditional and potential areas/types, the three stages of research

Research methodology, various techniques of data collection in general, specific techniques in architectural research, methods of analysis stage, communication of research reporting, the structure of a report, the necessity for the development of writing skills.

Unit-II

Technical data about formal writing, the use of visuals, the qualities of research, the use of primary and secondary references, bibliography, notation, cross reference etc. Issues of selective reference. Methods of writing draft reports before finalisation. Research in the fields of environment, community structure, architectural history and theory, urban structure, building type studies, etc.

Unit-III

Behavioural studies and user evaluation.

Sessional Work (Internal semester assessment)

Students are expected to present the progress of the study at various stages of the semester.

Students will be asked to prepare research proposals, which will be discussed and modified.

Scheme for Semester End Assessment (ESA)

Final assessment of the students' work may be based on written Paper as well as oral communication. However, greater weightage may be given for writing skills and research content of the study.

Mode of assessment :

By the end of the semester, students are expected to submit a written paper of approximately 3500 words.

Standard referencing conventions and technical writing norms must be adhered to.

Students are expected to present the progress of the study at various stages of the semester.

References :

- 1. Murray, R. Writing for academic journals. Berkshire: Maidenhead, Open University Press. (2005).
- 2. Borden, I. and Ray, K. R. The dissertation: an architecture student's handbook. (2006).
- 3. Anderson, J. and Poole, M. Thesis and assignment writing. Brisbane: John Wiley. (1998).
- 4. Architectural research methods; Linda Groat& David Wang, John Wiley and sons, New York
- 5. Visual research methods in Design; Henry Sanoff, Van Nostrnad Reinhold, New York
- 6. Architectural research; Snyder James C; Van Nostrnad Reinhold

1 age 15 01 20
Year: 2018-2019

Program : Architecture			
Course Title: Professional Practice II Course Code: 15AATC405			
L-S-P 3-0-0	Credits: 3	Contact Hours: 3	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 48	Examination Duration: 3 HOURS		

Course contents:

Unit-I:

1. Architect and his Practice:

Profession of architecture, duties and liabilities to the profession, Types of Architect's Office – proprietorship, partnership and combined concerns, advantages and Disadvantages of each, secure clientage, office administration and accounts of firms, Competitions

2. Supervision by Architects:

Site Visits, Meaning and Purpose of Supervision, Remarks on Site Book, Site Meeting and Bill CheckingUnit-II

3. National Building Code:

Need and nature of building codes, standards and regulations, overview of basic terminologies, nature of building codes in special regions like heritage zones, environmentally sensitive zones, disaster prone regions, coastal zones, hilly areas, etc. Norms for Vehicular Areas, Norms For Fire Protection, Norms for Building Services.

4. Building Regulations:

Building Bye laws and Regulations, Setbacks and margins, norms for building projections in open spaces, considerations in Floor Area Ratio (FAR) and Floor Space Index (FSI), building height regulations, Study of local administrative provisions for obtaining building permits.

Unit-III

5. Council of Architecture (COA) and The Indian Institute of Architects (IIA)

Council of Architecture (COA), Code of Professional Conduct, Architect's Act 1972, The Indian Institute of Architects (IIA), Conditions of engagement, Scale of Professional Charges, Mode of Payment, Taxation in the profession, Architect's responsibilities and liabilities towards client

Sessional Work (Internal semester assessment)

Scheme for Semester End Assessment (ESA)

Mode of assessment :

References :

- 1. Professional Practice Dr. Roshan Namavati
- 2. Architectural Practice and Procedure Ar. V S Apte
- 3. The Business of Architectural Practice Derek Sharp
- 4. Architectural Practice in India Ar. MadhavDeobhakta
- 5. Professional Practice Dr. K G Krishna Murthy and Prof S V Ravindra

Fage 14 01 26
Year: 2018-2019

Program : Architecture			
Course Title: STRUCTURES - VII	Course Code: 15AATC406		
L-S-P: 0-3-0	Credits: 3	Contact Hours: 4	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 64	Examination Duration: NA		

UNIT I:

1. Case studies- Study of ongoing residential, public and commercial RC frame building structures by site visits.

2. Collecting data regarding the type of structural system, structural configuration, arrangement of columns, beams for the different floors.

3. Critical analysis and interpretation of data at the studio, for the possible alternative structural systems with column positions and beam layout.

UNIT II:

4. Preparing a RC structural system for an proposed architectural design of a residential, commercial and public building structures. Preparing column positions, beam layout as per requirements of all floors and parking arrangement.

5. Preparing various options of foundations can be provided for the proposed building structure. Design of typical isolated column foundation and pile foundation for the estimated axial loading Design of typical columns for the estimated gravity load subjected to axial load and uni axial moment. Design of typical beam and slab elements for the estimated loading.

UNIT III:

6. Structural detailing - Preparing the structural drawings of layout of columns, foundation and retaining walls. Typical floor structural drawing with reinforcement details

Sessional Work (Internal semester assessment)

Scheme for Semester End Assessment (ESA)

Mode of assessment :

Text Books:

1. 1. S.R. Karve and V. L. Shah, Limit state theory and design of reinforced concrete structures publications Pune

Reference Books:

- 1. 1. IS : 875- 1987 (Part - I. II and III) Code of practice Design loads other than earthquake laod for building structures.
- 2. IS: 456- 2000 Code of practice for plane and reinforced concrete.

KLE TECH.	FORM ISO 9001: 2008-KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise			Page 15 of 26
		Year: 2018-2019	

VIII SEMESTER

RIE TECH. TRANSPORT	FORM ISO 9001: 2008-KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content, Course wise			Page 16 of 26
nue. Guinculum Content- Course wise		Year: 2018-2019	

Program : Architecture			
Course Title:Architectural Design VIII (Campus Planning) Course Code: 15AATC407			
L-S-P: 0-7-0	Credits: 7	Contact Hours: 10	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 160	Examination Duration: NA		

Course content: the following issues relating to institutional design will be addressed to:

• Nature of contemporary institution, correlation to urban structure.

• Development control and urban infrastructure affecting design.

• Various attitudes to building in urban context.

• Integration to function and movement, climate, and sound, structure and services into group of buildings

- Landscaping and site planning.
- Institutional character from abstract to detail.

• User behavior and requirements pertaining to the physically handicapped.

Necessary theoretical inputs to be given highlighting the norms and design issues The topics not covered as studio faculty members through lecture/slide shows and site visits may cover design problems.

The topics to be covered as design problems may include:

• Institution of learning - colleges with it's various departments such as medical,

engineering, law, business, music, and dance colleges, vocational training institutes etc.

 Institutions of life such as hospitals, reformatories and rehabilitation institutes for the disabled.

Institutions of research in various disciplines.

• Local/legal institutions such as the high courts, secretariat, development authorities, directorates etc.

At least two major exercises and two minor design / time problems should be given .the final submission shall necessarily include a model for at least one of the two main problems.

The students have to present the entire semester work for assessment along with Model.
Sessional Work (Internal semester assessment)
The 'Sessional Work' shall comprise of the following.
(i) A hand written journal with notes and manual sketches of representative examples
(10 marks)
(ii) A graphically presented or a written report with illustration of Any One of the topics to be
individually elected and completed under the periodic supervision and guidance of the
subject teacher. (20 marks)
(a) Scaled manual documentation of field studies of precincts, streets, building or
parts thereof and artifacts bearing significance to the periodic history under study
(not more than two half imperial sized sheets A2 – 420 x 594 mm each)
OR
(b) Graphically illustrated and annotated manual presentation on 'Style identification'
of Building or parts thereof bearing significance to periodic history under study
(Not more than two half imperial sized sheets (42 – 420 x 594 mm each).
OR
(a) A hand written illustrated report of not more than 1000 words an comparative

School of Architecture

Page 17 of 26 Year: 2018-2019

Title: Curriculum Content- Course wise

study of architectural features, motifs, design themes and typological planning Evolutions in the periodic history under study. (20 marks)

Scheme for Semester End Assessment (ESA)

Mode of assessment :

Ref	ferences	:		
	-			

- 1 Campus design in India Kanvinde& Miller
- 2. Compus Planning _ Richard Dober.
- 3. Urban Design. The Architecture of towns and cities. -Paul Sprereingen.
- 4. Exterior design in Architecture ___ AshiharaToshinibu
- 5. Modern Language of Architecture ___ Bruno Zevi.
- 6. Modern Movements in Architecture __ Charles Jencks
- 7. Language of Post modern Architecture Charles Jencks
- 8. Complexities and contradictions in Architecture Robert Venturi
- 9. Architectural Composition. Rob Krier.
- 10. Pattern Language Christopher Alexander.
- 11. Town Design Fredrick Gibberd Alexander
- 12. Various monographs and periodicals

Program : Architecture				
Course Title: Pre-Thesis		Course Code: 15AATC408		
L-S-P: 0-3-0 Credits: 3		Contact Hours: 4		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 64	Examination Duration: NA			
 Course contents: Unit-I: The student shall submit a proposal towards a individual design dissertation project containing Skeletal foundation of the proposed thesis 				
 Relevance of the project to societ Background information about the 	y and the place. e proposed thesis (archival study/ resear	ch)		
 Unit-II :The student shall submit a proposa Case studies from literature and in 	I towards a individual design dissertation nter net	project containing		
Proposed live case studiesProposed schedule of visit to live	 Proposed live case studies Proposed schedule of visit to live case studies. 			
Site selection criteria				
Norms and standards				
 Unit-III: The student shall submit a proposal towards a individual design dissertation project containing A report containing the all above mentioned information in paper presentation format 				
• The report should include Title an	d description of the topic			
Justification for Architectural interv	vention in context.			
Methodology of study and propos	ed architectural solution.			
Site analysis				
Sessional Work (Internal semester assessment) Draft report containing all the above mentioned topics.				
Scheme for Semester End Assessment (ESA) : Thesis Report/ Viva				
Mode of assessment: Viva and thesis re	eport/ Evaluation of Portfolio, assignment	s by internal and external examiners / Viva.		
 References: 1. lain Borden, The Dissertation, 2005 2. Council of architecture, Archiving 14 Architecture thesis, NIASA,2014 3. Indian Institute of Architects, Architectural Footprints, IIA, 2014 				

4. IIA, COA, A+D, Previous thesis Reports, Architectural magazines, Time saver standards, etc.

Course Title: Digital Tool III (REVIT)		Course Code: 15AATC409
L-S-P: 0-0-3	Credits: 3	Contact Hours: 4
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 64	Examination Duration: NA	

COURSE OVERVIEW:

Building Information Modelling is used by architects and other building professionals to help reduce risk obtain insight into how buildings will perform before construction begins, develop better quality designs, and improve project delivery.

Course contents:

UNIT I:

- 1. Building Information Modeling
- 2. Revit Architecture Basics
- 3. Starting a Design
- 4. The Basics of the Building Model
- 5. Loading Additional Building Components

UNIT II:

- 1. Viewing the Building Model
- 2. Using Dimensions and Constraints
- 3. Developing the Building Model
- 4. Detailing and Drafting
- 5. Construction Documentation.

UNIT III:

Presenting the Building Model.

Sessional Work (Internal semester assessment)

- Assessment will be done in three parts (Minor-I, Minor-II and Final Submission).
- There will submission for both the minors along with test in the lab where they will be marked.
- Term work submission will be in the format of portfolio containing the compilation of all the works done throughout the semester.

Scheme for Semester End Assessment (ESA)

• Portfolios will be marked on the basis of submission after ISA.

Mode of assessment :

• Portfolio Submission.

References : Online BIM tutorial

Program : Architecture		
Course Title: Online Portfolio		Course Code: 15AATC410
L-S-P: 0-2-0	Credits: 2	Contact Hours: 03
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours: 48	Examination Duration: NA	

Course contents:

Unit-I:

Students will learn the industry-standard publishing application to design and publish high-quality Architectural presentations and portfolio across a full spectrum of digital and print media.

Portfolios and Presentations in Adobe InDesign, will take students through all of the steps needed to build a professional presentation and portfolio using textual description, photos of drawings, photos models, sketches etc.

Unit-II

Demonstrating how to set up Architectural online portfolio website using Word press (open source CMS). Create profile and upload Architectural content like: Academic assignments, design sheets, participations, Award, hobbies etc. to share with professional architects and web audience.

Unit-III

Installing plugins, themes, and attracting web users with permalinks, social sharing etc. in wordpress.

Sessional Work (Internal semester assessment)

Regula Assignments, Architectural portfolio hardcopy (booklet) and online portfolio website

Scheme for Semester End Assessment (ESA)

Term work: Evaluation of Portfolio booklet and online portfolio website by external examiners

Mode of assessment: Printed portfolio booklet and online portfolio website

References :<u>www.adobe.com</u>, <u>www.wordpress.com</u>, video tutorials and web resources

KLE TECH CONSIGNATION	FORM ISO 9001: 2008-KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise		Page 21 of 26	
			Year: 2018-2019

Program : Architecture		
Course Title: Construction Management		Course Code: 15AATC411
L-S-P: 3-0-0	Credits: 3	Contact Hours: 3
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hours: 48	Examination Duration: 3 HOURS	

UNIT I:

 Construction Project Management – Concept, 5M's, Administration, Organization, Organization structure for different project & firms.

Project Manager- Qualities

Construction Management Process – Planning, Scheduling, Monitoring, Central Phase, Scheduling techniques – Bar charts, CPM & PERT networks for different projects.

UNIT II:

2) Mechanization in construction industry Equipments – Selection, Types, Working. Economic life of Equipments, Depreciation, Obsolescence

Construction Economics – Basic concept, direct & Indirect corts, sources of Finance.

Text Books:

- 1. "Construction planning, equipment and methods by R L Peurifoy.
- 2. "project management for architects" by S P Mukopadhyay

Reference Books:

1. "Pert and CPM " by L S Srinath.

Fage 22 01 20	
Year: 2018-2019	

Program : Architecture

Course Title: GREEN BUILDING STUDIO		Course Code: 15AATC412
L-S-P: 0-2-0	Credits: 2	Contact Hours: 3
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hours: 48	Examination Duration: NA	

UNIT I:

- 1. Background on Green Design movement around the world and Introduction to Green Building Design.
- 2. Green Building Movement in India ; various organizations driving the movement and the current trends

UNIT II:

- 3. Introduction to LEED (US Green Building Council and LEED India) rating tools
- 4. Introduction to IGBC (Indian Green Building Council) rating tools
- 5. Introduction to GRIHA (The Energy and Resource Institute, New Delhi) rating tools
- 6. Brief introduction to BEE, EDGE Certification various other trends in green rating in India

UNIT III:

- 7. Guidance on Green Rating for a typical building with a detailed outline of the various parameters such as Site design, Energy, Water, Materials etc along with the necessary case studies
- 8. Exercise: Green Building Design of a Typical Housing/Office Building project

Text Books: Nil

Reference Books:

- USGBC LEED Reference manuals for various rating systems (www.usgbc.org) ٠
- TERI : GRIHA Rating Manual Volume 1 to Volume 5 (www.grihaindia.org) •
- IGBC Rating guidebooks for various types of buildings (www.igbc.in) •

Page 23 of 26 Year: 2018-2019

Electives

Program : ARCHITECTURE			
Course Title: ARCHITECTURAL LIGHTING		Course Code: 15AATE410	
L-S-P: 0-2-0	Credits: 2	Contact Hours: 2	
CIE Marks: 50	SEE Marks: 50	Total Marks:	
Teaching Hours: 32	Examination Duration:		
UNIT I:			
1. The history of architectur	al lighting		
2. Basics of Lighting Design			
3. Terminology and units			
4. Types of Light and light s	ources		
5. Control gear and control	equipment		
UNIT II:			
6. Light – Qualities and feat	ures		
7. Controlling light	7. Controlling light		
8. Luminaries			
9. Lighting design	9. Lighting design		
10. Lighting design and analysis tools			
8. Exercise: Design of Lighting for a sample	space.		
Text Books: NIL			
Reference Books:			
Handbook of Lighting Design	by RudigerGanslandt and Harald Hofmanr	1	
Lighting Design Basics by Mark Karlen			
Designing With Light: The Art	, Science and Practice of Architectural Lig	nting Design by Jason Livingston.	
• The Architecture of Light (2nd Edition): A textbook of procedures and practices for the Architect, Interior Designer and		actices for the Architect, Interior Designer and	
Lighting Designer.			

KLE TECH. DOTIGUES	FORM ISO 9001: 2008-KLETU School of Architecture	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wise		92	Page 24 of 26
			Year: 2018-2019

Program : Architecture		
Course Title: Transit Oriented Development		Course Code: 15AATE409
L-S-P: 0-2-0	Credits: 2	Contact Hours: 2 hrs.
ISA Marks: 50 marks	ESA Marks: 50 marks	Total Marks: 100
Teaching Hours: 32	Examination Duration: NA	
Course contents: Unit-I: Introduction to Transit Oriented Development Theories and Principals of TOD Examples of TOD Unit-II Study, Analysis and Design of an identified area along a transit Corridor using Principles of TOD and Infrastructure Unit-III Research Paper on any one principal or component of Transit Oriented Development		
Sessional Work (Internal semester assessment)		
Scheme for Semester End Assessment (ESA)		
Mode of assessment: Checking of Portfolio of Term Work / Viva References:		
Nil		

Page 25 of 26
Year: 2018-2019

Rev: 1.0

Program: Architecture		
Course Title: Elective – Architecture Film Making - I Course Code: 15AATE407		
L-T-P:0-0-1	Credits: 1	Contact Hours: 2
ISA Marks:50	ESA Marks:50	Total Marks:100
Teaching Hours:32	Examination Duration: NA	

Unit I

Film Pre-production

Introduction to Architectural film making concepts, story board, screenplay and planning.

Unit II

Film Production

Introduction to video shooting using various devices.

Unit III

Film Post-Production

Video post-production techniques like editing, titles, sub titles, narration and rendering.

Text Books

Reference Books:Online tutorials

Scheme for Semester End Examination (ESA)

Assignments, Checking of Portfolio of Term Work / Viva.

School of Architecture

-	
Year:	2018-2019

Program : Architecture						
Course Title: SUSTAINABLE DEVELOPMENT OF LIVING HERITAGE-II		Course Code: 15AATE408				
L-S-P: 0-2-0	Credits: 2	Contact Hours: 2 hrs.				
ISA Marks: 50 marks	ESA Marks: 50 marks	Total Marks: 100				
Teaching Hours: 32	Examination Duration: NA					
UNIT I:						
Definition of Cultural Heritage, Cultural	Landscape, Monuments & site (UNESC	CO operational guidelines)				
Documentation of the Heritage Site						
Need for conservation of living cultural	heritage sites.					
Values & Ethics in heritage conservation	on					
Charters						
UNIT II:						
Mapping						
Analysis						
Draft Proposals and report						
UNIT III:						
1. Final proposal and report						
Text Books:Nil						
References :						
Nil						

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Cont	ent- Course wise	Page 1 of 8
		Year: 2019-2020

B.ARCHCURRICULUM SCHEME & STRUCTURE OF 2015-2020 BATCH

IX Semester - X Semester

School of Architecture, KLE Technological University, BVBCET Campus, Vidyanagar, Hubli.

(Year of introduction-2015, Faculty-A, Architecture-AT, Core course-C, Humanities-H, Lab-L, Elective-E, internship-l, Practice-P, W-Project)

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Cont	ent- Course wise	Page 2 of 8
		Year: 2019-2020

B. Arch. Semester IX

No	Code	Course	Category	L-S-P	Credits	Contact Hours	ISA	ESA	Total	Exam Duration
1	15AATT501	Professional Training	Profession	0-22-0	22	50	50	50	100	NA
		TOTAL		0-22-0	22	50	50	50	100	

ISA: Internal Semester Assessment, ESA: End Semester Assessment, P:Practical, S:Studio, L: Lecture

Date: 18-03-2016

Program Head

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Cont	ent- Course wise	Page 3 of 8
		Year: 2019-2020

B. Arch. Semester X

No	Code	Course	Category	L-S-P	Credits	L-S-P	Contact Hours	ISA	ESA	Total	Exam Duration
1	15AATC501	Architectural Design - IX (Thesis Project)	Design	0-20-0	20	0-18-0	18	50	50	100	NA
3	15AATE502 15AATE505 15AATE506	Electives-V Architecture and Human Behavior Documentation and Technical Writing Adobe Illustrator	Design	0-2-0	2	0-3-0	3	50	50	100	NA
		TOTAL		0-22-0	22	0-24-0	24	150	150	300	

ISA: Internal Semester Assessment , ESA: End Semester Assessment, P: Practical, S: Studio , L: Lecture,

KLE TECH. KLE Technological Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Cont	ent- Course wise	Page 4 o12
		Year: 2017-2018

IX SEMESTER

KLE TECH. KLEE Technological Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Cont	ent- Course wise	Page 5 o12

Year: 2017-2018

Program : Architecture						
Course Title: Professional Training Course Code: 15AATT501						
L-S-P: 0-22-0	Credits: 22	Contact Hours: 50				
CIE Marks: 50	SEE Marks: 50	Total Marks: 100				
Teaching Hours: 800	Examination Duration: NA					

The Student is expected to be exposed to preparation of working drawing, detailing, preparation of architectural models, computer applications in design and drafting, filing system in respect of documents, drawing and preparation of tender, documents. Site experience may be given in respect of supervision of the construction activity, observing the layout on site, study of the stacking methods of various building materials, study of taking measurement and recording.

Students will have to maintain a day to day record of their engagement for the period of training. This will be recorded in an authorized diary to be counter signed by the architect at the end of each month and the same diary shall be sent to the department once in a month. At the end of the training period, a student will have tp produce a certificate of experience and satisfactory performance from the concerned office in the prescribed format.

The viva-voce marks shall be awarded based on the following works to be submitted by the student and presented during the viva.

Training Report: this shall contain copies of various drawing done by the student either drafted or designed. It shall also contain other works like photographs of site visited, models done, computer output produced etc.,

Building study – This shall be a detailed critical study of a building designed by the architect with whom the student has worked. It shall include the study of function, aesthetics, context, structure etc., This shall be presented through drawings, photographs, write ups etc.,

Building Materials Study – This shall be a detailed study of a new or relatively new building material available in the market. A study of its properties, uses, cost, maintenance etc., is expected to be done. Samples of materials shall also be obtained and presented.

Detailed Study – This shall be a study of any interesting detail done in the firm where the student has undertaken training. This shall include sketches and photographs of the detail.

A Candidate failing in the viva examination shall repeat the training afresh for 16 weeks, the starting date coinciding with the beginning of a subsequent semester.

Objectives of the course:

To provide exposure to the various dimensions of architectural practice.

Text Books:

NIL

Reference Books: NIL

KLE TECH. KLE Technological Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Cont	ent- Course wise	Page 6 o12
		Year: 2017-2018

X SEMESTER

Page 7 o12

Rev: 1.0

Year: 2017-2018

Program : Architecture					
Course Title: ARCHITECTURAL DEISGN-IX (Thesis Project) Course Code: 15AATC501					
L-S-P: 0-18-0	Credits: 20	Contact Hours: 24			
ISA Marks: 50	ESA Marks: 50	Total Marks: 100			
Teaching Hours: 384	Examination Duration: Nil				

Course contents: Thesis project is the culmination of the Undergraduate program in architecture. In thesis a student is expected to undertake an in-depth investigation of an area of architecture that he/she is interested in. Students are required to develop the design as per the design objectives and design brief submitted in the report during Pre thesis. Afull-fledged large scale Architectural Design with holistic approach including site Investigation, Design programme formulation, Structural considerations, Interior space planning, Environmental planning, Building Services, Climate responsiveness shall be demonstrated.

Unit-I:

- Architectural Project shall consist of a graphically presented Design solution in from of sufficient number of architectural drawings with models, views.
- It is expected that students demonstrates an ability of holistic and comprehensive thinking in the areas of Site Planning, Interior space planning, Climate responsive design.

Unit-II:

- Architectural Project shall consist of a graphically presented Design solution in from of sufficient number of architectural drawings with models, views etc.
- It is expected that the students demonstrates an ability of holistic and comprehensive thinking in the areas of Environmental planning, Building Services, sustainable architecture and Architectural Detailing.
- Architectural thesis report addressing the above mentioned areas.

Unit-III:

• Design Portfolio of graphically presented Design solution in totality with the models and an Architectural thesis.

Sessional Work (Internal semester assessment)

The Internal assessment of Architectural Thesis Project shall be carried out Stage wise during the reviews as decided by the School.

Scheme for Semester End Assessment (ESA) The final assessment in the examination shall be done by Internal and External Examiner / s in which the students will display the work and explain their work and answer all the queries raised by the Examiners.

The Time allotted per student shall be minimum 20 minutes to maximum 30 minutes.

The Internal stage wise making shall be done out of 50 marks and External marking shall be done jointly by the External Examiner/s out of 50 marks. 5 marks shall be reserved for oral presentation to be assessed jointly by both Internal and External Examiners.

Mode of assessment : Stage wise reviews (internal and external) for ISA and External Jury for ESA

References :

- 1. Design Methods by Jones C. J. (1992) John Willey and Sons, Inc.
- 2. How Designers think: the design process demystified by Lawson B.2005 ,Architectural Press, Oxford

	KLE TECH. KLEE Technological Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0
	Page 8 o12		

Page 8 o12 Year: 2017-2018

Program : Architecture					
Course Title: ELECTIVE-ArchitectureandHumanBehavior Course Code: 15AATE502					
L-S-P: 0-18-0 Credits: 2		Contact Hours: 24			
ISA Marks: 50	ESA Marks: 50	Total Marks: 100			
Teaching Hours: 384	Examination Duration: Nil				

Course contents:

UNITI:

Introduction to Behavioral and Environmental Psychology.

EvolutionofHumanBehavior.

Interaction of Man and environment, Man and built forms and study of psychology of spaces.

Methods and process of studying human psychology in the context of Architecture.

UNITII:

TheHuman–NatureinterfacethroughthemediumofBiophilicDesign.

NatureinSpace–StudyofVisualConnectionwithNature,Non-VisualConnectionwithNature,Non-Rhythmic SensualStimuli,Thermal/AirflowVariability,PresenceofWater,DynamicandDiffusedLight,ConnectiontoNatural Systems. NaturalAnalogues–StudyofBiomorphicformsandPatterns,MaterialConnectiontoNature,ComplexityandOrder NatureoftheSpace–StudyofProspect,Refuge,Mystery,Risk/Peril

UNITIII:

BuildingSystems

Roomuse, geometry & meaning, hidden behavioral assumptions, adjacencies, vertical by pass & horizontal by pass, various stages in the design of building subsystems.

Building-BehavioralInterface

Geometryofspaces, their meaning & connotations, Social organization of buildings, Behavioral assumptions in the planning of new towns and neighborhoods, borrowed space.

BehavioralDesign

Processorganizationchart, affinitymatrices, pictograms: behavioraldesignprocessmodel, designcontext, activity/adjacencyrelationship, evaluationchart, Areause frequency program, simultaneoususe, community utilization map, occupancy load profile, defensible space, EDRA etc.,

UrbanEnvironment

Patternsofactivityintimeandspace, the ecology of an eighborhood park and play ground, crossculturalissues, social & psychologicalissues in the planning of new towns, environmental perceptions and migration, awareness and sensitivity to open spaces,

environmentalcognition.

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Cont	ant- Course wise	Page 9 o12

irriculum Content-Course

Year: 2017-2018

Mode of assessment : Stage wise reviews (internal and external) for ISA and External Jury for ESA

TextBooks:

1.Burnette, C.(1971). Architecture for human behaviour. Philadelphia Chapter: AIA.

- 2.Canter, D.andLee, T. (1974). Psychologyandthebuiltenvironment. NewYork: HalsteadPress.
- 3. Christopher, A. et al. (1977). APattern Language. New York: Oxford University Press.
- 4. Clovis, H. (1977). Behavioural Architecture. McGraw Hill.

5.Lynch,K.(1973).Theimageofacity.Cambridge:MIT.

6.Sanoff, H.(1991).VisualResearchMethodsinDesign.NewYork:JohnWiley&Sons._

7.Zeisel, J.(1984).Enquirybydesign:ToolsforEnvironment-BehaviourResearch.Cambridge:

CambridgeUniversityPress.

8.Zeisel, J.andEberhard, J.P. (2006). InquirybyDesign-Environment/Behaviour/Neurosciencein

Architecture, Interiors, Landscape and Planning. New York: W.W.Norton& Company.

9:EvolutionandHumanBehaviour:DarwinianPerspectivesontheHumanConditionbyJohnCartwright

Reference:

1:BuiltEnvironmentPsychology:AcomplexaffairofbuildingsanduserbyMr.SafiullaKhan,IntegralUniversity,India.

2:ArchitecturalPsychology-STJanitius,St.John'sCollege,Bangalore

3:SpacesofSocialInfluencebyAnnaPGawlikowska

4:PsychologyofArchitecturebyW.BroVictorGPopow

5:BehavioralArchitecture-SPAVijaywada

KLE TECH.	KLEE Technological Creating Value Leveraging Knowledge
-----------	---

Rev: 1.0

Year: 2017-2018

Program : ARCHITECTURE						
Course Title: DOCUMENTATION AND	Course Code: 15AATE505					
L-S-P: 0-2-0	Credits: 2	Contact Hours: 2				
CIE Marks: 50	SEE Marks: 50	Total Marks: 100				
Teaching Hours: 32	Examination Duration:					
Course contents: UNIT I:						
Documentation and Technical Wr Introduction to Documentation And Various process of Documentation r Monographs and Magazine Formats	iting Technical Writing media or technique S					
UNIT II:						
Effective Writing Skills Dissertation / Thesis Report Writing Compiling of Ideas and Thoughts ge	enerated during Design Process					
Research Paper / Article Research paper / Article on any architect showcasing his design philosophy and architectural works						
Scheme for Internal semester assessment(ISA) Assignments in the form of Portfolio.						
Scheme for Semester End Assessment (ESA) Term work Evaluation						
Mode of Assessment: Field work attendance , Assignment						
Text Books:NIL						
Reference : NIL						

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Cont	ent- Course wise	Page 11 o12
		Year: 2017-2018

Program: Architecture					
Course Title: Elective – Adobe Illustrator Course Code: 15AATE506					
L-T-P:0-0-1 Credits: 1		Contact Hours: 2			
ISA Marks:50	ESA Marks:50	Total Marks:100			
Teaching Hours:28	Examination Duration: NA				

Unit I

Graphic Designs

Create everything from gorgeous print, web and mobile graphics to logos, icons, brochures,

flyers, posters etc.

Unit II

Typographic Designs

Design typographic designs and add effects, manage styles, and edit individual characters

Unit III

Publish artwork to various media

Publish illustrations anywhere, including printed pieces, presentations, websites, blogs, and social media.

Text Books

Reference Books:Online tutorials

Scheme for Semester End Examination (ESA)

Assignments, Checking of Portfolio of Term Work / Viva.

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	Document #: FMCD2005		Rev: 1.0
Title: Curriculum Content- Cours	Pag	Page 1	
		Yea	nr:2018-19

School of Architecture, KLE Technological University, BVBCET Campus, Vidyanagar, Hubli.

CURRICULUM SCHEME & SYLLABUS OF

I Semester - II Semester

(Year of introduction-2018, Faculty-A, Architecture-AT, Core course-C, Humanities-H, Lab-L, Elective-E, internship-I, Practice-p, W-Project)

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0	
Title: Curriculum Content- Cours	e wise	Page 2	
		Year:2018-19	

Semester: I – (2020 - 21)

Sr.No	Course code	Course Title	Period		Evaluation scheme			Credit	Hours	
			L	Т	Р	ISA	ESA	Sub total	(L+T+P)	
1	18AATC101	Architectural Design – I	0	4	0	50	50	100	4	6
2	18AATC102	Building Const& Materials – I	0	4	0	50	50	100	4	6
3	18AATC103	Graphics – I	0	4	0	50	50	100	4	6
4	18AATC104	Skill development workshop-l	0	2	0	50	50	100	2	3
5	18AATC105	Prehistoric Architecture	2	0	0	50	50	100	2	2
6	18AATC106	Basic Design	0	3	0	50	50	100	3	4
7	18AATC107	Structures – I	3	0	0	50	50	100	3	3
		TOTAL	5	17	0	350	350	700	22	30

ISA: In-semester Assessment ESA: End Semester Assessment L: Lecture T: Tutorials P: Practical

Credit	Lecture Hours	Studio Hours	Practical Hours
1	1	1.5	2

Program Head

Signature of Dean (Academic Affairs)

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Cours	Page 3	
		Year:2018-19

Semester: II (2020 - 21)

Sr.No	Course code	Course Title	Period		Evaluation scheme			Credit	Hours	
			L	Т	Р	ISA	ESA	Sub total	(L+T+P)	
1	18AATC108	Architectural Design – II	0	4	0	50	50	100	4	6
2	18AATC109	Building Const& Materials – II	0	4	0	50	50	100	4	6
3	18AATC110	Graphics – II	0	4	0	50	50	100	4	6
4	18AATC111	History of Architecture I	2	0	0	50	50	100	2	2
5	18AATC112	Skill Development Workshop II	0	2	0	50	50	100	2	3
6	18AATP101	Digital Tool-I	0	0	1	50	50	100	1	2
7	18AATC114	Structures – II	3	0	0	50	50	100	3	3
8	18AATC113	Surveying	2	0	0	50	50	100	2	2
TOTAL		7	14	1	400	400	800	22	30	

ISA: In-semester Assessment ESA: End Semester Assessment L: Lecture T: Tutorials P: Practical

Credit	Lecture Hours	Studio Hours	Practical Hours
1	1	1.5	2

KLE TECH. KLE TECHNOLOgical Creating Value Leveraging Knowledge	Document #: FMCD2005	Rev: 1.0		
Title: Curriculum Content- Cours	e wise	Page 4		
	Y	Year:2018-19		

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	Document #: FMCD2005		Rev: 1.0		
Title: Curriculum Content- Course wise			Page 5		
			Year:2018-19		

I- SEMESTER

Year:2018-19

Page 6

Program : Architecture				
Course Title: ARCHITECTURAL DES	Course Code: 18AATC101			
L-S-P: 0-4-0	Credits: 4	Contact Hours: 6		
ISA : 50	ESA: 50	Total Marks: 100		
Teaching Hours: 96	Examination Duration: NA			

UNIT I:

Introduction to Human proportions, Anthropometry and space standards

Detailed study of spaces requirements with respect to single unit dwellings such as living, dining, bedrooms, kitchen,

toilet etc. minimum standards for movements and vehicular data expression of design using the following.

Spatial perception of spaces

Study of anthropometrics

Circulation

Forms and integrity

Space planning

Architectural expression

UNIT II:

Introduction to Space making elements.

Defining the core space making elements like wall, openings, column, floors, roofs, stairs etc. its usage and importance in designing spaces of various needs. Measuring and plotting existing buildings to understand element and its role in space creation.

UNIT III:1 Designing a multi room space.

Designing and organizing spaces of various purposes with respect to movement, circulation, furniture layout,

aesthetical relation of traditions, culture etc. expression of creativity in form making

The design issues to be addressed are

Various basic human functions and their spatial implications

Formulation of concepts

Anthropometry and furniture layout

Movement and circulation diagram

Interior volumes and space articulation through different materials.

Integration of form and function.

Study models.

The design projects could be, my dream house, guest house, farm house, tree house, cottage, etc.

Reference Books:Ching, Francis DK, Architecture: Form, Space and Order, 2nd ed.VanNostrand Reinhold, New York, 1999

Page 7

Year:2018-19

Scheme for Internal semester assessment (ISA)

The Portfolio covering the given topics and the study models shall be presented.

The evaluation shall be through periodic internal reviews.

The students have to present the entire semester work for assessment along with Models.

Term work Evaluation of Portfolio, assignments by internal examiner

Scheme for End Semester Assessment (ESA)

Term work: Evaluation of Portfolio and assignments by internal and external examiners/Viva

Mode of assessment: Portfolio, Models

Text Books: NIL

Page 8

Year:2018-19

Program: Architecture		
Course Title: BUILDING CONSTR	Course Code: 18AATC102	
L-S-P: 0-6-0	Credits: 4	Contact Hours: 6
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hours: 96	Examination Duration: NA	

UNIT I:

Basic building components, material convention, brick work & mortar building components - Introduction to and their functions in brief, like foundation, plinth, coping, DPC, floor, walls, lintels, D&W, weather shade, roof, parapet etc.

Material convention- Convention of construction materials, like brick & stone masonry, timber, ply wood, steel, glass, concrete, mortar, metal etc, used for representing, in plan, section and elevations

Tools- Introduction to various tools commonly used for excavation, masonry and carpentry works

Bricks and blocks- Introduction to burnt clay bricks, properties of good bricks, molding methods, and application. Blocks used as an alternative to bricks, such as i) adobe (stabilized mud), ii) hollow clay, iii) cementconcrete iv) fly ash v) autoclaved aerated concrete (AAC), etc.

Brick masonry- Types of bonds used in brick masonry, for walls & pilasters of varying thickness.

Mortar- Types, uses, & properties of bonding materials like clay, lime, cement, gypsum etc. Sources and qualities of good sand & alternatives in preparing mortars.

UNIT II:

Stone, stone masonry, foundation, plinth formation, lintels & arches

Stones – Geological classification, types, properties and uses of stones for building. By-products of stones such as ballast, aggregate, graded crushed stone & powder (M- sand).

Stone masonry- Types of bonds used in stone masonry.

Foundation: Introduction to excavation- types & behavior of soil. Types of shallow foundations in brick and stone & purpose, for load bearing structure.

Plinth formation- Construction and formation of plinth for building with masonry walls, using i) bricks ii) stones iii) CC blocks including refilling in and consolidation.

Lintel and arches- Introduction to, types and functions for spanning of openings in building. Method of construction using various materials like stone slab, timber, metal, brick and stone masonry, concrete etc. UNIT III:

Coping, dpc, plastering, guniting& cladding

Coping &dpc- Introduction to and use of coping & DPC in building using various materials.

Plastering – Types, preparation and application in interior & exterior, like i) mud ii) lime iii) cement iv) gypsum with different finishes.

Guniting& grouting- To fill in cracks, voids in masonry, concrete and for repairs.

Cladding - Using tiles such as clay, stone, decorative cement, etc. for walls & roof

Note – The Portfolio covering the above topics shall be presented for Term work. Site visits shall be arranged by studio teacher. Study of material application shall be submitted in the form notes, sketches and photo brief as a part of portfolio

Scheme for Internal semester assessment (ISA)

Regular Assignments, models.

Term work: Evaluation of Portfolio, assignments by internal examiner

Scheme for End Semester Assessment (ESA)-

Term work: Evaluation of Portfolio, assignments by internal and external examiners

Mode of assessment : Portfolio .

Page 9

Year:2018-19

Text Books - Nill Reference Books: McKay J.K Building Construction Metric Vol 1-4, 4th edi Orient Longman Pvt. Ltd, Mumbai,2002 "Construction Technology" volume-I by R Chudley, ELBS & Longman group Ltd. Barry R, "The construction of buildings", Vol-2, 5th Edi, East West Press, New Delhi 1999. Bindra S.P and Arora S.P, Building Construction-Planning Techniques and Method of Construction, 19thedi, Dhanpat Rai Pub NewDelhi, 2000 "Building Construction" by JanardhanJha, Khanna New-Delhi. RangawalS.C, "Building Construction" 22nd Edi, charotar Publishing house, Anand, 2004 "Engineering Materials" by Surendra Singh, Vikas Delhi. "Building Materials" by S K Duggal, IBH New Delhi. Sushil Kumar T.B of Building Construction 19thedi, Standard Pub House, NewDelhi, 2003. Chowdhary K.P. Engineering Materials used in India, 7th Edi, Oxford and IBH Pub Itd New Delhi, 1990. Building Construction Hand book : By R Chudly& R Greeno, Bullerworth Heinemann, New-Delhi.
	al :y	Document #: FMCD2005		Rev: 1.0
Title: Curriculum Content- Course wise		Pag	Page 10	
			Yea	nr:2018-19
Program : Architecture				
Course Title: GRAPHICS - I Course Code: 18AATC103			e Code: 18AATC103	
L-S-P: 0-4-0 Credits:		1	Contact Hours: 6	
ISA: 50 ESA: 50				larks: 100
Teaching Hours: 96	Examinat	ion Duration: NA		
UNIT I:				
1: Introduction to the basic principles of	drawing			
Introduction to the basic principles of dra	awing, intro	oduction to drawing equipment	s and th	neir uses, sign conventions,
Lettering and Dimensioning, Architectura	al Scale			
2: Plane geometry – Lines, Angles, Curv	ves and reo	gular Polygons		
Construction of triangles, quadrilaterals,	curves an	d regular polygons		
3: Solid Geometry – Points and Lines				
Introduction to solid geometry, Orthographic projections of points and lines				
4: Solid Geometry – Planes and Solids				
Problems on Orthographic projections o	f planes ar	nd solids		
UNIT II:				
5: Three Dimensional Representation -	Oblique, A	xonometric & Isometric		
Problems on Oblique, axonometric & Isc	ometric pro	jection of solids		

6: Technical drawing

Simple floor plans, elevation, sections, of simple building.

UNIT III:

7: Architectural Detailing

Reading and representing building components details such as door frames fixing, chejja, plinth formation, steel joinery etc

Scheme for Internal semester assessment (ISA)

Regular Assignments, models.

Term work: Evaluation of Portfolio, assignments by internal examiner

Scheme for End Semester Assessment (ESA) -

Term work: Evaluation of Portfolio, assignments by internal and external examiners

Mode of assessment : Portfolio.

Text Books:

Bhat N.D. and Panchal V.M, Engineering Drawing, Plane and solid geometry, Charotar Publishing house, Anand 2002. Francis D.K. Ching, Architectural Graphics, 4th Edition, John Wiley & Son, New York

	al :y	Document #: FMCD2005		Rev: 1.0
Title: Curriculum Conter	nt- Cours	se wise	Pag	je 11
			Yea	ır:2018-19
Program : Architecture				
Course Title: Skill Development Workshop- I			Cours	e Code: 18AATC104
L-S-P: 0-2-0 Credits: 2		Conta	ct Hours: 3	
ISA Marks: 50	ESA Mar	ks: 50	Total I	Marks: 100
Teaching Hours: 48	Examina	tion Duration: NA		

Course contents:

Unit-I:

Free hand and objects drawing: Observation and recording through free hand drawing by using various drawing and sketching tools like pencil, pen, charcoal crayons etc.

Architectural Model Making :Introduction to Basics of the Model making skills like cutting, pasting etc.

Unit-II

Architectural sketching: Drawing of human figures, vehicles, small buildings, furniture, simple and complex geometrical objects with an emphasis on the perception of details and expressing them in lines, colour texture etc.

Architectural ModelMaking: Introduction to Basics of the following associated skills to enhance and understand spatial, scale, material, and aesthetical requirements of design, construction and presentation.

Unit-III

PAINTING: Understanding of colour wheel, components, types of colour, colour schemes, value and intensity by using painting tools and materials like brushes, paper, water color, poster colouretc.

Sessional Work (Internal semester assessment)

Regular Assignments, Architectural sketches, drawings and models

Scheme for Semester End Assessment (ESA)

Term work: Evaluation of Portfolio, assignments by internal and external examiners

Mode of assessment: Portfolio/ Models.

References: Book: Robert Gill: Rendering with pen &ink, Thames & Hudson New York 1984. Robert Gill: Basic Rendering, Thames& Hudson New York 1991. John Chen: Architecture in pen & ink, McGraw-Hill Inc- USA 1995. Colin Saxton: Art School, Chart well Books IncNewJersey.

	al :y	Document #: FMCD2005		Rev: 1.0
Title: Curriculum Content- Course wise			Р	age 12
			Y	ear:2018-19
Program : Architecture			-	
Course Title: Prehistoric Architectur	e		Cou	rse Code: 18AATC105
L-S-P: 2-0-0	Credits:	2	Con	tact Hours: 2
ISA Marks: 50	ESA Mar	ks: 50	Tota	Il Marks: 100
Teaching Hours:32	Examina	tion Duration: 3Hours		
Focuses on study of evolution of variou on architecture. Evolution of mankind-its impact – on pr Evolution of shelter forms in different re Growth of Human settlements and cultu Influence of religion and culture on dom	is styles of imitive arts egions. ural influen nestic and o	architecture, methods of cons and crafts in various countries ces. civil architecture.	tructic s.	n and influence of art and culture
Unit-1 Pre-Historic world Primitive man – Shelters, Settlements, Ex: Oval Hut, Nive, Dolmen Tomb, Gall stone Henge.	religious ar lery Grave,	nd burial systems Passage Grave, Houses at C	atalHı	uyuk, LepensikiVir settlements,
Unit-II River valley cultures- Study of political systems, concept of settlement, impact of climate, socio culture and their related shelter types, planning types, method of building structures and detailing. Study of building materials used. Indus valley civilization- Layout of Mohenjo-Daro, House Plans, Community well, Great Bath, Granary. Egyptian- Tombs, Pyramids, & Temples- Mastaba Tombs, Pyramid of Cheops, Temple of Khons, Karnak				
Unit-III River Valley Cultures- Tigris and Euphrates Ziggurats at Warka, Ur and TchogaZanbil, Palace of Sargon, Mastaba Tombs.				
Sessional Work (Internal semester ass	essment)			
Scheme for Internal semester assess	sment (ISA	is of 20 marks each and 10 m	aiks í(DI SKEIGH DOOK SUDIHISSION.
Regular Assignments, models.		ע		
Term work: Evaluation of Portfolio, assi	ignments b	y internal examiner		
Scheme for End Semester Assessment (ESA)				
External examination-3 hrs				
Mode of assessment : Portfolio& Theory Exam				
Text Books:NIL				
References :				
"History of Architecture in India "byTad Sir Banister Fletcher's "History of Archi	References : "History of Architecture in India "byTadgell Christopher. Sir Banister Fletcher's "History of Architecture			

al :y —	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content-Cours	e wise	ige 13
Intie. Ourifculum Content-Oourse wise		ear:2018-19

Scheme for End Semester Assessment (ESA)

SI.No	8 Questions to be set of 20 Marks Each	Chapter Number	Instructions
I	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.NO – 5 Q.No6,	4, 5,6	Solve Any 2 out of 3
- 111	Q.No7, Q.No8	7,8	Solve Any 1 out of 2

	al :y —	Document #: FMCD2005	Rev: 1.0
	Title: Curriculum Content-Cours	e wise	ge 14
	Intie. Ourification Content-Oourse wise		ar:2018-19
_			

Program : Architecture				
Course Title: Basic Design	Course Code: 18AATC106			
L-S-P: 0-3-0	Credits: 3	Contact Hours: 4		
ISA Marks: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hours: 64	Examination Duration: NA			

Course contents:

To understand and interpret elements of design in Visual composition.

To develop creative skills to address design principles in Architecture.

To explore art forms and understand importance of art in architecture.

Unit-I:

Elements of Visual Composition: Understanding role of the following basic elements of visual design existing in paintings, compositions, murals, sculptures, building and in a nature – Dots, Lines, Planes, Patterns, Shapes, Forms, Spaces, Colour, Texture, Levels, Light, Fenestration's. Study of Textures and Textures Schemes.

Principles of Visual Compositions : To address design principles in architecture. Understanding **and using principles** like Repetition, Rhythm, Radiation, Focal point, Symmetry, Asymmetry, Background, Foreground, Sense of Direction, Harmony, Balance and Proportion.

Unit-III

EXPLORATION OF ART FORMS- study of traditional and contemporary art forms, relation between art and architecture from earliest times to present.

Sessional Work (Internal semester assessment) Regular Assignments, Architectural models, rendered sheets and photos

Scheme for Semester End Assessment (ESA) Term work: Evaluation of Portfolio, assignments by internal and external examiners

Mode of assessment: Portfolio, Model .

References :

Robert Gill : Rendering with pen & ink , Thames & Hudson New York 1984 Robert Gill : Basic Rendering ,Thames & Hudson New York 1991 John Chen : Architecture in pen & ink, McGraw-Hill Inc- USA 1995 Colin Saxton : Art School, Chartwell Books Inc New Jersy.

	al :y —	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course v		e wise	ge 15
	Intie. Ourifoundin Content- Course wise		ar:2018-19

Program : Architecture			
Course Title: Structures-I	Course Code: 18AATC107		
L-S-P: 3-0-0	Credits: 3	Contact Hours: 3	
ISA: 50	ESA: 50	Total Marks: 100	
Teaching Hours: 48	Examination Duration: 3 Hours.		

UNIT I:

Evolution of Structures: Historical perspective and definition of structure as a device for channeling loads that result from the use or presence of the building in relation to ground.

Structural systems and its elements overview: Vertical/lateral systems: wall, cantilever, moment frame, braced frame, horizontal one-way and two-way systems: truss, arch, vault, dome, shell, cable stayed, suspended, membrane.

Experiment with Structures: Example-1: Build a structure using drawing sheet paper having three and four supports to carry a weight of 2 to 3 kg on it. Example-2: Make a column of height 30mm to carry a weight of 3kg. Example-3: Build a beam of span 450mm simply supported to carry a weight of 1kg at mid span.

Basic structural Materials: Qualities of building materials Mechanical properties of Structural materials: wood, masonry, steel, concrete, fabric; energy use and rupture length. Advantages and disadvantages of Structural Materials and choice of Structural Material for domestic buildings, Industrial buildings, Tall buildings and Long Span buildings. Loads on Structures: Dead load (DL), live load (LL), static, dynamic, impact, and thermal loads. Principle of transmissibility of forces. Understanding load flow by tributary load and load path (slab, beam, and girder) and vertical members (post, wall, and footing): load path.

Sectional properties: Centroid, difference between centroid and centre of gravity, role of symmetry in locating centroid, moment of inertia, obtaining moment of inertia of unsymmetrical by applying parallel and perpendicular axis theorems. UNIT II

Equilibrium of Forces: Force, characteristics of a force, Reaction, Moment of a force and Principle of Support conditions and their significance in resistance to forces and to maintain equilibrium.

Basic principles of mechanics: Tension, compression, shear, bending, torsion; symbols and notations; force and stress. Stress/strain relations (Hooke's Law): Material response to applied loads, intensity of stress, strain and types. Stress strain diagrams for major building materials, Modulus of Elasticity, linear and non-linear materials, elastic, plastic, and elastic-plastic materials; Poisson's Ratio; Thermal stress and strain.

Graphic vector analysis: Resultant and equilibrant of coplanar, concurrent and non-concurrent force systems. Parallelogram, force polygon, resultant, equilibrant, components; numeric method.

UNIT III

Truss: Truss concept of triangulation, common truss configurations, innovative forms for truss of given span. Truss loads and reactions: For a given configuration of the trusses and center to center spacing, calculations of the dead weight of the truss and the dead weight of the roof cover and support reaction loads analysis of simple trusses by method of joints..

Scheme for Internal semester assessment (ISA)

Regular Assignments

Scheme for End Semester Assessment (ESA) - External examination-3 hrs

	al :y —	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Course wi		e wise Pa	ge 16
	The our culture course wise		ar:2018-19

Mode of assessment :Portfolio& Theory Exam.

Text Books: Engg Mechanics by S.S.Bhavikatti III-edition .Vikas publications New Delhi.

Reference Books

STRUCTURES - Martin Bechthold, Daniel L Schodek, and PHI Learning Private limited, Sixth Edition 2) Structure in Architecture, the building of buildings, by Mario Salvadori 3) Structure and Design, by G. G. Schierle 4) Engg Mechanics – R K Bansal & Sanjay Bansal, Laxmi publications, New Delhi, 3rd ed 5) Engg Mechanics, Ferdinand L Singer, Harper Collins publications, 3rd ed.

Scheme for Semester End Examination (ESA)

Sl.No	8 Questions to be set of 20 Marks Each	Chapter Number	Instructions
Ι	Q.No1, Q.No2, Q.No3	1,2,3,4,5	Solve Any 2 out of 3
II	Q.No4, Q.NO – 5 Q.No6,	6,7,8,9	Solve Any 2 out of 3
III	Q.No7, Q.No8	10,11	Solve Any 1 out of 2

al :y —	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Cours	se wise	age 17
The. Curriculum Content- Course wise		ear:2018-19

II SEMESTER

al :y —	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Cours	e wise Pa	ge 18
		ar:2018-19

Program : Architecture				
Course Title: ARCHITECTURA	L DESIGN – II	Course Code: 18AATC108		
L-S-P: 0-4-0	Credits: 4	Contact Hours: 6		
ISA: 50	ESA: 50	Total Marks: 100		
Teaching Hours: 96	Examination Duration: NA			
UNIT I:				
Introduction to Design theory				
Principles of architectural comp	position:			
General principles like unity, Repose, Vitality, Strength in the	Balance, Proportion, Scale, Conti e built environment	rast, Harmony, Accentuation, and Restraint.		
Underlying Ordering Principles environment.	Symmetry, hierarchy, datum, axis,	, scale and proportion rhythm in the built		
UNIT II				
Introduction Multiuser/ public s	paces			
Defining and understanding va	rious design aspects needed for m	ulti /semipublic/public user spaces.		
UNIT III:				
Designing a multi user multi lev	/el room space.			
To develop skills for comprehe	To develop skills for comprehensive understanding and dealing with Architecture Provide skills for designing			
multi-user and multi level spaces.				
The design issues to be addressed are				
Multi user and multi level space	Multi user and multi level space formation			
Integration of material and form	۱.			
Integrate the horizontal and ver	rtical circulation.			
Develop skills to correlate the r	naterials and the resulting form.			
Details pertaining to the disable	ed, aged people and children.			
The tentative list of suggested spaces Multi level museum, ac	projects to be covered as design pl ademic spaces, kindergarten scho	roblems: Architectural Exhibition / display ool, Recreational spaces fast food/ restaurant		
Scheme for Internal semeste	Scheme for Internal semester assessment (ISA)			
The Portfolio covering the give	n topics and the study models shal	l be presented.		
The evaluation shall be through	ו periodic internal reviews.			
The students have to present the entire semester work for assessment along with Models.		sment along with Mode ls .		
Term work Evaluation of Portfo	Term work Evaluation of Portfolio, assignments by internal examiner			
Scheme for End Semester As Term work: Evaluation of Portfo	sessment (ESA) Solio and assignments by internal ar	nd external examiners/Viva		
Mode of assessment: Portfolio,	, Models,Reviws.			
Text Books: NIL				

al :y —	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Cours	e wise	ge 19
		ar:2018-19

Program: Architecture			
Course Title: BUILDING CONSTRUCTION & MATERIALS - II Course Code: 18AATC109			
L-S-P: 0-4-0	Credits: 4	Contact Hours: 6	
CIE Marks: 50	SEE Marks: 50	Total Marks: 100	
Teaching Hours: 96	Examination Duration: NA		
UNIT I			

Timber, bamboo & its products.

TIMBER- Introduction to, qualities of good timber used in building. Timber based products like i) veneer, ii) plywood iii) block board iv) chip / particle board v) fiber board (MDF) vi) Engineered timber, finger-joint boards. Introduction of bamboo and its products used in building.

TIMBER DOORS – Study of timber doors in building. Components of a door. Various types & joinery details of doors i.e. i) battened &ledged ii) battened, ledged & braced iii) framed & battened iv) framed & paneled v) framed & glazed. Flush doors using timber products & detailing there on. Study of fixtures used for doors.

UNIT II:

Timber windows

Study, types & construction details of glazed timber windows, i.e. i) casement ii) corner iii) bay iv) dormer v) clerestory vi) lantern vii) skylight viii) louvered etc. Components of window. Construction, joinery details, & study of fixtures, for i) casement ii) bay & iii) louvered windows.

TIMBER ROOFS- Introduction to, evolution, classification & study of conventional timber roofs for small to moderate spans like i) flat (*madagi*) ii) Lean to iii) couple iv) collar beam v) king post vi) queen Post. Construction & joinery details for King post roof truss.

UNIT III:

Roofing materials, paints

Identifying & working out fixing details of various common roofing materials like i) clay tiles ii) asbestos cement, aluminium, galvanized iron, SS, profiled, PVC, polycarbonate sheets etc.

PAINTS- Study & use of paints, polishes and protective coatings, including preparation of for new and old, surfaces, of interior and exterior like: wood work, steel work, plastered work, exposed masonry & cladding work etc

Scheme for Internal semester assessment (ISA)

Regular Assignments, models.

Term work: Evaluation of Portfolio, assignments by internal examiner

Scheme for End Semester Assessment (ESA) -

Term work: Evaluation of Portfolio, assignments by internal and external examiners

Mode of assessment : Portfolio .

al ∵y —	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content-Cours	e wise	ge 20
		ar:2018-19

Text Books - Nill

Reference Books:

- 12. McKay J.K Building Construction Metric Vol 1-4, 4thedi Orient Longman Pvt. Ltd, Mumbai,2002
- 13. "Construction Technology" volume-I by R Chudley, ELBS & Longman group Ltd.
- 14. Barry R, "The construction of buildings" , Vol-2, 5th Edi, East West Press, New Delhi 1999.
- 15. Bindra S.P and Arora S.P, Building Construction-Planning Techniques and Method of Construction, 19thedi, Dhanpat Rai Pub ,NewDelhi, 2000
- 16. "Building Construction" by JanardhanJha, Khanna New-Delhi.
- 17. RangawalS.C ,"Building Construction" 22nd Edi, charotar Publishing house, Anand, 2004
- 18. "Engineering Materials" by Surendra Singh, Vikas Delhi.
- 19. "Building Materials" by S K Duggal, IBH New Delhi.
- 20. Sushil Kumar T.B of Building Construction 19thedi, Standard Pub House, NewDelhi, 2003.
- 21. Chowdhary K.P. Engineering Materials used in India, 7th Edi, Oxford and IBH Pub Itd New Delhi, 1990.
- 22. Building Construction Hand book : By R Chudly& R Greeno, Bullerworth Heinemann, New-Delhi.

	al :y —	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Con	tent- Course	wise	age 21
		Y	ear:2018-19

Program : Architecture

Course Title: GRAPHICS - II		Course Code: 18AATC110
L-S-P: 0-4-0	Credits: 4	Contact Hours: 6
ISA: 50	ESA: 50	Total Marks: 100
Teaching Hours: 96	Examination Duration: NA	

UNIT I:

Section of Solids - section of simple and composite objects.

Perspective View- Parallel and Angular perspective projection.

Principles and visual effects of three dimensional objects.

Study of picture plane, station point, vanishing point, eye level, ground level etc., their variation and their resultant effects.

UNIT II:

Perspective view drawings of simple geometrical forms by office method and by measuring point method Sciography - Introduction of basic principles of sciography and its application to the field of architecture. Sciography of line and plane in plan and elevation.

Sciography of three dimensional objects in perspectiveviews.

UNIT II

Perspective drawing including (one point & two point) of building exteriors including rendering. Perspective drawing including (one point & two point) of building interiors including rendering.

Scheme for Internal semester assessment (ISA)

Regular Assignments, models.

Term work: Evaluation of Portfolio, assignments by internal examiner

Scheme for End Semester Assessment (ESA) -

Term work: Evaluation of Portfolio, assignments by internal and external examiners

Mode of assessment : Portfolio .

Text Books: NIL

Reference Books:

Perspective Drawing, Shah Patki Kale Geometrical Drawing for Art students, I H Morris, Engineering Drawing, Prof, VeeEss, MSRIT, V.K.Publishers, BNG-10,1990 Basic Perspective" by Robert Gill, Rendering with Pen & Ink by Robert Gill. "Perspective and Sciography" by S.H.Mullik. Perspective for Interior Desingners by John Pile. Applied perspective by John Holmes. Building Drawing by M.G.Shah, C.M.Kale&S.Y.Patki

al :y —	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content- Cours	e wise Pag	je 22
	Yea	ar:2018-19

Program : Architecture			
Course Title: HISTORY OF ARCHITE	Course Code: 18AATC111		
L-S-P: 2-0-0	Credits: 2	Contact Hours: 2	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 32	Examination Duration: 3 Hours		
Course contents:			
Unit-I:			
Pre-Classical Architecture –	Persian, Mycenaean, Etruscan		
Characteristics, The Palace of Greek Architecture Characteristics, Orders of Gree	Persepolis, The Palace Tiryns, The Temp k, The Acropolis: Athens, Parthenon, The	ble of Juno Sospi ta, Lanuvium . eatres and Tem ples	
Unit-II			
Roman Architecture			
Characteristics, Orders , Coloss Early Christian Architecture & Characteristics, Basilicachurch	seum, Pantheon, Forums, Temples, Thea & Byzantine Architecture es , St Peter's Church Rome, Evolution o	atres, Amphitheaters, andAqueducts f Byzantine Churches, Hagia Sophia	
Unit-III			
Romanesque Architecture			
New Construction Methods, Pis	a Cathedral, The Abbey Church, Cluny		
Gothic Architecture			
Cathedrals, Gothic Churches w	ith construction of pointed arch, Rose with	ndows, etc.	
Scheme for Internal semester	r assessment (ISA)		
Regular Assignments, models.			
Term work: Evaluation of Portfo	olio, assignments by internal examiner		
Scheme for End Semester As	sessment (ESA)		
External examination-3 hrs	External examination-3 hrs		
Mode of assessment :			
Portfolio& Theory Exam			
Text Books:NIL			
References :			
Sir Banister Fletcher - History o	Sir Banister Fletcher - History of Architecture		
F.D K Ching, Mark Jarzombek and Vikramaditya Prakash – A Global History of Architecture			

Scheme for End Semester Assessment (ESA)

SI.No	8 Questions to be set of 20 Marks Each	Chapter Number	Instructions
Ι	Q.No1, Q.No2, Q.No3	1, 2,3	Solve Any 2 out of 3
II	Q.No4, Q.NO – 5 Q.No6,	4, 5,6	Solve Any 2 out of 3
111	Q.No7, Q.No8	7,8	Solve Any 1 out of 2

al :y —	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content-Cours	e wise	age 23
		ear:2018-1 9

Program : Architecture			
Course Title: Skill Development Workshop- II Course Code: 18AATC112			
L-S-P: 0-2-0 Credits: 2		Contact Hours: 3	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hours: 48	Examination Duration: NA		

Course contents:

Unit-I:

Allied skills for Architecture

Tools and materials

Hands-on working of advance model making and working tools. Various types of materials used **for making scaled** models, sculpting etc. (Paper, card sheet, mount board, Art card, foam, metal, plaster, clay, wax glass, vegetables etc.) Methods of cutting, joining, texture development, glue welding and joinery.

Unit-II

Introduction to Architectural rendering skill and mobile photography, Soft skills

- 1. Hands on rendering of Architectural plan, elevation and sections.
- 2. Hands on mobile photography of models, buildings, furniture, vehicles etc.
- 3. Soft skills like communication, speaking, reading & writing.

Unit-III

- 1. Introduction to scanning of rendered sheets
- 2. Introduction to Adobe Photoshop software for photo processing and composition
- 3. Using above skills create own imaginative forms or objects

Sessional Work (Internal semester assessment)

Regular Assignments, Architectural models, rendered sheets and photos

Scheme for Semester End Assessment (ESA)

Term work: Evaluation of Portfolio, assignments by internal and external examiner

Mode of assessment: Portfolio / Model

References :

Robert Gill : Rendering with pen & ink , Thames & Hudson New York 1984

Robert Gill : Basic Rendering , Thames & Hudson New York 1991

John Chen : Architecture in pen & ink, McGraw-Hill Inc- USA 1995

Colin Saxton : Art School, Chartwell Books Inc New Jersy.

al :y —	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content-Cours	e wise	ge 24
	Ye	ar:2018-1 9

Program : Architecture		
Course Title: Digital Tool –I (CAD)	Course Code: 18AATP101
L-S-P: 0-0-1	Credits: 1	Contact Hours: 2
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hours:32	Examination Duration: NA	

UNIT I:

Introduction to CAD Environment: Introduction to The world space, user co-ordinate system (ucs). Command line and menus, to learn basic commands like, units, limits, line, circle, arc. Etc. Use editing commands like trim, extend, erase, and offset to create basic shapes.

Unit-II

2D Drafting: Use basic drawing and editing commands to create 2d architectural plans, elevations, and sections, adding text and dimensions creating layers using advance editing commands.

Unit-III

Composing and printing: Creating detail sanction drawings, using plot for output, saving drawings in different file formats. Creating 2d drawings from Google earth and importing images in cad.

Sessional Work (Internal semester assessment)

Students will be assessed by 2 theory minor exams of 15 marks each and 20 marks for portfolio submission.

Scheme for Semester End Assessment (ESA)

Evaluation of Assignments in form of soft copy & hard copy worked during the course by internal and external examiners.

Mode of assessment : Portfolio .

References :

AutoCAD 2007 for Dummies. By David Byrnes, Mark Middle brook. Publisher: For Dummies; Revised edition (May 8, 2006) ISBN-10: 0471786497, ISBN-13: 978-0471786498 2.)Enhancing CAD Drawings with Photoshop by Scott On Stott Publisher: Sybex (January 21, 2005) Language: English ISBN-10: 0782143865 ISBN-13: 978-0782143867

al :y —	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content-Cours	e wise Pa	ge 25
	Ye	ar:2018-19

Program : Architecture		
Course Title: Structures - II		Course Code: 18AATC114
L-S-P: 3-0-0	Credits: 3	Contact Hours: 3
ISA: 50	ESA: 50	Total Marks: 100
Teaching Hours: 48	ExaminationDuration:3 Hours	

Unit I

1. **Determinate and indeterminate structures:** Difference between determinate and indeterminate structures, implication of indeterminacy, obtaining the redundancy of beams and frames.

- 2. Bending moment and shear force: Concept of shear force and bending moment, types of beams, concept of concentrated load, uniformly distributed load, uniformly varying load and couple. Construction of SFD and BMD for simple cases of cantilever and simply supported beams. Bending moment and shear force diagrams for two and three span continuous beams.
- 3. **Stresses in beams:** Concept of pure or simple bending, bending equation, section modulus and moment of resistance, obtaining bending stress distribution for simple cases of beams. Shear stress distribution across the symmetrical and unsymmetrical beam cross sections.

Unit II

- 4. **Deflection of beams:** Relation between deflection, bending moment, shear force and rate of loading, deflection equation, obtaining slope and deflections for cantilever and simply supported beams using standard formulae.
- 5. Torsion in structures: Concept of torsion, torsion equation, elements subjected to torsion in structural system.

Unit III

6. Columns and struts: short and long columns, buckling of column, boundary conditions for columns, effective length, slenderness ratio and critical load. Euler's and Rankine's theories.

REFERENCES:

 Structures - Martin Bechthold, Daniel L Schodek, and PHI Learning Private limited, Sixth Edition 2) Structure in Architecture, the building of buildings, by Mario Salvadori 3) Structure and Design, by G. G. Schierle 4) Engg Mechanics – R K Bansal & Sanjay Bansal, Laxmi publications, New Delhi.

 Scheme for Internal semester assessment (ISA)
 Regular Assignments

 Scheme for End Semester Assessment (ESA)
 External examination-3 hrs

Mode of assessment :Portfolio& Theory Exam.

Scheme for Semester End Examination (ESA)

SI.No	8 Questions to be set of 20 Marks Each	Chapter Number	Instructions
I	Q.No1, Q.No2, Q.No3	1,2,3,4,5	Solve Any 2 out of 3
II	Q.No4, Q.NO – 5 Q.No6,	6,7,8,9	Solve Any 2 out of 3
	Q.No7, Q.No8	10,11	Solve Any 1 out of 2

al :y —	Document #: FMCD2005	Rev: 1.0
Title: Curriculum Content-Cours	e wise	ge 26
	Yea	ar:2018-19

Program : Architecture		
Course Title: Surveying		Course Code: 18AATC113
L-S-P: 2-0-0	Credits: 02	Contact Hours: 02
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hours: 32	Examination Duration: 3 Hours	

UNIT I:

Surveying- definition, scope of surveying, applications of surveying in architecture projects, principles, classification and character of work. Shrunken scale. Direct and reciprocal ranging, offsets types. Basic problems in chaining, well-conditioned triangle and chain triangulation. Errors in chain surveying.

Principles of plane table surveying, accessories and methods of plain tabling. Merits and demerits of plane table survey as compared to chain survey.

UNIT II:

Leveling, terms used, instruments, classification of leveling, Temporary adjustments of **dumpy level**. Plane of collimation and rise and fall methods. Booking and reduction of levels related numerical on the topics. and errors in leveling.

Introduction to contouring, definitions contour interval, factors affecting contour interval. Characteristics of contours, location of contours, direct and indirect methods of contouring, interpolation of contours. Application of contour maps in architecture field.

UNIT III:

Introduction to Theodolite temporary adjustments and field work.

Introduction to Geographical Information systems and Total station.

Scheme for Internal semester assessment (ISA)

Regular Assignments

Scheme for End Semester Assessment (ESA) External examination-3 hrs

Mode of assessment: Portfolio& Theory Exam.

Text Books:

B.C. Punmia, Surveying and Levelling, Vol-IChirator Publications.

Kanetkar T. P. and Kulkarni S.V, Surveying and Levelling Part-

Reference Books: Duggal, Surveying and Levelling. Vol-I

KLE TECH. KLE TECH. KLE TECH.	
Department of Master of Computer Applications	Page of Page 1 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

15ECAP706 Rich Inte	rnet Application Lab.			
. Program: MASTER OF COMP	UTER APPLICATIONS			
	• • • •			
Course little: Rich Internet App	lications Lab.	Course Code: 15ECAP706		
L-T-P:0-1-1	Credits: 2	Contact Hours: 4 hrs		
CIE Marks: 80	SEE Marks: 20	Total Marks: 100		
Teaching Hours: 48hrs	Examination Duration: 3Hrs.			
1)a) Write the program which des	escribes Boolean data type. cribes integer, float and string data type.			
c) Write the program for type ca	asting of different data type			
2) Find the biggest of 2 number	S.			
Find the biggest of 3 numbers.				
Check whether a number is pos	tive or negative.			
Check whether the given number	ar is odd or even			
Find the factorial of a number (while loop)			
Reverse the digit (Use do while)				
Find the sum of the digits (Use for loop)				
Display the Fibonacci series for a particular limit. (Use for loop)				
Check the given letter is vowel	or not.			
3) Create an associative array w	ith book details and display it in a table.			
Write a program to create an ar	ay and try with all array functions.			
4) Find the length of a string				
Create a form with one text fiel	d and submit buttons for string length, str	ring, reverse,		
uppercase, lowercase, string rep	lace . Display the result according to it.			
5) Write a program of function	passing a two values and add the two val	ues in the function.		
Write a program of function sho	owing with return value.			
Create a registration form which	n contains fields name, Roll No, Gender a	and a submit button.		
All the details should be display	red in the server page when the user click	ts the submit button.		
Write a program to check wheth	her the given number is prime or not.			
6) Create Cookie, store a value	"Ram" in the cookie.			
Write a program of Cookie show	wing expire of cookie			
7) Write a program to display t	he contents of a file(use fread, fgets, fget	c)		
Write a program to create a file	and write contents to it			
Write a program to append data	to an existing file.			
Write a program to upload a file	e and display the contents in server.			
8) Write a program for cinema	a ticketing. All the age should be over 12	years, if less than,dont		
allow to get ticket.(apply the ex	ception handling			

9) Write a PHP code to connect MySql Database.

Write a PHP code to select data, delete data and update data with MySqli. Working with MVC framework(joomla) using PHP and MySql.

15ECAP708

Web Services Lab

Program: MASTER OF COMPUTER APPLICATIONS

Course Code: 15ECAP708	Course Title: Web Se	rices Lab.		
L-T-P: 0-1-1	Credits: 2	Contact Hrs: 4		
ISA Marks: 80	ESA Marks: 20	Total Marks: 100		
Teaching Hrs: 48		Exam Duration: 3 Hours		

1) PHP

2) AJAX

- 1. XMLHttpRequest Object
- 2. Creating a request object
- 3. Sending a request to server
- 4. Receiving a response from the server
- 5. Ready State and Status of a request

3) JQUERY

- 6. Introduction and Installation
- 7. Syntax
- 8. jQuery Selectors
- 9. jQuery Events
- 10. jQuery Effects
- i. jQuery Hide and Show Effect
- ii. jQuery Fade Effect
- iii. jQuery Slide Effect
- iv. jQuery Animate
- 1. jQuery Callbacks
- 2. jQuery and HTML
- i. jQuery Get
- ii. jQuery Set
- iii. jQuery Add
- iv. jQuery Remove
- v. jQuery css
- vi. jQuery Width

	De	partment of Master of Com	puter Applications	Page of Page 3 of 9
Content-	Unique	courses by 2015 to 2020 batches	(Removed Duplicate by Couse Code)	Year: 2015-20 batches
		vii. jQu	ery Height	
	3.	jQuery and AJAX (Pre-Requisi	ite: ServerEnd Technology)	
		i. AJA	X Function	
	4.	JQuery UI		
		i. Imp	lementing Accordion	
		ii. Imp	lementing Date picker	
		iii. Imp	lementing Slider	
		iv. Imp	lementing Progessbar	
		v. Imp	lementing Tabs	
4) HTML 5				
	1.	Introduction		
	2.	HTML5 New Elements		
	3.	HTML5 Video		
	4. -	HTML5 Video/DOM		
	5.			
	6. -	HTML5 Drag and Drop		
	7.	HTML5 Canvas		
	8.	HTML5 SVG		
	9.	HTML5 Canvas vs. SVG		
	10.	HIML5 Geolocation		
5) BOOTSTRA	4P			
6) GOOGLE N	/IAPS	API		
1. In Seme 2. End Sen	ster A neste	Eva Issessment (ISA) : Continue r Assessment (ESA) for 20	luation Scheme ous Internal Assessment for 80 Marks.	Marks.
		F COMPUTER APPLICATIONS		
Program: MAS	STER C			
Program: MAS Course Code:	STER C	\E802 Course Title:	Information Storage and Managen	nent
Program: MAS Course Code: T-P: 3-0-0	STER C	AE802 Course Title: Credits: 3	Information Storage and Managen Contact Hrs: 3	nent
Program: MAS Course Code: L-T-P: 3-0-0 ISA Marks: 50	STER C	\E802 Course Title:Credits: 3 ESA Marks: 5	Information Storage and ManagenContact Hrs: 350Total Marks: 100	nent

Creating Value Leveraging Knowledge

Department of Master of Computer Applications

Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)

Year: 2015-20 batches

No	Content	Hrs	
	Unit I		
1	Chapter 1: Introduction to Information Storage: Information Storage, Evolution of storage architecture, Data Center Infrastructure, Virtualization and Cloud Computing. Data center environment: Application, DBMS, Host, Connectivity, Storage, Disk Drive Components, Disk Drive Performance, Host Access To Data, Direct Attached Storage, Storage Design Based on Application, disk native Command Queuing	6 Hrs	
2	Chapter 2 : Data protection: RAID RAID Implementation Methods, RAID Array Components, RAID Techniques, Raid Levels, RAID Impact on Disk performance, RAID Comparison, HOT Spares	6 Hrs	
3	Chapter 3. Intelligent Storage Systems: Components of an Intelligent storage system, LUN Masking, Types of Intelligent storage Systems	5 Hrs	
	Unit II	i	
4	Chapter 4: Fibre Channel Storage Area Networks: Fiber channel :Overview, Components of SAN, FC Connectivity, Switched Fabric ports, Fibre Channel Architecture, Zoning, FC SAN Topologies, Virtualization in SAN. IP SAN: iSCSI, FCIP.	7 Hrs	
5	Chapter 5: Network Attached Storage (NAS): Components of NAS, NAS Implementations, NAS File sharing Protocols, Factors Affecting NAS Performance, File Level Virtualization.	5 Hrs	
6	Chapter 6: Content Addressed Storage(CAS) and Unified Storage Object Based Storage Devices, Content Addressed Storage, Unified Storage	5 Hrs	
	Unit – III		
7	Chapter 7: Local Replication and Remote Replication : Local Replication Technologies, Remote Replication Technologies .	4 Hrs	
8	Chapter 8: Securing & Managing the Storage Infrastructure Information security Framework, Risk Traid, Storage Security Domains ,Monitoring the Storage Infrastructure, Storage Infrastructure Management activities, Storage Infrastructure Management Challenges.	4 Hrs	
Text	Book:		
Refe	 G.Somasundaram, Aloka Shrivastava, "EMC Education Services, Information Stora Management", Wiley, 2009. rences: 	age and	
	 Foundations ULF Troppens, Rainer Erkens and Wolfgang Muller, "Storage Networks Explained", John Wiley & Sons, 2003. Robert Spalding, "Storage Networks: The complete Reference", Tata Mc Graw Hill, 2003. 		

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 5 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

1	In	Semester Assessment (ISA)	
		Scheme	Evaluation
	4.	Marc Farely, "Building Storage Networking Fundamentals", Cisco press, 2005	– • ··
		understanding and Implementing SANS", John Wiley India, 2002.	
	3.	Richard barker and Paul Massiglia, "Storage Area Networks Essentials: Acomplete Guide to	

Assessment	Weightage in Marks
ISA- 1	20
ISA- 2	20
Assignments	10
Total	50

2. End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Nos.	Instructions
I	3 Questions to be set of 20 Marks Each	1,2,3	Any 2 questions are to be answered
II	3 Questions to be set of 20 Marks Each	4,5,6	Any 2 questions are to be answered
	2 Questions to be set of 20 Marks Each	7,8	Any 1 question is to be answered

15ECAP804

Advance DBMS Lab.

Program: MASTER OF COMPUTER APPLICATIONS

Course Code: 15ECAP804	Course Title: Advanc	Course Title: Advance DBMS Lab.	
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3	
ISA Marks: 80	ESA Marks: 20	Total Marks: 100	
Teaching Hrs: 36		Exam Duration: 3 Hours	

<u>PL/SQL programs on :</u>Strings, Arrays, Cursors, Records, Exceptions, Triggers, Packages, Collections, Transactions& Stored Procedures.

EXERCISE 1

Write a PL/SQL code to retrieve the employee name, join_date, and designation from employee database of an employee whose number is input by the user.

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 6 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches
Freeley on detabases with the tables and fields energified on below	

Employee database with the tables and fields specified as below.			
a) Employee: Emp no Employee name Street City			
b) Works : <u>Emp_no</u> Company_name Joining_date Designation Salary			
c) Company ·			
d) Manages : <u>Emp_no</u> Maanager_ name Mang_no			
Note: Primary keys are underlined			
EXERCISE 2			
Write a PL/SQL code to calculate total and percentage of marks of the students in four subjects.			
EXERCISE 3			
Write a PL/SQL code to calculate the total and the percentage of marks of the students in four subjects			
from the table- Student with the schema given below.			
STUDENT (RNO , S1 , S2, S3, S4, total, percentage)			
EXERCISE 4			
Write a PL/SQL code to display employee number, name and basic of 5 nignest paid employees.			
(Usage of cursors)			
EXERCISE 5			
Write a PL/SQL code to calculate the total salary of first n records of emp table. The value of n is			
passed to cursor as parameter.			
EXERCISE 6			

EXERCISE 6

Write a trigger on the employee table which shows the old values and new values of Ename after any updations on ename on Employee table

EXERCISE 7

Write a row trigger to insert the existing values of the salary table in to a new table when the salary table is updated.

EXERCISE 8

Write a PL/SQL procedure to find the number of students ranging from 70-100%, 60-69%, 50-59% & below 49% in each course from the student_course table .

Student database with the tables and fields specified as below.

a) Student : <u>Roll_no</u> Student_name Course Gende	a)	Student :	Roll_no	Student_ name	Course	Gender
---	----	-----------	---------	---------------	--------	--------

Content- Unique cour b) Student Personal: c) Student enrollme	Roll_no DOB Father_name Address Place	5-20 batches
 b) Student Personal: c) Student enrollme 	Roll_no DOB Father_name Address Place	
Personal: c) Student enrollme	Roll_no DOB Father_name Address Place	
c) Student enrollme]
[nt :	
	Roll_no Course Course_code Sem TotalMarks Percentage	
EXERCISE 9		
Create a store function the code to call your fund	nat accepts 2 numbers and returns the addition of passed values. Also write ction.	
EXERCISE 10 Write a PL/SQL function to Department. Also write a	that accepts department number and returns the total salary of the function to call the function.	
EXERCISE 11		
Write a PL/SQL code to c a) Package specification	reate:	
o) Package body.		
For the insert, retrieve, u	pdate and delete operations on a student table.	
EXERCISE 12		
Extending the power of	PL/SQL:	
This experiment shows h PL/SQL programmers wh no previous experience c	ow to call a PL/SQL subprogram from a Java program. It's aimed at those o have no previous experience of Java, and those Java programmers who have ff PL/SQL (to call Java from PL/SQL).	
	Scheme	Evaluat
1. In Semester Asse	essment (ISA) : Continuous Internal Assessment for 80 Marks.	
2. End Semester As	sessment (ESA) for 20 Marks.	

Course Code: 17ECAP702	Course Title: Web Programming Lab.	
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3
ISA Marks: 100	ESA Marks:	Total Marks: 100

KLE TECH.	Creating Value	
	Department of Master of Computer Applications	Page of Page 8 of 97
Content- Unic	ue courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches
Teaching Hrs: 36	Exam Duration:	3 Hours
No	Content	Hrs

Unit I

Laboratory Section

Expt./Job No.	Lab assignments/experiment	No. of Lab. Slots per batch (estimate)			
	Demonstration				
1-2	Web designing using all elements of HTML and HTML5.	02			
3	Applying CSS and CSS3 to HTML pages	01			
4-5	Client side scripting using JavaScript	02			
Exercises					
6-7	Exercise programs on Web designing using all elements of HTML and HTML5.	02			
8	Exercise programs on Applying CSS and CSS3 to HTML pages	01			
9-10	Exercise programs on Client side scripting using JavaScript	02			
	Structured enquiry				
11	Develop a customized web based application.	02			

17ECAC703

PHP Programming

Program: MASTER OF COMPUTER APPLICATIONS

Course Code: 17ECAC703

Course Title: PHP Programming

L-T-P:**3-0-1**

Credits: 4

Contact Hrs: 5

ISA Marks Theory: **50 +** Practice: **100** ESA Marks: **50**

Total Marks: 200

	Department of Master of Computer Applications	Page of Page 9 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code) Yea		
eachin	g Hrs: 42 + 24 Exam Duration:	3 Hours
No	Content	Hrs
	Unit I	
1	Chapter No. 1- Introducing PHP	3 Hrs
	History, Unique features, Basic development concepts , Creating your first PHP scrip Writing & running the script, Understanding the scripts , Handling script errors	ot,
2	Chapter No. 2- Using variables & operators	3Hrs
	Storing data in variables, Understanding PHP's data types, Setting & checking variab data types, Using constants, Manipulating variables with operators, Handling form input	le
3	Chapter No. 3- Controlling Program Flow Writing Simple Conditional Statements, Writing More Complex Conditional Stateme Combining Conditional Statements, Repeating actions with loops, Working with stri numeric functions	4Hrs ents , ng &
4	Chapter No. 4- Working with Arrays Storing data in Arrays, Processing arrays with loops & iterators, Using arrays with fo Using arrays with forms, Working with array functions, Working with dates & times.	3Hrs rms,
5	Chapter No. 5- Using functions & Classes Creating user defined function, Creating classes ,Using Advanced OOP concepts	4Hrs
6	Chapter No. 6. Working with Files & Directories	6 Hrs
	Reading files, Writing files , Processing directories , Performing Other files & directo operations	ry
7	Chapter No. 7. Working with databases & SQL	6 Hrs
	Introducing databases & SQL, Using PHP MySQLi extension, Adding or modifying da Handling errors , Using PHP's PDO extension, Building a Login form	ta,
8	Chapter No. 8. Working with XML	5Hrs
	Introducing XML, Using PHP's Simple XML extension, Converting XML to SQL, Readin RSS feeds ,Using PHP's DOM extension, Recursively processing an XML document tr	ng ee
	Unit – III	
9	Chapter No. 9. Working with Cookies, Sessions & Headers Working with Cookies ,Cookie Basics , Cookie Attributes , Cookie Headers , Setting Cookies ,Reading Cookies , Removing Cookies, Working with Sessions , Session Basi Creating Sessions and Session Variables , Removing Sessions and Session Variables,	4Hrs

KLE TECH. KLE TECH.	
Department of Master of Computer Applications	Page of Page 10 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

10 Chapter No. 10. Securing PHP

4Hrs

Sanitizing Input and Output, Securing Data, Securing Configuration Files, Securing Database Access, Securing Sessions, Validating User Input, Working with Required Fields, Working with Numbers, Working with Strings, Working with Dates

Text Books :

1. VikramVaswani, A Beginner's Guide PHP, Mc Graw Hill, 2009.

References:

1. Online tutorials websites - w3schools and tutorialspoint

Laboratory Section

Expt./ Job No.	Lab assignments/experiment	No. of Lab. Slots per batch (estimate)
	Demonstration	
1	Scripts that helps to understand the syntax and grammar of PHP language.	01
2	Scripts to develop dynamic web pages that read and process the user input submitted via online form.	01
3	Scripts to Develop dynamic web pages that store and retrieve data from a file on a disk and database from the server	01
4	Scripts to Develop dynamic web pages that authenticate and track users with sessions and cookies	01
5	Scripts to Perform efficient exception handling and error processing on the developed web pages	01
6	Scripts to demonstrate Database Communication through PHP	01
	Exercises	
7	Practice Scripts on developing dynamic web pages that read and process the user input submitted via online form	01
8	Practice Scripts on Developing dynamic web pages that store and retrieve data from a file on a disk and database from the server	01
9	Practice Scripts on Develop dynamic web pages that authenticate and track users with sessions and cookies	01

KLE TECH.	
Department of Master of Computer Applications	Page of Page 11 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

10	Practice Scripts on Performing efficient exception handling and error processing on the developed web pages	or 01
11	Practice Scripts on demonstrating Database Communication throug PHP	h 01
	Structured enquiry	
12	Develop dynamic, interactive and customized web portals	01

Evaluation Scheme

1. Assessment

Assessment	Theory	Lab.	
ISA- 1	25	100	
ISA- 2	25	_~~	
ESA	50	00	
Total	100	100	

2. End Semester Assessment (ESA) Pattern:

UNIT	8 Questions to be set of 20 Marks each	Chapter Nos.	Instructions
I	3 Questions to be set of 20 Marks Each	1,2,3,4,5	Any 2 questions are to be answered
II	3 Questions to be set of 20 Marks Each	6,7,8	Any 2 questions are to be answered
111	2 Questions to be set of 20 Marks Each	9,10	Any 1 question is to be answered

16ECAP804

Programming in C# with .NET Lab.

Program: MASTER OF COMPUTER APPLICATIONS

Course Code: 16ECAP804	Course Title: Programming in C# with .NE	
L-T-P: 0-0-1.5	Credits: 1.5	Contact Hrs: 3
ISA Marks: 100	ESA Marks: 00	Total Marks: 100

	Department of Master of Computer Applications		Page of Page 12 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)			Year: 2015-20 batches
eaching Hrs	:: 36 Exam Dur	ation: 3 Hours	
lo	Content		Hrs
	Unit I		
Expt/Job	Brief description about the experiment / job	No. of Lab. Slots	per
No.		batch (estimate)	
	Demonstration		
1.	C# programming constructs Arrays, Strings, Enumerations, Structures, Methods and Namespaces.	1	
2.	Pillars of OOP - Encapsulation, Inheritance, Polymorphism.	1	
3.	Interfaces & members of Systems.Collections namespace.	1	
4.	Delegates, Events & Operator Overloading.	1	
	Exercises		
5.	Implementation of boxing & unboxing techniques, methods and Parameter Modifiers.	1	
6.	Application of basic OOP concepts and ArrayList class.	1	
7.	Building Structures in C#.	1	
8.	Implementation of encapsulation, inheritance and polymorphism in C#.	1	
9.	Implementation of interfaces.	1	
10.	Operator Overloading and Exception handling.	1	
11.	Building Delegates in C#.	1	
	Structured Enquiry		
12.	Designing a C# GUI application with database connection.	1	
FCAP805			

г

Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)

Funt No.	Driefdees			Domente	
. Expt NO.	Brief desc	Demonstration	ment	кетагкз	
		Demonstration			
1	Introduction to basic PL	/SQL control structures.		No-Evaluation	
2	Introduction to Functio	ns		No-Evaluation	
3	Introduction to Procedu	ures		No-Evaluation	
4	Introduction to cursers	and curser variables.		No-Evaluation	
5	Introduction to Triggers	and records.		No-Evaluation	
		Exercise			
6	Implementation of basic	c PL/SQL control structur	res on a given	Evaluation	
	database				
7	Implementation of PL/ S	SQL Functions on a given	database	Evaluation	
8	Implementation of Proc	edures on a given datab	ase.	Evaluation	
<i>9</i> Implementation of Cursers and curser variables on a given			on a given	Evaluation	
database.					
10	Implementation of Trigg	gers on a given database		Evaluation	
11	Implementation of Reco	ords on a given database			
Structured Enquiry					
12	Implementing a PL/SQL	operations on a real tim	e data base	Evaluation	
		Evaluation Schen	ne		
1. In Se	mester Assessment (ISA): Continuous Inte	ernal Assessment	for 100 Marks.	
16ECAE802	NO SQL				
		TIONS			
Program: MASTER					
				_	
L-1-P: 3-0-1		Credits: 4	Contact Hrs	: 5	
ISA Marks-Theory: 50 +Practice: 100		ESA Marks: 50	Total Marks	s: 200	
l'eaching Hrs: 50			Exam Durat	ion: 3 Hours	
No		Content			Hrs
		Unit I			

KLE	Стесн. Creating Value Leveraging Knowledge	
	Department of Master of Computer Applications	Page of Page 14 of 97
(Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code) Y	ear: 2015-20 batches
1	Chapter 1 – Introduction to NoSQL	8 Hrs
	What it is & Why you need it, Hello NoSQL : Getting Initial hands-on Experience, Interfac and Interacting with NoSQL	ing
2	Chapter 2 – NoSQL Basics Understanding the Storage Architecture, Performing CRUD operations, Querying NoSQL Stores, Modifying Data Stores & Managing Evolution, Indexing and ordering datasets.	12Hrs
	Unit II	
3	Chapter 3 – Advanced NoSQL Using NoSQL in the CLOUD, Scalable Parallel Processing with MapReduce, Analyzing BigE with Hive.	8 Hrs Data
4	Chapter 4 – Working with NoSQL Surveying Database Internals, Using MySQL as a NoSQL solution, WebFrameworks and N Migrating from RDBMS to NoSQL.	12 Hrs NoSQL,
	Unit – III	
5	 Chapter 5 – Developing Web Application with NoSQL Php and MongoDB – Comparing documents in MongoDB & PHP, MongoDB classes, Conr & Disconnecting, Inserting Data, listing your data, Modifying data with PHP, Deleting DBRef, GridFS & PHP Driver, Creating a Blog Application with PHP driver - Designin Application, Listing the Posts, Looking at a Single Post, Searching the Psots, Adding, Deleting modifying Posts, Creating the Index Pages, Recapping the blog application. 	6 Hrs necting g data, ng the eting &
6	Chapter 6 – NoSQL Database Administration Using Administrative tools, Backing up the MongoDB Server, Digging Deeper into Ba Restoring Individual Databases or Collections, Automating Backups, Backing up Databases, Importing Data into MongoDB, Exporting data into MongoDB, Securing.	4 Hrs ickups, Large

Г

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 15 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

Text Book:

- 1. "Professional NoSQL" by Shashank Tiwari, 2011, WROX Press (Chapter 1,2,3,4,5,6,7.8.9,10.11.12.13.15)
- 2. The Definitive guide to MongoDB, The NoSQL Database for Cloud and Desktop Computing, Apress 2010. (Chapter 6,7,8,9).

NOSQL PRACTICES

COURSE DESCRIPTION:

The widespread emergence of big data storage needs has driven the development and adoption of a new class of non - relational databases commonly referred to as NoSQL databases. The NoSQL (or Not-Only SQL) databases are basically developed to meet the requirements of the modern cloud-based decentralized apps and are a good solution as compared to the relational databases in many ways. These unstructured databases are widely known for their non-relational and schema less data model, improved performance and scalability factors which are always an issue with relational database systems. This course will explore the origins of NoSQL databases and the characteristics that distinguish them from traditional relational database management systems. Core concepts of NoSQL databases will be presented followed by an exploration of how different database technologies implement these core concepts.

OBJECTIVES

- Demonstrate competency in designing NoSQL database management systems.
- Demonstrate competency in describing how NoSQL databases differ from relational databases from a theoretical perspective.
- Demonstrate competency in selecting a particular NoSQL database for specific use cases.

LAB REQUIREMENTS:

- o Computer with latest configuration having Windows and Unix OS Versions.
- Java software installed.

Expt./ Job No.	Lab assignments/experiment	Implementation	Number of Hours
1.	Set up MongoDB environment.	 i. Installation of MongoDB on Windows and Unix platform. ii. Operations on Start, Stop and Restart MongoDB. iii. Using MongoDB Help. iv. Getting MongoDB Statistics. 	02
2.	Create/Drop, NoSQL Datatypes	 i. Differentiate between database, document and collection. ii. Create Database, Drop Database. iii. Create Collection, Drop Collection. iv. MongoDB Datatypes. 	02
3.	Working with MongoDB Documents	Insert Document, Update Document, Delete Document,	02
4.	Data Retrieval	 i. Projection ii. Limit Records iii. Sort Records iv. Indexing v. Aggregation 	02
5.	Creating Backup	i. Replication ii. Sharding iii Create Backup	02

LIST OF EXERCISES

Department of Master of Computer Applications

Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)

plicate by Couse Code) Year: 2015-20 batches

		iv. Deployment		
6.	MongoDB in Java	Set up MongoDB JDBC driver, Connect to database, Create a	04	
		Collection, Retrieve a Collection, Insert a Document, Retrieve		
		a Documents, Update Document.		
		a Documents, Update Document.		

References:

1. <u>https://www.tutorialspoint.com/mongodb/mongodb_tutorial.pdf</u>

- 2. https://blog.codecentric.de/files/2012/12/MongoDB-CheatSheet-v1_0.pdf
- 3. http://www.guru99.com/mongodb-tutorials.html

Evaluation Scheme

1. Assessment

Assessment	Theory	Lab.
ISA- 1	25	100
ISA- 2	25	100
ESA	50	00
Total	100	100

2. End Semester Assessment (ESA) Pattern:

UNIT	8 Questions to be set of 20 Marks Each	Chapter Nos.	Instructions
I	3 Questions to be set of 20 Marks Each	1,2	Any 2 questions are to be answered
II	3 Questions to be set of 20 Marks Each	3,4	Any 2 questions are to be answered
	2 Questions to be set of 20 Marks Each	5,6	Any 1 question is to be answered

16ECAE803

.

Database Administration

Program: MASTER	OF COMPUTER API	PLICATIONS		
Course Code: 16EC	AE803	Course Title: Database	Administration	
L-T-P: 3-0-1		Credits: 4	Contact Hrs: 5	
ISA Marks-Theory:	50 +Lab: 100	ESA Marks: 50	Total Marks: 200	
Teaching Hrs: 50			Exam Duration: 3 Hours	
Νο		Content		Hrs
		Unit I		
1 Chapter N	o. 1 : Introduction			7 Hrs
Why Lear	n Database Admin	istration?, A Unique Va	ntage Point, The Management	
Discipline	of Database Admin	istration, Evaluating a DB	A Job Offer, Database, Data and	
System Ad	ministration, DBA	Tasks, DBMS Release Mig	ration, Types of DBAs.	
2 Chapter N	o. 2: Creating the I	Database Environment		7 Hrs
Defining t	he Organization's	DBMS Strategy, Installin	g the DBMS, Upgrading DBMS	
Versions a	nd Releases, Datab	ase Standards and Proce	dures.	
3 Chapter N	o. 3: Database Cha	inge Management		6 Hrs

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 17 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches
Change management Requirements, Types of changes, Impact of Change on Databa	se

	Structures,	
	Unit II	
4	Chapter No. 4 Performance Management	7 Hrs
	Defining Performance, Monitoring versus Management, Service-Level Management,	
	Types of performance tuning, Performance Tuning tools, DBMA performance Basics.	
5	Chapter No. 5 System and Database Performance	7 Hrs
	The Larger Environment, DBMS Installation and Configuration Issues, System	
	Monitoring, Techniques for optimizing Databases, Database reorganization.	
6	Chapter No. 6 Application Performance	6 Hrs
	Designing Applications for Relational Access, Relational Optimization, Additional	
	Optimization Considerations, Reviewing Access Paths, SQL Coding and Tuning for	
	Efficiency.	
	Unit – III	
7	Chapter No. 7 Database Security	5 Hrs
	Data Breaches, Database Security Basics, Granting and Revoking Authority,	
	Authorization Roles and Groups, Other Database Security Mechanisms, Encryption.	
8	Chapter No. 8 Database Backup and Recovery	5 Hrs
	The Importance of Backup and Recovery, Preparing for Problems, Backup, Recovery,	

Alternatives to Backup and Recovery

Text Book:

1. Craig S. Mullins "Database Administration: The complete guide to DBA Practices and Procedures" 2nd Edition, Addison Wesley. **Evaluation Scheme**

1. Assessment

Assessment	Theory	Lab.
ISA- 1	25	100
ISA- 2	25	
ESA	50	00
Total	100	100

2. End Semester Assessment (ESA) Pattern:

UNIT	8 Questions to be set of 20 Marks Each	Chapter Nos.	Instructions
I	3 Questions to be set of 20 Marks Each	1,2,3	Any 2 questions are to be answered
II	3 Questions to be set of 20 Marks Each	4,5,6	Any 2 questions are to be answered
111	2 Questions to be set of 20 Marks Each	7,8	Any 1 question is to be answered

16ECAE804

Web Content Management

Program: MASTER OF COMPUTER APPLICATIONS

	Denartment of N	laster of Computer App	lications Pag	e of Page 18 of 9
Со	ntent- Unique courses by 2015	to 2020 batches (Removed D	Puplicate by Couse Code) Year: 2	015-20 batches
Course	Code: 16ECAE804	Course Title: Web Co	ontent Management	
T-P: 3-	0-1	Credits: 4	Contact Hrs: 5	
SA Mar	ks-Theory: 50 +Lab: 100	ESA Marks: 50	Total Marks: 200	
eachin	g Hrs: 50 + 24		Exam Duration: 3 Hours	
No		Content		Hrs
		Unit I		
1	Chapter 1: What Content	Management Is (and Isn't)		6 Hrs
	What Is Content?, What Is Systems, What a CMS Doe	a Content Management Sy es, What a CMS Doesn't Do	stem?, Types of Content Management	
2	Chapter 2 :Points of Com	parison		7 Hrs
	Versus Commercial, Tech Decoupled, Installed Ver Versus Configuration, Uni- the Problem of Technical	nnology Stack, Manageme sus Software-as-a-Service Versus Bidirectional Publis Debt	ent Versus Delivery, Coupled Versus (SaaS), Code Versus Content, Code hing, Practicality Versus Elegance, and	
3	Chapter 3 :Acquiring a CMS			7 Hrs
	Open Source CMSs, Comr to Ask	nercial CMSs, Software-as-	a-Service, Build Your Own, Questions	
		Unit II		
4	Chapter 4: The Content N	lanagement Team		7 Hrs
	Editors, Site Planners, Dev	elopers, Administrators, St	akeholders	
5	Chapter 5: CMS Feature A	Analysis		6 Hrs
	The Difficulties of Feature	Analysis, An Overview of C	CMS Features	
6	Chapter 6 Content Model	ing		7 Hrs
	Data Modeling 101, Data Presentation, Defining a Model Manageability, A S	Modeling and Content M Content Model, Relations ummary of Content Modeli	lanagement, Separating Content and hips, Content Composition, Content ing Features	
		Unit – III		
_	Chapter 7 :Content Aggregation			
7	Chapter 7 :Content Aggre	gation	action Modeley Implicit and Evaluate	
7	Chapter 7 :Content Aggre The Shape of Content, C Aggregation Functionality Features	gation Content Geography, Aggre , By Configuration or by Coc	gation Models: Implicit and Explicit, le, A Summary of Content Aggregation	
7 8	Chapter 7 :Content Aggree The Shape of Content, C Aggregation Functionality Features Chapter 8 :Editorial Tools	gation Content Geography, Aggre , By Configuration or by Coc and Workflow	gation Models: Implicit and Explicit, le, A Summary of Content Aggregation	5 Hrs

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 19 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

Approvals, Collaboration, Content File Management, Permissions, A Summary of Editorial Tools

Text Book:

1. "Web Content Management", Systems, Features, and Best Practices, Publisher: O'Reilly Media, March 2016.

WEB CONTENT MANAGEMENT SYSTEM – COURSE PROJECT

COURSE DESCRIPTION:

Today, many web publishers use content management systems (CMS) to allow them to instantly and dynamically update web pages and properties as new content becomes available so that every visit to a site is engaging, informative, and meaningful. The course project shall explore any one of the three most popular open source web-based content management systems—**WordPress, Joomla, and Drupal**—to create dynamic and flexible websites and landing pages. Students shall explore the fundamentals of planning dynamic websites, CMS database management, developing CSS-controlled site templates, and creating database-driven websites through the planning and creation of their own topic-based sites.

OBJECTIVES

- Introduce learners to any one of the three most popular open source content management systems (CMS) such as WordPress, Drupal, or Joomla.
- Create, deploy and Maintain websites using CMS, including creating and editing content, adding functionality, and creating custom templates and themes.

COURSE PROJECT TITLE: BUILDING WEBSITE USING CMS (JOOMLA / WORDPRESS OR DRUPAL)

To build website for any real world examples such as Corporate web sites or portals, Online magazines, newspapers, and publications, E-commerce and online reservations, Government applications, Small business web sites, Community-based portals, School, religious web sites or Personal or family homepages using popular Web Content Management System. The website shall facilitate to create, manage, store and deploy content on the Web, including text, graphics, video or audio as a part of Enterprise Content Management.

EXECUTION PLAN:

SI.No	Demonstration	Implementation	Number of Slots
1.	 Introducing Content Management Systems An overview of some of the different tools and methods that today's web publishers are using to create highly-tailored dynamic web content. Purchasing and configuring a domain name and web hosting. 	 Introduction to Joomla & Installation Domain Name Registration & Configuration and Hosting Create a Database Content Preparation and Planning 	02
KLE T	Creating Leveraging Kr	chnological niversity Value nowledge	
---	---	---	----
	Introduction to Joomla Page of Page 20 of 97 Content-Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code) Year: 2015-20 batches 2 Introduction to Joomla • Explore the CAM model (Categories, Articles, and Menus) approach to creating content for Joomla environments. • Write an article & put your articles in order with categories. • Customizet Schwitz 3 • Administration and media • Exploring the Admin Interface • Content creation using the CAM model • Write an article & put your articles in order with categories. • 02 3 Joomla Menus • Creating and controlling menus for Joomla sets, long mass, etc. • Categorize the articles which allow grouping your content better. • 02 • To link to articles and create special menu items. • Create menu items for website. • 02 • Extending Joomla Plug-ins, Modules, Components and other extensions. Select Create Joomla Module, for the website such as Feed Display Module, Forter Module, Random Image Module, Wro's Online Module, Search Module, Search Module, Random Image Module, Wro's Online Module, and mage Module, Wro's Online Module, Components and other extensions. • 02 • Linking menus to articles and components and other extensions. Select and Customize template for website. • 02 • Modules, Components and other extensions. Select and Customize template for website. • 02 •		
Support Page of Page 20 of 97 Content-Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code) Page of Page 20 of 97 Content-Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code) Year: 2015-20 batches 2 Introduction to Joomia Page of Page 20 of 97 0 Explore the CAM model (Categories, Articles, and Menus) approach to creating contents 1. Write an article & put your articles in order with categories. Page of Page 20 of 97 2 Introduction to Joomia Categories, Articles, and Menus) approach to creating contents is look with Joomia environments. 1. Write an article & put your articles in order with categories. Page of Page 20 of 97 3 Joamia environments. Administration and management of users and media. 1. Write an article & put your articles in order with categories. 02 3 Joomia Menus 1. Categorize the articles which allow grouping your content better. 02 4 Joomia Menus 1. Categorize the articles which allow grouping your content better. 02 5 Custom Templates Select Create Joomia Modules for the website such as Feed Display Module, Footer Module, Latest News Module, Search Module, Random Image Module, Wob's Online Module etc. 02 6 Custom Templates utemplates <			
2.	 Introduction to Joomla Explore the CAM model (Categories, Articles, and Menus) approach to creating content for Joomla environments. Administration and management of users and media. Installing Joomla Exploring the Admin Interface Content creation using the CAM model Content customization: images, wideo audio tore formate ato 	 Write an article & put your articles in order with categories. Customize Administrator's Panel Change your website's look with Templates. Expand your website's functionality with different extensions. Content creation & Customization using the CAM model 	02
3.	 Joomla Menus Creating and controlling menus for Joomla site. To link to articles and create special menu items. Adding and displaying menus Linking menus to articles and other features 	 Categorize the articles which allow grouping your content better. Create menu items for website. 	02
4.	 Extending Joomla –Plug-ins, Modules Use of Joomla, Plug-ins, Modules, Components and other extensions. Installation of extensions, Finding and adding Joomla extensions Adding and setting up 2 "big" extensions (choose blog, calendar, image gallery, Paypal- based shopping cart, or portfolio. Other extensions on approval) 	Select Create Joomla Modules for the website such as Feed Display Module, Footer Module, Latest News Module, Search Module, Random Image Module, Who's Online Module etc.	02
5.	 Custom Templates Explore the addition of creation and uses of customized Joomla templates Modifying templates using CSS and HTML tricks. 	Select and Customize template for website.	02
6.	 User management and permissions Explore how to manage users in Joomla site, including managing who sees what based on login, as well as who can do what based on permissions assigned. 	Control the use of Captcha, registration allowed and type of registration, default user group new users, reset password, and new user registration email notice to administration.	02

1. Assessment

Assessment	Theory	Lab.
ISA- 1	25	100
ISA- 2	25	
ESA	50	00
Total	100	100

2. End Semester Assessment (ESA) Pattern:

UNIT	8 Questions to be set of 20 Marks Each	Chapter Nos.	Instructions
I	3 Questions to be set of 20 Marks Each	1,2,3	Any 2 questions are to be answered
II	3 Questions to be set of 20 Marks Each	4,5,6	Any 2 questions are to be answered
	2 Questions to be set of 20 Marks Each	7,8	Any 1 question is to be answered

16ECAE807

.

•

IT Infrastructure & Management

Progran	n: MASTER OF COMPUTER APPLICA	TIONS		
Course Code: 16ECAE807		Course Title: IT Infrastructure Management		
L-T-P: 3-	0-1	Credits: 4	Contact Hrs: 5	
ISA Mar	ks-Theory: 50 +Lab: 100	ESA Marks: 50	Total Marks: 200	
Teachin	g Hrs: 50		Exam Duration: 3 Hours	
No		Content		Hrs
		Unit I		
1	Chapter 1. Introduction			5 Hrs
	Basic Conceptual Overview o & Conceptual Overview of the con- De-Militarized Zones.	of Router, Routing Protocol cept of Zoning, Internet, Extrane	s and Routed Protocols t, Intranet (Militarized Zone),	
2	Chapter 2. IT Infrastructure Components and their associated Zones			
	Firewall , IPS (Intrusion Prevention System) , VPN (Virtual Private Network), NATing, Servers- Domain Name System Server, Proxy Server,Web Application Server, DHCP Server, FTP Server, Mail Server			
3	Chapter 3. Firewall :			5 Hrs

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 22 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

Basic Operation of Firewall, Types of Firewall-Stateless-Static Packet Filtering Firewall, Stateful-Dynamic Filtering Firewall, Firewall Rule Set-Conceptual Overview, Standard Firewall Rules, How to Create a Firewall Rule ;Windows Firewall -Configuration of a Windows Based Firewall on PC, Host Based Firewall, Security Products ;Modern Firewall Architecture- Deep Packet Inspection; Essence of a Firewall in the Corporate IT Infrastructure- How it protects the Servers in the Corporate Infrastructure; Protection to Corporate IT Infrastructure in absence of a Firewall.

4 Chapter 4. IPS (Intrusion Prevention System)

What is an IPS Device, Uses of IPS Device, Modes of Operation of IPS Device, IPS Device Update Mechanism, Advantages of IPS Device, Disadvantages of IPS Device

Unit II

5 Chapter 5. VPN (Virtual Private Network)

Leased Line Network and the Advnet of VPN, What is VPN (Virtual Private Network? How VPN can be Helpful? How does VPN Work? Types of VPN - Remote Access, VPN Tunneling, Equipments to set up VPN Connectivity, VPN Case let – Challenge, VPN Technology - SSL VPN and IPSec VPN, Encryption and Security Protocols in VPN, Advantages of VPN, VPN Related Threats- End Point Security Posture , Split Tunneling- Concept, Advantages, Configuration, ICS Split Tunneling Problem, Web Application Attacks, Unauthorized Access to Host, Insecure Storage of Authentication Credentials by VPN Clients, Misconfiguration, RSA - VPN Implementation, Setting Client Based VPN Connection

NATing- Conceptual Overview, NATing Operation - How it works? Applications of NATing

6 Chapter 6. Domain Name System Server-

Conceptual Overview, DNS Hierarchical Structure, Distributed Database- Top Level Domains Classification - Geographical and organizational, Fully Qualified Domain Name; DNS Server Classification - Zone Information/ Function, DNS Operation Modes - Recursive and Iterative, DNS Caching-a. Conceptual Overview, How DNS Resolves Queries; DNS Records - A, AAAA, MX, NS, PTR, CNAME-Registering DNS Records in Corporate/ ISP DNS Servers; DNS Zone Files, DEMO:nslookup utility -Command Line tool for forward DNS query, Reverse DNS Queryand Extracting Domain Related Information; DNS Threats and Mitigation- Split Zone Architecture, Zone Information Leakage -Unauthorized Zone Zone Transfer, Reverse DNS Lookup, Zone Transfers Applications to keep DNS updated, Security Zone Transfers using DNS/TSIG, Security Zone Transfers using DNSSEC (DNS Security) Protocol- How DNSSEC Works? Difference between DNS TSIG and DNSSEC; Cache Poisoning Attack, Conceptual Overview - How it happens, Implications- Mail Redirection, Web Redirection, URL Redirection; Deletion Attack, DoS Attack-Demo:DoS Attack on a DNS Server, Dynamic Updates using DHCP Client/ Server, Integrated with ADS, Wrong Configuration - Non-Authoritative, Recursive Mode, Integrity Compromise of ROOT Hints File, DNS Amplification Attacks, Other Security Parameters- Restrict DNS servers to listen on specific addresses, Configure Global Query Block List.

Unit – III

7 Chapter 7. Proxy Server- Conceptual Overview, Operation - How Proxy Server Works , 5 Hrs Applications of Proxy Server; Antivirus - Types of Malwares - Virus, Worms, Trojans, Spyware,

10Hrs

5 Hrs

10Hrs

KLE TECH.	
Department of Master of Computer Applications	Page of Page 23 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

Ghostware, RansomWare etc., What is an Antivirus- How does an Antivirus Work? **Web** Application Server- Conceptual Overview, Web Application Attacks

 8 Chapter 8. DHCP Server -Conceptual Overview, Overview of DHCP Operation, Uses of DHCP 5 Hrs Server; FTP Server- Conceptual Overview, FTP Operations - Active and Passive FTP, Uses of FTP Server; Mail Server- Conceptual Overview, Overview of Email Filter Devices.

References:

- 1. Kemp, Juliet, Spinger, "Linux System Administration"
- 2. Anita Sengar "IT Infrastructure Management" 2012 Edition, publisher: S K Kataria and Sons
- 3. Sjaak Laan "Infrastructure Architecture Infrastructure Building Blocks and Concepts Second Edition, Kindle Edition, Lulu Press Inc; Second Edition

IT Infrastructure Management Practices

COURSE DESCRIPTION:

IT infrastructure consists of a set of physical devices and software applications that are required to operate the entire enterprise. IT infrastructure is also consists both human and technical capabilities. These services include the following- Computing platforms used to provide computing services, that connect employees, customers, and suppliers into a coherent digital environment, including servers ,Data management services that store and manage corporate data and provide capabilities for analyzing the data and Application software services that provide enterprise-wide capabilities such as enterprise resource planning, customer relationship management, supply chain management, and knowledge management systems that are shared by all business units. It allows an organization to deliver IT solutions and services to its employees, partners and/or customers and is usually internal to an organization and deployed within owned facilities.

OBJECTIVES

- Acquire comprehensive knowledge, technical expertise and hands-on experience in IT Infrastructure Management
- To learn all aspects of IMS such as Networking, Operating Systems, Virtualizations and Data Center technologies.

LAB REQUIREMENTS:

- A modern web-browser with HTML5 and JavaScript enabled.
- Remote Desktop Client connection software.
- Internet connectivity Microsoft Account (LiveID).

LIST OF EXERCISES

Expt./	Lab	Implementation	Number
Job	assignments/experiment		of Slots
No.			

Creating Value

Page of Page 24 of 97

Department of Master of Computer Applications Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)

1.	Web Server	Apache Web Server, IIS Server: Install and Configure the Apache Web Server on Linux and IIS server on windows.	01
2.	Samba Server	Implementation of Windows files and print services for Linux allowing the sharing of files and printers between Windows and Linux.	01
3.	LDAP Server	LDAP Server: Lightweight Directory Access Protocol- Server Installation to access a directory service.	01
4.	Mail Server	Mail Server configuration- POP3 Server, IMAP Server	01
5.	Proxy Server	Develop a small web proxy server, which is able to cache web pages. It is a very simple proxy server which only understands simple GET-requests, but is able to handle all kinds of objects - not just HTML pages, but also images.	01
6.	Firewalls and NAT (Network Address Translation)	Use of iptables to build a permissive firewall by selectively filtering packets based on protocol type. To demonstrate how addresses may be translated from private addresses to public and vice versa as they pass in and out of the firewall.	01
7.	Cloud Infrastructure: Azure Hands-on Lab (HOL) Build your Infrastructure in the Cloud using Windows Azure Infrastructure Services -	 Login to the Windows Azure Management Portal, Define a new Windows Azure Affinity Group and Create a new Windows Azure Storage Account. Register a DNS Server in Windows Azure. Define a Virtual Network in Windows Azure. Configure Windows Server Active Directory in a Windows Azure VM. Configure New Machine for File Services in a Windows Azure VM. 	01

References:

- 1. https://amizone.net/AdminAmizone/WebForms/Academics/NewSyllabus/194201472058683.pdf
- 2. http://itproguru.com/azurehol/#sthash.HMydlzVA.dpuf
- 3. https://simms-teach.com/docs/cis192/cis192lab08.pdf
- 4. <u>https://simms-teach.com/resources.php</u>
- 5. <u>http://www.cs.rpi.edu/~kotfid/security1/PDF2/NS1_lab_6_1_4_en.pdf</u>
- 6. http://www.cse.unsw.edu.au/~cs3331/12s1/Labs/
- 7. https://www.6diss.org/workshops/ca/dns-practical.pdf
- 8. http://www.dwaynewhitten.com/info306/pages/lab.html
- 9. http://www.bo.ingv.it/~scacciag/home_files/teach/netadminguide.pdf
- 10. <u>https://techpolymath.com/2015/02/16/how-to-setup-a-dns-server-for-a-home-lab-on-ubuntu-14-04/</u>
- 11. http://www.dwaynewhitten.com/info306/lab2.pdf

Evaluation Scheme

1. Assessment

Assessment Theory Lab.

Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)

Hrs

2. End Semester Assessment (ESA) Pattern:

UNIT	8 Questions to be set of 20 Marks Each	Chapter Nos.	Instructions
I	3 Questions to be set of 20 Marks Each	1, 2, 3, 4	Any 2 questions are to be answered
11	3 Questions to be set of 20 Marks Each	5, 6	Any 2 questions are to be answered
	2 Questions to be set of 20 Marks Each	7, 8	Any 1 question is to be answered

15ECAP901

Big Data Analytics Lab.

Program: MASTER OF COMPUTER APPLICATIONS

Course Title: Big Data Analytics Lab.	
Credits: 1	Contact Hrs: 2
ESA Marks:	Total Marks: 100
	Exam Duration: 3 Hours
	Course Title: Big Da Credits: 1 ESA Marks:

Content

No			

Installation of R and RStudio 1.

Demonstration of R programing. 2.

Demonstration of data handling in R 3.

Write R programs for following:

- 4. Compute measures of central tendency and dispersion for a given data.
- 5. Demonstrate data visualization using histogram, bar/line chart, boxplot and scatter plot for given data.
- Demonstrate predictive analysis using regression 6.
- 7. Demonstrate clustering using k-means.

KLE TECH	1 Lev	Creating Value veraging Knowledge			
	Department of	Master of Computer A	Applications	Page of Pa	ige 26 of 97
Conten	t- Unique courses by 201	5 to 2020 batches (Remove	ed Duplicate by Couse Code)	Year: 2015-2	0 batches
8. Demons 9. Demons Note: Test the R p	strate classification usin strate time series analys rograms using publicly a	g KNN, decision tree, Bay sis using moving average, available data sets in the	vesian classifier and random ARMA and ARIMA techniq websites. The data can be i	n forest. ues. numeric or text.	
5ECAP902	Advance J	ava Programming Lab.			
Program: M	ASTER OF COMPUTER	APPLICATIONS			
Course Code	e: 15ECAP902	Course Title: Advan	ice Java Programming Lab.		
L-T-P: 0-0-1		Credits: 1	Contact Hrs: 2		
SA Marks-: 100 ESA Marks: 00 Total Marks: 100					
Teaching Hrs: 24 Exam Duration: 3 Hours				ours	
No		Content		Hrs	
		Unit I			
Expt No.	E	Brief description about th	ne experiment	Slots	
		DEMONSTRATION			
1	Introduction to Sessio	n management in JSP.		1	
2 Introduction to Java Beans.					
3 Introduction to RMI.			1		
4 Introduction to Struts Action class and Action Form class			1		
5	Introduction to Spring	ζS.		1	
6	Introduction to ORM			1	
	I	FXFRCISE			

KLE TECH. KLE TECH.	
Department of Master of Computer Applications	Page of Page 27 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

Implementation of session management in JSP application.	T
Implementation of Java Bean application	1
Implementation of RMI application.	1
Implementation of Springs application.	1
Implementation of ORM using Hibernate.	1
STRUCTURED ENQUIRY	
Design and Develop Java Web application using Spring and Hibernate framework.	2
	Implementation of Java Bean application Implementation of RMI application. Implementation of Springs application. Implementation of ORM using Hibernate. STRUCTURED ENQUIRY Design and Develop Java Web application using Spring and Hibernate framework.

15ECA	E901	Internet of T	hings			
•						
Prog	ram: MASTER OF C	OMPUTER AP	PLICATIONS			
Cours	se Code: 15ECAE90)1	Course Title: Intern	et of Things		
L-T-P	:3-0-1		Credits: 4	Contact Hrs: 5		
ISA N	1arks-Theory: 50 + I	_ab: 100	ESA Marks: 50	Total Marks: 200		
Teach	ning Hrs: 50+ 24			Exam Duration: 3 Hours		
No			Content		Hrs	
	i		Unit I			
1	Chapter No. 1.Introduction to Internet of Things (IoT)			Г)	6 Hrs	
	Definition & Characteristics of IoT, Physical Design of IoT: IoT protocols, Logical Design of					
	IoT: IoT functiona	l blocks, comr	nunication models and	d APIs.		
2	2 Chapter No. 2. IoT Enabling Technologies			7 Hrs		
	Wireless Sensor Networks, Cloud Computing, Big Data Analytics, Communication					
	Protocols, Embedded Systems, IoT Levels and Deployment Templates.					
3	Chapter No. 3. Domain specific IoTs			7 Hrs		
	Home Automation ,Cities, Environment ,Energy, Retail, Logistics, Agriculture, Industry Health and Lifestyle					
		,	Unit II			
4	Chapter No. 4. Io	T Platforms D	esign Methodology		5 Hrs	
	IoT Design Metho	odology, Case S	Study on IoT System fo	or Weather Monitoring.		
5	5 Chapter No. 5. IoT systems – Logical design using Python			8 Hrs		

KLE TECH. KLE TECH.	
Department of Master of Computer Applications	Page of Page 28 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

	Introduction to Python, Data types, data structures, Control of flow, functions modules, packages, file handling, data/time operations, classes, Python packages - JSON, XML, HTTPLib, URLLib, SMTPLib.	
6	Chapter No. 6. IoT Physical Devices and Endpoints	7 Hrs
	Basic building blocks of an IoT device, Exemplary device: Rasyberry Pi, interface (serial,	
7	Chapter No. 7. IoT Physical Servers & Cloud Offerings	5 Hrs
	Introduction to Cloud Storage models and communication APIs ,Webserver – Web server for IoT, Cloud for IoT, Python web application framework, Designing a RESTful web API	
8	Chapter No. 8. Case Studies Illustrating IoT Design	5 Hrs
	Home Automation-smart lighting, home intrusion detection, Cities-smart parking.	
	Text Book:	·····

References:

1. Matt Richardson & Shawn Wallace, "Getting Started with Raspberry Pi", O'Reilly (SPD), 2014

IoT Practices

Expt No.	Brief description about the experiment	Slots
	DEMONSTRATION	
1	Introduction to preparing the OS for Raspberry Pi	1
2	Introduction to Shell basic for Raspberry Pi	
3	Introduction to GPIO Input/output	1
4	Introduction GPIO using Python	1
5	Introduction to Python and SPI	1
	EXERCISE	
6	Creating a Shell scripts for Hook up circuit.	1
7	Implementing PHP and AJAX Calls.	1

KLE TECH.	
Department of Master of Computer Applications	Page of Page 29 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

8	Working with SPI Protocol.	1
9	Creating Web interface for ADC	1
10	Creating GPIO using Python	1
11	Working with SPI using Python	1
	STRUCTURED ENQUIRY	
12	Design and Develop flow control using Raspberry pi kit	2

1. Assessment

Assessment	Theory	Lab.	
ISA- 1	25	100	
ISA- 2	25		
ESA	50	00	
Total	100	100	

2. End Semester Assessment (ESA) Pattern:

UNIT	8 Questions to be set of 20 Marks each	Chapter Nos.	Instructions
I	3 Questions to be set of 20 Marks Each	1,2	Any 2 questions are to be answered
II	3 Questions to be set of 20 Marks Each	3,4	Any 2 questions are to be answered
	2 Questions to be set of 20 Marks Each	5	Any 1 question is to be answered

15ECAE908

.

E-Commerce

Program: MASTER OF COMPUTER APPLICATIONS				
Course Title: E-Com	nerce			
Credits: 4	Contact Hrs: 5			
ESA Marks: 50	Total Marks: 200			
	Exam Duration: 3 Hours			
	PPLICATIONS Course Title: E-Com Credits: 4 ESA Marks: 50	PPLICATIONS Course Title: E-Commerce Credits: 4 Contact Hrs: 5 ESA Marks: 50 Total Marks: 200 EVALUATIONS Exam Duration: 3 Hours		

KLE TECH. KLE TECH. KLE TECH.	
Department of Master of Computer Applications	Page of Page 30 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

No	Content	Hrs			
Unit I					
1	Chapter 1: Electronic Commerce-Frame work, anatomy of E-Commerce applications, E-Commerce Consumer applications, E-Commerce organization applications.	7 Hrs			
2	Chapter 2: Consumer Oriented Electronic commerce - Mercantile Process models.	6 Hrs			
3	Chapter 3:Electronic payment systems - Digital Token-Based, Smart Cards, Credit Cards, Risks in ElectronicPayment systems.(7 Hrs			
	Unit II				
4	Chapter 4: Inter Organizational Commerce - EDI, EDI Implementation, Value added networks.	6 Hrs			
5	Chapter 5: Intra Organizational Commerce - work Flow, Automation Customization and internal Commerce, Supply chain Management.	7 Hrs			
6	Chapter 6:	7 Hrs			
	Corporate Digital Library - Document Library, digital Document types, corporate Data Warehouses. Advertising and Marketing - Information based marketing, Advertising on Internet, on-line marketing process, market research.				
	Unit – III	1			
7	Chapter 7: Consumer Search and Resource Discovery - Information search and Retrieval,Commerce Catalogues, Information Filtering.	5 Hrs			
8	Chapter 8: Multimedia - key multimedia concepts, Digital Video and electronic Commerce, Desktop video processings, Desktop video conferencing.	5 Hrs			
Text Bo	ok:	1			
1. Referer	Frontiers of electronic commerce – Kalakota, Whinston, Pearson				
1.	E-Commerce fundamentals and applications Hendry Chan, Raymond Lee, Tharam Dillon, Ellizabet John Wiley.	h Chang,			
2.	E-Commerce, S.Jaiswal – Galgotia.				
3.	E-Commerce, Efrain Turbon, Jae Lee, David King, H.Michael Chang.				
4.	Electronic Commerce – Gary P.Schneider – Thomson.				
5.	E-Commerce – Business, Technology, Society, Kenneth C.Taudon, Carol Guyerico Traver				

KLE TECH. KLE TECH.	
Department of Master of Computer Applications	Page of Page 31 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

E-Commerce and Security Practices

Expt./Job No.	Lab assignments/experiment	Slots
	Demonstration	
1	Introduction to Secure Web Transaction.	1
2	Introduction to Web Server Security.	1
3	Introduction to SQL Injection.	1
4	Introduction to Cross site Scripting	1
5	Introduction to SSL/TLS Configuration in Apache Web Server.	1
6	Introduction to Payment Gateway Transaction.	1
	Exercises	
1	Implementation of Secure Web Transaction.	1
2	Implementation of Web Server Security.	1
3	Implementation of SQL Injection	1
4	Implementation of Cross Site Scripting	1
5	Implementation of SSL/TLS Configuration in Apache Web Sever.	1
6	Implementation of Payment Gateway for given application	1
	Structures enquiry	
12	Design and Develop a customized E-Commerce Web Application.	02

Evaluation Scheme

1. Assessment

Assessment	Theory	Lab.
ISA- 1	25	100
ISA- 2	25	

Department of Master of Computer Applications

Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)

Page of Page 32 of 97

Year: 2015-20 batches

		ESA	١	50	00	
		Tota	al	100	100	
2. E	nd Semester Assessment (E	SA) Patt	ern:			
UNIT	8 Questions to be set of 20 Ma	rks Each	Chap	ter Nos.		Instructions
1	3 Questions to be set of 20 Ma	rks Each	1	,2,3	Any 2	2 questions are to be answered
	3 Questions to be set of 20 Ma	rks Each	4	,5,6	Any 2	2 questions are to be answered
	2 Questions to be set of 20 Ma	rks Each		7,8	Any 1	1 question is to be answered
•						
18ECAC7	02 Web Programm	ing				
Drogram						
Course	Code:18ECAC702		e Title:	Web Pro	gramn	ning
L-T-P: 2 -	1-0	Credit	ts: 3	Webire	'Si anni	Contact Hrs: 4
ISA Mar	rks: : 50	ESA N	/larks: 5	50		Total Marks: 100
Teachin	g Hrs: 42					Exam Duration: 3 Hours
No		C	ontent			Hrs
		I	Unit I			
1	Chapter 1: Introduction to HTM	/IL				4 Hrs
	HTML Attributes, Styles in Tags Paragraphs, Comments	, Current a	and Evc	olving Sta	ndard:	HTML5, Headings,
2	Chapter 2: Organizing Information	tion with	List & L	ink		8 Hrs
	Numbered Lists, Customizing O	rdered Lis	sts & Ur	nordered	Lists, N	Vesting Lists,
	Anatomy of a URL. Kinds of URL	ges Using .s. HTTP a	Relative	e and Abs nymous f	Solute I TP.	Pathnames,
3	Chapter 3: Formatting Text wit	h HTML		,		4 Hrs
	Character-Level Elements, Sem	antic HTM	1L Tags,	Font Pro	perties	s, Quotations,
	Special Characters, Character E	ncoding	1			
5	Chapter 4: Structuring a Page v	ں vith HTMI	Unit II L5 Table	es & Forr	ns	6 Hrs
	Cell Padding, Cell and Caption A	lignment	, Spann	ing Multi	ple Rov	ws or Columns,
	Dynamic Overlays, Controlling	Stacking, C	Creating	g Drop-Do	own Me	enus, Creating
c	Form Controls, Access Keys, Dis	playing U	pdates	with pro	gress a	nd meter
Ь	chapter 5: Creating CSS with I	mages				10 Hrs

KLE TECH. KLE TECH.	
Department of Master of Computer Applications	Page of Page 33 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches
Creating Page-Level Styles, Contextual Selectors, Classes and IDs, Editing Styles with Developer Tools, The Box Model, Borders, Margins and Padding, Controlling Size and Element Display, Inline Images in HTML, Image Dimensions and Scaling, usemap Attribute, Image Etiquette, Integrating Multimedia: Video and Sound	
Unit – III	
7 Chapter 6: Using JavaScript and jQuery	5 Hrs
Overview of JavaScript, Syntactic characteristics, Primitives, operations and expressions, Control statements, Object creation and modification, Arrays, Functions, Constructor, Pattern matching using regular expressions, Errors in scripts, Getting Started with jQuery, Selecting Elements from the Document, Binding Events, Retrieving and Changing Style Sheet Properties, Special Effects.	
8 Chapter 7: XML	5 Hrs
Document structure; Document Type definitions; Namespaces; XML schemas; Displaying raw XML documents; Displaying XML documents with CSS; XSLT style sheets; XML processors; Web services. Text Book:	
 Laura Lemay, Rafe colburn, jennifer Kyrnin, MASTERING HTML, CSS & Java Publishing, BPB publications, 2016. 	Script Web

- 2. Sebesta, R.W., Programming the World Wide Web, 3rd, Pearson education, 2013.

1. Assessment

Assessment	Theory
ISA- 1	25
ISA- 2	25
ESA	50
Total	100

2. End Semester Assessment (ESA) Pattern:

UNIT	8 Questions to be set of 20 Marks each	Chapter Nos.	Instructions
I	3 Questions to be set of 20 Marks Each	1, 2, 3, 4	Any 2 questions are to be answered
II	3 Questions to be set of 20 Marks Each	5,6	Any 2 questions are to be answered
III	2 Questions to be set of 20 Marks Each	7,8	Any 1 question is to be answered

KLE	E TECH.	Creating Value Leveraging Knowledge	ogical rsity	
	Depa	Page of Page 34 of 97		
	Content- Unique cou	Year: 2015-20 batches		
17ECA	C804	Python Programming		
Cour:	se Code: 17ECAC80	04 Course Title: Python	Programming	
L-T-P	2: 3-0-1	Credits: 4	Contact Hrs: 5	
ISA N	/larks: 50	ESA Marks: 50	Total Marks: 100	
Teac	hing Hrs: 42 + 24		Exam Duration: 3 Hours	
No		Content		Hrs
		Unit I		
1	Chapter No. 1: In	troduction to python		4 Hrs
	3.1 on Non-Wind Strings, Putting St Function. Numbe Some Surprises; C Data — Using Nat types ; Tuples — Data, Treating a S Elements, Ranges Temporarily Store			
2	Chapter No. 2: M	laking Decisions & Functions		6 Hrs
	Comparing Value Comparison, Han Same Name in Tw within Other Fund			
3	Chapter No. 3: Cl	asses and Objects, Organizing Progra	ams	6 Hrs
	Thinking About P Made into an Obj Module, Making a Command Line, B and Packages			
		Unit II		
4	Chapter 4: Files a	Ind Directories, Modules , Text Proce	essing	10Hrs
	File Objects; Writ Exceptions, Paths Obtaining Inform Rotating Files, Cro Importing Modul Packages; Finishir			

	Department of Master of Computer Applications	Page of Page 35 of 9
	Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batche
	Export , Documenting Your Modules, Testing Your Module, Running a Module as a Program; Why Text Processing Is So Useful; Searching for Files, Clipping Logs, Navigating the File System with the os Module, Working with Regular Expressions.	
5	Chapter 5: Accessing Databases	6 Hrs
	Working with DBM Persistent Dictionaries; Choosing a DBM Module ,Creating Persistent Dictionaries, Accessing Persistent Dictionaries, Working with Relational Databases; Writing SQL Statements, Defining Tables , Setting Up a Database, Using the Python Database APIs; Downloading Modules, Creating Connections, Working with Cursors , Working with Transactions and Committing the Results, Examining Module, Capabilities and Metadata, Handling Errors.	
	Unit – III	
6	Chapter 6: Testing, GUI with Python	5 Hrs
	Creating GUI Widgets with Tkinter; Resizing the Widget , Configuring Widget Options, Putting the Widgets to Work , Creating Layouts, Packing Order, Controlling Widget, Appearances, Radio Buttons and Checkboxes , Dialog Boxes, Other Widget Types.	
7	Chapter 7: Network Programming Understanding Protocols; Comparing Protocols and Programming Languages, The Internet Protocol Stack, A Little Bit About the Internet Protocol, Sending Internet E-mail; The E-mail File Format, MIME Messages, Sending Mail with SMTP and smtplib, Retrieving Internet E-mail; Parsing a Local Mail Spool with mailbox, Fetching Mail from a POP3 Server with poplib, Fetching Mail from an IMAP Server with imaplib, Secure POP3 and IMAP, Webmail Applications Are Not E-mail Applications, Socket Programming; Introduction to Sockets, Binding to an External Hostname, The Mirror Server, The Mirror Client, SocketServer, Multithreaded Servers, The Python Chat Server, Design of the Python Chat Server , The Python Chat Server Protocol, The Python Chat Client, Single-Threaded Multitasking with select.	5 Hrs
ſextb	pooks:	
-	1. James Payne, Beginning Python using python 2.6 and Python 3.1,Wiley Publishing Inc, 2 rences:	2010

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 36 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

1. Assessment

Assessment	Theory	Lab.
ISA- 1	25	100
ISA- 2	25	
ESA	50	00
Total	100	100

2. End Semester Assessment (ESA) Pattern:

UNIT	8 Questions to be set of 20 Marks Each	Chapter Nos.	Instructions
I	3 Questions to be set of 20 Marks Each	1,2,3	Any 2 questions are to be answered
II	3 Questions to be set of 20 Marks Each	4,5	Any 2 questions are to be answered
III	2 Questions to be set of 20 Marks Each	6,7	Any 1 question is to be answered

* Course project: In this course, group of 2 students will carry out project using Python.

Python Programming

Expt	Brief description about the experiment	Number Of
No.		Slots
	DEMONSTRATION	
1	To write, test, and debug simple Python programs using Spyder IDE 3.x	1
2	To implement Python programs with conditionals and loops.	1
3	To demonstrate functions for structuring Python programs.	1
4	Represent compound data using Python lists, tuples, and dictionaries.	2
EXERCISE		
5	Write a code to read and write the data to the text files.	1
6	Write a code to find the most frequent words in a text read from a file.	1

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 37 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches
	-

7	Demonstrate the pandas library to perform the different	1
	mathematical functions by reading data from excel file.	
8	Explore the sci-kit learn libraries to implement different algorithms.	1
9	Explore the matplotlib library for the visualization of data.	2
10	Write a code to Simulate bouncing ball using Pygame.	1
STRUCTURED ENQUIRY		
11	Develop an application to plot the visualization using 3d graph of real time data from excel file and plot it online in cloud using plotly.	2

17ECAC805	Data Mining			
Course Code: 17ECAC805		Course Title: Data Minin	g	
L-T-P: 3-0-1		Credits: 4	Contact Hrs: 5	
ISA Marks: 50 + 100		ESA Marks: 50	Total Marks: 200	
Teaching Hrs: 42 + 24			Exam Duration: 3 Hours	
No		Content		Hrs
		Unit I		
1 Chapter No. 1. Inti	roduction			8 Hrs
Fundamentals of data mining, Kinds of pattern, technologies used, and technologies used, applications, issues, data objects and attribute types, Basic Statistical Descriptions of Data, Data Visualization,.				

	Department of Master of Computer Applications	Page of Page 38 of 97
	Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Co	le) Year: 2015-20 batches
2	Chapter No. 2. Data Preprocessing Need of preprocessing the Data, Data Cleaning, Data Integration and Transfor Data Reduction, Discretization.	5 Hrs mation,
3	Chapter No. 3 Data Warehousing and Online Analytical Processing Data Warehouse: Basic Concepts, Data Warehouse Modeling: Data Cube and Warehouse Design and Usage, Data Warehouse Implementation, Data Genera Attribute-Oriented Induction.	7 Hrs DLAP, Data lization by
	Unit II	
4	Chapter No. 4. Mining Frequent Patterns, Associations, and Correlations Basic Concepts, Frequent Itemset Mining Methods, Which Patterns Are Intere Pattern Evaluation Methods, Pattern Mining in Multilevel, Multidimensional S Constraint-Based Frequent Pattern Mining.	6 Hrs sting?: pace,
5	Chapter No. 5. Classification Basic Concepts, Decision Tree Induction, Bayes Classification Methods, Rule-B Classification, Model Evaluation and Selection, Techniques to Improve Classifi Accuracy, Bayesian Belief Networks, Classification by Backpropagation.	7 Hrs ased cation
6	 Chapter No. 6. Graph Mining, Social Network Analysis, and Multi-relational Data Mining Methods for Mining Frequent Sub graphs, Mining Variant and Constrained Su Patterns, Characteristics of Social Networks, Mining on Social Networks, Multi mining, Multirelational Classification, Multirelational Clustering with User Gui 	7 Hrs ostructure relational dance
	Unit – III	
7	Chapter No. 7 Cluster Analysis	5 Hrs
	Cluster Analysis, Partitioning Methods, Hierarchical Methods, Density-Based N Grid-Based Methods, Evaluation of Clustering	1ethods,
8	Chapter No. 8. Mining Complex Types of Data Multidimensional Analysis and Descriptive Mining of Complex, Data Objects, N Spatial Databases, Mining Multimedia Databases, Mining Time Series and Seq Mining Text Databases, Mining the World Wide Web.	5 Hrs Aining Jence Data,
Text	t Book:	
	 J. Han, M. Kamber., Data Mining Concepts and Techniques, 3rd edition, Ka 2011. 	ufamann publishers,
Refe	erences	
	1. Pujari, A.K, Datamining Techniques, 1, Universities Press, 2010	
	Evoluction Schome	

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 39 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

ISA 120ISA 220Seminar by individual
student*05Course Project Activity**05Total50

* **Seminar** topic should be on application of DM in various domains such as health, insurance, sports, social networks, education, politics, business and so on.

*******Course Project Activity:* Group of 2 students need to demonstrate the DM tool/s for the extraction of various knowledge from real life data.

End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Nos.	Instructions
I	3 Questions to be set of 20 Marks Each	1, 2, 3	Any 2 questions are to be answered
	3 Questions to be set of 20 Marks Each	4, 5, 6	Any 2 questions are to be answered
	2 Questions to be set of 20 Marks Each	7, 8	Any 1 question is to be answered

	Data Mining				
	List of Practices				
S. No	Assignment				
1	Demonstration of preprocessing on given dataset	Using DM tools			
2	Demonstration of mining Discrimination between different Classes in given dataset	Weka			
3	Demonstration of Association rule process on given dataset using Apriori algorithm	Rapid Miner			
4	Demonstration of classification rule process on given dataset using Decision tree algorithm				
5	Demonstration of classification rule process on dataset using naïve Bayes algorithm	KNIIME			
6	Demonstration of prediction on given dataset using regression techniques				
7	Demonstration of data visualization on given dataset	Tableau			
8	Demonstration of quartiles using FIVE number summary on given dataset	Excol			
9	Demonstration of Graph displays of statistical class description on given dataset using:	Google Analytics			
	2. A quantile plot				
	3. A quantile-quantile plot				

Technological -University Creating Value Leveraging Knowledge _

Department of Master of Computer Applications

Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)

Year: 2015-20 batches

4	Chapter No. 4.Object Lifetime and Exceptions Handling.	6 hrs
	Classes, Objects and References, the basics of Object Lifetime, The role of Application	
	Roots, Understanding Object Generations, System.GC type, Building Finalizable Objects,	
	Building Disposable Objects, Building Finalizable and Disposable types. Ode to Errors,	
	Bugs, and Exceptions, The Role of .NET Exception Handing, The Simplest possible	
	example, Configuring the state of an exception, System – Level Exception (System.	
	System Exception), Application-Level Exception (System.ApplicationException),	
	Processing Multiple Exception, The Finally Block, The result of unhandled exceptions,	
	Debugging Unhandled exceptions using VS. NET .	
5	Chapter No. 5. Interfaces and Collections	5 Hrs
	Defining Interfaces in C#, Implementing an Interface in C#, Contrasting Interfaces to	
	Abstract Base Classes, Invoking Interface Members at the Object Level, Interfaces As	
	Parameters, Interfaces As Return Values, Arrays of Interfaces Types, Understanding	
	Explicit Interface Implementation, Building Interface Hierarchies, Implementing	
	Interfaces Using Visual Studio 2005, Building Enumerable Types(IEnumerable and	
	IEnumerator),	
	Building Cloneable Objects(IConeable), Building Comparable Objects(IComparable), The	
	Interfaces of the System.Collections Namespace, The Class Types of System.Collections.	
6	Chapter No. 6.Callback Interfaces, Delegates, and Events, Advanced C# Techniques	5 Hrs
	Understanding Callback Interfaces, Understanding the .NET Delegate type, Defining a	
	Delegate in C#, The System.multicastDelegate and System.Delegate Base Classes,	
	Investigating a Delegate Object, Delegates as Parameters, Understanding C# Events	
	Building a Custom Indexer, Internal Representations of Type Indexers: Final Details,	
	Understanding Operator Overloading Binary Operators, Unary Operators, Equality	
	Operators, Comparison Operators, Understanding Custom Type Conversions, The	
	Advanced Key words of C#, C# Preprocessor Directives.	
	Unit – III	
7	Chapter No. 7. Programming with Windows Forms.	5 hrs
	Controls - Labels, Text boxes, Masked Text boxes, Buttons, Check boxes, Radio Buttons,	
	Group Boxes, Checked List Boxes, List Boxes, Combo Boxes, Configuring the Tab Order,	
	Setting the Form's Default Input Button, Working with more Exotic Controls – Month	
	Calendars, Tool Tips, Tab Controls, Track Bars, Panels, Up Down Controls, Error Providers,	
	Tree Views, Web Browsers, Building Custom Windows Forms Controls – Creating Images,	
	Building Design-Time UI, Defining Custom Events, Defining Custom Properties.	
8	Chapter No. 8. Database Access with MSSQL Server	5 hrs
	Overview of Data Access, Creating database connections, connecting to MSSQL Server,	
	Dataset and Data table features, using inline SQL Statements, using stored procedures,	
	Executing select commands, SQL transaction	
Τe	ext Book:	
	1. Andrew Troelsen: Pro C# with .NET 3.0, Special Edition. Dream tech Press. In	dia,
	2007 Chapters: 1 to 11 (up to pp 280, event Chapter 10)	

2007.Chapters: 1 to 11 (up to pp.389, except Chapter 10)

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 42 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

Assessment

Assessment	Theory
ISA- 1	25
ISA- 2	25
ESA	50
Total	100

End Semester Assessment (ESA) Pattern:

UNIT	8 Questions to be set of 20 Marks	Chapter Nos.	Instructions
	each		
I	3 Questions to be set of 20 Marks Each	1, 2, 3	Any 2 questions are to be answered
11	3 Questions to be set of 20 Marks Each	4,5,6	Any 2 questions are to be answered
III	2 Questions to be set of 20 Marks Each	7,8	Any 1 question is to be answered

17ECAP803

Mini Project-3

Course Code: 17ECAP803	Course Title: Mini Project-3	
L-T-P: 0-0-2	Credits: 2	Contact Hrs: 4
ISA Marks: 100	ESA Marks: 100	Total Marks: 200
Teaching Hrs: 72 approx.		Exam Duration: 3 Hours

Theme: "Mini project Using Java"

Java is one of the fundamental programming languages that can be used in many applications as well as product developments. The simple reason for this is because Java can be put to use in various platforms due to its multi-platform nature. Java is one of the favorite choices for developers for many reasons like security, object oriented(reusability), cross platform computing, multithreaded capability, Rich API, Powerful development tools ,availability of various frameworks, Great collection of open source libraries, wonderful community support, Excellent documentation support. Support for various databases and many more.

Students can use the following tools in web and mobile applications as well as product developments:

2 Struts, Spring, Hibernate and JPA
2 JAXB and Apache Axis 2/Java
2 JSP, Servlets, JDBC, EJB, JMS, JTA and JUnit
2 Apache Tomcat, JBoss and GlassFish
2 JavaScript, JSF, GWT and jQuery
2 Eclipse, Netbeans and JBoss tools
2 TestNG

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 43 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

☑ jBPM and Drools☑ JCR

Objectives:

Help students to utilize and strengthen the knowledge of java which they have learnt in previous semester.

Methodology:

Students are asked to make a team of 3-4 members and can choose the different categories of projects like desktop applications, web applications, mobile application and distributed application and work once it is approved by the coordinator.

Assessment:

Students Assessment through CIE (80%) + SEE (20%)

Continuous	Assessment		Marks
Internal			
Evaluation	Problem Definition, Literature Review		10
	Synopsis and SRS Deliverables		10
	Design (Module wise algorithmic design)		20
	Coding		10
	Integration and testing		10
	Report		10
	Presentation skills and Viva-voce		10
	1	Total	80
Semester End	Presentation		10
Examination	Viva-voce		10
	1	Total	100

1.1 Course Objectives:

The Mini Project being part of the course work is not only a mechanism to demonstrate the abilities and specialization but also provides the opportunity to demonstrate originality, teamwork, inspiration, planning and organization in a software project. One can put into practice the techniques that have been taught throughout the previous courses. Mini-projects develop practical skills in students. The idea is to propose a problem that one might encounter in future career (be it in academia, industry, or government). Then propose a solution and implement it.

Theme: Java Based E-Commerce Applications with Multilingual Support

E-commerce Objectives:

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 44 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

Most business houses are shifting their operations to the online world. Right from buying apparels to computers to booking tickets and renting out apartments, everything can be done through the Internet now. It is a win-win formula for both the customers and the business houses. Digital India aims to boost E-business and the E-commerce industry with the vision that it would in turn boost the economy is a whole.

Multilingual Objectives:

Language is an essential driver of enterprise growth. The user interface is the key component of any application that needs to support various language speaking audiences. Making an app that appeals to and is available for more users broadens the market and brings more revenue in the app sales and there will be more exposure to the business.

Evaluation:

• The project assessment is done by an evaluation team as per the schedule. Guidelines for In Semester Assessment (ISA) Scheme

Phase wise distribution of marks	Marks
Identification and defining the problem	15
Software Requirement Specification	20
Software Design	15
Mid-way Implementation	10
Final Demo and Report Submission	20
Total	80

End Semester Assessment (ESA):

There will be a final presentation /demonstration//viva-voce at the end of the semester for 20 Marks

17ECAE802 Linux Administration

Course Code: 17ECAE802	Course Title: Linux Administration	
L-T-P: 3-0-1	Credits: 4	Contact Hrs: 5
ISA Marks-Theory: 50 +Lab: 100	ESA Marks: 50	Total Marks: 200
Teaching Hrs: 42+24		Exam Duration: 3 Hours
No	Content	Hrs
	Unit I	

	Department of Master of Computer Applications Page of	Page 45 of
Cor	ttent- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code) Year: 2015	-20 batche
1	Chapter 1. Basic System Configuration	6 Hrs
	Opening Graphical Applications, System Locale and Keyboard Configuration: Setting the System Locale, Changing the Keyboard Layout, Managing Users and Groups; Introduction to Users and Groups, Managing Users in a Graphical Environment	1
2	Chapter 2. Package Management, Services and Daemons	6 Hrs
	Yum: Checking For and Updating Packages, Packages and Package Groups, Configuring Yum and Yum Repositories. Configuring Services, Running Services OpenSSH: The SSH Protocol, An Open SSH Configuration, Open SSH Clients	b
3	Chapter 3. Web & Mail Servers :	8 Hrs
	 Web Servers: The Apache HTTP Server Updating the Configuration, Running the httpd Service, Editing the Configuration Files, Working with Modules, Setting Up Virtual Hosts, Setting Up an SSL Server. Mail Servers- Email Protocols, Email Program Classifications, Mail Transport Agents, Mail Delivery Agents, Mail User Agents 	, 1
4	Chapter 4. File & Directory Servers :	10
	FTP Servers : The File Transfer Protocol, FTP Servers, Files Installed with vsftpd , Starting and Stopping vsftpd,vsftpd Configuration Options.Runing FTP Server Samba Server : Introduction to Samba, Samba Daemons and Related Services, Connecting to a Samba Share, Configuring a Samba Server ,Starting and Stopping Samba, Samba Server Types and the smbconf File, Samba Security Modes, Samba Account Information Databases, Samba Network Browsing , Samba with CUPS Printing Support, Samba Distribution Programs	Hrs
	Directory Servers -OpenLDAP, Introduction to LDAP, Installing the OpenLDAP Suite , Configuring an OpenLDAP Server, SELinux Policy for Applications Using LDAP, Running an	

Locating Log Files, Basic Configuration of Rsyslog, Working with Queues in Rsyslog, Using Rsyslog Modules, Interaction of Rsyslog and Journal, Structured Logging with Rsyslog, Debugging Rsyslog, Using the Journal, Managing Log Files in a Graphical Environment.

Unit – III

Configuring the GRUB 2 Boot Loader, Customizing GRUB Menu, GRUB 2 Password Protection, Reinstalling GRUB, GRUB 2 over Serial Console, Terminal Menu Editing During Boot, UEFI 5 Hrs

5 Hrs

5

6

Secure Boot

Chapter 5 Viewing and Managing Log Files -

Chapter. 6. Working with the GRUB 2 Boot Loader

8 Chapter 7. Automating System Tasks

5 Hrs

-Cron and Anacron- Installing Cron and Anacron, Running the Crond Services, Configuring Anacron Jobs, Configuring Cron Jobs, Controlling Access to Cron, Black and White Listing of Cron Jobs At and Batch-Installing At and Batch, Running the At Service, Configuring an At Job, Configuring a Batch Job, Viewing Pending Jobs, Additional Command Line Options, Controlling Access to At and Batch.

Textbook:

 Fedora 21 System Administrator's Guide Deployment, Configuration, and Administration of Fedora 21 Edition 1.0, Author Jaromír Hradílek <u>jhradilek@redhat.com</u>, Douglas Silas <u>silas@redhat.com</u>, Martin Prpič <u>mprpic@redhat.com</u> etc.

References:

- 1. Kemp, Juliet, Spinger, "Linux System Administration"
- 2. Anita Sengar "IT Infrastructure Management" 2012 Edition, publisher: S K Kataria and Sons
- 3. Sjaak Laan "Infrastructure Architecture Infrastructure Building Blocks and Concepts Second Edition, Kindle Edition, Lulu Press Inc; Second Edition

Linux Administration Practices

COURSE DESCRIPTION:

IT infrastructure consists of a set of physical devices and software applications that are required to operate the entire enterprise. IT infrastructure is also consists both human and technical capabilities. These services include the following- Computing platforms used to provide computing services, that connect employees, customers, and suppliers into a coherent digital environment, including servers ,Data management services that store and manage corporate data and provide capabilities for analyzing the data and Application software services that provide enterprise-wide capabilities such as enterprise resource planning, customer relationship management, supply chain management, and knowledge management systems that are shared by all business units. It allows an organization to deliver IT solutions and services to its employees, partners and/or customers and is usually internal to an organization and deployed within owned facilities.

OBJECTIVES

- Acquire comprehensive knowledge, technical expertise and hands-on experience in IT Infrastructure Management
- To learn all aspects of IMS such as Networking, Operating Systems, Virtualizations and Data Center technologies.

LAB REQUIREMENTS:

- $\circ~$ A modern web-browser with HTML5 and JavaScript enabled.
- Remote Desktop Client connection software.
- Internet connectivity Microsoft Account (LiveID).

LIST OF EXERCISES

Creating Value Leveraging Knowledge

Department of Master of Computer Applications

Page of Page 47 of 97

Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)

Year: 2015-20 batches

Expt./ Job No.	Lab assignments/experiment	Implementation	Number of Slots
8.	Web Server	Apache Web Server, IIS Server: Install and Configure the Apache Web Server on Linux and IIS server on windows.	01
9.	Samba Server	Implementation of Windows files and print services for Linux allowing the sharing of files and printers between Windows and Linux.	01
10.	LDAP Server	LDAP Server: Lightweight Directory Access Protocol- Server Installation to access a directory service.	01
11.	Mail Server	Mail Server configuration- POP3 Server, IMAP Server	01
12.	Proxy Server	Develop a small web proxy server, which is able to cache web pages. It is a very simple proxy server which only understands simple GET-requests, but is able to handle all kinds of objects - not just HTML pages, but also images.	01
13.	Firewalls and NAT (Network Address Translation)	Use of iptables to build a permissive firewall by selectively filtering packets based on protocol type. To demonstrate how addresses may be translated from private addresses to public and vice versa as they pass in and out of the firewall.	01
14.	Cloud Infrastructure: Azure Hands-on Lab (HOL) Build your Infrastructure in the Cloud using Windows Azure Infrastructure Services -	 6. Login to the Windows Azure Management Portal, Define a new Windows Azure Affinity Group and Create a new Windows Azure Storage Account. 7. Register a DNS Server in Windows Azure. 8. Define a Virtual Network in Windows Azure. 9. Configure Windows Server Active Directory in a Windows Azure VM. 10. Configure New Machine for File Services in a Windows Azure VM. 	01

References:

12. https://amizone.net/AdminAmizone/WebForms/Academics/NewSyllabus/194201472058683.pdf

13. http://itproguru.com/azurehol/#sthash.HMydlzVA.dpuf

кLE тесн. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 48 of 97

Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)

- 14. https://simms-teach.com/docs/cis192/cis192lab08.pdf
- 15. <u>https://simms-teach.com/resources.php</u>
- 16. <u>http://www.cs.rpi.edu/~kotfid/security1/PDF2/NS1_lab_6_1_4_en.pdf</u>
- 17. http://www.cse.unsw.edu.au/~cs3331/12s1/Labs/
- 18. https://www.6diss.org/workshops/ca/dns-practical.pdf
- 19. http://www.dwaynewhitten.com/info306/pages/lab.html
- 20. <u>http://www.bo.ingv.it/~scacciag/home_files/teach/netadminguide.pdf</u>
- 21. <u>https://techpolymath.com/2015/02/16/how-to-setup-a-dns-server-for-a-home-lab-on-ubuntu-14-04/</u>
- 22. http://www.dwaynewhitten.com/info306/lab2.pdf

Evaluation Scheme

Assessment

Assessment	Theory	Lab.	
ISA- 1	25	100	
ISA- 2	25		
ESA	50	00	
Total	100	100	

End Semester Assessment (ESA) Pattern:

UNIT	8 Questions to be set of 20 Marks Each	Chapter Nos.	Instructions
I	3 Questions to be set of 20 Marks Each	1, 2, 3, 4	Any 2 questions are to be answered
II	3 Questions to be set of 20 Marks Each	5, 6	Any 2 questions are to be answered
III	2 Questions to be set of 20 Marks Each	7, 8	Any 1 question is to be answered

(01FM16MCAXXX)	
16ECAC901	Big Data Analytics

Program: MASTER OF COMPUTER APPLICATIONS				
Course Code: 16ECAC901	Course Code: 16ECAC901 Course Title: Big Data Analytics			
L-T-P: 2-1-0	Credits: 3	Contact Hrs: 4		
ISA Marks-Theory: 50	ESA Marks: 50	Total Marks: 100		
Teaching Hrs: 42		Exam Duration: 3 Hours		
No	Content		Hrs	

KL	ETECH. Creating Value Leveraging Knowledge	
	Department of Master of Computer Applications	Page of Page 49 of 97
	Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches
	Unit I	
1	 Chapter 1: Types of digital data and concept of big data Classification of digital data: Unstructured, Semi-structured, and Structured; Characteristics of data, Evolution of big data, and definition of big data: 5 Vs, challenges with big data, typical data warehouse environment: Hadoop Environment. 	4 Hrs
2	Chapter 2: Big Data Analytics What is big data analytics? What big data analytics is not? Classification of analytics, Top challenges facing big data, Importance of big data analytics, Need of technology to meet big data challenges, Data science: business acumen skills, technology expertise, mathematics expertise, Data scientist, terminologies used in big data environments, BASE, top analytics tools.	8 Hrs
3	Chapter 3: Big data technology landscape Not Only SQL (NOSQL): Types of NoSQL, Advantages of NoSQL, Use of NoSQL in industry, NewSQL, Hadoop: features, key advantages, versions, overview of Hadoop ecosystem, Hadoop distributions, Hadoop versus SQL, Cloud-based Hadoop solutions.	4 Hrs
	Unit II	
4	Chapter 4: Hadoop distributed file system Introduction, Why Hadoop, RDBMS versus Hadoop, distributed computing challenges: hardware failure, how to process gigantic store of data, history of Hadoop, Hadoop overview, use case of Hadoop, Hadoop distributors, Hadoop Distributed File System (HDFS): Name node, Data node, secondary Name node, anatomy of file read, anatomy of file write; replica placement, processing of data with Hadoop, Managing resources an applications with Hadoop, Interacting with Hadoop ecosystem.	8 Hrs
5	Chapter 5: MongoDB and query language Introduction, Why MongoDB, Terms used in RDBMS and MongoDB, data types in MongoDB, MongoDB query language: basic functions, Arrays, aggregate functions, MapReduce function, Java script programming, Cursors in MongoDB, MongoImport and MongoExport	4 Hrs
6	Chapter 6: Cassandra and MapReduce programming Introduction, Apache Cassandra, features of Cassandra, data types, CQLSH Keyspaces, CRUD operations, Introduction to MapReduce, Mapper, Reducer Combiner, partitioner, searching, Sorting, and compression Unit – III	4 Hrs
7	Chapter 7: Hive and query language Introduction, What is Hive, History of Hive and recent releases of Hive, Hive integration and work flow, Hive data units; Hive architecture, Hive data types, Hive file format, Hive Query Language (HQL): DDL, DML, Hive shell, database, tables, Partitions, Bucketing, Views, Sub-query: RCFile implementation, SERDE, User defined function.	5 Hrs

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 50 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches
8 Chapter 8: PIG	5 Hrs
Introduction, What is PIG, Key features of PIG; The anatomy of PIG philosophy, use case for PIG: ETL processing, PIG Latin overview, Data ty PIG, Running PIG, execution modes of PIG, HDFS commands, relational oper	, PIG pes in rators.

1. Seema Acharya, Subhashini Chellapan, Big Data and Analytics, First edition, 2015, Wiley publications.

eval function, complex data types, piggy bank, user defined function.

References

Text Book

- 1. EMC Education Services, Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data, Wiley Publications.
- 2. Frank J Ohlhorst, Big Data Analytics: Turning Big Data into Big Money||, Wiley and SAS Business Series, 2012.
- 3. Colleen Mccue, Data Mining and Predictive Analysis: Intelligence Gathering and Crime Analysis||, Elsevier, 2007.
- 4. Michael Berthold, David J. Hand, Intelligent Data Analysis, Springer, 2007.
- 5. Bill Franks, Taming the Big Data Tidal Wave: Finding Opportunities in Huge Data Streams with Advanced Analytics||, Wiley and SAS Business Series, 2012.
- 6. Paul Zikopoulos, Chris Eaton, Paul Zikopoulos, Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data||, McGraw Hill, 2011.
- 7. Jiawei Han, Micheline Kamber, Data Mining Concepts and Techniques , Second Edition, Elsevier, Reprinted 2008.

Evaluation Scheme

1. Assessment

Assessment	Theory	Lab.	
ISA- 1	25	100	
ISA- 2	25		
ESA	50	00	
Total	100	100	

2. End Semester Assessment (ESA) Pattern:

UNIT	8 Questions to be set of 20 Marks Each	Chapter Nos.	Instructions
I	3 Questions to be set of 20 Marks Each	1,2	Any 2 questions are to be answered
II	3 Questions to be set of 20 Marks Each	3,4	Any 2 questions are to be answered
III	2 Questions to be set of 20 Marks Each	5,6	Any 1 question is to be answered

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 51 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches
	•
•	

•					
16EC/	AC902	Advanced Ja	ava Programming		
Prog	gram: MASTER OF C	OMPUTER AI	PPLICATIONS		
Cou	rse Code: 16ECAC9	02	Course Title: Ad	dvanced Java Programming	
L-T-F	^o : 2-1-0		Credits: 3	Contact Hrs: 4	
ISA I	Marks-Theory: 50		ESA Marks: 50	Total Marks: 100	
Теас	ching Hrs: 42			Exam Duration: 3 Hours	
No			Content		Hrs
			Unit I		
1	Chapter 1: Java S	Server Pages			9 Hrs
	JSP Technologies, I software, Configur JSP Request Time I	Understandin ring the JSP Se Errors o Creat	g the Client-Serve erver, Handling JSI ting a JSP Error Pa	er Model, Understanding Web server P Errors, JSP Translation Time Errors, ge.	
2	Chapter 2: Sessio	on Managem	ent		3 Hrs
	HTTP as a stateless	s protocol, Hi	dden form fields,	Cookies, session tracking Http Session,	
	Exception handling	g and error pa	ages, Directives		
3	3 Chapter 3: Java Beans				5 Hrs
	Concepts of Java Beans, Developing Java Beans, Controls and Properties of a Bean, Types of Properties.				
			Unit II	l	
4	Chapter 4: Struts				7 Hrs
	Introduction to the Works?, Introduction Struts Action From Framework, Client Developing Applica	Apache Strut on to the Strut n Class Usir t Side Addre ation with Stru	its o MVC Archite s Controller o Intro ng Struts HTML T ess Validation in uts Tiles	ecture o Struts Architecture, How Struts oduction to the Struts Action Class, Using Tags Introduction to Struts Validator Struts o Custom Validators Example,	
5	Chapter 5: Spring	g Framework	(7 Hrs
	Introduction to spr IOC and Depended dependency injecti	ing 3.0, steps ency Injectior ion.	s to use spring fra n, Understanding	amework in applications, understanding the bean life-cycle, annotation based	
6	Chapter 6: Hibern	nate			3 Hrs
	Introduction to Hibe	ernate 3.0 ,Hi	bernate Architectu	ure ,First Hibernate Application	
			Unit – I	ш	
7	Chapter 7: RMI				4 Hrs
	RMI Architecture, I	Designing RM	II application, Exe	cuting RMI application.	
8	Chapter 8: Maven) (Project Ma	anagement Tool)		4 Hrs

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 52 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

What is Maven, Ant Vs Maven, Install Maven ,Maven Repository(Local, Central ,Remote) , Maven pom.xml, Maven web App, Maven plugin

Text Book:

- 1. Java Server Programming Java EE7 (J2EE 1.7), Black Book Kindle Edition 2014
- 2. Spring in action 4th edition by Carig walls

References:

- 1. www.Javatpoint.com
- 2. www.tutorialspoint.com

Evaluation Scheme

1. Assessment

Assessment	Theory
ISA- 1	25
ISA- 2	25
ESA	50
Total	100

2. End Semester Assessment (ESA) Pattern:

UNIT	8 Questions to be set of 20 Marks each	Chapter Nos.	Instructions
I	3 Questions to be set of 20 Marks Each	1,2,3	Any 2 questions are to be answered
II	3 Questions to be set of 20 Marks Each	4,5,6	Any 2 questions are to be answered
III	2 Questions to be set of 20 Marks Each	7.8	Any 1 question is to be answered

	1			
16ECAC903	Mobile Applicat	tion Development		
Program: MASTER OF C	OMPUTER APPL	ICATIONS		
Course Code: 16ECAC90)3	Course Title: Mobile	Application Development	
L-T-P: 3-0-1	Credits: 4 Contact Hrs: 5			
ISA Marks-Theory: 50 +Lab: 100		ESA Marks: 50	Total Marks: 200	
Teaching Hrs: 42 + 24			Exam Duration: 3 Hours	
Νο		Content		Hrs
		Unit I		
Course Code: 16ECAC903 Course Title: Mobile Application Development L-T-P:3-0-1 Credits: 4 Contact Hrs: 5 ISA Marks-Theory: 50 +Lab: 100 ESA Marks: 50 Total Marks: 200 Teaching Hrs: 42 + 24 Exam Duration: 3 Hours No Content Hrs Unit I Unit I				Hrs

	Department of Master of Computer Applications	Page of Page 53 of
Cor	Year: 2015-20 batche	
1	Chapter No. 1- Mobility and Android	2 Hrs
	Introduction, Mobility Panorama, Mobile Platforms, App Development	
	Approaches, Android Overview.	
2	Chapter No. 2- Getting Started with Android	2 Hrs
	Introduction, Setting up Development Environment, Saying Hello to Android,	
	Traversing an Android App, Project Structure, Logical Components of an Android	
	App, Android Tool Repository, Installing and Running App Devices.	
3	Chapter No. 3- Learning with an Application	3 Hrs
	Introduction, 3CheersCable App, Mobile App Development, Challenges, Tenets of	
_	a Winning App.	
4	Chapter No. 4- App User Interface	5 Hrs
	Introduction, Activity, UI Resources, UI Elements and Events, Interaction among	
-	Activities, Fragments, Action Bar and Applications.	4 11mm
5	Chapter No. 5- App Functionality - Beyond Ul	4 Hrs
	Introduction, Infeads, Asyncrask, Service, Notifications, Intents and Intent	
	Resolution, Broadcast Receivers, Telephony and Sixis- Their Application.	
<i>c</i>	Unit II Charter No. C. Ann Data, Demistance and Assess	4 11.00
O	Introduction Elat Filos Shared Breferences Polational Data Data Sharing Across	4 815
	Apps Enterprise Data	
7	Apps, Enterprise Data. Chapter No. 7 Graphics and Animation	/ Hrs
,	Introduction Android Graphics Android Animation	4 113
8	Chanter No. 8. Multimedia	4 Hrs
0	Introduction Audio Video and Images Playback Canture and Storage	71113
9	Chanter No. 9 Location Services and Mans	4 Hrs
3	Introduction Google Play Services Location Services Mans	+ 115
	introduction, Google Flay Services, Location Services, Maps	

10 Chapter No. 10. Sensors Addroid, Android Sensor Framework, Motion Sensors, Position Sensors, Environment Sensors.
 11 Chapter No. 11. Testing Android Apps Addroid App Components, App Testing Landscape Overview Publishing Apps: Introduction, Groundwork, Configuring, Packaging, Distributing.

12Chapter No. 12. Publishing Apps2 HrsIntroduction, Groundwork, Configuring, Packaging, Distributing.

Text Book:

1. AnubhavPradhan, Anil V Deshpande, Composing Mobile Apps using Android, 2010, Wiley, 2010

References:

- 1. Barry Burd, Android Application Development All in one for Dummies.
- 2. Ian F Darwin, Android Cookbook.
- 3. Frank Ableson, RobiSen, Chris King, C. Enrique Ortiz, Android in Action, Manning

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 54 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

Publications.

Mobile Application Development Course Project

Objective:

This is the course Project for the Mobile App Development. The students will be divided into project teams, and each team will develop a marketable mobile app. ideally, each project team will have 2 or 3 students with a maximum of 4. The goals are to expose students to the process of developing a new mobile app from start to finish and to provide an experience very similar to what a developer would have at any company where they work to produce an app that not only works but is also something that meets the needs of their clients.

Concepts:

Mobile app development, project management, and quality assurance.

Required Textbooks

AnubhavPradhan, Anil V Deshpande, Composing Mobile Apps using Android, 2010 wiley, 2010.

Chapters	Торіс	Course Project	Slots
Ch-01: Mobility and Android. Ch-02: Getting Started with Android. Ch-03: Learning with an Application.	Mobility Panorama, App Development Approaches, Setting Development Environment, Installing and Running App Devices, Mobile App Development Challenges.	Development of logical Architecture for given Mobile Application.	2
Ch-04: App User Interface. Ch-05: App Functionality.	Activity, UI Resources, UI Elements and Events, Threads, AsyncTask, Notification, Broadcast Receivers	Building User Interface for given Application.	2

	-		
Ch-06: App Data –	Flat Files, Shared Preferences, Relational	Exchanging a Data	2
Persistence and	Data, Data Sharing Across Apps.	with in Enterprise	
Access.		Application.	
Ch-07: Graphics	Android Graphics, Android Animation.	Adding Animation and	2
and Animation.		Graphics into	
		Application.	
Ch-11: Testing	Testing Android App Components, App	Testing an App.	2
Android Apps.	testing Landscape Overview.		
Ch-12: Publishing	Groundwork, Configuring, Packaging,	Deploying an App.	2
Apps.	Distribution.		

1. Assessment

Assessment	Theory	Lab.	
ISA- 1	25	100	
ISA- 2	25		
ESA	50	00	
Total	100	100	

2. End Semester Assessment (ESA) Pattern:

UNIT	8 Questions to be set of 20 Marks Each	Chapter Nos.	Instructions
I	3 Questions to be set of 20 Marks Each	1,2,3,4,5	Any 2 questions are to be answered
11	3 Questions to be set of 20 Marks Each	6,7,8,9	Any 2 questions are to be answered
III	2 Questions to be set of 20 Marks Each	10,11,12	Any 1 question is to be answered

16ECAE906	Machine Learning				
Program: MASTER OF COMPUTER APPLICATIONS					
Course Code: 16ECAE9	06 Cours	e Title: Machine Learnir	ng		
L-T-P: 3-0-1	Credit	s: 4	Contact Hrs: 5		
ISA Marks-Theory: 50 +L	ab: 100 ESA N	1arks: 50	Total Marks: 200		
Teaching Hrs: 42 + 24			Exam Duration: 3 Hours		
No	C	Content		Hrs	
	Ссн. KLE Technological Creating Value Leveraging Knowledge				
-----	---	-----------------------			
	Department of Master of Computer Applications	Page of Page 56 of 97			
Con	tent- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches			
	Unit I				
1	Chapter 1. Introduction	4 Hrs			
	Introduction: Statistical Decision Theory - Regression, Classification, Bias Variance	2:			
2	Chapter 2. Linear Regression and Linear Classification	6 Hrs			
	Linear Classification, Logistic Regression, Linear Discriminant Analysis; Perceptron Linear Regression, Multivariate Regression, Subset Selection, Shrinkage Methods, Principal Component Regression, Partial Least squares.	;			
3	Chapter 3. Support Vector Machines and Artificial Neural Networks	6 Hrs			
	Support Vector Machines, Neural Networks - Introduction, Early Models, Perceptron Learning, Backpropagation, Initialization, Training & Validation.				
	Unit II				
4	Chapter 4. Bayesian Learning and Decision Trees	6 Hrs			
	Parameter Estimation - MLE, MAP, Bayesian Estimation Decision Trees, Regression Trees, Stopping Criterion & Pruning Loss functions, Categorical Attributes, Multiway Splits, Missing Values Decision Trees - Instability.				
5	Chapter 5. Evaluation Measures and Hypothesis Testing	4 Hrs			
	Evaluation Measures, Bootstrapping & Cross Validation, Class Evaluation Measures, ROC curve, MDL				
6	Chapter 6. Ensemble Methods and Clustering	6 Hrs			
	Ensemble Methods - Bagging, Committee Machines and Stacking, Boosting, Gradient Boosting, Random Forests, Multi-class Classification, Naive Bayes, Bayesian Networks; Partitional Clustering, Hierarchical Clustering, Birch Algorithm CURE Algorithm, Density-based Clustering.	۱,			
	Unit – III				
7	Chapter 7. Graphical Models and Expectation Maximization	5 Hrs			
	Undirected Graphical Models, HMM, Variable Elimination, Belief Propagation; Gaussian Mixture Models, Expectation Maximization.				

8Chapter8. Learning Theory and Reinforcement Learning5 HrsLearning Theory, Introduction to Reinforcement Learning, RL framework, TD
learning, Solution Methods, Applications.5 Hrs

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 57 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

Text Book:

- 1. T. Hastie, R. Tibshirani, J. Friedman. The Elements of Statistical Learning, 2e,
- 2. Christopher Bishop.Pattern Recognition and Machine Learning. 2e.

References:

1. Introduction to machine learning with python by Andreas C.Miiller and Sarah Guide

Machine Learning Practices Using Python

- Implement linear regression with one variable to predict profits for a food truck. Suppose you are the CEO of a restaurant franchise and are considering different cities for opening a new outlet. The chain already has trucks in various cities and you have data for profits and populations from the cities.
- 2) Build a logistic regression model to predict whether a student gets admitted to a university. Suppose that you are the administrator of a university department and you want to determine each applicant's chance of admission based on their results on two exams.
- 3) Implement one-vs-all logistic regression and neural networks to automate handwritten digit recognition (0 to 9)
- 4) Implement the backpropagation algorithm for neural networks and apply it to task of hand –written digit recognition.
- 5) Build a Spam Classifier using Support Vector Machines.
- 6) Implement the K-means clustering algorithm and apply it to compress an image.
- 7) Build Principle Component analysis to find a low dimensional representation of face images.
- 8) Implement the anomaly detection algorithm and apply it to detect failing servers on a network.
- 9) Build a recommender system for movies by using collaborative filtering.

Evaluation Scheme

1. Assessment

Assessment	Theory	Lab.
ISA- 1	25	100
ISA- 2	25	
ESA	50	00
Total	100	100

2. End Semester Assessment (ESA) Pattern:

I	UNIT	8 Questions to be set of 20 Marks Each	Chapter Nos.	Instructions	

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 58 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

I	3 Questions to be set of 20 Marks Each	1,2,3,4	Any 2 questions are to be answered
II	3 Questions to be set of 20 Marks Each	5,6,7	Any 2 questions are to be answered
III	2 Questions to be set of 20 Marks Each	8,9	Any 1 question is to be answered

16ECAP901

Mini Project-3

Program: MASTER OF COMPUTER APPLICATIONS

Course Code: 16ECAP901	Course Title: Mini Project-3			
L-T-P: 0-0-2	Credits: 2	Contact Hrs: 4		
ISA Marks: 100	ESA Marks: 100	Total Marks: 200		
Teaching Hrs: 36		Exam Duration: 3 Hours		

Theme: "Development of Applications using .NET/ JavaTechnology"

.NET Technology

The Microsoft .NET framework has major advantages over previous programming languages and environments. Applications written in .NET may be in any of several different programming languages (languageinteroperability). .NET consists of a re-useable library of classes (smallcomponents that help developers create applications). It also consists of a development environment to help developers rapidly and graphically build applications. All operating system functions can be encapsulated within .NET.The framework manages the execution of applications and Web services, and provides many functionalities including security enforcement and memory management. Because of these advantages, corporations and industry are beginning to embrace .NET. They will need graduates whoknow how to use it.Hence, a project done using this technology would give an insight of the powerful features of .NET and help the students to find a job in this field. Below is a list of some of the types of applications that can be created using the .NET platform.

- Customer relationship management
- Accounting applications
- Product/inventory applications
- Warehousing applications using hand-held devices
- Web sites
- Value chain/supply management
- Integration with partners through the Internet
- XML Web services
- PDA (hand-held) applications

Objectives of using .NET Technology-

Student doing a project in .NET technology should be able to:

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 59 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

- 1. Develop an application that is pure OOP, platform independent, language independent and interoperable.
- 2. Use the features of .NET to make the application scalable, maintainable, easily deployable, reliable and secure.
- 3. Work with databases using ADO.NET.
- 4. Develop background processes windows services.
- 5. Create animations using .NET's WPF.
- 6. Create and use Web Services through SOA.

Java Technology

Java is one of the fundamental programming languages that can be used in many applications as well as product developments. The simple reason for this is because Java can be put to use in various platforms due to its multi-platform nature. Java is one of the favorite choices for developers for many reasons like security, object oriented(reusability), cross platform computing, multithreaded capability, Rich API, Powerful development tools ,availability of various frameworks, Great collection of open source libraries, wonderful community support, Excellent documentation support. Support for various databases and many more.

Students can use the following tools in web and mobile applications as well as product developments:

Struts, Spring, Hibernate and JPA
JAXB and Apache Axis 2/Java
JSP, Servlets, JDBC, EJB, JMS, JTA and JUnit
Apache Tomcat, JBoss and GlassFish
JavaScript, JSF, GWT and jQuery
Eclipse, Netbeans and JBoss tools
TestNG
JBPM and Drools
JCR

Objectives:

Help students to utilize and strengthen the knowledge of Java which they have learnt in previous semester.

Methodology:

Students are asked to make a team of 3-4 members and can choose the different categories of projects like desktop applications, web applications, mobile application and distributed application and work once it is approved by the coordinator.

Evaluation:

Students Assessment through CIE (80%) + SEE (20%)

Continuous	Assessment	Marks
Internal		
Evaluation	Problem Definition, Literature Review	10
	Synopsis and SRS Deliverables	10
	Design (Module wise algorithmic design)	20
	Coding	10

	Creating Value Leveraging Knowledge	cal ty			
Depa	Page of Page 60 of 97				
Content- Unique co	urses by 2015 to 2020 batches(Removed Dupli	cate by Co	ouse Code)	Year: 2015-20 batches	
	Integration and testing		10		
	Report		10		
	Presentation skills and Viva-voce		10		
-		Total	80		
Semester End	Presentation		10		
Examination	Viva-voce		10		
		Total	100		
16ECAE903	Information Security				
	moniation security				
Program: MASTER OF	COMPUTER APPLICATIONS				
Course Code: 16ECAE9	03 Course Title: Information Se	curity			
L-T-P: 3-0-1	Credits: 4 C	Contact H	rs: 5		
ISA Marks: 50 + 100	ISA Marks: 50 + 100 ESA Marks: 50 Total Marks: 200				
Teaching Hrs: 42 + 24	E	xam Dura	ation: 3 Hours		
No	Content			Hrs	
	Unit I				
1 Chapter 1: Crypto	1 Chapter 1: Cryptography Basics			4 Hrs	
Introduction, Classic Crypto: Modern Crypto, Taxonomy of Cryptography & Cryptanalysis					
2 Chapter 2: Symm	netric Key Crypto			6 Hrs	
Introduction Stre	am Ciphers, Block Ciphers, Block cipher mod	les			
3 Chanter 3. Dublic	Key Crypto and Hash Functions			6 Hrs	
				0 1115	
Introduction, Knapsack, RSA, Diffie-Hellman, Elliptic Curve Cryptography, Public Key Notation, Uses for Public Key Crypto, Public Key Infrastructure Hash Functions: Introduction, The Birthday Problem, Non-Cryptographic Hashes, Tiger Hash, HMAC					
	Unit II				
4 Chapter 4: Authe	ntication and Authorization			4 Hrs	
Authentication: Ir Factor Authentica Access Control M	Authentication: Introduction, Authentication Methods, Passwords, Biometrics, Two- Factor Authentication, Single Sign-On and Web Cookies, Authorization: Introduction, Access Control Matrix, Multilevel Security Models				
5 Chapter 5: Autho	rization and Authentication Protocols			6 Hrs	

Authorization: Multilateral Security, Firewalls, Intrusion Detection, Simple Authentication Protocols: Introduction, Simple Security Protocols, Authentication Protocols

KLE	ГЕСН. KLE Technological Creating Value Leveraging Knowledge	
	Department of Master of Computer Applications	Page of Page 61 of 97
Co	ontent- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches
6 C S la	hapter 6: Security Protocols ervice-orientation and contemporary SOA; Service layer abstraction; Application service ayer; Business service layer, Orchestration service layer; Agnostic services; Service layer onfiguration scenarios.	6 Hrs
	Unit – III	
7 C	hapter 6: Software Flaws and Malware	5 Hrs
lr ta	ntroduction, Software Flaws, Malware, Miscellaneous Software Based Attacks, software amper resistance, Digital Rights Management.	
8 C	hapter 6: Cyber Crimes and Laws	5 Hrs
lr e Ir	ntroduction, Computer Forensics, Online Investigative tool, tracing and recovering lectronic evidence, Internet fraud, Identity Theft, Industrial Espionage, Cyber Terrorism ndian IT laws: Introduction and briefs of Law clauses.	
Text Bo	ok:	
1.	Mark Stamp, "Information Security: Principles and Practices", 2nd Edition, John Wiley 2011.	and Sons,
Referer	nces:	
1. 2.	Michael E. Whitman and Herbert J. Mattord, "Principles of Information Security", 2 Thompson, 2005. William Stallings, "Network Security Essentials Applications and Standards". Person	nd Edition, Education,
3.	2000. Behrouz A. Forouzan, "Cryptography and Network Security", Tata McGraw-Hill, 2007.	,

Evaluation Scheme

1. In Semester Assessment (ISA)

Assessment	Marks
ISA- 1	20
ISA- 2	20
Assignment	10
Total	50

2. End Semester Assessment (ESA)

1	UNIT	8 Questions to be set of 20 Marks Each	Chapter Nos.	Instructions
	I	3 Questions to be set of 20 Marks Each	1,2,3	Any 2 questions are to be answered
	II	3 Questions to be set of 20 Marks Each	4,5,6	Any 2 questions are to be answered
	III	2 Questions to be set of 20 Marks Each	7,8	Any 1 question is to be answered

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 62 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

16ECAE905		Wireless & Mo	bile Computing	3		
Prog	. Program: MASTER OF COMPUTER APPLICATIONS					
Course Code: 16ECAE905		05 0	Course Title: Wireless & Mobile Computing			
L-T-P: 3-0-1		C	Credits: 4		Contact Hrs: 5	
ISA I	Marks: 50 + 100	E	ESA Marks: 50		Total Marks: 200	
Teaching Hrs: 42 + 24					Exam Duration: 3 Hours	
No			Content	:		Hrs
			Unit I	I		
1	Chapter1:Introduc	tion				4 Hrs
	Mobility Of Bits & Networks, Middle Computing Applica And Players In The	Bytes, Wireless- Gear & Gateway ations, Security I Wireless Space	The Beginning, ys, Applications In Mobile Comp	, Mobile Cor s & Services outing, Stan	nputing, Dialog Control, , Developing Mobile dard And Standard Bodies	
2	Chapter 2 : Wirele	ess LAN				4 Hrs
	Introduction, Wire architectures, Mot and Sensor Netwo	less LAN advant bility in Wireless rks. Wireless LA	ages, IEEE 802. LAN, Deployin N security, WiF	.11 standard g Wireless L i versus 3G.	ds, Wireless LAN AN, Mobile adhoc Networks	
3	Chapter 3: Mobile	Computing Arc	hitecture			4 Hrs
	History of compute for mobile comput computing, Mobile enable.	ers, History of In ting, The three-t e computing thre	iternet, Interne ier architecture ough internet, I	et-the ubiqu es, Design co Making exis	ities networks, Architecture onsideration for mobile ting applications mobile	
4	Chapter 4: Mobile	Computing three	ough Telephon	ıy		4 Hrs
	Evaluation of telep telephone, Develo Programming Inter	bhony, Multiple a ping an IVR appl rphase(TAPI).	access procedu lication, Voice)	ure, Mobile XML, Teleph	computing through nony application	
			Unit I	I		
5	Chapter 5:Emergir	ng Technologies				4 Hrs
	Introduction, Blue- (WiMAX), Mobile I	-tooth, Radio Fre P, Internet prote	equency Identi ocol Ver 6 (IP v	fication (RFI 6), Java caro	D), Wireless Broad Band J.	
6	Chapter 6 : Global	System for Mol	bile Communic	ation (GSM)	4 Hrs

	Department of Master of Computer Applications	Page of Page 63 of 97
	Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches
	Introduction, GSM architectures, GSM entities, Call routing in GSM, PLMN interface, GSM address and identifiers, Network aspect in GSM, GSM frequency allocation, Authentication and security,	
7	Chapter 7: Short Message Services (SMS)	4 Hrs
	Mobile Computing over SMS, Short Message Services (SMS), Value Added Services through SMS, Accessing the SMS Bearer.	
8	Chapter 8: General Packet Radio Service (GPRS)Introduction, GPRS andpacket data network, GPRS network architecture, GPRS network operation, Data servicesin GPRS, Application for GPRS, Limitation of GPRS, Billing and Charging in GPRS.	4 Hrs
	Unit – III	
9	Chapter 09 : Wireless Application Protocol (WAP) Introduction, WAP, MMS, GPRS, Application	5 Hrs
10	Chapter 10 : CDMA & 3G Introduction, Spread Spectrum technology, IS-95, CDMA vs GSM, Wireless Data, 3rd generation network, Application on 3G.	5 Hrs
Text	Book:	
Refe	 Asoke K Talukder & Roopa R Yavagal . Mobile Computing , Tata McGraw Hill Educatio Limited, New Delhi. 	n Private
	1. Raj Kamal, Mobile Computing, Oxford University Press	

	-
Assessment	Marks
ISA- 1	20
ISA- 2	20
Assignments	10
Total	50

2. End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Nos.	Instructions
I	3 Questions to be set of 20 Marks Each	1,2,3,4	Any 2 questions are to be answered
II	3 Questions to be set of 20 Marks Each	5,6,7,8	Any 2 questions are to be answered
III	2 Questions to be set of 20 Marks Each	9,10	Any 1 question is to be answered

KLE TECH.	Creating Value Leveraging Knowled	ological ersity ge			
Depart	ment of Master of Compute	er Applications	Page of Page 64 of 97		
Content- Unique cour	Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)				
16ECAP902	Project Work				
Program: MASTER OF CC	MPUTER APPLICATIONS				
Course Code: 16ECAP902	Course Title: Proje	ect Work			
L-T-P: 0-0-18	Credits: 18 Contact Hrs: Full Time				

Total Marks: 250

Exam Duration: **3 Hours**

ESA Marks: 100+50

A student must carry out a project on any domain using cutting edge technologies and demonstrates

ISA Marks: 100

Teaching Hrs: Full Time

the same at the end of the semester.

2019-2	0		
19ECAH701 Profes		Professional Communication	
Course	e Code: 19ECAH7	701 Course Title: Professiona	I Communication
L-T-P:	2-1-0	Credits: 3	Contact Hrs: 4
ISA Ma	arks: 50	ESA Marks: 50	Total Marks: 100
Teachi	ing Hrs: 50		Exam Duration: 3Hrs
No		Content	Hrs
		Unit I	
1	Chapter 1: Basi	cs of Technical Communication	4 Hrs
	Introduction, Pro of Communicat Communications	ocess of Communication, Language as a Tool, ion, Communication Networks, Importanc 5.	, Levels of Communication Levels e of Technical
2	Chapter 2:Barr	iers to Communication	4 Hrs
	Definition of Noi	se, Classification of Barriers.	
3	Chapter 3 : Tech	nology in Communication	4 Hrs
	Impact of Techno Software for Pres Technology.	ology, Software for Creating Messages, Softv senting Documents, Transmitting Document	vare for Writing Documents, s, Effective use of Available
4	Chapter 4 : Activ	ve Listening	4 Hrs

	Department of Master of Computer Applications	Page of Page 65 of 97		
	Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches		
	Introduction, Types of Listening, Traits of good Listener, Active versus passive listen implications of effective listening.	ing,		
5	Chapter 5 : Effective Presentation Strategies	4 Hrs		
	Introduction, Defining purpose, Analyzing Audience and Locale, Organizing Contents,			
	preparing outline, Visual Aids, Understanding Nuances of Delivery, Kinesics, Proxemics,			
	Paralinguistic's, Chronemics, Sample speech.			
	Unit II			
6	Chapter 6 : Group Communication	4 Hrs		
	Introduction, Group Discussion, Organizational Group discussion, Group discussion as part of			
	selection process Meetings, conferences.			
7	Chapter 7 : Words and Phrases	4 Hrs		
	Brief History of words, Dictionary, Thesaurus, Elements of Style, Guidelines for effec	ctiveness.		
8	Chapter 8 : Sentence Construction	4 Hrs		
	Introduction, Guidelines for effectiveness.			
9	Chapter 9 : Paragraph Development	4 Hrs		

12 Chapter 12: Research paper, Dissertation and Thesis

Introduction, Central Components of a paragraph, Length, Techniques for Paragraph

Introduction, Research paper, Dissertation, Thesis.

Introduction, Steps to effective precise writing.

Chapter 10 : The Art of Condensation

Chapter 11: Letters and Emails

Business letters Emails.

Text Book:

10

11

Development.

1. Meenakshi Raman and Sangeeta Sharma, Technical Communication Principles and Practices, Oxford University Press, 2015, 3rd Edition,

Unit – III

4 Hrs

5 Hrs

5 Hrs

References:

1. Rizivi, M.A., Effective Technical Communication, Tata McGraw Hill,

Evaluation Scheme

1. In Semester Assessment (ISA)

Assessment	Marks
ISA- 1	20

Co	Department of Master of Computer Applications					
	ontent- Unique cour	ses by 2015 to 2020	batches (Rem	oved Duplicate by C	ouse Code) Year: 2015-20 batche	
		ISA	- 2	20		
		Assigr	ıment	10		
		То	tal	50		
2. E	End Semester A	ssessment (ESA	i			
UNIT	8 Questions to be se	t of 20 Marks Each	Chapter Nos	. Inst	ructions	
I	3 Questions to be se	t of 20 Marks Each	1, 2, 3, 4, 5	Any 2 questions a	re to be answered	
II	3 Questions to be se	t of 20 Marks Each	6, 7, 8, 9, 10) Any 2 questions a	re to be answered	
III	2 Questions to be se	t of 20 Marks Each	11,12	Any 1 question is	to be answered	
ECAPZ	706	Computer Network	‹s Lab			
ECAP	706 Code:19ECAP706	Computer Networl	ks Lab Furse Title: Co	mputer Networks	Lab.	
ECAP7 ourse -T-P:0	706 Code:19ECAP706 -0-1.5	Computer Networl Co Cr	<s lab<br="">ourse Title: Co edits: 1.5</s>	mputer Networks	Lab. ntact Hrs:3	
ECAP7 ourse -T-P:0 SA Ma	706 Code:19ECAP706 -0-1.5 rks: : 100	Computer Networl Ca Cr ES	<s lab<br="">ourse Title: Co edits: 1.5 A Marks:</s>	m puter Networks Co To	Lab. ntact Hrs:3 tal Marks: 100	

01	Introduction to hardware components and Ethernet LAN setup.	2
02	Investigation of IP addressing and subnet design.	1
03	Application of Windows OS Built-in Networks Diagnostic Tools.	2
04	Network Packet Monitoring and Analysis.	1
05	Analysis of the Data Link Layer Protocols (Ethernet, ARP)	1
06	Analysis of the Web Protocols (DNS, HTTP)	1
07	Analysis of the Email Protocols (SMTP, POP3)	1
08	Computer Network Routing Using Statical Routes and RIP Protocol	1
09	Computer Network Routing by Using Open shortest Path First (OSPF)	1
	Dynamic Routing Protocol.	
10	Getting acquainted with switching environment	1

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 67 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

(01FM18MCAXX)			
18ECAP801	Mini Project -1		
•			
Course Code: 18ECAP80	1	Course Title: Mini Project - 1	
L-T-P: 0-0-2		Credits: 2	Contact Hrs: 4
ISA Marks: 100		ESA Marks: 100	Total Marks: 200
Teaching Hrs: 48			Exam Duration: 3 Hours

Theme: "Development of Rich Internet Applications using PHP"

Rich Internet Applications (RIAs) are web applications that offer the responsiveness, "rich" features and functionality approaching that of desktop applications. This course provides an end-to-end look at building Rich Internet Applications that employ HTML5, Ajax, jQuery, etc. This course provides platform for integrating various server-side and client-side technologies to create a robust applications.

Purpose:

- Developing rich reporting and analytics interfaces for enterprise-level information presentation.
- To build state-of-the-art web applications utilizing the powerful features provided by the combination of the PHP language, Ajax, and Web Services.
- To provide an authoritative overview to a set of key technologies for building web applications (HTML, HTML5, JavaScript, Dynamic HTML, CSS, ASP, AJAX, and XML).
- Able to apply the above key technologies for developing light-weighted and rich-content Web
 applications
- To offer users a better visual experience and more interactivity than traditional browser applications that use only HTML and HTTP.
- To create advanced user interfaces.

Evaluation:

Students Assessment through ISA (100%) + ESA (100%)

In Semester Assessment	Assessment	Marks
	Problem Definition, Literature Review	10
	Synopsis and SRS Deliverables	10
	Design (Module wise algorithmic design)	20
	Coding	10
	Integration and testing	10
	Report	20
	Presentation skills and Viva-voce	20

		KLE Leveraging	Technolog Univers	ity		
	De	partment of Master of	of Computer Appli	cations	Pag	ge of Page 68 of 97
	Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)				Year: 2	2015-20 batches
		Total		100		
	End Semester	Presentation		50		
	Assessment	Viva-voce		50		
		Total		100		
1.0		Cuber Security and	Farancias			
18	ECAE806	Cyber Security and	Forensics			
C	ourse Code: 18ECA	E806	Course Title: Cyber Se	ecurity and Forensics		
Ŀ	-T-P: 2-0-1	(Credits: 3	Contact Hrs	s: 4	
IS	ISA Marks: 50 ESA Marks: 50 Total Marks:				s: 100	
Teaching Hrs: 42+24 Exam Duration: 3Hrs			rs			
r	No		Content		Hrs	i
	Unit I					
	Cybercrime definition and origins of the world, Cybercrime and information security, Classifications of cybercrime, A global Perspective on cybercrimes. Cyber attack plans, Social Engineering, Cyber stalking, Cyber cafe and Cybercrimes, Botnets, Proliferation of Mobile and Wireless Devices, Credit Card Frauds in Mobile and Wireless Computing					3
	 Chapter No. 2. Methods used in Cybercrime Phishing, password Cracking, Keyloggers and Spyware, Virus and Worms, Trojan and backdoors, Steganography, DOS and DDOS attack, SQL injection, Buffer Overflow, Attack on wireless networks, Identity theft. Unit II 			8 Hr	'S	
	3Cybercrimes and Cyber security: The Legal Perspectives8 HrsWhy do we need Cyber law: The Indian Context, The Indian IT Act, Digital Signature and the Indian IT Act, Amendments to the Indian IT Act, Cybercrime and Punishment.8 Hrs				S	
	 Chapter 4: Understanding computer Forensics, Forensics of Hand-held devices Historical background of forensics; Digital forensics science; need for computer forensics; cyber forensics and digital evidence; Analysis E-mail; Digital forensics life cycle; chain of custody concepts; network forensics; Forensics and social networking; challenges in computer forensics; Hand-held devices and digital forensics; Toolkits for Hand-held device forensics; Techno-legal challenges form hand-held devices Unit – III 			S		
	5 Chapter 5: So Intellectual pr mindset and s	ocial, political, Ethical a operty in the cyberspa kills of hackers and oth	nd Psychological Din ce; Ethical dimension er cybercriminals; Sc	nensions of cybercrimes; Psychology, pciology of cybercriminals.	5 Hi	rs

Г

KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 69 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

5 Hrs

6 Chapter 6: Cybercrime: Illustrations, Examples and Case studies Introduction, Real-Life Examples, Case Studies: Illustrations of Financial Frauds in Cyber Domain, Digital Signature-Related Crime Scenarios, Digital forensics case illustrations Online Scams.

Text Book

1. Nina Godbole & Sunit Belapure, "Cyber Security", Wiley India, 2011 and Reprint 2018.

References

- 1. Dhiren R Patel, "Information security theory & practice", PHI learning PVT. Ltd, 2010.
- Bill Nelson, "Guide to Computer Forensics and Investigations", 4th Edition, CENGAGE Publication. 2009

Evaluation Scheme

In Semester Assessment (ISA)

Assessment	Theory
ISA- 1	15
ISA- 2	15
Lab practices	20
Total	50

End Semester Assessment (ESA)

I3 Questions to be set of 20 Marks Each1, 2Any 2 questions are to be answeredII3 Questions to be set of 20 Marks Each3,4Any 2 questions are to be answeredIII2 Questions to be set of 20 Marks Each5,6Any 1 question is to be answered	UNIT	8 Questions to be set of 20 Marks Each	Chapter Nos.	Instructions
II3 Questions to be set of 20 Marks Each3,4Any 2 questions are to be answeredIII2 Questions to be set of 20 Marks Each5,6Any 1 question is to be answered	I	3 Questions to be set of 20 Marks Each	1, 2	Any 2 questions are to be answered
III 2 Questions to be set of 20 Marks Each 5,6 Any 1 question is to be answered	II	3 Questions to be set of 20 Marks Each	3,4	Any 2 questions are to be answered
	III	2 Questions to be set of 20 Marks Each	5,6	Any 1 question is to be answered

KLE	ECH. KLE Technolog Creating Value Leveraging Knowledge	gical ity		
	Department of Master of Computer Appl	ications	Pa	ge of Page 70 of 97
C	Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)			2015-20 batches
Prop	osed Cyber Security and Forensics Practices			
S No	Practices	Tools		
1	Implementation of SQL Injection and avoidance	Python		

		/
2	Implementation of Digital signature	Php
3	Implementation of .Steganography	Tools (Crime, Security or
4	Writing Literature survey report on various issues in Cybersecurity and Forensics	Forensics)
5	Presentation on domain chosen in Cybercrime, Cyber security or Cyber Forensics.	
6	Demonstration of tool/s used in Cybercrime, Cyber Security or Cyber Forensics	

```
18ECAE804
```

Cloud Computing

Course Code: 18ECAE804 Course Title: Cloud Computing						
L-T-P:	2-0-1	Credits: 3	Contact Hrs: 4			
ISA M	arks: 50	ESA Marks: 50	Total Marks: 100			
Teaching Hrs: 42 + 24			Exam Duration: 3 Hours			
No Content				Hrs		
	Unit I					
 Chapter 1: Introduction, Parallel and distributed systems Chapter 1: Introduction, Parallel and distributed systems Network-centric computing and network centric content, peer-to-peer systems, Cloud computing basics, delivery models and services, Ethical issues, cloud vulnerabilities, major challenges; parallel computing, parallel computer architecture, Distributed systems, communication protocol and process coordination, logical clocks, message delivery rules, casual delivery, Concurrency, atomic actions, consensus protocols, modularity: client-server paradigm. Chapter 2: Cloud Infrastructure Cloud computing at Amazon, cloud computing: the Google perspective, Microsoft windows Azure and online services; open-source software platforms for private clouds; 				6 Hrs 6 Hrs		
	intercloud; Energy use and ecological impact of large-scale data centers; Service and compliance level agreements; User experience; Software licensing.					
3	3Chapter 3: Cloud Computing: Applications and Paradigms4 HrsChallenges for cloud computing; Existing cloud applications and new application opportunities; Architectural styles for cloud applications; Workflows: Coordination of multiple activities; The MapReduce programming model; Case studies.4 Hrs			4 Hrs		

1. A Dan C. Marinescu, Cloud Computing: Theory and Practice, Morgan Kaufmann publishers, 2013

References

- 1 Michael Miller, Cloud Computing: Web-Based Applications that change the Way you work and collaborate Online, Pearson Publication, 2012.
- 2 Anthony T. Volte, Toby J. Volte, Robert Elsenpeter: Cloud Computing, A Practical Approach, McGraw Fill, 2010.
- 3 Cloud Computing for Dummies: J. Hurwitz, ISBN 978-0-470-484-8
- 4 Dr. Kumar Sourabh, Cloud Computing, 2nd Edition, Wiley India, 2011.

Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)

Year: 2015-20 batches

Evaluation Scheme

Assessment

Assessment	Theory	Lab.
ISA- 1	25	100
ISA- 2	25	
ESA	50	00
Total	100	100

End Semester Assessment (ESA) Pattern:

UNIT	8 Questions to be set of 20 Marks Each	Chapter Nos.	Instructions
I	3 Questions to be set of 20 Marks Each	1,2,3	Any 2 questions are to be answered
II	3 Questions to be set of 20 Marks Each	4,5,6	Any 2 questions are to be answered
111	2 Questions to be set of 20 Marks Each	7,8	Any 1 question is to be answered

Cloud Computing Practices

Expt	Brief description about the experiment	Number Of
No.	No.	
	DEMONSTRATION	
1	Cloud computing resources access using Windows Azure Infrastructure Services	1
2	Registering a DNS Server in Windows Azure	1
3	Introduction to Google app engine for Java.	1
4	Creation an Amazon VPC.	1
5	Setting up Routing in VPC and Deploying Amazon EC2 instance in Amazon VPC	1
	EXERCISE	
6	Introduction of cloud using windows Azure.	1
7	Collaborating on Calendars Schedules and Task Management, Event Management, Contact Management, Project Management, Word Processing, Spreadsheets, Databases, Presentations.	1
8	Implementation of web app on Google app engine.	1
9	Implementation of Amazon VPC.	1
10	Implementation of network programming using mininet.	1

KLE TECH. KLE Technological Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 73 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

11	Collaborating via Web Based Communication Tools, Social Networks and	1	
	Groupware, Blogs and Wikis.		
	STRUCTURED ENQUIRY		
12	Develop a tree topology structure with more than 20 hosts using controller and	2	
	switches in mininet.		

18ECAP802	Mini Project-2		
Course Code: 18ECAP80)2	Course Title: Mini Project-2	
L-T-P: 0-0-2		Credits: 2	Contact Hrs: 4
ISA Marks: 100		ESA Marks: 100	Total Marks: 200
Teaching Hrs: 48.			Exam Duration: 3 Hours

Theme: "Mini project Using Java/Python"

Java is one of the fundamental programming languages that can be used in many applications as well as product developments. The simple reason for this is because Java can be put to use in various platforms due to its multi-platform nature. Java is one of the favorite choices for developers for many reasons like security, object oriented(reusability), cross platform computing, multithreaded capability, Rich API, Powerful development tools ,availability of various frameworks, Great collection of open source libraries, wonderful community support, Excellent documentation support. Support for various databases and many more.

Students can use the following tools in web and mobile applications as well as product developments:

- Struts, Spring, Hibernate and JPA
- JAXB and Apache Axis 2/Java
- JSP, Servlets, JDBC, EJB, JMS, JTA and JUnit
- Apache Tomcat, JBoss and GlassFish
- JavaScript, JSF, GWT and jQuery
- Eclipse, Netbeans and JBoss tools
- TestNG
- jBPM and Drools
- JCR

Objectives:

Help students to utilize and strengthen the knowledge of java which they have learnt in previous semester.

Python :

Python is an interpreted, high-level, general-purpose programming language. Python has a design philosophy that emphasizes code readability, notably using significant whitespace. It provides constructs

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 74 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

that enable clear programming on both small and large scales, Python features a dynamic type system and automatic memory management. It supports multiple programming paradigms, including objectoriented, imperative, functional and procedural. It also has a comprehensive standard library. Python interpreters are available for many operating systems. CPython, the reference implementation of Python, is open source software and has a community-based development model.

Students can use the following tools in web and product developments:

- Django
- BootStarp
- Matplotlib
- Reportlab
- Numpy
- Pandas
- Falcon

Objectives:

Help students to utilize and strengthen the knowledge of python which they have learnt in previous semester.

Methodology:

Students are asked to make a team of 3-4 members and can choose the different categories of projects like desktop applications, web applications, mobile application and distributed application and work once it is approved by the coordinator.

Assessment:

```
Students Assessment through ISA (100%) + ESA(100%)
```

In Semester	Assessment		Marks
Assessment			
	Problem Definition, Literature Review	10	
	Synopsis and SRS Deliverables		10
	Design (Module wise algorithmic design)		20
	Coding		10
	Integration and testing		10
	Report		20
	Presentation skills and Viva-voce		20
		Total	100
End Semester	Presentation		50
Assessment	Viva-voce		50
		Total	100

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 75 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

18ECAE80	2	User Interface Design	
Course C	ode:18FCAF802	Course Title: User Inter	face Design
	· · ·	Credite: 2	Contact Urs: 4
L-1-P: Z- ()-1	creaits: s	Contact Hrs: 4
ISA Mark	is: 50	ESA Marks: 50	Total Marks: 100
Teaching	Hrs: 42+24		Exam Duration: 3Hrs
No		Content	Hrs
		Unit I	
1	Chapter 1:W	/hat Users Do	5Hrs
2	The Basics of User Research ,Users' Motivation to Learn, The Patterns.Chapter 2 : Organizing the Content: Information Architecture and Application6 HrsStructure		
3	The Big Picture, The Patterns:- Feature, Search, and Browse, News Stream, Picture Manager, Dashboard, Canvas Plus Palette, Wizard.		
	Staying Found, The Cost of Navigation, Navigational Models, Design Conventions for Websites, The Patterns:- Clear Entry Points, Menu Page, Pyramid, Modal Panel, Deep-linked State, Escape Hatch, Fat Menus, Sitemap Footer, Sign-in Tools, Sequence Map, Breadcrumbs, Annotated Scrollbar, Animated Transition.		
		Unit II	
4	Chapter 4 : Or	ganizing the Page: Layout of Page Element	s 5 Hrs
	The Basics of F of Equals, Title Right/Left Alig	Page Layout, The Patterns:- Visual Framewo ed Sections, Module Tabs, Collapsible Panels gnment, Diagonal Balance.	ork, Center Stage, Grid s, Movable Panels,
5	Chapter 5 : Lis	sts of Things	6 Hrs

		Creating Value	nnologica iversity ^{Je}	√ ∽	
	Department of I	Master of Com	puter Applicatio	ns	Page of Page 76 of 97
Co	ntent- Unique courses by 2015	to 2020 batches	(Removed Duplicate	by Couse Code)	Year: 2015-20 batches
	Use Cases for Lists, Back t	o Information A	rchitecture, The Pa	tterns:- Two-Panel	
	Selector, One-Window Dr	illdown, List Inla Tree Table	y, Thumbnail Grid,	Row Striping, Jump	
6	Chapter 6 : Doing Things:	Actions and Co	mmands		6 Hrs
	Pushing the Boundaries,	The Patterns:- Bu	itton Groups, Hove	r Tools, Action	
	Panel, Smart Menu Items	, Preview, Progre Linit	ess Indicator, Macro – III	DS.	
7	Chapter 7: <u>Showing</u> Con Graphics	nplex Data: Tree	s, Charts, and Othe	er Information	4 Hrs
	The Basics of Information Datatips, Data Spotlight, I Sortable Table, Radial Tab	Graphics, The P Dynamic Queries ble, Multi-Y Grap	atterns:- Overview 5, Data Brushing, Lo h, Small Multiples,	Plus Detail, cal Zooming, Treemap.	
8	Chapter 8: Getting Input	from Users: Forı	ms and Controls		4 Hrs
	The Basics of Form Design Structured Format, Fill-in Strength Meter, Autocom Messages.	n, Control Choice -the-Blanks, Inpu pletion, Dropdo	e, The Patterns:- Fo It Hints, Input Pron wn Chooser, Same	rgiving Format, npt, Password Page Error	
Fext Bo	ok:				
1.	Jenifer Tidwell , Designing	Interfaces, 2nd	2, Edition, O'Reilly	010	
Referen	ces:				
1.	Jodie Moule., Killer UX [Design, SitePoint,	.2012		
		Evaluatio	n Scheme		
In Ser	nester Assessment (ISA)			
	4	Assessment	Marks		
		ISA- 1	20		
		ISA- 2	20		
	4	Assignment	10		
		Total	50		

End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Nos.	Instructions
I	3 Questions to be set of 20 Marks Each	1, 2, 3	Any 2 questions are to be answered

Department of Master of Computer Applications

Year: 2015-20 batches

Content- Unique courses by 2015 to 2020 b	oatches (Removed Duplicate by Couse Coc	le)

.

II	3 Questions to be set of 20 Marks Each	4.5.6	Any 2 questions are to be answered
	2 Questions to be set of 20 Marks Each	7,8	Any 1 question is to be answered

	User Interface Design Practices	
SI.No	Activity	Hours
1	Find two examples of user interfaces (might be desktop software, web applications,	2
	smartphone apps, consumer devices, car dashboards, building entrances, traffic	
	intersections, shower controls, etc), one that you consider a good design and one that	
	you consider a bad design. For each interface, you should:	
	Describe its purpose intended users.	
	 Analyze its good and bad points of usability with reference to all the dimensions of usability (learnability visibility efficiency errors) 	
	Illustrate your analysis with appropriate screenshots or photographs.	
2	Design a user interface for a specific task that communicates its conceptual model to	2
	the user more effectively, so that users are less likely to make this mistake. Sketch	
	your ideas (alternate designs) on a whiteboard. Critique it, and update the designs.	0
3	Guided by the categories below, make a list of what needs to be made visible, and	Z
	then brainstorm (and sketch) how the interface might make it visible.	
	 Actions: what can the user do? 	
	• State: what is the current state of the system?	
	• Feedback: what was the effect of the user's actions	
4	Explore the undo models used in single-user text editing. Choose a few different	2
	kinds of textboxes. Experiment with a web browser's undo model for text editing by	
	typing, deleting, changing properties, and using Undo. Try to figure out:	
	 How many undo streams are there—one, or many? 	
	How is the history divided into undoable units?	
	 How much previous state is recovered when you undo? (Selections? cursor positions?) 	
	• What visible feedback does Undo give? (e.g., if the Undo affects a location scrolled out of the box?)	
5	User-centered design process, by conducting a lightweight UCD process on a few	2
6	User Analysis, Task Analysis, Domain Analysis by observing a real environment of	2
	people working.	
7	Decigning Life by electroning	2
'	Designing ofs by sketching.	2
8	Exploring some of the main structuring patterns of GUI software: the view tree,	2
	listeners, and model-view-controller using HTML, Javascript, and jQuery, along with	
	a handy online HTML editor.	
9	Explore about low-fidelity prototyping by creating a simple, hand-drawn prototype	2
	in less than 5 minutes, and simulating it with another user.	

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 78 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches
10 Information visualization by experimenting with modifications to an existing	2

10	visualization using a browser.	2
11	Exploring some of the principles and pitfalls of color design and typography.	2
12	Heuristic evaluation of an e-commerce web site. Record the usability problems found. Justify every observation by naming one or more usability heuristics (design principles) that it violates. Assign a severity rating to each problem (cosmetic, minor, major, or catastrophic). Include at least one positive usability comment, again justifying it by naming one or more heuristics.	2

17ECAE803

.

•

Digital Image Processing

ode: 18ECAE803	Course Titles Disitel Im	_ .	
	Course ritle: Digital In	nage Processing	
-1	Credits: 3	Contact Hrs: 4	
-Theory: 50 +Practice: 100	ESA Marks: 50	Total Marks: 200	
Hrs: 42 + 24		Exam Duration: 3 H	ours
	Content		Hrs
	Unit I		
Chapter No. 1- Digital Image Fun Introduction: Origins of digital im Components of image processing Sampling and Quantization	damentals age processing, Electromagnet system, Image sensing and ac	tic spectrum, Applications, quisition, Digitization,	4 Hrs
Chapter No. 2- Intensity Transfor Image Enhancement: Basic gray I using arithmetic/ logic operations filters.	rmations and Spatial Filtering level transformations, histogra s, basics of spatial filtering, sm	m processing, enhancement oothing and sharpening spatial	6 Hrs
Chapter No. 3- Filtering in the fre	equency domain		6 Hrs
Frequency domain: introduction t smoothing and sharpening freque of DFT. FFT	to the Fourier transform and the fourier transform and the ency domain filters, Discrete Fo	he Frequency domain, ourier transforms, Properties	
	Unit II		
Chapter No. 4- Image Restoration A model of the image degradation filters, order static filters, adaptiv	n and Reconstruction n/restoration process, noise m re filters	odels, Spatial Filtering- mean	10Hrs
Chapter No. 5- Color Image Proce	essing		6 Hrs
Color models, pseudo color image	e processing, smoothing and s	harpening.	
	 -1 -Theory: 50 +Practice: 100 Hrs: 42 + 24 Chapter No. 1- Digital Image Fun Introduction: Origins of digital im Components of image processing Sampling and Quantization Chapter No. 2- Intensity Transfor Image Enhancement: Basic gray using arithmetic/ logic operations filters. Chapter No. 3- Filtering in the free Frequency domain: introduction is smoothing and sharpening freque of DFT, FFT Chapter No. 4- Image Restoration A model of the image degradation filters, order static filters, adaptive Chapter No. 5- Color Image Proce Color models, pseudo color image 	-1 Credits: 3 -Theory: 50 +Practice: 100 ESA Marks: 50 Hrs: 42 + 24 Content Unit I Chapter No. 1- Digital Image Fundamentals Introduction: Origins of digital image processing, Electromagnet Components of image processing system, Image sensing and ac Sampling and Quantization Chapter No. 2- Intensity Transformations and Spatial Filtering Image Enhancement: Basic gray level transformations, histogra using arithmetic/ logic operations, basics of spatial filtering, sm filters. Chapter No. 3- Filtering in the frequency domain Frequency domain: introduction to the Fourier transform and ti smoothing and sharpening frequency domain filters, Discrete Fo of DFT, FFT Unit II Chapter No. 4- Image Restoration and Reconstruction A model of the image degradation/restoration process, noise m filters, order static filters, adaptive filters Chapter No. 5- Color Image Processing Color models, pseudo color image processing, smoothing and sla	-1 Credits: 3 Contact Hrs: 4 -Theory: 50 +Practice: 100 ESA Marks: 50 Total Marks: 200 Hrs: 42 + 24 Exam Duration: 3 He Content Unit I Chapter No. 1- Digital Image Fundamentals Introduction: Origins of digital image processing, Electromagnetic spectrum, Applications, Components of image processing system, Image sensing and acquisition, Digitization, Sampling and Quantization Chapter No. 2- Intensity Transformations and Spatial Filtering Image Enhancement: Basic gray level transformations, histogram processing, enhancement using arithmetic/ logic operations, basics of spatial filtering, smoothing and sharpening spatial filters. Chapter No. 3- Filtering in the frequency domain Frequency domain: introduction to the Fourier transform and the Frequency domain, smoothing and sharpening frequency domain filters, Discrete Fourier transforms, Properties of DFT, FFT Unit II Chapter No. 4- Image Restoration and Reconstruction A model of the image degradation/restoration process, noise models, Spatial Filtering- mean filters, order static filters, adaptive filters Chapter No. 5- Color Image Processing Color models, pseudo color image processing, smoothing and sharpening.

	ECH. KLE Technological Creating Value Leveraging Knowledge	
	Department of Master of Computer Applications	Page of Page 79 of 97
Со	ntent- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches
6	Chapter No. 6- Morphological Image Processing Introduction, structuring elements, dilation and erosion, opening and closing, Hit transformation, basic morphological algorithms	5 Hrs -or-Miss
7	Chapter No. 7- Image Segmentation	5 Hrs

based approach, segmentation by morphological watersheds Text Book:

3. Rafael.C.Gonzalez, Richard.E.Woods, Digital Image Processing, Pearson, 3rd Edition, 2008.

Detection of discontinuities, edge linking and boundary detection, Thresholding, Region

4. <u>http://opencv-python-</u> <u>tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_table_of_contents_imgproc/py_table_of_con</u> <u>tents_imgproc.html</u>)

DIP Practices using Python

COURSE DESCRIPTION:

Computer vision is the automated extraction of information from images. Information can mean anything from 3D models, camera position, object detection and recognition to grouping and searching image content. This course provide hands-on programming practices and introduces basic tools for working with images using python OpenCV library.

OBJECTIVES

- To provide hands-on programming with images using Python.
- o To demonstrate computer vision techniques behind a wide variety of real-world applications.
- To implement many of the fundamental algorithms using OpenCV library.

LAB REQUIREMENTS:

- o Computer with latest configuration having Windows and Linux OS Versions.
- Python with OpenCV Library installed.

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 80 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

Expt./	Lab	Implementation	Number
Job	assignments/experiment		of
No.			Hours
1.	Changing Colorspaces	Learn to change images between different color spaces. Plus learn to track a colored object in a video.	
2.	Geometric Transformations of Images :	Learn to apply different geometric transformations to images like rotation, translation etc.	T
3.	Image Thresholding :	Learn to convert images to binary images using global thresholding, Adaptive thresholding, Otsu's binarization etc	1
4.	Smoothing Images:	Learn to blur the images, filter the images with custom kernels etc	
5.	Morphological Transformations	Learn about morphological transformations like Erosion, Dilation, Opening, Closing etc	1
6.	Image Gradients :	Learn to find image gradients, edges etc	
7.	Canny Edge Detection:	Learn to find edges with Canny Edge Detection	1
8.	Image Pyramids:	Learn about image pyramids and how to use them for image blending	
9.	Contours in OpenCV:	All about Contours in OpenCV	1
10.	Histograms in OpenCV:	All about histograms in OpenCV	
11.	Image Transforms in OpenCV:	Meet different Image Transforms in OpenCV like Fourier Transform, Cosine Transform etc.	1
12.	Template Matching :	Learn to search for an object in an image using Template Matching	1
13.	Hough Line Transform :	Learn to detect lines in an image	1
14.	Hough Circle Transform:	Learn to detect circles in an image	
15.	Image Segmentation with Watershed Algorithm:	Learn to segment images with watershed segmentation.	1
16.	Interactive Foreground Extraction using GrabCut Algorithm:	Learn to extract foreground with GrabCut algorithm	1

References:

4. <u>https://www.tutorialspoint.com/mongodb/mongodb_tutorial.pdf</u>
5. <u>https://blog.codecentric.de/files/2012/12/MongoDB-CheatSheet-v1_0.pdf</u>
6. <u>http://www.guru99.com/mongodb-tutorials.html</u>

KLE TECH. KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 81 of 97
Content Unique equipas by 2015 to 2020 batches (Removed Duplicate by Course Code)	Veen 2015 20 hetehee

Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)

Year: 2015-20 batches

		Eva	luatio	on Schen	ne	
3. A	ssessment			r		
		Assessn	nent	Theory	Lab.	
		ISA-	1	25	100	
		ISA-	2	25	100	
		ESA	\	50	00	
		Tota	ıl	100	100	
4. E	nd Semester Assessment (I	ESA) Patter	rn:	<u>.</u>		
4. E I UNIT	nd Semester Assessment (I 8 Questions to be set of 20 M	ESA) Pattei arks Each	r n: Char No	oter os.	<u>.</u>	Instructions
4. E i UNIT	nd Semester Assessment (1 8 Questions to be set of 20 Ma 3 Questions to be set of 20 Ma	ESA) Patter arks Each arks Each	r n: Char No 1,	oter os. 2 Ai	ny 2 que	Instructions estions are to be answered
4. E i UNIT I	nd Semester Assessment (I 8 Questions to be set of 20 M 3 Questions to be set of 20 M 3 Questions to be set of 20 M	ESA) Patter arks Each arks Each arks Each	rn: Char No 1, 3,	oter os. 2 Ai 4 Ai	ny 2 que ny 2 que	Instructions estions are to be answered estions are to be answered

.

18ECAE	808	DevOps				
Course Code: 18ECAE808		08 Course Title: DevOps	Course Title: DevOps			
L-T-P: 2-0-1		Credits: 3	Contact Hrs: 4			
ISA M	arks: 50	ESA Marks: 50	Total Marks: 100			
Teach	ing Hrs: 42+24		Exam Duration: 3Hrs			
No		Content	Hrs			
		Unit I				
1	Chapter 1: Intro	oduction to DevOps and Continuous Delive	ery 4 Hrs			
	Introducing Dev	Ops, How fast is fast?, The Agile wheel of w	heels, Beware the cargo			
	cult Agile fallacy,	, DevOps and ITIL.				
2	Chapter 2 : A V	iew from Orbit :	4 Hrs			
	The DevOps pro	cess and Continuous Delivery – an overvie	w :			
	The developers,	The revision control system, The build serve	er, The artifact repository,			
	Package manage	ers, Test environments, Staging/production,	Release management,			
	Scrum, Kanban, a	and the delivery pipeline, Wrapping up – a	complete example,			
Identifying bottlenecks						
3	Chapter 3 : How	v DevOps Affects Architecture	6 Hrs			
	Introducing software architecture, The monolithic scenario, Architecture rules of					
	thumb, The sepa	aration of concerns, The principle of cohesic	on, Coupling, Back to the			
monolithic scen		ario, A practical example, Three-tier system	s, The presentation tier,			
	The logic tier, Th	e data tier, Handling database migrations, I	Rolling upgrades, Hello			
world in Liquibas		se. The changelog file. The pom.xml file. Ma	inual installation.			

	Department of Master of Computer Applications	Page of Page 82 of 9
	Year: 2015-20 batches	
	Microservices, Interlude – Conway's Law, How to keep service interfaces forward	
	compatible, Microservices and the data tier, DevOps, architecture, and resilience	
4	Chapter 4 : Everything is Code	6 Hrs
	The need for source code control, The history of source code management, Roles and	
	code, Which source code management system? A word about source code	
	management system migrations, Choosing a branching strategy, Branching problem	
	areas, Artifact version naming, Choosing a client, Setting up a basic Git server, Shared	
	authentication, Hosted Git servers, Large binary files, Trying out different Git server	
	implementations, Docker intermission, Gerrit : a) Installing the git-review package,	
	b) The value of history revisionism, The pull request model, GitLab	
-	Unit II	6.11.5
5	Chapter 5 : Building the Code	6 Hrs
	Winy up we build code? The many faces of build systems, The Jenkins' build server,	
	Integration Continuous Delivery Jenkins pluging The best server, Build claves	
	Software on the bost Triggers, Joh chaining and build ninelines. A look at the lenkins	
	filesystem layout Build servers and infrastructure as code Building by dependency	
	order Build phases. Alternative build servers. Collating guality measures. About build	
	status visualization. Taking build errors seriously. Robustness	
6	Chapter 6 : Testing the Code	6 Hrs
•	Manual testing. Pros and cons with test automation. Unit testing. JUnit in general and	01110
	JUnit in particular, A JUnit example, Mocking, Test Coverage, Automated integration	
	testing, Docker in automated testing, Arguillian, Performance testing, Automated	
	acceptance testing, Automated GUI testing, Integrating Selenium tests in Jenkins,	
	JavaScript testing, Testing backend integration points, Test-driven development,	
	REPL-driven development, A complete test automation scenario : Manually testing	
	our web application, Running the automated test, 3Finding a bug, Test walkthrough,	
	Handling tricky dependencies with Docker	
7	Chapter 7 : Deploying the Code	4 Hrs
	Why are there so many deployment systems? Configuring the base OS, Describing	
	clusters, Delivering packages to a system, Virtualization stacks: Executing code on the	
	client, A note about the exercises, The Puppet master and Puppet agents, Ansible,	
	PalletOps, Deploying with Chef, Deploying with SaltStack, Salt versus Ansible versus	
	Puppet versus PalletOps execution models, Vagrant, Deploying with Docker,	
_	Comparison tables, Cloud solutions, AWS, Azure.	
8	Chapter 8 : Monitoring the Code	4 Hrs
	Nagios, Munin, Ganglia, Graphite, Log handling, Client-side logging libraries, The ELK	
	SLACK.	
٥	Chapter 9 : Issue Tracking	
3	Chapter 3: Issue Hacking What are issue trackers used for? Some examples of workflows and issues. What do	
	what are issue trackers used for some examples of worknows and issues, what do we need from an issue tracker? Problems with issue tracker proliferation. All the	
	we need norman issue trackers Problems with issue tracker promeration, All the	

10Chapter 10 : The Internet of Things and DevOps5 HrsIntroducing the IoT and DevOps, The future of the IoT according to the market,
Machine-to-machine communication, IoT deployment affects, software architecture,
IoT deployment security, Okay, but what about DevOps and the IoT again?, A hands-
on lab with an IoT device for DevOps5 Hrs

Text Book:

1. Practical DevOps by Joakim Verona Publisher: Packt Publishing, Release Date: February 2016, ISBN: 9781785882876

References:

- 1. **Effective DevOps,** Building a Culture of Collaboration, Affinity, and Tooling at Scale , By Jennifer Davis, Ryn Daniels, **Publisher:** O'Reilly Media, **Release Date:** June 2016 , **Pages:** 410.
- 2. **The DevOps Handbook:** How to Create World-Class Speed, Reliability, and Security in Technology Organizations, Gene Kim, Patrick Debois, John Willis, Jez HumbleIT Revolution Press, 2016 Business & Economics 480 pages.

Evaluation Scheme

In Semester Assessment (ISA)

Assessment	Marks
ISA- 1	20
ISA- 2	20
Assignment	10
Total	50

End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Nos.	Instructions
I	3 Questions to be set of 20 Marks Each	1, 2, 3, 4,	Any 2 questions are to be answered
II	3 Questions to be set of 20 Marks Each	5, 6, 7, 8,	Any 2 questions are to be answered
	2 Questions to be set of 20 Marks Each	9, 10	Any 1 question is to be answered

DevOps Practice Exercise:

The objectives of these practice exercise is to learn DevOps best practices and to define entire infrastructure as code and learn about infrastructure as code, continuous integration, continuous delivery, Terraform, AWS, Packer, Docker, and much more.

- 1) **DevOps basics:** Learn the origins of DevOps and the basic principles and techniques.
- 2) AWS crash course: Hands-on session where you learn to use the most important AWS services, including IAM, EC2, ASG, EBS, ELB, S3, and RDS.
- **3)** Infrastructure as code: Overview of different techniques to manage infrastructure, including ad-hoc scripts (e.g., Bash, Python), configuration management tools (e.g., Chef, Puppet), machine images (e.g., VMs, Docker), and provisioning tools (e.g., Terraform, CloudFormation).

Department of Master of Computer Applications Page of Page 84 of 9	KLE TECH. KLE TECH.	logical rsity	
	Department of Master of Computer /	Applications	Page of Page 84 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code) Year: 2015-20 batches	Content- Unique courses by 2015 to 2020 batches (Remove	ed Duplicate by Couse Code)	Year: 2015-20 batches

- **4) Terraform introduction**: Go through a series of coding exercises that cover the basic Terraform syntax, state management, loops, conditionals, lifecycle management, and common gotchas.
- **5)** Advanced Terraform: Go through a series of coding exercises that cover Terraform modules, file layout, keeping code DRY, team workflows, and automated testing.
- 6) Immutable infrastructure: Overview of immutable infrastructure practices, versioning artifacts, promoting artifacts through environments, and deployment.
- 7) Packer introduction: Build your own AMIs and other virtual machine images using Packer.
- 8) Docker introduction: Create your own Docker images and deploy them using Docker orchestration tools.
- **9) Continuous delivery**: Learn how to integrate Terraform, Packer, and Docker into a continuous delivery pipeline.
- **10) DevOps best practices**: Learn about continuous integration, microservices, feature toggles, canary deployments, monitoring, alerting, and log aggregation.
- **11) Production readiness review:** A Gruntwork engineer goes through a checklist of questions with your team to see what work you need to do to be ready for prod.
- **12)** Architecture deployment: Deploy your customized Reference Architecture in AWS.
- **13)** Architecture walkthrough: Overview of how the architecture works and how to use it.
- **14) Migrating to the new architecture:** Learn the process of migrating your apps and data to the new architecture.

17ECA	E902	Full Stack Development - MEAN		
Course Code:17ECAE902 Course Title: Full Stack Develop			ack Development - MEAN	
L-T-P:	: 3-0-1	Credits: 4	Contact Hrs: 5	
ISA M	1arks: 50	ESA Marks: 50	Total Marks: 100	
Teach	ning Hrs: 42+24		Exam Duration: 3Hrs	
No		Content	Hrs	
		Unit I		
1	Chapter 1: Intro	oduction to MEAN	5 Hrs	
2	 Three-tier web application development, The evolution of JavaScript, Introducing MEAN, Installing MongoDB, Installing Node.js, Introducing NPM. Chapter 2 : Getting Started with Node.js 5 Hrs 			
	Introduction to Node.js, JavaScript closures, Node modules, Developing Node.js web applications.			
3	Chapter 3 : Build	ding an Express Web Application	6 Hrs	
	Introduction to E The application, the MVC pattern files, Configuring	express, Installing Express, Creating your request, and response objects, External , Configuring an Express application, Rer g sessions.	first Express application, middleware, Implementing Idering views, Serving static	

Page of Page 85 of 97
Year: 2015-20 batches
-

	Unit II	
4	Chapter 4 : Introduction to MongoDB	5 Hrs
	Introduction to NoSQL, Introducing MongoDB, Key features of MongoDB, MongoDB	
	shell, MongoDB databases , MongoDB collections, MongoDB CRUD operations	
5	Chapter 5 : Introduction to Mongoose	6 Hrs
	Introducing Mongoose, Understanding Mongoose schemas, Extending your	
	Mongoose schema, Defining custom model methods, Model validation, Using	
	Mongoose middleware, Using Mongoose DBRef.	
6	Chapter 6 : Managing User Authentication Using Passport	6 Hrs
	Introducing Passport, Understanding Passport strategies, Understanding Passport	
	OAuth strategies; Introduction to AngularJS:- Introducing AngularJS, Key concepts of	
	AngularJS, Installing AngularJS, Structuring an AngularJS application, Bootstrapping	
	your AngularJS application, AngularJS MVC entities	
	Unit – III	
7	Chapter 7: Creating a MEAN CRUD Module	4 Hrs
	Introducing CRUD modules, Setting up the Express components, Introducing	
	the ngResource module, Implementing the AngularJS MVC module,	
	Finalizing your module implementation.	
8	Chapter 8: Testing MEAN Applications	5 Hrs
	Introducing JavaScript testing, Testing your Express application, Testing your	
	AngularJS application; Adding Real-time Functionality Using Socket.io:- Introducing	
	WebSockets, Introducing Socket.io, Installing Socket.io, Building a Socket.io chat.	
Text B	ook:	
1.	Amos Q. Haviy, Mean Web Development, Packt Publishing 2014.	
Refere	ences:	
1.	COLIN J. IHRIG, Full Stack Javascript Development with MEAN, Sitepoint.	
	Evaluation Scheme	

In Semester Assessment (ISA)

Assessment	Marks
ISA- 1	20
ISA- 2	20
Assignment	10
Total	50

KLE T	Leverag	ing Knowledge		
	Department of Maste	er of Computer	Applications	Page of Page 86 of 9
Co	ontent- Unique courses by 2015 to 20	20 batches (Remov	ed Duplicate by Couse Code)	Year: 2015-20 batche
End S	Semester Assessment (ESA)			
UNIT	8 Questions to be set of 20 Marks Each	Chapter Nos.	Instructions	
I	3 Questions to be set of 20 Marks Each	1, 2, 3	Any 2 questions are to be answered	
II	3 Questions to be set of 20 Marks Each	4.5.6	Any 2 questions are to be answered	
111	2 Questions to be set of 20 Marks Each	7,8	Any 1 question is to be answered	
1	Build a real-time polls applicatio	n with Node.js, Ex	press, AngularJS, and MongoDB	
2	Setting Up a MEAN Stack Single	Page Application		
3	A Sample App with Node is Express and MongoDB			
4	PEST Service with Web Interface using the MEAN Stack			
5				
5	Creating an RSS Feed Reader With the MEAN Stack			
6	Create a TV Show Tracker using AngularJS, Node.js and MongoDB			
7	Deploying a MEAN App to Amaz	on EC2		

ISA Marks:: 100 Teaching Hrs: 24

Total Marks: **100** Exam Duration: **3 Hours**

Expt./ Job No.	Lab assignments/experiment	No. of Lab. Slots per batch (estimate)	
Demonstration			
1	Program to demonstrate ASP.Net Web Forms	01	
2	Program to demonstrate validation in ASP.Net	01	
3	Program to demonstrate working with Data Base applications.	01	

ESA Marks: --

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 87 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

	Program to demonstrate session tra	acking in ASP.Net	01
	Exe	ercises	
5	 a) Write a program to display a for the list box must be ASP-> When the Submit Form butt message must be displayed. b) Write a program containin 	a feedback form. The different options KML, Dot NET, JavaPro and Unix, C, C++. on is clicked after entering the data, a g the following controls:	01
	a. A List Box b. A Button		
	d. A Label		
	The listbox is used to list user clicks on an item in t the image control. When the selected item is displa	items available in a store. When the he listbox, its image is displayed in the user clicks the button, the cost of yed in the control.	
6	 a) Write a program to get a u water and test it to the apprendict one TextBox control, and one RegularExpression submit() function checks if t "The page is valid!" in the La "The page is not valid!" in the text "The zip code must be 5 RegularExpressionValidator of the text of text of the text of the text of text of the text of text of the text of tex of t	iser input such as the boiling point of opriate value using Compare Validator. , one Button control, one Label control, Validator control in an .aspx file. The he page is valid. If it is valid, it returns abel control. If it is not valid, it returns he Label control. If validation fails, the numeric digits!" will be displayed in the	01
7	I. Create table CANDIDATE	with the following	01
7	I. Create table CANDIDATE Column name	Datatype	01
7	I. Create table CANDIDATE Column name Ccode	Datatype Int	01
7	I. Create table CANDIDATE Column name Ccode Name	Datatype Int Char(20)	01
7	I. Create table CANDIDATE Column name Ccode Name DOJ	Datatype Int Char(20) Date	01
7	I. Create table CANDIDATE Column name Ccode Name DOJ i) Insert following records int	Datatype Int Char(20) Date o the table:	01
7	I. Create table CANDIDATE Column name Ccode Name DOJ i) Insert following records int Code 1001	Datatype Int Char(20) Date o the table: 1002	01
7	I. Create table CANDIDATE Column name Ccode Name DOJ i) Insert following records int Code 1001 Name S.Raman	Datatype Int Char(20) Date o the table: 1002 1003 M.Sushil Mohanyes	01

KLE TECH. KLE TECH.	
Department of Master of Computer Applications	Page of Page 88 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

	ii) Order the records on the basis of seniority of employees. iii) Drop the table.					
8	Write a Pro input. Store opened aga the cookie ³	gram in ASP that has a form taking the this name in a permanent cookie & wl in, then value of the name field should s content.	e user's name as nenever the page is be attached with	01		
9	Create a Session dictionary using object tag. In session-on start add keys for Time, UserAgent, RemoteIP& add appropriate values. Create a simple page to display the values.			01		
10	Write a Prog the client's	gram to delete all cookies of your web site computer	that has created on	01		
	Structured enquiry					
11	 Write an application that contains a list of following technologies: ASP.NET, ADO.NET, C#. It also contains a textbox in which the user has to enter a name and a textarea in which the user has to enter his comments. When the Submit is clicked, the output should display the name entered in the textbox and the user-selection from the listbox. All the above should be displayed with the tracing for the page being enabled. 			02		
Course Co	z ode: 17ECAP90	Course Title: Mini Project-4	- 4			
L-T-P: 0-0	-2	Credits: 2	Contact Hrs: 4			
ISA Marks	s: 100	ESA Marks: 100	Total Marks: 200			
Teaching	Hrs: 48		Exam Duration: 3 Hou	irs		
Theme: "	Development	of Applications using .NET/ Java Technolo	gy"			
.NET Tech	.NET Technology					

The Microsoft .NET framework has major advantages over previous programming languages and environments. Applications written in .NET may be in any of several different programming languages (language interoperability). .NET consists of a re-useable library of classes (small components that help developers create applications). It also consists of a development environment to help developers rapidly and graphically build applications. All operating system functions can be encapsulated within

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 89 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

.NET. The framework manages the execution of applications and Web services, and provides many functionalities including security enforcement and memory management. Because of these advantages, corporations and industry are beginning to embrace .NET. They will need graduates who know how to use it. Hence, a project done using this technology would give an insight of the powerful features of .NET and help the students to find a job in this field. Below is a list of some of the types of applications that can be created using the .NET platform.

- Customer relationship management
- Accounting applications
- Product/inventory applications
- Warehousing applications using hand-held devices
- Web sites
- Value chain/supply management
- Integration with partners through the Internet
- XML Web services
- PDA (hand-held) applications

Objectives of using .NET Technology-

Student doing a project in .NET technology should be able to:

- 7. Develop an application that is pure OOP, platform independent, language independent and interoperable.
- 8. Use the features of .NET to make the application scalable, maintainable, easily deployable, reliable and secure.
- 9. Work with databases using ADO.NET.
- 10. Develop background processes windows services.
- 11. Create animations using .NET's WPF.
- 12. Create and use Web Services through SOA.

Java Technology

Java is one of the fundamental programming languages that can be used in many applications as well as product developments. The simple reason for this is because Java can be put to use in various platforms due to its multi-platform nature. Java is one of the favorite choices for developers for many reasons like security, object oriented(reusability), cross platform computing, multithreaded capability, Rich API, Powerful development tools ,availability of various frameworks, Great collection of open source libraries, wonderful community support, Excellent documentation support. Support for various databases and many more.

Students can use the following tools in web and mobile applications as well as product developments:

Istruts, Spring, Hibernate and JPA
JAXB and Apache Axis 2/Java
JSP, Servlets, JDBC, EJB, JMS, JTA and JUnit
Apache Tomcat, JBoss and GlassFish
JavaScript, JSF, GWT and jQuery
Eclipse, Netbeans and JBoss tools

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 90 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

☑TestNG

☑jBPM and Drools

🛛 JCR

Objectives:

Help students to utilize and strengthen the knowledge of Java which they have learnt in

previous semester.

Methodology:

Students are asked to make a team of 3-4 members and can choose the different categories of projects like desktop applications, web applications, mobile application and distributed application and work once it is approved by the coordinator.

Evaluation:

Students Assessment through ISA (100) + ESA (100%)

In Semester	Assessment		Marks
Assessment			
	Problem Definition, Literature Review		10
	Synopsis and SRS Deliverables		10
	Design (Module wise algorithmic design)		20
	Coding		10
	Integration and testing		10
	Report		20
	Presentation skills and Viva-voce		20
		Total	100
End Semester	Presentation		50
Assessment	Viva-voce		50
		Total	100

17ECAE901

Block Chain Technologies

Cours	e Code:17ECAE901	Course Title: Block Chain Technologies	
L-T-P:	3-0-1	Credits: 4	Contact Hrs: 5
ISA M	arks: 50	ESA Marks: 50	Total Marks: 1 00
Teach	ing Hrs: 42+24		Exam Duration: 3Hrs
No		Content	Hrs
		Unit I	
1	Introduction	in isn't Blockchain definitions. How ar	5 hrs
	blockchains different from databas motivations behind blockchain, Cha	es? History of blockchain, Blockchain aracteristics of blockchain, Background	2.0, The I of DLT, The

KL	Creating Value	
	Department of Master of Computer Applications	Page of Page 91 of 97
	Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches
	different types of blockchain, Overview of blocks, Influence of Moore's law on	
	blockchain technology.	
2	A Bit of Cryptography.	6 hrs
	Cryptography in blockchain, Classical cryptography, Cryptographic primitives,	
	Symmetric key cryptography, Asymmetric key cryptography, Elliptic-curve	
•	cryptography, Digital signatures, Cryptographic hashing.	C have
3	Cryptography in Biockchain	6 nrs
	Hasning in blockchain, Linking blocks in a blockchain, Linking blocks using an SHA256	
	nashing algorithm, Block structure, Blockchain functionality, Creating a blockchain,	
	Byzantine failure problem in blockchain, Digital signatures in blockchain, Creating an	
	accest Transmitting the transaction. Claiming the accest Plackchain wallets	
	Unit - 2 Naturalias in Blackshain	Chro
4	Networking in Biockchain.	6 nrs
	Peer-to-peer (P2P) networking, Network discovery, Block synchronization, Building a	
	simple blockchain in a P2P network, validating a new block, selecting the longest	
	chain, connict resolution, block exchange between peers, initial block	

Bitcoin basics, Getting started with Bitcoin Core, Keys and addresses, Transactions,

Cryptocurrency.

5

Mining and consensus, Blockchain, Blockchain networks, Bitcoin hard forks and altcoins, A simple cryptocurrency application: Transactions, Wallet, Transaction management.

6 hrs

synchronization, Broadcasting scenarios, Application interfaces.

Diving into Blockchain - Proof of Existence.
 MultiChain blockchain platform, Setting up a blockchain environment, Getting started with MultiChain, Proof of Existence architecture, Building the Proof of Existence application, Executing and deploying the application.

Unit - 3

Diving into Blockchain - Proof of Ownership.
 Digital assets and identity, Proof of ownership, Smart contracts, Choosing the smart contract platform, NEO blockchain: Building blocks of a NEO blockchain, NEO technology, NEO nodes, NEO network, NEO transactions, Ethereum blockchain: Ethereum nodes, Getting started, Creating a decentralized application.
 Blockchain Security.
 Transaction security model, Decentralized security model, Attacks on the blockchain, Threats of quantum computing.

Text Book:

1. Foundations of Blockchain, O'REILLY publications, 2019
| KLE TECH. KLE TECH. Creating Value
Leveraging Knowledge | |
|---|-----------------------|
| Department of Master of Computer Applications | Page of Page 92 of 97 |
| Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code) | Year: 2015-20 batches |

References:

Evaluation Scheme

In Semester Assessment (ISA)

Assessment	Marks
ISA- 1	20
ISA- 2	20
Assignment	10
Total	50

End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Nos.	Instructions
I	3 Questions to be set of 20 Marks Each	1, 2, 3,	Any 2 questions are to be answered
II	3 Questions to be set of 20 Marks Each	4, 5, 6	Any 2 questions are to be answered
III	2 Questions to be set of 20 Marks Each	7, 8	Any 1 question is to be answered

Practices

- 1. Implementation of basic cryptographic algorithms such as AES, ECC, RSA, ECDSA, SHA256.
- 2. Implementation of cryptographic primitives such as hash functions and digital signatures.
- 3. Implementation of P2P blockchain application.
- 4. Implementation of Interface for the cryptocurrency application such as wallet application and explorer application.
- 5. Implement decentralized application development using MultiChain blockchain framework by considering real time use case.
- 6. Develop decentralized application using smart contract concept in NEO and Ethereum blockchain platforms by considering real time use case.
- 7. Simulation of double spend attack on the Bitcoin unconfirmed transaction.

17ECAE903

RESTful Web Services

Course Code: 17ECAE903

Course Title: RESTful Web Services

L-T-P: **3-0-1**

Credits: 4

Contact Hrs: 5

ISA Marks: 50

ESA Marks: 50

Total Marks: 100

	Page of Page 93 of 9	
(Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches
Feach	ning Hrs: 42+24 Exam Durati	on: 3Hrs
No	Content	Hrs
	Unit I	
1	Chapter 1: The Programmable Web and Its Inhabitants	4 Hrs
-	Kinds of Things on the Programmable Web, HTTP: Documents in Envelopes, Method Information, Scoping Information, The Competing Architectures, RESTful, Resource- Oriented Architectures, RPC-Style Architectures, REST-RPC Hybrid Architectures, The Human Web Is on the Programmable Web, Technologies on the Programmable Web, HTTP. URI, XML-RPC, SOAP, WS-*, WSDL, WADL, Leftover Terminology.	
2	Chapter 2 : Writing Web Service Clients	4 Hrs
	Web Services Are Web Sites, Wrappers, WADL, and ActiveResource, del.icio.us: The Sample Application, What the Sample Clients Do, Making the Request: HTTP Libraries, Optional Features, Ruby: rest-open-uri and net/http, Python: httplib2, Java: HttpClient, C#: System.Web.HTTPWebRequest, PHP: libcurl, JavaScript: XMLHttpRequest, The Command Line: curl, Other Languages.Processing the Response: XML Parsers: Ruby: REXML, I Guess, Python: ElementTree, Java: javax.xml, Xerces, or XMLPull, C#: System.Xml.XmlReader , PHP, JavaScript: responseXML, Other Languages, JSON Parsers: Handling Serialized Data , Clients Made Easy with WADL	
3	Chapter 3 : What Makes RESTful Services Different? Introducing the Simple Storage Service, Object-Oriented Design of S3 , A Few Words About Buckets, A Few Words About Objects, What If S3 Was a Standalone Library? Resources, HTTP Response Codes, An S3 Client, The Bucket List : The Bucket, The S3 Object, Request Signing and Access Control: Signing a URI, Setting Access Policy: Using the S3 Client Library, Clients Made Transparent with ActiveResource : Creating a Simple Service, An ActiveResource Client, A Python Client for the Simple Service, Parting Words.	4 Hrs
4	Chapter 4 : The Resource-Oriented Architecture Resource-Oriented What Now? What's a Resource? URIs: URIs Should Be Descriptive, The Relationship Between URIs and Resources : Addressability, Statelessness : Application State Versus Resource State, Representations: Deciding Between Representations, Links and Connectedness, The Uniform Interface: GET, PUT, and DELETE : HEAD and OPTIONS, POST: Creating subordinate resources, Appending to the resource state, Overloaded POST: The not-so-uniform interface, Safety and Idempotence, Safety: Idempotence ,Why safety and idempotence matter Why the Uniform Interface Matters, That's It!	4 Hrs
5	Chapter 5 : Designing Read-Only Resource-Oriented Services Resource Design, Turning Requirements Into Read-Only Resources, Figure Out the Data Set, General Lessons, Split the Data Set into Resources, General Lessons, Name the Resources, Encode Hierarchy into Path Variables, No Hierarchy? Use Commas or Semicolons, Map URIs, Scale, Algorithmic Resource? Use Query Variables, URI Recap, Design Your Representations: The Representation Talks About the State of the Resource, The Representation Links to Other States, Representing the List of Planets,	4 Hrs

	Department of Master of Computer Applications	Page of Page 94 of 9
	Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches
	Representing Maps and Points on Maps, Representing the Map Tiles, Representing	
	Planets and Other Places, Representing Lists of Search Results, Link the Resources to	
	Each Other, The HTTP Response : What's Supposed to Happen? Conditional HTTP	
	GET, What Might Go Wrong? Conclusion.	
c	Unit II Chanter C. Designing Read/Write Resource Oriented Services	4 11 11
6	Chapter 6 : Designing Read/ Write Resource-Oriented Services	4 Hrs
	User Accounts as Resources : Why should user Accounts be Resources:	
	Authentication, Authonization, Privacy, and Trust, Turning Requirements into	
	Name the Resources with LIRIs Expose a Subset of the Uniform Interface. Design the	
	Representation(s) Accented from the Client, Design the Representation(s) to Be	
	Served to the Client, Link This Resource to Existing Resources. What's Supposed to	
	Happen? What Might Go Wrong?	
	Custom Places : Figure Out the Data Set, Split the Data Set into Resources. Name the	
	Resources with URIs, Expose a Subset of the Uniform Interface , Design the	
	Representation(s) Accepted from the Client, Design the Representation(s) Served to	
	the Client, Link This Resource to Existing Resources, What's Supposed to Happen?	
	What Might Go Wrong?	
	A Look Back at the Map Service	
7	Chapter 7 : A Service Implementation :	4 Hrs
	A Social Bookmarking Web Service, Figuring Out the Data Set, Resource Design: REST	
	in Rails, The User Controller, The Bookmarks Controller, The User Tags Controller, The	
	Calendar Controller, The URI Controller, The Recent Bookmarks Controller, The	
	Bundles Controller, The Lettovers, Remodeling the REST way, Implementation: The	
	Pontes.rb File. Design the Representation(s) Accepted from the Client, Design the	
	<u>Representation(s) Served to the Client, Connect Resources to Each Other, What s</u>	
	Do:Conditional GET: param[:id] for things that aren't IDs. The Application Controller	
	The Users Controller The Bookmarks Controller. The Tags Controller. The Lesser	
	Controllers The Calendar Controller : The RecentController The UrisController	
	Model Code: The User Model The Bookmark Model What Does the Client Need to	
	Know? Natural-Language Service Description, Description Through Standardization	
	Hypermedia Descriptions	
8	Chapter 8 : REST and ROA Best Practices	4 Hrs
-	Resource-Oriented Basics, The Generic ROA Procedure, Addressability :	
	Representations Should Be Addressable : State and Statelessness: Connectedness,	
	The Uniform Interface : Safety and Idempotence, New Resources: PUT Versus	
	POSTOverloading POST, This Stuff Matters : Why Addressability Matters, Why	
	Statelessness Matters, Why the Uniform Interface Matters. Why Connectedness	
	Matters A terrifying example. Resource Design : Relationships Between Resources.	
	Asynchronous Operations, Batch Operations, Transactions: When In Doubt. Make It a	
	Asynchronous Operations, Batch Operations, Transactions: When In Doubt, Make It a Resource, URI Design, Outgoing Representations, Incoming Representations. Service	
	Asynchronous Operations, Batch Operations, Transactions: When In Doubt, Make It a Resource, URI Design, Outgoing Representations, Incoming Representations, Service Versioning, Permanent URIs Versus Readable URIs. Standard Features of HTTP :	

KLE	TECH. KLECTechnological Creating Value Leveraging Knowledge	
	Department of Master of Computer Applications	Page of Page 95 of 97
	Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches
	username token : Compression, Conditional GET, Caching : Please cache Thank you	
	for not caching, Default caching rules, Look-Before-You-Leap, Requests Partial GET :	
	Faking PUT and DELETE, The Trouble with Cookies, why Should a User Trust the HTTP	
	Client?, Applications with a web interface, Applications with No web interface what	
0	<u>Problem Does this solver</u> Chapter 0 - The Building Blocks of Services	
9	Chapter 9: The building blocks of Services	4 115
	SVG_Form-Encoded Key-Value Pairs_ISON_RDF and RDFa	
	SVG, FORM-Encoded Rey-Value Fails, JSON, RDF and RDFa,	
	Ad Hoc Vocabularios, Encoding Issues, VML and HTTP: Pattle of the encodings. The	
	character encoding of a ISON document	
	Prenackaged Control Flows: General Rules, Database-Backed Control Flow, GET, PLIT	
	POST for creating a new resource POST for appending to a resource DELETE	
	The Atom Publishing Protocol: Collections, Members, Service document, Category	
	documents. Binary documents as APP members. GData: Querving collections. Data	
	extensions. POST Once Exactly.	
	Hypermedia Technologies : URI Templates, XHTML 4, XHTML 4 links, XHTML 4 forms,	
	Shortcomings of XHTML 4, XHTML 5, WADL : Describing a del.icio.us resource,	
	Describing an APP collection, Is WADL evil?	
10	Chapter 10 : The Resource-Oriented Architecture Versus Big Web Services	4 Hrs
	What Problems Are Big Web Services Trying to Solve?	
	SOAP :The Resource-Oriented Alternative, WSDL: The Resource-Oriented Alternative,	
	UDDI: The Resource-Oriented Alternative, Security: The Resource-Oriented	
	Alternative, Reliable Messaging : The Resource-Oriented Alternative, Transactions:	
	The Resource-Oriented Alternative, BPEL, ESB, and SOA, Conclusion.	
	Lipit – III	
11	Chanter 11 : Aiax Applications as RFST Clients	5 Hrs
	From AIAX to Aiax. The Aiax Architecture. A delicio us Example. The Advantages of	51115
	Aiax The Disadvantages of Aiax REST Goes Better Making the Request Handling the	
	Response ISON Don't Bogart the Benefits of REST Cross-Browser Issues and Aiax	
	Libraries : Prototype, Doio, Subverting the Browser Security Model, Request Proxying,	
	JavaScript on Demand: Dynamically writing the script tag. Library support.	
12	Chapter 12 : Frameworks for RESTful Services	5 Hrs
	Ruby on Rails : Routing, Resources, Controllers, and Views, Outgoing Representations,	
	Incoming Representations, Web Applications as Web Services, The Rails/ROA Design	
	Procedure. Restlet: Basic Concepts: Writing Restlet Clients, Writing Restlet Services:	
	Resource and URI design, Request handling and representations, Compiling, running,	
	and testing, Conclusion. Django: Create the Data Model, Define Resources and Give	
	Them URIs, Implement Resources as Django Views, The bookmark list view, The	
	bookmark detail view: Further directions, Conclusion	

KLE TECH. KLE TECH. Creating Value Leveraging Knowledge	
Department of Master of Computer Applications	Page of Page 96 of 97
Content- Unique courses by 2015 to 2020 batches (Removed Duplicate by Couse Code)	Year: 2015-20 batches

Text Book:

1 RESTful Web Services by Sam Ruby, Leonard Richardson, Publisher: O'Reilly Media, Inc. Release Date: May 2007 ISBN: 9780596529260

References:

1. Hands-On RESTful Python Web Services: Develop RESTful web services or APIs ... By Gaston C. Hillar

Evaluation Scheme

In Semester Assessment (ISA)

Assessment	Marks
ISA- 1	20
ISA- 2	20
Assignment	10
Total	50

End Semester Assessment (ESA)

UNIT	8 Questions to be set of 20 Marks Each	Chapter Nos.	Instructions
I	3 Questions to be set of 20 Marks Each	1, 2, 3, 4, 5	Any 2 questions are to be answered
II	3 Questions to be set of 20 Marks Each	6, 7, 8, 9,10	Any 2 questions are to be answered
III	2 Questions to be set of 20 Marks Each	11, 12	Any 1 question is to be answered

RESTFull Web Services

SI NO Topics

- 1. Working on XML-RPC and SOAP Protocol
- 2. Working on Web Service Client using httplib2 python library
- 3. Understanding of CURL command and its options
- 4. Implementation of XML and JSON Parsing using Python
- 5. Working on client application to store and retrive the data using S3 Bucket
- 6. Implementation of RESTfull services for data request and response
- 7. Working on Authentication and Authorization for RESTfull services
- 8. Implementation of RESTfull services for data and serialization formats, Database connectivity
- 9. Integration of AJAX and REST Clients

KLE TECH.	Creating Value Leveraging Knowledge	ological ersity	
Department	of Master of Computer	Applications	Page of Page 97 of 97
Content- Unique courses by	2015 to 2020 batches (Remo	ved Duplicate by Couse Code)	Year: 2015-20 batches
Course Code: 17ECAP904	Course Title: Roboti	cs Process Automation	
L-T-P: 0-0-2	Credits: 2	Contact Hrs: Full Time	
ISA Marks: 100	ESA Marks:	Total Marks: 100	
			1

The students shall undergo certification on Robotics Process Automation (RPA) during the IV or V				
semester vacation by ch	noosing Automation Anywhere or UiPath course or both. The evaluation for			
the course shall be done after successful completion of certification on any one or both during VI				
semest				
er followed by internal assessment and submission of report.				
18ECAE903 Web Mapping				
To be approved in April 2021 BoS				

Course Code: 15MBA	AC703	Course Title: Accounting for Managers
L-T-P : 2-1-0	Credits: 3	Contact Hrs: 04 hrs/week
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hrs: 30hrs		Exam Duration: 3 hrs

Module 1:

Introduction of management accounting, distinction between management and financial accounting, accounting concepts and convention, GAAP and accounting standards, International Financial Reporting Standards (IFRS) and X-tensible Business Reporting Language (XBRL)

06 hrs Module 2:

Final Accounts – Journal and ledger entries, Trading and profit and loss account, Introduction to Partnership account, Final accounts for companies Depreciation Methods: Straight line method and Written-down value method.

Module3:

Financial statement analysis: analysis and interpretation of financial statements, ratio analysis, liquidity, leverage, activity and profitability ratios, DuPont analysis, advantages and limitation of ratio analysis as a management tool, Fund-flow and Cash-flow statement

Module 4:

Elements of Costs Materials Costs: - Materials purchasing, receiving, storing and issuing Labor costs and labor turnover Overheads- Identifying the overheads with cost centre. Allocation, apportionment and absorption accounting treatment of under and over absorption Preparation of cost sheet – Marginal costing and Standard Costing

References:

- 1. R. Narayanaswamy, Financial Accounting: A Managerial Perspective, 3rd edn, Prentice Hall of India.
- 2. N. Ramachandran and Ram Kumar Kakani, Financial Accounting for Management, 1st edn, TMH Publications.
- 3. S. N. Maheshwari and S K Maheshwari, A Text Book of Accounting for Management, Vikas Publishing.
- 4. Ashish K Bhattacharya, Financial Accounting for Business Managers, 3rd edn, Prentice Hall of India.
- 5. Ambarish Gupta, Financial Accounting for Managers: An Analytical Perspective, 1st edn, Pearson.
- 6. Jawaharlal, Accounting for Managers, Himalaya Publishing House

10 hrs

10 hrs

Technological University

Course Code: 15MBAC704		Course Title: Business Research
L-T-P : 2-0-0	Credits: 2	Contact Hrs: 02 hrs/week
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hrs: 30hrs		Exam Duration: 3 hrs

Module 1:

Introduction to Business Research – scope, definition, need for research, stages in research process, need for Literature Review, report writing, ethical issues, plagiarism, decision making

Module 2:

Types of Research – Exploratory, Descriptive, Casual, their categories, Measurement Scales – Nominal, Ordinal, Interval, Scale, Attitude rating scales, Sampling Techniques

Module3:

Introduction to Hypothesis Testing

Methods of Data collection – data classification as primary and secondary Modes of data collection – Personal Interviews, Telephonic or Internet Interview, Observation, Focus group interviews, Expert opinions, Self administered questionnaire – Likert, Thurstone, Semantic Differential (theory only), Secondary data analysis, basic issues in Experimental design Type I & Type II Errors

Types of Methodology – Quantitative, Qualitative, Mixed Methodology, Research Gap and Research Question

08 hrs

09 hrs

07 hrs

06 hrs

References:

Module 4:

- 1. Cooper and Schlinder, Business Research Methods, TMH
- 2. William Zikmund, Business Research Methods, Cengage Publication
- 3. G. C. Ramamurthy, *Research Methodology*, Dreamtech Press
- 4. Uma Sekaran and Roger Bougie, Research Methods for Business, Wiley Publications
- 5. Uwe Flick, An Introduction to Qualitative Research, Sage Publications
- 6. Gerard Guthrie, Basic Research Methods, Sage Publications

Course Code: **15MBAC706** L-T-P: **1-1-0** Credits: **2** CIE Marks: **100** SEE Marks: -Teaching Hrs: **15 hrs** Course Title: Effectual Entrepreneurship Contact Hrs: 03 hrs/week Total Marks: 100

Module 1:

Effectuation, Principles of Effectuation- 1) Bird-in-hand: when expect entrepreneurs set out to build a new venture, they start with their means: who I am, what I know, and whom I know. Then the entrepreneurs imagine the possibilities that originate from their means. 2) Affordable loss- Focus is on down side risk: Expert entrepreneurs limit the risk by understanding what they can afford to lose at each step, instead seeking large all or nothing opportunities. 3) Lemonade- Leverage contingencies: Instead of making what if scenarios to deal with wrist case scenarios entrepreneurs interpret bad news and surprises as potential clues to create new markets. 4) Patchwork Quilt – form partnership: build the partnership with self selecting stakeholders; by obtaining pre-commitments from these key partners early in venture, this reduces the uncertainties and co-creates new market with likeminded people. 5) Pilot-in-the-plane- control vs. predict: by focusing on the activities with their control, expert entrepreneurs can predict the result or desired outcomes.

10 hrs

Module 2:

World making: Understand Transformation, Financing: Bootstrap the venture, Current trends in Entrepreneurship, Entrepreneurship as a technology for social change, Contingency management

5 hrs

References:

Stuart Read, Saras Sarasvathy, Nick Dew, Effectual Entrepreneurship, Routledge

Course Code: 15MBAC707		Course Title: Business Statistics
L-T-P : 1-1-1	Credits: 03	Contact Hrs: 5 hrs/week
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hrs: 15hrs		Exam Duration: 1.5 hrs

Module 1:

Introduction to business statistics: Importance of statistics in managerial decision-making, the nature of study, limitations and misuse of statistics, subdivisions within statistics.

Data types, Frequency Distribution, Tables and Graphical Representation, Measures of Central Tendency, Measures of Dispersion

Module 2:

Probability distribution: Normal distribution, Correlation and Regression Analysis, Test for means and Proportions, Test for equality of population means, confidence interval, introduction to Chi-square test.

06 hrs

09 hrs

- 1. G. C. Beri, 2005, *Business Statistics*, 2nd edition, Tata McGraw-Hill.
- 2. R I Lewin and David S Rubin, *Statistics for Management*, 7th edition, Pearson.
- 3. Robert E. Stine, Dean Foster, *Statistics for Business: Decision Making and Analysis*, 1st edition, Pearson
- 4. Bruce Bowerman, Emly S. Murphree, Richard O'Connell *Business Statistics in Practice*, 5th edition, Tata McGraw-Hill.
- 5. J K Sharma, *Business Statistics*, 3rd edition, Vikas Publication.

Total Marks: 100

Course Code: 15MBAP701 Course Title: Industry Experience Phase- I L-T-P: 0-0-1 Credits: 1 Contact Hrs: 02 hrs/week CIE Marks: 100 SEE Marks: --Teaching Hrs: 30 hrs

- Organization Profile (Ownership type, MSME, MD/Owner, Revenue and employee strength, • Product or services and Business model)
- Organization structure & code of conduct •
- Ethical Practices & Corporate Social Responsibility •
- **Business Processes Study in Organization** ٠
- Interdependency of different Business Processes •

Course Code: 15MBAP703 L-T-P: 0-0-1 Credits: 1 CIE Marks: 100 SEE Marks: --Teaching Hrs: 30 hrs

Course Title: Fundamentals of Communication Contact Hrs: 02hrs/week Total Marks: 100

Topic 1: Vocabulary and Verbal Skill

- Analogies, Synonyms and Antonyms
- Pronunciation and Pronunciation for accent neutralization
- Listening dictations
- Reading Comprehension
- Sentence Completion
- Error Detection

Topic 2: Writing Skills

- Essay
- Short Notes
- Interpretation
- Correcting grammatical errors

Topic 3: Art of Communication

- Components of Communication
- Confident Body Language
- Empathetic Vocabulary
- Modulating Voice
- Active Listening

Topic 4: Presentation Skills

- Successful Presentations
- Overcoming Fear of Audience
- E-Presentations
- Working with PowerPoint

Topic 5: Discussions and Debates

- Convincing Speech
- Introduction to Rhetoric and Syllogistic Logic
- Importance of Pause, Pitch and Pace
- Handling different topics

- Vilanilam J V, More Effective Communication: A Manual for Professionals, Sage Publications.
- Shirley Taylor, 2005, *Communication for Business: A Practical Approach*, 4th Edition, Pearson Longman.
- John M Penrose, Robert W. Rasberry, and Robert J. Myers, *Advanced Business Communication*, 3rd edition, Thomson South-Western.
- Urmila Rai and S.M. Rai, Business Communication, Himalaya Publishing House.
- Raymond V. Lesikar, Basic Business Communication: Irwin/McGraw-Hill, 1999
- Sam Phillips, 3000 Synonyms and Antonyms 1st Edition, Goodwill Publishing House

ĸ	
Total Marks: 100	
S	
r	

Linear Programming: Introduction, formulation, assumptions, solution: feasible, optimal, multiple Solutions to Linear Programming problems: Graphical method, simplex method, Big-M method Dual Theory: Existence of dual of a LP problem

 14 hrs

 Module 2:

 Transportations problems: Introduction, assumptions, variants

 Assignment problem: Introduction, representation, Hungarian method

 Introduction to Qualitative analysis and bonded rationality

 11 hrs

Module 3:

Queuing Theory: Characteristics of the queuing system, M/M/1 queuing system

Module 4:

Introduction to network scheduling, Project scheduling with CPM, Network construction, Computation of activity times, critical path

04 hrs

05 hrs

06 hrs

Module 5:

Game theory: Formulation of games, two-person zero-sum game with and without saddle point, dominance property, Current trends and applications of Decision Modeling

- 1. Vohra N. D., 2004, *Quantitative Techniques in Management*, Tata-McGraw Hill.
- 2. Frederick S. Hillier and Gerald J. Lieberman, *Introduction to Operations Research*, McGraw-Hill Science.
- 3. Prem Kumar Gupta and Hira D. S., 2007, *Operations Research*, S Chand & Co.
- 4. Ravindran A., Don T. Phillips, and James J. Solberg, 1987, *Operations Research: Principles and Practice*, 2nd edition, Wiley International.

Course Code: 15MBAC710		Course Title: Marketing Management
L-T-P : 2-1-0	Credits: 3	Contact Hrs: 04 hrs/week
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hrs: 30 h	irs	Exam Duration: 3 hrs

Module 1:

Introduction to Marketing, Core Concepts, Marketing Mix, Marketing Planning and Strategies, Scanning the Marketing Environment, Creating Customer Value and Customer Relationships

09 hrs Module 2: Analyzing Consumer Markets, Analyzing Business Markets, Identifying Market Segments and Targets,

Module 3

Competitive Dynamics

Brand Positioning, Brand Equity, Setting Product Strategy, Managing Services, Pricing Strategies and Programs, Integrated Marketing Channels, Retailing, Wholesaling, and Logistics

Module 4

Integrated Marketing Communications, Managing Mass Communications, Managing Personal Communications, Introducing New Market Offerings, Tapping into Global Markets, Contemporary issues in marketing

References:

- 1. Philip Kolter, Kevin keller, Abhraham Koshy and Mithleshwar Jha, Marketing Management A south Asian Perspective, Pearson Publication 14th Edition
- 2. Arunkumar and N Meenakshi, *Marketing Management* Vikas Publication, 2nd Edition

07 hrs

07 hrs

Technological

Course Code: 15MBAC712 L-T-P: 2-1-0 Credits: 3 CIE Marks: 50 SEE Marks: 50 Teaching Hrs: 30 hrs

Course Title: Financial Management Contact Hrs: 04hrs/week Total Marks: 100 Exam Duration: 3 hrs

Module 1:

Introduction, Planning and Financial System

Introduction - Nature and scope of Financial Management, meaning of business finance, Profit Vs Wealth maximization, Agency problem, financial planning, budgets and budgetary control: productionsales-cash and master budgets. Introduction of Indian Financial System

Module 2:

Time Value and Capital Budgeting

Time value of money, capital budgeting, different phases of capital budgeting, criteria for selection of projects, NPV, IRR, BCR, ARR, simple and discounted payback period criteria. (Problems using excel) Capital rationing and replacement projects.

Module 3:

Working Capital Management

Working capital management, different sources of working capital, deciding requirement of working capital Working capital financing: Short term financing of working capital, long term financing of working capital.

Cash and Receivables

Cash management - Nature and motives, marketable securities, Basic strategies. Receivables Management – Objectives, Credit policies, Credit terms, Collection policies. (Only basics)

Long Term and short term Sources of Capital

Introduction to long term and short term sources of capital, leverages: operating, financial, and combined leverages, capital structure decisions, planning the capital structure, cost of capital, specific and composite cost. Hybrid Financing

Module 4:

Personal Financial Planning

Basic financial planning, tax issues, managing savings and other liquid accounts, buying a house, the use of credit, managing investments and saving for retirement, insurance (health, vehicle etc)

References:

- 1. Prasanna Chandra, *Fundamentals of Financial Management*, 7th edn, Tata McGraw Hill.
- 2. I M Pandey, Essentials of Financial Management, 9th edn, Vikas.
- 3. M. Y. Khan and P. K. Jain, *Financial Management*, 5th edn, Tata McGraw Hill.
- 4. Stephen A. Ross, Randolph W. Westerfield, Bradford D. Jordan, Fundamentals of Corporate *Finance*, 6th edn, Tata McGraw Hill.

08 hrs

07 hrs

11 hrs

- 5. Aswath Damodaran, *Corporate Finance Theory and Finance*, 2nd edition, Wiley India.
- 6. Richard A. Brearley, and Stewart C. Myers, *Principles of Corporate Finance*, 7th edn, Prentice Hall of India.

Technological University

Creating Value Leveraging Knowledge

Module 1:

Module 2:

L-T-P: 3-0-0

CIE Marks: 50

Teaching hrs: 40 hrs

Course Code: 15MBAC713

Credits: 3

SEE Marks: 50

Introduction, characteristics, scope, objectives, functions and role of HRM, HRM versus personnel management, difference between HRM and HRD (HRD), qualities of Human Resource (HR) manager, HR manager as a strategic partner.

School of Management Studies and Research

Job design, job analysis, job description, job specification, job enrichment, job enlargement, job rotation, introduction to compensation benefits and management - purpose, meaning, factors, challenges and process

Module 3:

Acquisition of human resources, objectives of man power planning, man power planning, recruitment, sources of recruitment, selection, interview, tests, selection techniques, procedure for placement, induction.

Performance management and appraisal - meaning, purpose, factors affecting appraisal, merits & demerits of performance appraisal, performance counseling, employee engagement, competency mapping. Introduction to compensation management

Module 5:

Training and development, meaning and distinction between training and education, responsibilities, need and objectives of training, training methods & evaluation, managing careers, welfare facilities, industrial relations, work life balance, Introduction IHRM (International Human Resource Management), HR Ethical issues, Contemporary issues in HRM

References:

- 1. Gary Dessler, Human Resource Management, 10th edition, Prentice Hall
- 2. Cynthia D. Fisher, Lyle F. Schoenfeldt, and James B. Shaw, Human Resource Management, Biztantra.
- 3. Ashwatappa K, Human Resource and Personnel Management, 4th edition, Tata McGraw Hill.
- 4. Subba Rao P, Personnel and Human Resource Management, Himalaya Publishing House
- 5. Rao V S P, Human Resource Management, Excel Books

Module 4:

06 hrs

10 hrs

08 hrs

10 hrs

Technological University

School of Management Studies and Research

Course Code: 15MBAC714		Course Title: Operations Management
L-T-P : 3-1-0	Credits: 04	Contact Hrs: 05 hrs/week
CIE Marks: 50	SEE Marks: 50	Total Marks: 100
Teaching Hrs: 40hrs		Exam Duration: 3 hrs

Module 1:

Introduction to OM, nature and scope of operations/production management, trends and challenges in OM, road map for competitive operations, OM across the organisations, operations as a key functional area in an organisation

Facility Planning-Location: globalisation of operations, factors affecting location decisions, location planning methods

TQM: defining quality, Quality management tools with emphasis on control charts for variables and attributes.

Module 2:

Capacity planning: definition and measures of capacity, time horizon and framework in capacity planning, alternatives for capacity augmentation, decision tree for capacity planning.

Facility Planning-layout: implications of layout planning, types of layout, performance measures for layout design, design of process and product layout.

Material Handling: principles, various material handling systems

Module 3:

Aggregate planning: Planning hierarchies in operations, aggregate production planning, necessity of aggregate plan, frame work for aggregate production planning, alternatives for managing demand and supply. Resources planning: dependent demand attributes, framework, Materials Requirement Planning (MRP).

Scheduling of operations: need and basis for scheduling, loading of machines, scheduling of flow and job shops, issues in mass production systems, Sequencing

Module 5:

Role of materials management- materials and profitability, purchase functions, procurement procedures including bid systems, vendor selection and development, vendor rating, ethics in purchasing, roles and responsibilities of purchase professionals, concepts of lead time, purchase requisition, purchase order, amendments, forms used and records maintained. Inventory Management: concepts of inventory, types, classification, selective inventory management, ABC VED, and FSN analysis. Inventory costs, Inventory models – Economic order quantity (EOQ), safety stocks, re-order point, quantity discounts. Stores- types, functions, roles responsibilities, Inventory records

07 hrs

09 hrs

08 hrs

06 hrs

References:

- 1. Mahadevan B, *Operations Management: Theory and Practice*, Pearson Education.
- 2. Ritzman LP and Krajewski LJ, Foundations of Operations Management, Prentice Hall.

Module 4:

- 3. Gaither N and Fraizier G, *Operations Management*, Thomson South-Western.
- 4. Monks JG, *Operations Management: Theory and Problems*, 3rd edition, McGraw Hill.
- 5. Klassen RD and Larry J. Menor LJ, *Cases in operations Management*, Sage.

Course Code: 15MBAP704		Course Title: Managerial Aptitude
L-T-P : 0-0-1	Credits: 1	Contact Hrs: 02hrs/week
CIE Marks: 100	SEE Marks: NA	Total Marks: 100
Teaching Hrs: 30hrs		Exam Duration: N/A

Module 1:

Arithmetical Reasoning - Number Systems and Speed Math, Factors and Multiples, Combinations, Probability, Percentages, Interest, Alligations and Averages, Man-Hour Calculations Analytical Thinking- Data Analysis, Data Interpretation, Data Sufficiency, Puzzle Tests

17 hrs

Module 2:

Verbal Logic- Verbal Analogy, Verbal Classification, Letter and Number Series, Decoding the Codes

Non - Verbal Logic - Non - Verbal Analogy, Non - Verbal Classification, Pattern Completion, Pattern

Comparison

13 hrs

- 1. A Modern Approach to Verbal and Non Verbal Reasoning R. S. Aggarwal, Sultan Chand and Sons, New Delhi
- 2. Verbal and Non Verbal Reasoning Chopra, MacMillan India
- 3. Quantitative Aptitude R. S. Aggarwal, Sultan Chand and Sons, New Delhi
- 4. Lateral Thinking Dr. Edward De Bono, Penguin Books, New Delhi

 Course Code: 15MBAP705

 L-T-P: 0-0-1
 Credits: 1

 CIE Marks: 100
 SEE Marks: -

 Teaching Hrs: 30 hrs
 -

Course Title: Industry Experience phase- II Contact Hrs: 02hrs/week Total Marks: 100

Industry experience:

- Literature Review,
- Problem Statement (Observation, Discussions, Extension of Previous Report)
- Objectives
- Scope
- Research Methodology

Course Title: Corporate Communication Contact Hrs: 02hrs/week Total Marks: 100

- 1. Public speaking
- 2. Report writing
- 3. Business letters: Inquiries, Circulars, Quotations, Orders, Acknowledgments Executions,
- 4. Business letters: Complaints, Claims & adjustments, Collection letter, Banking correspondence, Agency correspondence, Bad news and persuading letters.
- 5. Business letters: Sales letters, Job application letters, Covering Letter.
- 6. Business letters: Interview Letters, Letter of Reference,
- 7. Memos, minutes, Circulars & notices.
- 8. Organize meetings, group discussions, videoconferencing, interviews, virtual meetings
- 9. Crisis communication
- 10. Apply business etiquettes-netiquettes, telephonic, email etiquettes & table etiquettes.
- 11. Prepare Business presentations.

- 1. Vilanilam J V, More Effective Communication: A Manual for Professionals, Sage Publications.
- 2. Shirley Taylor, 2005, Communication for Business: A Practical Approach, 4th Edition, Pearson Longman.
- 3. John M Penrose, Robert W. Rasberry, and Robert J. Myers, Advanced Business Communication, 3rd edition, Thomson South-Western.
- 4. Urmila Rai and S.M. Rai, Business Communication, Himalaya Publishing House.
- 5. Raymond V. Lesikar, Basic Business Communication: Irwin/McGraw-Hill, 1999
- 6. Sam Phillips, 3000 Synonyms and Antonyms 1st Edition, Goodwill Publishing House
- 7. John Jackman and Wendy Wren, Nelson English Evaluation Pack Book 5, Thomas Nelson

Course Code: 15MBAC805		Course Title: Social Entrepreneurship
L-T-P-S : 1-1-0	Credits: 2	Contact Hrs: 03hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 50
Teaching Hrs: 14hrs	S	Exam Duration: 1.5 hrs

Module 1:

Social Entrepreneurship – Definition of Social Entrepreneurship, Characteristics of Social Entrepreneurs, Lifecycle of Social Entrepreneurship, Boundaries of Social Entrepreneurship, Social Entrepreneurship in developing countries, social entrepreneurship vs charity

Module 2: Social impact analysis, Corporate Social Entrepreneurship, Technology and Social Innovations leading to

Social Entrepreneurship, Learning from Social Enterprises

Module 3:

Social Enterprise and Social Marketing, Social Enterprise funding – Social finance, Cloud funding, Current trends in Social Entrepreneurship in India and World

4 hrs

5 hrs

5 hrs

- Robert Philips, Margret Bonefiel, Ritesh Sharma, 2011, *Social Entrepreneurship-The next big business opportunity* Global Vision Publishing House
- Alex Nicholls, 2008, *Social Entrepreneurship: New Models of Sustainable Social Change*, Oxford University Press
- David Bornstein, 2007, *How to Change the World: Social Entrepreneurs and the Power of New Ideas*, Oxford University Press

Course Code: 15MBAC806		Course Title: Technology: an enabler
L-T-P : 2-0-0	Credits: 2	Contact Hrs: 03 hrs/week
ISA Marks: 100	ESA Marks:	Total Marks: 100
Teaching Hrs: 28 hrs		Exam Duration: 3 hrs

Module 1

Data and information, Concepts of management information systems, Information systems in organization, information as resource of competitive advantage, Decision making with MIS, Contemporary approaches to MIS, Data Warehouse, ICT for Development and E-commerce, ethical and social issues related to systems

Module 2

Technology management, knowledge based economy, Internet on things (IoT), Smart city, GPS & RFID 10 hrs

Module 3

E-governance : Central and State government services

References:

- Rahul De, *Managing Information Systems in Business, Government and Society*, Wily India Publication; 1st Edition
- Gordon B. Davis and Margrethe H. Olson, *Management Information Systems (Conceptual foundations, Structure and Development)*McGraw Hill Education India Private Limited; 2 edition
- James O'Brien and George Marakas, *McGraw Hill Education India Private Limited*; 10 edition

10 hrs

Course Code: **15MBAI801** L-T-P: **0-0-3** Credits: **3** ITA Marks: **100** ETA Marks: --Teaching Hrs: **80hrs** Course Title: Summer Internship Contact Hrs: 06Sessions/week Total Marks: 100

Tasks:

- Data collection
- Analysis and Interpretation
- Findings, recommendations and conclusion
- Report writing
- Experience worth noting

Course Code: 15MBAW802 L-T-P: 0-0-2 Credits: 2 ITA Marks: 100 ETA Marks: --Teaching Hrs: 84hrs Course Title: Entrepreneurship Project -Phase I Contact Hrs: 04 Sessions/week Total Marks: 100

This track will be offered to few selected and interested students.

Tasks:

- Self Awareness and assessment relating to entrepreneurship
- Literature survey and review
- Review effectuation process
- Ideation and finalizing one idea

Course Code: 15MBAE812 L-T-P: 3-0-0 Credits: 3 ISA Marks: 50 ESA Marks: 50 Teaching Hrs: 40hrs Course Title: Advanced Financial Management Contact Hrs: 03 hrs/week Total Marks: 100 Exam Duration: 3 hrs

Module 1:

Working capital management – Determination of level of current assets. Sources for financing working capital. Bank finance for working capital. (problems on estimation of working capital). Working capital leverages.

Module 2:

Cash Management – Forecasting cash flows – Cash budgets, long-term cash forecasting, monitoring collections and receivables, optimal cash balances – Baumol model, Miller-orr model. Strategies for managing surplus fund. (No problems)

Receivables Management – Credit management through credit policy variables, marginal analysis, Credit evaluation : Numerical credit scoring and Discriminate analysis. Control of accounts receivables, Problems on credit granting decision.

Module 3:

Leasing: Concept, Steps in Leasing Transactions, Types of Lease, Legal frameworks, Advantages and dis advantages of Leasing, Contents of a Lease Agreement, Matters on Depreciation and Tax, Problems in leasing, Factors influencing Buy or Borrow or Lease Decision.

Hire Purchasing: Concepts and features, Hire Purchase Agreement, Comparison of Hire Purchase with Credit sale, Installment sale and Leasing. Banks and Hire Purchase. Reverse mortgage.(Problems related to outright purchase, Hire purchase and Leasing)

Module 4:

Capital structure decisions – capital structure & market value of a firm. Theories of capital structure – NI approach, NOI approach, Modigliani Miller approach, traditional approach. Arbitrage process in capital structure. Planning the capital structure: EBIT and EPS analysis. ROI & ROE analysis. Capital structure policy .

Dividend policy – Theories of dividend policy : relevance and irrelevance dividend decision. Walter's & Gordon's model, Modigliani & Miller approach. Dividend policies – stable dividend, stable payout and growth. Bonus shares and stock split corporate dividend behavior. Legal and procedural aspects of dividends Corporate Dividend Tax. **09 hrs**

Recommended Books:

- Financial Management Prasanna Chandra, 8/e,TMH, 2011.
- Financial Management M.Y. Khan & P.K. Jain, 6/e, TMH, 2011.
- Advanced Financial Management Sudhindra Bhat Excel Books.

Reference books:

• Financial Management: Theory & Practice - Brigham & Ehrhardt, 10/e, Cenage Learning, 2004.

10 hrs

12 hrs

- Ross, Westerfield & Jaffe, Corporate Finance– TMH 8/e, 2010
- Financial Management & Policy Vanhorne, 12/e, Pearson
- Financial management :principles and applications- Keown, Martin, Petty. Scott, PHI.
- Principle of Corporate Finance– Brearly and Myers, 10/e, TMH, 2012.
- Corporate Finance: Theory & Practice Ashwath Damodaran, 2/e, Wiley India Pvt. Ltd., 2009.

Course Code: 15MBAE822		Course Title: Industrial Legal Environment
L-T-P : 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40h	rs	Exam Duration: 3 hrs

Module 1:

Introduction to labour legislation, Indian constitution and Labour Legislations, International Labour Organization and its influence on Labour Legislations in India

Module 2: Laws on working conditions: The Factories Act, 1948, Shops and Establishment Law, Contract Labour (Regulation and Abolition Act, 1986).

Module 3:

Industrial relations laws : Trade Union Act, 1926, Industrial Disputes Act, Industrial Employment (Standing Orders) Act, 1946.

Module 4:

Wages and labour laws :

Minimum Wages Act, 1948, Payment of Wages Act, 1936, Equal Remuneration Act, 1976, Payment of **Bonus Act**

Module 5: Laws for labour welfare and social security: Employees Compensation Act, 1923, The Employees' State Insurance Act, 1948, The Maternity Benefit

Act, 1961, The Employee's Provident Fund and Miscellaneous Provision Act, 1952, Payment of Gratuity Act

Recent amendments in labour laws

References:

- Agarwal, S. L, Labour Relations Law in India, McMillan. •
- B.D. Singh, Labour Laws for Managers, Excel Books. •
- Pathak, A, Legal Aspects of Business, Tata McGraw Hill. ٠
- Srivastava. S. C, Labour Law in Factories, Mines, Plantations etc, Printice Hall. •
- Mishra S.N, Labour and Industrial Laws, Central Law Publications, Allahabad. ٠
- Bare Acts

6 hrs

10 hrs

10 hrs

05 hrs

Course Code: 15MBAE805		Course Title: Integrated Marketing Communications	
		and Brand Management	
L-T-P-S : 2-1-0-0	Credits: 03	Contact Hrs: 04 hrs/week	
ISA Marks: 50	ESA Marks: 50	Total Marks: 100	
Teaching Hrs: 28 hrs		Exam Duration: 3 hrs	

Module 1:

Integrated marketing communication: The evolution of IMC, reasons for growing importance of IMC, the promotional mix- advertising, direct marketing, internet marketing, sales promotion, publicity, public relations, personal selling, promotion management, IMC planning process

Module 2:

Organizing for advertising and promotion: The role of ad agencies, agency compensation, evaluating agenISAs, developing the integrated marketing communication program, Importance of creative advertising.

Media planning & strategy: An overview on media planning, developing media plan, market analysis and target market identification, establishing media objective, developing and implementation media strategies, evaluation and follow up.

Internet and IMC: Measuring the effectiveness of Internet advertising, advantages and disadvantages of Internet marketing, direct marketing on Internet budgeting for marketing communication

Module 3:

Types of branding: Product branding, line branding, range branding, umbrella branding source and double branding, celebrity endorsement branding, choosing branding strategy, brand valuation.

06 hrs

12 hrs

Module 4:

Contemporary topics

References:

- Belch, M.A., and Belch, G.E., Advertising and Promotion, Tata Mc-Graw Hill Publication •
- Keller Kevin, Strategic Brand Management, Pearson Publication, Third Edition
- Shah, K. and D'souza, A., Advertising & Promotion, Tata Mc-Graw Hill Publication •
- Verma, H.V., Brand Management, Excel Books, Second Edition. •

05 hrs

Course Code: 15MBAE821		Course Title: Learning and Development
L-T-P-S: 2 -0-1	Credits: 3	Contact Hrs: 04 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 28 hrs		Exam Duration: 3 hrs

Module 1:

Introduction to learning and development

Introduction to learning, training and development, theories of learning and theories of adult learning, needs analysis of training, design and development, training methodology: pre-placement, management development, on the- job training, off –the- job management training and development techniques.

07 hrs

09 hrs

Module 2:

Performance evaluation and Appraisal

Performance Appraisal: meaning, types, various methods, process, potential appraisal and pitfalls, Succession planning **06 hrs**

Module 3:

Evaluating Training Programs

Meaning, Donald Kirkpatrick's evaluation model, data collection for training evaluation, designs of training evaluation, introduction training evaluation and process, ROI: Measuring: a search for best practices, model, collecting post-program data and converting data to monetary benefits

Module 4:

Trends of learning and development

E-learning and use of technology for training, creativity and its role in management, time management and stress management, social learning & knowledge collaboration **06 hrs**

Module 5:

Life Skill

Nature & environment, Academic excellence & human values, Discipline, Relationship Precious life & career

- Noe A Raymond, Employee Training & Development, McGraw Hill Publication.
- Rolf Lynton & Udai Pareek, Training for organizational transformation, Sage Publications, New Delhi.
- Krishnaveni R, Human Resource Development, Excel books.
- Jackie Clifford & Sara Thorpe, Workplace Learning & Development: Delivering Competitive Advantage for your organisation, Kogan Page Limited (2007)
- The New Social Learning, 1st Edition, **Author:** Tony Bingham, 2012, Cengage Learning India Pvt. Ltd, New Delhi
- Skills for Life: The Fundamentals You Need to Succeed, **Author:** Jonathan Peck , Mike Jarvis, 2003, Skills For Life LLC Publishing
- Performance Appraisal Theory and Pract ice Rao T.V.

Technological

Course Code: 15MBAE801 Course Title: Sales and Distribution Management L-T-P-S: 2-1-0-0 Credits: 03 Contact Hrs: 04hrs/week ISA Marks: 50 Total Marks: 100 ESA Marks: 50

Module 1:

Teaching Hrs: 28 hrs

Introduction to Sales Management:

Introduction, Evolution of sales management, nature importance of sales management, role and skills of modern sales people, sales management positions/sales as a career, responsibilities (social, ethical, legal) of sales person.

Module 2: Planning sales team:

Nature of organization, types, characteristics of the organization, sales budget, designing of sales territories, sales objectives, quotas and targets, role of ICT in sales organization.

Sales force Management: Sales force recruitment and placement, sales force training and development,

personal selling process, motivating sales people, leadership in sales force management, analysis and evaluation of sales-force management, Distribution and Channel Management: Introduction, channel design and implementation, channel flow and efficiency analysis, channel structure, sales discounting practices.

Contemporary topics: Global Sales force management, Role of technology inSales force and Distribution Channel Management, ethical and social issues in sales management.

References:

- Spiro, Stanton, Rich, Management of Sales force, 11th Edition Tata McGRAW Hill •
- Krishna K Havaldar, M Cavale, Sales and Distribution Management: Text and Cases, McGRAW • Hill
- Tapan K Panda, Sunil Sahadev, Sales and Distribution Management, 2nd Edition, Oxford Higher • Education.

Module 3:

Module 4:

5 hrs

13 hrs

05 hrs

05 hrs

Exam Duration: 3 hrs

	Q KLE TECH.	KLEE Technological Creating Value Leveraging Knowledge
Schoo	l of Mai	nagement Studies and Research

Course Title: Security Analysis and Portfolio Management Course Code: 15MBAE811 L-T-P: 3-0-0 Credits: 3 Contact Hrs: 03 hrs/week ESA Marks: 50 ISA Marks: 50 Total Marks: 100 Teaching Hrs: 40hrs Exam Duration: 3 hrs

Module 1:

Introduction to Investments: Concepts of investment-characteristics and objectives of investment, investment Vs speculation, forms of investment, alternative investments, marketable and non marketable financial assets

Analysis of risk & return, concept of total risk, elements of risk - systematic and unsystematic risk, business risk, interest rate risk, market risk, management risk, purchasing power risk. Measuring Risk and Return

Module 2:

Fundamental analysis, equity valuation, balance sheet techniques, discounted cash flow technique, dividend discount model, zero growth model, constant growth, two stage growth, earning multiplier approach

Bond characteristics, bond price, bond yield, Price, yield relationship, risk in bonds, rating, yield theories, segmentation theory.

Module 3:

Technical analysis: introduction, the concept of Dow theory, trend and trend reversals, chart patterns, Eliot wave theory, mathematical indicators, CAMELS model approach

Module 4:

Efficient market hypothesis and portfolio management: behavior of market, efficient market hypothesis, portfolio Analysis, return and risk of portfolio, portfolios with more than two securities Portfolio Selection, feasible set of portfolios, optimal portfolio, Ideal vs Desired Portfolio Markowitz model, single index model, multi index model, CAPM, Arbitrage Pricing Theory

Module 5: Portfolio Performance, Evaluation and Revision: portfolio revision, meaning and constraints, revision strategies portfolio evaluation, need and meaning, differential return, Treynor ratio pros and cons, residential and other forms.

References:

- Chndra Prasanna, Investment Analysis and Portfolio Management, 3rd Edition, TMH •
- Alexander, Sharpe, Bailley, Fundamentals of Investment, Pearson
- Punithavati Pandyan, Security Analysis and Portfolio Management, Vikas Publishers
- Kevin S, Portfolio Management, 2nd edition, Prentice Hall of India •

11 hrs

08 hrs

10 hrs

05 hrs

Course Code: 15MBAE832 Course Title: Service Operation Management L-T-P: 3-0-0 Credits: 3 Contact Hrs: 03 hrs/week ISA Marks: 50 ESA Marks: 50 Total Marks: 100 Teaching Hrs: 40hrs Exam Duration: 3 hrs

Module 1:

Role of Services in an Economy, Nature of Services, Service Strategy,

Module 2:

Technology in services, Service Quality, Service Encounter, Support Facility, Service Facility Location, Service Documentation

Module 3:

Forecasting Demand for services, Managing Capacity w.r.t demand, managing waiting lines, capacity planning, service supply relationships

Module 4:

Customer relationship management: Customer requirement assessment, customer satisfaction parameters and indices, customer feedback collection and analysis, customer service evaluation, Service Training, Service Costing, Grievance Management

Module 5: IT enabled customer service: Call-centre operations and management, web-enabled services,

(Enterprise Resource Planning) ERP enabled field and technical support services, telemarketing and servicing

References:

- Fitzsimons, AJ and Fitzsimmons MJ, Service Management Operations, Strategy and Information • Technology, Tata McGraw Hill, 2006.
- Haksever C, Render, Russell RS, Murdick RG, Service Management and Operations, Pearson.
- Schemenner R, Service Operations Management, Prentice Hall •
- Hill, AV, Field Service Management: An Integrated Approach to Increasing Customer Satisfaction, **Business One Irwin/ APICS**

08 hrs

08 hrs

08 hrs

08 hrs

Course Code: 15MBAC804Course Title: Small Business ManagementL-T-P: 1-10Credits: 2ISA Marks: 50ESA Marks: - 50Teaching Hrs: 14 hrsExam Duration: 1.5 hrs

Module 1:

Foundation for Small Business in the Indian Context: A Brief History of Small Business, Definition of Small Business, Small Business in the Indian Economy, Success and Failure in Small Businesses, Evolution, Ethics, SBM and E-Commerce, E-Commerce operations and Technology, Family owned small business: An Overview and Family Business Issues

Module 2:

Human resource management (HRM) in SBMs, Process of decision making in SBM, HRM challenges in SBM. Marketing: Marketing for small businesses, market challenges - local and global markets, Opportunities for exporting small businesses products. Finance: Financial performance of small businesses, SBM challenges of acceding funds, government funding agencies

06 hrs

08 hrs

References:

Research paper based curriculum:

M. Aggarwal, Aneet, Small and Medium Enterprises In Transitional Economies: Challenges And Opportunities

Course Code: **15MBAW801** L-T-P: **0-0-3** ITA Marks: **50** ETA Marks: **50** Teaching Hrs: **45 hrs** Course Title: **Project work** Credits: **3** Contact Hrs: **06Sessions/week** Total Marks: **100** Viva-voce: **3 hrs**

Detailed industry profile based on secondary source

Tasks

- Data collection
- Analysis
- Interpretation using tools leading to Challenges, Megatrends and Impact in the global context
- Scope and Opportunities in local prospective.

Course Code: **15MBAW803** L-T-P**: 0-0-5** ITA Marks: **100** Teaching Hrs: **70 hrs** Course Title: Entrepreneurship Project -Phase II Credits: 5Contact Hrs: 10Sessions/week ETA Marks: -- Total Marks: 100

Tasks:

- Report of feasibility study in the framework of effectuation
- Preliminary survey
- Developing alternative business models
- Selection of resources
- finalization of business model
- Prepare for commercial launch
- Report on Business plan and reflections on experience

Exam Duration: 3 hrs

Module 1:

L-T-P-S: 2-1-0-0

Teaching Hrs: 28 hrs

ISA Marks: 50

Course Code: 15MBAE802

Introduction: Meaning of retailing, social and economic significance, opportunities in retailing, retail management decision process, retailing in India- present and future, un-organized retail sector in India present and future challenges.

Types of Retailers: Retail Characteristics, Food Retailers, General Merchandise Retailers, Non- store Retailers, Service Retailing, Types of Ownership and Multichannel Retailing.

Module 2:

Customer buying behavior: Buying process, types of buying decisions, social factors influencing buying process, market segmentation

Retail market strategy: Definition, target market and retail format, building sustainable competitive advantage, growth strategies, strategic retail planning process, financial strategy in retailing management and retail locations.

Module 3:

Module 4:

Information & supply chain management: Creating strategic advantage, information flow, logistics, distribution center, collaboration between retailers & vendors

Customer relationship management (CRM): CRM process, identifying target customers, developing CRM programs, technology is retail and merchandise management.

Contemporary topics: Green retailing, social and ethical issues in retail management, global practices in retail management.

05 hrs

References:

- Michael Levy, Barton Weitz, Ajay Pandit, Retail Management, Tata Mc GRAW Hill
- Swapna Pradhan, *Retail Management*, Tata McGRAW Hill

School of Management Studies and Research

Credits: 03

ESA Marks: 50

11 hrs

05 hrs

Course Code:15MBAE804		Course Title: Services Marketing
L-T-P-S : 2-1-0-0	Credits: 03	Contact Hrs: 04hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 28 hrs		Exam Duration: 3 hrs

Module1:

Introduction: Meaning of services, service and technology, characteristics of services, services marketing mix

Gaps model of service quality: Customer gap, provider gap

Consumer behavior in services: Consumer choice, consumer experience, and post experience evaluation, understanding differences among consumer

Customer expectations of services: Meaning and types of service expectations, factors that influence customer expectations, issues involving customer service, customer perceptions of services: Customer perceptions, customer satisfaction, service quality, service encounters

Module2:

Building customer relationship: Relationship marketing, relationship value of customers, customer profitability segments, relationship development strategies, and relationship challenges Service recovery: Impact of service failure and recovery, how customers respond to service failures, customers recovery expectations, service recovery strategies, service guarantees

Module 3:

Service development and design: Challenges of service design, new service development, types of new services, stages in new services, service blue printing.

Use of Customer defined service standards, physical evidence, service inventory, pricing services and managing demand and supply

Module 4:

Contemporary topics

References:

- V. A. Zeitaml, D. D. Gremler, M. J. Bitner and Ajay Pandit, Services Marketing, TMH
- Christopher Lovelock, Principles of Services Marketing, Pearson Education

s and

11 hrs

05 hrs

07 hrs

Course Code: 15MBAE814		Course Title: International Financial Managemen
L-T-P-S : 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40hrs		Exam Duration: 3 hrs

Module 1:

Introduction

International financial environment, the emerging challenges, recent changes in global financial market, risk management and wealth maximization, the nature and measurement of exposure and risk, Exposure and risk Classification of exposure and risk , exchange rate, interest rate, Inflation rate and exposure. IBRD (International Bank for Reconstruction and Development), The International Monetary System Introduction, exchange rate regimes, IMF, EMU Balance of Payments. Introduction, accounting principles, importance, valuation and timing, debits and credit entries and corrections methods

Module 2: Global financial markets and interest rates Introduction, domestic and offshore markets, Euro markets, the foreign exchange market, PPP.

Forwards, swaps and interest parity – Introduction, swaps and deposit markets, Interbank forward dealing, option forwards, Forward Spread Agreements (FSA), Exchange Rate Agreements (ERA), Forward Exchange Agreements (FEA), forward currency market in India

Currency and Interest rate future -Future contract and trading process, spot and future prices, , Interest futures, Hedging and speculation with interest rate and currency futures,

Currency options – Exchange rate determination, swift mechanism

Module 3:

Exposure management : Introduction, types of exposure, tools and techniques of foreign exchange risk management, management of transactions exposure, management of operating exposure, economic exposure. **09 hrs**

Module 4:

Short term and Long term borrowing and investment

Short term borrowing and investment, long term borrowing in global capital market, international equity investment, the international CAPM, risk and return, accounting for foreign currency transaction and operations. 06 hrs

Module 5:

International Capital Budgeting:

Review of Domestic Capital Budgeting, The Adjusted Present Value Model, Capital Budgeting from the Parent Firm's Perspective, Risk Adjustment in the Capital Budgeting Process, Sensitivity Analysis.

05 hrs

References:

- Jeff Madhura, International Financial Management, South-Western •
- Madhu Vij, International Financial Management, 2nd Edn, Excel Books •
- David K Eiteman, Arthur I Stonehill and Michel H Moffett, Multinational Business Finance, 10th edn, Pearson Education
- Prakash G Apte, International Financial Management, 5th edn, TMH •

08 hrs

- Sharan, International Financial Management, Prentice Hall
- Shapiro, International Financial Management , Prentice Hall

Course Code: 15MBAE816		Course Title: Risk Management
L-T-P : 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week
ISA Marks: 5 0	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40hrs	6	Exam Duration: 3 hrs

Module 1:

Introduction to derivatives and risk

Introduction to Derivatives, types of derivatives, forward, futures, options, futures, pricing of future contract, forward contract

Introduction to risk, types, need for risk management system, risk management process, risk Identification and evaluation, risk control

10 hrs Module 2:

Futures and forwards, valuation of futures and forwards, buying and selling futures, margins, hedging using futures, commodity futures index futures, interest rate futures and arbitrage. **10 hrs**

Module 3:

Risk management using swaps: mechanics of interest rate swaps, volatility of interest rate swaps, currency swaps, valuation of currency swaps

Module 4:

Risk management using options, option pricing, option valuation, basic, binomial and black & scholes model, hedging and trading strategies, arbitrage profits in options, Value at Risk

References:

- John C Hull, *Options, Futures and other Derivatives*, 6th edn, Pearson Education
- Gupta, Derivatives, PHI
- Dubofsky & Miller, Derivatives- valuation and Risk management, Oxford University press
- Vohra and Bagri, *Options and Futures*, 2nd edn, TMH

10 hrs

Course Code: 15MBA	NE823	Course Title: HR Operations
L-T-P-S : 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week
ISA Marks: 5 0	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40hrs		Exam Duration: 3 hrs

Module 1:

Introduction to HR Operations, HR Policies, importance, types of HR Policies, On boarding: importance, objectives, process, HRIS (human resource information system) – concept, objectives, how Managers Use the HRIS?

Module 2: Compensation Management (CM):

Introduction to Compensation Management: Overview of HRM, role of compensation in organizations, introduction to compensation management, Factors influencing employee remuneration, Process of Compensation Management, Architecture of Compensation

Module 3:

Indian Industrial Relations (IR) – An overview, need and objectives. Importance of harmonious IR, Conditions for congenial IR, IR in the post Independence period,

Grievance procedure and Discipline management: Grievance, meaning and forms, approaches to grievance machinery, Grievance procedures, Industrial Discipline and Misconduct, Domestic Enquiry, Code of Discipline in Industry, Retention, Attrition, Exit interviews

Module 4:

Collective Bargaining in India: Definition, Essential conditions for the success of collective bargaining, collective bargaining process, prerequisites for collective bargaining.

Industrial Conflicts: Nature of conflicts causes and types of Industrial conflicts, prevention of Industrial conflicts, and settlement of Industrial conflicts. Workers Participation in Management: Introduction, Concept, Determinants of WPM, WPM in India, WPM Scheme of 1975.

Module 5:

Contemporary topics

References:

- Monappa Arun Industrial Relations, Tata McGraw Hill Publishing Company Ltd, 1/e, 2002.
- Mamoria & Mamoria, *Dynamics of Industrial Relations*, Himalaya Publishing house
- Mumbai, 2004.
- Singh B.D, Industrial relations emerging paradigms, Excel Books.
- Singh B.D, Labour Laws for managers, Excel Books.
- Mishra S.N.Labour and Industrial Laws, Central Law Publications, Allahabad
- Michael J. Kavanagh (Editor), Mohan Thite, *Human Resource Information Systems: Basics, Applications, and Future Directions,* SAGE Publications.

10 hrs

10 hrs

06 hrs

08 hrs

Course Code: **15MBAE824** L-T-P-S: **3-0-0** ISA Marks: **50** Teaching Hrs: **40hrs**

Credits: **3** ESA Marks: **50**

Course Title: Emerging Trends in HR Practices Contact Hrs: 03 hrs/week Total Marks: 100 Exam Duration: 3 hrs

Module 1:

Changing Environment and Strategic HRM

Introduction, changing environment, business complexities, process and structure related strategic responses. Strategic Perspective: importance, business strategy and HRD, business policy and HRD, life cycle of organizations and HRD, strategic HRD system, equal employment opportunity, selecting talents for high performance and employment standards **0**9 hrs

Module 2:

HR Analytics

What is HR Analytics, why now and how is it used? How to get started, needed skills, and common pitfalls to avoid **06 hrs**

Module 3:

Re-Engineering HR

Functions and Processes, implementing re-engineering changes, employee empowerment, managing diversity in workplace **07 hrs**

Module 4:

HRD Accounting and Audit :

HRA Introduction, need and objectives, methods and valuation models, benefits of HRA. HRD Audit: Meaning, methodology, issues, audit instruments, HRD Scorecard, Report. **08 hrs**

Module 5:

International HRM

HR in International Context: Issues that change the context, differences between HRM Domestic and International perspectives, linking HR to international expansion, international recruitment at different levels, issues in staff selection and retention, Performance Management–Criteria's used, factors associated, evaluation systems. Training and Development, Expatriate Training, Developing International teams, managing virtual teams, Compensation Management, Objectives and Approaches, Repatriation Process, Labor Relations – Key Issues **10 hrs**

References:

- HRD Audit, Author: T. V. Rao, Pub: "Response Books" Leading HR
- Re-engineering of HR, Author: Lyle Spencer (Jr) Pub: John Wiley and Sons
- International HRM Managing People in International Context, Author: Dowling, Welch Pub: Thompson Learning, South Western Publications
- Empowering Employees, Author: Kenneth L. Murrell and Mimi Meredith, 2000, Paperback
- Managing Diversity in the Workplace, Author: Iryna Shakhray 2013, Grin Verla
- Strategic Human Resource Management, 2Nd Ed, Author: Susan E. Jackson Randall S. Schuler, 2012, Wiley India Pvt. Ltd.
- The Benefits and Challenges of Leveraging Social Media Recruitment Practices, Author: Patrick Hayes, 2013, Grin Verlag
- Strategic Human Resource Development Srinivas R Kaudula, PHI, 2001.

Course Code: 15MBAE834		Course Title: Heuristics and Optimization
L-T-P : 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week
ISA Marks: 5 0	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40hrs	5	Exam Duration: 3 hrs

Module 1:

Introduction to decision making Anatomy of a decision, bounded rationality, judgmental heuristics, biases emanating from heuristics

Module 2: Nominal Group Techniques: Interpretive Structural Modeling (ISM)- Conceptual view of ISM, why does ISM work so well?, complex problems & solution forming processes, ISM as a transform function, ISM applications & examples, Strategic planning with ISM, Scenario planning with ISM, creating an interpretive structural model

Module 3: Analytical hierarchy process structure of a decision problem, Saaty's scale, seven pillars, structuring a hierarchy, problems

Module 4: Data Envelopment Analysis (DEA): Data envelopment analysis and different efficiency concepts, operationalising the concepts, Scale efficiency, Input and output orientation, Input congestion, Adjusting for operating environments, advantages and limitations of DEA, specifying outputs, inputs and coverage, DEA formula and a single example, introducing scale effects, case study

Module 5:

Theory of Constraints: Introduction, example, application and Benefits

References:

- Sorach, Structured decision making with interpretive structural modeling,.
- LM Seiford, K Tone, WW Cooper, Kluwer, Data Envelopment Analysis: A Comprehensive Text with Models, Applications, References and DEA Solver.
- TL Saaty, LG Vargas, Springer, Models, Methods, Concepts & Applications of the Analytic Hierarchy Process
- MH Bazerman, *Managerial decision making* Wiley text books.
- E. Goldratt, What is this thing called-Theory of constraints, North River publication, I Edition

06 hrs

06 hrs

10 hrs

08 hrs

Course Code: 15MBAE83	3	Course Title: Project Management
L-T-P-S : 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40hrs		Exam Duration: 3 hrs
Module 1		
Introduction, Organizatio Management, Process Gr	nal Context, Project Selection a oups	nd Portfolio Management, Project Life Cycle
		08 hrs
Module 2		
Leadership and Project M Building and Negotiation	anager's role, Scope Managem	ent, Stake holder's management, Project Team
		08 hrs
Module 3		
Risk Management, Cost E and Critical Path	stimation and Budgeting, Proje	ct Scheduling: Networks, Duration Estimation
		10 hrs
Module 4		
Project Scheduling: Laggin Management, Team work	ng, Crashing and Activity Netwo	orks, Critical Chain Project Scheduling, Resource
		10 hrs
Module 5		
Project Evaluation and Co	ontrol, Project Closeout and Ter	mination
		04 hrs
References:		
• Jeffrey K.Pinto, P	roject Management Pearson P	ublication 2009
• Gido I Clements,	Project Management Cengage	Learning

• The Managerail Process , Project Management- by Clifford Gray and Erik Larson TMH, 3rd Edition

Course Code: 16MBAP704 L-T-P: 0-0-2 Credits: 2 ISA Marks: 100 ESA Marks: --Teaching Hrs: 56hrs Course Title: Managerial Communication and Aptitude Contact Hrs: 04 Sessions /week Total Marks: 100

Part 1: Managerial Communication

Topic 1: Discussions and Debates

- Understanding discussion
- Parameters measured in Group Discussions
- Video Analysis of Group Discussions

Topic 2: Writing Skills

- Business letters
- Covering letter
- Resume writing
- Email etiquette 10 hrs

Topic 3: Interview Skills

- What companies expect
- Showing Commitment and Learning Ability
- Handling difficult questions
- Understanding interviewer psychology
- Situation Reaction and Presence of Mind
- Dressing right
- Interview etiquette

Part 2: Managerial Aptitude

Arithmetical Reasoning:

- Number Systems and Speed Math
- Factors and Multiples
- Combinations
- Probability
- Percentages
- Interest
- Alligations and Averages
- Man-Hour Calculations

10 hrs

Analytical Thinking

- Data Analysis
- Data Interpretation
- Data Sufficiency
- Puzzles

Verbal Logic

- Verbal Analogy
- Verbal Classification
- Letter and Number Series
- Decoding the Codes

Non – Verbal Logic

- Non Verbal Analogy
- Non Verbal Classification
- Pattern Completion
- Pattern Comparison

06 hrs

04 hrs

02 hrs

References:

- Vilanilam J V, More Effective Communication: A Manual for Professionals, Sage Publications.
- Shirley Taylor, 2005, *Communication for Business: A Practical Approach*, 4th Edition, Pearson Longman.
- John M Penrose, Robert W. Rasberry, and Robert J. Myers, *Advanced Business Communication*, 3rd edition, Thomson South-Western.
- Raymond V. Lesikar, *Basic Business Communication*: Irwin/McGraw-Hill, 1999
- Sam Phillips, 3000 Synonyms and Antonyms 1st Edition, Goodwill Publishing House
- John Jackman and Wendy Wren, Nelson English Evaluation Pack Book 5, Thomas Nelson

Course Code: 16MBAC712		Course Title: Human Resource Management
L-T-P : 2-0-0	Credits: 2	Contact Hrs: 02hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching hrs: 28 hrs		Exam Duration: 3 hrs

Module 1:

Introduction, characteristics, scope, objectives, functions and role of Human Resource Management(HRM), HRM versus personnel management, difference between HRM and HRD (Human Resource Development), qualities of Human Resource (HR) manager, HR manager as a strategic partner.

Module 2: Job design, analysis, description, specification, enrichment, enlargement and rotation,

Introduction to compensation and benefits management - purpose, meaning, factors, challenges

06 hrs Module 3: Acquisition of human resources: Man power planning, objectives, Recruitment, sources of recruitment,

Module 4:

selection techniques, Placement, Induction.

Employee engagement, competency mapping, Managing careers, welfare facilities, industrial relations, work life balance, Introduction to IHRM (International Human Resource Management), HR Ethical issues, contemporary HRM

• Gary Dessler, Human Resource Management, 10th edition, Prentice Hall

- Cynthia D. Fisher, Lyle F. Schoenfeldt, and James B. Shaw, Human Resource Management, Biztantra.
- Ashwatappa K, Human Resource and Personnel Management, 4th edition, Tata McGraw Hill.
- Rao V S P, Human Resource Management, Excel Books •

References:

08 hrs

06 hrs

Course Code: 16MBAC804		Course Title: Technology: an enabler
L-T-P : 1-0-0	Credits: 1	Contact Hrs: 01 hrs/week
ISA Marks: 100	ESA Marks:	Total Marks: 100
Teaching Hrs: 14 hrs		Exam Duration: 3 hrs

Module 1

Introduction

Data and information, Concepts of management information systems, Information systems in organization, information as resource of competitive advantage, Decision making with MIS, Contemporary approaches to MIS, Data Warehouse, ethical and social issues related to systems.

08 hrs

Module 2

Technology Management

Technology management, Internet on things (IoT), Smart city, GPS & RFID.

06 hrs

References:

- Rahul De, *Managing Information Systems in Business, Government and Society*, Wily India Publication; 1st Edition
- Gordon B. Davis and Margrethe H. Olson, *Management Information Systems (Conceptual foundations, Structure and Development)*McGraw Hill Education India Private Limited; 2 edition
- James O'Brien and George Marakas, McGraw Hill Education India Private Limited; 10 edition

Course Code:16MBAE801		Course Title: Sales Management
L-T-P : 2-1-0	Credits: 03	Contact Hrs: 04hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 28 hrs		Exam Duration: 3 hrs

Module 1:

Introduction to Sales Management:

Introduction, Evolution of sales management, nature importance of sales management, role and skills of modern sales people, sales management positions/sales as a career, responsibilities (social, ethical, legal) of sales person

Module 2: Planning sales team:

Nature of organization, types, characteristics of the organization, sales budget, designing of sales territories, sales objectives, quotas and targets, role of ICT in sales organization

Module 3:

Sales-force Management: recruitment and placement, training and development, personal selling, motivation, leadership, analysis and evaluation 10 hrs

Module 4:

Contemporary topics: Global Sales-force management, Role of technology in Sales-force and Distribution channel management, ethical, social and technological issues in sales-force management.

References:

- Spiro, Stanton, Rich, Management of Sales force, 11th Edition Tata McGRAW Hill •
- Krishna K Havaldar, M Cavale, Sales and Distribution Management: Text and Cases, McGRAW Hill
- Tapan K Panda, Sunil Sahadev, Sales and Distribution Management, 2nd Edition, Oxford Higher • Education.

5 hrs

07 hrs

Course Code: 16MBAE821 Course Title: Learning and Development L-T-P: 3-0-0 Credits: 3 Contact Hrs: 03 hrs/week ISA Marks: 50 Total Marks: 100 ESA Marks: 50 Teaching Hrs: 40 hrs Exam Duration: 3 hrs

Module 1:

Introduction to learning, training and development, Meaning and significance of learning, theories of learning, learning process, Training meaning, significance, purpose and process, Training Department and Trainers' Roles

Module 2: Training Needs Analysis: Meaning and significance of training needs, types of needs, components of

needs, data collection, analysis and interpretation. Training design and development

Module 3: Training methods: on the- job and off -the- job training Management Development Program (MDP): Need, factors affecting MDP, methods, process

Module 4: Evaluating Training Programs: Meaning, significance, Donald Kirkpatrick's evaluation model, data collection for training evaluation, designs of training evaluation, process, Return on Investment in training, a search for best practices in evaluation

Module 5: Trends of learning and development, E-learning and use of technology for training, creativity and its role in Learning and Development, knowledge management, Career in Training

References:

- Noe A Raymond, Employee Training & Development, McGraw Hill Publication. •
- Rolf Lynton & Udai Pareek, Training for organizational transformation, Sage Publications, New Delhi.
- Jackie Clifford & Sara Thorpe, Workplace Learning & Development: Delivering Competitive Advantage for your organisation, Kogan Page Limited (2007)
- Tony Bingham, The New Social Learning, 1st Edition, , 2012, Cengage Learning India Pvt. Ltd, New Delhi
- Rao T.V, Performance Appraisal – Theory and Pract ice
- Jack J. Phillips, Butterworth-Heinemann Return on Investment in Training and Performance ٠ Improvement Programs, 2nd Edition

08 hrs

08 hrs

10 hrs

08 hrs

Course Code: 16MBAE8	23	Course Title: HR Operations
L-T-P : 2-1-0	Credits: 3	Contact Hrs: 04 hrs/week
ISA Marks: 5 0	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 28hrs		Exam Duration: 3 hrs

Module 1:

Introduction to HR Operations, HR Policies, importance, types of HR Policies, On boarding: importance, objectives, process, HRIS (human resource information system) – concept, objectives, how Managers Use the HRIS?, Implications on local organizations, Digitalization of HR

07 hrs

Module 2:

Compensation Management (CM):

Introduction to Compensation Management: Overview of HRM, role of compensation in organizations, introduction to compensation management, Factors influencing employee remuneration, Process of Compensation Management, Architecture of Compensation, Performance appraisal

Module 3:

Indian Industrial Relations (IR) – An overview, need and objectives. Importance of harmonious IR, Conditions for congenial IR, IR in the post Independence period, Industrial relations in the region

Grievance procedure and Discipline management: Grievance, meaning and forms, approaches to grievance machinery, Grievance procedures, Industrial Discipline and Misconduct, Domestic Enquiry, Code of Discipline in Industry, Retention, Attrition, Exit interviews

Module 4:

Collective Bargaining in India: Definition, Essential conditions for the success of collective bargaining, collective bargaining process, prerequisites for collective bargaining.

Contemporary topics

References:

- Monappa Arun Industrial Relations, Tata McGraw Hill Publishing Company Ltd, 1/e, 2002.
- Mishra S.N.Labour and Industrial Laws, Central Law Publications, Allahabad
- Michael J. Kavanagh (Editor), Mohan Thite, *Human Resource Information Systems: Basics, Applications, and Future Directions,* SAGE Publications
- Piyali Ghosh, Shefali Nandan, *Industrial Relations and Labour Laws*, Mc Graw Hill Education(India) Private Ltd

06 hrs

07 hrs

Course Code: 16MBA	E806	Course Title: Digital Marketing
L-T-P : 2-1-0	Credits: 03	Contact Hrs: 04hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 28 hrs		Exam Duration: 3 hrs

Module 1:

Introduction to digital marketing: Need and relevance for digital marketing, evolution of digital marketing, challenges/issues concerning digital marketing and future of digital marketing.

Module 2:

Ethical components in digital marketing

Social media campaigns: analyzing successful green campaigns,

Social media and customer engagement: the social feedback cycle, open access to information and the connected customers.

The social web and engagement: the engagement process

Introduction to social media as a business tool: use of face book, YouTube, twitter and LinkedIn as modern tools for business operations and communications.

Module 3: The new role of the customer: social interactions on social media. Customer Relationships: Social CRM.

Overview of social business: building a social business ecosystem, social profiles, social applications, using brand outposts and communities

05 hrs Module 4: 05 hrs **Contemporary topics**

References:

- Dave Evans, Social Media Marketing: The Next Generation of Business Engagement Wiley **Publication Inc**
- Sameer Deshpande and Nancy R Lee, Social Marketing in India, Sage Publications
- Diane Martin and John Schouten, Sustainable Marketing, Prentice Hall Publications ٠
- Robert Dahlstorm, Green Marketing: Theory, Practice, and Strategies (English) 1st Edition • South Western Publications

06 hrs

Course Code: 16MBAE834		Course Title: Inventory Management
L-T-P : 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week
ISA Marks: 5 0	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40hrs		Exam Duration: 3 hrs

Module 1

Dependent and independent demand, Demand Forecasting, Need for inventory, types of inventory, effect of inventory on profitability. **08hrs**

Module 2

Basic inventory Model, Inventory model with continuous replenishment, inventory model with discounts, Inventory model with uncertain demand, Inventory model with variable demand and fixed lead time, Inventory model with fixed demand and variable lead time, inventory model with variable demand and lead time **12 hrs**

Module 3

Selective inventory control, dependent inventory management(MRP), Collaborative Planning, Forecasting and Replenishment, JIT systems **06 hrs**

Module 4

Inventory as substitute for capacity, Multilocation inventory models –one origin several destinations, several origin several destinations system **10 hrs**

Module 5

Role of inventory in food security, impact of real time data communication on inventory management 04 hrs

References

- Buffa and Sarin , Operations Management
- Max Muller , Essentials of Inventory Management
- NarasimhanSitaramn and Mcleavey Dennis, Production Planning and Inventory Control

Course Code: 16MBAE835	Course 1	itle: Logistics and Warehouse Management
L-T-P : 3-0-0	Credits: 3	Contact Hrs: 03 hrs/week
ISA Marks: 5 0	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40hrs		Exam Duration: 3 hrs

Module 1

Introduction

Inventory Flow, Information Flow, Planning and Coordination flows, Operational flows, Difference between Logistics and Supply Chain Management Linkage of Logistics to other functions, Objectives of Logistics Management, 5Ps and & 7 Rs of Logistics. Modes of transportation and documentation **10 hrs**

Module 2

Location Selection and Network Design Transportation – Location Trade-offs, , Location Models, Locating Service Organisations Transportation Modeling, Routing, Transshipment, Multi location and multi item ware house modeling. 12 hrs

Module 3

Warehouse Management

Warehouse Operations, Material Handling and Packaging, Parts and Service Support, Bar coding, RFID, Electronic Data Interchange (EDI), Automated material handling, Warehouse Management Systems (WMS) **08 hrs**

Module 4

Strategic Logistic Practices International Logistics, Third party and Fourth party logistics, ERP and Ecommerce & Logistics

06 hrs

Module 5

Reverse Logistics and its impact on Environment Definition, evolution and trends. Economic and environmental impact

References

- G. Raghuram and Rangaraj, *Logistics and Supply Chain Management: Cases and Concepts* Laxmi Publications (2015)
- Christopher, M; Richard Irwin Logistics and Supply Chain Management
- Chopra and Mendal, Supply Chain Management

Course Code: 17MBAC704		Course Title: Business Research and Statistics
L-T-P : 3-1-0	Credits: 4	Contact Hrs: 05 hrs/week
ISA Marks: 50	ESA Marks: 50	Total Marks: 100
Teaching Hrs: 40 hrs		Exam Duration: 3 hrs

Module 1:

Introduction to business research:

Meaning and objectives of research, Types of research, Stages in research process, Characteristics of Good Research. Philosophy of Research Methodology: Ontology, Logic of Procedure, epistemology, Research Gap.

Module 2:

Concepts in Research:

Variables, Qualitative and Quantitative Research

Research design: Meaning, Importance, Steps in research design, Types- Descriptive, Exploratory and causal

Sampling : meaning of sample and sampling, methods of sampling-

i)Non- Probability Sampling Convenient, Judgment, Quota, Snow ball,

ii) Probability – Simple Random, Stratified, Cluster, Multi Stage.

Module3:

Types of Data& Data Collection:

Primary and secondary

Methods of Data collection– Personal Interviews, Telephonic or Internet Interview, Observation, Focus group interviews, Expert opinions, self administered questionnaire.

Schemes of analysis Secondary data analysis, Qualitative data analysis

Introduction to business statistics: Importance of statistics in managerial decision-making, the nature of study, limitations and misuse of statistical data, subdivisions within statistics.

Data: types, Frequency Distribution, Representation, Measures of Central Tendency, Measures of dispersion

Module 4:

Types of measurement and Scales:

Nominal, Ordinal, Interval, Scale,

Types of Measurement Scales, Attitude rating, Likert, Thurstone, Semantic Differential

Module 5:

Hypothesis and Probability distribution:

Meaning, Nature, Significance, Types of Hypothesis,

14 hrs

07 hrs

06 hrs

Normal distribution, Correlation and Regression Analysis, Test for means and Proportions, Test for equality of population means, confidence interval, introduction to Chi-square test. Report writing, ethical issues, and plagiarism

09 hrs

References:

- Cooper and Schlinder, Business Research Methods, TMH
- William Zikmund, Business Research Methods, Cengage Publication
- G. C. Ramamurthy, *Research Methodology*, Dreamtech Press
- Uma Sekaran and Roger Bougie, *Research Methods for Business*, Wiley Publications
- Uwe Flick, An Introduction to Qualitative Research, Sage Publications
- Gerard Guthrie, *Basic Research Methods*, Sage Publications
- G. C. Beri, 2005, *Business Statistics*, 2nd edition, Tata McGraw-Hill.
- R I Lewin and David S Rubin, *Statistics for Management*, 7th edition, Pearson.
- Robert E. Stine, Dean Foster, Statistics for Business: Decision Making and Analysis, 1st edition, Pearson
- Bruce Bowerman, Emly S. Murphree, Richard O'Connell*Business Statistics in Practice*, 5th edition, Tata McGraw-Hill.
- J K Sharma, *Business Statistics*, 2rd edition, Pearson

Course Code: 17MBAP803 L-T-P: 0-0-2 Credits: 2 ITA Marks: 100 ETA Marks: --Teaching Hrs: 56hrs Course Title: **MS Excel for Managers** Contact Hrs: **04Sessions/week** Total Marks: **100**

MS Excel

- MS Excel Basics
- Editing Worksheet
- Formatting Cells
- Formatting Worksheets
- Working with Formula
- Advanced Operations
- MS Excel Resources

Course Code: 17MBAW802 L-T-P: 0-0-2 Credits: 2 ITA Marks: 100 ETA Marks: --Teaching Hrs: 56hrs Course Title: **Project work Phase - I** Contact Hrs: **04Sessions/week** Total Marks: **100**

Student has to execute the below mentioned tasks about the industry related to his/her SIIT firm

Task s:

- Review of literature (Strategic Management models and tools)
- Value chain study
- Internal value chain and identification of drivers
- Report writing

Course Code: 17MBAW803 L-T-P: 0-0-3 Credits: 3 ITA Marks: 100 ETA Marks: --Teaching Hrs: 56hrs Course Title: Entrepreneurship Project -Phase III Contact Hrs: 06Sessions/week Total Marks: 100

Tasks

- Finalization of business model
- Prepare for commercial launch
- Report on Business plan and reflections on experience

Course Code: 17MBAW804 L-T-P: 0-0-2 Credits: 2 ITA Marks: 50 ETA Marks: 50 Teaching Hrs: 56hrs Course Title: Project work Phase - II Contact Hrs: 04Sessions/week Total Marks: 100 Viva-voce: 3 hrs

Project work Phase – I is prerequisite

Student has to execute the below mentioned tasks Tasks

- Industry value chain and identification of drivers
- Compare and contrast Company value chain with industry value chain
- Industry Trends and futuristic outlook
- Report writing

Course Code: 18MBAE805	Course Title: Integrated Marketing Communications
L-T-P : 2-1-0	Credits: 03Contact Hrs: 04 Sessions/week
ITA Marks: 50	ETA Marks: 50Total Marks: 100
Teaching Hrs: 28 hrs	Exam Duration: 3 hrs

Module 1:

Integrated marketing communication:Integrated marketing communication: The evolution of IMC, reasons for growing importance of IMC, the promotional mix- advertising, direct marketing, internet marketing, sales promotion, publicity, public relations, personal selling, promotion management, IMC planning process

Module 2:

Organizing for advertising and promotion: The role of advertising agencies, agency compensation, evaluating agencies, developing the integrated marketing communication program, Importance of creative advertising

Media planning & strategy: An overview on media planning, developing media plan, market analysis and target market identification, establishing media objective, developing and implementation media strategies, evaluation and follow up.

Internet and IMC: Measuring the effectiveness of Internet advertising, advantages of Internet marketing, direct marketing on Internet budgeting for marketing communication.

12hrs

Module 3:

Consumer Decision Making Process: Steps of effective communication, communication objectives, consumer decision making process, how advertising works- AIDA and hierarchy effects model, convincing senior executives on the marketing communication budget.

05hrs

Module 4:

Contemporary topics: Shift to Mobile and Beyond, Social Media Impact on Communication and Brand Journalism

05hrs

References:

- Belch, M.A., and Belch, G.E., Advertising and Promotion, Tata Mc-Graw Hill Publication
- Keller Kevin, Strategic Brand Management, Pearson Publication, Third Edition
- Shah, K. and D'souza, A., Advertising & Promotion, Tata Mc-Graw Hill Publication

Course Code: 18MBAE807

Credits: 03

Teaching Hrs: 28 hrsExam Duration: 3 hrs

ETA Marks: 50

Module1:

Module 2:

L-T-P: 2-1-0

ITA Marks: 50

Basic concept of Industrial Marketing: Industrial Marketing, consumer and industrial products, consumer and industrial marketing, differences of consumer and industrial marketing. **Industrial markets:** Industrial customers, specificities of industrial markets, the environment of Industrial Marketing. The specificities and the risks in international markets. The trends in globalization of industrial markets

Organization's purchasing behaviour, system of purchasing decisions: System of taking decisions in the Industrial Marketing. The poles in the system of taking purchasing decisions in Industrial Marketing. Factors that affect the purchasing decision in Industrial Marketing.

Process of taking purchasing decisions for industrial products.Types of purchasing activities in Industrial Marketing.Marketing Strategies for the purchasing activities and the stages of the process of taking purchasing decisions. Information sources that are used from members of the Taking purchasing decisions' system

Module 3:

Pricing and Promotion in Industrial Marketing: The importance of pricing in Industrial Marketing. Inhouse and external factors determine the price. Procedures, processes and pricing policies. The mixture promotion in industrial marketing. Sales promotion, advertising, direct marketing, public relations and personal selling.

Distribution of industrial products: The importance of industrial products. Administration and revitalization of existing industrial products. The Marketing distribution functions, main forms of intermediate, forms of industrial channels. Design, selection and management of distribution channels.

Module 4:

Contemporary topics

Systematic approach to the management and control of supplier/customer relationships, interactive strategic marketing planning: A new approach. Smart Business to business strategy.

05 hrs

References:

- 1. Tomaras P. (2009). Industrial Marketing. Published by the author. Athens, (ISBN: 978-960-90674-3-0). (in Greek)
- 2. Ralph S Alexander, Richard M Hill, Industrial Marketing-Edition-3

School of Management Studies and Research

10 hrs

08 hrs

Course Code: 18MBAE808	Course Title: Product and Brand Management
L-T-P: 2-1-0	Credits: 03Contact Hrs: 04hrs/week
ITA Marks: 50	ETA Marks: 50 Total Marks: 100
Teaching Hrs: 28hrs	Exam Duration: 3 hrs

Module 1:

Introduction to Product Management, Role and Functions of Product Managers, Product Mix and SBU Strategies, Portfolio analysis (BCG / GE Multifactor Matrix), Marketing Planning

Module 2:

Product Decisions over the PLC, New Product Development Process, Pricing and Promotion strategies, channel management

7 hrs

7 hrs

Module 3:

Introduction to Brand Management- Branded House Vs House of Brands, Corporate Brand, Brand prism by Kapferer Model, Brand Anatomy, Branding Decisions- Line Extensions, Category Extension, Brand Equity – Concept and measure

Module 4:

Contemporary Practices

References:

- Donald R Lehamann, Product management 4th Edition, Mcgrow Higher Ed
- Marc Annacchino, New Product Development, 2003 Ed, Elsevier Butterworh-Heinemann
- Saaksvuori Antti, Product Lifecycle management, Springer- Verlag
- Kevin Lane Keller, M G Parameswaran, Isaac Jacob, Strategic Brand Management, 2008, Person publication
- David Aaker, Brand Management, TMH publication
- YLR Murthy, Brand management Indian prospective, Vikas Publications

Course Code:19MBAE811Course Title:Security Analysis and Portfolio ManagementL-T-P:2-1-0Credits:3Contact Hrs:04 Sessions/weekITA Marks:50ETA Marks:50Total Marks:100Teaching Hrs:28hrsExam Duration:3 hrs100

Module 1:

Introduction to Investments

Introduction to Investments: Concepts of investment-characteristics and objectives of investment, investment Vs speculation, forms of investment, alternative investments, marketable and non marketable financial assets, Foreign Portfolio Investment (FPI), Sovereign Wealth Funds (SWFs). Analysis of risk & return, concept of total risk, elements of risk – systematic and unsystematic risk, business risk, interest rate risk, market risk, management risk, purchasing power risk. Measuring Risk and Return.

Module 2:

Introduction of fundamental and technical analysis

Fundamental analysis, equity valuation, balance sheet techniques, discounted cash flow technique, dividend discount model, zero growth model, constant growth, two stage growth, earning multiplier approach Bond characteristics, bond price, bond yield, Price, yield relationship, risk in bonds, rating, yield theories, segmentation theory.

Technical analysis: introduction, the concept of Dow Theory, trend and trend reversals, chart patterns, Eliot wave theory, mathematical indicators

Module 3:

Efficient market hypothesis and portfolio Management

Behavior of market, efficient market hypothesis, portfolio Analysis, return and risk of portfolio, portfolios with more than two securities Portfolio Selection, feasible set of portfolios, optimal portfolio, Markowitz model, single index model, multi index model, CAPM, Arbitrage Pricing Theory.

Module 4:

Portfolio Performance, Evaluation and Revision

Portfolio revision, meaning and constraints, revision strategies portfolio evaluation, need and meaning, differential return, Treynor ratio pros and cons, residential and other forms **06 hrs**

References:

- PunithavatiPandyan, Security Analysis and Portfolio Management, Latest edition, VikasPubl,
- Kevin S, Portfolio Management, 2nd edition, Prentice H,
- Alexander, Sharpe, Bailley, Fundamentals of Investment, Pearson,
- ChndraPrasanna, Investment Analysis and Portfolio Management, 3rd Edition, TMH

05hrs

09hrs

Course Code:19MBAW802Course Title: Internship and Project workL-T-P: 0-0-7Credits: 7LTA Marks: 50ETA Marks: 50Ta Amarks: 50ETA Marks: 50Teaching Hrs: 98 hrsViva-voce: 3 hrs

PART I

- Broad overview pertaining industry and detailed organization profile in the framework of foundation courses (Human Resource Management, Marketing Management, Operations Management and Financial Management)
- Student has to work on the research area
- Data collection
- Analysis and Interpretation
- Findings, recommendations and conclusion
- Report writing
- Experience worth noting

PART II

Detailed industry profile based on secondary source

Tasks

- Data collection
- Analysis
- Interpretation using tools leading to Challenges, Megatrends and Impact in the global context
- Scope and Opportunities in local prospective

Course Code: **19MBAW803** L-T-P: **0-0-5** ITA Marks: **100** Teaching Hrs: **70 hrs** Course Title: Entrepreneurship Project -Phase II Credits: 5Contact Hrs: 10Sessions/week ETA Marks: -- Total Marks: 100

Pre-requisite: Entrepreneurship Project- Phase I

Tasks:

- Report of feasibility study in the framework of effectuation
- Preliminary survey
- Developing alternative business models
- Selection of resources
- finalization of business model
- Prepare for commercial launch
- Report on Business plan and reflections on experience